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ABSTRACT OF THE DISSERTATION

TRAFFIC AWARE DEPLOYMENT OF INTERDEPENDENT NFV

MIDDLEBOXES IN SOFTWARE-DEFINED NETWORKS

by

Wenrui Ma

Florida International University, 2018

Miami, Florida

Professor Deng Pan, Major Professor

Middleboxes, such as firewalls, Network Address Translators (NATs), Wide Area

Network (WAN) optimizers, or Deep Packet Inspectors (DPIs), are widely deployed

in modern networks to improve network security and performance. Traditional mid-

dleboxes are typically hardware based, which are expensive and closed systems with

little extensibility. Furthermore, they are developed by different vendors and de-

ployed as standalone devices with little scalability. As the development of networks

in scale, the limitations of traditional middleboxes bring great challenges in middle-

box deployments.

Network Function Virtualization (NFV) technology provides a promising alter-

native, which enables flexible deployment of middleboxes, as virtual machines (VMs)

running on standard servers. However, the flexibility also creates a challenge for effi-

ciently placing such middleboxes, due to the availability of multiple hosting servers,

capabilities of middleboxes to change traffic volumes, and dependency between mid-

dleboxes. In our first two work, we addressed the optimal placement challenge of

NFV middleboxes by considering middlebox traffic changing effects and dependency

relations. Since each VM has only a limited processing capacity restricted by its

available resources, multiple instances of the same function are necessary in an NFV

network. Thus, routing in an NFV network is also a challenge to determine not only
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a path from the source to destination but also the service (middlebox) locations.

Furthermore, the challenge is complicated by the traffic changing effects of NFV

services and dependency relations between them. In our third work, we studied how

to efficiently route a flow to receive services in an NFV network.

We conducted large-scale simulations to evaluate our proposed solutions, and also

implemented an Software-Defined Networking (SDN) based prototype to validate

the solutions in realistic environments. Extensive simulation and experiment results

have been fully demonstrated the effectiveness of our design.
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CHAPTER 1

INTRODUCTION

1.1 Background

Middleboxes are special network functions that offer valuable benefits, such as en-

suring security (e.g., firewalls and intrusion detection systems), improving perfor-

mance (e.g., proxies) and reducing bandwidth costs (e.g., WAN optimizers) [SHS+12,

WQX+11]. Unlike networking equipment (e.g., switches, routers) focusing on net-

work Layer 2/3 functions (forwarding and routing functions), middleboxes focus on

examining and modifying traffic [SRR+11]. Nowadays, middleboxes are widely de-

ployed in data centers, clouds and enterprise networks to achieve the aforementioned

benefits [SHS+12, BASS11, LC15].

Traditional hardware-based middleboxes suffer from a number of drawbacks

[MSG+16, PSS15], including high cost, short lifetime, function inflexibility, and

difficulty to scale up. Virtualization technology provides a promising alternative. In

computing, Virtualization refers to the act of creating a software-based (or virtual)

representation of something rather than a physical one. Virtualization can apply

to applications, networks, servers, and storage, and is an efficient way to boost

efficiency and agility [CB05]. Network Function Virtualization (NFV) involves im-

plementing network functions in software that can run in a variety of forms: as

virtual machines (VMs), in hypervisors, on commodity servers, and as a collection

of processes [GPGA12]. In NFV terminology, software middleboxes are referred

to as Virtualized Network Functions (VNFs). ETSI [etsa] defines the NFV archi-

tecture enabling virtualized network functions (VNF) to be executed on commodity

servers wrapped with a hypervisor [BDF+03, KKL+07]. Above the hypervisor layer,

a VNF is typically mapped to one VM [LC15]. Utilizing benefits of the underlying
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virtualization technology, NFV middleboxes enjoy many advantages not available in

traditional hardware-based middleboxes [etsb], such as fast deployment, reduced en-

ergy consumption, and real-time optimization. In the following, we use middleboxes,

network functions, and services interchangeably.

Even though NFV technology makes middleboxes provision flexibly, it also brings

several challenges, such as the guarantee of performance for NFV middleboxes, dy-

namic instantiation and efficient placement of NFV middleboxes. In most cases, a

traffic is required to pass through multiple middleboxes in a particular order, e.g.,

a traffic may be required to go through an IDS, then a proxy and finally a firewall

[Z. 13]. In traditional networks, it requires lots of manual efforts to configure and

update routing policies to steer traffic. With the development of Software Defined

Networking (SDN), the trend of integrating SDN with NFV to achieve various net-

work control and management goals has seen noticeable growth [YTG13]. SDN can

be applied to assist NFV in addressing the challenges of dynamic resource manage-

ment and intelligent service orchestration [Rao14].

1.2 Motivation

Since middleboxes focus on traffic inspecting and modifying, they have the potential

to change the volume of processed traffic and may do it in different ways. For exam-

ple, the Citrix CloudBridge WAN optimizer compresses traffic before sending it to

the next hop, and may reduce the traffic volume by up to 80% [wan]. On the other

hand, the BCH (63,48) encoder, used for satellite communications signaling mes-

sages, increases the traffic volume by 31% due to the checksum overhead [MVB93].

Finally, a firewall will keep the traffic rates of allowed flows unchanged and reduce

the rates of denied flows to zero.
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The placement of middleboxes is also constrained by the dependency relation

that may or may not exist between middleboxes [S. 14]. For instance, an IPSec

decryptor is usually placed before a NAT gateway [cis], while a VPN proxy can be

placed either before or after a firewall [ms-].

Due to the flexible VM implementation of NFV, a number of challenges must be

addressed to fully utilize its advantages. In the first place, the possibility of multi-

ple NFV servers to host a middlebox makes a strategic deployment plan necessary.

Unlike the traditional hardware appliance installed at a fixed location, a middlebox

VM can be hosted by NFV servers at different locations. The middlebox may also

change the volume of processed traffic. Thus, inappropriate deployment of middle-

boxes will cause flows to traverse lengthy paths and create congested links. Next, the

possibility of multiple middlebox instances of the same type necessitates an efficient

routing algorithm. While a single hardware appliance of a type is usually sufficient

in a traditional network, multiple middleboxes of the same type may be necessary

due to the limited processing capability of a single VM. When a flow needs to be

processed by a sequence of middleboxes, it is challenging to find an efficient routing

path that passes one of each type of required middleboxes, since there may exist

numerous such combinations in the network.

Previous research on middleboxes has focused on middlebox virtualization on

commodity servers [J. 12, V. 12, J. 15], virtualized software middlebox platforms

[J. 14, GJVP+14], and placement and chaining of middleboxes in SDN networks

[Z. 13, FSYM13, FCS+14]. To the best of our knowledge, traffic aware deployment

of NFV middleboxes, and in particular the the traffic changing effects, have not been

well investigated. In our research, we focus on studying traffic aware deployment of

NFV middleboxes and service aware flow routing in software defined networks.
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1.3 Outline of Our Work

The aim of our work is to design a suit of NFV middleboxes placement and flow

routing algorithms based on different optimization objectives. In addition, we lever-

age SDN technology [opea, sdnb, sdna, Rao14] to build a prototype system for NFV

middleboxes placement and flow routing to demonstrate our design. NFV enables

the flexible and dynamic deployment of network functions. SDN separates the net-

works control and data plane. SDN controller has a global view of networks. NFV

middleboxes can be initiated in real time at proper locations, and then SDN con-

trollers can automatically enforce forwarding rules to route traffic to the desired

middleboxes.

In networks, an elephant flow is long-lived and extremely large (in total bytes)

[MUK+04, CMT+11]. For elephant flows, throughput is far more important than

latency. A mouse flow [GM01] is often associated with bursty, latency-sensitive

applications. Based on different features, we optimize traffic of elephant flows by

carefully planning their middlebox locations and routing paths, and calculating effi-

cient paths for mice flows that traverse existing middleboxes in the desired priority

order. I summarize the contributions of our work in the following.

1.3.1 Traffic Aware Placement of NFV Middleboxes

In Chapter 3, we study how to efficiently deploy NFV middleboxes without depen-

dencies to achieve load balance using an SDN approach, and considered in particular

the traffic changing effects of different middleboxes. We formulate the Traffic Aware

Middlebox Placement (TAMP) problem as a graph-based optimization problem, and

solve it in two steps. First, we solve the special case of TAMP when flow paths are

predetermined. For a single flow, we propose the Least-First-Greatest-Last (LFGL)
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rule, and prove its optimality; for multiple flows, we prove NP-hardness by reduction

from the 3-Satisfiability problem and propose an efficient heuristic. Next, we solve

the general version of TAMP without predetermined flow paths. We prove that the

general TAMP problem is NP-hard by reduction from the Hamiltonian problem,

and propose the LFGL based MinMax routing algorithm by integrating LFGL with

MinMax routing. To validate our design, we have implemented the proposed algo-

rithms in a prototype system with the open-source SDN controller Floodlight [Flo]

and emulation platform Mininet [min]. In addition, we conducted simulations in

ns-3 for performance evaluation in large-scale networks. Extensive experiment and

simulation results are presented to demonstrate the superiority of our algorithms

over competing solutions.

1.3.2 Traffic Aware Placement of Interdependent NFV Middleboxes

In Chapter 4, we have studied the optimal placement of NFV middleboxes by con-

sidering different middlebox traffic changing effects and dependency relations. We

first formulate the Traffic Aware Placement of Interdependent Middleboxes prob-

lem as a graph optimization problem with the objective to load-balance the network.

Next, we solve the problem when the flow path is predetermined, and propose opti-

mal algorithms for a non-ordered or totally-ordered middlebox set. For the general

scenario of a partially-ordered middlebox set, we show that the problem is NP-hard

by reduction from the Clique problem, and propose an efficient heuristic to convert

a partially-ordered set to a totally-ordered one. On the other hand, when the flow

path is not predetermined, we prove that the studied problem is NP-hard even for a

non-ordered middlebox set by reduction from the Hamiltonian Cycle problem, and

propose the Traffic And Space Aware Routing heuristic. We have conducted large

scale simulations to evaluate the proposed solutions, and have also implemented an
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SDN based prototype to validate them in realistic environments. Extensive simula-

tion and experiment results are presented to show the effectiveness of our design.

1.3.3 Service Aware Flow routing

The limited processing capability of a VM makes it necessary to deploy multiple

NFV instances of the same service. Routing in NFV networks is thus a challenge to

not only find a path from the source to destination, but also determine the optimal

service locations. In Chapter 5, we have studied the service aware routing problem

in NFV networks, and consider in particular the traffic changing effects of NFV

services and dependency relations between them. First, we formulate the service

aware routing problem as a graph optimization problem, and prove that it is NP-hard

by reduction from the Hamiltonian Cycle problem. Next, for the special scenario

of a totally-ordered service set, we propose an efficient polynomial-time algorithm

and prove its optimality. On the other hand, for the NP-hard general scenario of

a partially-ordered service set, we propose two practical heuristics with low time

complexity, one by converting the partially-ordered set to a totally-ordered one, and

the other using a greedy approach. We have validated the design in an SDN based

small-scale prototype, and also implemented the algorithms in the ns-3 simulator for

large-scale performance evaluation. Extensive simulation and experimental results

are presented to demonstrate the effectiveness of the proposed algorithms.
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CHAPTER 2

RELATED WORK

In this chapter, we would highlight the research efforts that are related to our work.

In particular, Section 2.1 reviews the development of Network Function Virtual-

ization (NFV) technology. Section 2.2 presents a network architecture: Software-

Defined Networking (SDN). Section 2.3 review the existing work, which adopt SDN

as a solution to route traffic through middleboxes. Section 2.4 reviews the existing

work on the deployment of NFV virtual machines (VMs). Section 2.5 describes

the existing approaches for network service 1chaining with different optimization

objectives.

2.1 Network Function Virtualization

2.1.1 NFV Framework

The European Telecommunications Standards Institute (ETSI) defines the NFV ar-

chitectural framework as shown in Fig 2.1 enabling virtualized network functions

(VNF) to be deployed and executed on a Network Functions Virtualisation In-

frastructure (NFVI) [etsb], which consists of commodity servers wrapped with a

software layer that abstracts and logically partitions them [MSG+16]. Above the

hypervisor layer, a VNF is typically mapped to one VM in the NFVI. The deploy-

ment, execution and operation of VNFs on the NFVI are steered by a Management

and Orchestration (MANO) system [man, GKJ+13], whose behaviour is driven by

a set of metadata describing the characteristics of the network services and their

constituent VNFs. The MANO system includes an NFV Orchestrator in charge of

1In this dissertation, the three terms ”service”, ”middlebox” and ”network functions”
have the same meaning.
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the lifecycle of network services, a set of VNF managers in charge of the lifecycle

of the VNFs and a virtualized infrastructure manager, which can be viewed as an

extended cloud management system responsible for controlling and managing NFVI

resources.

Figure 2.1: NFV Infrastructure.

2.1.2 NFV Software Architecture

NFV has been proposed to shift middlebox processing from closed network appli-

ances to software running on commodity hardware. Hwang et al. [J. 15] propose the

NetVM a software platform for running diversity network functionality at line-speed

based on the general commodity hardware. It takes advantage of KVM [KKL+07]

and DPDKs [dpd] high throughput packet processing capabilities, and further en-

ables flexible traffic steering and overcomes the performance limitations of hardware

switching. Thus, It provides the capability to support network functions chains by

flexible, high-performance network elements. ClickOS [J. 14] is a high-performance,

virtualized software middlebox platform. It provides small, booting quickly, and
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little delay virtual machines, and over one hundred of them can be concurrently run

while guaranteeing ine-rate pipe on the general commodity server. To achieve high

performance, ClickOS relies an extensive overhaul of Xens I/O subsystem [STJP08]

to speed up the networking process in middleboxes. ClickOS is proof that software

solutions alone are enough to significantly speed up virtual machine processing, to

the point where the remaining overheads are dwarfed by the ability to safely consol-

idate heterogeneous middlebox processing onto the same hardware. The results of

NetVM and ClickOS shows that the software middleboxes can be hosted on virtual

machines and migrated to other locations easily. Anat et al. propose a logically cen-

tralized framework named OpenBox [A. 15] that decouples the control plane of NFV

services from their data plane. Jamshed et al. present mOs [M. 17a], a reusable

networking stack, to provide a well-defined set of APIs for NFV applications to

interact with the system. Our work can benefit from those research advances by

implementing our solutions based on the above NFV architectures.

2.1.3 NFV Hardware Architecture

Multiple efforts have been focusing on designing efficient NFV hardware architec-

tures. xOMB (Extensible Open MiddleBox) [J. 12] provides programmable, flexi-

ble and scalable middleboxes on the platform of general hardware like servers and

operating systems to achieve high efficiency flow controlling. It utilize general pro-

grammable processing approaches with user-defined modules for network packet

parsing, data transforming, and flow forwarding. By these design, xOMB shows

how middleboxes can be utilized to support different services. To address the im-

portant resource management and controlling problems that arise in exploiting the

benefits of middlebox deployment, CoMb [V. 12] is proposed by consolidating indi-

vidual middleboxes through decoupling the software and hardware, which enables
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software-based implementations of middlebox to deploy and run on a the general

and consolidated hardware platform. On the other hand, CoMb consolidates the

management of different middlebox into a single centralized controller, which takes

a unified and network wide configurations and controlling for policy requirements

across the overall traffic and applications. This is in contrast to todays approach

where the middleboxs is controlled and managed separately. CoMb addressed these

important resource control and management challenges, which results in reducing

network provisioning cost and overhead in the deployment and operation of mid-

dlebox devices. Our work can benefit from these advances as well. We can use the

consolidated servers to host middlebox services and openflow switches.

2.1.4 Middlebox Management Interfaces

There are some efforts to standardize middlebox control interfaces such as MIDCOM

[SQT08] and SIMCO [sim]. Aaron et al. propose API extensions to expose middle-

box internal state to an SDN controller [GPGA12]. They advocated for the design of

a software-defined middlebox networking framework capable of supporting scenar-

ios like middlebox scaling and live network migration. They believe that continued

innovation in middlebox functionality and operation hinges on the development of

SDN like frameworks for middlebox management. Their work offers insights we can

manage the deployment of middleboxes by utilizing SDN technology.

2.1.5 General Purpose Network Elements

Many efforts have been made aiming to build commodity network elements using

x86 CPUs [DEA+09, EGH+08, GHH+09], GPUs [HJPM11], and merchant switch

silicon [LGL+11]. RouterBricks [DEA+09] propose a software router architecture
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that parallelizes router functionality both across multiple servers and across multi-

ple cores within a single server. Adam et al. [GHH+09] introduce a new class of

system architectures for building network flow processing platforms. These architec-

tures are built on the commoditization of x86 servers, switches and the availability

of powerful open virtualization solutions. Egi et al. [EGH+08] identify principles

for constructing high-performance software router systems on commodity hardware,

and show that the solutions based on current and near-future commodity hardware

are flexible, practical, and inexpensive. PacketShader [HJPM11] is a software router

framework with Graphics Processing Unit (GPU) acceleration that brings signifi-

cantly higher throughput over previous CPU-only implementation. ServerSwitch

[LGL+11] integrats a powerful multi-core commodity server with a programmable

switching chip. This design eliminate CPU overhead and processing latency, while

also supporting programmability. These work show that the commoditization of

network hardware and the potential to rewrite their control software. Our work can

benefit from the above research by using the enhanced NFV servers embodying the

design ideas of the proposed hardware architectures.

