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ABSTRACT OF THE DISSERTATION

THE INVESTIGATION OF PHOTOCATALYTIC AND ADSORPTIVE PROPERTIES 

OF HUMIC ACID GRAFTED MAGNETITE NANOPARTICLES FOR THE

REMEDIATION OF ARSENIC, SELENIUM AND PHOSPHOROUS FROM WATER

by

Mohammad Mamunur Rashid

Florida International University, 2018

Miami, Florida

Professor Kevin E. O’Shea, Major Professor

 The crisis of freshwater has been a big concern worldwide. Water contamination 

that occurs through the discharge of toxic pollutants from different natural and 

anthropogenic sources have worsened the situation. Adsorption has emerged as a simple 

and economical water treatment procedure although the challenge is to find the right 

adsorbent that can efficiently remove the target contaminant followed by their easy 

recovery from the reaction vessel. In this dissertation, I have focused on the synthesis, 

characterizations and applications of environmentally compatible and magnetic humic acid 

coated magnetite nanoparticles (HA-MNP) as a potential adsorbent for water purification.

 Phosphate is an essential nutrient for many plants and organisms in the 

environment. However, it can also cause water pollution when present in excess amounts. 

The adsorption experiments showed that the laboratory synthesized nanoparticles (HA- 

MNP) can remove more than 90% of phosphate from water mainly through the mechanism 

of chemisorption. The overall removal process is spontaneous, endothermic and favorable.
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 Water contamination by arsenic is considered one of the biggest natural disasters 

in human history. In the study, HA-MNP has been applied for the successful trapping and 

separation of two highly toxic inorganic As species, As(III) and As(V) from water. The 

removal of As(V) was faster than As(III) for the same initial arsenic concentration and HA-

MNP loading. The binding of As species is mainly attributed to three different phases, 

rapid surface association, intraparticle diffusion and equilibrium adsorption. 

 Selenium is a micronutrient for humans that can be toxic at modest concentrations. 

The remediation of toxic selenium species, Se(IV) and Se(VI) by using HA-MNP has been 

found effective under a variety of environmental conditions except at highly alkaline pH 

and the presence of sulfate and phosphate in aqueous solution. Selenite or Se(IV) forms 

strong inner sphere complexes while Se(VI) forms relatively weaker outer sphere 

complexes with the adsorbent sites. 

 The oxidation and adsorption of As(III) is explored by using the photocatalytic and 

adsorptive behavior of HA-MNP. The higher removal efficiency is attained through the 

reactive oxygen species mediated photo-conversion As(III) to As(V). Combination of 

oxygen and 350 nm light provides the best results. 
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CHAPTER 1 

General Introduction 
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The lack of access to freshwater is a serious problem putting the health and 

livelihood of millions of people around the world at risk. Only ~2.5% of all water on earth 

is freshwater and less than 0.26 % of the global fresh water reserve is available for human 

consumption (Postel, Daily, & Ehrlich, 1996). The stress on freshwater resources is 

increasing daily with  population growth, urbanization and industrialization (Zimmerman 

et al., 2008). Close to two-thirds of the world’s population currently live under severe water 

shortages for at least one month in any given year (M.Mekonnen and Hoekstra, 2016). 

Release of toxic chemicals from different natural and anthropogenic sources have 

aggravated the freshwater crisis (Polizzotto et al., 2008; Schwarzenbach et al., 2006). In 

addition to an extensive number of organic pollutants and heavy metals, the presence of 

inorganic contaminants such as arsenic, selenium, phosphorous in drinking water sources 

pose a serious threat to human health and ecological balance (Hamilton, 2004; Nickson et 

al., 1998; Stoddard et al., 2016).  The development of a sustainable and eco-friendly water 

treatment methods is therefore critical for the effective remediation of these problematic 

water pollutants.  The focus of this dissertation is on the development and demonstration 

of humic acid coated nanomaterials as an adsorbent for the remediation of arsenic, 

selenium and phosphorous.    

        

The presence of elevated levels of arsenic, selenium and phosphorous species in 

freshwater is a serious environmental and health concern. Arsenic (As) is a metalloid that 

belongs to group 15 in the periodic table directly below phosphorous and adjacent to 

1.1.1 Water contamination by arsenic, selenium and phosphorous

1.1 Global crisis of freshwater
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selenium. Arsenic occurs in the earth’s crust and is mobilized through volcanic eruption, 

mineral weathering, microbial assisted redox transformation, and a range of anthropogenic 

activities (A. K. Katja Amstaetter, Thomas Borch, Philip Larese-Casanova, 2010; Smedley 

and Kinniburgh, 2000). Human exposure to arsenic takes place mainly through 

consumption of contaminated water and food where arsenic exists in many different forms 

as shown in Table. 1.1 (Sharma et al., 2014). The toxicity of arsenic species generally 

follows the order of MMA(III) > As(III) > As(V) > DMA(V) > MMA(V) (Sharma et al., 

2014).  However, in aqueous media, arsenic predominantly exists in its inorganic form as 

arsenite, As(III) and arsenate, As(V), with the former being more toxic and mobile than the 

latter. Groundwater contamination by arsenic has impacted the health of ~ 150 million 

people globally in more than 70 countries where the concentration of total arsenic varies 

from 0.5 – 5000 μg/L (Brammer and Ravenscroft, 2009; Sharma et al., 2014). The 

International Agency for Research on Cancer (IARC) classified inorganic arsenic in Group 

1 as a proven carcinogen. Long term intake of this colorless, tasteless and odorless poison 

containing water can cause skin, lung and kidney cancer, cardiovascular disease, diabetes, 

birth defects and other health problems (Cheng et al., 2015; Naujokas et al., 2013). The 

adverse health effects of arsenic has led the United States Environmental Protection 

Agency (US EPA) and World Health Organization (WHO) to set 10 μg/L (ppb) as the 

maximum contaminant level (MCL) of arsenic in drinking water (Smedley and 

Kinniburgh, 2000). 

Selenium (Se) is a naturally occurring trace element that is present in group 16 in 

the periodic table. Selenium is unique, functioning as an essential nutrient for humans at 
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trace levels (<40 µg/day) while considered toxic element at modest concentrations (>400 

µg/day) (Conde and Sanz Alaejos, 1997).  

Table 1.1. Different arsenic compounds and their oxidation states 

Compound name Detected media Structure 

Arsenous acid 

[As(III)] 

Water 

 

Arsenic acid [As(V)] Water 

 

Monomethylarsonic 

acid [MMA(V)] 

 

 

Metabolites in 

urine 

 

Dimethylarsinic acid 

[DMA(V)]  

Monomethylarsonous 

acid [MMA(III)] 
 

Dimethylarsinous 

acid [DMA(III)] 
 

Arsenobetaine 

[As(V)] 

Seafood 

 

Arsenolipids [As(V)] Fatty fish 
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The deficiency of selenium can lead to health-related issues in human body such as 

fatigue, heart disease, immune system dysfunction, reproductive problem among others, 

while the excessive intake may result in selenosis e. g., hair loss, fingernail brittleness, 

abnormal functioning of nervous system, gastrointestinal problems (Fordyce, 2013; 

Goldhaber, 2003). In animals, high concentrations of selenium are reported to cause 

deformities and death in bird and fish species; alkali disease and blind staggers are 

observed in cattle and horses (Hamilton, 2004; Tinggi, 2003). One of the entry routes of 

selenium into the human body is the consumption of drinking water with high levels of 

selenium. To protect public health from selenium toxicity, US EPA and WHO has set 50 

and 40 ppb as the maximum acceptable limit of selenium in drinking water, respectively 

(Fu et al., 2014). The main source of selenium in the water system is its uncontrolled 

discharge from coal and mining operations, thermal power stations, oil refineries, glass and 

metal processing industries, agricultural runoff, petrochemical and solar batteries (Lemly, 

2004; Yamani et al., 2014; Zelmanov and Semiat, 2013). Among different oxidation states 

(-II, 0, +IV and +VI), the most prevalent form 

of selenium in aqueous media is the two highly 

toxic forms, selenite, Se(IV) and selenate, 

Se(VI). Selenite is found to be more toxic than 

Se(VI). For both As and Se, the redox 

environment and solution pH greatly influence 

the speciation of the toxic species in the 

environment (Fig. 1.1). 

As

OH

HO OH

Arsenite

As

O

HO OH
OH

Se

O

HO OH

Selenite

Se

O

O

HO OH

oxidation

reduction

oxidation

reduction
Arsenate

Selenate

pKa = 9.23, 12.1, 12.7

(III) (v)

pKa = 2.22, 6.98, 11.53

pKa = 2.7, 8.54

(IV)

pKa = -2.01, 1.8

(VI)

Figure 1.1. Speciation and pKa values 

for arsenic and selenium 
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Phosphorous (P) is also a group 15 element of the periodic table that exists mostly 

as orthophosphate, polyphosphate and organic phosphate in aqueous environment 

(Mezenner and Bensmaili, 2009). A primary nutrient, phosphorous, is required for the 

essential functioning of plants and organisms in the ecosystem (Almeelbi and Bezbaruah, 

2012).  However, excessive discharge of phosphate effluent from agricultural, industrial 

and household activities causes eutrophication in the aquatic system which is detrimental 

to the environmental and water quality (Huang et al., 2008). Notably eutrophication is 

responsible for the bloom of toxic cyanobacteria and the decline of aquatic habitat through 

the depletion of dissolved oxygen (Chouyyok et al., 2010).  

  

There are number of different methods available for the removal of toxic arsenic, 

selenium and phosphorous including precipitation (Geoffroy and Demopoulos, 2011; 

Harper and Kingham, 1992),  ion exchange (Blaney et al., 2007; Kim and Benjamin, 2004; 

Nishimura et al., 2007), reverse osmosis (Ning, 2002), solvent extraction (Bidari et al., 

2007), and biological treatment (Y. Zhang et al., 2008). Although each of the methods has 

advantages, they also suffer from a number of inherent limitations inhibiting their real-life 

applications, e. g., toxic sludge, byproduct generation, poor removal efficiency, long 

treatment time, high operational cost, species specific removal, complex or inconvenient 

water treatment procedure (Yamani et al., 2014; Zelmanov and Semiat, 2013). Recently, 

adsorption has emerged as a promising alternative to conventional treatment methods 

because of its simplicity, low cost, trace amount removal capability and point-of-use 

compatibility (Santos et al., 2015). In the adsorption process, a material or solute (known 

1.2 Arsenic, selenium and phosphorous remediation by adsorption
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as adsorbate) accumulates on a solid surface (known as adsorbent) from its liquid or 

gaseous surroundings (Gupta et al., 2009). The accumulation of adsorbate on the adsorbent 

surface can occur through a weak van der Walls force of attraction, known as physisorption 

or through a strong chemical interaction, known as chemisorption. Activated carbon, 

alumina, chitosan, iron oxides and hydroxides, and binary metal oxides are common 

adsorbents employed for removal of toxins from drinking water (Dou et al., 2010; Gang et 

al., 2010; Yamani et al., 2014; Yoon et al., 2016; G. Zhang et al., 2009). Although these 

adsorbents may have limitations like pH and temperature dependence, low surface area, 

poor selectivity and regeneration costs, the benefits of adsorption processes generally 

outweigh the limitations and thus are considered among the most viable techniques for 

wastewater treatment.     

1.2.1 Magnetic iron oxide nanoparticles 

The use of nanomaterials as adsorbents has received significant attention for water 

purification because of their fast dissolution, tunable pore size, high surface-to-volume 

ratio and high surface energy, all of which lead to greater adsorption efficiency and faster 

removal rates than traditional adsorbents (Hua et al., 2012; Pradeep and Anshup, 2009; Qu 

et al., 2013). One of the primary challenges associated with the use of nanoadsorbents (or 

adsorbents) is the recovery of the materials after the treatment process. The development 

of magnetic nanoparticles has allowed for easy adsorbent recovery by simply employing a 

magnetic field. Iron oxide magnetic nanoparticles are widely chosen for such applications 

because they are easy to prepare, readily available and economical (Jiang et al., 2014). For 

example, nanoparticles of magnetite (Fe3O4), the most magnetic among all naturally 
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occurring minerals, can be easily synthesized (Eq. 1.1) in the laboratory using two iron 

salts in alkaline media following the co-precipitation method (Maity and Agrawal, 2007). 

𝐹𝑒2+  +  2𝐹𝑒3+ + 8𝑂𝐻−  =  𝐹𝑒3𝑂4  +  4𝐻2𝑂                                                                    (1.1)  

Although the use of bare iron oxide nanoparticle for the removal of toxic water 

contaminants have been successfully explored in the laboratory, the particles are not stable 

enough for large scale commercial applications because of agglomeration and loss of 

magnetism through natural auto-oxidative processes (J. Liu et al., 2008). A thin film 

coating of organic substrate on the surface of bare iron oxide nanoparticles can prevent the 

agglomeration and inhibit auto-oxidation of the iron oxide nanoparticles such that the 

magnetic properties of the iron oxide core are maintained for extended periods of time.  

1.2.2 Natural organic matter coated iron oxide nanoparticles 

Natural organic matter (NOM) is naturally occurring macromolecule that are 

ubiquitous in nature. It is a complex, heterogeneous mixture of polyfunctional organic 

compounds derived from the decomposition of plant and animal residues through a series 

of biological and chemical processes (Chen et al., 2002). In the environment, NOM plays 

an important role in determining the fate, biogeochemical cycling and mobility of different 

metal oxides, organic and inorganic pollutants (Aiken et al., 2011; Chin et al., 1994; De 

Paolis and Kukkonen, 1997). The sources, age of materials and the medium that degrades 

the plant and animal residue greatly determine the size and physico-chemical properties of 

NOM ((Chen et al., 2002). Humic substances (HS) are a large portion of NOM found in 

the soil and aquatic environment (Zhou et al., 2005). A significant amount of HS is also 

detected in the effluents discharged from wastewater treatment plants (Tang et al., 2014). 



9 

 

The large molecular weight fraction of HS is called humic acid (HA). A simplified 

empirical structure of HA is shown in Fig. 1.2. Humic acid has relatively higher carbon 

content, lower oxygen content and is usually more hydrophobic than fluvic acid (FA), 

another fraction of HS (De Paolis and Kukkonen, 1997; Lubal et al., 1998).   

 

Figure 1.2. Representative structure of humic acid (HA) 

The polyanionic character of HA helps it to bind strongly with metal and metal 

oxides (Tombácz et al., 2013). Humic acid shows high affinity to iron oxides, forming a 

stabilizing layer on the surface (Eq. 1.2 – 1.5) probably through ligand exchange – chemical 

complexation reactions (Gu et al., 1994). The diverse acidic functional groups of humic 

acid bind with iron oxide such as magnetite, and thus form a thin layer on the surface. The 

coating of humic acid on magnetite nanoparticles can prevent the agglomeration and 

toxicity toxicity to a significant extent. It also addresses the auto-oxidation problem of bare 

magnetite nanoparticles.    
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Humic acid coated magnetite nanoparticles (HA-MNP) are robust in nature and 

highly stable even under extreme conditions (Illés and Tombácz, 2006; J. Liu et al., 2008). 

The nanoparticles have been found effective for the removal of different toxic metal cations 

and other pollutants from water (J. Liu et al., 2008; Peng et al., 2012; Zhang et al., 2013). 

However, very few studies have been carried out until this point to assess the efficacy of 

the materials for the remediation of poisonous inorganic oxyanions from the aqueous 

system (Jiang et al., 2014). 

1.2.3 Reactive oxygen species generation by HA-MNP 

The presence of dissolved HS in aquatic media plays an important role in the photo-

processes of surface waters since part of the HS interacts with light (Cooper et al., 1988). 

Upon irradiation, HS can act as a photosensitizer to generate reactive intermediates and 

reactive oxygen species (ROS) such as singlet oxygen (1O2), superoxide anion radical (O2
-

•) and others. The ROS production from the absorption of light followed by intersystem 

crossing (ISC) of HS are shown in eq. 1.6 – 1.10 (Cooper et al., 1988). The significance of 

(1.2) 

(1.3) 

(1.4) 

(1.5) 



11 

 

HS photochemistry is that the ROS and excited triplet state of HS can lead to the 

degradation of water pollutants. The ROS can also influence the redox cycling of 

environmentally critical metals like Fe and Hg (Dalrymple et al., 2010).   

