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ABSTRACT OF THE THESIS

A SIMPLIFIED SECURE PROGRAMMING PLATFORM FOR INTERNET OF

THINGS DEVICES

by

Halim Burak Yesilyurt

Florida International University, 2018

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

The emerging Internet of Things (IoT) revolution has introduced many useful appli-

cations that are utilized in our daily lives. Users can program these devices in order

to develop their own IoT applications; however, the platforms and languages that

are used during development are abounding, complicated, and time-consuming. The

software solution provided in this thesis, PROVIZ+, is a secure application devel-

opment software suite that helps users create sophisticated and secure IoT applica-

tions with little software and hardware experience. Moreover, a simple and efficient

domain-specific programming language, namely Panther language, was designed for

IoT application development to unify existing programming languages. In addition

to these contributions, PROVIZ+ supports a novel secure over-the-air programming

framework, namely SOTA, using Bluetooth and WiFi as well as serial programming.

In this thesis, we explain the features of PROVIZ+’s components, how these

tools can help develop IoT applications, and SOTA. We also present the performance

evaluations of PROVIZ+ and SOTA.
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CHAPTER 1

INTRODUCTION

The Internet of Things (IoT) devices have become very popular in various crit-

ical and non-critical usage fields. Many people have started to use IoT devices

realizing their benefits in their lives and scientific research [MSPC12, CGOF13].

Because of the popularity of IoT devices, developers gravitate toward the develop-

ment of IoT applications. These applications utilize IoT devices that contain various

peripherals (e.g, sensors, cables, communication shields) and controller units (e.g,

micro-controllers, micro-processors, security modules); they read data from sensors

and then process it in the controller unit. A wide variety of sensors can be used

within the IoT context with purposes such as measuring the temperature of a room,

detecting movement in a vehicle, and establishing the identity of a user.

The continuous increase of attention to IoT applications has yielded a new ecosys-

tem of platforms and languages [DEDP15, CBS+18]. This ecosystem caused a need

for a framework that facilitates secure IoT application development, which unifies

a broad range of IoT development environments and languages. Those interested

in developing applications for various IoT devices have to learn programming lan-

guages and how to operate several development environments. For example, con-

sider someone who wants to develop a temperature measurement system using an

Arduino-based IoT device. To do so, the person needs to know how to program

applications written in the C language as well as be acquainted with hardware-

related concepts regarding the measurement of sensors and the Arduino IoT device.

Moreover, if the person wants to transfer their application to run on another IoT

device such as a Raspberry Pi, this person will need to port the code into this new

devices programming platform by rewriting the application in another program-

ming language (e.g., Python). In addition to the cost of learning a broad range of
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programming languages and platforms for different IoT devices, over-the-air pro-

gramming Bluetooth and WiFi data transmission protocols require great attention

and an in-depth knowledge of IoT devices. To address these issues, this thesis aims

to design a software suite that facilitates the need to learn so many technologies:

it helps to reduce the barrier of entry for secure IoT application development. The

software suite solution, PROVIZ+, which is introduced in Chapter 4, is a secure

IoT application development software suit that helps users to develop IoT applica-

tions without asking for any software or hardware experience. PROVIZ+ supports

various IoT development boards including major brands such as Raspberry Pi and

Arduino. Moreover, the software suite includes a domain-specific programming lan-

guage, namely Panther language, which is introduced in Chapter 4, to unify the

existing programming languages to simplify the development of IoT applications.

In addition to the Panther language, PROVIZ+ has visual programming and script-

based programming tools which enable users to program IoT devices either by drag-

ging and dropping using the visual programming tool or writing code in the Panther

language using the code-based programming tool. PROVIZ+ also supports auto-

mated Bluetooth, WiFi, and wired data transmission for Arduino and Raspberry

Pi IoT devices. Besides, it provides an easy IoT application and firmware transfer

mechanism to supported IoT devices. This firmware upload process can be achieved

either over-the-air or through physical communication over the serial data cables.

Since the firmware transfer is a crucial task for different IoT applications, we de-

signed and implemented a novel over-the-air programming feature for PROVIZ+.

Also, as existing over-the-air programming protocols for low-powered IoT devices do

not include adequate security mechanisms to defend against different malicious at-

tacks, we designed and implemented a secure over-the-air programming framework,

named SOTA, which is introduced in Chapter 5.
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CHAPTER 2

BACKGROUND INFORMATION

This chapter provides background information about Internet of Things and

corresponding or related technologies that are used in the development of PROVIZ+

and the SOTA framework.

2.1 Internet of Things (IoT)

The Internet of Things (IoT) is the network of physical devices that have actuators,

sensors, and computation and communication units in order to exchange data with

each other over a communication protocol. IoT applications can be created using

several types of customized hardware, single board computers, and micro-controllers

[PRO, CUB13]. Since Raspberry Pi and Arduino are selected as natively supported

IoT devices in PROVIZ+, they are introduced in the following sub-sections.

Raspberry Pi

The Raspberry Pi is a single board computer (SBC) that has a system on chip

(SOC) as the central processing unit with an integrated ARM central processing

unit (CPU) and a graphics processing unit (GPU). Since it has a GPU and it can

run a desktop environment smoothly, it can be used as a personal computer. In

addition to being powerful, Raspberry Pi devices are credit card-sized computers,

which means that they are portable and can easily be moved to another location.

Pis have multiple purpose I/O pins which enable developers to create IoT sensor

applications. Moreover, they support WiFi and Bluetooth connection protocols to

support data transmission over wireless networks. Because Raspberry Pis have a

powerful microprocessor, developers use them for IoT applications that require high

3



Table 2.1: Specifications of Raspberry Pi models

Device Name CPU Memory Ethernet Wireless Bluetooth OS

Raspberry Pi Zero 1GHz 512 MB DDR2 None None None Linux
Raspberry Pi 2 Model B 0.9 GHz 1 GB DDR2 Yes None None Linux
Raspberry Pi 3 Model B 1.2 GHz 1 GB DDR2 Yes 802.11n Bluetooth 4.1 Linux

Raspberry Pi 3 B+ 1.4 GHz 1 GB DDR2 Yes 802.11 b/g/n/ac Bluetooth 4.2 Linux
Raspberry Pi A+ 700 MHz 256 MB DDR2 Yes Yes Bluetooth 4.1 Linux

Raspberry Pi Zero WH 1 GHz 512 MB DDR2 Yes 802.11n Bluetooth 4.1 Linux

computation power. In the scope of this thesis, we use Raspberry Pi 3 Model B

shown in Figure 2.1 in performance evaluations of the PROVIZ+ software suite.

The specifications of the different Raspberry Pi models can be seen in Table 2.1.

Figure 2.1: Raspberry Pi IoT device [RASa].

Arduino

Arduino is an hardware and software development company that builds single-board

computers and micro-controller kits. These kits are distributed as an open-source

hardware with large open-source community support.

Because they do not have SOC, they mostly do not support embedded com-

munication protocols unlike Raspberry Pis. Despite having limited capabilities,

Arduino devices can perform sophisticated tasks by utilizing sensor and communi-

cation shields, which can be added to the board. These shields can be WiFi, Zigbee,

or Bluetooth communication shields to support data transmission, and also they can

4



Table 2.2: Arduino IoT device specifications

Device Name CPU Memory Ethernet Wireless Bluetooth OS

Arduino YN 400 MHz & 16 MHz 64 MB DDR2 Yes Yes None Linux
Arduino Uno 16 Mhz 8-Bit 2 Kb None None None Bare Machine

Arduino Mega 2560 16 MHz 8 KB None None None Bare Machine
Arduino Due 84 MHz 96 KB None None None Bare Machine

Arduino LilyPad USB 8 MHz 2.5 KB None None None Bare Machine
Arduino Zero 48 MHz 32 KB None None None Bare Machine

be sensor shields to increase the capabilities of Arduinos such as measuring temper-

ature, pressure, or humidity. Arduino IoT devices have a low-level I/O operation

support; they support Inter-Integrated Circuit (I2C) and Serial Peripheral Interface

Bus (SPI) communication ports. Interestingly, a large majority of Arduino IoT de-

vice models have the same brand of micro-controller, Atmel [ATW]. Having the

same micro-controller makes it possible to develop common solutions for many IoT

products without needing to differentiate by the type of Arduino IoT devices. In

addition to wide communication port support, they are also energy-efficient as they

employ low power ATMEL micro-controllers. Table 2.2 shows the specifications of

the popular Arduino IoT devices. In the scope of this thesis, we use the Arduino

Mega 2560 IoT device that is shown in Figure 2.2.

Figure 2.2: Arduino IoT device [ARD].
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2.2 Over-the-air Programming

Over-the-air programming is a method of programming electronic devices remotely

without any physical contact. It can be achieved using Bluetooth or WiFi communi-

cation protocols. These protocols carry firmware pieces for target micro-controllers

or microprocessors for purposes of updating the firmware due to security concerns

or to add new features to it. The majority of Arduino-based IoT devices contain At-

mel micro-controllers which utilize the STK500 Bootloader [ATM] to communicate

with the remote programmer during the firmware transfer. In the SOTA framework,

the STK500 Bootloader was modified to make a secure over-the-air programming

framework.

2.3 Automatic Code Generation Tools

Automatic code generation tools produce the source code of an application for var-

ious devices from templates. These templates carry necessary information that are

taken from users to be utilized in the code generation of the target application. In

the scope of this thesis, an automatic code generation tool was used to generate the

source code for the IoT devices used in this project by only using a code generation

template. As such, users only require filling a code generation template so as to

generate the source code for Arduino and Raspberry Pi IoT devices. Specifically,

the Apache Freemarker [APA] library was selected to implement the automatic code

generation tool for the PROVIZ+ software suite.