2.2 Software Defined Networking

2.2.1 SDN Architecture

Software Defined Networking (SDN) is an important networking architecture as

shown in Fig. 2.2. It separates the control plane from the data plane (forwarding

plane) [sdnb]. It follows in the spirit of efforts showing the benefits of centralization

in routing, access control, and monitoring [GHM+05, CCF+05, MAB+08, CFP+07].

Control plane (a logically centralized controller) has a global view of networks,

takes requests from the application layer and manages the network devices (data
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plane) via standard protocols. Data plane just forwards packets based on decisions

of the control plane. The benefits of SDN are dynamically traffic steering, greater

agility and implementing network automation. There are several standard com-

Figure 2.2: SDN Architecture.

munication protocols are defined between the control and data plane. OpenFlow

protocol [opeb, opea, MAB+08] is the one earliest defined. In our work, the testbed

is OpenFlow enabled. An OpenFlow switch has one or more flow tables. Each flow

entry (a rule) contains a set of packet fields to match, and an action. Once some

traffic matches a flow entry, the associated actions (drop, forward, modify, etc.) will

be performed on the traffic. Depending on the flow entry enforced by a controller,

an OpenFlow switch can behave like a router, switch or firewall.

2.2.2 SDN Switch Memory Management

To efficiently manage the expensive and power-hungry ternary content-addressable

memory (TCAM) in switches, multiple works [ZLWZ10, GHM16, RHC+15] have

studied shrinking the routing table size by aggregating rules. Uzmi et al. [UNT+11]
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further propose a practical and near-optimal aggregation scheme to minimize the

switch table size. Katta et al. propose the CacheFlow system [KARW14] for SDN to

cache the most popular rules in a small TCAM, while relying on software to handle

the cache miss traffic. Kang et al. [KLRW13] propose a rule placement algorithm

to distribute forwarding policies across general SDN networks while managing rule-

space constraints. Our work relates to the above ones by also considering the limit

of middleboxes that can be hosted at a node due to resource constraints, such as

switch TCAM or NFV server memory.

2.3 SDN based Middlebox Policy Enforcement

In traditional networks, middleboxes are installed at chokepoints and the network

operators rely on error-prone and complex low-level configuration to steer traffic

through a chain of middleboxes. SDN offers a promising alternative for middle-

box policy enforcement by programmatically configuring forwarding rules. Sridhar

[Rao14] presented a thorough study of SDN and how SDN technology can comple-

ment the network virtualization and network functions virtualization.

SIMPLE [Z. 13] presents a SDN-based policy enforcement layer for efficient

middlebox-specific ”traffic steering”, which is built on SDN and existing legacy mid-

dleboxes. It can also easily fit into the context with software middleboxes running

on commodity hardware, which can be instantiated in various locations dynamically.

It enables the network managers and operators to specify a high-level abstractions

of logical middlebox routing policy, and it then further automatically translates

the policy into control rules with the knowledge of the physical network topology,

forwarding device capacities, and resource constraints of the whole networks. With-

out mandating any placement or implementation constraints on middleboxes and
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changing current SDN standards, SYMPLE offers efficient SDN-style control for

middlebox-specific traffic steering, which is more modest compared to ongoing and

parallel work developing new visions for SDN or middleboxes. SIMPLE focuses on

balancing the middlebox load, but we focus on balancing the link load.

StEERING [ZBB+13a] presented a scalable framework for dynamically routing

traffic through any sequence of middleboxes. Built on top of SDN, StEERING can

support efficient forwarding at the granularity of subscribers and applications. The

authors further propose an algorithm to select the best locations for placing services,

such that the the performance is optimized.

The dynamic, traffic-dependent, and hidden actions of middleboxes make it dif-

ficult to reason about the correctness of network-wide policy enforcement, analysis

and troubleshoot networks. To address this issue, FlowTag [FSYM13] further add

tags to trace outgoing packets, and deal with the dynamic changes imposed by

middleboxes. It is a complement for SDN based service chaining approaches. SDN

controllers are able to configure the operations of tag generation and consumption by

the FlowTags APIs. This approach requires minimal extensions from middleboxes

vendors and demands no new capabilities from switch vendors.

Our work differs from the above ones by not only implementing the correct

policies through SDN, but also considering the middlebox traffic changing effects

and different dependency relations.

2.4 NFV VM Deployment

Deployment of NFV VMs is a challenge, especially under resource constraints, and

solutions have been proposed for different objectives, such as minimizing the op-

eration cost [V. 17] or the number of instances [Y. 17]. Furthermore, NFV VM
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deployment is jointly considered with flow routing to optimize the overall network

performance. Kuo et al. [T. 16] study the joint problem of VM deployment and

path selection by considering the correlation between the link and server usages.

Luizelli et al. [M. 17b] model virtual function deployment and chaining as an opti-

mization problem, and propose a fix-and-optimize based heuristic solution. Zhang

et al. [Q. 17] present a hierarchical two-phase solution for joint optimization of

deploying chained functions and scheduling requests. Dwaraki and Wolf [DW16]

present a method of solving the node-constrained service chain routing problem by

transforming the network representation to a layered graph.

2.5 Network Service Chaining

Network service Chaining refers to an ordered sequence of network functions that

a specific flow must go through [sfc]. Specifically, a chain defines the required pro-

cessing or functions and the corresponding order that should be applied to the data

flow. These chains require integration of service policy and the above applications to

achieve optimal resource utilization. Traditional network service functions include,

e.g., firewalls, TCP optimizers, web proxies, or higher layer applications [BRL+14].

These network services are usually deployed manually as hardware appliances that

are physically integrated in the network by cables. The traditional approach is

tedious, error prone and clumsy.

SDN can steer traffic dynamically based on user requirements [JPA+13, ZBB+13b,

SGP+15]. However, hardware-based middleboxes limit the benefit of SDN due to

their fixed functionalities and deployment. NFV is a good enabler for SDN. With

the ability of dynamic function provisioning offered by NFV and the centralized con-
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trol of SDN, new opportunities emerge in service chaining. Better performance and

resource utilization can be achieved with the software-defined NFV architecture.

Even in NFV networks, it is still recognized as a challenge to implement a

chain of network functions (services) under certain dependency constraints. Mul-

tiple solutions [MDT14, S. 14, Y. 16] have been proposed to implement service

function chains, mostly using a linear programming based approach. In partic-

ular, Moens and Turck propose an Integer Linear Program model named VNF-

P [MDT14] that allocates resources for service chains in an NFV network. Mehragh-

dam et al. formalize the chaining of network functions using a context-free language,

and allocate resources by solving a Mixed Integer Quadratically Constrained Pro-

gram (MIQCP) [S. 14]. Mehraghdam, Dräxler, and Karl also present a YANG

model [MK16, DK17] for flexible specification of complex service structures. Li et

al. propose the NFV-RT [Y. 16] resource provisioning system in which a linear

programming approach is developed to maximize the number of requests for each

service chain. Different from the above works, the formal model defined in our work

considers not only a service function chain, but also a more general partial order be-

tween services and the traffic changing effects of services. Furthermore, this project

presents realistic algorithms and prototype implementation besides formal models.
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CHAPTER 3

TRAFFIC AWARE NFV MIDDLEBOX PLACEMENT

Network Function Virtualization (NFV) enables flexible deployment of middleboxes

as virtual machines (VMs) running on general hardware. Since different middleboxes

may change the volume of processed traffic in different ways, improper deployment of

NFV middleboxes will result in hot spots and congestion. In this chapter, we study

the traffic changing effects of middleboxes, and propose Software-Defined Network-

ing (SDN) based middlebox placement solutions to achieve optimal load balancing.

We formulate the Traffic Aware Middlebox Placement (TAMP) problem as a graph

optimization problem with the objective to minimize the maximum link load ra-

tio. First, we solve the TAMP problem when the flow paths are predetermined,

such as the case in a tree. For a single flow, we propose the Least-First-Greatest-

Last (LFGL) rule and prove its optimality; for multiple flows, we first show the

NP-hardness of the problem, and then propose an efficient heuristic. Next, for

the general TAMP problem without predetermined flow paths, we prove that it

is NP-hard even for a single flow, and propose the LFGL based MinMax routing

algorithm by integrating LFGL with MinMax routing. We use a joint emulation

and simulation approach to evaluate the proposed solutions, and present extensive

experimental and simulation results to demonstrate the effectiveness of our design.

3.1 Introduction

The advancement of virtualization technology [BBE+13] has made NFV [HGJL15]

a promising architecture for middleboxes. Middleboxes are traffic processing appli-

ances that are widely deployed in data centers, enterprise networks, and telecom-

munications networks [DGK+13]. Traditional middleboxes are proprietary hard-
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ware devices that implement specialized functions such as firewalls, VPN proxies,

and WAN optimizers [GMPR15, CKP15]. Such hardware middleboxes suffer from

a number of drawbacks [MSG+16, WRH+15], including high cost, short life time,

function inflexibility, and difficulty to scale up.

NFV decouples network functions from physical equipment, and implements

middleboxes by running network function software on virtualized general hardware

[BRXM15]. An NFV server is an industry standard server that hosts multiple virtual

machines (VMs), each implementing a middlebox function with specialized software

programs. Software middleboxes can be instantiated at, or moved to, general servers

at various locations of the network, without the need to install new hardware. Ben-

efiting from the underlying virtualization technology, NFV enjoys many advantages

not available in traditional hardware middleboxes [etsb], such as fast deployment,

reduced energy consumption, and real-time optimization.

Unlike switches or routers that are only forwarding traffic, most middleboxes are

traffic processing devices, and may change the volume of processed traffic and may

do it in different ways. For example, the Citrix CloudBridge WAN optimizer [wan]

may compress traffic to 20% of its original volume before sends it to the next hop.

On the other hand, a Stateless Transport Tunneling (STT) proxy [stt] adds 76 bytes

to each processed packet due to the encapsulation overhead. Finally, a firewall will

keep the traffic rates of allowed flows unchanged and reduce the rates of denied flows

to zero.

The following toy example in Fig. 3.1 illustrates the traffic changing effects of

middleboxes. Consider a network consisting of three nodes v1, v2 and v3, and two

links (v1, v2) and (v2, v3). Each node has an attached NFV server, and each server

can host a single middlebox. A flow f starts at v1 and ends at v3, whose initial

traffic rate is 1. Two middleboxes m1 and m2 need to be applied to f . m1 will

18



double the traffic rate, while m2 will cut the traffic rate in half. If install m1 on v1

and m2 on v3, the load of links (v1, v2) and (v2, v3) will be 1 × 2 = 2, as shown in

Fig. 3.1(a). However, by installing m1 on v3 and m2 on v1, we can reduce the load

of both links to 1× 0.5 = 0.5, as shown in Fig. 3.1(b).

v1 v2 v3

m1 m2

(a) m1 on v1, m2 on v3 (b) m1 on v3, m2 on v1

1 2

2 2

2 1

v1 v2 v3

m2 m1

1 0.5

0.5

0.5 1

0.5

Figure 3.1: Traffic changing effects of middleboxes.

As can be seen, the flexibility of VMs brings a couple of challenges for efficient

NFV implementation. First, since there may exist multiple candidate NFV servers,

a strategic deployment plan is necessary to determine the optimal location for a

middlebox. Next, due to traffic changing effects, the order to deploy different types

of middleboxes is critical for balancing traffic load in the network.

In this work, we study optimal deployment of NFV middleboxes with the ob-

jective to achieve load balancing, and will focus on the persistent and large-sized

elephant flows [A. 11] but not the transient and small-sized mice flows [A. 11], for

the following three reasons. First, since elephant flows constitute a majority of the

network traffic [MUK+04], optimizing elephant flows will efficiently help balance the

entire network. Second, mice flows are transient, and may leave the network before

the calculated optimization scheme takes effect, making it difficult to achieve the

optimization objective. Third, the number of mice flows is much greater than that

of elephant flows [A. 11], and the computation cost to manage so many dynamic

flows is prohibitive. Therefore, our design is to deploy independent middleboxes for

each elephant flow to avoid resource contention and congestion, but instead let mice
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flows utilize the leftover processing capacity of middleboxes that have been deployed

for elephant flows. The solution for mice flows will not be the focus of this chapter.

The solution proposed in this work leverages the emerging SDN architecture [sdnb],

which enables efficient optimization by decoupling the network control plane and

data plane. An SDN based prototype has been implemented to demonstrate the

practicality of our design.

Our main contributions are summarized as follows. First, we formulate the Traf-

fic Aware Middlebox Deployment (TAMP) problem as a graph optimization problem

with the objective to minimize the maximum link load ratio in the network. Sec-

ond, when flow paths are predetermined, such as the case in the tree topology, we

propose the Least-First-Greatest-Last (LFGL) rule to place middleboxes for a single

flow, and prove its optimality. For multiple flows, we show that the TAMP problem

is NP-hard by reduction from the 3-Satisfiability problem, and propose an efficient

heuristic. Third, for the general scenario without predetermined flow paths, we

prove that the TAMP problem is NP-hard even for a single flow by reduction from

the Hamiltonian Cycle problem, and propose the LFGL based MinMax routing al-

gorithm that integrates LFGL with MinMax routing. Fourth, we have implemented

the proposed algorithms in a prototype with the open-source SDN controller Flood-

light and network emulator Mininet. Finally, we present extensive experimental and

simulation results to demonstrate the effectiveness of the proposed algorithms.

3.2 Problem Formulation

In this section, we formulate the Traffic-Aware Middlebox Placement (TAMP) prob-

lem.
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Consider a network represented by a directed graph G = (V,E). Each node

v ∈ V may have an attached NFV server, and its space capacity is denoted as

scu ≥ 0, i.e., the maximum number of middleboxes to host. For simplicity, we

assume that each middlebox needs one space, and more processing power can be

achieved by additional middlebox instances. A link (u, v) ∈ E has a bandwidth

capacity bcu,v ≥ 0, i.e., the available bandwidth. Its current link load is denoted as

lu,v.

Use M to denote the complete set of middlebox types. Each middlebox type

m ∈M has an associate traffic changing factor alterm, where 1 + alterm is the ratio

of the traffic rate of a flow before and after being processed by m.

Let F denote the set of flows. Each flow f ∈ F is represented as a 4-tuple

(sf , df , tf ,Mf ), in which sf ∈ V is the source node, df ∈ V is the destination node,

tf is the initial traffic rate at the ingress point, and Mf ⊆ M is the set of required

middleboxes.

When a flow f enters the network, a path routef will be assigned for the flow,

which is a decision variable defined as

routef (u, v) =


1, if flow f traverses link (u, v).

0, otherwise.

(3.1)

To avoid performance degradation for TCP flows, a flow is not allowed to be split

among multiple paths [B. 10].

Use tv−f and tv+f to denote the traffic rate of flow f before entering and after

leaving node v, respectively. If f is processed by a middlebox of typem, or middlebox

m for short, at v, then tv+f = tv−f (1 + alterm). Note that t
sf−
f = tf . For convenience,

use tu,vf = tu+f = tv−f to represent the traffic rate of f on link (u, v).

In addition, a placement scheme placef will determine the locations to install

each middlebox m ∈Mf , which is a decision variable defined as

21



placef (m, v) =


1, if middlebox m is installed at node v.

0, otherwise.

(3.2)

Define the ratio between the aggregate load and capacity of a link to be the link

load ratio, which is also called traffic intensity in queuing theory [Jai90] and deter-

mines the queuing delay. To achieve load balancing, our objective is to minimize

the maximum link load ratio in the network by optimizing routef and placef for

each flow f ∈ F , as shown Equation (3.3). Our solutions can also easily adapt to

other optimization objectives [BSL06, GK06], such as minimizing the path cost or

maximizing the residual capacity.

Our solutions can also easily adapt to other optimization objectives [BSL06,

GK06], such as minimizing the path cost or maximizing the residual capacity.

minimize maxRatio (3.3)

subject to the following constraints:

∀(u, v) ∈ E :

lu,v +
∑

f∈F routef (u, v)tu,vf

bcu,v
≤ maxRatio (3.4)

∀f ∈ F :∑
u∈V

routef (sf , u) =
∑
u∈V

routef (u, sf ) + 1, (3.5)∑
u∈V

routef (u, df ) =
∑
u∈V

routef (df , u) + 1 (3.6)

∀f ∈ F, ∀v ∈ V − {sf , df} :∑
u∈V

routef (u, v) =
∑
u∈V

routef (v, u) (3.7)

∀v ∈ V :∑
f∈F

∑
m∈Mf

placef (m, v) ≤ scv (3.8)
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∀f ∈ F, ∀m ∈Mf , ∀v ∈ V :

placef (m, v) ≤
∑
u∈V

(routef (u, v) + routef (v, u)) (3.9)

∀f ∈ F, ∀m ∈Mf :∑
u∈V

placef (m,u) = 1 (3.10)

∀f ∈ F, ∀(u, v) ∈ E :

tu,vf =

tu−f routef (u, v)
∏

m∈Mf

(1 + placef (m,u)alterm) (3.11)

Equation (3.4) states that, for a link (u, v), its load ratio (lu,v+
∑

f∈F routef (u, v)

tu,vf )/bcu,v should be less than or equal to the optimization objective maxRatio.