 

The hydroxyl radical (OH•) is another ROS, the production mechanism of which is 

not well-defined. Apart from the photolysis of H2O2, photo-Fenton processes and 

photolysis of nitrite and nitrate, the hydrogen abstraction from the quinone functionality of 

HS during irradiation is proposed as another plausible pathway for the generation of OH• 

(Blough, 1998; TAKEDA et al., 2004). 

As a fraction of HS, HA also exhibits photochemical properties. The generation of 

ROS by HA (and HS) depends heavily on the source, season and age. However, study 

shows that the humic acid coated magnetite nanoparticles (HA-MNP) can generate the 

ROS of nearly same quantum yield as free HA (Carlos et al., 2012). Hence, for water 

treatment applications, the photochemical properties of HA-MNP is a promising feature in 

addition to the adsorptive and magnetic properties. 

1.3 General objective of dissertation 

The focus of the dissertation project is to investigate the adsorptive and photochemical 

properties of laboratory synthesized HA-MNP for the efficient remediation of toxic 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 
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arsenic, selenium and phosphorous species from aqueous media. Detail characterizations 

of the nanoparticles before and after the adsorption of target contaminant were carried out. 

Kinetic and thermodynamic studies were conducted under different environmentally 

relevant conditions (temperature, pH, co-existing ions etc.) to assess the method versatility 

and to understand the mechanistic insights of the removal process.   
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CHAPTER TWO 

Effective Removal of Phosphate from Aqueous Solution Using Humic Acid Coated 

Magnetite Nanoparticles 
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2.1 Abstract  

Effective removal of excess phosphate from water is critical to counteract 

eutrophication and restore water quality. In this study, low cost, environmentally friendly 

humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for 

the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, 

TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite 

surface. The magnetic nanoparticles with diameter of 7-12 nm could be easily separated 

from the reaction mixture by using a simple handheld magnet. Adsorption studies 

demonstrate the fast and effective separation of phosphate with maximum adsorption 

capacity of 28.9 mg/g at pH 6.6. The adsorption behavior follows the Freundlich isotherm 

suggesting the formation of non-uniform multilayers of phosphate on the heterogeneous 

surface of HA-MNP. The adsorption kinetic fits the pseudo-second order model well with 

rate constants of 0.206 ± 0.003, 0.073 ± 0.002 and 0.061 ± 0.003 g mg-1min-1 for phosphate 

(P) concentration of 2, 5 and 10 mg/L respectively. The removal of phosphate was found 

higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit 

good selectivity and adsorption efficiency for phosphate in presence of co-existing ions 

such as Cl-, SO4
2-and NO3

-
 with some inhibition effect by CO3

2-. The effect of temperature 

on the adsorption reveals that the process is endothermic and spontaneous. HA-MNPs are 

promising, simple, environmentally friendly materials for the removal of phosphate from 

aqueous media. 
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2.2 Keywords 

 Humic acid coated magnetite nanoparticles, adsorption, magnetic separation, 

phosphate 

2.3 Introduction 

 Phosphate is a primary nutrient required for the normal functioning of many 

organisms in the ecosystem (Zeng et al., 2004). However, presence of excess phosphate 

into the aquatic systems leads to eutrophication which can promote harmful algal growth 

and decrease the amount of dissolved oxygen in water (Chouyyok et al., 2010; Pan et al., 

2014; Yan et al., 2010). Recent study shows the significant rise of lakes and streams length 

containing higher amounts of total phosphorous (TP) which exacerbate the concern about 

the deterioration of water quality and overall ecological balance (Stoddard et al., 2016). 

Municipal and industrial wastewaters are the major point sources for phosphate discharges 

while agricultural run-off is considered the dominant non-point source (Almeelbi and 

Bezbaruah, 2012; Karageorgiou et al., 2007). The commonly used methods to remove 

phosphates from water include biological treatment (Oehmen et al., 2007), chemical 

precipitation (De-Bashan and Bashan, 2004), reverse osmosis (Kumar et al., 2007), 

adsorption (Almeelbi and Bezbaruah, 2012; H. Liu et al., 2008; Seida and Nakano, 2002) 

etc. Among these, adsorption is the most widely accepted method for phosphate removal 

because of its high efficiency, minimum cost, easy and simple operation and applicability 

at lower concentrations (G. Zhang et al., 2009). In this study, we have used adsorption to 

remove phosphate from the aqueous solutions using humic acid coated magnetic iron oxide 

(magnetite) nanoparticles as adsorbent.  
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In recent years, iron based nanoparticles have been widely applied for 

environmental remediation.  The strong magnetic properties of such nanoparticles enables 

separation of adsorbent and adsorbate by using a simple magnet (Qu et al., 2013; Xu et al., 

2012). Magnetite, an iron (Fe3O4) material shows the highest magnetism among all the 

naturally available minerals (Harrison et al., 2002). Application of bare magnetite 

nanoparticles (MNP) for the removal of toxic water contaminants have been reported into 

the literature (Mayo et al., 2007). However, the susceptibility to auto-oxidation, tendency 

to agglomeration and concerns over toxicity are the main challenges for the real life water 

treatment applications of bare MNP (Huang et al., 2016; J. Liu et al., 2008; Maity and 

Agrawal, 2007). The coating of natural organic matter (NOM) on the bare MNP surface 

has been found useful in making the nanoparticles less toxic and more environmental 

friendly. Such thin coatings can also inhibit the agglomeration and auto-oxidation, the 

primary drawbacks associated with the use of bare MNP. Furthermore, the coating with 

NOM can potentially increase the adsorption capacity and selectivity of the nanoparticles. 

Humic acid (HA), a ubiquitous natural organic matter (NOM), is derived from 

plants and microbial residues.  HA possesses a number of organic functional groups 

including carboxylic acids, carbonyl groups and phenolic hydroxyl groups which can 

promote its complexation with a variety of metal oxides (Hankins et al., 2006). HA has a  

high affinity for magnetite (Fe3O4) and effectively coats bare MNP most likely through the 

surface complexation ligand exchange reactions (Gu et al., 1994; Illés and Tombácz, 2003). 

Limited studies have been reported on the removal of water contaminants using HA-MNP 

with primary focus on  the removal of metal cations (J. Liu et al., 2008; Yang et al., 2012). 

However, our research group recently demonstrated the potential use of HA-MNP to 
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successfully remove a metal oxyanions (chromate) from the aqueous media (Jiang et al., 

2014). Herein, we report the application of the nanoparticles (HA-MNP) for the efficient 

removal of anionic phosphate from water. The natural protective coating of humic acid 

plays a crucial role in the phosphate-HA-MNP complexation while preserving the magnetic 

property of magnetite imperative for the final separation step in the treatment process. 

2.4 Experimental Section 

2.4.1 Materials 

 Di-potassium hydrogen phosphate (>99.9%), ammonium hydroxide (29.15%), 

sulfuric acid (>95.6%), ferric chloride hexahydrate (98.8%), sodium carbonate (100.4%) 

and sodium bicarbonate (99.7%) were purchased from Fisher. Humic acid sodium salt and 

ferrous chloride tetrahydrate (≥99.0%) were obtained from Sigma. In all cases, Millipore 

filtered water (18 MΩ.cm) was used to prepare the solutions. 

2.4.2 Synthesis of humic acid coated magnetite nanoparticles 

 An established method (Jiang et al., 2014) was followed to prepare the humic acid 

coated magnetite nanoparticles (HA-MNP). Briefly, 3.0 g of ferrous chloride tetrahydrate 

(FeCl2.4H2O) and 6.0 g of ferric chloride hexahydrate (FeCl3.6H20) were dissolved in 100 

mL of water in a three-neck round bottom flask connected with a reflux condenser. The 

mixture was then heated with magnetic stirring until the temperature reached to 90 °C. At 

this temperature, 10 mL of 25% ammonium hydroxide and 50 mL of 1% humic acid 

sodium salt were added simultaneously into the reaction mixture and kept at 90 ± 5 °C for 

additional 30 minutes.  The solution was then allowed to cool, washed with water several 
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times to separate the nanoparticles from the free iron and humic acid.  Finally, the dried (in 

a vacuum oven at 40 °C), ground magnetic nanoparticles [Fig. A1(a)] were stored in a 

desiccator. 

2.4.3 Material characterization 

 Fourier transform infrared spectroscopy (FTIR) was performed at room 

temperature using PerkinElmer FTIR 100. Spectral scans of the synthesized nanoparticles 

were obtained from 550-4000 cm-1 (64 scans per spectrum). Transmission electron 

microscopy (TEM) and high angular annual dark field (HAADF-STEM) images were 

collected to determine the surface morphology and microstructure of the HA-MNP. The 

samples were sonicated for 30 minutes prior to dipping onto a silicone monoxide substrate 

grids, dried at room temperature and then analyzed using a FEI TITAN G2 80-300 

instrument operated at 300 kV. The leaching of HA was determined by measuring total 

organic carbon (TOC) in solutions at different pH after the separations of the synthesized. 

Shimadzu TOC-VCSH analyzer was used for TOC analysis. 

2.4.4 Adsorption experiments 

 Stock solution of phosphate (P) with concentration of 1000 mg of P/L (ppm) was 

prepared from di-potassium hydrogen phosphate (K2HPO4). A series of standard and 

working solutions with concentrations ranging from 0.05 to 100 mg/L were prepared by 

dilution of the stock solution. The adsorption studies were carried out in capped plastic 

bottles with 50 mL of phosphate solution as adsorbate and 0.05 g of HA-MNP (1.0 g/L) as 

adsorbent. To ensure efficient mixing and proper mass transfer, the samples were placed 

in the orbit shaker (Lab-line instrument Inc., model 3520) and shaken at 250 rpm for a 
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specific time period. All the experiments were conducted at room temperature (298 K) with 

a pH 6.6 ± 0.1 except the studies investigating the temperature and pH effects. For the pH 

experiments, 0.1M NaOH and 0.1M HCl were used to adjust the initial solution pH, 

confirmed in the pH meter (Mettler Toledo, model: SevenEasy). In case of thermodynamic 

study, sample solutions were placed in the thermostated waterbath (Lauda-Brinkman, 

model: RM20) to maintain the desired temperature. In all instances, the sample solutions 

were separated from the adsorbent nanoparticles using a simple handheld magnet [Fig. 

A1(b)]. To determine the residual concentration of phosphate, the magnetically separated 

solutions were filtered further using 0.45 µm syringe filter (to insure removal of any trace 

amount of suspended particles from the solution) and the filtrates were analyzed in the ion 

chromatography (761 Metrohm compact IC) equipped with a compact auto sampler 

(model: 813). The equilibrium of phosphate adsorption was calculated by using the 

following equation, 

𝑄𝑒 =  
(𝐶𝑜− 𝐶𝑒)

𝑚
𝑉                                                        (2.1) 

Where Qe is the amount of phosphate adsorbed (mg/g) at equilibrium, C0 and Ce 

corresponds to the initial and equilibrium concentration of phosphate in solution 

respectively, expressed in mg/L; m is the mass (g) of the adsorbent (HA-MNP) and V is 

the total volume (L) of the solution. Reproducibility of the collected data were ensured by 

taking the average of triplicate run of the experiments with accepted standard deviation not 

more than 5%. 
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2.5 Results and discussion 

2.5.1 Characterization of the synthesized nanoparticles 

 From FTIR spectra (Fig. A2), the band at 1598 cm-1 in HA-MNP corresponds to 

the C=O stretching of carboxylate anion of HA due to its interaction with the iron oxide 

surface of magnetite (Jiang et al., 2014). The same band appears at 1638 cm-1 in humic 

acid (Fig. A2) along with the band for amide C=O stretch at 1564 cm-1. The appearance of 

another strong band in the synthesized HA-MNP at 1398 cm-1 can be assigned to the 

scissoring of -CH2 group of HA. The band at 3331 cm-1 in HA is attributed to O-H 

stretching of alcohol and/or phenol which largely disappeared in HA-MNP indicating the 

complexation between the magnetite core and the humic acid shell. The band at 1090 and 

1009 cm-1 in HA can be ascribed to the C-O stretching of COO- and deformation vibration 

of C-H bond of benzene ring respectively (Peng et al., 2012; Yang et al., 2012). The TEM 

and HRTEM images of HA-MNP showed high crystallinity of magnetite nanoparticles 

inside (Fe3O4 core) and disordered structure outside which is due to the coating of humic 

acid on the surface of iron oxide nanoparticles (Fig. 2.1). The observed lattice distance of 

2.6 Å corresponds to the crystallographic plane of magnetite (311) core. Further analysis 

of the TEM images showed the narrow size distribution of HA-MNP in the range of 7-12 

nm with quasi-spherical geometry.  
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 Figure 2.1. TEM images of HA-MNP. (a) low resolution TEM image, the red lines show 

the humic acid coating on MNP (b) HRTEM images shows a high crystalline structure of 

magnetite core in HA-MNPs 

 

The micrographs of STEM-HAADF are shown in Fig. 2.2(a, b) where we note 

hexagonal packing with little agglomeration of HA-MNP. Chemical analysis of this 

agglomerant by energy dispersive spectroscopy (EDS) yields [Fig. 2.2(c)] the elements as 

carbon, iron, oxygen, and silicon (silicon appeared from the TEM grids). The results 

confirm the composition of the HA-MNP. High resolution of STEM-HAADF shown in 

Fig. 2.2(a), demonstrates HA-MNP have diameters of approximately 10 nm. The space 

between HA and MNP, the distance between HA film and MNP is approximately 1 nm, 

corresponding to the film on the shell of HA. 

 

 

 

(a) (b) 
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(a) (b) 

(c) 
 

Figure 2.2. STEM-HAADF images of HA-MNP, (a) High resolution STEM-HAADF 

image (detail of high porosity). (b) low magnification STEM-HAADF image of HA-MNP 

clearly shows the high porosity in the surface of MNP, (c) EDS spectra of HA-MNP 

 

2.5.2 Adsorption kinetics 

 An adsorption kinetic study was achieved by separately adding 50 mg of HA-

MNP in 50 mL of 2 to 10 ppm phosphate (P) at 298 K. The initial experiment was carried 

out in the orbit shaker for a total of 3 hours to ensure that the adsorption equilibrium is 

completed. The samples collected at different time intervals were filtered to separate HA-

MNP and the filtrates were analyzed by IC to measure phosphate in solution. Data from 

IC showed that the adsorption of phosphate on HA-MNP surface increased with time and 
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reached adsorption equilibrium within 60 minutes with >90 % of phosphate removed 

from the solution in 3 hours for an initial phosphate concentration of 2 ppm (Fig. 2.3). 

Surface saturation occurs at higher initial phosphate concentration and the adsorption rate 

became slower (Fig. 2.3). 