6



2.4 Parser Generators

Parser generators produce the source code of a parser that are for reading, under-

standing, and executing binary files or text. Generated parsers are generally used

in parsing structured text operations. In the scope of this thesis, a parser generator

library is added to the PROVIZ+ software suite in order to parse the Panther lan-

guage. In PROVIZ+, the generated parser first utilizes the script that is written in

the Panther language, then fills the code template to produce the source code for a

target device. For this, the ANTLR library [ANT] was selected as a parser generator

tool to generate the parser of the Panther language in the PROVIZ+ software suite.

7



CHAPTER 3

RELATED WORK

In this chapter, the related work in visual IoT sensor application development

tools are given and compared with PROVIZ+. We also provide the related work for

the SOTA framework in the next section. Finally, we discuss other IoT programming

platforms.

The PROVIZ+ software suite presented in this work is inspired by the previ-

ous software project also titled PROVIZ [RCUB16]. That project was intended to

provide a framework to visualize and program wireless sensor networks (WSNs). It

allowed the user to develop wireless sensor applications using a scripting language

that could be easily written and reused by any developer [RCUB16]. Although built

on the same concept, the new PROVIZ, PROVIZ+, has some crucial differences.

These include:

• PROVIZ+ is built for IoT devices. The first generation of the PROVIZ project

was created for WSNs and their sensor nodes such as the MICAz [CRO].

However, PROVIZ supports obsolete sensor devices, which are stale and dep-

recated. PROVIZ+ works smoothly with a broad range of popular IoT devices.

It creates sensor applications by programming IoT boards such as the Arduino

and Raspberry Pi devices.

• PROVIZ+ supports over-the-air programming, unlike PROVIZ.

• The PROVIZ+ software suite includes an Android App that enables users to

monitor flexibly their IoT devices’ sensor data.

• As opposed to PROVIZ, the graphical user interface of PROVIZ+ was de-

signed with a step-by-step guide that prompts the user for the information

8



needed in a sequential manner. In this way, the user can understand what

occurs on the back end as they program the device.

3.0.1 Visual IoT Sensor Application Development Tools

PROVIZ+ is the first software of its kind to have committed itself to ease and

simplicity across platforms for IoT devices. Some visual development tools for wire-

less sensor networks exist, including Viptos [CLZ06], SensorSim [PSS00], and WIS-

DOM [VIE05]. Viptos is a graphical development tool that programs WSNs in

TinyOS [TIN] using diagrams of TinyOS components. This framework integrates

the development of WSN applications with hardware visualization to ease the user

development process. WISDOM is a modular application development tool. Like

PROVIZ+, it has the capacity to program many different sensor platforms within

the same network. It uses a modular system to send different programs to different

sensors in the network to build the most versatile network. Both these platforms

achieve similar goals to PROVIZ+ in terms of heterogeneous networks, network

deployment, and visual development tools. However, they are confined to the tra-

ditional WSN realm. PROVIZ+ is the only software to have also achieved the goal

of secure programming capabilities of heterogeneous IoT networks. Furthermore,

SensorSim aims to develop a simulation environment for sensor networks. The au-

thors of it designed a micro sensor node model that covers radio, power, and battery

features of the simulated sensor nodes. Also, SensorSim includes a scripting lan-

guage that can simply develop virtual sensor nodes in a simulation environment.

PROVIZ+ is different from SensorSim because it has the capability of developing

physical IoT applications instead of having a simulation environment, and secure

over-the-air programming.
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3.0.2 Secure Over-the-Air Programming Frameworks

Secure and wireless code-dissemination has been the focus of several useful studies

in the literature [KW05, DHM05, RSUB12]. Especially, given the resource-limited

nature of IoT devices, energy-efficient code dissemination is vital. Since most of the

sensor applications based on embedded systems are limited regarding energy source,

computation power, and usable memory size, energy efficient code dissemination is

one of the vital aims of PROVIZ+, and it is also a concern for these related studies,

[KW05], [DHM05], [RSUB12]. In [ABB+12], the authors propose a new framework

called SenSeOp for a selective and secure over-the-air programming protocol for

WSNs. In their study, they used asymmetric encryption with Elliptic Curve Cryp-

tography to protect the firmware against cybersecurity attacks. In addition to the

asymmetric cryptography used in this work, [LK] uses hash functions instead of

public key cryptography to provide a secure sensor network programming method.

According to authors, the signature-based public key infrastructure (PKI) might

produce an overhead for embedded devices and wireless sensor nodes. In this study,

SHA or MD5 supported hash chains are used to provide security. Also, in [HST08],

the work aims to offer over-the-air programming techniques using rateless codes. In

[RL03], the authors aim to distribute the firmware wirelessly to wireless sensors by

only sending the changed part of the firmware (i.e., delta) to sensor nodes. Another

useful study [LGN06] classifies and compares network reprogramming protocols in

terms of security, survivability, and performance metrics. Most of the attacks men-

tioned in this work [LGN06] are directly related to the packet routing-related attacks

and the solution provided in the work also utilizes a symmetric key cryptography as

in SOTA. In a different study [KW03], the authors present attacks on secure rout-

ing and its countermeasures in order to mitigate possible damage. Besides these

studies, there is a more cloud-based IoT device programming work [NSV+13]. This
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work introduces the PatRICIA [NSV+13] framework as a high level, end-to-end,

cloud-based IoT programming framework. It has a data persistence layer as well

as a cloud run-time layer. Since data persistence requires extensive memory and

high input-output traffic, this approach is more suitable for advanced IoT devices

that have more memory and computational power than low-cost Arduino-based IoT

boards.

Furthermore, the topic of secure over-the-air programming has become popular

in the vehicular networks domain. In the [NL08] study, the authors used symmetric

encryption to offer secure firmware updates over the air. Their solution aims to pro-

vide data integrity, authentication, confidentiality, and freshness. Also in this study

[NSN08], the same authors proposed a solution for self-verification of downloaded

firmware to detect any modification of firmware during the flashing and downloading

phases. Finally, another study [ISR+11] proposes a secure firmware update protocol

that can be used with not only hard-wired, but also over-the-air data transmission.

Our proposed solution in this thesis, the SOTA framework, is different from

the aforementioned studies as firstly, it focuses on providing an over-the-air pro-

gramming solution to IoT devices; secondly, it proposes an open-source configurable

implementation of over-the-air programming framework to IoT devices that have

low-power, tiny micro-controllers such as the Atmel chipsets; and thirdly, it pro-

vides a comprehensive security services, including confidentiality, authentication,

and integrity.

3.0.3 IoT Platforms

The development of IoT platforms has been popular among technology companies.

And, today there are many commercial IoT platforms in the market [THI, AMA,

11



GOO, APP, IBM]. These commercial IoT platforms focus on the cloud-based sensor

data analytics rather than programming IoT devices. They mostly receive sensor

data from IoT devices and then process them to visualize on a screen. In addition to

this, these platforms can only work with specific IoT devices and are closed-source.

They do not provide a flexible platform for extensions by the developers nor users.

PROVIZ+ is different from the aforementioned platforms because of the follow-

ing reasons. Firstly, PROVIZ+ primarily focuses on IoT device programming, and

can program different IoT devices. Secondly, PROVIZ+ proposes a non-commercial

open source and extendable software suite. Thirdly, PROVIZ+ has a secure over-

the-air programming capability to program IoT devices remotely. Finally, PROVIZ+

contains a domain-specific programming language to easily program the IoT devices

and applications, unifying the existing IoT programming languages for a more user-

friendly development process.
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CHAPTER 4

PROVIZ+: A SIMPLIFIED SECURE PROGRAMMING PLATFORM

FOR INTERNET OF THINGS DEVICES

The PROVIZ+ software suite is an application development environment for IoT

devices. PROVIZ+ is explained in detail in this chapter. The organization of this

chapter is as follows: In section 4.1, we present introductory information about the

PROVIZ+ software suite; then, we give details about our design and implementation

of PROVIZ+.

4.1 Introduction

The use of IoT devices such as Arduinos and Raspberry Pis has increased in recent

years [RW12, RASb]. These powerful single-board computers allow users to learn

about the power of micro-computing while enabling them to digitally solve real-

world problems [SPBS13].

The continuous increase in IoT devices has created a new ecosystem of novel

platforms and languages [DEDP15, CBS+18]. This ecosystem creates a need for a

framework that can facilitate the secure development of IoT applications and can

unify a broad range of IoT application development environments and languages.

Otherwise, those interested in developing applications for various IoT devices have to

learn programming languages and how to setup several development environments.

To help the aforementioned circumstances, the PROVIZ+ software suite is in-

troduced in this chapter. PROVIZ+ is a cross-platform, user-friendly secure sensor

application development software suite. It allows for programming a variety of IoT

single-board computers using novel visual-based or code-based programming tools.
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The programming of IoT boards has traditionally required an extensive back-

ground on hardware and software components of the target device. This has resulted

in a steep learning curve for the developers in this environment. For example, con-

sider someone who wants to develop a temperature measurement system using an

Arduino-based IoT device. To do so, the person needs to know how to program

in the C language as well as be acquainted with hardware-related concepts regard-

ing measurement sensors and the Arduino-based IoT device. Moreover, if the same

person wants to transfer the application to run on another IoT device such as a

Raspberry Pi, this person will need to port the code into this new devices pro-

gramming platform by re-writing the application in another programming language

(e.g., Python). In addition to the cost of learning a broad range of programming

languages and platforms for different IoT devices, vital IoT device functions and

operations such as over-the-air and serial programming, Bluetooth and WiFi data

transmission protocols, and IoT device management require great attention and an

in-depth knowledge of IoT devices. PROVIZ+ is designed with an easy all-in-one

programming feature to mend this dissonance. This feature allows users to program

any of these boards using only the Panther language.

The PROVIZ+ software suite’s main contributions are listed as follows:

• PROVIZ+ offers support to different IoT devices platforms including Arduinos

and Raspberry Pis. This extends to the broad range of sensors that these

boards support (e.g., Adafruit BME280 12C [Sys]).