Equations (3.5) and (3.6) enforce each flow f to start and end at its source sf and

destination df , respectively. Equation (3.7) guarantees flow conservation at each

intermediate node on the path, i.e., no flow generation or termination at an inter-

mediate node. Equation (3.8) states that, for a node v, the total space demand of

hosted middleboxes
∑

f∈F
∑

m∈Mf
placef (m, v) should not exceed its space capacity

scv. Equation (3.9) states that a middlebox m can be installed only on a node v

that the flow path traverses. Equation (3.10) states that a middlebox m should be

installed once and only once. Equation (3.11) states that, for a flow f , its traffic rate

on a link (u, v) of its path, i.e., routef (u, v) = 1, or its traffic rate when leaving u, or

its traffic rate when entering v, is equal to its traffic rate when entering u, i.e., tu−f ,

multiplying the traffic changing ratios 1 +placef (m,u)alterm of all the middleboxes

m placed at node u.

It can be seen that, optimal performance can be achieved by minimizing the

maximum link load ratio on the routing paths of the flows in F , although the

objective maxRatio is the maximum link load ratio of the entire network. Proofs
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are omitted. Thus, the following proposed solutions will focus on minimizing the

maximum link load ratio on flow paths.

3.3 Traffic Aware Middlebox Placement with Predetermined

Paths

In this section, we solve the TAMP problem when the flow paths, i.e., route, have

been determined, or are unique in certain network topologies, such as the popular

tree topology. We start with a single flow, i.e., |F | = 1, and propose the Least-

First-Greatest-Last (LFGL) rule to achieve optimal performance. When there are

multiple flows, i.e., |F | > 1, we prove that the TAMP problem is NP-hard by

reduction from the 3-Satifiability problem, and propose an efficient heuristic.

3.3.1 Middlebox Placement for Single Flow

In reality, flows tend not to arrive at exactly the same time. Even if multiple flows

arrive simultaneously in a software-defined network (SDN), the central controller will

have to process them one by one. Thus, solutions for a single flow are of practical

importance, especially for SDNs. Assume that the flow set F has only a single flow

f , and the path routef has been determined. Obviously, a valid placement solution

placef exists, if and only if the number of available NFV spaces on the routing path

is greater than or equal to the number of required middleboxes, i.e., |Mf |.

The basic idea of our solution is to push heavy traffic out of the network core by

decreasing the traffic rate at the beginning of the path, and increasing at the end of

the path. Based on this observation, we propose an efficient rule called Least-First-

Greatest-Last (LFGL) to optimally place middleboxes. The rule starts by sorting
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Figure 3.2: Proof of Theorem 1.

all the middleboxes m ∈ Mf based on their traffic changing factors alterm. It

then places the middleboxes with non-positive factors, or shrinking middleboxes,

from the head of the path in an increasing order. When a node has no space left,

LFGL continues with the next node on the path. After finishing placing shrinking

middleboxes, the rule switches to middleboxes with positive traffic changing factors,

or expanding middleboxes, and place them from the path tail in the decreasing

order of their factors. The deployment succeeds if all middleboxes are placed, and

fails otherwise. As can be seen, LFGL processes each middlebox in Mf only once

after sorting, and therefore its time complexity is O(|Mf | log |Mf |), i.e., the time

complexity to sort Mf .

Theorem 3.3.1 The Least-First-Greatest-Last rule minimizes the maximum link

load ratio on the flow path.

Proof. For the purpose of contradiction, assume that a different placement scheme

place′f achieves maximum link loadmaxRatio′ lower than that of LFGL, i.e., maxRatio′

< maxRatio.

Without loss of generality, assume that the differences between the two place-

ment schemes include shrinking middleboxes, and m is the one with the least traffic

changing factor. By the LFGL rule, m is installed in the first available node u

at its placement time, i.e., placef (m,u) = 1. By comparison, the other placement

scheme installed m on a different node u′, i.e., place′f (m,u′) = 1, which must be
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after u on the flow path, and instead a different middlebox m′ is placed on u, i.e.,

place′f (m′, u) = 1. Apparently, the placement of m′ is also different in placef and

place′f . Since among the differences between placef and place′f , m has the least

traffic changing factor, we know that alterm ≤ alterm′ .

Next, as shown in Fig. 3.2, we create a new placement scheme place′′f by switching

the locations of m and m′ in place′f , i.e.,

place′′f (n, v) =


place′f (n, v), if n 6= m,n 6= m′

place′f (m,u′)(= 1), if n = m, v = u

place′f (m′, u)(= 1), if n = m′, v = u′

(3.12)

Then, the maximum link load ratio maxRatio′′ of the new placement place′′f will be

less than or equal to that of place′f , i.e., maxRatio′′ ≤ maxRatio′. Denote the traffic

rates of f on link (v, w) ∈ E under place′f and place′′f as t′v,wf and t′′v,wf , respectively.

Analyze the following three types of links.

1. For a link (v, w) between sf and u, since the middleboxes placed before u are

the same under place′f and place′′f , the traffic rates of f on such a link are also

the same under both schemes, i.e., t′′v,wf = t′v,wf .

2. For a link (v, w) between u and nextf (u′), as the locations of m and m′ are

exchanged in place′′f , t′′f (v, w) = t′f (v, w)(1 + alterm)/(1 + alterm′). Since

alterm ≤ alterm′ as shown above, we know t′′v,wf ≤ t′v,wf .

3. For a link (v, w) between nextf (u′) and df , since the middleboxes placed after

u′ are the same under place′f and place′′f , the traffic rates of f on such a link

are the same, i.e., t′′v,wf = t′v,wf .

To sum up, for each link on the flow path of f , place′′f achieves a lower or equal

traffic rate for the flow than place′f , resulting in a lower or equal maximum link load

ratio, and it has one less difference with placef generated by LFGL. Continuing
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Figure 3.3: Reduction from 3-Satisfiability to TAMP for multiple flows with prede-
termined paths.

this process and eliminating all the differences between place′f and placef , it can be

shown by induction that placef achieves no higher maximum link load ratio than

that of place′f , i.e., maxRatio ≤ maxRatio′, which contradicts the assumption.

3.3.2 Middlebox Placement for Multiple Flows

We now solve the problem to place middleboxes for multiple flows with predeter-

mined paths. As explained in the introduction, we do not let different elephant flows

share the same middlebox to avoid hot spots, but instead the leftover processing ca-

pacity of installed middleboxes will be utilized by mice flows.

Theorem 3.3.2 The Traffic Aware Middlebox Placement placement problem for

multiple flows with predetermined paths is NP-hard.

Proof. We prove by reduction from the 3-Satisfiability problem. The 3-Satisfiability

problem decides whether a boolean formula in 3-CNF, i.e. the conjunction normal

form with three boolean variables per clause, is satisfiable. An example is (x∨¬y∨

¬z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ y ∨ z).
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The reduction process is as follows. For a pair of boolean variables x and ¬x,

we create two corresponding flows fx and f¬x, and two nodes startx and endx, each

with one available middelbox space. Each flow f has an initial traffic rate of tf = 1,

and needs a single middlebox Mf = {m} with alterm = −1 + ε, where ε is a small

positive quantity less than one. In other words, the middlebox m will change the

traffic rate of the processed flow to 1× (1 + alterm) = ε. The two flows fx and f¬x

both start at the shared node startx, i.e., sfx = sf¬x = startx, and end at endx,

i.e., dfx = df¬x = endx. For each clause C = x1 ∨ x2 ∨ x3, we create a shared

link lC with a bandwidth capacity of 10, which will be traversed by the three flows

corresponding to x1, x2, and x3. When a boolean variable is included in multiple

clauses, its corresponding flow will traverse multiple links one by one. Except the

shared links, different flows have separate links for the remaining sections of their

path. The reduction result for the above example CNF formula is illustrated in Fig.

3.3. It can be seen that the reduction can be done in polynomial time.

Next, we show that if a 3-CNF formula has a satisfiable assignment, then the

constructed TAMP problem has a maximum link load ratio of no more than (2 +

ε)/10, i.e., maxRatio ≤ (2 + ε)/10. Given a satisfiable assignment, if a variable x

(or ¬x) is assigned the true value, we let the corresponding flow fx (or f¬x) place

its middlebox on startx, and the negation flow f¬x (or fx) on endx. Note that

a 3-CNF formula has a satisfiable assignment if and only if each clause C has at

least one variable x assigned the true value, whose corresponding flow fx will put

its middlebox on node startx. Therefore, when fx arrives at the shared link lC , its

traffic rate is ε, and thus the load of lC is at most 2 + ε. Since each shared link has

a load of no more than 2 + ε, and any other link has a load of no more than 1, the

maximum link load ratio of the entire network is no more than (2 + ε)/10.

On the other hand, if the constructed TAMP problem instance has a maximum
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link load ratio of no more than (2 + ε)/10, it indicates that each shared link lC

has at least a flow fx with its traffic rate being less than one, which means that its

middlebox is placed at startx. For each such flow fx, by assigning the corresponding

boolean value x a true value, we obtain a satisfying assignment for the 3-CNF

formula.

The hardness of TAMP for multiple flows with predetermined paths lies in the

factorial number of possible sequences to process the multiple flows. Since differ-

ent flows are competing for middlebox spaces, flows processed earlier may consume

spaces and make them unavailable for flows processed later. We did not find an effi-

cient way to simultaneously process multiple flows except for very limited scenarios

with special topologies and traffic changing factors. Alternatively, we will present

below a practical heuristic.

The basic idea of the heuristic is to place middleboxes for multiple flows by first

processing each individual flow using the LFGL rule and then optimizing middlebox

placement between flow pairs. The optimization of multiple flow middlebox place-

ment extends the idea from a single flow to multiple flows. When multiple flows

share a common sub-path, we apply the LFGL rule to the middleboxes of those

flows on the common path, by placing the middlebox that decreases the maximum

amount of traffic at the head of the sub-path, and the middlebox that increases the

maximum amount of traffic at the end. However, one difference with LFGL for a

single flow is that, since different flows may have different initial traffic rates, we

need to consider the amount of traffic change caused by each middlebox, i.e., the

product of the traffic rate before entering the middlebox and its traffic changing

factor, instead of just the traffic changing factor as in the case for a single flow. For-

tunately, by Theorem 3.3.1, the middleboxes of a single flow should still be placed in

the increasing order of their traffic changing factors, so we know the traffic rate of a
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flow before entering a middlebox, and thus can obtain the traffic change amount by

multiplying its traffic changing factor. For example, if a middlebox of flow f has the

i-th least traffic changing factor (ties broken arbitrarily), i.e., Mf [i] in the sorted

list, then the flow rate before entering the middlebox is tf
∏i−1

x=1(1 + alterMf [x]),

and the its traffic change amount is δMf [i] = alterMf [i]tf
∏i−1

x=1(1 + alterMf [x]). The

Algorithm 1 Middlebox Placement for Multiple Flows with Predetermined Paths

Require: G,F, route
Ensure: place
1: sort f ∈ F in decreasing order of initial traffic rate tf
2: for each flow f in F do
3: apply LFGL to place middleboxes m ∈Mf for f
4: calculate traffic change amount δm for each m ∈Mf

5: end for
6: for each pair of flows f and f ′ do
7: P = set of common sub-paths between f and f ′

8: for each common sub-path u ∼> v ∈ P do
9: M [1..n] = extract all middleboxes of f and f ′ on common sub-path u ∼>
v

10: sort m ∈ M [1..n] in increasing order of traffic change amount δm and
insert back in order

11: end for
12: end for

pseudo code to place middleboxes for multiple flows with predetermined paths is

shown in Algorithm 1. Brief explanation is as follows. Line 1 sorts all the flows in

the decreasing order of their initial traffic rates, inspired by the First-Fit Decreasing

Bin Packing algorithm [CLRS09] to give priority to large flows. Lines 2 to 5 apply

LFGL to each flow, and calculate the traffic change amount of each middlebox of

the flow. Line 6 prepares a pair of flows for optimization. Line 7 finds the common

sub-paths of the two flows, which may be multiple. Line 8 processes one of such

common sub-paths, and line 9 extracts all the middleboxes of the two flows on the

common sub-path. Line 10 sorts the extracted middleboxes based on their traffic

changing amounts and insert them back to the nodes on the sub-path.

30



a b

d c

aout bout

binain

din cin

coutdout

(a) Hamiltonian cycle (b) TAMP

Figure 3.4: Reduction from Hamiltonian cycle to TAMP.

3.4 Traffic Aware Middlebox Placement without Predeter-

mined Paths

In this section, we study the general TAMP problem where the flow paths route are

not predetermined. We first show that the general TAMP problem is NP-hard even

for a single flow by reduction from the Hamiltonian cycle problem, and then propose

an efficient heuristic by integrating LFGL and MinMax routing that minimizes the

maximum link load on the flow path. We also discuss the processing of multiple

flows without predetermined paths.

3.4.1 NP-Hardness Proof

When flow paths are not determined, the TAMP problem is NP-hard, even for a

single flow.

Theorem 3.4.1 The general Traffic-Aware Middlebox Placement problem is NP-

hard.

Proof. We prove by reduction from the Hamiltonian cycle problem, which deter-

mines for a directed graph G = (V,E) whether there exists a simple cycle that
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contains each vertex in V . Note that a Hamiltonian cycle must be a simple cycle

without repeated nodes.

Given an instance of the Hamiltonian Cycle problem with a graph G , we con-

struct an instance of the TAMP problem with a graph G′ = (V ′, E ′) as follows.

1. For each node v ∈ V , create two nodes vin, vout ∈ V ′, where vin has a space

capacity of zero, i.e., scvin = 0, and vout of one, i.e., scvout = 1. Connect the

two nodes with an edge (vin, vout) ∈ E ′, and set its bandwidth capacity to ten,

i.e., bcvin,vout = 10.

2. For each edge (u, v) ∈ E, create an edge (uout, vin) ∈ E ′, and set its bandwidth

capacity to ten, i.e, bcuout,vin = 10. An example to create G′ from G is shown

in Fig. 3.4.

3. Create a flow f , which is the only flow in F , i.e., F = {f}. The flow source

and destination are both sin, i.e., sf = df = sin, where s is an arbitrary node

in V . The initial traffic rate is one, i.e., tf = 1. The number of required

middleboxes of f is the same as the number of nodes in V , i.e., |Mf | = |V |,

and each middlebox does not change the volume of processed traffic, i.e., ∀m ∈

Mf , alterm = 0.

Clearly, the above reduction process can be done in polynomial time.

Next, we show that if G has a Hamiltonian cycle, then the TAMP instance with

G′ and F has a maximum link load ratio of no more than 0.1, i.e., maxRatio ≤ 0.1.

Given the Hamiltonian cycle of G we construct a similar path routef in G′ as

follows. Assuming that the Hamiltonian cycle in G starts with s, for each node

v and edge (u, v) in the Hamiltonian cycle, add edge (vin, vout) and (uout, vin) to

routef , respectively. Since the Hamiltonian cycle traverses each node in G exactly

once, and each node v in G maps to a pair of nodes vin and vout in G′, routef
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traverses each node in G′ exactly once as well. Thus, we can see that routef has |V |

available spaces on the path, sufficient to host all the required middleboxes in Mf .

Further, routef traverses any link in G′ at most once, resulting in a maximum link

load ratio of 0.1, given that the traffic rate of f is always one.

Reversely, if the TAMP instance with G′ and F has a solution routef and placef

with a maximum link load ratio of 0.1, G will have a Hamiltonian cycle. Given

routef in G′, we construct a Hamiltonian cycle in G as follows. Starting with

sf = sin, sequentially add the corresponding node v ∈ V of each incoming node

vin ∈ V ′ on routef to the cycle in G. Since routef traverses all outgoing nodes vout

to obtain sufficient middlebox spaces, the constructed cycle traverses all the nodes

in G. Further, since the maximum link load ratio in G′ is 0.1, routef traverses each

link including (vin, vout) for any v at most once. Thus, the constructed cycle in G

traverses each node exactly once, and is a Hamiltonian cycle.

Corollary 3.4.2 There is no polynomial-time approximation algorithm with an ap-

proximation ratio less than two for the general Traffic Aware Middlebox Placement

problem unless P=NP.

Proof. By contradiction, assume that there exists a polynomial-time approximation

algorithm that achieves an approximation ratio of C < 2.

Consider an instance of the Hamiltonian Cycle problem with a graph G = (V,E).

Construct an instance of the TAMP problem with a graph G′ = (V ′, E ′) and a flow

set F as in the proof of Theorem 3.4.1.

If G has a Hamiltonian cycle, then the constructed TAMP problem has an op-

timal solution with the maximum link load ratio of 0.1. Thus, the approximation

algorithm should return a solution with the maximum link load ratio less than or

equal to 0.1× C = C < 0.2.
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Otherwise, if G does not have a Hamiltonian cycle, the constructed TAMP prob-

lem either does not have a solution or has a solution with the maximum link load

ratio of at least 0.2 due to multiple passes of a link.