 

Figure 2.3. Adsorption kinetics of phosphate on HA-MNP. Initial phosphate (P) 

concentration = 2 to 10 mg/L (ppm), pH = 6.6, HA-MNP dose = 1.0 g/L, temperature = 

298 K, contact time = 3 hours 

 

The kinetic data were fit to both pseudo-first order and pseudo-second order kinetic 

models (equation 2 and 3 respectively) and compared, to provide insights of adsorption 

mechanisms such as mass transfer and chemical reaction. It is well established that the 

pseudo-first order kinetic model fits better in the initial stage of reaction processes 

especially those with rapid adsorption (Ho and McKay, 1998), whereas the pseudo-second 

order model (Ho and McKay, 1999) considers adsorption behavior over longer contact 

times with chemisorption as the rate controlling process (Bhattacharyya and Sharma, 2004; 

Bulut et al., 2008; Crini et al., 2007). 
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 𝑙𝑜𝑔(𝑄𝑒 − 𝑄𝑡) = log 𝑄𝑒 −
𝑘1𝑡

2.303⁄                                            (2.2) 

 
𝑡

𝑄𝑡
=  

1

𝑘2𝑄𝑒
2 +  

1

𝑄𝑒
𝑡                                                                                            (2.3) 

Where Qt and Qe are the amount of solute adsorbed on the adsorbent surface (mg/g) 

at time t and at equilibrium respectively. k1 and k2 are the rate constants of the pseudo-first 

order and pseudo-second order rate equation respectively. In both cases, t is the time in 

minutes. From the derived kinetic parameters of equation 2 & 3 (see Table 2.1), the 

adsorption of phosphate is found to follow the pseudo-second order kinetic model with 

good linearity (R2>0.99) and a good agreement between the experimental and calculated 

Qe values.  The rate constants (k2) are calculated with standard error as 0.206 ± 0.003, 

0.073 ± 0.002 and 0.061 ± 0.003 g mg-1min-1, for 2, 5 and 10 ppm phosphate solutions, 

respectively. These results illustrate that the adsorption of phosphate on HA-MNP likely 

occurs through chemisorption where sharing or exchange of electron takes place between 

phosphate and the functional groups of humic acids of HA-MNP (Gücek et al., 2005). In 

the typical pseudo-second order process, an initial surface reaction occurs until all the 

surface sites are occupied; subsequently diffusion and molecular reorganization can take 

place  at the surface for additional complexation (Xie et al., 2014). 
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Table 2.1. Kinetic parameters for the adsorption of phosphate onto HA-MNP 

 

Initial 

Conc.  

(mg/L) 

 

Qe, 

expt.  

(mg/g) 

Pseudo-first order kinetics Pseudo-second order kinetics 

Qe, 

calc. 

 (mg/g) 

k1 

(min-1) 

 

R2 

Qe, 

calc. 

 (mg/g) 

k2 

(g mg-1min-1) 

 

R2 

2 

5 

10 

1.66 

2.81 

3.55 

0.95 

1.34 

1.46 

0.056 ± 0.002 

0.066 ± 0.003 

0.061 ± 0.002 

0.97 

0.96 

0.99 

1.71 

2.99 

3.75 

0.206 ± 0.003 

0.073 ± 0.002 

0.061 ± 0.003 

0.99 

0.99 

0.99 

Under our experimental conditions, the pseudo-first order kinetic model also 

exhibits a good correlation after fitting the experimental data; however, significant 

deviation was observed between the two Qe values indicating that this model is not 

consistent with the observed phosphate adsorption in our system. 

To further explore the adsorption process, the kinetic data were also examined using 

the Weber and Morris intraparticle diffusion model that expresses the fraction of solute 

adsorbed as a function of square root of time, 

 𝑄𝑡 =  𝑘𝑖𝑑𝑡
1

2⁄ +  𝑐                                                            (2.4) 

Where Qt is the amount of phosphate adsorbed at time t (minute), kid is the intraparticle 

diffusion rate constant and c is the intercept. The kinetic data of 5 ppm phosphate is used 

for this model to probe the existence of different phases in the adsorption process. A plot 

of Qt vs t1/2 yielded a linear relationship which did not pass through the origin (Fig. 2.4). 

The results suggest that intraparticle diffusion is involved in the overall adsorption process 

although it is not the rate limiting step (Hamayun et al., 2014; Jacukowicz-sobala and Ocin, 
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2013). Additionally, the observed multilinearity can be attributed to the involvement of 

two or more steps in the adsorption process (Wu et al., 2001). 

 

Figure 2.4. Phosphate adsorption modeling of the kinetic data with Weber-Morris 

intraparticle diffusion plot. Series1 (point 1-4, 0 to 10 minutes): external adsorption, series2 

(point 4-6, 10 to 60 minutes): intraparticle diffusion, series3 (point 6-9, 60 to 180 minutes): 

equilibrium adsorption. Initial phosphate (P) concentration = 5 mg/L, pH = 6.6, HA-MNP 

dose = 1.0 g/L, temperature = 298 K, contact time = 3 hours 

 

The external adsorption process is assumed to be the fastest and instantaneous 

where a significant concentration of initial phosphate was adsorbed in the HA-MNP 

surface within 10 minutes (first four points of Fig. 2.4). The second stage of adsorption 

was controlled by intraparticle diffusion mechanism over a period of approximately 60 

minutes (middle region of Fig. 2.4). The final stage is the equilibrium adsorption (last four 

points of Fig. 2.4) where intraparticle diffusion no longer dominates due to low phosphate 

concentration and the process approaches the equilibrium (Crini et al., 2007).   
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2.5.3 Adsorption isotherms 

 The adsorption isotherm describes the adsorbent-adsorbate relationship at 

equilibrium critical for determining optimal parameters for the application of the adsorbent. 

A range of concentrations (5 to 100 mg/L) of phosphate were mixed with a fixed amount 

of HA-MNP (1 g/L). The experiment was carried out for 3 hours in the orbit shaker at 

temperature 298 K, pH 6.6 and a mixing speed of 250 rpm. The concentrations of phosphate 

obtained from IC were plotted as adsorption isotherms and fit to Langmuir and Freundlich 

models to determine the equilibrium adsorption and the maximum adsorption capacity. The 

Langmuir isotherm assumes that monolayer adsorption occurs on homogeneous adsorbent 

surface and there is no interaction between the adsorbate molecules (Tahir and Rauf, 2006). 

The linear form of Langmuir adsorption isotherm is represented below, Eq. 2.5, 

 
𝐶𝑒

𝑄𝑒
=  

1

𝑏𝑄𝑚𝑎𝑥
+  

𝐶𝑒

𝑄𝑚𝑎𝑥
                                             (2.5) 

 Where, Ce is the concentration of phosphate (mg/L) in solution at equilibrium, Qe 

is the amount of phosphate adsorbed (mg/g) on the adsorbent surface at equilibrium, Qmax 

is the maximum adsorption capacity (mg/g) and b is the Langmuir constant related to 

adsorption free energy (L/mg). The Freundlich isotherm, on the other hand, describes the 

heterogeneity of the adsorbent surface (Yoon et al., 2016) with non-uniform distribution of 

adsorption heat and affinities as well as the formation of multilayer during the adsorption 

process.  The mathematical expression of Freundlich isotherm is represented below, (Eq. 

2.6) 

𝑙𝑜𝑔𝑄𝑒 = 𝑙𝑜𝑔𝐾𝑓 +  
1

𝑛
𝑙𝑜𝑔𝐶𝑒                                           (2.6) 
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Where Qe and Ce represent the same parameter as in Langmuir isotherm, Kf denotes 

the adsorption capacity and 1/n indicates adsorption intensity (dimensionless). The value 

of Kf is linearly proportional to adsorption capacity while a 1/n value of less than 1 indicates 

greater adsorption strength through chemisorption. Individual adsorption parameters and 

the correlation coefficients were obtained by plotting the experimental data in the two 

different isotherm models, presented in Table 2.2. 

Table 2.2. Langmuir and Freundlich parameters for the adsorption of phosphate onto HA-

MNP 

Langmuir isotherm Freundlich isotherm 

Qmax (mg/g) b (L/mg) R2 Kf 1/n R2 

28.9 0.03 0.80 12.4 0.48 0.93 

 

The theoretical maximum adsorption capacity for phosphate was calculated to be 

28.9 mg/g (P) which is comparable to other similar types of adsorbents used for phosphate 

removal, e.g., 1.5 mg/g (PO4
3-) by synthetic iron oxide coated sand at pH 5, 7.9 mg/g (P) 

by lanthanum doped activated carbon fiber (pH not reported), 11.2 mg/g (P) by hydroxy-

iron pillared bentonites at pH 3, 36.5 mg/g (P) by Fe-Mn binary oxide at pH 5.6 (Boujelben 

et al., 2008; Liu et al., 2011; Yan et al., 2010; G. Zhang et al., 2009). The results also 

showed that the Freundlich isotherm model explains (R2>0.93) the adsorption process 

better than the Langmuir isotherm (R2≈0.80) and thus indicative of the formation of 

multilayer adsorption and heterogeneous surface sites. The value of 1/n was found to be 

less than unity (0.48) which corresponds to an adsorption mechanism involving 

chemisorption, supported by our kinetic study presented earlier. 
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2.5.4 Effect of pH 

 Solution pH can have a pronounced effect on adsorption since the adsorbent surface 

charge strongly influence the adsorption of charged phosphate species. The leaching of 

humic acid from the HA-MNP surface is also affected by solution pH. With this in mind, 

the adsorption of phosphate was studied as a function of initial solution pH from acidic to 

alkaline range. The amount of phosphate removal decreases noticeably with the increase 

of pH values as depicted in Fig. 2.5. The lower adsorption at basic pH can be explained by 

considering the phosphate speciation in aqueous medium. Phosphate is polyacidic (pK1 = 

2.12, pK2 = 7.21, and pK3 = 12.67) prevail as H3PO4, H2PO4
-, HPO4

2- and PO4
3- in water. 

At lower pH, sorbent surface will be positively charged while the phosphate species will 

be predominantly monoanionic i.e. H2PO4
-. Thus, electrostatic attraction between H2PO4

-

and HA-MNP-H+ results in higher adsorption of phosphate on HA-MNP. As the pH 

increases, more hydroxyl ion exists in the solution which might compete with phosphate 

species for the sorbent site. Another possibility is that, at higher pH, the sorbent surface 

and the phosphate species becomes more negative which introduces greater repulsion and 

as a consequence, the adsorption of phosphate decreases. In summary, the pH study 

demonstrates that HA-MNP can be applied in neutral or acidic water (or wastewaters) for 

the effective removal of phosphate.   
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Figure 2.5. Effect of initial pH for the adsorption of phosphate onto HA-MNP. Initial 

phosphate concentration = 5 mg/L, HA-MNP dose = 1.0 g/L, temperature = 298 K, contact 

time = 1 hour 

 

The leaching of humic acid was measured by preparing a mixture of 100 ppm water 

dispersed HA-MNP at different pH (4, 7 & 10). The mixture was placed in the orbit shaker 

(250 rpm) at room temperature for 3 hours to mimic the originally followed adsorption 

experiment environment, filtered using 0.45 µm filter and finally analyzed in the TOC 

analyzer. The concentration of dissolved organic carbon (DOC) was found in the range of 

0.02 to 0.08 ppm (Table A1) for the studied pH values which is lower than the DOC 

concentration reported into the literature for the same materials (J. Liu et al., 2008). This 

implies the robustness of the coating of humic acid on magnetite surface and further shows 

the promise of the nanoparticles to be used under different environmental conditions.   
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2.5.5 Effect of temperature   

 Thermodynamic study of phosphate adsorption was conducted by measuring the 

adsorption at different temperatures ranging from 25 to 65 °C (298 to 338 K) with an 

initial concentration of 5 ppm of phosphate and 1 g/L of HA-MNP. The reaction time was 

1 hour. By fitting each of these temperature data into the pseudo second order model 

(Fig. 2.6), different rate constants were obtained for different temperatures. 

 

Figure 2.6. Effect of temperature for the adsorption of phosphate onto HA-MNP. Initial 

phosphate concentration = 5 mg/L, pH = 6.6, HA-MNP dose = 1.0 g/L, contact time = 1 

hour 

 

A plot of lnk versus 1/T was used to determine the activation energy (Ea) based on 

Arrhenius equation, 

𝑙𝑛𝑘 = 𝑙𝑛𝐾0 −  
𝐸𝑎

𝑅𝑇
         (7) 

 Where Ea is the activation energy (kJ/mol), K0 is the temperature independent 

factor, R is the ideal gas constant (8.314 J/K mol) and T is the temperature in Kelvin. The 
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plot gives a straight line (Fig. 2.7) from where the value of Ea is calculated to be ≈27 kJ/mol 

which also suggests that the adsorption process is mostly driven by the mechanism of 

chemisorption (Chen et al., 2011; Liu et al., 2011).  

 Other important thermodynamic parameters were calculated by using the 

following equations- 

𝑙𝑜𝑔
𝑄𝑒

𝐶𝑒
=  

∆𝑆°

2.303𝑅
−  

∆𝐻°

2.303𝑅𝑇
                                                (8) 

∆𝐺° =  ∆𝐻° − 𝑇∆𝑆°               (9) 

Where ∆G°, ∆H° and ∆S° are the standard free energy, enthalpy and entropy for the 

adsorption process respectively, Qe is the amount of phosphate adsorbed at equilibrium 

(mg/g), Ce is the equilibrium concentration (mg/L) of phosphate in solution and T is the 

temperature (K). The calculated values of the thermodynamic parameters are listed in Table 

2.3. The positive value of ∆H° indicate that the process is endothermic i.e. adsorption 

increases with the increase of temperature which might result from the fact that rising 

temperature increases the adsorbent pore size and/or favor the mass transport by reducing 

the reaction energy barrier between the phosphate ions and the HA-MNP. 
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Figure 2.7. Arrhenius plot of lnk vs 1/T to determine activation energy 

The positive value of ∆S° implies that randomness of the system increases at the 

solid-solution interface which helps the adsorption of phosphate onto the surface of HA-

MNP. The negative value of ∆G° indicates that the overall adsorption process is 

spontaneous and therefore, thermodynamically favorable at all the investigated 

temperatures. 

Table 2.3. Thermodynamic data for the adsorption of phosphate onto HA-MNP 

Concentration 

of phosphate 

(ppm) 

Ea 

(kJ/mol) 

∆S° (J/mol 

K) 

∆H° 

(kJ/mol) 

∆G° (J/mol K) 

298K 308K 323K 338K 

5 27.03 15.32 4.08 -0.48 -0.63 -0.86 -1.09 

 

2.5.6 Effect of co-existing ions 

 In groundwater and wastewater, anions such as sulfate, nitrate, chloride and 

carbonate often co-exist along with phosphate, so the effect of coexisting ions was also 
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studied by separately adding 1mM of each of the anions into the reaction mixtures 

containing 5 ppm of phosphate (P) and 1 g/L of HA-MNP. The reaction was continued for 

3 hours. Results from the analysis of the competition ions effect are shown in Fig. 2.8. 

Except carbonate, no noticeable effect in the adsorption efficiency was observed due to the 

presence of any other anions in the solution. The addition of carbonate (CO3
2-) made the 

overall phosphate solution alkaline by changing the pH from the initial 6.6 to 10.1. This 

higher pH might be the reason for the decrease of phosphate uptake by HA-MNP as we 

observed the similar trend in our pH effect study section. 

 

Figure 2.8. Effect of coexisting ions for the adsorption of phosphate onto HA-MNP. 

Initial phosphate concentration = 5 mg/L, concentration of each of the anions = 1 mM, 

pH = 6.6, HA-MNP dose = 1.0 g/L, temperature = 298 K, contact time = 3 hours 

 

2.6     Conclusions 

    In the present work, an economical, environmentally friendly magnetic adsorbent 

has been applied to effectively separate phosphate present in the water system. Results 

showed that the phosphate removal by HA-MNP is most successful from acidic to neutral 
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pH range. The increase of temperature also exerts a positive influence on phosphate 

adsorption efficiency. Investigations of adsorption kinetics and adsorption isotherm 

suggest that the adsorption mainly occurs through chemisorption and thus indicative of 

strong bonding between phosphate and the adsorbent nanoparticles. Thermodynamic study 

identified the removal process as endothermic and spontaneous. The negligible effect of 

most of the coexisting ions indicates the good selectivity of the synthesized nanoadsorbent. 

Finally, this HA-MNP with its competitive adsorption capacity and easy separation 

advantage can be a promising agent for the removal of phosphate from aqueous solution. 
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CHAPTER THREE 

Kinetic and Mechanistic Evaluation of Inorganic Arsenic Species Adsorption onto Humic 

Acid Grafted Magnetite Nanoparticles 
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3.1 Abstract 

Humic acid coated magnetic iron oxide nanoparticles (HA-MNP) were synthesized, 

characterized, and studied for the removal of toxic inorganic arsenic species from aqueous 

media.  The adsorption of As(III) and As(V) followed pseudo-second order kinetics and 

the observed data were accurately modeled employing Freundlich adsorption isotherm. 