• PROVIZ+ provides an automatic firmware upload mechanism for a generated

firmware to transfer to a target IoT device. It supports WiFi, Bluetooth, and

universal serial bus communications.
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• PROVIZ+ presents an easy-to-use graphical user interface that enables users of

all knowledge and backgrounds to readily create a range of sensor applications

from simple IoT applications to complex research experiments.

• PROVIZ+ protects the firmware during the over-the-air programming for IoT

devices with a novel over-the-air programming framework, called SOTA that

is introduced in Chapter 5.

• PROVIZ+ has an Android tablet application for location independent tracking

of sensor data.

• PROVIZ+ includes a simple, comprehensive language that consolidates the

sensor application development of all IoT boards to a single language.

• PROVIZ+ offers a built-in visual representation of the devices and sensors in

network that can be easily exported as a JSON file to be shared with others.

4.2 Design and Implementation

PROVIZ+ is a secure application development platform for IoT devices, and it con-

sists of four components: a main application, a Raspberry Pi client application, an

Arduino client application, and a tablet application. All components, the relations

between them, and which operating system they support can be seen in Figure 4.1.

The source code of the PROVIZ+ software suite was written in the JAVA and

C programming languages, and the graphical user interface (GUI) was designed by

utilizing JAVA FX library. For the PROVIZ+ Android tablet application, JAVA

Android Development Kit was used to develop an Android tablet device compatible

application. Moreover, PROVIZ+ has a native SOTA over-the-air programming

framework support to make secure firmware transfer for tiny IoT devices and this
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The Proviz+ 
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Linux Pipe Manager

WiFi Connection Module

Bluetooth Connection Module

SSH Module
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Web server

Proviz Tablet Android Application 

Web client

Proviz Arduino Client Application 

Code Generator

WiFi Connection Module

Bluetooth Connection Module

Serial Connection Module

Panther Language Compiler

Proviz Main Application 

Figure 4.1: PROVIZ+ main components.

framework was implemented using the C language as well as the native Atmel micro-

controller development library.

Since the PROVIZ+ project is mostly written in the JAVA programming lan-

guage and runs on Java Virtual Machine (JVM), it supports three operating sys-

tems: Linux, Windows, and OS X. To create flexibility between components in the

PROVIZ+ software suite, we designed it as a modular project. Future developers

can quickly add new components to extend the capability of PROVIZ+.

Instead of developing PROVIZ+ as a command line software, we designed and

implemented a GUI to provide a robust and user-friendly experience for all users,

regardless of their technical background.

4.2.1 Main Application

The PROVIZ+ main application is a comprehensive software that supports two

ways of programming sensor applications for IoT devices: a visual programming

and a code-based programming tool. A user can program IoT devices using either
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the visual programming tool, which can be seen in Figure 4.2 or the code-based

programming tool that can be seen in Figure 4.3.

User  clicks  the "Compile" button 
to compile and transfer the 

application.
Step 5

User  selects an IoT device to 
program.

Step 1

User clicks a sensor of selected IoT 
device.

Step 2

User clicks a variable of the 
selected sensor.

Step 3

User sets upper and lower bound of the 
selected  variable.

Step 4

Figure 4.2: Visual-based programming tool.

User writes code.

User  clicks Compile button 
to compile and transfer 

application.
Step 2

Step 1

Figure 4.3: Code-based programming tool.

An example usage scenario for programming can be specified in Figure 4.4: The

user drags and drops the IoT device logo from the board selection toolbar and then
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makes a right click to get more options. These options are Program, Configure, and

Details.

Board Selection
Toolbar

Main Toolbar

View 
Switcher

Figure 4.4: Explanation of the PROVIZ+ main application.

The user clicks Configure to configure the board then the IoT device properties

window, seen in Figure 4.5a, is shown to the user for getting input about the selected

IoT board. The user fills the required input fields, then clicks Next to navigate to

the connection type selection screen, seen in Figure 4.5b. After selecting one of

the options on the connection type selection screen, PROVIZ+ handles creating a

connection between the IoT device and the main application. When the activation of

the connection between the user’s computer and the IoT device is done, PROVIZ+

shows the confirmation message screen to let user know about the result of the

configuration process. This confirmation message screen can be seen in Figure 4.5c.

A configuration of the IoT device involves selecting a connection type, board name,

and board type.

After the configuration process, the user will able to add sensors on to the IoT

development board by clicking on the Program option in the device programming

screen. PROVIZ+ does not let the user program any IoT device without doing
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(a) Step 1: IoT device
properties Window.

(b) Step 2: communication
selection window

(c) Step 3: confirmation
window

Figure 4.5: Steps of IoT device configuration task.

the configuration first. The visual programming tool will welcome the user as the

default tool; however, the user can change to the code based programming tool by

selecting the option from the view switcher in both programming windows. The

user can add new sensors using the sensor add wizard to the selected IoT device.

The method for adding a sensor to the IoT device can be followed in Figure 4.6.

(a) Step 1: sensor selection
window

(b) Step 2: sensor pin
assignment window

(c) Step 3: confirmation of
sensor pin assignment

Figure 4.6: Steps of adding a sensor to IoT device in the visual-based programming
tool.

Then, the user can change the upper bound and lower bound values related to

the sensor or board properties in the visual programming tool, which can be seen

in Figure 4.2. In addition to the visual programming tool, the user can create

their own IoT applications using the code-based programming tool as seen in Figure

4.3. When the user clicks the compile button in the device programming window,

PROVIZ+ creates the required source code of the IoT application. This code com-

piles to prepare the transfer over the firmware distribution. When the firmware

distribution is over, it starts to accept a connection request from the programmed
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IoT board to visualize the gathered data on the topology view or the data table

view in Figure 4.4. In addition to the aforementioned usage scenario, the user can

save the existing topology to continue later, transfer the topology to the PROVIZ+

Android application, or customize the user interface components to increase the us-

ability of PROVIZ+.

As noted earlier, all graphical components were designed and implemented using

the JAVA FX library. Actually, we first designed and implemented the user in-

terfaces of PROVIZ+ using the JAVA Swing library; however, we realized that it

had a compatibility issue with high-resolution computer screens. It was showing a

GUI smaller than their actual size due to the high-resolution screen bug in the Java

Swing library [JAV]. After that, we decided to replace it with JAVA FX.

As can be seen in Figure 4.1, the PROVIZ+ main application includes five main

components: a code generator, a WiFi connection module, a Bluetooth connection

module, a serial connection module, and lastly the Panther programming language

compiler. In the following sub-sections, the main components will be explained in

further detail.

Code Generator

The main purpose of PROVIZ+ is programming IoT development boards with a

broad range of various purpose sensors. To be able to develop secure IoT sensor

applications, the source code of the application needs to be created by PROVIZ+.

This generated source code varies depending on the device. To illustrate this, if

the user chooses a Raspberry Pi as a target device, the source code can be written

in Python or Java. On the other hand, if the user selects Arduino for the IoT

application, the source code of the Arduino project should be written in the C

language.
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While we were designing the PROVIZ+ software architecture, we specified that

instead of generating the user’s sensor application source code from scratch, produc-

ing it from a general template would be more efficient and easier to manage. When

the user selects an icon for the IoT device from the board selection toolbar at the

main PROVIZ+ screen, shown in Figure 4.4, it automatically creates a template

class for it. That template class contains information about the selected board such

as the board type, connection type, and how many sensors it will have. When a user

adds new sensors to the board, the new sensors are attached to a sensor array that

is in the board’s template class. This template class is used to generate the source

of the sensor application, and this can be seen in code generation steps in Figure

4.7. The code generator accepts the board template to get the detailed information

Arduino Code 
Generation 
Template

Raspberry Pi 
Code Generation 

Template

Code
Generator

Board 
Template

a

b

Project Source 
Code For Arduino

Project Source Code 
For Raspberry Pi

a

1

b

3

2

Figure 4.7: PROVIZ+ code generation process diagram.

about the target board. Afterwards, it gets the code generation template to fill

the necessary blanks in source code templates to create an actively working source

code. Currently, PROVIZ+ supports two IoT development boards: Arduino and

Raspberry Pi; however, these supported IoT development boards can be extended
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by adding new templates due to the modular structure of PROVIZ+. Note that the

Apache Freemarker framework [APA] was used to develop code generator.

WiFi Connection Module

PROVIZ+ supports WiFi data communication to transmit sensor data, and securely

program the IoT devices over-the-air. The sensor data transmission is established

using the TCP protocol stack for Arduino and Raspberry Pi devices. Even though

the TCP connection is slower than UDP, TCP is selected as PROVIZ+’s native

transmission protocol. The reason behind this is that any non-transmitted sensor

data can cause catastrophic consequences and the TCP protocol assures that each

communication packet arrives seamlessly to the destination unlike the UDP proto-

col. When a user finishes designing an IoT application and wants to transfer it to

the target IoT board, the user transmits the firmware physically only once. This

physical firmware transmission copies firmware using a USB device for Raspberry

Pis and serial data transmission for Arduino devices. After that, the user will be

able to update the device’s firmware over-the-air instead of programming physically

using the SOTA framework for Arduino devices and Secure File Transfer Protocol

(SFTP) for Raspberry Pi devices. SFTP is used for the firmware distribution to

Raspberry Pi devices to provide confidentiality of firmware. When the user starts

over-the-air programming for Raspberry Pis, PROVIZ+ initiates SFTP connection

to target Raspberry Pi development boards. This SFTP connection works as a

passwordless File Transfer Protocol (FTP) by utilizing the public key cryptogra-

phy authentication. A public key of the target device is transferred to the main

PROVIZ+ application during the initial firmware transfer.