To sum up, by simply checking whether the maximum link load ratio returned

by the approximation algorithm is less than 0.2, we can determine whether the

original Hamiltonian cycle problem has a solution within polynomial time, which is

a contradiction to the NP-hardness of the Hamiltonian Cycle problem.

The general TAMP problem actually resembles the NP-hard Traveling Salesman

Path (TSP) problem [FS07], which is a generalized version of the Hamiltonian Cycle

problem, because TSP allows the source and destination to be different, instead of

being the same node, and further the TSP solution needs to minimize the path cost

in addition to traversing each node in the network. However, while the set of nodes

to traverse in TSP is known, i.e., all nodes, the set of nodes to traverse in TAMP

may be a subset of nodes, and there are a combinatorial number of such subsets

in the network. Furthermore, even the subset of nodes is known in TAMP, it is

the harder non-metric version of TSP, because computer networks generally do not

satisfy the triangle inequality [LBSB09]. Due to the hardness of the general TAMP

problem, we will focus on design efficient and practical heuristics.

3.4.2 LFGL based MinMax Routing for Single Flow

Next, we propose the LFGL based MinMax routing algorithm to calculate the rout-

ing path and middlebox placement for a single flow f . The basic idea is to integrate

the LFGL rule with the MinMax routing algorithm that minimizes the maximum

link load ratio on the flow path.
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Based on the LFGL rule, the algorithm also works in two stages. In the first

stage, the algorithm traverses the network from the flow source sf , and iteratively

calculates the MinMax path to each node as in Dijkstra’s algorithm. When the Min-

Max path to a node v is determined, the algorithm will attempt to place shrinking

middleboxes on v until there is no more space, as if the node is on the selected final

path. In addition, the relaxation process will be applied to update the MinMax

paths to the neighbors of v. The search will follow multiple candidate paths, and

thus the algorithm will attempt placing the same middlebox at different nodes with

different candidate paths. The search along a candidate path will terminate if the

last shrinking middlebox has been placed on a node, which we call a termination

node. When there is no more candidate path to search, the algorithm switches to

the second stage to process expanding middleboxes.

In the second stage, the algorithm traverses the network, in a similar way as

in the first stage, but backward from the flow destination df , and places expanding

middleboxes when the MinMax path to a node is found. Note that if all middleboxes

are successfully placed, the departure traffic rate t
df+

f at the destination df will be

tf
∏

m∈Mf
(1 + alterm), which will be used as the “initial” traffic rate in the second

stage. After all expanding middleboxes have been placed along a candidate path,

the second stage continues searching the MinMax paths to the remaining nodes,

until it reaches a termination node u of the first stage. This means that a path

for flow f has been found with two sections: from sf to u and from u to df . For

this reason, we call u a junction node. Similar as the first stage, the second stage

stops when there is no more path to search. After the second stage finishes, the

algorithm collects all the junction nodes, each corresponding to a different path.

The algorithm compares the maximum link load ratio of each path, and selects the

path with the minimum maximum link load ratio.
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Algorithm 2 Place Middlebox on Node

Require: sorted Mf [1..n], u, start, f lag
Ensure: placef , index(u) or index′(u), tu+f or tu−f
1: i = start
2: if flag < 0 then
3: while scu > 0 and i ≤ n and alterMf [i] ≤ 0 do
4: placef (Mf [i], u) = 1; scu −−; i+ +
5: end while
6: index(u) = i− 1

7: tu+f = t
pre(u)+
f

∏
m∈Mf ,placef (m,u)=1(1 + alterm)

8: else
9: while scu > 0 and i ≥ 1 and alterMf [i] > 0 do
10: placef (Mf [i], u) = 1; scu −−; i−−
11: end while
12: index′(u) = i+ 1

13: tu−f = t
next(u)−
f /

∏
m∈Mf ,placef (m,u)=1(1 + alterm)

14: end if

Algorithm 3 shows the pseudo code of the LFGL based MinMax routing algo-

rithm, and Algorithm 2 shows the pseudo code of the placeMiddlebox function. The

latter places shrinking (flag = −1) or expanding (flag = 1) middleboxes on node

u from the start-th one of the sorted list. For easy description, we use predf (u) and

nextf (u) to represent the preceding and succeeding node of u on the path of flow f ,

i.e., routef (predf (u), u) = 1 and routef (u, nextf (u)) = 1.

Brief explanation of Algorithm 3 is as follows. Line 1 sorts the middleboxes of

flow f in the increasing order of their traffic changing factors. Lines 2 to 9 initialize

the first stage, where Saw is the set of nodes whose MinMax paths from the source

sf have been determined. Line 2 also places shrinking middleboxes on the source sf

until there is no more space or no more shrinking middleboxes. In lines 3 to 9, for

each neighbor u of the source sf , if the link (sf , u) has more available bandwidth

than t
sf+

f , then there is a candidate path from sf to u. mllr(u) records the maximum

link load ratio of the candidate path till u. Lines 10 to 18 are the loop to find the
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MinMax path to a node at a time. At the beginning of each loop, the node u /∈ Saw

with the minimum maximum link load ratio mllr(u) will be selected and added to

Saw. Line 12 places shrinking middleboxes on u. Lines 13 to 17 apply the relaxation

process, i.e., checking each neighbor v of u to see whether there is a new path to

v via u with a lower maximum link load ratio, and update if yes. Lines 19 to 42

run the second stage in a similar manner, but starting from the flow destination

df and placing expanding middleboxes. In lines 33 to 36, if the search reaches a

node u till which all the shrinking and expanding middleboxes have been placed in

the first and second stage, respectively, u will be added to the junction node set J .

When the second stage finishes, lines 43 to 47 select from J the node u with the

minimum maximum link load, and the final MinMax path can be constructed by

tracing predf (u) from u to sf and nextf (u) to df . Otherwise, if J is empty, the

algorithm fails to find a path.

Since the LFGL based MinMax routing algorithm integrates the LFGL rule and

MinMax routing, which is similar to Dijkstra’s algorithm, its complexity is the

product of the two, i.e., O((|V | log |V |+ |E|)× |Mf |).

3.4.3 Optimization of Multiple Flows

Since the general TAMP problem is NP-hard even for a single flow, the problem

becomes more challenging for multiple flows. We propose a solution similar to that

in Section 3.3.2, i.e., processing individual flows followed by optimizing middlebox

placement between flow pairs. In detail, we first sort all the flows in the decreasing

order of their initial traffic rates, to give priority to large flows. Then, we apply the

LFGL based MinMax routing algorithm to calculate the routing path and middlebox

locations for each individual flow. Finally, we check each pair of flows, identify their

common sub-paths, and optimize by swapping middleboxes.
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Algorithm 3 LFGL based MinMax Routing

Require: G, f,Mf [1..n]
Ensure: routef , placef
1: sort m ∈Mf [1..n] in increasing order of alterm
2: Stage 1: Saw = {sf}; placeMiddlebox(sf ,Mf [1..n], 1,−1)
3: for each neighbor u of sf do

4: if bcsf ,u − lsf ,u ≥ t
sf+

f then
5: mllr(u) = (lsf ,u + tf )/bcsf ,u; predf (u) = sf
6: else
7: mllr(u) =∞
8: end if
9: end for
10: while ∃u /∈ Saw, index(predf (u)) < n and alterMf [index(predf (u))+1] ≤ 0 do
11: select such u with min mllr(u);Saw = Saw ∪ {u}
12: placeMiddlebox(u,Mf [1..n], index(predf (u)) + 1,−1)
13: for each neighbor v of u do
14: if bcu,v − lu,v ≥ tu+f and mllr(v) > max(mllr(u), (lu,v + tu+f )/bcu,v) then

15: mllr(v) = max(mllr(u), (lu,v + tu+f )/bcu,v); predf (v) = u
16: end if
17: end for
18: end while
19: Stage 2: Saw′ = {df}; placeMiddlebox(df ,Mf [1..n], n, 1); J = ∅
20: if df ∈ Saw and index(df ) + 1 = index′(df ) then
21: J = J ∪ {df};mllr(df ) = max(mllr(df ),mllr′(df ))
22: end if
23: for each neighbor u of df do

24: if bc(u, df ) ≥ t
df−
f then

25: mllr′(u) = (lu,df + t
df−
f )/bcu,df ;nextf (u) = df

26: else
27: mllr′(u) =∞
28: end if
29: end for
30: while ∃u /∈ Saw′ do
31: select such u with min mll′[u];Saw′ = Saw′ ∪ {u}
32: placeMiddlebox(u,Mf [1..n], index′(nextf (u))− 1, 1)
33: if u ∈ Saw and index(u) + 1 = index′(u) then
34: J = J ∪ {u};mllr(u) = max(mllr(u),mllr(u′))
35: continue
36: end if
37: for each neighbor v of u do

38



38: if bcv,u− lv,u ≥ tu−f and mllr′(v) > max(mllr′(u), (lv,u + tu−f )/bcv,u) then

39: mllr′(v) = max(mllr′(u), (lv,u + tu−f )/bcv,u);nextf (v) = u
40: end if
41: end for
42: end while
43: if J 6= ∅ then
44: select u ∈ J with min mllr(u); exit with success
45: else
46: exit with failure
47: end if

3.5 Implementation

Due to its centralized control logic, the emerging Software Defined Networking

(SDN) architecture is an ideal platform to implement the proposed algorithms.

We have implemented a prototype system using the open-source SDN controller

Figure 3.5: Middlebox placement workflow.

Floodlight [Flo] and network emulator Mininet [min] to demonstrate our design. In

this section, we describe the prototype implementation and discuss real deployment

issues.
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As explained in Section 3.1, an SDN network is decoupled into the control plane

and data plane. For the control plane, we use the modular Floodlight controller,

and implement the proposed algorithms as a new module to calculate flow path

and middlebox placement. For the data plane, we pick the Mininet network emula-

tor. Mininet can conveniently create a network testbed of hosts and SDN-enabled

switches, each as a virtual machine (VM). For each switch in our prototype, we also

create an attached NFV server, and connect it with the switch via a high speed link.

Fig. 3.5 summarizes the workflow of our prototype to process a new incoming

flow, and each step is explained in detail below.

3.5.1 Flow Arrival Notification

Elephant flows can be statically determined based on the application types, such as

data backup or VM migration, or dynamically detected using existing techniques in

the literature [A. 11, MUK+04]. When the ingress switch detects or learns an ele-

phant flow, it tries to find a matching entry for the flow in its flow table. If there is no

matching entry, the switch wraps a packet of the flow within an OFPT PACKET IN

message, and sends it to the controller. Upon receiving the forwarded packet, the

controller learns the arrival of the new flow, and will try to calculate a path where

each link has a sufficient bandwidth capacity for the flow.

3.5.2 Flow Path and Middlebox Placement Calculation

Our module to calculate the flow path and middlebox placement is triggered by the

OFPT PACKET IN message received by the controller. The module determines

the application type based on the packet header information, such as IP addresses

and port numbers, and determines the set of required middleboxes for the new flow
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according to predefined profiles. Next, the module applies the proposed algorithms

to calculate a flow path and middlebox placement locations.

3.5.3 Midllebox VMs Startup

Once the middlebox locations have been calculated, the controller will remotely

wake up or start VMs on the selected NFV servers, which can be done through the

communication between the VM control software and server hypervisor. For exam-

ple, for the Kernel-based Virtual Machine (KVM) [kvm] hypervisor, the command

line tool Virsh [vir] can be used to remotely start, shutdown, suspend, or resume

VMs; for the VMware ESXi hypervisor [esx], the VMware vCenter server [vce] can

be used to remotely control VMs. Predefined VM images for different middleboxes

will thus be loaded to perform the desired network functions. Our Mininet proto-

type focuses on evaluating the network performance, and starts the middlebox VMs

in advance.

3.5.4 Flow Table Update

After the controller obtains the flow path and middlebox locations, it will accordingly

update the switch flow tables to ensure correct packet forwarding. A path is specified

in Floodlight as a list of Node-Port tuples in the form of (DatapathId, OFPort),

where DatapathId is the Datapath Identity of an OpenFlow instance on a switch

and OFPort represents a port number of the instance. For the routing path, the

controller sends an OFPT FLOW MOD message to each switch on the routing path.

The messages contains the matching fields to define the flow, rule priority, and

actions for the flow. In this case, the action is to forward packets of the flow to the

calculated output port. On the other hand, for the middleboxes, the controller sends
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two types of OFPT FLOW MOD messages to ensure placement locations. The first

is to the associated switch, which tells the switch to forward packets to the attached

NFV server. The second is to the Open vSwitch (OVS) running in the hypervisor

of the NFV server, which instructs the hypervisor to send matching packets to one

of the hosted middlebox VMs.

3.5.5 Middlebox Emulator Development

To evaluate the effects of middleboxes with different traffic changing factors, we

have developed a middlebox emulator program using the libpcap library [lib]. While

a normal TCP/UDP socket will only process packets destined to it, the emulator

intercepts all packets forwarded by OVS in the hypervisor using the libpcap APIs.

To emulate a shrinking middlebox m, the emulator discards intercepted packets with

a probability of −alterm. On the other hand, if m is an expanding middlebox, the

emulator duplicates intercepted packets with a probability of alterm. In this way,

the emulator will accurately change the traffic volume as indicated by the traffic

changing factor. After processing, the emulator continues to forward the packets to

their actual destinations.

3.5.6 Link Load Monitoring

To obtain the link load information necessary for the LFGL based MinMax routing

algorithm, we have developed a link load monitoring module in Floodlight. The

module periodically sends the OFPT STATS REQUEST message to every switch

to request traffic statistics. Upon receiving the request, a switch will send the

OFPT STATS REPLY response, which contains the transmitted byte count for

each port of the switch along with other statistics data. By collecting the information
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from all switches, the module estimates the load of each link by calculating the

exponentially weighted moving average.

3.5.7 Post-processing

After a flow finishes, the flow table entries will be automatically removed after idle

or hard timeout [opeb] by the switch, and the middelbox VMs can be shut down or

hibernated after a period of inactivity or manually by the controller.

3.6 Experiment and Simulation Results

We use a combination of experiments and simulations to evaluate the proposed

algorithms. Experiments in the implemented prototype generate performance data

in realistic environments, and simulations in the ns-3 simulator enable us to conduct

evaluations in large scale networks with hundreds of hosts. In this section, we present

extensive experiment and simulation data to demonstrate the effectiveness of our

design.

3.6.1 Benchmark Solutions

Since there are no existing algorithms for the studied TAMP problem in the liter-

ature, we designed the following benchmark solutions. From the proof of Theorem

3.3.1, it can be seen that the middleboxes of a flow placed in the increasing order of

their traffic changing factors always result in better performance, and thus all the

benchmark solutions sort the middleboxes before placement.

In case that the flow paths have been predetermined, there are three benchmark

solutions as follows.
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• First-fit: The first-fit rule starts with the head of the flow path, and places

the sorted middleboxes one by one, each at the first available NFV server.

• Last-fit: The last-fit rule starts from the end of the flow path, and places

the middleboxes sorted in the decreasing order one by one, each at the first

available NFV server from the tail, or the last from the head.

• Random-fit: The random-fit rule places the middleboxes at random available

nodes along the path.

In case that the flow paths are not predetermined, four benchmark solutions

are used in the simulations. Each first applies load-balanced (ECMP) shortest

path routing to determine the flow path, and then uses LFGL, First-fit, Last-fit,

or Random-fit to place middleboxes on the shortest path. Two benchmark solutions

are used in the experiments. One is the optimal solution based on the formulation,

the other is shortest path routing with LFGL. We did implement First-fit, Last-fit,

and Random-fit in this part of the experiments because LFGL has shown superior

performance in the previous experiments with predetermined paths.

3.6.2 Experiment Results with Prototype

In the prototype experiments, we use the following performance metrics to compare

our design and benchmark solutions.

• End-to-end delay: The end-to-end delay is the delay between the time points

that a packet leaves the source and arrives at the destination. Congestion will

result in a longer end-to-end delay.

• Maximum link load: The maximum link load is the upper bound of the link

load of all the links during the entire experiment run. It is a direct indicator

of the congestion level.
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For traffic generation, we run Iperf [ipe] on hosts to generate real constant bit rate

(CBR) UDP traffic. We also patched Iperf to be able to measure the end-to-end

delay.

Effectiveness of LFGL Rule: We first show the effectiveness of the LFGL rule

for the TAMP problem with predetermined paths by comparing it with benchmark

solutions.

We pick the tree topology, because it is a popular choice for institutional net-

works, and there is only a predetermined single path between any pair of nodes. We

set up a four-layer binary tree with seven switches and eight hosts, as depicted in

Fig. 3.6. Each link has 10 Mbps bandwidth. Each switch u has an attached NFV

server with two middlebox spaces, i.e., scu = 2. We sequentially create four flows

from h1, h2, h3, and h4 to h5, h6, h7, and h8, respectively. The initial traffic rate

of each flow is adjusted from 0.5 Mbps to 4 Mbps with a stride of 0.5 Mbps. Each

flow f requires two middleboxes Mf = {m1,m2} with traffic changing factors of

alterm1 = −0.2 and alterm2 = 0.2. As a result, the combined traffic changing effect

of both middleboxes is
∏

m∈Mf
(1 +alterm) = (1−0.2)(1 + 0.2) = 0.96. When a flow

starts, it has only one path, and the locations of its middleboxes will be calculated

by the above rules.