Application of the Weber and Morris intraparticle diffusion model to the observed kinetic 

data suggest that the adsorption occurs in three distinct stages, fast, intermediate, and slow 

steps.  We propose the initial stage is governed by surface association, followed by 

intraparticle diffusion of arsenic through the HA matrix and finally, chemical reaction or 

bonding between the arsenic species and HA functionality. The HA-MNP nano-adsorbent 

absorbs > 95% of the inorganic arsenic species with an absorption capacity of 12.2-12.6 

mg/g from aqueous media and is effective under a variety of conditions.  Post arsenic 

adsorption characterization of the nanoparticles suggests that As(III) binds with the 

carboxylate group of HA through a proposed ester type linkage while electrophilic 

reactions can occur between the nucleophilic functional groups present in HA and the 

electrophilic arsenic atom in As(V).  The results obtained demonstrated that HA-MNP are 

robust and have promise for effective As (III) and As(V) remediation. 

3.2 Keywords 

 Arsenic, magnetic nanoparticles, adsorption kinetics, adsorption isotherms,  

3.3 Introduction 

Arsenic occurrence in aquatic environments is the result of natural and man-made 

sources. While arsenic is discharged by industrial processes and used in agricultural 
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applications, water contamination by arsenic is most often the contribution of dissolution 

or leaching of solid phase arsenic contained within the rocks, soil and minerals into 

groundwater (Amini et al., 2008; Mondal et al., 2014; Zheng et al., 2015). This class one 

carcinogen has already exerted severe negative consequences on the health of more than a 

hundred million people as poisoned by arsenic contaminated groundwater used for 

drinking, irrigation and other household purpose (Brammer and Ravenscroft, 2009; 

Rahman et al., 2014; Yan et al., 2012). Bangladesh, India, China, Vietnam, Argentina, 

Pakistan, USA, Chile and Mexico are among the countries most affected by arsenic 

contaminated tubewells and aquifers with arsenic concentrations well above the maximum 

contamination limit of 10 µg/L set by WHO (Rahman et al., 2014). Geology, topography, 

temporal variability influence the water pH and redox potentials and thus affects arsenic 

solubility (Buschmann et al., 2007; Fendorf et al., 2010). Arsenite, As(III) and arsenate, 

As(V) are the most common toxic forms of arsenic present in drinking water sources. The 

major species in the reducing environment of groundwater is the more mobile and  more 

toxic arsenite (Yu et al., 2013). Development and implementation of effective methods for 

the removal of arsenic species from drinking water sources are critical to ensure quality 

water for millions of people worldwide.  

Humic substances (HS) in aquatic systems are derived from the breakdown of soil 

humus and aquatic plants through different biological and chemical processes (Thurman 

and Malcolm, 1981). Different molecular moieties and wide variety of organic functional 

groups of HS are responsible for its structural diversity and physico-chemical properties 

such as solubility and surface charge distribution (Cook and Langford, 1998). The more 

hydrophobic, large molecular weight fraction of HS, commonly referred to a/s humic acid 
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(HA) generally exhibits higher sorption and complexation characteristics over other HS 

fractions (De Paolis and Kukkonen, 1997; Meier et al., 1999). Humic acid coated/modified 

adsorbents for the environment friendly remediation of different contaminants from water 

have been studied (J. Liu et al., 2008; Wu et al., 2011; Yang and Xing, 2009). Here we 

report the use of humic acid grafted to iron oxide nanoparticles for the adsorption of highly 

toxic inorganic arsenic species from water.  

Adsorption is one of the most effective methods for toxic species remediation from 

aqueous media as it can limit the mobility and bioavailability of potent toxins at relatively 

low cost and simple operation (Chang et al., 2010). Use of nanoadsorbent is particularly 

attractive because engineered nanomaterials can be tailored for greater surface area and 

stronger binding capacities (Kurniawan et al., 2012).  

Iron based nano-adsorbents have received tremendous attention due to the 

availability and low cost of the raw materials. The strong magnetic property of tailor-made 

iron particles is conducive for easy recovery and/or separation. Magnetite (Fe3O4) 

nanoparticles are among the most promising adsorbents with the advantages of 

superparamagnetic properties, easy preparation and bio-compatibility. However, 

agglomeration and the loss of magnetic strength over time resulting from auto-oxidations 

limits the commercial applications of bare iron oxide nanoparticles (J. Liu et al., 2008). 

These constraints have been addressed using organic substrates to coat the surface of 

magnetite (Fe3O4) nanoparticles.  The coating protects against auto-oxidation of the iron 

oxide core. Tremendous potential is observed for the environmental applications of 

magnetite nanoparticles coated with humic acid (HA), where the surface charge associated 
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with the nanoparticles is converted from positive to negative upon the appropriate coating 

of humic acid on magnetite (Illés and Tombácz, 2006; Tombácz et al., 2013). The strong 

affinity of polyanionic humic acid to magnetite is found to be useful in coating the surface 

effectively which in effect significantly reduces or eliminates the nanotoxicity of bare 

magnetite nanoparticles (MNP) and enhances their chemical and colloidal stability (Illés 

and Tombácz, 2003; Peng et al., 2012). The saturation magnetization of bare MNP and 

HA-MNP are reported to be 79.6 and 68.1 emu/g respectively, thus demonstrates the 

retention of strong magnetic property by the nanoparticles even after the coating of humic 

acid on the surface (J. Liu et al., 2008). Liu et al. was the first to demonstrate the potential 

application of humic acid coated magnetite nanoparticles (HA-MNP) for the adsorption 

and removal of toxic metal cations (J. Liu et al., 2008). Although the application of 

negatively charged HA-MNP materials for adsorption of toxic cations is effective due to 

electrostatic attractions between adsorbent surface and toxic cations involved, we recently 

reported the successful removal of anionic chromium and phosphate from water using HA-

MNP (Jiang et al., 2014; Rashid et al., 2017). The adsorption mechanisms for anionic 

species is not based on electrostatic interactions but rather likely through the formation of 

chemical bonds between the adsorbate and the different functional groups present in humic 

acid. The carboxylic, phenolic, amino, and sulfhydryl moieties of HA can act as a potential 

binding sites for the toxic arsenic species. In the solution pH range of 3 to 9, the charge 

neutral H3AsO3 is the dominant species of As(III) whereas for As(V), the negatively 

charged H2AsO4
- and HAsO4

2- are the most prevalent forms (Liu et al., 2015). Here we 

examined the removal of both As(III) and As(V) using HA-MNP. The detailed 

characterization of HA-MNP and As-HA-MNP provide fundamental information about the 
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bonding and adsorption mechanisms of As (III) and As(V) to the humic acid materials 

which can be extended to understand the fate, transport, and bioavailability of As (III) and 

As(V) in the natural aqueous systems.  The results demonstrate for the first time that HA-

NMPs are an effective nano-adsorbent for As(III) and As(V).  The As adsorption is readily 

modeled and predictable which are critical to meet specific treatment objectives in real-life 

applications. The knowledge obtained from the study can help guide the improvement of 

water treatment methodologies using green materials. 

3.4 Experimental section 

3.4.1 Materials 

            Ammonium hydroxide (29.2%), ferric chloride hexahydrate (98.8%), sodium 

arsenite and sodium arsenate dibasic heptahydrate (≥ 98%) were purchased from Fisher 

Scientific. Ferrous chloride tetrahydrate (≥ 99%) and humic acid sodium salt were 

purchased from Sigma Aldrich.  

3.4.2 Synthesis and application of HA-MNP 

 The nanoparticles were synthesized using co-precipitation reported elsewhere 

(J. Liu et al., 2008). Summary of the synthesis procedure are given in chapter 2. The arsenic 

solution with the added nanoparticles were mixed in the 50 mL plastic bottle and agitated 

in the orbit shaker at 250 rpm (Lab line instrument Inc., model 3520).  For the adsorption 

experiments, the initial solution pH of arsenic was adjusted by using 0.1M HCl and 0.1M 

NaOH and monitored by pH meter (Mettler Toledo, model: SevenEasy). The particles were 

separated from solution and residual arsenic concentration and speciation were measured 

employing a Perkin Elmar ICP-MS coupled with HPLC. Although handheld magnet 



42 

 

provides effective separation of the treated nanoparticles, to comply with the requirement 

of the analytical facility and to conveniently handle large number of samples of small 

volume, 0.45 μm syringe filters were used to filter the arsenic solution before analyzing in 

LC-ICP-MS. 

3.5       Results and discussion 

3.5.1 Characterization 

             HA-MNP were subjected to detail characterization before and after the adsorption 

of As(III) and As(V) species. Details of the sample preparation and characterization 

techniques are provided in Appendix B. The newly synthesized HA-MNPs exhibited the 

established key features (Jiang et al., 2014; J. Liu et al., 2008; Rashid et al., 2017). The 

FTIR spectra of HA-MNP (Figure B1) exhibits characteristic band at 1598 cm-1 indicative 

of the C=O stretching of carboxylate functionality present in HA, the red shift from typical 

carboxylate band (1700 cm-1) is characteristic of a weaker C=O bond as the carbonyl 

oxygen complexes with the magnetite core (Rashid et al., 2017). The strong broad IR band 

at 3300-2700 cm-1 observed in the neat HA-MNP can be attributed to the presence of 

phenolic O-H and/or carboxylic acid groups of HA in HA-MNP.  A significant reduction 

in the O-H signal is observed after the adsorption of As(III) and As(V), suggesting the 

formation of chemical bond between the O-H groups in the HA coating and the As species. 

The TEM image of the HA-MNP (Figure 3.1a) illustrates a thin film coating of humic acid 

on the magnetite surface. The TEM measurements yield the average diameter of 10.6 nm 

for the synthesized HA-MNP with standard deviation of 3.5 (Figure B2).  STEM-HAADF 

image of arsenic loaded HA-MNP is shown in Figure 3.1b. High resolution TEM image of 
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the arsenic laden nanoparticles (Figure 3.1c) reveals the characteristic lattice fringe 

distance of the original HA-MNP as 3.0 Å and 4.9 Å corresponding to the (220) and (111) 

crystallographic planes of magnetite. 

 

(a)  

 

(b)   

 

(c)  

 

(d)  

Figure 3.1. (a) Low resolution TEM image of HA-MNP (b) STEM-HAADF image of 
As(III)-HA-MNP (c) HRTEM image of As(III)-HA-MNP and (d) EDS spectra of As(III)-HA-
MNP 

 This observation indicates that arsenic species does not significantly bind to or 

change the crystalline lattice of the iron oxide core material. Since the HA-MNP core is 

unchanged upon adsorption of arsenic, the humic acid shell appears to shield the magnetite 
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core from the arsenic species, thus suggesting that adsorption occurs within the humic acid 

matrix.  EDS spectra of the As-loaded HA-MNP confirms the presence of arsenic in the 

nanoparticle surface (Figure 3.1d). The copper (Cu) and silicon (Si) peaks in the EDS 

spectra are from the grids which are made of copper with a thin film coating of silicon on 

top. The Raman spectra of HA-MNP (Figure 3.2) shows the characteristic magnetite bands 

at 535 and 668 cm-1 while the characteristic bands associated with maghemite at 350, 500 

and 720 cm-1 are not observed (Daou et al., 2006).  With respect to the comparison of the 

Raman peaks at 220, 280, and 700 cm-1, there is clearly variation in the relative proportion 

of these peaks. Such changes may be due to changes in the HA backbone or functionality 

upon binding of the arsenic species. Raman spectrum of the As(III)-HA-MNP (Figure 3.2) 

includes a band at 321 cm-1 which is assigned to the vibrational stretching of As(III)-O 

bond and a band at 357 cm-1 corresponds to the bending of O-As(V)-O bond (Goldberg 

and Johnston, 2001). While As(III) can be oxidized to As(V) by photochemical processes, 

great care was taken to eliminate light exposure of materials used in the experiments 

involving As(III). However, in an oxygen saturated environment in the presence of HA-

MNP, conversion of As(III) to As(V) is observed (Figure B3) even in the absence of light. 

The HA-MNP promoted transformation of As(III) to As(V) under dark conditions could 

be initiated by trace metals in the HA materials and/or the presence of molecular oxygen.  
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Figure 3.2. Raman spectra of HA-MNP and As(III)-HA-MNP 

 The wide scan XPS spectra of HA-MNP (Figure B4a) shows the binding energy of 

approximately 285, 529 and 710 eV that corresponds to the photoelectron lines of C1s, O1s 

and Fe2p respectively (Chandra et al., 2010). Deconvolution of the peaks with corrected 

binding energy of adventitious carbon (284.8 eV) indicates the presence of C-C and C-H 

at 284.8 eV and the carboxylate group (COO-) at 288.5 eV from HA, all pertaining to C1s 

(Figure B4b) (Wilson and Langell, 2014; Yang et al., 2009). For O1s (Figure B4c), the two 

peaks at 528.8 and 531.4 eV can be ascribed to the anionic oxygen in magnetite and the 

oxygen containing functional groups of HA respectively (Lin et al., 1997; Wilson and 

Langell, 2014). In case of Fe2p spectra (Figure B4d), the Fe2p3/2 peak at 708.9 and 710.6 

eV are due to the presence of Fe2+ and Fe3+ respectively while the peak at 724.1 is for 

Fe2p1/2 (Grosvenor et al., 2004). The peak at 740.3 eV corresponds to the OKL23L23 Auger 

lines of oxygen. The absence of the characteristic satellite peak of maghemite (γ-Fe2O3) at 

719.0 eV further indicates that the coating of humic acid successfully inhibits the oxidation 
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of magnetite core (Zhang et al., 2004). Iron K-edge XANES spectra and k3 weighted 

EXAFS spectra of bare magnetite and HA-MNP are similar and consistent with the 

magnetite spectra reported in the literature [Figure B5(a & b)] (Sun et al., 2014). The 

arsenic K-edge XANES spectra of As(III) and As(V) loaded HA-MNP are shown in Figure 

B6. Although arsenic samples for XAS experiment were prepared in the nitrogen glovebox, 

partial conversion of As(III) to As(V) in the HA-MNP treated samples are observed (Figure 

B6a) whereas the XANES spectra of the adsorbed As(V) species remains largely 

unaffected (Figure B6b). The exposure of HA-MNP bound As(III) to molecular oxygen, 

the presence of trace metals in HA and/or the oxidizing environment of the beamline are 

assumed to play roles in the oxidation of HA-MNP adsorbed As(III) to As(V).  At higher 

pH, As(III) is more readily converted to As(V) which may be related to pKa, change in 

speciation and susceptibility to oxidation. Linear combination fitting of Athena (Ravel and 

Newville, 2005) was used to determine the percent conversion of As(III) to As(V) in As 

(III) loaded HA-MNP sample at neutral pH (Figure B7). As clearly observed from the 

figure, initially there was no As(V) species present in the sample meaning that the absence 

of molecular oxygen in the nitrogen glovebox inhibits the oxidation of As(III). However, 

with the exposure of the sample to the beamline, 25% of As(III) is converted to As(V) in 

4.5 hours suggesting that the beam induced oxidation played a critical role in the 

conversion process. 

3.5.2 Kinetics of arsenic adsorption 

 The adsorption equilibrium and the corresponding uptake capacity for As(III) and 

As(V) of HA-MNP were determined to assess for their possible implementation. The 
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adsorption experiments were run for three hours with samples collected at pre-determined 

time intervals.  The collected samples were filtered to separate the As-loaded HA-MNP 

from the solution and the filtrates analyzed by HPLC-ICP-MS to monitor the residual 

concentration of the As species in the solution. The results demonstrate As(V) is adsorbed 

by HA-MNP faster and to a greater extent than As(III). At a HA-MNP loading dose of 0.2 

g/L and 200 ppb of the arsenic species, the level of As(III) can be reduced below the 

drinking water maximum contaminant level (MCL) of 10 ppb within 180 mins, while only 

60 mins is required to reduce the concentration of As(V) below the MCL (Figure 3.3). 