Arduino is a single board micro-controller, and it uses mostly Atmel micro-

controllers. Normally, Atmel micro-controllers use STK500 Communication Proto-
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col [ATM] to perform firmware update; however, STK500 Communication Protocol

does not have enough security mechanism to protect the firmware during over-the-

air programming. In the scope of this thesis, we also developed a novel secure

over-the-air programming framework (SOTA) that is introduced in Chapter 5 for

Atmel-based IoT devices. Since Arduino boards mostly use Atmel micro-controllers,

we integrated the SOTA framework into the PROVIZ+ software suite in order to

provide secure over-the-air capabilities for the Arduino devices. Specifically the Ar-

duinoFirmwareUpload JAVA class was implemented in order to program Arduino

devices remotely using the SOTA secure over-the-air programming framework.

Over-the-air programming and data aggregation occur over the same TCP con-

nection to minimize interactions between the PROVIZ+ main application and Ar-

duino. As, Arduino boards do not have WiFi connection capabilities, in this thesis,

the ESP8266 WiFi module [ESP] was used to bring WiFi connection capabilities to

Arduino. This WiFi module supports transparent data transmission over Universal

Asynchronous Receiver Transmitter (UART), which is a vital feature for over-the-air

programming. When the main application wants to update the firmware, it sends a

reboot command to Arduino, then Arduino resets itself using the watchdog timer-

based reset method. When Arduino resets itself, it runs the SOTA bootloader

instead of the actual sensor application, and it receives the SOTA and STK500

Communication Protocol commands to replace the current firmware. In the trans-

parent data communication protocol, ESP8266 works as a communication bridge,

but ESP8266 does not change the context of a packet that is coming from a sender

and it directly transmits to a recipient.
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Bluetooth Connection Module

PROVIZ+ uses the Bluetooth Classic connection during the firmware distribution

and sensor data transmission to the PROVIZ+ main application. Raspberry Pi has a

built-in Bluetooth adapter; however, Arduino does not have any Bluetooth module.

Before sending firmware to Arduino or getting sensor data from the Arduino board,

the selected board needs to be configured. This configuration includes the Bluetooth

pairing process between the Bluetooth module and the user’s computer. After the

completion of the pairing operation, the user may send firmware updates to a device.

The major difference between Bluetooth support and WiFi support is that Bluetooh

does not need to physically program devices using serial data transmission first. For

this, we use Bluefruit EZ-Link Bluetooth Shield [BLU] to provide the aforementioned

Bluetooth benefits to the user because it supports over-the-air programming for

Arduino devices. We developed the BluetoothManager JAVA class to handle all the

necessary Bluetooth data transmission operations.

Serial Connection Module

Serial Connection Module is the third option for programming IoT devices, which

requires physical contact. When a user connects IoT boards with the USB cable to

a computer, it creates device object in the /dev folder for UNIX-based operating

systems or the COM port object for Windows. This device or port objects can read

incoming messages from the target IoT device and send new firmware to the target

IoT device.

Panther Programming Language Compiler

The Panther programming language is a domain-specific programming language that

was designed for the PROVIZ+ software suite. Before the Panther programming
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language, whenever a user wanted to program their IoT development board, they

needed to learn a broad range of programming languages. For example, if the user

wants to program the Arduino board for an IoT project, the user needs to learn the

C programming language. For Raspberry Pi, the user needs to know various pro-

gramming languages to implement IoT applications. This situation may be feasible

for an expert developer; however, any person who does not have any programming

experience has to spend a lot of time to learn all the necessary programming lan-

guages. With Panther language, learning only one programming language will be

enough to design and implement complex IoT applications. We analyzed different

programming languages to design an efficient and straightforward domain-specific

programming language. The programming languages that are used to program IoT

devices are multi-purpose programming languages, and they have unnecessary oper-

ations, functions, and libraries. We removed these unnecessary operators, functions,

and libraries for the IoT application development to provide a simple IoT program-

ming language. As you can see in Listing 4.8, if the user wants to program an IoT

development board to implement a distance measurement application, all the user

needs to write is 10 lines of code.

Pin d i s tanceSensorP in = new AnalogPin ( 3 ) ;
void P incon f i gu ra t i on ( ) {

d i s tanceSensorP in = OUTPUT;
}
void Main ( ) {

Sensor d i s t anceSenso r = new EzsonarSensor ( ) ;
d i s t anceSenso r . setUpperBound = 120 ;
d i s tanceSenso r . setLowerBound = 20 ;
d i s tanceSenso r . add ( d i s tanceSensorP in ) ;

}

Figure 4.8: Sample distance measurement sensor application in the Panther lan-
guage.
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We can explain the structure of the Panther language by showing the sample

distance measurement code in Listing 4.8. In the sample code, there are three

major areas: a pin initialization, a pin data direction specification, and a main

function area in order to make the code more manageable by the user. The pin

initialization area is for declaring and defining pins of selected sensors. The user

might give a variable name to the pins of the target sensor, then specify a type for

the corresponding pins and their orders. Let us assume that we have a MB1000 LV-

MAXSONAR-EZ0 distance measurement sensor, and this sensor has a 5V power

input, ground, TX, RX, analog, and pulse-width pins. The user wants to use this

sensor in the IoT application and also connect that sensor through an analog port.

In the first line, the user declares the third pin of a sensor for transmitting the

analog signal to the target device. In lines between 2-4, the user specifies pin’s

data transmission method. After this specification, the next area is the main logic

area. In this, the user claims which sensor will be used in the IoT application and

sets upper and lower bounds of it, then the user binds the declared pins to the

sensors. We implemented the Panther language using the ANTLR parser generator

[ANT], and it automatically generates the necessary compiler files for the Panther

language. Then, we imported it to the PROVIZ+ main application to be used in

the code-based programming tool of PROVIZ+.

4.2.2 Proviz Client Applications

In addition to the main application, the client applications were developed in order to

bring PROVIZ+’s features to IoT devices. Each platform has unique characteristics.

So, developing platform specific client applications is required for the supported

devices. In the scope of PROVIZ+, we developed Arduino and Raspberry Pi client
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applications using the C and JAVA languages, respectively. These applications are

responsible for responding to over-the-air programming, sensor data aggregation,

and communication with the other devices. The following subsections give the

detailed information about the aforementioned client applications.

Proviz Arduino Client Application

In order to provide the secure over-the-air feature, we developed the ProvizWiFi

library for Arduino IoT devices. The ESP8266 WiFi shield requires commands to

configure itself, connects to wireless networks, and so on. The user may prepare

required communication commands without getting any help to initiate secure over-

the-air programming or can use our proposed library to automatically create the

required communication commands. In addition to this manual usage opportunity,

our code generation module uses the library during the secure over-the-air program-

ming for the Arduino IoT devices. We combined the ESP8266 communication and

PROVIZ+ secure over-the-air commands to unify the required two libraries into a

single library. Each Arduino sketch source code file contains two main functions:

setup and loop. In the setup function, the serial communication between Arduino

and ESP8266 are prepared; then, PROVIZ+’s identification data from the Arduino

IoT board’s EEPROM storage are loaded. A string that contains unique identifi-

cation and the boolean data that indicate if the board is already programmed are

stored in the EEPROM. After loading the data from EEPROM, the WiFi module is

checked to know if it is reachable; then, it starts to connect to the access point and

the SOTA Remote Programmer that is in the PROVIZ+ main application. When

the user clicks on the firmware send button in the main application, the main ap-

plication sends a reboot command to the target Arduino device to let Arduino load
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its bootloader address space to run the SOTA bootloader. In the reset cycle, the

watchdog timer of the micro-controller is used.

After putting the micro-controller into the SOTA bootloader mode, it sends

commands from the SOTA Communication Protocol to distribute the new firmware

to the target devices. In summary, our contributions include the development of

a skeleton application that can remotely program the micro-controller of Arduino-

based IoT devices. Since the secure over-the-air feature requires the WiFi data

communication, we designed and implemented the ProvizWiFi library that makes

the code generator module’s task easy for developing the Arduino IoT applications

with the secure over-the-air programming capability.

Proviz Raspberry Pi Client Application

Raspberry Pi 3 Model B has WiFi and Bluetooth communication capabilities with-

out requiring any external hardware. We aimed to implement the communication

manager between the Raspberry Pi devices and the main application. With this in

mind, the PROVIZ+ Raspberry Pi Client Application was developed. It has four

main functionalities: managing an IoT application’s life-cycle, forwarding the sensor

values in JSON format to the main application, handling the WiFi and Bluetooth

communication stacks, and receiving a new IoT application code from the main

PROVIZ+ application. Specifically, the PROVIZ+ Raspberry Pi Client works with

the Linux operating system seamlessly and it consists of the sensor application,

the communication manager that handles communication and management tasks

between software components, and a graphical user interface application.

The relation between the components of the client can be seen in Figure 4.9.

The communication manager receives the aggregated sensor data from the sensor

application; then, it forwards the data to the main PROVIZ+ application. The
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Figure 4.9: Components of the PROVIZ+ Raspberry Pi client application.

communication between the sensor application and the communication manager is

done by utilizing pipes in Linux. Moreover, it has a GUI that has the start/stop

button for the communication manager, and a debug panel to show the aggregated

sensor value to the user. The main application sends a new firmware request to the

communication manager for the over-the-air firmware update. The communication

manager receives a new sensor application and resets the application life-cycle.

4.2.3 PROVIZ+ Android Tablet Application

In this thesis, we also developed the PROVIZ+ Android tablet application to extend

the user experience in our ecosystem. Leaving only the PROVIZ+ main application

as a data viewer is not applicable and practical because a user may have to be mo-

bile. In order to provide another flexible platform, we chose the Android operating

system and designed an Android tablet application. When a user designs the IoT

application topology on the PROVIZ+ main application, the user can transfer that

to the PROVIZ+ Android application. After that, the main application notifies

existing IoT devices in the topology about the new data viewer application. Then,

IoT devices in the topology start to send the aggregated sensor data to the Android
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tablet application. The notification process of IoT devices in the topology can be

followed in Figure 4.10.

Proviz Main GUI App

Proviz Android Tablet App

Web Service

Android GUI

Web Service Client

Device Programmer

SoC IoT Boards SoC IoT Boards

1
Topology

Send

Other Proviz Components

2
Informing  devices 
about webservice

SoC IoT Boards

3
IoT boards starts to
send sensor value

Figure 4.10: Notification of the PROVIZ+ Android tablet application to the existing
IoT devices around.