Figure 3.6: Tree topology for experiments.
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Figure 3.7: LFGL experiment results.

Fig. 3.7(a) shows the average end-to-end delays (in logarithm) of LFGL, First-

fit, Last-fit, and Random-fit. We can see that with its optimal placement strategy,

LFGL consistently beats the other three rules with shorter delay and postponed

congestion. In detail, initially, when the flow rate is small and there is no congestion,

all the rules have a small constant delay at about 7 ms. When the flow rate increases

to 2.5 Mbps, the delay of LFGL keeps stable, but that of other rules starts increasing

due to congestion. This can be explained by the fact that the root is the bottleneck

of a tree, and 2.5 = 10/4 Mbps is the bandwidth available at the root for each of

the four generated flows. Specifically, Last-fit has the longest delay at 968 ms, since

it puts all middleboxes at the end of flow path, and therefore the flow rate is 1×

in most traversed links. On the other hand, First-fit has shorter delay at 89 ms,

because it puts middleboxes at the beginning, and thus the flow rate is 0.96× in

most traversed links. Using a random strategy, random-fit achieves a short delay of

60 ms. Further, even when the flow rate increases to 3 Mbps, LFGL has a moderate

delay of 20 ms. Finally, when the flow rate increases to 3.5 Mbps, all rules have a

saturated network with an end-to-end delay of about 1150 ms.

Fig. 3.7(b) shows the maximum link load ratios of the four rules. Again, LFGL

consistently achieves the best performance among the benchmark solutions. For
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First-fit, Last-fit, and Random fit, their maximum link load ratio is approximately

4 times of the ratio between the flow rate and link capacity, and reaches one when

the flow rate is 2.5 Mbps. This is consistent with the observation in Fig. 3.7(a)

that congestion happens at 2.5 Mbps for the three rules. On the other hand, the

maximum link load ratio of LFGL is approximately 3.2 times of the ratio between

the flow rate and link capacity, and reaches one when the flow rate is 3 Mbps. The

reason is that LFGL decreases flow rates as early as possible and increase as late as

possible, and thus minimizes the traffic volumes in the network core.

Effectiveness of LFGL based MinMax Routing: Next, we demonstrate the

effectiveness of the LFGL based MinMax routing algorithm. We pick the butterfly

h6 h8 h7h5

h1 h2 h4 h3

Figure 3.8: Multipath topology for experiments.

topology with multiple available paths as depicted in Fig. 3.8. The network contains

six switches and eight hosts. Each switch has two middlebox spaces, and each link

has 10 Mbps bandwidth. Four flows are sequentially started from h1, h2, h3, and

h4 to h7, h8, h5, and h6, respectively. Each flow needs two middleboxes with traffic

changing factors of −0.2 and +0.2, respectively. We adjust the flow traffic rate from

2 Mbps to 12 Mbps with a stride of 2 Mbps. Fig. 3.9(a) shows the average end-to-

end delay. We can see that LFGL based MinMax routing outperforms LFGL with

shortest path routing due to its traffic awareness in path selection, and achieves
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Figure 3.9: LFGL based MinMax routing experiment results.

performance close to that of the optimal solution calculated from the formulation in

Section 3.2. While LFGL based MinMax routing finds disjoint flows to minimize the

maximum link load, LFGL with shortest path routing chooses the same shortest path

for multiple flows, resulting in earlier congestions and longer delays. The optimal

solution produces the shortest delay because it selects the path with the smallest

maximum link load ratio as well as least number of hops. In detail, the delay of LFGL

with shortest path routing is initially stable at about 7 ms, increases to 16 ms when

the flow rate is 6 Mbps, and exceeds 1 second once the flow rate becomes 8 Mbps.

On the other hand, the delays of LFGL based MinMax routing and the optimal

solution are stable until the flow rate increases to 10 Mbps, and grow to about 102

ms and 96 ms, respectively, when the flow rate reaches 12 Mbps. Fig. 3.9(b) shows

the maximum link load ratio. Although the optimal solution has shorter delays

than LFGL based MinMax routing due to its shorter paths, the maximum link load

ratio performance of the latter is on a par with that of the former thanks to traffic

awareness in path selection. On the other hand, LFGL with shortest path routing

saturates much earlier because of overlapping flow paths.
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3.6.3 Simulation Results

In this subsection, we present simulation results in ns-3 to evaluate the proposed

algorithms in large scale networks. To better reflect realistic traffic characteristics,

instead of using CBR traffic as generated by Iperf, we use the ns-3 On-Off burst

traffic model. A flow is in the Off state with no traffic for 50% of the time, and in

the On state with continuous CBR traffic for the remaining 50% of the time. The

traffic rate of a flow in the On state is the product of a baseline traffic rate and a

random number between 0.5 to 1.5. Each flow f requires three middleboxes Mf =

{m1,m2,m3} with the traffic changing factors of alterm1 = −0.5, alterm2 = −0.2,

and alterm3 = 0.2. Each link in the network has a bandwidth capacity of 100 Mbps

and propagation delay of 2 ms. Each simulation run lasts 300 seconds, and the

presented data are the average of four simulation runs.

In addition to the end-to-end delay and maximum link load, we also collect the

following additional performance data.

• Packet loss ratio: The packet loss ratio is the ratio of the number of lost

packets to the number of sent packets. Heavier congestion will result in a

larger packet loss ratio.

Topology with Predetermined Paths: We first conduct simulations for topolo-

gies with predetermined paths. As in Section 3.6.2, we pick the tree topology, and

set up a four-layer quad tree with 21 switches and 64 hosts. Each switch has 10 mid-

dlebox spaces. Each host generates a flow to a random destination, and we adjust

the average traffic rate of each flow from 1.25 Mbps to 12.5 Mbps with a stride of

1.25 Mbps. Fig. 3.10(a) compares the average end-to-end delay of LFGL, First-fit,

Last-fit, and Random-fit. We can observe a similar trend as in the prototype exper-

iment data that LFGL consistently achieves the shortest delay due to its optimal
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Figure 3.10: LFGL simulation results.

middlebox placement. By contrast, Last-fit has the longest delay, because it places

middleboxes at the end of flow path, and the flow rate is 1× in most links on the

path. First-fit achieves shorter delay, since it places middleboxes at the beginning,

and thus the flow rate is (1−0.5)(1−0.2)(1+0.2) = 0.48× in most links. Random-fit

has a delay between that of First-fit and Last-fit with a random strategy.

Fig. 3.10(b) and (c) show the packet lost ratio and maximum link load ratio,

respectively, of the four rules. The conclusion is consistent with that in Fig. 3.10(a)

that, in the order of LFGL, First-fit, Random-fit, and Last-fit, each rule achieves a

lower packet loss ratio as well as a lower maximum link load ratio than the subse-
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Figure 3.11: Improvement of multi-flow optimization with predetermined paths.

We have also evaluated the optimization algorithm for multiple flows presented

in Algorithm 1. As comparison, LFGL processes the multiple flows individually in

a random order. Fig. 3.11(a) and (b) show the improvements of the optimization

algorithm on the end-to-end delay and packet loss ratio, respectively. We can see

that it reduces the end-to-end delay and packet loss ratio by up to 6% and 8%,

respectively. The improvement is not significant in some cases, because the opti-

mization algorithm cannot find many middlebox pairs to swap. Note that when the

flow rate is less than or equal to 6 Mbps, both solutions have a zero packet loss ratio,

and thus there is no improvement. Since the maximum link load ratio measures the

instantaneous worst case performance, we do not see significant improvements by

the optimization algorithm.

Topology without Predetermined Paths: Next, we consider multi-path

topologies, and set up a 8-pod fat tree [AFLV08] with 80 switches and 128 hosts. To

utilize the multiple paths of the fat tree, we apply equal-cost multi-path (ECMP)

[ecm] load balancing for the shortest-path routing algorithm, by randomly dispatch-

ing a flow to one of the available next hops. The traffic rate of each flow is adjusted
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from 10 Mbps to 100 Mbps with a stride of 10 Mbps. Other settings are similar as

in the tree simulations in Section 3.6.3. Fig. 3.12(a) compares the end-to-end delay
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Figure 3.12: LFGL based MinMax routing simulation results.

of LFGL based MinMax routing with four benchmark solutions. We can see that

LFGL based MinMax routing consistently achieves the shortest end-to-end delay.

Among the other four benchmark solutions, LFGL achieves a shorter delay than the

remaining. Fig. 3.12(b) shows the packet loss ratio. We can clearly see that in the

order of LFGL based MinMax routing, LFGL, First-fit, Last-fit, and Random-fit,

each achieves a lower packet loss ratio than the subsequent ones. Finally, Fig. 3.12(c)

illustrates the maximum link load ratio. When the flow rate is 10 Mbps, we see that
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LFGL based MinMax routing performs the best, but when the flow rate increases

to 20 Mbps and above, all algorithms have a saturated instantaneous maximum link

load ratio of one. Similarly, we have also conducted simulations to evaluate the opti-
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Figure 3.13: Improvement of multi-path optimization without predetermined paths.

mization algorithm for multiple flows as explained in Section 3.4.3. As comparison,

LFGL based MinMax routing processes the multiple flows individually in a random

order. Fig. 3.13(a) and (b) show the improvements of the optimization algorithm

on the end-to-end delay and packet loss ratio. We can see that it reduces the end-to-

end delay and packet loss ratio by up to 7% and 14%, but is not always effective due

to the random order taken by LFGL based MinMax routing to process the flows.

Again, when the flow rate is 10 Mbps, both algorithms have a zero packet loss ratio,

and thus no improvement is seen in the figure. For performance evaluation in

large scale networks, we have conducted simulations in a fat-tree network with 1024

hosts. To reduce the simulation convergence time, we decrease the link capacity to

1 Mbps. The simulation results for LFGL based MinMax routing are presented in

Fig. 3.14. We can see that the algorithm also works in large scale networks, beat-

ing other benchmark solutions. However, the small link capacity leads to a longer

transmission delay and consequently a longer end-to-end delay in Fig. 3.14(a). The
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Figure 3.14: LFGL based MinMax routing simulation results (1024 hosts 1 Mbps
link capacity).

data in Fig. 3.15 also show that our optimization algorithm significantly improves

the performance for multiple flows.

3.6.4 Comparison between Experimental and Simulation Results

Comparing the above experimental and simulation results, we can see that they are

consistent. In the case with predetermined flow paths, the proposed LFGL rule

outperforms other solutions, which rank in the order of First-fit, Random-fit, and

Last-fit when the traffic changing ratio product of all middleboxes of a flow is less
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Figure 3.15: Improvement of multi-path optimization without predetermined paths
(1024 hosts 1 Mbps link capacity).

than one. In the case without predetermined flow paths, LFGL based MinMax

routing beats other solutions with shortest path routing.

However, there are also differences due to different link capacities and network

sizes. Since the link capacity in the experiments is smaller than that in the simula-

tions, the end-to-end delay in the experiments is long than that in the simulations.

Also, the smaller network size and flow number in the experiments result in smoother

and more predictable curves due to less variation.

3.7 Summary

With the development of virtualization technology, Network Function Virtualization

enables flexible deployment of middleboxes as VMs running on commodity server

hardware. In this chapter, we have studied how to efficiently deploy such mid-

dleboxes to achieve load balancing using a Software-Defined Networking approach,

and considered in particular the traffic changing effects of different middleboxes.

We formulate the Traffic Aware Middlebox Placement (TAMP) problem as a graph

based optimization problem, and solve it in two steps. First, we solve the special
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case of TAMP when flow paths are predetermined. For a single flow, we propose

the Least-First-Greatest-Last (LFGL) rule, and prove its optimality; for multiple

flows, we prove NP-hardness by reduction from the 3-Satisfiability problem, and

propose an efficient heuristic. Next, we solve the general version of TAMP without

predetermined flow paths. We prove that the general TAMP problem is NP-hard

by reduction from the Hamiltonian problem, and propose the LFGL based Min-

Max routing algorithm by integrating LFGL with MinMax routing. To validate our

design, we have implemented the proposed algorithms in a prototype system with

the open-source SDN controller Floodlight and emulation platform Mininet. In ad-

dition, we conducted simulations in ns-3 for performance evaluation in large scale

networks. Extensive experiment and simulation results are presented to demonstrate

the superiority of our algorithms over competing solutions.
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CHAPTER 4

TRAFFIC AWARE PLACEMENT OF INTERDEPENDENT NFV

MIDDLEBOXES

Network function virtualization (NFV) enables flexible implementation of network

functions, or middleboxes, as virtual machines running on standard servers. How-

ever, the flexibility also creates a challenge for efficiently placing such middleboxes,

due to the availability of multiple hosting servers, capability of middleboxes to

change traffic volumes, and dependency between middleboxes. In this chapter, we

address the optimal placement challenge of NFV middleboxes, and propose solu-

tions for middleboxes of different traffic changing effects and with different depen-

dency relations. First, we formulate the Traffic Aware Placement of Interdepen-

dent Middleboxes problem as a graph optimization problem. When the flow path

is predetermined, we design optimal algorithms to place a non-ordered or totally-

ordered middlebox set, and propose an efficient heuristic for the general scenario of a

partially-ordered middlebox set after proving its NP-hardness. When the flow path

is not predetermined, we show that the problem is NP-hard even for a non-ordered

middlebox set, and propose a traffic and space aware routing heuristic. We have

evaluated the proposed algorithms using large scale simulations and prototype ex-

periments, and present extensive evaluation results to demonstrate the effectiveness

of our design.

4.1 Introduction

Network function virtualization (NFV) transforms the implementation of network

functions, also called middleboxes, from proprietary hardware appliances to vir-

tual machines (VMs) running on industry standard servers [V. 12]. Leveraging the

57



underlying virtualization technology, VM-based software middleboxes bring many

benefits that were not previously available, such as accelerated time-to-market, re-

duced hardware and operation cost, improved security, and elastic scalability [etsc].

The flexibility of VMs also poses challenges for efficient NFV implementation.

In particular, traditional hardware middleboxes are deployed at fixed locations in

the network, and leave no choice of service locations. In an NFV network, each

switch may have one or more attached NFV servers with standard hardware that

can host VMs of arbitrary network functions [V. 12]. It is thus possible to optimize

the network performance by carefully selecting the location to place a software

middlebox among multiple candidate servers. Improper placement decisions may

cause inefficient flow paths and traffic jam.

Furthermore, the NFV service location challenge is complicated by the traffic

changing effects of middleboxes. Unlike switches and routers that forward traffic

without changing its volume, middleboxes may change the traffic volumes of pro-

cessed flows, and may do it in different ways. For example, the Citrix CloudBridge

WAN optimizer compresses traffic before sending it to the next hop, and may reduce

the traffic volume by up to 80% [wan]. On the other hand, the BCH(63,48) encoder,

used for satellite communications signaling messages, increases the traffic volume

by 31% due to the checksum overhead [MVB93].

We use the following example to illustrate the traffic changing effects of middle-

boxes. Consider a network of three nodes v1, v2 and v3, and two links (v1, v2) and

(v2, v3). Each node has an attached NFV server (denoted as a circle in Fig. 4.1),

and each server can host a single middlebox. A flow f starts at v1 and ends at v3,

whose initial traffic rate is 1. Two middleboxes m1 and m2 need to be applied to f .

m1 will double the traffic rate, while m2 will decrease it by 50%. By placing m1 on

v1 and m2 on v3, the loads of links (v1, v2) and (v2, v3) will be 1× 2 = 2, as shown
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Figure 4.1: Traffic changing effects of middleboxes.

in Fig. 4.1(a). However, by placing m1 on v3 and m2 on v1, the loads of both links

are reduced to 1× 0.5 = 0.5, as shown in Fig. 4.1(b).

The placement of middleboxes is also constrained by the dependency relation

that may or may not exist between middleboxes [S. 14]. For instance, an IPSec

decryptor is usually placed before a NAT gateway [cis], while a VPN proxy can be

placed either before or after a firewall [ms-]. In the above example, if there is a

constraint for m1 to be applied before m2, then the placement scheme in Fig. 4.1(b)

would violate the constraint. However, by placing m1 on v1 and m2 on v2, we can

still reduce the load of link (v2, v3) from 2 to 1 as in Fig. 4.1(c), in contrast to the

case in Fig. 4.1(a).

In this work, we study the optimal placement of NFV middleboxes. We propose

comprehensive solutions that address the traffic changing effects of middleboxes, and

consider different types of middlebox dependency relations. The proposed solutions

will focus on elephant flows [A. 11], since it is more effective to optimize those large-

size and long-duration flows [B. 10]. Our design utilizes the emerging Software-

Defined Networking (SDN) technology as the implementation platform, because it

enables efficient optimization by decoupling the network control plane and data

plane.