 

Figure 3.3. Comparison of adsorption kinetics of As(III) and As(V) on HA-MNP. 

[As(III)]0 = 200 ppb, [As(V)]0 = 200 ppb, pH = 6.6, HA-MNP dose = 0.2 g/L, temperature 

= 25 °C 

 Within one min of exposure to the HA-MNP, the initial concentrations of As(III) 

and As(V) are reduced by > 50 %. For an arsenic mixture of 200 ppb As(III) and 200 ppb 

As(V) (total initial arsenic concentration of 400 ppb), the complete removal of arsenic 

species was achieved at a dose of 0.2 g/L HA-MNP illustrated by Figure B8. Results from 
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the competition study suggest that As(III) and As(V) might have some preferential sorption 

sites in HA surface of HA-MNP and so, the presence of one arsenic species did not appear 

to interfere significantly in the removal process of another. The difference in formal charge 

and the presence (or absence) of lone pair of electrons in the arsenic atom of the studied 

arsenic species has made them susceptible to attack by the two different classes of 

functional groups of HA with completely opposite characteristics.   

 Adsorption efficiency and the adsorption mechanisms were  evaluated by fitting the 

experimental data into the Lagergren’s pseudo-first order and Ho and McKay’s pseudo-

second order kinetic models (Ho and McKay, 1999; Tseng et al., 2010). The pseudo-first 

order model determines the sorption constant based on solid surface capacity while the 

pseudo-second order model works on solid phase sorption (Ho and McKay, 1999). The full 

mathematical expressions of the two models are given in Appendix B.  The kinetic 

parameters obtained from the application of the models to the experimental data for As(III) 

and As(V) adsorption on HA-MNP are summarized in Table 3.1. For the pseudo-second 

order model, there is an excellent match observed between the experimental and calculated 

Qe values. The high correlation coefficient (R2) also indicates the best fitting of the 

adsorption process with the pseudo-second order model. This finding suggests that for the 

arsenic adsorption process, rate is proportional to the square of the number of available 

adsorption sites in the nanoparticles (Chen et al., 2011; Ho and McKay, 1999). The kinetic 

data of arsenic adsorption was further investigated by using the Weber and Morris 

intraparticle diffusion model (Appendix B) which when applied to the observed results 

shows that three distinct steps are associated with the adsorption process (Figure 3.4).  
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Table 3.1. Kinetic parameters for the adsorption of arsenic onto HA-MNP 

 

C0  

(0.2 mg/L) 

 

Qe, 

expt.  

(mg/g) 

Pseudo-first order kinetics Pseudo-second order kinetics 

Qe, 

calc.  

(mg/g) 

k1 

(min-1) 

 

R2 

Qe, 

calc.  

(mg/g) 

k2 

(g mg-1min-

1) 

 

R2 

As(III) 

As(V) 

0.96 

0.98 

0.30 

0.17 

0.02 ± 0.001 

0.04 ± 0.003 

0.98 

0.93 

0.96 

0.99 

0.35 ± 0.02 

1.31 ± 0.09 

0.99 

0.99 

 

 

Figure 3.4. Weber-Morris intraparticle diffusion plot of As(III) and As(V) adsorption 

kinetic data. [As(III)]0 = 200 ppb, [As(V)]0 = 200 ppb, pH = 6.6, HA-MNP dose = 0.2 g/L, 

temperature = 25 °C 

 

 We propose the first stage as the initial, rapid association of arsenic on the HA-

MNP surface, second stage is the diffusion of arsenic species into the HA matrix of the 

nanoparticles and the final stage is the adsorbent-adsorbate chemical reaction/bonding that 

eventually lead to equilibrium. Overall, the adsorption of arsenic species on HA-MNP can 
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be viewed as a complex, multi-step adsorbent-adsorbate interaction where sharing or 

exchange of electrons and bonding between the synthesized nanoparticles and the target 

arsenic species played critical roles in the observed behavior.   

3.5.3 Adsorption isotherms 

 The adsorption isotherms of individual arsenic species were measured as a function 

of initial arsenic concentration to investigate the interactions between solid surface and 

adsorbent relative to the aqueous solvation of arsenic. The initial arsenic concentration was 

varied from 0.1 to 10 mg/L at constant loading of HA-MNP (0.2 g/L). Data from the 

isotherm study were fitted in the Langmuir and Freundlich models (Appendix B) to probe 

the adsorption mechanisms at the solid-liquid interface. The major differences between the 

two models are the assumptions about the surface characteristics and the mechanism of 

solute binding onto the adsorbent surface. The Langmuir model assumes homogeneous 

adsorbent surface with a finite number of identical adsorption sites which can be occupied 

by only one target molecule leading to the formation of one uniform monolayer (Allen et 

al., 2004; Mishra and Ramaprabhu, 2010). In contrast, differential adsorption is assumed 

in Freundlich model where multilayer adsorption can occur on heterogeneous adsorbent 

surface having different degrees of affinity for the adsorbate with stronger binding sites 

occupied first (Foo, K.Y.; Hameed, 2010). Based on the correlation coefficient for the 

Langmuir and Freundlich plots of the measured experimental data, the adsorption process 

is found more consistent with the Freundlich model indicative of the multilayer formation 

and/or heterogeneous adsorption surface sites of HA-MNP. The parameters from the 

Langmuir and Freundlich isotherms equation are presented in Table 3.2.  
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Table 3.2. Adsorption isotherm parameters for the binding of As(III) and As(V) onto HA-

MNP 

                        Langmuir isotherm Freundlich isotherm 

Species Qmax (mg/g) b (L/mg) R2 Kf 1/n R2 

As(III) 12.2 3.46 0.96 2.96 0.57 0.99 

As(V) 12.6 4.88 0.94 2.30 0.28 0.99 

 

 From Freundlich model, the value of 1/n less than 1 is indicative of chemisorption 

of As(III) and As(V) on HA-MNP (Foo, K.Y.; Hameed, 2010). Although the relative 

adsorption capacity (Kf) is found to be slightly higher for As(III) than As(V) (2.96 vs 2.30), 

the much lower 1/n value of As(V) (0.28) supports its stronger adsorption intensity 

compared to As(III) (0.57). This is also evident from the kinetic data where faster and more 

extensive adsorption was observed for As(V) relative to As(III).  The maximum adsorption 

capacities of HA-MNP measured under our experimental condition are 12.2 and 12.6 mg/g 

for As(III) and As(V) respectively. Similar types of coated and uncoated iron oxide 

adsorbents reported in the literature shows the maximum removal capacity for both As(III) 

and As(V) in the range of 5.27 to 16.63 mg/g (Chandra et al., 2010; Lan, 2015; Liu et al., 

2015). The competitive arsenic adsorption capacity of HA-MNP validates its strong 

potential to be used in real life arsenic treatment plants.  

3.5.4 pH effect 

The pH dependent adsorption and binding mechanisms of oxyanions are 

complicated by their speciation and the surface charge of the absorbent (He et al., 2009; 
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Liang et al., 2012). To probe the influence of solution pH, the initial pH of aqueous 

solutions of As(III) and As(V) was adjusted using 0.1 M NaOH and 0.1 M HCl. The 

adsorption of As(III) and As(V) on HA-MNP was unchanged from pH 3 to 8 (Figure B9).  

But under highly alkaline conditions the adsorption of arsenic decreased. For As(III), at 

pH 8 & 10, adsorption (removal) was 96% and 78% respectively; for As(V) at the same 

pH, it was 98% and 70% respectively.  While adsorption was reduced overall, the HA-

MNP still exhibit significant adsorption of both As(III) and As(V) under highly alkaline 

conditions. The modest decrease in adsorption can be explained by formal and surface 

charges as a function of solution pH considering the pHpzc of HA-MNP and the pKa values 

of the arsenic species. As(V) exists in monoanionic (H2AsO4
-) and di-anionic (HAsO4

2-) 

forms whereas As(III) mostly exists as a stable neutral hydroxo complex, As(OH)3 over 

the range of solution pH studied.  The HA-MNP is negatively charged at solution pH 

greater than its pHpzc of 3.3 (Jiang et al., 2014). Attractive electrostatic interactions are 

minimal or non-existent in binding the neutral As(III) on HA-MNP; for As(V) however, 

electrostatic repulsion between negatively charged sorbent and sorbate could inhibit 

adsorption at pH > 3.3. Despite the electrostatic repulsion, chemical reactions between the 

functional groups of humic acids and As(V) appear to be dominant in the adsorption 

process. The possible binding mechanisms for As(III) and As(V) can include ligand 

exchange and/or formation of adducts through esterification (Buschmann et al., 2006). 

Decrease in the characteristic O-H group signal in IR spectra of the HA-MNP upon 

addition of As(III) and As(V) indicate the OH groups are critical and transformed upon 

exposure to arsenic consistent with the formation of ester-type bonds. Raman peaks in the 

As (III) laden materials also exhibit bands characteristic of ester or ether formation 
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reactions between the OH group associated with the HA and the arsenic species.  With this 

in mind, we proposed the following reaction mechanisms:  for As(III), ester type linkages 

could form (equation 3.1) due to reaction between the carboxylate functional group in HA 

with the nucleophilic OH of As(III). Conversely, nucleophilic functional groups, such as 

phenolic -OH, RSH, RCOO-, R-NH2 can undergo addition type reactions with the 

electrophilic arsenic atom in As(V) (equation 3.2) (Buschmann et al., 2006).   

 

HA-MNP adsorption of As(V) is stronger and more extensive than As(III). The 

four oxygen atoms attached to the central As(V) can serve as chelating atoms or as 

nucleophiles in addition type reactions.  The electronegativity of the oxygen atoms and pi 

bond also make the As(V) atom electrophilic and susceptible to accepting an electron pair 

or addition-elimination mechanisms such as addition of phenolate entity resulting in the 

formation of ester type functionalities (Buschmann et al., 2006). The lone electron pair and 

sp3 hybridization of As(III) make it unreactive as an electrophile. The lower reactivity of 

As(III) can reduce binding to HA-MNP as observed in the study (Ren et al., 2017). Under 

strongly alkaline conditions (pH > 9) with solution pH above the pKa of the As(III) and 

(3.1) 

(3.2) 
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As(V) species, the repulsion between the negatively charged As species and HA-MNP 

slows down the adsorption and/or ligand exchange processes. Also, the higher 

concentrations of hydroxide present under alkaline conditions may hydrolyze the ester 

linkages between the arsenic species and the hydroxyl groups associated with HA materials 

resulting in lower observed adsorption of the arsenic species on HA-MNP.  

3.5.5 Influence of co-existing ions 

The influence of different anions that commonly exist in natural waters 

contaminated with arsenic on HA-MNP adsorption were studied. The anions, SO4
2-, CO3

2, 

PO4
3-, Cl- and NO3

- were added individually at 1 mM to the specific adsorbent-adsorbate 

mixtures. Sulfate, chloride, and nitrate showed no inhibition on the adsorption of As(III) 

and As(V) shown in Figure B10. Phosphate exhibited modest competition for the 

adsorption sites leading to slight decreases in the adsorption of both As(III) and As(V) on 

HA-MNP. Arsenic and phosphorous are from group 15 of the periodic table and share some 

structural and chemical similarities (Paul et al., 2015). Arsenic and phosphorous thus can 

exhibit analogous adsorption and chelating properties in competing for adsorption onto 

HA-MNP sites. However, in natural water systems, the mass ratio of phosphate to arsenic 

is generally quite low and not a concern in most cases (Li et al., 2014). Carbonate showed 

modest inhibition of the adsorption of As(V) species. The addition of carbonate to As(III) 

and As(V) solutions results in an alkaline solution, pH ≈ 9.  Under these conditions, As(III) 

exist predominantly as a neutral species while As(V) exists in the di-anionic form and the 

strong repulsion with HA-MNP can reduce the uptake of As(V). In a separate study, we 

have also investigated the effect of iron presence in the adsorption process since arsenic 

and iron commonly co-exists under similar geochemical environment in the aqueous 
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system. Analysis of the residual arsenic concentration showed that (Table B1) more than 

97% of the arsenic species were adsorbed on HA-MNP surface which means iron does not 

exhibit any interference or compete with the arsenic species for the binding sites of the 

nanoparticles. In summary, most common ions had minimal influence on the adsorption of 

As(III) and As(V) under the neutral pH conditions encountered in natural water systems.   

3.5.6 Release of humic acid and As desorption study 

The presence of humic materials can interfere with water treatment processes and 

lead to disinfection byproduct (DBP) formation. Leaching of humic acid from HA-MNP 

or presence of free HA in solution can compete for the adsorption of the arsenic species, 

which is undesirable since As bound to free HA will not be removed during the magnetic 

collection of As laden HA-MNP (Wang and Mulligan, 2006). Loss of HA from the surface 

of the nanoparticle can also increase the exposure of the magnetite core to the ambient 

environment and subsequent oxidation. To determine the amount of humic material 

leached from HA-MNP upon adsorption of arsenic, batch experiments were carried out. 

0.05 g of HA-MNP was separately loaded in 50 mL of water (control), As(III) and As(V) 

solutions with pH adjusted to 6.6 ± 0.1. The reaction was carried out at room temperature 

for a total of three hours. After separation of the HA-MNP, the concentration of DOM in 

the resulting solution measured by TOC analysis was used to determine the free humic acid 

in different samples.  The DOM concentrations regardless of the presence of As(III) or 

As(V) is between 0.25 and 0.57 mg/L (Table B2), which is within the typical concentration 

of NOM found in the aquatic environments (Jin et al., 2012). The result demonstrates the 

stability and robustness of the synthesized nanoparticles. Desorption study was carried out 

by treating the arsenic adsorbed nanoparticles with H2O2 and HNO3 at 110 °C for 90 
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minutes. The mass balance calculation of total arsenic showed that more than 99% (data 

not shown) of the adsorbed species can be successfully recovered from the HA-MNP 

surface. 

3.6 Conclusions 

The environmentally friendly, magnetic adsorbent HA-MNP has been found 

consistently effective for the removal of As(III) and As(V) under different environmental 

conditions. Study indicates the adsorption of As(III) and As(V) occurs in three different 

stages within the functionality of the HA coating via surface association, intraparticle 

diffusion and complexation reactions or ligand exchange. Presence of characteristic bands 

of As(III)-O and O-As(V)-O in the Raman spectra of arsenic loaded HA-MNP, fitting of 

the kinetic data into the pseudo-second order model and Freundlich isotherm, 

pattern/efficiency of binding of As(III) and As(V) on HA-MNP at different pH- all suggest 

that chemisorption played the major role in the arsenic species removal process using HA-

MNP.   TEM, FTIR, XAS and TOC analysis of the synthesized HA-MNP after arsenic 

adsorption shows that the magnetite core remains unaffected throughout the process, thus 

confirming the robust nature of HA coating that perfectly shields the magnetite core of the 

nanoparticles. The successful arsenic remediation process with detailed characterizations 

and mechanistic insights presented in the paper can be an important layout for the design 

and development of a sustainable water treatment technology.  
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CHAPTER FOUR 

Study of the Sequestration of Toxic Selenium Species from Water by using NOM 

Grafted Magnetic Iron Oxide Nanoparticles 
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4.1 Abstract 

 Human health and ecological balance are at risk from the presence of selenium in 

aqueous systems. The present work demonstrates the successful removal of two highly 

toxic selenium species, Se(IV) and Se(VI) from water by using the laboratory synthesized 

magnetite nanoparticles coated with a thin film of humic acid. The remediation process 

followed the pseudo-second order kinetics with rate constants 3.87 and 1.86 g mg-1min-1 

for 500 ppb of Se(IV) and Se(VI) respectively. The Langmuir isotherm model fitted the 

adsorption data well suggesting the formation of a monolayer by the selenium species on 

the nanoparticle surface. The preferred binding sites of Se(IV) and Se(VI) and their binding 

mechanism with the humic acid coated iron oxides are found to be different as the presence 

of one species did not interfere in the removal of another. The observed adsorption behavior 

is indicative of mostly inner sphere complex formation by Se(IV) and outer sphere complex 

by (VI). The effect of pH was insignificant on the adsorption process under acidic and 

neutral conditions, however adsorption is significantly less under alkaline conditions.  The 

investigation of the influence of coexisting ions reveals the intense competition from 

sulfate and phosphate for the adsorption sites. The magnetic nanoparticles exhibit good 

adsorption efficiency and their strong environmental compatibility make these unique 

materials promising for the simultaneous removal of Se(IV) and Se(VI) from water. 