The task of importing the topology and the usage of the tablet application occur

as follows: First of all, the user clicks the tablet icon in the main toolbar in Figure

4.4, then this opens the topology importer wizard screen, and the user provides the

IP address of the tablet. The topology importer wizard screen can be seen in Figure

4.11. After that, the system automatically enables the tablet application and it

shows the topology on the tablet screen. The user might not know how to access

the IP address of their tablet; hence, instead of leaving this task to the user, the

PROVIZ+ Android application shows the IP address of their tablet on the screen,

which is shown in Figure 4.12a. Then, the user enters the IP address into the IP

address field of the topology importer screen of the main application. As soon as

the connection is established with the PROVIZ+ main application, the PROVIZ+

Android application opens the topology view by loading the existing topology. The

sample loaded topology on the tablet application screen is shown in Figure 4.12b.

Whenever the user clicks on the board icon, a pop-up message window appears with
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Figure 4.11: PROVIZ+ topology importer to tablet application tool.

the board information and the sensor values, which is shown seen in Figure 4.12c.

In addition to the topology view, the user may monitor the IoT devices by checking

them on the data table view in the PROVIZ+ Android tablet application. Here,

IoT devices directly send their aggregated data to the tablet application as well as

the main application. In doing so, even if the user closes the main application, the

user can continue to use the tablet application. Since the entire system depends on

the IP address, the user can configure a static IP address for the tablet application.

(a) Step 1: IP address view

(b) Step 2: topology view

(c) Step 3: sensor data
view

Figure 4.12: Screenshots of the PROVIZ+ Android tablet application.
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CHAPTER 5

SOTA: SECURE OVER-THE-AIR PROGRAMMING FRAMEWORK

This chapter introduces a novel secure over-the-air programming framework, namely

SOTA. SOTA is a part of the PROVIZ+ Software Suite to secure over-the-air pro-

gramming of low-powered IoT devices by providing full data confidentiality, inte-

gration, and authentication. The rest of chapter is organized as follows: In section

5.1, we present introductory information about SOTA. Then, we propose our threat

model and assumptions in the following section. The overall system design and

implementation is given in section 5.3.

5.1 Introduction

A myriad of smart and interconnected IoT devices have become an integral part

of our lives, scientific experiments, and military operations. The utilization of IoT

devices can range from implementing a simple LED blink application to crucial

applications such as monitoring military personnel’s heart rate activity. These ap-

plications require data transmission as well as remote programming capabilities to

update vulnerable firmware with the latest secure firmware efficiently. This can be

mostly done using a data transmission cable or over-the-air depending on usage and

available resources. Since IoT devices usually have one or more low-power micro-

controllers with limited computational capability, using efficient security systems to

protect the IoT device’s firmware is vital while remotely programming these devices.

One of the main usages of the over-the-air programming is firmware upgrade to ex-

tend the device’s capability or fixing a security vulnerability and privacy leakage.

One recent incident in military is the leakage of sensitive location information of

fitness tracker’s data [Ros]. In 2013, the US military gave wearable fitness trackers
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to their personnel to track their activity in the scope of fighting with obesity. These

wearable fitness trackers automatically share users’ running routes when they are

connected with a social network. This shared running routes creates heat maps that

show military running routes, and it causes serious privacy concerns. To remedy

this problem, an updated firmware for the wireless fitness tracker can be applied.

Since a large amount of fitness trackers were distributed to military personnel, over-

the-air firmware update is more feasible and efficient than physical firmware update.

However, over-the-air firmware updates should be conducted with proper security

precautions so as not to cause any other security concerns and should consider the

resource-limited nature of the IoT devices. Indeed, secure over-the-air programming

is crucial for any type of IoT application because without security, IoT devices can

be reprogrammed by hackers and even firmware can be stolen by eavesdropping a

live firmware distribution process. There are many further real examples of these

incidents. One recent incident is the case of the Broadcom WiFi chip, which can

be hijacked without any user interaction via its over-the-air programming capabil-

ity [Kha]. Another example is the over-the-air update feature for modern vehicles.

Many modern vehicle manufacturers have started to add over-the-air capabilities to

keep their vehicles up to date without requiring any physical interaction to their

vehicles. The vehicle manufacturers have implemented these features to eliminate

the need for physical interaction with the vehicle. This feature can bring ease and

convenience to the car owners; however, it opens the doors for potential vulnera-

bilities to hackers and malware. Hackers can exploit these vulnerabilities to upload

ransomware. They can steal the vehicle firmware by eavesdropping during a vehicle

firmware update and alter it. These types of attacks have already been seen in the

real world. In 2015, the first major recall of vehicles happened due to cybersecu-

rity concerns. Cybersecurity researchers discovered how to enter vehicle’s system
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by hacking Harman’s U-connect equipment on 2014 Jeep vehicles [Mea]. As these

examples highlight, secure over the air programming is a vital topic. Especially, if

the target environment is IoT, having limited memory, stack size, and computation

power exacerbate the issues.

To address these concerns and provide a more efficient and robust solution for

aformentioned problems in this thesis, a secure over-the-air programming framework

called SOTA is proposed for Arduino-based IoT devices. Specifically, a symmetric

encryption mechanism with AES 128 bit CBC is used to satisfy the firmware security

requirements as well as providing authentication and data integrity services. The

entire SOTA framework can be seen in Figure 5.1. SOTA is designed and imple-

mented as a platform-independent, open-source, and efficient remote programmer

which can simultaneously program multiple IoT devices. We also made SOTA avail-

able for the scientific community [REM] [CLI] [BOO].

Contributions: The main contributions are as follows:

• We designed a secure over the air programming communication protocol that

supports confidentiality, integrity, and authentication for ATMEL 8 Bit mi-

crocontroller based IoT devices.

• We added a new authentication module to the original STK 500 Communica-

tion Protocol.

• We implemented over-the-air programming framework called SOTA, the boot-

loader software, the over-the-air client software for ATMEL microcontrollers

and the remote programmer software to program IoT devices remotely.

• We optimized existing symmetric encryption implementation with AES 128

Bit CBC algorithm in order to make it available for tiny IoT devices.
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Figure 5.1: The SOTA system structure

5.2 Threat Model and Assumptions

In SOTA, our threat model is based on confidentially, integrity, and authentication

(CIA triad). Our solution creates end-to-end secure communication channels to

transmit the firmware or any code updates to the IoT device using a symmetric

encryption mechanism with AES-128 CBC algorithm. This model comes with a

few assumptions. First, the private keys and initialization vectors are preloaded

to the IoT devices in a secure fashion. Next, the attackers can try to eavesdrop

ongoing communications between the IoT device and a benign user. Lastly, the

denial-of-service attacks are outside of the scope of this work.

The following summarizes the security goals of the SOTA framework:

• Making data transmission secure and confidential: Some applications may

require high level confidentiality when over-the-air-firmware updates occur.

These firmware updates may contain crucial information which if compromised

could pose a large threat.

• Adding authentication mechanism to eliminate any unauthorized modifica-

tions to the IoT device communications and providing data integrity to ensure

that the data is not corrupted.

• Plain and tiny solution: Since many IoT devices have limited computational

capabilities, lightweight operations are crucial for IoT devices. For this, in

SOTA, we use Atmel ATmega2560 8 Bit micro-controller which has a 256 KB
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program memory and 8 KB SRAM. If SRAM is not used efficiently and prop-

erly, possible memory leak error is inevitable. Hence, the SOTA framework

should be designed with this constraint in mind. Another reason for creating

plain and tiny solution is to consume less power. Applying cryptographic op-

erations to IoT devices consume much power than regular operations, but the

SOTA framework aims to mend this problem.

5.3 SOTA Architecture

In this section, we present the details of the architecture of the SOTA framework.

As seen in Figure 5.2, SOTA consists of three major components: IoT Device, IoT

Device Communication Module, and Remote Programmer. All of these components

were designed with modularity and configurability in mind to provide the most

flexible remote programming capability to the IoT devices. Also, as seen in the

figure, similar components were designed for both the IoT Device and the Remote

Programmer to keep the operations smooth. Finally, security (confidentiality, au-

thentication, and integrity) was built in all of the operations. Note that the SOTA

framework is designed with modular and configurable way so that any other devices

or communication mechanisms can be easily integrated into the framework. In the

following sub-sections, the components and important operations are articulated.

5.3.1 Remote Programmer

The Remote Programmer is responsible to get the firmware from the user and send

it to the IoT Device in a secure way over the air. It also supports a multi-device

programming capability in a secure way by utilizing JAVA Thread library and the
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Figure 5.2: Major components of the SOTA Framework.

AES 128 bit CBC symmetric encryption algorithm [Bar16]. It is written in JAVA

language to support different platforms (e.g., Linux, Mac OS, and Windows).

The Remote Programmer includes a TCP Server and the Programmer module

to deliver the firmware to the target IoT Device reliably. In SOTA, the target IoT

device is Arduino device with ATmega2560 micro-controller given their popular-

ity. The TCP Server is an embedded TCP server to manage the data communica-

tion between the Remote Programmer and the IoT Device Communication Module.

When the server gets new packets from the Communication Module, it directly

passes them to the Programmer module without any modification on the packet.

Also, whenever the server gets a packet from the Programmer, it directly transmits

packets to the Communication Module. In SOTA, the Programmer includes the

Security Module and the SOTA Communication Protocol, which is responsible for

assembling the packet in the SOTA Packet Operations Module based on the STK500

Communication Protocol available for ATmega2560 micro-controllers. However, the

default vendor-built STK500 Communication Protocol does not support any secu-

rity. Hence, in SOTA’s framework, confidentiality, integrity, and authentication ser-

vices were also implemented to improve the security of the operations. Specifically,

SOTA Packet Operations Module encapsulates STK500 Communication Protocol
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packets encrypted in the Security Module with a packet starting point indicator

byte (0x58) and two bytes that represent the size of the encrypted packet. For

receiving commands from the IoT device, it parses the received SOTA Communi-

cation Protocol packet to extract IoT device’s encrypted STK500 communication

protocol response packet. After finishing extraction of STK500 communication pro-

tocol response packet, it decrypts the received encrypted STK500 communication

protocol response packet; then, it parses decrypted STK500 communication proto-

col response packet to extract commands of the STK500 communication protocol.