Our main contributions in this chapter are summarized as follows.

1. We formulate the Traffic Aware Placement of Interdependent Middleboxes

(TAPIM) problem, considering in particular a generalized partial order for

59



the middlebox dependency relation, as a graph optimization problem with the

objective to load-balance the network.

2. For topologies with predetermined paths, such as the tree, we design optimal

algorithms for the special case when the middlebox set is a non-ordered or

totally-ordered one. For the general case when the dependency relation is a

partial order, we show that the TAPIM problem is NP-hard by reduction from

the Clique problem, and propose an efficient heuristic to convert a partially-

ordered set to a totally-ordered one.

3. For topologies without predetermined paths, we prove that the TAPIM prob-

lem is NP-hard even for a non-ordered middlebox set by reduction from the

Hamiltonian Cycle problem. Our proposed solution then works in two steps:

first finding a path with enough resources to host all the middleboxes, and

then placing the middleboxes on the given path.

4. We have implemented the proposed algorithms in the ns-3 simulator and a

SDN based prototype, and present extensive simulation and experiment results

to demonstrate the effectiveness of our design.

4.2 Problem Statement

In this section, we formulate the Traffic Aware Placement of Interdependent Mid-

dleboxes (TAPIM) problem.

Consider a network represented by a directed graph G = (V,E). Each node

v ∈ V may have one or more attached NFV servers, and its space capacity is denoted

as sc[u]1≥ 0, i.e., the maximum number of middleboxes to host. For simplicity, we

1We use square brackets [] to denote properties or known values, and round brackets
() denote to functions or variables.
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assume that each middlebox needs one space, and additional processing power can

be achieved by multiple load-balanced middlebox instances [A. 08]. A link (u, v) ∈ E

has a bandwidth capacity bc[u, v] ≥ 0, i.e., the amount of available bandwidth. For

easy representation, we define connectivity by connect[u, v] = 1 if bc[u, v] > 0. The

existing load of the link is denoted as load[u, v].

For route calculation, each link (u, v) ∈ E is assigned a weight, denoted as

weight(u, v, l), which is a non-decreasing function of the link load l, i.e., ∀l ≤

l′, weight(u, v, l) ≤ weight(u, v, l′). A broad category of weight functions satisfy the

non-decreasing requirement, such as the ones used by the popular Cisco EIGRP [eig]

and OSPF [osp] protocols. The non-decreasing link weight function helps load-

balance network traffic when the routing protocol aims to minimizes the path cost,

which is defined as the weight sum of all the path links.

An elephant flow f is defined as a 4-tuple (src, dst, t,M), in which src ∈ V

is the source node, dst ∈ V is the destination node, t is the initial traffic rate

when f arrives at the ingress switch of the network, and M is the set of required

middleboxes. (M may include multiple instances of the same middlebox type for

increased processing power if necessary.)

Each middlebox m ∈ M has an associated traffic changing factor ratio[m] ≥ 0,

which is the ratio of the traffic rate of a flow after and before being processed by m.

The dependency relation ← is defined as a strict partial order on M that is

1. Irreflexive: m8 m,

2. Transitive: m← m′ and m′ ← m′′ then m← m′′, and

3. Asymmetric: m← m′ then m′ 8 m.

Intuitively, m← m′ means that the middlebox m should be applied before m′. For

easy representation, define depend[m,m′] = 1 if m← m′, and 0 otherwise.
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When the flow f enters the network, a multi-hop path, denoted as route, will be

assigned for the flow, which is a decision variable defined as

route(v, i) =


1, if v ∈ V is the ith hop on the path.

0, otherwise.

(4.1)

We define i to start from one, and denote the last hop number as n for convenience.

Note that repeating nodes are allowed on the path to enable more general solu-

tions, i.e., ∃v, i 6= i′ : route(v, i) = 1 and route(v, i′) = 1. To avoid performance

degradation for TCP flows, a flow is not allowed to be split among two paths [B. 10].

In addition, a placement scheme, denoted as place, will determine the location

for each middlebox m ∈M , which is a decision variable defined as

place(m, i) =


1, if m ∈M is placed on the ith hop.

0, otherwise.

(4.2)

To achieve load balance, we do not consider sharing of a middlebox by multiple

elephant flows, but instead leave the remaining capacity of a placed middlebox to

mice flows.

Use tin(i) and tout(i) to denote the incoming and outgoing traffic rate of flow

f at the ith hop on the path, respectively. If f is processed by a single middlebox

m at the ith hop, then tout(i) = tin(i)ratio[m]. Note that the incoming traffic rate

at the flow source is the initial traffic rate, i.e., tin(1) = t. For convenience, use

t(u, v) =
∑

i∈[1,n−1] route(u, i)route(v, i + 1)tout(i) to represent the traffic rate of f

on link (u, v).

Consistent with most popular routing protocols, such as Cisco EIGRP and

OSPF, our optimization objective is to determine route and place to minimize the
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path cost of flow f as shown in Equation (4.3). It should be noted that the proposed

solutions can easily adapt to other optimization objectives, such as minimizing the

maximum link load in the network.

minimize
n−1∑
i=1

∑
u∈V

∑
v∈V

route(u, i)route(v, i+ 1)weight(u, v, tout(i) + load[u, v]) (4.3)

subject to the following constraints:

∀i > n, ∀v ∈ V : route(v, i) = 0 (4.4)

route(src, 1) = 1, route(dst, n) = 1 (4.5)

∀v ∈ V :
∑
i∈[1,n]

∑
m∈M

place(m, i)route(v, i) ≤ sc[v] (4.6)

∀(u, v) ∈ E : t(u, v) + load[u, v] ≤ bc[u, v] (4.7)

∀m ∈M :
∑
i∈[1,n]

place(m, i) = 1 (4.8)

∀m,m′ ∈M :∑
i∈[1,n]

place(m′, i)i−
∑
i∈[1,n]

place(m, i)i

×
depend[m,m′] ≥ 0 (4.9)

∀i ∈ [1, n] :

tout(i) = tin(i)
∏
m∈M

placef (m, i)ratio[m] (4.10)

∀i ∈ [1, n− 1],∀u, v ∈ V :

route(u, i)route(v, i+ 1) ≤ connect[u, v] (4.11)

Brief explanation of the model is as follows. Equation (4.3) defines the optimiza-

tion objective. To discourage repeated links on the flow path, when the flow traverses
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the same link multiple times, the link weight of each traverse will be counted sepa-

rately in the path cost. Equation (4.4) states that the nth hop is the last hop of the

flow path. Equation (4.5) enforces the first and last hops of the flow path to be the

source src and destination dst, respectively. Equation (4.6) states that, for a node v,

the total space demand of hosted middleboxes
∑

i∈[1,n]
∑

m∈M place(m, i)route(v, i)

should not exceed its space capacity sc[v]. Equation (4.7) states that, for a link

(u, v), the aggregate load of all flows traversing it t(u, v) + load[u, v] should not

exceed its bandwidth capacity bc[u, v]. Equation (4.8) states that a middlebox m

should be installed once and only once. Equation (4.9) enforces the dependency

relation between middleboxes, or in other words m must be placed no later than m′

if the former is depended on by the latter. Equation (4.10) states that, the outgo-

ing flow traffic rate at a hop, i.e., tout(i), is equal to the incoming rate, i.e., tin(i),

multiplying the traffic changing ratios ratio[m] of all the middleboxes m placed at

this hop, i.e.,
∏

m∈M placef (m, i)ratio[m]. It also ensures flow conservation, in the

sense that no flow traffic can be generated or terminated at an intermediate node,

except the effects of middleboxes. Equations (4.11) enforces that consecutive hops

of the flow path must be connected in the network.

4.3 Middlebox Placement with Predetermined Paths

In this section, we propose solutions for the TAPIM problem when the flow path,

i.e., route, is predetermined. For example, in the tree topology, there is a unique

path between any pair of leaves. We look at three cases of the problem. First, for

the special case when there is no dependency between any middleboxes, we propose

the Non-Ordered Set Placement algorithm that uses the least-first-greatest-last rule.

Next, for the special case when there is a total dependency order on the middlebox
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set, we propose the dynamic programming based Totally-Ordered Set Placement

algorithm. Finally, for the general scenario of a partial dependency order on the

middlebox set, we prove that it is NP-hard by reduction from the Clique problem,

and propose an efficient heuristic to convert a partially-ordered set to a totally-

ordered set.

m m' m"

(b) Totally-ordered (c) Partially-ordered(a) Non-ordered

m m' m" m m' m"

Figure 4.2: Examples of non-ordered, totally-ordered, and partially-ordered middle-
box set.

4.3.1 Non-Ordered Middlebox Set

We start with the special case that the middlebox set M is a non-ordered set, i.e.,

∀m,m′ ∈ M,m 8 m′ and m′ 8 m. Thus, different middleboxes can be placed

in an arbitrary order. An example is shown in Fig. 4.2(a), where no dependency

exists between middleboxes. We propose the Non-Ordered Set Placement (NOSP)

algorithm, and show its optimality.

The basic idea is to shrink the flow as early as possible by installing the mid-

dleboxes that decrease the traffic rate from the path head, and expand the flow as

late as possible by installing the middleboxes that increase the traffic rate from the

path tail.

Apparently, the placement will succeed if the number of available spaces on the

path is greater than or equal to the number of required middleboxes, i.e.,

∑
i∈[1,n]

∑
v∈V

route[v, i]sc[v]/
∑

i′∈[1,n]

route[v, i′]

 ≥ |M |
If there are enough spaces, the NOSP algorithm places the middleboxes as follows.
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1. Sort all the middleboxes m ∈M based on their traffic changing ratios ratio[m].

2. Place the middleboxesm with ratio[m] < 1 from the path head in an increasing

order of their traffic changing ratios. When a node has no more space, continue

with the succeeding node on the path.

3. Place the middleboxes m with ratio[m] ≥ 1 from the path end in an decreasing

order. When a node has no more space, continue with the proceeding node.

Algorithm 4 Non-Ordered Set Placement

Require: G, f, route,M [1..|M |]
Ensure: place
1: sort m ∈M [1..|M |] in increasing order of ratio[m]
2: i = 1, j = 1
3: while j ≤ |M | and ratio[M [j]] < 0 do
4: while sc[vi] > 0 and i ≤ n and ratio[M [j]] < 0 do
5: place(M [j], i) = 1; sc[vi]−−; j + +
6: end while
7: if sc[vi] = 0 and j ≤ |M | and ratio[M [j]] < 0 then
8: if i = n then
9: exit with no-space error
10: else
11: i+ +
12: end if
13: end if
14: end while
15: i = n, j = |M |
16: while j ≥ 1 and ratio[M [j]] ≥ 0 do
17: while sc[vi] > 0 and j ≥ 1 and ratio[M [j]] ≥ 0 do
18: place(M [j], i) = 1; sc[vi]−−; j −−
19: end while
20: if sc[vi] = 0 and i ≥ 1 and ratio[M [j]] ≥ 0 then
21: if i = 1 then
22: exit with no-space error
23: else
24: i−−
25: end if
26: end if
27: end while
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The pseudo code of LFGL is shown in Algorithm 4. For easy description, denote the

ith hop node on the flow path as vi. Line 1 sorts all the middleboxes m ∈M [1..|M |]

in the increasing order of their traffic changing factors ratio[m]. Lines 2 to 14 install

the middleboxes with traffic changing ratios less than one from the head of the flow

path. In detail, line 2 initializes the first stage by starting with the first hop and

the middlebox with the least traffic changing ratio, i.e., M [1] after sorting. Line 3

is the loop to process middleboxes with ratios less than one. Line 4 checks if the

current hop vi has available spaces. If yes, Line 5 installs the middlebox M [j] on

hop i, decrements the number of available spaces sc[vi] at vi, and increments the

middlebox index j. Lines 7 and 8 check whether the current hop vi is already the

last hop and there are still middleboxes with ratios less than one to install. If yes,

line 9 exits since there is no more space on the flow path. Otherwise, if the current

hop vi is not the last hop, line 11 continues with the next hop on the path. Lines

15 to 27 install the middleboxes with ratios greater than or equal to one from the

tail of the flow path in a similar manner as above.

As can be seen, NOSP processes each middlebox in M only once after sorting,

and therefore its time complexity is O(|M | log |M |), i.e., the time complexity to sort

M .

Lemma 4.3.1 NOSP minimizes the flow rate on each link of the path.

The proof of Lemma 4.3.1 is omitted, which is similar to the proof of Theorem

3.3.1 in Chapter 3.

Theorem 4.3.2 The Non-Ordered Set Placement algorithm achieves the minimum

path cost.

Proof. By Lemmas 4.3.1, NOSP minimizes the flow rate on each path link. Note

that for the link traversed multiple times by the path, NOSP minimizes the flow rate
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for each pass. Therefore, the total load of each link as the sum of the existing load

and flow rate is also minimized. Given that the link weight function weight(u, v, l)

is a non-decreasing function of the total link load l, NOSP minimizes the weight of

each path link and subsequent the path cost.

4.3.2 Totally-Ordered Middlebox Set

Next, we solve the other special case of TAPIM when the middlebox set is a totally-

ordered set, i.e., ∀m,m′ ∈ M , either m ← m′ or m′ ← m, or in other words the

middleboxes form a dependency chain. An example is shown in Fig. 4.2(b), in

which m must be placed m′ and m′ before m′′. Although the placement order of

the middleboxes has been determined, it is still necessary to determine the optimal

placement location for each middlebox, because there may be an excessive number

of available spaces on the flow path. For easy description, we use mj to denote the

jth middlebox from the head of the dependency chain, and vi to denote the ith hop

node on the flow path, where i and j start from 1.

We propose a dynamic programming based algorithm called Totally-Ordered Set

Placement (TOSP) based on the following observation. Use TOSP(i, j) to denote

the minimum weight sum of the first i links when place the first j middleboxes,

i.e., m1 to mj, on the first i hops, i.e., v1 to vi, of the flow path. The optimal

substructure gives the following recursive formula.

TOSP(i, j) =


w(1; 1, j), if i = 1.

minx∈[1,j+1]

(
TOSP(i− 1, x− 1) + w(i;x, j)

)
, otherwise.

(4.12)

where w(i;x, j) is the weight of link (vi, vi+1) when placing middleboxes mx to mj

on node vi, i.e.,
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Equation (4.12) states that if i = 1, TOSP(i, j) is simply the weight of the first

path link when placing all the first j middleboxes on the first hop v1. Otherwise,

the optimal result TOSP(i, j) to place the first j middleboxes on the first i hops

is to select the minimum link weight sum among j + 1 possible solutions, in which

the xth solution places the first x − 1 middleboxes on the first i − 1 hops, i.e.,

TOSP(i− 1, x− 1), and places the remaining middleboxes mx to mj on the ith hop

vi, i.e., w(i;x, j).

w(i;x, j) =



0, if x > j.

weight
(
vi, vi+1, t

∏
y∈[1,j] ratio[my] + load[vi, vi+1]

)
,

if sc[vi] ≥ j − x+ 1.

∞, otherwise.

(4.13)

Equation (4.13) calculates the weight of the ith path link, i.e., (vi, vi+1), when

placing middleboxes mx to mj on the ith hop vi, and sets it to zero if x > j or

infinity if vi has less than j − x + 1 available spaces. Note that if x ≤ j and vi

has sufficient spaces, w(i;x, j) does not depend on x. In other words, as long as vi

has no less than j − x+ 1 spaces to host middleboxes mx to mj, the weight of link

(vi, vi+1) is the same, which simplifies the calculation of TOSP(i, j) as the sum of

the minimum sub-solution minx∈[j−sc[vi]+1,j+1]

{
TOSP(i− 1, x− 1)

}
and a constant.

Thus, we can rewrite the recursive relationship as:

TOSP(i, j) (4.14)

= min
x∈[1,j+1]

{
TOSP(i− 1, x− 1) + w(i;x, j)

}
= min

x∈[j−sc[vi]+1,j+1]

{
TOSP(i− 1, x− 1) + w(i;x, j)

}
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= min
x∈[j−sc[vi]+1,j+1]

{
TOSP(i− 1, x− 1)

}
+

weight
(
vi, vi+1, load[vi, vi+1] + t

∏
y∈[1,j]

ratio[my]
)

The pseudo code of TOSP is shown in Algorithm 5. Lines 1 to 7 initialize

the first row of the dynamic programing matrix. Line 1 checks if the first hop v1

has j spaces. If yes, TOSP(1, j) is assigned the weight of the first link in line 3,

and otherwise infinity in line 4. Lines 8 and 9 start the iteration to calculate the

remaining entries in the matrix. Based on the previous results, lines 10 to 15 finds

among the viable schemes the one with the minimum link weight sum to place a

portion of middleboxes in the first i−1 hops. Finally, line 16 calculates the optimal

TOSP(i, j) by adding the minimum link weight sum of the first i− 1 hops and the

link weight of the last hop.