4.2 Keywords 

 Selenite, selenate, magnetic nanoparticles, adsorption, water treatment  
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4.3 Introduction 

 Natural and anthropogenic discharge of selenium (Se) into aqueous systems is an 

environment and health concern. Globally, more than 80,000 tons of selenium are released 

every year, ~95 % of which is the result of anthropogenic activities (Fordyce, 2013). While 

selenium is an essential nutrient at trace levels (≤ 40 μg/day) in the human body, it is toxic 

at modest level (≥ 400 μg/day) (Gonzalez et al., 2012; Tan et al., 2016).  Such a narrow 

margin between essential and toxic concentration levels can also contribute to negative 

effects on fish, birds and other wildlife of the ecosystem (Pettine et al., 2015). 

Accumulation of elevated levels of Se in the human body are reported to cause hair loss, 

fingernail brittleness, hepatotoxicity and kidney damage while alkali diseases, blind 

staggers, deformities etc. are the common consequences in fish and animals exposed to 

selenium through consumption of selenium containing plants and foods (Fordyce, 2013; 

Goldhaber, 2003; Hamilton, 2004; Navarro-Alarcon and Cabrera-Vique, 2008; Tinggi, 

2003). The United States Environmental Protection Agency (US EPA) and WHO have set 

50 and 40 ppb maximum contamination level (MCL) of selenium in drinking water (Fu et 

al., 2014) since water is one of the direct routes for human exposure to high selenium 

concentrations. 

 The mobility, bioavailability and toxicity of selenium depends greatly on its 

speciation which is governed by the different forms of use and discharge, geochemical 

reactions in the soil and water system, pH, redox environment and thermodynamic 

conditions. Among different oxidation species of Se ranging from -2 to +6, the most 

prevailing forms in the surface water, ground water and wetlands are the two highly toxic, 
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inorganic oxyanions of selenium, selenite [SeO3
2- or Se(IV)] and selenate [SeO4

2- or 

Se(VI)] (Szlachta and Chubar, 2013). While Se(IV) is more lethal than Se(VI), the threat 

poses by the latter is associated with its high solubility and bioavailability (Fu et al., 2014). 

Several studies have been reported for Se(IV) and Se(VI) removal from water using 

different remediation techniques of which adsorption is found as the most preferred 

method. The process can effectively influence the mobility of the potent water toxins like 

selenium in a simple, economic operation procedure without any toxic sludge generation. 

Use of nanoadsorbent has particularly received significant attention for selenium treatment 

owing to high surface to volume ratio, greater surface energy and strong regeneration 

potential (Yamani et al., 2014). Magnetic iron oxide nanoparticles have the added 

advantage of easy and quick recovery from the reaction vessel by using a simple magnetic 

field. Magnetite (Fe3O4) is one such magnetic material that has been investigated for 

different environmental applications (Liu et al., 2015; Martínez et al., 2006)  However, the 

bare magnetite nanoparticles tend to agglomerate and auto-oxidize over time which 

significantly reduces its surface area and magnetic properties respectively (J. Liu et al., 

2008). Surface coating of magnetite nanoparticles using organic substrate such as humic 

acid can effectively shield the magnetite core and thus addresses the auto-oxidation and 

agglomeration concern. 

 Humic acid (HA) is a polyfunctional natural organic matter that is abundant in the 

environment. It is a subclass of humic substance that exhibits strong affinity to different 

metal cations, oxyanions, metal oxides, organic and inorganic pollutants present in the 

aqueous system (Aiken et al., 2011; De Paolis and Kukkonen, 1997). The strong interaction 
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of humic acid with magnetite (Fe3O4) is reported in the literature although the application 

of the nanoparticles for environmental remediation work is still in the early stage.  

The present study entails the remediation of Se(IV) and Se(VI) from water using 

the laboratory synthesized humic acid coated magnetite nanoparticles (HA-MNP) under 

different conditions pertinent to natural aqueous environments. The mechanistic insights 

of the adsorption process are assessed by using established kinetic and isotherm models 

and by charactering the nanoparticles before and after Se treatment. 

4.4 Experimental section 

4.4.1 Materials 

 Sodium selenite (Na2SeO3, >98%) and sodium selenate (Na2SeO4, >98%) were 

received from Sigma to prepare the standards and sample solution of Se(IV) and Se(VI) 

respectively. The nanoparticle synthesis reagent ferric chloride hexahydrate (FeCl3.6H2O, 

98.8%) and ammonium hydroxides (NH4OH, 29.15%) were obtained from Fisher while 

ferrous chloride tetrahydrate (FeCl2.4H2O) and humic acid sodium salt were purchased 

from Sigma Aldrich. Sodium carbonate (Na2CO3, Sigma, 99%), sodium sulfate (Na2SO4, 

Fisher, 98%), sodium chloride (NaCl, Fisher, 99%) potassium phosphate (KH2PO4, Sigma, 

99%) and sodium nitrate (NaNO3, Sigma, 98%) were used as received for competitive 

adsorption experiments. Ammonium carbonate, (NH4)2CO3 (99%) and ammonium 

bicarbonate, NH4HCO3 (Fisher, 99%) were purchased from Fisher to use as buffer in HPLC 

for selenium speciation. Ultrapure deionized water was used in all cases for solutions and 

sample preparation. 



62 

 

4.4.2 Synthesis and characterization of HA-MNP 

 The co-precipitation method was used for the synthesis of humic acid grafted 

magnetite nanoparticles (HA-MNP). The detail procedure is discussed in chapter 2 and 3. 

In depth characterizations of the synthesized HA-MNP have already been reported from 

our research group and by other researchers (please see chapter 2 & 3). 

4.4.3 Experimental setup 

 Selenium salts were dissolved in a pre-determined volume of Millipore water for 

the preparation of standard and stock solutions of Se(IV) and Se(VI). Batch adsorption 

experiments were carried out by mixing the target Se species and HA-MNP under different 

environmentally relevant conditions. From the initial experiments, it was observed that the 

adsorption efficiency of Se(IV) is much higher than Se(VI). So, except for the adsorption 

isotherm and competition study (between Se species), all other experiments were carried 

out with particular amount of adsorbent (HA-MNP) loading for the same initial 

concentration of Se(IV) and Se(VI).  In general, 500 ppb of Se(IV) and/or Se(VI) solution 

were added to the 50 mL reaction vessels where the concentration of the added HA-MNP 

was kept 0.50 and 1.0 g/L respectively. The mixture was then placed in the orbit shaker at 

a rotation speed of 250 rpm. The samples collected at different time intervals within the 

planned time span were then filtered and analyzed in the HPLC-ICP-MS to determine the 

residual concentration of Se species. For Se species competition study, 500 ppb Se(IV) and 

500 ppb Se(VI) were added in the same reaction vessel with adsorbent concentration of 1.0 

g/L. To calculate adsorption capacity and to get insights about the adsorbent-adsorbate 

interaction, adsorption isotherm experiments were carried out. A wide range of Se 
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concentration starting from 500 ppb to 40 ppm were used with a fixed dose of HA-MNP 

(1.0 g/L) and the reaction was run for three hours. Since pH plays a very important role in 

determining the Se speciation as well as the adsorption efficiency, influence of pH on the 

overall removal process of Se(IV) and Se(VI) were explored by changing the initial 

solution pH from 3 to 10. The effect of ionic strength for Se adsorption was examined by 

adding different strength NaCl (0.01, 0.1 and 1M) in the reaction vessel with the 

aforementioned concentration of Se species and HA-MNP. The presence of different co-

existing ions in the water system were also studied to get a comprehensive picture of Se 

trapping and separation efficiency by the nanoparticles. To analyze Se in HPLC-ICP-MS, 

a mixture of 80mM NH4(CO3)2 and 80mM NH4HCO3 was used as mobile phase at a flow 

rate of 0.8 ml/min (Cai et al., 1995). Unless specifically stated, all the experiments are 

carried out for total of three hours at room temperature (20 °C ± 1) and at pH 7.5 ± 0.1. 

4.5 Results and discussion 

4.5.1 Kinetic and mechanistic study 

 The adsorption kinetics at the solid-solution interface is a complicated process 

which is governed by a number of factors such as adsorbent surface characteristics, film 

resistance, degree of diffusion of solutes into pores etc. (L. Zhang et al., 2009). Data from 

the individual and competition adsorption kinetics of Se (IV) and Se(VI) are presented in 

Figure 4.1 and 4.2. From the adsorption profile (Fig. 4.1), it is clear that more than 80% of 

the initial concentrations of each of the Se species are removed by the nanoparticles in just 

two minutes. The kinetics of complete removal however, suggest that the more toxic Se(IV) 

adsorbed faster on the HA-MNP surface than Se(VI), even with the 50% less adsorbent 



64 

 

loading (0.5 g/L vs 1.0 g/L). At the studied pH level (7.5 ± 0.1), Se(IV) and Se(VI) exist 

predominantly in the form of HSeO3
- and SeO4

2-(Santos et al., 2015). The negative surface 

charge of HA-MNP exerts stronger repulsive force to the di-anionic Se(VI) species which 

might lead to its lower adsorption onto the surface than Se(IV). Results from the 

competition study (Fig. 4.2) shows that more than 94% of Se(IV) and Se(VI) was removed 

by the nanoparticles which means that the presence of one species has no adverse effect on 

the removal of another. 

 Lagergren’s pseudo-first order and Ho & McKay’s pseudo second order rate 

equations are the two well established kinetic models that are employed in the study to 

better understand the reaction rate and mechanisms of selenium species adsorption onto 

the HA-MNP surface. Detail expression of the two models are included in chapter 2.  

 

Figure 4.1. Adsorption kinetics of Se(IV) and Se(VI). [Se(IV)]0 = 500 ppb, [Se(VI)]0 = 

500 ppb, [HA-MNP] = 0.5 g/L for Se(IV) and 1.0 g/L for Se(VI) 
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Figure 4.2. Competitive adsorption of Se(IV) and Se(VI) by HA-MNP from the same 

solution. [Se(IV)]0 = 500 ppb, [Se(VI)]0 = 500 ppb, [HA-MNP] = 1.0 g/L 

The pseudo-first order model considers that the single adsorption site is involved 

for the reaction with the adsorbing molecule while two site occupancy by each solute 

molecule takes place in the pseudo-second order kinetic model (Rudzinski and Plazinski, 

2006). In both instances, the adsorption rate largely depends on the amount of solid 

adsorbent, sample volume and initial solute concentration. The derived parameters from 

the fitting of the kinetic data into the two equations suggest that (Table 4.1) both the Se 

species adsorption process can be best described by the pseudo-second order kinetic model. 

This finding indicates that the binding is mainly chemisorption and the degree of adsorption 

depends on the solute and sorbent concentration (Sun et al., 2015).   
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Table 4.1. Parameters for the kinetic modeling of selenium species adsorption by HA-

MNP 

 

C0  

(0.5 mg/L) 

 

Qe, exp.  

(mg/g) 

Pseudo-first order model Pseudo-second order model 

Qe  

(mg/g) 

k1 

(min-1) 

 

R2 

Qe  

(mg/g) 

k2 

(g mg-1min-1) 

 

R2 

Se(IV) 

Se(VI) 

0.99 

0.49 

0.06 

0.08 

0.04 

0.03 

0.77 

0.98 

0.99 

0.49 

3.87 

1.86 

0.99 

0.99 

The relatively slower adsorption of Se(VI) is also supported by the pseudo-second 

order rate constant and thus, indicates that the strong repulsive force made it difficult for 

Se(VI) anions to reach the finite number of sorption sites available after the initial 

adsorption (Gupta et al., 2010).  

The data from adsorption kinetics were further analyzed using the Weber-Morris 

Intraparticle diffusion model. The mathematical representation and explanation of the 

model is given in Chapter 2 & 3. The significance of the model is that it can tell whether 

intraparticle diffusion is the only rate limiting step or more than one step is associated in 

the target species adsorption process. The plotting of the data in the intraparticle diffusion 

model is shown in Figure 4.3.  
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Figure 4.3. Weber-Morris intraparticle diffusion model for the adsorption of Se(IV) and 

Se(VI) by HA-MNP. 

As it can be seen from the figure (Fig. 4.3), for both Se(IV) and Se(VI), the plotted data do 

not pass through the origin and hence, intraparticle diffusion is not the rate limiting step. 

There are two distinct adsorption phases observed for se(IV) adsorption, external surface 

diffusion followed by intraparticle diffusion. In case of Se(VI), external surface diffusion 

is found to be the main driving force in the removal process. The study of ionic effect 

showed that (Fig. 4.4) with the increase of NaCl concentration, Se(IV) adsorption remained 

largely unaffected while Se(VI) adsorption steadily decreases.  
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Figure 4.4. Effect of ionic strength on Se adsorption by HA-MNP. [Se(IV)]0 = 500 ppb, 

[Se(VI)]0 = 500 ppb, [HA-MNP] = 0.5 g/L for Se(IV) and 1.0 g/L for Se(VI) 

 The findings suggest the formation of strong inner sphere complexes by Se(IV) 

since the inner sphere complexes are not usually affected by ionic strength variation while 

weak outer sphere complexes are formed by Se(VI) (N. Zhang et al., 2008).  The chemical 

bonding between the oxygen atom of Se(IV) and the functional groups of HA-MNP results 

in specific adsorption and the formation of inner sphere complexes.  For Se(VI), however, 

non-specific adsorption dominates in the adsorption process as the oxyanions do not 

undergo much of covalent bonding with the functional groups of the surface sites (Jordan 

et al., 2013).    

4.5.2 Isotherm modeling 

 The study of adsorption isotherm provides the Se-HA-MNP relationship at 

equilibrium and the maximum uptake limit of Se(IV) and Se(VI) by the nanoparticles. A 

wide range of initial concentration of Se(IV) and Se(VI) are examined at room temperature 
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for a constant loading of the adsorbent. Increased amount of solute yields higher 

equilibrium concentration and greater adsorbent-adsorbate interactions which leads to an 

increment in adsorption of both the selenium species (Lu et al., 2017). The adsorption data 

are characterized by Langmuir and Freundlich isotherm models. The mathematical 

expressions of the two models are discussed in chapter 2. The Langmuir adsorption model 

considers that the available sites on the adsorbent surface have identical adsorption energy 

where solute binding takes place only through thermal and material contact. The adsorption 

rate at equilibrium is proportional to the solute-surface collisions frequency and the number 

of solute molecules available for the unoccupied adsorption sites (Rudzinski and Plazinski, 

2006).   The Freundlich adsorption isotherm, on the other hand, is an empirical model that 

supports the formation of multilayer on adsorbent surface through reversible adsorption 

process (Foo, K.Y.; Hameed, 2010). Fitting of the adsorption data into the two models 

reveals that the binding of both Se(IV) and se(VI) follows Langmuir isotherm (Table 4.2). 