The parsing operation is shown in Figure 5.3.

START

GET_CHECK

PROCESS

GET_SEQ_NUM

MSG_SIZE_1

MSG_SIZE_2

GET_TOKEN

GET_DATA

Token is
received

Token
is not

 received

Start

End

Checksum is correct

Sequence
number

is incorrect

Sequence Number is correct

Message_Start Byte received

Checksum
 is

 incorrect

Figure 5.3: STK500 communication protocol parser.

The packet structure built upon the STK500 Communication Protocol packets

is shown in Figure 5.4. As noted earlier, this new packet structure provides data

integrity, confidentiality, and authentication.

The packet structure starts with 0x1B hexadecimal value to indicate the location

of the starting point of the packet. Then, it continues with the sequence number field

to prevent any replay attack. When the value of the sequence number field reaches

the maximum value (0xFF), it zeros itself. The next two bytes represent the size

of the communication commands in MSB byte order. After the size fields, 0x0E
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Figure 5.4: SOTA packet structure built upon the STK500 Protocol.

Algorithm 1: The Remote Programmer and IoT Device programming flow.

1 Accept request

2 Send reboot command to micro-controller

3 while reboot acknowledgment is not received do

4 Send reboot command to micro-controller

5 Send authentication packet

6 while authentication acknowledgment is not

received do

7 Send authentication packet

8 Send synchronization packet to micro-controller

9 while synchronization acknowledgment is not received

do

10 Send synchronization packet to micro-controller

11 Send enabling program mode packet to micro-controller

12 while enabling program mode acknowledgment is

not received do

13 Send enabling program mode packet to

micro-controller

14 Send load address packet to micro-controller

15 while load address acknowledgment is not

received do

16 Send load address packet to micro-controller

17 while firmware transfer is not finished do

18 Send 256 KB firmware part to micro-controller

19 while firmware sending acknowledgment do

20 Send 256 KB firmware part to

micro-controller

21 Send closing programming mode packet to

micro-controller

22 while closing programming acknowledgement is not

received do

23 end closing programming mode packet to

micro-controller

hexadecimal value comes into the next field as a fixed value and it is named as to-

ken. Token indicates following bytes are micro-controller operation commands such

as enabling program mode or closing firmware update mode. After the token, com-

munication commands are shown in the next fields until one byte-sized check-sum

field. These communication bytes can be anything from the STK 500 Communica-

tion Protocol [ATM]. The final field is the checksum fields to provide data integrity

between packet fields in each communication packet. The interaction between the

Remote Programmer and the IoT Device flows are shown in Algorithm 1.
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5.3.2 IoT Device Communication Module

In SOTA, the IoT Device Communication Module supports the WiFi connection;

however, it can be easily extended by adding new connection methods. Specifically,

in SOTA ESP 8266 [SHI] Wi-Fi shield is used to connect the IoT device (i.e., AT-

mega2560) with the Remote Programmer. ESP 8266 is a Wi-Fi module that can

be connected with not only Arduino devices, but also other IoT devices. It has 1

MB of flash memory and integrated TCP/IP protocol stack as well as IEEE 802.11

b/g/n support. ESP 8266 Wi-Fi module has the ESP 8266 Wi-Fi chip [SHI] as well

as 1 MB flash memory as a communication buffer. It supports two modes of com-

munications: transparent and normal. In the transparent mode, the Wi-Fi module

gets data from a sender and then transmits to the receiver without modifying com-

munication packets; however, in the normal mode, the Wi-Fi module puts packet

header that gives information about the sender and communication type. Since

this packet header is not useful and inefficient during the firmware distribution, we

configured the ESP 8266 Wi-Fi module to use it in the transparent mode. This

makes it possible to establish transparent UART communication between the IoT

Device ATmega2560 and the ESP 8266 Wi-Fi module. This communication module

directly communicates between the IoT Device and the Remote Programmer and

it acts as a communication bridge. It has its own TCP stack and it can serve as a

TCP client so the IoT Device and the bootloader inside the device does not have to

deal with the TCP protocol and this situation makes IoT device perform its tasks

without sacrificing any system resources for the Wi-Fi access support.
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5.3.3 IoT Device

IoT applications can be created using several types of customized hardware and

configurations as well as IoT development devices [PRO, CUB13]. In SOTA, we

consider Atmel-based Arduino IoT devices for the development platform. Note that

Arduino [IoT] is a very popular IoT development device. It has a huge open-source

community support. It supports a broad range of sensors and modules to develop

complex IoT applications and has highly customizable features. Furthermore, a large

majority of Arduino models have the same brand micro-controller, Atmel [ATW].

Having the same micro-controller makes it possible to develop common solutions

for many IoT products without needing to differentiate by the type of the Arduino

device. As noted earlier, In SOTA, the Arduino Mega 2560 is selected as an IoT

device to utilize these benefits, but the SOTA framework can be applied to other

IoT development devices.

The IoT Device in SOTA includes two sub-components in its architecture: Boot-

loader and Program Space to load and run the firmware. The Bootloader is the first

loading part when the IoT Device turns on. If it does not get any communication

protocol commands from the remote programmer, it basically loads the IoT appli-

cation software from the Program Space. If received commands comply with the

communication protocol rules and are in command set of the communication proto-

col, the Bootloader does special operations on the device such as firmware update,

erasing flash memory, modifying hardware signature, and so on.

The Program Space stores machine instructions of the IoT application. In other

words, the developer’s code or the distributed firmware is stored in the Program

Space. The Program Space should contain rebooting mechanism to reach Boot-

loader by the Remote Programmer. When a user wants to reprogram the IoT

Device, s/he will need to reboot the IoT Device to reach Bootloader. The rebooting
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process enables accessing Bootloader from the Remote Programmer. In the SOTA

framework, we developed a skeleton code code [CLI] to bring smooth self-rebooting

capability into any IoT application software. It has a watchdog supported reboot

mechanism; the watchdog is basically a native Atmel micro-controller function and

it requires avr/wdt.h library to be compiled without any errors. The watchdog is a

hardware timer that resets the micro-controller unless it receives a watchdog reset

signal from the user’s code. The aforementioned micro-controller reset function that

we implemented can be seen in Listing 5.5. The user needs to implement the user’s

IoT application code into the given skeleton code [CLI].

void triggerWDTReset ( )

{
w i f i . in formServerForReset ( ) ;

wdt enable (WDTO 15MS) ;

}

Figure 5.5: Watchdog supported micro-controller reset function.

Moreover, similar to the Remote Programmer, the Bootloader has the SOTA

Communication Protocol, Packet Operations, Authentication, and Security Mod-

ules to handle the firmware packets that are sent from the Programmer. The Com-

munication Protocol gets decrypted packets from the Security Module or it sends

packets to the Security Module in order to put encrypted packet back to the Remote

Programmer.

5.3.4 Provision of Security

As noted earlier, one of the novel components of the SOTA framework is the provi-

sion of security via confidentiality, integrity, and authentication for the over-the-air

programming.
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In an IoT development environment, there are many limitations that stem from

the small amount of memory size and limited computational resources. In our case,

Atmega2560 comes with 8 Bit microprocessor with 256 KB self-programmable flash,

8 KB SRAM, and 4 KB EEPROM [MIC] which are smaller than the resources of reg-

ular desktop computing environments. These limitations make advanced encryption

algorithms not viable choices with Atmega2560-based IoT devices without applying

any optimization. Implementing encryption algorithms on this resource-limited IoT

environment requires a great deal of attention and optimization of the microcon-

troller’s resources. In our design, we considered the Security Module to work with

the limited resources in the IoT device.

Hence, SOTA runs encryption and decryption process by utilizing a symmetric

encryption algorithm with AES 128 Bit CBC algorithm, which needs relatively less

advanced microprocessor and can operate well with the limited RAM and CPU.

For this, in the Security Module, a minimized version of AES-128 bit symmetric-key

encryption library for the Atmel Mega 2560 microcontroller [AES] was optimized by

placing arrays in the flash memory of the micro-controller instead of placing RAM

due to memory size concerns and used in order to satisfy the security expectations

with the limited resources. The minimized version of AES-128bit encryption reduces

the amount of stack size used and occupies a small amount of microprocessor’s time.

Moreover, authentication in SOTA is provided to eliminate any unauthorized

modifications to the firmware on the IoT Device. With authentication, it is guar-

anteed that the Remote Programmer can not do anything on the IoT Device before

authorization. We develop the authentication mechanism in the scope of SOTA,

and the authentication is constructed between pairs by applying the same process

in both ways of the communication. In the remote programmer’s authentication,

the Remote Programmer applies authentication procedure to IoT devices to gain

43



the target device’s trust. After finishing the remote programmer’s authentication,

IoT devices follow the same the authentication procedure to assure that both are

legitimate. The Remote Programmer and Bootloader have the same embedded 4

byte authentication token and 4 byte secret key to use during the authentication

procedure that consists of two parts. Both keys are physically preloaded to pairs.

This authentication procedure that is initiated by the Remote Programmer to au-

thenticate future communications with the IoT device runs as follows: The Remote

Programmer puts the authentication token next to a 4 byte number randomly gen-

erated number; then, it encrypts and sends the authentication packet to the IoT

device to process it. When the the device receives the authentication packet from

the Remote Programmer, it decrypts to extract the authentication token and a ran-

dom generated number. After the completion of the decryption, it splits them into

two different parts: the authentication token and four byte random number. The

authentication token informs the IoT device that the Remote Programmer is legit-

imate and then the device starts to trust the source. After finishing it, the second

part of the authentication procedure is started. The steps of the second part of the

authentication procedure can be seen in Figure 5.6.