Algorithm 5 Totally-Ordered Set Placement

Require: G, f, route,M [1..|M |], depend
Ensure: place
1: for j = 1 to |M | do
2: if sc[v1] ≥ j then
3: TOSP(1, j) = weight(v1, v2, t

∏j
y=1 ratio[my] + load[v1, v2])

4: else
5: TOSP(1, j) =∞
6: end if
7: end for
8: for i = 2 to n do
9: for j = 1 to |M | do
10: min =∞
11: for x = j − sc[vi] + 1 to j + 1 do
12: if TOSP(i− 1, x− 1) < min then
13: min =TOSP(i− 1, x− 1)
14: end if
15: end for
16: TOSP(i, j)= min+ weight(vi, vi+1, t

∏j
y=1 ratio[my] + load[vi, vi+1])

17: end for
18: end for
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When the flow path route is not efficient and contains repeating nodes, the above

algorithm may obtain a sub-optimal result. The reason is that, different hops of a

repeating node share middlebox spaces, but the above algorithm processes those

hops always from the path head, and thus assigns earlier hops higher priority. A

simple solution is to first enumerate all the possibilities to divide the shared spaces

among different hops of a repeating node, and then apply TOSP to each possible

division. For example, if the flow path contains a repeating node with s spaces

that appears twice at the ith1 hop vi1 and the ith2 hop vi2 , we view vi1 and vi2 as

two independent nodes by allocating x ∈ [0, s] spaces to vi1 and s− x spaces to vi2 .

TOSP is then applied to each different x value, and the minimum path cost among

all the cases is the optimal solution.

When there is no repeating node on the flow path, the time complexity of the

TOSP algorithm is O(n|M |2), because the dynamic programming table has n rows

and |M | columns, and it takes up to O(|M |) time to calculate each table entry.

When there are r repeating nodes and each node has up to s spaces and appears

in up to h hops, the time complexity is O(s(h−1)rn|M |2), because there are s(h−1)r

possible divisions of shared spaces, and the time complexity to apply TOSP to each

division is O(n|M |2). Fortunately, efficient routing paths should have small or zero

r and h values.

4.3.3 Partially-Ordered Middlebox Set

We now solve the general scenario where the dependency relation is a partial order.

The following theorem shows the NP-hardness of the problem.

Theorem 4.3.3 The TAPIM problem with a predetermined path for a partially or-

dered middlebox set is NP-hard.
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Figure 4.3: Reduction from Clique to TAPIM with predetermined path.

Proof. We prove by reduction from the Clique problem [CLRS09]. The clique prob-

lem decides whether an undirected graph G = (V,E) has a clique of size k, which is

a complete sub-graph with k vertices and
(
k
2

)
edges. For example, the graph in Fig.

4.3(a) has a clique of size 3: ({a, b, c}, {(a, b), (a, c), (b, c)}).

Given an instance of the Clique problem with a graph G = (V,E), an instance

of the TAPIM problem can be constructed in polynomial time as follows.

1. For each vertex p ∈ V , create a vertex middlebox mp with ratio[mp] = 2.

2. For each edge (p, q) ∈ E, create an edge middlebox m(p,q) with ratio[m(p,q)] =

2−k/(
k
2).

3. The middlebox corresponding to an edge (p, q) depends on the two middleboxes

corresponding to its two incident vertices p and q, i.e., mp ← m(p,q) and

mq ← m(p,q).

4. There is a single flow f with the initial traffic rate of one, i.e., t = 1. The path

has |V |+ |E| nodes. Use vi to denote the ith node on the path. Each node has

a space capacity of one, i.e., sc[vi] = 1.

5. Each link on the path has a bandwidth capacity of infinity, i.e., bc[vi, vi+1] =

∞. The link (vk+(k
2)
, vk+(k

2)+1) is called the critical link, with its weight being

one if the link load is no more than one and infinity otherwise, i.e.,
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weight((vk+(k
2)
, vk+(k

2)+1), l) =


1, if l ≤ 1.

∞, if l > 1.

(4.15)

The weight of any other link is always zero.

Next, we show that that if the graph G = (V,E) has a clique of size k, then

the constructed TAPIM instance has a minimum path weight of one. Assume the

solution clique of size k is G′ = (V ′, E ′), the solution for TAPIM is constructed as

follows.

1. For each vertex p ∈ V ′, place the corresponding middlebox mp one by one

starting from the path head v1.

2. For each edge (p, q) ∈ E ′, continue placing the corresponding middlebox m(p,q)

along the path.

3. For each remaining vertex p ∈ V \ V ′, continue placing the corresponding

middlebox mp.

4. For remaining edges in (p, q) ∈ E \ E ′, continue placing the corresponding

middlebox m(p,q).

Since G′ = (V ′, E ′) is a complete sub-graph, for each edge middlebox m(p,q)

placed in Step 2, its two predecessor vertex middleboxes mp and mq must have

been placed in Step 1. Furthermore, since Step 3 places all the remaining vertex

middleboxes, the predecessors of all edge middleboxes placed in Step 4 are satisfied.

Therefore, there is no dependency violation. Also, when the flow arrives at the

critical link (vk+(k
2)
, vk+(k

2)+1), it has traversed |V ′| = k vertex middleboxes and

|E ′| =
(
k
2

)
edge middleboxes, its flow rate is 1 × 2k × (2−k/(

k
2))(

k
2) = 1. As a result,

the weight of the critical link is one, and the entire path cost is also one.
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Conversely, if the constructed TAPIM instance has a minimum path cost of one,

then the graph G = (V,E) has a clique of size k denoted as G′ = (V ′, E ′). We show

by contradiction that the first k +
(
k
2

)
middleboxes placed on the path must be k

vertex middleboxes and
(
k
2

)
edge middleboxes.

1. For contradiction, assume that there are more than k vertex middleboxes and

fewer than
(
k
2

)
edge middleboxes. Since the traffic changing ratio of a vertex

middlebox is 2 and that of an edge middlebox is 2−k/(
k
2), the flow rate will

be greater than one when it comes to the critical link, and the weight of the

critical link would be infinity instead of one.

2. For contradiction, assume that there are fewer than k vertex middleboxes and

more than
(
k
2

)
edge middleboxes. With fewer than k vertex middleboxes, the

number of edges generated by those vertices in G must be fewer than
(
k
2

)
, and

thus there must exist an edge middlebox whose predecessors have not been

satisfied.

Thus, the first k +
(
k
2

)
middleboxes placed on the path are exactly k vertex

middleboxes and
(
k
2

)
edge middleboxes, and the predecessor vertex middleboxes of all

edge middleboxes are included in this set. Therefore, the sub-graphG′ corresponding

to those vertex and edge middleboxes form a clique of size k.

After proving the NP-hardness, our solution to place a partially-ordered mid-

delbox set is to first convert it to a totally-ordered middlebox set and then apply

TOSP.

Following the least-first-greatest-last rule to place in NOSP, the objective of the

conversion algorithm is to arrange the middleboxes in the resulting total order chain

in the increasing order of their traffic changing ratios. The intuitive solution is thus

to iteratively find the middleboxes without dependencies, remove among them the
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one with the least traffic changing ratio, and add it to the end of the total order

chain. For example, given four middleboxes with the following traffic changing

ratios and dependencies: 1.4← 1.5 and 1.6← 0.1, the conversion result will be the

following total order chain: 1.4← 1.5← 1.6← 0.1.

To increase the solution search space, we also add lookahead information by

searching further beyond just the middleboxes without dependencies. Define a self-

dependent middlebox tree of size k to be a tree of k middleboxes that are rooted

from a single middlebox and depend on only the middleboxes in the tree. The

traffic changing ratio of the tree is the product of the traffic changing ratios of all

the middleboxes in the tree. In the above example, 1.6 ← 0.1 is a self-dependent

tree of size 2, and its traffic changing ratio is 1.6 · 0.1 = 0.16.

Algorithm 6 Converting Partially-Ordered Set to Totally-Ordered Set with looka-
head of k

Require: k,M, depend
Ensure: M ′

1: for each middlebox m ∈M do
2: if m has no dependency then
3: minratio[m] = mink

x=1{ratio of size x self-independent tree with root m}
4: else
5: minratio[m] =∞
6: end if
7: end for
8: for j = 1 to |M | do
9: select in M middlebox m with least minratio[m]
10: M ′[j + +] = m
11: M = M \ {m}
12: for each middlebox m′ directly dpendening on m do
13: minratio[m′] = mink

x=1{ratio of size x self-independent tree with root
m′}

14: end for
15: end for

The conversion algorithm with a lookahead value of k works in iterations as

follows. In each iteration, the algorithm first finds all the middleboxes with no
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dependency. Using each of such middleboxes as the root, the algorithm calculates

the self-independent tree of size up to k that has the minimum traffic changing ratio.

Among all the calculated trees with different root middleboxes, the algorithm selects

the one with the minimum traffic changing ratio, removes its root middleboxes, and

adds it to the total order chain. For the above example, the first iteration generates

two trees of size up to 2: 1.4 of size 1 with 1.4 being the root, and 1.6← 0.1 of size

2 with 1.6 being the root. Since the traffic changing ratio of the latter 0.16 is less

than that of the former 1.4, the root of the latter will be removed. The resulting

total order chain after the algorithm converges is thus: 1.6← 0.1← 1.4← 1.5.

The pseudo code of the conversion algorithm is shown in Algorithm 6. Lines 1

to 7 conduct the initialization to calculate for each middlebox without dependencies

the minimum ratio self-independent tree. Lines 8 to 15 are the iterations to build the

result total order chain. Line 9 finds among the middleboxes without dependencies

the one with the minimum ratio self-independent tree, line 10 adds it to the total

order chain, and line 11 removes it from the original middlebox set. Lines 12 to 14

calculate for each child of the removed middlebox its minimum ratio self-independent

tree.

When the lookahead parameter k = 1 or 2, the time complexity of the conversion

algorithm is O(|M | log |M |)), because there are up to |M | iterations, and the time

complexity to select the middelebox with the minimum traffic changing ratio is

O(log |M |) using a heap. When k = 2, the optimal self-dependent trees of size up to

2 with each middlebox being the root can be pre-calculated in O(|M |) time. Since

|M | is usually small, and k = 2 will be sufficient in most cases.
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4.4 Middlebox Placement without Predetermined Path

In this section, we solve the TAPIM problem when the flow path, i.e., route, is not

predetermined. We start by proving that the TAPIM problem without a predeter-

mined path is NP-hard even for a non-ordered set by reduction from the Hamiltonian

Cycle problem. We then propose a two-step solution by first finding a flow path

with sufficient spaces and then applying the algorithms in Section 4.3 to place mid-

dleboxes on the given path.

4.4.1 NP-Hardness

The following theorem shows the hardness of the TAPIM problem without a prede-

termined flow path.

aout bout

ain

cin

coutdout

(a) Hamiltonian Cycle (b) TAPIM

din

bin

a b

cd

Figure 4.4: Reduction from Hamiltonian Cycle to TAPIM.

Theorem 4.4.1 Without a predetermined flow path, the TAPIM problem is NP-

hard even for a non-ordered middlebox set.

Proof. The proof is similar to the proof of Theorem 3.4.1 in Chapter 3. For ease of

reading, we still give the detailed proof as following. The proof is by reduction from

the Hamiltonian Cycle problem, which determines for a directed graph G = (V,E)

whether there exists a simple cycle that contains each vertex in V . Note that a

Hamiltonian cycle must be a simple cycle without repeating nodes.
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For a Hamiltonian Cycle instance with a graph G = (V,E), a TAPIM instance

with a graph G′ = (V ′, E ′) can be constructed in polynomial time as follows:

1. For each vertex v ∈ V , create two nodes vin, vout ∈ V ′, where vin has a space

capacity of zero, i.e., sc[vin] = 0, and vout of one, i.e., sc[vout] = 1. Connect

the two nodes with a link (vin, vout) ∈ E ′, and set its bandwidth capacity to

infinity, i.e., bc[vin, vout] = ∞. Its weight is one if the load is no more than

one, i.e., ∀l ≤ 1, weight(vin, vout, l) = 1, and infinity otherwise.

2. For each edge (u, v) ∈ E, create a link (uout, vin) ∈ E ′, and set its band-

width capacity to one, i.e, bc[uout, vin] = 1, and its weight to be zero, i.e.,

∀l, weight(uout, vin, l) = 0. An example to create G′ from G is shown in Fig.

4.4.

3. Create a flow f with the source and destination both being ain, i.e., src =

dst = ain, where a is an arbitrary vertex in V . The initial traffic rate is one,

i.e., t = 1. The middlebox set M is a non-ordered one with |V | middleboxes,

i.e., |M | = |V |, and each middlebox has a traffic changing ratio of one, i.e.,

∀m ∈M, ratio[m] = 1.

Next, we show that if G has a Hamiltonian cycle, then the TAPIM instance

with G′ and f has a minimum path cost of |V |. Since the Hamiltonian cycle of G

traverses each vertex in V exactly once, we can construct a similar path route in G′

that traverses each node in V ′ exactly once as follows. Without loss of generality,

assume that the Hamiltonian cycle in G starts at a, traverses all the other vertices,

and ends at a.

1. For each edge (u, v) in the Hamiltonian cycle, add link (vout, vin) to the path.

2. For each vertex v in the Hamiltonian cycle, add link (vin, vout) to the path.
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For the example in Fig. 4.4, G has a Hamiltonian cycle a ⇒ d ⇒ c ⇒ b ⇒ a, and

the constructed path route in G′ is ain ⇒ aout ⇒ din ⇒ dout ⇒ cin ⇒ cout ⇒ bin ⇒

bout ⇒ ain. Since the Hamiltonian cycle traverses each vertex in G exactly once, and

each vertex v in G maps to a pair of nodes vin and vout in G′, route also traverses

each node, including each outgoing node vout that has a space, in G′ exactly once.

Thus, the path route has |V | available spaces, sufficient to host all the middleboxes

in M . Also, route traverses each (vin, vout) edge exactly once, and thus the weight

of each link is one and the path cost is |V |.

In the other direction, if the constructed TAPIM instance with G′ and f has

a solution route and place with a minimum path cost of of |V |, then G will have

a Hamiltonian cycle. Given route in G′, we construct a simple cycle in G as fol-

lows. Starting with src = ain, sequentially add the corresponding vertex v ∈ V of

each incoming node vin ∈ V ′ on route to the cycle in G. Next, we show that the

constructed cycle in G is a Hamiltonian cycle. Remember that f needs to traverse

all outgoing nodes vout in order to obtain sufficient middlebox spaces, and the only

way to reach vout is through vin. Therefore, route traverses all the nodes in G′, and

the constructed cycle traverses all the vertices in G. In addition, since the path

cost is |V |, each (vin, vout) link for any v is traversed at most once. Therefore, the

constructed cycle in G traverses each vertex v ∈ V exactly once, and it is thus a

Hamiltonian cycle.

4.4.2 Traffic and Space Aware Routing

Our solution to TAPIM without a predetermined path works in two steps by first

finding a viable path for the flow and then applying the algorithms in Section 4.3

to place the middleboxes on the determined path.
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From the proof of Theorem 4.4.1, it can be seen that it is NP-hard to find the

minimum cost path with sufficient spaces, and thus we propose the Traffic And

Space Aware Routing (TASAR) heuristic. The basic idea is to originate from the

source, iteratively route to a nearby node with spaces until sufficient spaces have

been accumulated, and finally go to the destination.

In detail, the TASAR heuristic works as follows. It starts by calculating the

number of spaces needed on the path besides those in the source and destination,

i.e., |M | − sc[src]− sc[dst]. Next, the heuristic enters iterative loops to accumulate

the necessary number of spaces. In the xth iteration, the heuristic runs Dijkstra’s

algorithm [CLRS09] from vx, with v1 = src, to find the nearest (in terms of the path

cost) node with spaces, denoted as vx+1, and add the path from vx to vx+1 to the flow

path route. If sufficient spaces have been accumulated, i.e., |M |−sc[src]−sc[dst]−∑x+1
i=1 sc[vi] ≤ 0, the iteration stops, and the heuristic runs Dijkstra’s algorithm for

the last time to find the minimum cost path from the current node vx+1 to the

destination dst. Otherwise, if more spaces are needed, the iteration continues. The

Algorithm 7 Traffic and Space Aware Routing

Require: G, src, dst, |M |
Ensure: route
1: missing = |M | − sc[src]− sc[dst]
2: v1 = src; i = 1
3: while missing > 0 do
4: vi+1 = nearest node from vi with spaces
5: append to flow path route the section from vi to vi+1

6: missing = missing − sc[v++i]
7: end while
8: append to flow path route the section from vi to dst

pseudo code of the TASAR heuristic is shown in Algorithm 7. Line 1 calculates the

number of missing spaces. Line 2 initializes the loop between line 3 and 7, which

uses Dijkstra’s algorithm to find the nearest node with spaces and appends the path
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to it to the flow path. Finally, line 8 applies Dijkstra’s algorithm again to find the

minimum cost path to the destination.

The time complexity of the heuristic is O(|M |(|E| + |V | log |V |)), because the

there will be up to O(|M |) iterations, and the time complexity of each iteration is

that of Dijkstra’s algorithm O(|E|+ |V | log |V |).

4.5 Experiment and Simulation Results

We use a combination of simulations and experiments for performance evaluation.

We have conducted simulations to obtain performance data in large scale networks,

and have also built a prototype to validate the solutions in a realistic environment.