This finding lead to the suggestion that the adsorption process of Se(IV) and Se(VI) occurs 

through the formation of monolayer on the surface site. The adsorbed molecules have no 

interaction among themselves and all the surface sites of HA-MNP can have equal 

probability for adsorption. The maximum adsorption capacity of Se(IV) and Se(VI) are 

5.46 and 4.63 mg/g respectively. The higher bond energy of Se(IV) is observed from the 

Langmuir isotherm constant (b) which further suggest the greater metal-ligand bond 

stability of the more toxic Se(IV) with HA-MNP than Se(VI) (Szlachta and Chubar, 2013).  
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Table 4.2. Parameters for the isotherm modeling of selenium species adsorption by HA-

MNP 

                        Langmuir model Freundlich model 

Species Qmax (mg/g) b (L/mg) R2 Kf (mg/g) 1/n R2 

Se(IV) 5.46 22.91 0.99 1.71 0.24 0.88 

Se(VI) 4.63 2.08 0.99 0.41 2.41 0.98 

4.5.3 pH and interference study 

The occurrence of different speciation in aqueous system can alter the physico-

chemical characteristics of the target oxyanion (Conde and Sanz Alaejos, 1997). The 

influence of pH is critical to examine in the selenium adsorption process as the oxyanion 

speciation and the adsorbent surface charge largely depends on water pH. The results of 

the Se species adsorption on HA-MNP for the investigated pH range (3 to 10) are shown 

in Figure 4.5. The overall adsorption capacity remains largely unaffected in the acidic and 

neutral pH range (pH 3 to 7). However, a decreasing trend in adsorption capacity is 

observed as the solution becomes alkaline (8 and more). The pH point of zero charge 

(pHpzc) of HA-MNP is 3.3 (Jiang et al., 2014). As the solution pH becomes higher than the 

pHpzc, the deprotonated sites on the adsorbent surface increases gradually which then 

exhibits greater repulsion to the selenium anions and outweighs the adsorption affinity 

(Szlachta and Chubar, 2013).   The effect of co-existing ions is presented in Fig. 4.6. As 

observed from the results, chloride, nitrate and carbonate showed little to no effect in the 

Se adsorption process. Sulfate demonstrated strong competition with Se(VI) for the 
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adsorbent sites which is found to be the case for most of the adsorbents reported in the 

literature (Yamani et al., 2014).  

 

Figure 4.5. Effect of solution pH on Se adsorption by HA-MNP. [Se(IV)]0 = 500 ppb, 

[Se(VI)]0 = 500 ppb, [HA-MNP] = 0.5 g/L for Se(IV) and 1.0 g/L for Se(VI) 

In the presence of phosphate in water, adsorption of both Se(IV) and Se(VI) was 

very minimal. From our previous study (chapter 2), we found that the adsorption of 

phosphate is very strong on the HA-MNP surface. Also, in terms of geometric structure 

and chemical properties, Se(IV) and Se(VI) closely resembles to phosphate and sulfate 

respectively (Chan et al., 2009). So, some pre-treatment is necessary for prior removal of 

phosphate and sulfate if they exist in the Se contaminated aqueous system in excessive 

amount.  
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Figure 4.6. Effect of co-existing ions on Se adsorption by HA-MNP. [Se(IV)]0 = 500 ppb, 

[Se(VI)]0 = 500 ppb, [HA-MNP] = 0.5 g/L for Se(IV) and 1.0 g/L for Se(VI) 

4.6 Conclusions 

 The remediation of two toxic Se species using a single adsorbent is presented in the 

paper. The selected material (HA-MNP) is environmentally compatible and very easy to 

prepare. The magnetic nature of the adsorbent is conducive for easy separation after the 

treatment.  The synthesized nanoparticles were able to remove more than 80% of Se(IV) 

and Se(VI) in just two minutes through the process of chemisorption. The material 

exhibited consistent removal performance in the acidic and neutral pH range. Se(IV) and 

Se(VI) most likely binds with the HA-MNP surface by forming inner and outer sphere 

surface complexes, respectively. The study shows the strong potential of the nanomaterials 

for the large-scale application in the selenium contaminated wastewater treatment.  
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CHAPTER FIVE 

Efficient Removal of As(III) from Water by using the Photocatalytic and Adsorptive 

Properties of Humic Acid Coated Magnetic Nanoparticles 
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5.1 Abstract 

 The photoinduced oxidation of highly toxic As(III) is examined by using humic 

acid coated magnetite nanoparticles (HA-MNP) as a sensitizer. Results from the variation 

of different experimental parameters revealed that the photoirradiation of HA-MNP in an 

oxygen saturated environment provides the most effective As(III) conversion and 

adsorption rate. In presence of light and O2, in just 60 minutes more than 99% of As species 

has been successfully removed from the aqueous solution. The effect of pH was 

insignificant at mild acidic to neutral solution; however, the adsorbent surface shows 

relatively less affinity for arsenic as the pH goes higher. Among different ROS produced 

by HA-MNP, the generation of hydroxyl radical (OH•) is monitored and quantified using 

coumarin as a trapping agent that in turn, produce 7-HC which is a strong fluorescent 

compound. The rate of formation of 7-HC coumarin by HA-MNP is 2.9 * 10-3  μM/min for 

an initial coumarin concentration of 125 μM and HA-MNP concentration of 1.0 g/L. The 

easy preparation, simple operation and magnetic separation could make the nanoparticle a 

strong candidate for the remediation of poisonous arsenic from the water system.  

5.2 Keywords 

 Reactive oxygen species, photoconversion, adsorption, arsenite, hydroxyl radical, 

magnetic separation 

5.3 Introduction 

 Water contamination by arsenic (As) is a big natural catastrophe that has already 

affected the health, economy and lives of millions of peoples around the world. The 
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occurrence of arsenic in groundwater mainly takes place through natural processes which 

makes it difficult to regulate or prevent the flow (Mohan and Pittman, 2007). Inorganic 

forms of arsenic, arsenite or As(III) and arsenate or As(V) are mostly prevalent in the 

groundwater and drinking water of the arsenic affected areas (Xu et al., 2006). Although 

both the forms of As are highly poisonous, As(III) has reportedly more mobility, higher 

toxicity and lower adsorbent affinity than As(V) (Zhang and Itoh, 2006). Oxidation of 

As(III) to As(V) is therefore desirable for the efficient remediation of arsenic species from 

the water system.  

Humic acid (HA) is a natural organic matter (NOM) that is highly pervasive in the 

environment. It is a complex heterogeneous mixture of polyanionic compounds that shows 

high binding tendency to metals, metal oxides and organic pollutants and thus plays a 

critical role in the environment. The robust coating of humic acid on the magnetite (Fe3O4) 

nanoparticle surface has demonstrated the strong complexation capability of humic acid (J. 

Liu et al., 2008). The thin layer of HA film eventually addresses the auto-oxidation and 

agglomeration issue of bare magnetite without affecting the magnetic properties of the iron 

oxide core. 

Although the adsorptive property of HA-MNP is investigated to some extent for 

the remediation of different water contaminants (Jiang et al., 2014; J. Liu et al., 2008), its 

photochemical properties are largely unexplored. Upon irradiation of light, the 

chromophoric part of HA or dissolved organic matter (DOM) such as aromatic ketones and 

aldehydes, quinones and phenolic compounds (Fig. 5.1) can act as a photosensitizer that 
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generates excited triplet state of HA and different reactive oxygen species (ROS) (Del 

Vecchio and Blough, 2004; Ma et al., 2010).  

 

Figure 5.1. Chromophoric part of humic acid (HA) 

The overall process is very complex owing to the mostly undefined chemical 

composition of HA. A simplified pathway of ROS production by HA is shown in Fig. 5.2 

(Dalrymple et al., 2010). Upon absorption of light, the electronic absorption spectrum of 

ground state HA shifts to a longer wavelength with the chromophores move to singlet 

excited state (1HA*) which usually takes place in the order of femtoseconds (Rosario-Ortiz 

and Canonica, 2016). The 1HA* can go back to its original state through vibrational 

relaxation or go to excited triplet state via intersystem crossing (ISC). The 3HA* can react 

with molecular oxygen to produce different ROS. The 3HA* and ROS plays a critical role 

in the environment from the perspective of water contaminant oxidation or degradation, 

metal redox geochemistry determination, ocean carbon cycling alteration etc. (Chen et al., 

2009; Guerard et al., 2009; Rose and Waite, 2006; Wang et al., 2009). Hydroxyl radical 

(OH•) is an important ROS, the generation pathway from HA irradiation is still not fully 

understood. In aqueous system, hydroxyl radical can be generated from the photolysis of 

nitrite and nitrate (Eq. 1 – 3), by Fenton reaction (Eq. 4) or by the photolysis of H2O2 (Eq. 

5) (Blough, 1998; Cooper et al., 1988; TAKEDA et al., 2004). 
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Figure 5.2. Photogeneration of different ROS via charge transfer from HA interaction with 

O2  

However, recent reports indicated that the quinone part of HA can lead to the 

production of hydroxyl radical upon irradiation through the mechanism of hydrogen 

abstraction (Blough, 1998; TAKEDA et al., 2004).  

 

Study shows that the coating of humic acid on the surface of magnetite 

nanoparticles (HA-MNP) does not significantly change the photochemical behavior of HA 

(Carlos et al., 2012). The adsorptive property of HA-MNP for the successful remediation 

of toxic arsenic species, As(III) and As(V) has already been demonstrated (Chapter 3). The 

characterization of the nanoparticles before and after the treatment of As species has also 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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been elaborately discussed (Chapter 2 & 3). Since the removal efficiency of more toxic 

As(III) has been found to be relatively slower by HA-MNP than As(V) (Chapter 3), the 

present study aims to exploit the photochemical characteristics of HA-MNP to convert 

As(III) to As(V) which might help to enhance the adsorption rate significantly. The 

production of hydroxyl radical (OH•) during the irradiation of the nanoparticles will also 

be investigated by using coumarin as a probe.  

5.4 Experimental section 

5.4.1 Materials 

 Sodium arsenite and sodium arsenate dibasic heptahydrate (≥ 98%) were purchased 

from Fisher Scientific for the preparation of standards and sample solutions. Ammonium 

hydroxide (29.2%) and ferric chloride hexahydrate (98.8%) were obtained from the same 

company and were used in the synthesis of nanoparticles. Ferrous chloride tetrahydrate (≥ 

99%) and humic acid sodium salt are the two other raw materials used in nanoparticles’ 

synthesis and were obtained from Sigma Aldrich. The hydroxyl radical trapping agent, 

coumarin ((≥ 99%) and the standard, 7-hydroxy coumarin (99%) were also sourced from 

Sigma. In all cases, Millipore water was used for samples and standards preparations.  

5.4.2 Methods 

 Coumarin was used to trap hydroxyl radical that eventually produce highly 

fluorescent molecule, 7-hydroxycoumarin (7-HC) (Eq. 5.6).  
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0.05 g HA-MNP is added to the 50 mL of 125 μM coumarin solution. The solution was 

purged with oxygen/argon from 15 minutes prior to the entire irradiation period. The 

illumination of the suspension was carried out in a photochemical reactor (Southern New 

England UV company, RPR-100). The reactor contains 14 phosphor-coated low pressure 

mercury lamps of 350 nm and a cooling fan. Samples were collected at specific time 

intervals, filtered using 0.45 μm syringe filter and finally analyzed in the Fluorometer. 

Different concentrations of 7-HC were run as standards in the Fluorometer to prepare a 

calibration curve with excitation and emission wavelength set at 332 and 455 nm. Another 

experiment was also carried out using the same concentration coumarin solution and dark 

to figure out whether there is any hydroxyl radical produced in the solution in absence of 

light. For As(III) photoconversion and adsorption experiments, 50 mL of 200 ppb As(III) 

and 0.01 g HA-MNP (0.2 g/L) were added to reaction vessel, purged with oxygen and then 

placed in the photochemical reactor with the same experimental set up as mentioned before. 

Similar experiments were carried out in dark and/or in argon purging. The samples 

collected at pre-determined time intervals were analyzed in HPLC-ICPMS to find the 

residual concentration of As species in solution. 

 

 

 

(5.6) 
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5.5 Results and discussion 

5.5.1 Formation of hydroxyl radical 

 The fluorescence intensity of 7-HC generated from the reaction between 

coumarin and OH• (from HA-MNP) in presence of light is presented in Figure 5.3. The 

concentration of 7-HC is calculated from the standard calibration curve of 7-HC and is 

shown in Fig. 5.4. An increasing trend of the production of hydroxyl radical is observed 

with respect to time.  

               
Figure 5.3. Fluorescence intensity of 7-HC generated from the reaction between coumarin 

and hydroxyl radical. [coumarin]0 = 125 μM, [HA-MNP] = 1.0 g/L, Total lamps = 14, 

Light wavelength = 350 nm  

 

 The concentration of 7-HC is also monitored by carrying out the same reaction in 

the dark (Fig. 5.5). From the figure, it is clear that no significant production of OH• takes 

place when the light source is taken away and thus suggest the role of photochemical 

process in the generation of the ROS from HA-MNP.   
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Figure 5.4. Concentration of 7-HC generated from the reaction between coumarin and 

hydroxyl radical. [coumarin]0 = 125 μM, [HA-MNP] = 1.0 g/L, Total lamps = 14, Light 

wavelength = 350 nm 

 

 

Figure 5.5. Concentration of 7-HC generated from the reaction between coumarin and 

hydroxyl radical in absence of light. [coumarin]0 = 125 μM, [HA-MNP] = 1.0 g/L 

 

The quantification of corrected 7-HC production by HA-MNP after the subtraction of its 

production in the dark is given in table 5.1. 
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Table 5.1. Corrected concentration of 7-HC with respect to time   

  A plot of corrected 7-HC formation by HA-MNP vs time is shown in Fig. 5.6. The 

rate of formation of 7-HC is obtained from the slope of the graph which is 2.9 * 10-3 

μM/min.  

  

Figure 5.6. Formation kinetics of 7-HC after the correction of concentration in dark 

condition  

5.5.2 As(III) oxidation and adsorption kinetics 

 The HA-MNP mediated photo-oxidation of As(III) to As(V) and the simultaneous 

oxidation of both the species are shown in Fig. 5.7. In just one minute, more than 40% of 

As(III) is converted to As(V), while within one hour, more than 99% of the initial 

concentration of As (200 ppb) was adsorbed by the HA-MNP (0.2 g/L).  

Time (Min) 5 10 15 20 30 60

Intensity of 7-HC in light (a.u.) 3.27 4.90 6.63 8.56 14.42 36.04

Intensity of 7-HC in dark (a.u.) 1.97 2.00 2.00 2.14 2.35 2.39

Intensity corrected (a.u.) 1.30 2.90 4.63 6.42 12.07 33.65

Corrected conc. of 7-HC (μM) 0.03 0.03 0.04 0.05 0.08 0.18
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Figure 5.7. Photo-oxidation and adsorption of As(III) by HA-MNP in presence of O2. 

[As(III)]0 = 200 ppb, [HA-MNP] = 0.2 g/L, total lamps = 14, light wavelength = 350 nm 

In our previous study, we have seen that with the use of adsorptive property alone 

of HA-MNP, it took three hours to remove As(III) from the aqueous solution for the same 

initial concentration of As(III) and HA-MNP loading. The exposure of As(III) solution to 

the oxygen saturated and HA-MNP induced photocatalytic environment not only helps to 

convert As(III) to As(V) but also increase the surface energy to adsorb the As species in a 

much efficient manner.   

To examine the role of molecular oxygen and light, several other experiments were 

carried out. When the same experiment was carried out in an oxygen saturated environment 

but in absence of light, very little conversion of As(III) to As(V) is observed (Fig. 5.8). The 

removal efficiency of HA-MNP also drops significantly. After 60 minutes, the residual 

concentration of As(III) in the solution was ~34 ppb which is quite high than the maximum 

acceptable concentration of arsenic in drinking water i. e., 10 ppb. The finding suggests 
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that irradiation of HA-MNP solution is indispensable for the generation of ROS as well as 

for increasing the rate of adsorption.   

  

Figure 5.8. Oxidation and adsorption of As(III) by HA-MNP in presence of O2 and without 

light. [As(III)]0 = 200 ppb, [HA-MNP] = 0.2 g/L 

 

 The third experiment was carried out by replacing oxygen with argon to see if it 

has any effect in the overall photo-conversion and removal process. In an argon saturated 

environment, again very little conversion of As(III) to As(V) is observed (Fig. 5.9). Also, 

the removal of As(III) could not go below the prescribed limit after one hour. This result 

indicates that the presence of oxygen in the reaction vessel is very vital both for the 

increment of the photo-conversion and adsorption rate. Oxygen helps to generate different 

ROS including OH• either by energy transfer or by sequential univalent reduction process 

(Apel and Hirt, 2004). 
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Figure 5.9. Photo-oxidation and adsorption of As(III) by HA-MNP in presence of argon. 