MSB Sec Thi LSBMSB Second Third LSB +

SOTA Authentication Packet

4 Byte Pre-shared 
authentication token

4 byte random number

MSB Second Third LSB

Most Significant Byte of 
Random Number

Least Significant Byte of 
Random Number

4 Byte Pre-shared secret key 4 Byte Random Number

1

STEPS

2

Figure 5.6: Steps of the authentication process.
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When Bootloader passes the first part of the authentication mechanism, it starts

to parse the next four byte number into a new 4 byte sized byte array (Step 1).

Then, it adds to 4 byte secret key that is loaded during the first physical firmware

upload process, to generate a new number (Step 2). Since the same algorithm is

known by the Remote Programmer, the device generates the same number as well.

The IoT Device sends this new generated number in a response packet to the Re-

mote Programmer. Meanwhile, the Remote Programmer applies the same steps to

find the new 4 byte random number to compare it with device’s generated random

number as shown in Figure 5.6. Once the Remote Programmer sees that the received

number matches with the Remote Programmer generated number, it completes the

remote programmer’s part of authentication mechanism; then, it starts same pro-

cedure again from the IoT device’s perspective. After finishing the authentication

mechanism, the IoT device and the Remote Programmer trust each other to accept

further packets. When the authentication between the remote programmer and the

IoT device are finished successfully, Bootloader starts to accept other commands of

the STK500 Communication Protocol to make changes on the IoT Device. After the

establishment of authentication between the device and the Remote Programmer,

both ends are synced and the programming of the device is possible.
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CHAPTER 6

PERFORMANCE EVALUATION

In this chapter, we present the performance evaluations of the PROVIZ+ software

suite and the SOTA framework. Section 6.1 introduces the testbed and experiment

methodologies; and the subsequent sections examine the performance in further

detail with different metrics.

6.1 Testbed and Methodology

Since PROVIZ+ has different software modules, a multi-dimensional performance

analysis is optimal and needed for the evaluation of PROVIZ+. The experiments

are designed to measure the programming time of IoT devices and average sys-

tem resource utilization. For both the main and client applications, the resource

utilizations were monitored in real-time using the native resource monitor of each

application’s respective operating system.

The main application was run on an Apple Macbook Pro using Oracle JRE

9.0.4 [JVM]. Then, we used Raspberry Pi 3 Model B and Arduino Mega 2560

in experiments of the PROVIZ+ Raspberry Pi and Arduino client applications.

Moreover, Samsung Galaxy Tab A tablet was used to measure the performance of

the PROVIZ+ tablet application. These devices’ specifications can be seen in Table

6.1.

Table 6.1: Specification of devices that were used in the experiments.

Device Name CPU Memory(RAM) Disk Speed (write)
Apple Macbook Pro 2.4 GHz Intel i5 8 Gb 254.4 MB/s
Raspberry Pi 3 Model B 1.2 GHz Quad-Core ARM Cortex A53 1 GB 20 MB/s
Arduino Mega 2560 ATMEL Mega 2560 8 Kb SRAM instant
Samsung Galaxy Tab A tablet 1.2 GHz Quad-Core, Qualcomm APQ 8016 1.5GB RAM, 52 MB/s
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Figure 6.1: The SOTA Framework performance analysis testbed.

As noted, in addition to the PROVIZ+ performance evaluation, we conducted

experiments for the SOTA framework, and designed a testbed to evaluate the frame-

work accurately. As noted earlier, although the SOTA framework is designed with

flexibility to work with other devices, it is built utilizing ATmega2560-based IoT

Devices. The testbed to evaluate the SOTA framework is shown in Figure 6.1.

Specifically, in the SOTA evaluation, we investigated four different experimental

setups to analyze the performance of the SOTA framework. These experimental

setups can be seen in Figure 6.2.

a) Point to Point Topology
b) Star Topology with 2 IoT device

c) 4 IoT device d) Piconet like Topology

Figure 6.2: Experimental setups: 4 different topologies studied.

The first experimental setup, Topology-A, is a point-to-point network topology

with one IoT device. However, the point-to-point topology is not a common network

47



topology for IoT devices and applications; so, in order to have a more realistic experi-

mental setup, we added the star topology with two (Topology-B), four (Topology-C),

and eight (Topology-D) different IoT devices into our experimental set. Topology-D

with 8 devices was inspired from the Piconet structure of the Bluetooth protocol.

Although Topology-D involves 8 devices, the testbed can be extended with more

IoT devices. In performance evaluations, we aimed to investigate the behaviour and

the performance of the SOTA framework in different settings.

6.2 Results

In this section, we conducted experiments on the PROVIZ+ software suite and we

discuss the results to present the performance of PROVIZ+. After performance eval-

uation of PROVIZ+, we continued our experiments by conducting the performance

evaluation for our secure over-the-air programming framework. In our evaluations,

we focused on three different analyses. In the first one, we analyzed the completion

time of tasks. In the second analysis, the CPU, memory, and storage performance

of PROVIZ+ and SOTA were examined; and in the third, the security analysis was

performed. In these analyses, quantitative and qualitative data are presented to

support the functionality and reliability of PROVIZ+ and SOTA.

6.2.1 Time Analysis

As noted earlier, most of PROVIZ+’s software components were developed on top

of the JAVA run-time environment (JVM) to make PROVIZ+ available for a broad

range of platforms and operating systems. And, PROVIZ+ has some components

that may require some native hardware support such as Bluetooth and WiFi com-

munication as well as the secure over-the-air programming features. Implementing
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the native support functions in the JAVA language can be difficult if performance

is essential, and it could generate undesired latency. These features may create ad-

ditional overhead to PROVIZ+. Therefore, we used multi-process computation so

as to keep the PROVIZ+ software suite steady and quick to avoid any additional

overhead. Table 6.2 shows the completion time of tasks.

Table 6.2: The PROVIZ+ main application task completion time statistics.

Task Average Time (ms) σ CI (95%)

PROVIZ+ Main Application Opening 2455.91 439.77 145.69
Topology Transfer to Android App 198.17 103.59 34.32

Bluetooth OTA for Arduino Mega 2560 49473.14 13821.01 4747.68
WiFi OTA for Raspberry Pi 3 1827.17 575.42 197.66

As noted earlier, the performance evaluation of the PROVIZ+ main application

was measured using an Apple Macbook computer which had 2.4 GHz i5 processor, 8

GB RAM, and 256 GB SSD flash storage. The experiment values that are in Table

6.2 were obtained by taking a mean of 35 experiment runs. Then, the variance and

confidence interval (% 95) of the experiment values were calculated to present a

distribution of experiment values. Since PROVIZ+ has native function calls for the

Bluetooth and WiFi communication, the native function calls affect the performance

of PROVIZ+ negatively. The values in the Table 6.2 could be lower if a more efficient

JAVA Run-time Environment is selected.

In addition to the task completion performance analysis of PROVIZ+, we per-

formed the same analysis for the secure over-the-air programming states in the

SOTA framework. Analyzing a micro-controllers in the simulation environments

create inaccurate results for real life scenarios. Furthermore, network availability

may generate delays for the communication packets. In this thesis, in order to rem-

edy aforementioned concerns, we implemented the Remote Programmer, the client

application, and the bootloader on real IoT devices and selected our university ac-
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cess point to get the average packet delay. The time analysis of the SOTA framework

can be seen in Table 6.3.

Table 6.3: The SOTA Framework experiment results.

Topology
Value
Type

Authentication
Closing Firmware

Mode
Reboot

Procedure
Sending Firmware

Packet
Synchronization Overall OTA

A Time (µ) 3099.11 2097.51 5383.11 46274.11 2184 84466.54
σ 999.66 594.33 55.74 13125.83 52.96 5143.68
SEx 171.44 100.46 9.55 2218.67 9.08 869.44
CI (95%) 336.01 133.16 19.42 2767.89 18.45 1704.10

B Time (µ) 3326.24 2168.97 5471.98 48026 2177.85 88375.48
σ 1011.89 89.85 584.91 749.78 69.49 8604.07
SEx 121.81 10.81 70.41 90.26 8.36 1475.58
CI (95%) 238.76 21.58 140.47 180.07 16.68 2892.15

C Time (µ) 3614.15 2159.68 5518.46 48054.02 2188.71 94290.85
σ 1042.65 70.54 768.89 597.06 64.08 11216.99
SEx 88.43 5.98 65.21 50.64 5.43 1923.69
CI (95%) 173.33 11.82 128.94 100.12 10.74 3770.44

D Time (µ) 4423.72 2155.61 5611.63 47992.41 2182.89 115329.65
σ 993.61 55.82 974.04 505.04 69.14 27258.99
SEx 59.48 3.34 58.31 30.23 4.13 4674.87
CI (95%) 116.59 6.57 114.79 59.52 8.14 9162.76

Accordingly, we ran the SOTA framework to program the Arduino-based IoT de-

vices over-the-air 35 times and traced all the steps of the over-the-air programming

process to get their completion time from the Remote Programmer’s perspective.

Because the Arduino-based IoT device does not have enough computational re-

sources to track itself while over-the-air is running, we did not track anything on

the device side. The time analysis of the secure over-the-air programming consists of

six major parts: authentication, closing firmware mode, reboot procedure, synchro-

nization, sending firmware packets’ part, and finally overall over-the-air completion

time. The results are presented in Table 6.3 to show the performance of the SOTA

framework. Since we implemented a parallel over-the-air programming process by

utilizing the JAVA thread library, our experiment results do not grow linearly due

to the multi-threaded programming. As observed in Table 6.3, differences between

values for different topologies are not high, and the confidence interval is relatively

high in the first topology, thereafter continually decreasing. The confidence interval

is continuously decreasing with more devices in the experiment except the overall
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over-the-air completion time. The closing firmware task includes two variable as-

signments in the bootloader and therefore can give a fast response to the Remote

Programmer without creating any visibly big difference among the different exper-

iment topologies. This minor difference can be seen in Table 6.3. Besides these

experiments, we traced the overall over-the-air completion time. These measure-

ments started with the running time of the over-the-air application and terminated

itself as soon as it got the closing program mode acknowledgment from the last

IoT device in the experimental setups. The results of these experiments can also

be seen in Table 6.3. As seen in the table, there is a non-linear increment among

different experiment topologies. As expected, as the number of devices in the topol-

ogy increase, so does the overall completion time. Moreover, the confidence interval

changes according to the number of total devices in the experiments because each

device contributes extra overhead to the total over-the-air completion time.

6.2.2 CPU, Memory, and Storage Analysis

In addition to measuring task completion time, we monitored the PROVIZ+ soft-

ware suite and the SOTA framework to provide system usage and requirements

information about them. As noted earlier, we used devices that are in Table 6.1

in CPU, memory, and storage analysis for components of PROVIZ+ software suite.

Table 6.4 shows the average system resource utilization of the PROVIZ+ software

suite.

Table 6.4: The PROVIZ+ Software Suite resource usage statistics.

Application Name CPU RAM File Size

The main application 15.3% 235 MB (2.83%) 18.9 MB
The Arduino client application - 911 Byte (11%) 10942 Byte (4%)

The Raspberry Pi client application 3% 54.3 MB (5.3%) 58.3 MB
The Android tablet application 5% 41 MB (4%) 28.3 MB
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Table 6.4 indicates that the main application uses CPU time percentage more

than the usage percentage of RAM. Since we provide real-time communication with

IoT devices, the remote programmer runs software threads to manage the data

transmission. The main application contains two web servers for importing the

topology to the Android tablet application and aggregating the sensor data from

IoT devices. Therefore, having two separate web servers generates 15% CPU usage

in the main application. The client applications use less than 15% RAM, which

indicates that IoT devices can run another application alongside the PROVIZ+

client applications. The Android tablet application runs software threads for each

IoT device in the topology like the main application, which leads to optimal system

resource usage for the Android tablet application.

Another contribution of this thesis, the SOTA framework, works on an Atmel-

based IoT device with a tiny micro-controller which has limited memory and com-

putational power. Table 6.5 shows memory footprint on Arduino-based IoT devices.

Table 6.5: Memory Occupation of the STK500 Bootloader vs. the SOTA Boot-
loader.

Bootloader Type Program Size (byte) Data Size (byte)
Original STK500

Protocol 2080 (0.8% full) 6 (0.1% full)
SOTA Bootloader 5666 (2.2%full) 1591 (19.4%full)

As seen in Table 6.5, the program size difference is very negligible; however, the

data occupation of the new SOTA framework is higher than the original STK500

Bootloader. The AES algorithm and authentication mechanisms need to allocate

arrays to run the security necessary operations, and this increases the data sizes of

the SOTA Bootloader.
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6.2.3 Security Analysis

Since one of our main contributions is providing security in the IoT applications

that are developed by the PROVIZ+ software suite, we focused on security during

the development of PROVIZ+ and analyzed the software suite regarding the secu-

rity concerns. In the main application of PROVIZ+, we generated a universally

unique identifier for each IoT devices in the user’s topology. These devices accept

commands from the source that carries a device’s universally unique identifier and

simply ignore packets from any other sources. Moreover, we used standard Blue-

tooth security precautions to make data transmission and over-the-air programming

secure. Bluetooth communication protocol runs data encryption to hide the content

of ongoing packets. Furthermore, in WiFi connection of the PROVIZ+ Raspberry

Pi client application, passwordless secure file copy and secure shell (SSH) were used

during the firmware upgrade tasks. In addition to the security mechanism of the

over-the-air feature of PROVIZ+ Raspberry Pi client application, Secure Hypertext

Transfer Protocol (SHTTP) with a self-signed Secure Sockets Layer (SSL) certifi-

cate is used to communicate with the main application without exposing the data in

clear. The same protocol was used in communication between the PROVIZ+ main

application and the PROVIZ+ Android tablet application.

We also designed and developed a security mechanism for the SOTA framework

to protect firmware over-the-air. An attacker can eavesdrop programming packets

and get firmware data, and this firmware may be compromised or altered. A compro-

mised firmware may lead to serious consequences such as showing inaccurate data in

vital IoT applications. Hence, SOTA uses a symmetric encryption with AES-128 bit

CBC to provide confidentiality and integrity for the data packets. We assume keys

are preloaded. Note that there is no known attack for AES-encrypted data without

the private key. Indeed, according to NIST, AES encryption is acceptable with 128
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bit key through 2030 and beyond [Bar16]. It can be applicable to unclassified data

and SECRET level data in government communications [oST17, CSS17]. In addi-

tion to this, AES encryption complies with ISO/IEC 18033 security standard. Given

the resource-limited nature of the Atmel-based IoT devices, AES is a viable solution

to provide security to the over-the-air-programming of the IoT devices. Hence, in

SOTA, we primarily provide confidentiality by encrypting ongoing communication

traffic with an AES symmetric algorithm. We also put additional random bytes

at the end of communication packet before encryption in order to provide full con-

fidentiality. Another important concept that we provide in the SOTA framework

is integrity, and we provide it with our sequence number and check-sum field that

is in the packet structure of encrypted the STK 500 communication protocol, and

authentication with the mutual firmware update authorization mechanism. Since

we have limited resources in IoT devices, we have to choose unauthenticated AES

CBC symmetric encryption instead of authenticated AES symmetric encryption al-

gorithm; however, we reinforced our protocol by developing and implementing a

new authentication mechanism. To remedy a possible replay attack, we designed

the authentication mechanism as a two way authorization process based on a ran-

domly generated authentication number, an authentication token, and a preloaded

secret key. Even if an attacker wants to use a previously recorded session packets

to inhibit updated secure firmware, the authentication mechanism does not allow

the use of any previous session’s over-the-air programming packets thanks to this

random authentication number control.
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CHAPTER 7

CONCLUSION

In this chapter, we conclude the thesis regarding the PROVIZ+ software suite. We

also discuss benefits of PROVIZ+ in Section 7.1. Then, any potential future work

is presented in Section 7.2 to improve this thesis.

7.1 Benefits of the PROVIZ+ Software Suite

PROVIZ+ contains several software modules: a Bluetooth, a WiFi, and a serial

communication modules, the Panther language compiler, and the code generator.

PROVIZ+ can program IoT devices to develop sophisticated IoT applications with-

out requiring any hardware or software developmental experience using either the

code-based programming tool or the visual programming tool. In the code-based

programming, a user can write a code in the Panther language to program IoT

devices. Using the Panther language helps a user by saving time from learning

various programming language for different IoT devices. Moreover, the user can

develop IoT applications using the visual programming module instead of the code-

based programming module. In doing so, the users do not need to write code in

the Panther language, they can simply select the target board and the sensors by

dragging and dropping onto the topology canvas. PROVIZ+ has an Android tablet

application support, so the user can download the PROVIZ+ Android tablet client

to track aggregated sensor data from the current topology. Even if the user closes

the PROVIZ+ main application, the Android tablet client application can indepen-

dently get data from the sensors. Finally, the PROVIZ+ software suite includes the

secure over-the-air programming framework to provide programming flexibility to

the user, and this framework has the following four contributions: programming the
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Atmel ATmega2560 micro-controllers over-the-air, providing data confidentiality, in-

tegrity, and authentication in the over-the-air firmware programming, cross-platform

support for the remote programmer, and the SOTA bootloader for micro-controllers

in IoT devices.

7.2 Conclusions and Future Work

A proliferation of IoT devices has brought the need for a single developmental plat-

form for programming IoT devices. Traditionally, a user has to learn various IoT

application development environments, programming languages, and fundamentals

of hardware design. However, with an IoT application development environment

like PROVIZ+, the user can develop sophisticated IoT applications without having

experience in software and hardware development. In addition to the development of

IoT devices, the secure over-the-air programming requires experience in the central

processing units (CPU) and the security of IoT devices. Since most of IoT devices

and applications are limited in terms of energy sources, computational power, and

usable memory, energy-efficient secure over-the-air code dissemination is vital in IoT

devices.

In summary, in this thesis, we propose the PROVIZ+ software suite that con-

sists of the main application, the Arduino and Raspberry Pi client applications,

the Android Tablet application, and the secure over-the-air programming frame-

work for IoT devices. The SOTA framework, is designed and implemented as a

platform-independent, open-source, and efficient over-the-air programming frame-

work for programming multiple IoT devices simultaneously, which is suitable for

the Atmel-based IoT devices. We also evaluated the performance of the PROVIZ+

software suite and SOTA. Our experiments revealed that PROVIZ+ can be used in
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the development of IoT application without any security and usability concerns, and

the SOTA framework yields minimum overhead for an over-the-air programming of

IoT devices and can be efficiently utilized while providing confidentiality, integrity,

and authentication.

For future work, we are planning to conduct our experiments on more devices and

also to implement new features for recovering the over-the-air programming from

any process failure. Furthermore, PROVIZ+ can be improved by adding new IoT

development boards and sensors to its library. Since it supports sensor and board

addition to the PROVIZ+ software suite, the user can add their desired sensor and

this database can be shared with other users in order to eliminate double addition

problems in the library. Also, PROVIZ+ is a significant tool for people who do

not have any programming or hardware experience because it supports a visual

programming tool that is easy to use for everyone. For example, K12 students can

benefit from it. The entire PROVIZ+ project can be re-designed for high school

students to teach them about IoT devices, development boards, and sensors. The

students may be able to design their IoT application using the PROVIZ+ software

suite. Finally, the Bluetooth over-the-air programming can also be considered as a

new feature for the Raspberry Pi IoT devices.
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