[As(III)]0 = 200 ppb, [HA-MNP] = 0.2 g/L, total lamps = 14, light wavelength = 350 nm 

 The final experiment was carried out in presence of argon and in dark condition. 

The results are shown in Fig. 5.10.  

 

Figure 5.10. Oxidation and adsorption of As(III) by HA-MNP in presence of argon and 

without light. [As(III)]0 = 200 ppb, [HA-MNP] = 0.2 g/L 
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As it can be seen, there was no conversion of As(III) to As(V) and the rate of adsorption is 

the slowest of all the experiments carried out in the study. All the observations suggest that 

the optimum condition for the efficient conversion and adsorption of As(III) from the 

aqueous system is to carry out the experiment in presence of light and O2. 

5.5.3 Effect of pH 

 Since water pH can influence the adsorbent surface charge and the speciation of 

arsenic species in water, the effect of pH is studied for the oxidation and adsorption of 

As(III) by HA-MNP under irradiation and in O2 saturated environment. The range of pH 

selected was from 3 to 10 and the reaction was carried out for one hour. The results are 

plotted in Fig. 5.11. More than 80% of arsenic was removed from the solution with pH 

ranging from 3 to 7. However, at pH 8 and above, the adsorption became slower as evident 

from the figure. This is consistent with our pH effect findings (please see chapter 3) without 

the irradiation. As the pH goes up, the surface charge of HA-MNP becomes more negative. 

Also, As(III) that exist as a neutral species in most of the studied pH in the acidic and 

neutral range becomes anionic in alkaline pH. These two effects significantly contributed 

to the lower adsorption efficiency at higher pH. 
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Figure 5.11. Effect of pH for the oxidation and adsorption of As(III) in presence of light 

and O2. [As(III)]0 = 200 ppb, [HA-MNP] = 0.2 g/L, total lamps = 14, light wavelength = 

350 nm 

5.6 Conclusion 

The photochemical property of the laboratory synthesized HA-MNP has been 

studied for the oxidation of As(III) under different conditions. The combination of 350 nm 

light and O2 have been found most effective for the efficient removal of As(III). The effect 

of pH on the removal process showed little to no effect except at very high pH. Generation 

of OH• upon irradiation of HA-MNP has been detected and quantified. Further 

investigation is required to pinpoint the production of singlet oxygen, superoxide anion 

radical, triplet excited state of HA etc. and the roles of each of the ROS in the photo-

transformation of As(III). The outcome of the study can be an important layout to ensure 

arsenic free, safe water for millions of peoples around the world.  
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CHAPTER SIX 

General Conclusions 
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The adsorptive and photochemical characteristics of humic acid coated magnetite 

nanoparticles (HA-MNP) were examined for the remediation of toxic species of arsenic 

(As), selenium (Se) and phosphorous (P) from water. The adsorbent nanoparticles were 

synthesized in the laboratory using a simple co-precipitation method. Transmission 

electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray 

photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) etc. were used 

to characterize the nanoparticles before and after the treatment of target water toxins. The 

strong magnetic property of the coated nanomaterials helps to separate the adsorbed 

pollutants after the treatment. A series of adsorption experiments were carried out to see 

the removal efficiency of HA-MNP under different environmentally relevant conditions. 

Adsorption kinetics, adsorption isotherms, effect of pH, temperature and co-existing ions 

were investigated to get the mechanistic insights of the binding of each of the inorganic 

anions on the nanoadsorbent surface. Photoproduction of reactive oxygen species (ROS) 

by HA-MNP has also been evaluated for the simultaneous oxidation and adsorption of 

As(III).  

 The excessive discharge of phosphate in water from different industrial and 

agricultural sources can cause eutrophication which deteriorates the water quality. 

Removal of phosphate from aqueous solution by using HA-MNP as adsorbent has been 

found effective. The nanoparticles were able to remove > 90 % of phosphate from the 

solution in three hours for an initial concentration of 2 ppm. Analysis of kinetic data suggest 

that the adsorption process follows pseudo-second order model while chemisorption is 

assumed to be the main driving force of phosphate binding on the adsorbent surface. From 

the intraparticle diffusion model, three distinct adsorption phases are observed that 
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contributed to the removal process. The maximum adsorption capacity was found to be 

28.9 mg/g with the adsorption behavior more consistent with the Freundlich isotherm 

model suggesting the formation of multilayer on the heterogeneous adsorbent surface. 

Study of temperature effect reveals that the process is endothermic and thermodynamically 

favorable. The material exhibited good removal efficiency across a wide pH range from 

mildly acidic to neutral and showed good selectivity in presence of different competing 

ions.    

 Arsenic (As) is a poisonous metalloid that has contaminated groundwater and 

drinking water of more than 70 countries all around the world. The HA-MNP adsorbent 

was applied for the separation of two highly toxic and widely prevalent As species, As(III) 

and As(V) from the water body. Results showed that the materials successfully removed 

both the forms of As to bring the As level down to the limit of 10 ppb, prescribed by WHO 

and US EPA. The adsorption mechanism fitted well Ho and McKay’s pseudo-second order 

kinetic model and Freundlich adsorption isotherms. Detail analysis of adsorption data 

suggest that the binding of As on the adsorbent surface is governed by initial external 

surface association followed by intraparticle diffusion and equilibrium adsorption. The 

maximum adsorption capacities were found to be 12.2 and 12.6 mg/g for As(III) and As(V) 

respectively. The method has been proved effective at different pH level with very minimal 

leaching of HA from the surface. The removal process was led by strong chemical bonding 

of As(III) and As(V) anions with HA-MNP through ester-type linkage or by addition 

reaction and thus indicates the high potential of the technique to use for large scale, 

commercial application.  
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 Selenium (Se) is an essential nutrient for human body that can be toxic at slightly 

higher concentration. Sequestration of two highly toxic forms of selenium, Se(IV) and 

Se(VI) from water by the use of HA-MNP is investigated. The HA-MNP successfully 

removed both the Se species while relatively faster adsorption is observed for the more 

toxic Se(IV) than Se(VI). The adsorption kinetics followed the pseudo-second order model 

and the adsorbent-adsorbate relationship at equilibrium could be better explained by the 

Langmuir isotherm. Increasing pH (8 and above) led to a decrease in adsorption because 

of strong repulsion between deprotonated adsorbent surface and Se anions. Results from 

the effect of ionic strength study suggest the formation of inner sphere and outer sphere 

surface complexes by Se(IV) and Se(VI) respectively. Sulfate and phosphate appeared as 

the biggest competitors of Se species for the adsorbent site. 

 Reactive oxygen species (ROS) generation (singlet oxygen, superoxide anion 

radical etc.) upon irradiation of HA-MNP has already been reported. The application of the 

ROS produced from the illumination of HA-MNP has been examined for the photo-

conversion of As(III). The HA-MNP induced photo-oxidation and adsorption could 

effectively remove As(III) from the reaction vessel. The removal efficiency was maximum 

in presence of 350 nm light under oxygen saturated condition while minimum adsorption 

was observed in absence of light under argon saturated environment. Hydroxyl radical 

(OH•) is an important ROS the formation kinetics of which is studied here. 

 In summary, HA-MNP with its robust surface coating, easy preparation procedure, 

strong magnetic property, competitive adsorption capacity and photochemical features can 

be an outstanding agent for a sustainable water treatment strategy.            
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APPENDICES 

Appendix A Chapter 2 

Table A1. Summary of the concentration of dissolved organic carbon (DOC) due to 

leaching of NOM from HA-MNP at different pH 

Initial conc. of HA-MNP (ppm) Initial solution pH Final conc. of DOC (ppm) 

100 

4.0 4.2 * 10-2 

7.0 2.1 * 10-2 

10.0 7.2 * 10-2 

 

 

Figure A1: Synthesized humic acid coated magnetite nanoparticles (HA-MNP) in 

presence of a handheld magnet a) before adsorption of phosphate b) after adsorption of 

phosphate  
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Figure A2: FTIR spectra of humic acid (HA) and humic acid coated magnetite 

nanoparticles (HA-MNP) 
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Appendix B Chapter 3 

HA-MNP characterization  

 The FTIR spectra of the nanoparticles before and after adsorption of arsenic species 

were obtained from the PerkinElmer FTIR in the spectral range of 600-4000 cm-1 with 32 

scans per spectrum. Surface morphology and microstructure of the nanoparticles with and 

without arsenic treatment were examined by collecting the images in transmission electron 

microscopy and in high angular annual dark field (HAADF-STEM). The images were 

recorded on a FEI TITAN G2 80-300 instrument operated at 300 kV. The sample was 

dropped (after an ultrasonic bath in ethanol) onto a carbon-coated copper grid which was 

then dried at ambient conditions prior to analysis. The vibrational properties of 

nanostructures were identified using Thermo Scientific XDR Raman microscope using a 

532 nm laser as exciting light source with 5 mW power.  For FTIR, TEM and Raman 

analysis, all the arsenic adsorption experiments were carried out using 200 ppb As(III) or 

As(V) as adsorbate and 1.0 g/L HA-MNP as adsorbent with initial solution of pH 6.6. X-

ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS) data were 

obtained from the Advanced Photon Source at Argonne National Laboratory. XPS 

measurements were made using an unmonochromatized Mg Kα x-ray source and a Scienta 

Omicron Argus electron energy analyzer operating at 20 eV pass energy. The base pressure 

in the ultra-high vacuum analysis chamber, to which samples were transferred from an 

induction chamber, was about 2×10-10 Torr. Casa XPS software was used for analysis and 

curve fitting. X-ray absorption spectra were obtained at room temperature at beamline 9-

BM, where the energy of the x-ray beam was selected by a fixed-exit double crystal 
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monochromator with Si (111) crystals. The standards for the As K-edge and Fe K-edge 

were prepared by adding boron nitride to the arsenic salts, untreated HA-MNP and bare 

MNP. The experimental samples were made from the arsenic treated HA-MNP which were 

collected through filtration from solution, vacuum dried, homogenized and finally pressed 

into 7 mm pellets. Both the standards and the samples were sealed using Kapton tape before 

placing into the beamline. All Fe K-edge XAS data was collected in transmission mode. 

As K-edge was collected in transmission mode for standards and fluorescence mode for 

the arsenic treated nanoparticles. Either a four-element silicon drift detector or a twelve-

element Ge solid-state detector was used for florescence data collection. In order to 

mitigate air exposure before time dependent studies, the sample was transferred to a 

nitrogen glovebox immediately after being treated with arsenic solution and dried in an 

oven. The sample was pressed into a pellet and sealed in Kapton tape within the glovebox. 

Upon removal from the glovebox, the sample was immediately taken to the beamline to 

begin alignment and XAS data collection. As(III) HA-MNP data shown in Figure S5a was 

smoothed by three iterations of a three-point smoothing algorithm. 

Adsorption kinetics and isotherm study 

 Adsorption kinetics of As(III) and As(V) were examined by fitting the obtained 

data in the pseudo-first order and pseudo-second order kinetic models. The mathematical 

expressions of the pseudo-first order and pseudo-second order kinetic models are shown in 

equation B1 & B2 respectively- 

ln(𝑄𝑒 − 𝑄𝑡) = 𝑙𝑛𝑄𝑒 − 𝑘1𝑡        (B1) 
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𝑡

𝑄𝑡
=  

1

𝑘2𝑄𝑒
2 +  

1

𝑄𝑒
𝑡         (B2) 

 Where Qe and Qt stands for the amount of arsenic adsorbed on the HA-MNP surface 

at equilibrium and at time t respectively. k1 and k2 are the corresponding rate constants for 

the pseudo-first order and the pseudo-second order kinetic models and t is the time in 

minutes for all cases.  To get better insights of the adsorption mechanism, Weber and 

Morris intraparticle diffusion model was used which can be represented as-    

𝑄𝑡 =  𝑘𝑖𝑑𝑡
1

2⁄ +  𝑐         (B3) 

 Where Qt is the adsorbed amount of As(III) or As(V) in mg/g, Kid is the diffusion 

rate constant and c is the intercept.  

 The binding of arsenic species with HA-MNP were also modeled using the 

Langmuir and Freundlich adsorption isotherm. The mathematical expressions of 

Langmuir and Freundlich isotherms are shown in equation B4 & B5 respectively - 

𝐶𝑒

𝑄𝑒
=  

1

𝑏𝑄𝑚𝑎𝑥
+  

𝐶𝑒

𝑄𝑚𝑎𝑥
         (B4) 

𝑙𝑜𝑔𝑄𝑒 = 𝑙𝑜𝑔𝐾𝑓 +  
1

𝑛
𝑙𝑜𝑔𝐶𝑒        (B5) 

 Where Ce is the equilibrium concentration of adsorbate arsenic in solution (mg/L) 

and Qe is the amount of adsorbate adsorbed on the HA-MNP surface (mg/g) at equilibrium. 

Qmax is the maximum adsorption capacity of the adsorbent (mg/g) and b is the Langmuir 

constant representing the energy of adsorption. Kf is a measure of relative adsorption 

capacity (L/mg) and 1/n represents adsorption intensity (dimensionless). For 1/n above or 
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below 1 refers to the binding mechanism as cooperative adsorption or chemisorption while 

the value close to 0 implies greater surface heterogeneity. 

Table B1. Effect of iron in the adsorption of arsenic species on HA-MNP 

Fe2+ concentration Initial As 

concentration 

Residual As concentration 

in water after treatment 

% removal of 

As 

1.0 ppm 
200 ppb [As(III)] 6 ppb [As(III)] 97% 

200 ppb [As(V)] 4 ppb [As(V)] 98% 

 

Table B2. Release of dissolved organic carbon from HA-MNP before and after arsenic 

adsorption 

Initial HA-MNP 

concentration 

(ppm) 

Initial solution 

pH 

Species Final DOC 

concentration (ppm) 

1000 

 

6.6 ± 0.1 

HA-MNP 0.25 

As(III)-HA-MNP 0.48 

As(V)-HA-MNP 0.57 
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Figure B1: FTIR spectra of the synthesized HA-MNP before and after the adsorption of 

arsenic species 

                                                                                                                     

 
Figure B2: Size distribution of HA-MNP from TEM measurement 
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Figure B3: Adsorption and conversion of As(III) using HA-MNP and O2 under dark 

condition. Initial As(III) concentration = 200 ppb, HA-MNP dose = 0.2 g/L 
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Figure B4: a) Wide scan XPS spectra of HA-MNP. Deconvolution of the XPS spectra of 

(b) C 1s, (c) O 1s and (d) Fe 2p respectively 
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Figure B5: Fe K-edge (a) XANES and (b) EXAFS spectra of bare magnetite and HA-

MNP 

 

 

 

 

 

(a) 

(b) 
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Figure B6: (a) Arsenic K-edge XANES spectra of As(III) standard, As(V) standard and 

As(III)-HA-MNP at different pH (b) arsenic K-edge XANES spectra of As(III) standard, 

As(V) standard and As(V)-HA-MNP at different pH 

 

 

 

 

 

 

 

(a) 
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Figure B7: XANES spectra time profile of HA-MNP treated As(III) at pH 6.1 

 

 

Figure B8: Competition between As(III) and As(V) for HA-MNP when present in the same 

solution. [As(III)]0 = 200 ppb, [As(V)]0 = 200 ppb, pH = 6.6, HA-MNP dose = 0.2 g/L 
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Figure B9: Effect of initial pH for the adsorption of As(III) and As(V) on HA-MNP. Initial 

As(III) concentration = 200 ppb, initial As(V) concentration = 200 ppb, HA-MNP dose = 

0.2 g/L, temperature = 25 °C, MCL stands for Maximum Contaminant Level (in drinking 

water)  

 

 

 
Figure B10: Effect of coexisting ions for the adsorption of arsenic species on HA-MNP. 

Initial As(III) concentration = 200 ppb, initial As(V) concentration = 200 ppb, HA-MNP 

dose = 0.2 g/L, temperature = 25 °C 
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