In this section, we present extensive simulation and experiment results to show the

effectiveness of our design.

4.5.1 Simulation Results

We have implemented the proposed algorithms in the ns-3 simulator, and used the

same performance metrics mentioned in Section 3.6.2 for benchmark comparisons.

To reflect the burst of realistic traffic, we adopt the on-off traffic model. When

a flow f is in the on state, its initial traffic rate t is the product of a baseline rate

and a random number between 0.5 to 1.5; when in the off state, its initial traffic

rate is zero. A flow is in each of the two states for 50% of the time. There are

two middlebox sets with different traffic changing ratios and dependency relations,

and each flow will randomly choose one of them. Each link in the network has a

bandwidth capacity of 100 Mbps and a propagation delay of 2 µs. Every simulation

run lasts five minutes, and the presented result is the average of four simulation

runs.
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Placing Non-Ordered Set with Predetermined Path: For the NOSP algo-

rithm to place a non-ordered middlebox set on a predetermined path, since there

are no existing solutions for the studied problem, we designed the following three

benchmark algorithms. Same as NOSP, all the benchmark algorithms sort the mid-

dleboxes based on their traffic changing ratios before placing them.

1. First-fit continuously places the sorted middleboxes in the increasing order

from the head of the flow path.

2. Last-fit continuously places the sorted middleboxex in the decreasing order

from the tail of the flow path.

3. Random-fit randomly places the sorted middleboxes on random nodes on the

path that have spaces.

We pick the tree topology, since is a popular choice among institutional networks,

and there is only a single path between any pair of nodes. We set up a four-layer

quad-tree with 21 switches and 64 hosts. Each switch has 13 spaces to ensure

sufficient spaces for all flows. The link weight is set consistent with CISCO EIGRP

[eig] as bandwidth/(256−load). Each host generates a flow to a random destination.

The two candidate sets of middleboxes are: {0.7, 0.8, 1.1, 1.2} and {0.8, 0.9, 1.1,

1.3}. The baseline traffic rate of each flow ranges from 0.625 to 6.25 Mbps with a

stride of 0.625 Mbps.

Fig. 4.5(a) shows the average end-to-end delays of the four algorithms. We can

see that NOSP consistently achieves the shortest delay due to its optimal middlebox

placement scheme. On the other hand, Last-fit has the worst performance, because

it places middleboxes at the path end, and the flow rate is 1× on most links of the

path. By contrast, First-fit achieves relatively shorter delay by placing middleboxes

at the beginning of the path. The reason is that half of the flows picked the first set
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Figure 4.5: NOSP simulation results.

of middleboxes with an aggregate traffic changing ratio of 0.7 · 0.8 · 1.1 · 1.2 = 0.74,

and the other half picked the second set with a ratio of 0.8 · 0.9 · 1.1 · 1.3 = 1.03,

so on average the middleboxes placed at the path head reduce the traffic rate of a

flow to (0.74 + 1.03)/2 = 0.885×, which is the traffic rate on most links of the path.

Finally, the delay of Random-fit is between that of Last-fit and First-fit due to its

random strategy.

Fig. 4.5(b) plots data for the packet loss ratio. We can observe a similar trend

that NOSP always achieves the lowest packet loss ratio. When the flow traffic rate is

small, all the algorithms have zero packet loss ratios. Compared with NOSP, other

algorithms have packet loss happened much earlier, and their ratios increase much

faster.

Placing Totally-Ordered Set with Predetermined Path: Next, we evaluate

the TOSP algorithm with similar benchmark algorithms as above, in which First-fit,

Last-fit, and Random-fit place the middleboxes based on the given total order chain

from the path head, tail, and randomly, respectively. The traffic changing ratios

and dependency chains of the two candidate sets of middleboxes are: {0.8← 1.1←

0.7 ← 1.2} and {1.2 ← 0.7 ← 1.1 ← 0.8}. Other simulation settings are the same
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Figure 4.6: TOSP simulation results.

as above.

As shown in Fig. 4.6(a), TOSP achieves the shortest end-to-end delay because of

its dynamic programming based optimal middlebox placement scheme. Similar as

above, the delays of the other three algorithms increase in the sequence of First-fit,

Random-fit, and Last-fit. The packet loss ratio data in Fig. 4.6(a) are consistent,

and TOSP consistently outperforms others.

Placing Partially-Ordered Set with Predetermined Path: To evaluate the

placement of partially-ordered middlebox sets on predetermined paths, we use the

proposed heuristic to convert the partially-ordered sets to fully-ordered sets, and

then apply TOSP. We adjust the lookahead parameter from one to two and compare

their performances. The traffic changing ratios and the dependencies of the two

candidate sets of middleboxes are: {1.1 ← 0.8, 1.2 ← 0.7} and {1.1 ← 1.2, 1.3 ←

0.7}. Note that different total order chains will be generated when using the two

different lookahead values.

Fig. 4.7(a) compares the end-to-end delay of the two different lookahead values.

We can see that the lookahead value of two achieves shorter delays with a deeper
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Figure 4.7: Partial to total order conversion simulation results.

search into the solution space. Similarly, Fig.4.7(b) shows that the lookahead value

of two achieves lower packet loss ratios.

Placing Middleboxes without Predetermined Path: Finally, we evaluate

the Traffic And Space Aware Routing (TASAR) heuristic by comparing it with

a hop count based and ECMP (i.e., load-balance) enabled shortest path routing

algorithm. For the multi-path topology, we choose an 8-pod fat tree with 80 switches

and 128 hosts. Each host generates a flow to a random destination out of its own

pod. The baseline traffic rate of each flow ranges from 10 to 100 Mbps with a

stride of 10 Mpbs. The two sets of candidate middleboxes after conversion are:

{1.2← 0.7← 1.1← 0.8} and {1.3← 0.7← 1.1← 1.2}.

We first compare the routing success ratios of the two algorithms. We adjust the

number of spaces per switch from 6 to 8, and calculate the percentage of flows that

can successfully find paths with sufficient middlebox spaces. As shown in Table 4.1,

when the space number per switch is 6, the routing success ratio of TASAR is 5%

higher than that of shortest path routing. When the number increases 7, TASAR

achieves a 100% routing success ratio, while shortest path routing cannot find path

for 3.75% of flows. Finally, when it increase to 8, both algorithms achieve 100%

85



0 20 40 60 80 100

Traffic rate (Mbps)

10
0

10
1

D
e

la
y
 (

m
s
)

Fat tree topology

TASAR, TOSP

Shortest path, TOSP

(a) End-to-end delay.

0 20 40 60 80 100

Traffic rate (Mbps)

0

20

40

60

80

P
a

c
k
e

t 
lo

s
s
 r

a
ti
o

 (
%

)

Fat tree topology

TASAR, TOSP

Shortest path, TOSP

(b) Packet loss ratio.

Figure 4.8: TASAR simulation results.

routing success ratios.

Spaces per switch TASAR Shortest path routing
6 93.75% 88.91%
7 100% 96.25%
8 100% 100%

Table 4.1: Flow routing success ratio.

Next, we fix the space number per switch to 8, and compare the end-to-end

delay and packet loss ratio of the two algorithms. Fig. 4.8(a) shows that, when

the baseline flow rate is 10 Mbps, TASAR has a slight longer delay, because its

paths are not as shortest as those of shortest path routing. However, once the flow

rate increases beyond 10 Mbps, TASAR consistently delivers shorter delays due

to its traffic awareness in path calculation. Fig. 4.8(b) also shows that TASAR

consistently achieves lower packet loss ratios.

4.5.2 Experiment Results with Prototype

To validate our design, we first implement the algorithms TOSP, TASAR and short-

est path routing in a module running on Floodlight. Then we conduct experiments

by running the module on the top of the prototype system described in Section 3.5.
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Figure 4.9: Abilene backbone network topology.
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Figure 4.10: Prototype experiment results.

We pick the Abilene backbone topology [abi], as shown in Fig 4.9. Each node has

a space capacity of three, and each link has a bandwidth capacity of 10 Mbps. For

traffic generation, we use Iperf to create constant bit rate UDP traffic flows. Four

flows are generated: two from node 1 to 8, and two from 11 to 2. The initial traffic

rate of each flow ranges from 1 to 10 Mbps with a stride of 1 Mbps. Each flow needs

four middleboxes with the following traffic changing ratios and total order chain

after conversion: {1.2← 0.7← 1.1← 0.8}.

As can be seen in Fig. 4.10(a), the experiment data is consistent with the

simulation results, and TASAR achieves shorter end-to-end delays than the shortest

path routing. Also, Fig. 4.10 (b) shows that the former achieves much lower packet

loss ratios.

To validate our design with some real middlebox functions, we further developed
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three types of middlebox emulators: the first type performing compression function,

the second type performing encryption function, and the third type keeping the data

unchanged. For convenience, we name them as compression middlebox emulators,

encryption middlebox emulators, and transparent middlebox emulators respectively.

The implementation details of the three types of middleboxes are described below.

Compression Middlebox Emulator: We developed the emulator using the

libpcap and zlib [lzi] libraries. The emulator uses libpcap APIs to capture traffic

on specified interfaces. It can capture specific traffic (e.g., only UDP packets, only

packets going to port 80, etc) by applying a rule set. Every time the emulator gets

a new packet, it calls the compress method provided by the zlib library to compress

the payload of the packet. In order to accurately locate the payload, we defined

the structure of the packet header. After the payload is compressed, the emulator

calls the libpcap APIs to send the processed packet back to the interface, where

the original packet is captured. Since the content of each packet may be different,

the compression ratio changes over time. For the ratio setting of a compression

middlebox emulator in our algorithms, we take the average value. For example, if

we send an X-MByte file through a compression middlebox emulator, and then the

size of the processed file changes to Y MBytes, then the ratio of the middlebox is

Y/X (with a precision of one decimal place).

Encryption Middlebox Emulator: For the implementation of the encryption

middlebox emulator, some of the features in the compression middlebox emulator

(e.g., packet capturing) can be reused. We omit the same features, and only highlight

differences. Unlike the previous emulator, once a packet is received, the emulator

calls the AES encrypt method provided by the library OpenSSL [opec] to encrypt

the payload of the packet. The emulator performs Advanced Encryption standard

(AES) encryption on data. In detail, we use AES-128 bit encryption, where 128 bit
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is AES key length. The length of the output of AES encryption algorithm is related

to the length of the input and a static variable AES BLOCK SIZE, whose value is

16. Since the ratio of output length to the input length is a variable, we take an

average as the emulator’s ratio. The method of calculating the average value is the

same as the one for compression middlebox emulators.

Transparent Middlebox Emulator: For some middleboxes with a ratio of 1,

they do not change the size of the data that flows through them. As we mentioned

above, we can set a libpcap rule set. Packets matching the set of rules will be for-

warded directly. The emulator is similar to a firewall, which can allow the specified

flows and keep them unchanged.

1 13
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6 8
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14

Figure 4.11: NSF network topology.

Flow # Node Pair Routes (calculated by shortest routing)
1 (1, 2) 1-2
2 (1, 8) 1-8
3 (2, 7) 2-3-7
4 (7, 12) 7-12
5 (8, 14) 8-11-14
6 (13, 14) 13-11-14

Table 4.2: Flow and Routes
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Figure 4.12: Prototype experiment results.

For experiments with the above emulators, we select the NSF network topology

cited from the paper “Demand-aware network function placement” [LZTM16], as

shown in Fig.4.11 which has 14 switches and 21 links. Each switch has an attached

NFV server with three middlebox spaces, and each link has a bandwidth capacity

of 10 Mbps. For traffic generation, we create six constant bit rate UDP traffic flows,

by sending a 400-MByte .txt file using Iperf. The initial traffic rate of each flow

ranges from 1 to 10 Mbps with a stride of 1Mbps. Each flow needs to go through

three middleboxes with corresponding middlebox chain: {0.8 ← 1.0 ← 1.2}. As

a result, the combined traffic changing effects of both middleboxes is 0.8·1.0·1.2 =

0.96. The source and destination node pair of each flow is shown in Table 4.2, cited

from the same paper [LZTM16]. The flow paths calculated by shortest routing are

also shown in Table 4.2.

As shown in Fig. 4.12(a), the experiment results are similar to the previous ones.

TASAR achieves shorter end-to-end delays than shortest path routing. Fig. 4.12(b)

shows that the former has no packet loss. In detail, any two paths calculated

by TASAR routing does not include the same link. That means the flow rate is

less than or equal to 0.96× on each link of the flow path, and then there is no

network congestion. In addition, for middlebox placement, TOSP may have more
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alternative nodes on the paths calculated by TASAR to achieve better results. By

contrast, shortest path routing has higher delays and packet loss ratios, due to

network congestion and different middlebox placement.

4.6 Summary

The advancement of virtualization technology has made NFV a promising platform

for network function provisioning. However, the flexibility to run an NFV middlebox

on any available standard server also creates a challenge for efficient NFV imple-

mentation. In this chapter, we have studied the optimal placement of NFV mid-

dleboxes by considering different middlebox traffic changing effects and dependency

relations. We first formulate the Traffic Aware Placement of Interdependent Middle-

boxes problem as a graph optimization problem with the objective to load-balance

the network. Next, we solve the problem when the flow path is predetermined, and

propose optimal algorithms for a non-ordered or totally-ordered middlebox set. For

the general scenario of a partially-ordered middlebox set, we show that the problem

is NP-hard by reduction from the Clique problem, and propose an efficient heuristic

to convert a partially-ordered set to a totally-ordered one. On the other hand, when

the flow path is not predetermined, we prove that the studied problem is NP-hard

even for a non-ordered middlebox set by reduction from the Hamiltonian Cycle

problem, and propose the Traffic And Space Aware Routing heuristic. We have

conducted large scale simulations to evaluate the proposed solutions, and have also

implemented an SDN based prototype to validate them in realistic environments.

Extensive simulation and experiment results are presented to show the effectiveness

of our design.
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CHAPTER 5

SERVICE AWARE FLOW ROUTING

Network Function Virtualization (NFV) implements network functions as Virtual

Machines (VMs) running on standard commodity servers, and enjoys many benefits

thanks to the underlying virtualization technology. However, since each VM has

only a limited processing capacity restricted by its available resources, multiple in-

stances of the same function are necessary in an NFV network. Thus, routing in an

NFV network is a challenge to determine not only a path from the source to des-

tination but also the service locations. Furthermore, this challenge is complicated

by the traffic changing effects of NFV services and dependency relations between

them. In this chapter, we study how to efficiently route a flow to receive services 1

in an NFV network. First, we formulate the Service-Aware Routing (SAR) problem

as a graph optimization problem, and prove that it is NP-hard. Next, for the spe-

cial scenario when the required set of services is a totally-ordered set, we propose a

polynomial-time algorithm and prove its optimality. For the NP-hard general sce-

nario of a partially-ordered service set, we propose two practical heuristics with low

time complexity, one by converting the partially-ordered set to a totally-ordered one,

and the other using a greedy approach. We have evaluated our design using proto-

type based experiments and large scale simulations. Extensive results are presented

to demonstrate the effectiveness of the proposed algorithms.

5.1 Introduction

Network functions, such as firewalls and proxies, are widely deployed in data cen-

ters, and are traditionally implemented as proprietary hardware appliances [etsb].

1In this chapter, the term “service” has the same meaning as “middlebox”.
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Instead, NFV implements such network functions as VMs running on standard com-

modity servers [V. 12]. Compared with traditional hardware appliances, NFV brings

many advantages, including accelerated time-to-market, reduced hardware and op-

eration cost, and elastic scalability [etsc], thanks to the underlying virtualization

technology.

Unlike hardware network appliances that increase processing capacities by adding

more hardware resources, an NFV network adds multiple VM instances to raise the

processing capacity of a function [Y. 17], as each VM has only a limited process-

ing capacity restricted by its available resources. For instance, while the Palo Alto

Networks’s PA-7080 hardware firewall delivers a throughput of 200 Gbps [pa-a],

its VM-series virtual firewalls achieve a throughput ranging from 200 Mbps to

16 Gbps [pa-b].

Because multiple instances of the same function may be hosted by different

physical servers, routing a flow in an NFV network needs to not only find a path

from the source to destination, but also determine the service locations, i.e., where

a flow will receive its desired services. Bad decisions may cause inefficient flow paths

and performance degradation. In Fig. 5.1(a), a flow goes from the source src to

destination dst, and requires the service s. Among the three candidate paths, the

middle one is the optimal, since it traverses an instance of s and has only two hops.

Furthermore, the NFV routing challenge is complicated by the traffic changing

effects of different services and dependency relations between them. To start with,

a network service may increase or decrease the traffic volume of a processed flow.

For instance, the Citrix CloudBridge WAN optimizer compresses traffic to 20% of

its original volume before sending it to the next hop [wan], while a Cisco IPSec

VPN proxy adds up to 73 bytes of overhead for each processed packet [ips]. In Fig.

5.1(b), assume that a flow has an initial traffic rate of 1, and requires two services
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Figure 5.1: Service aware routing challenge in NFV networks.

s and s′. The former will double the traffic volume and the latter will cut it to half.

Comparing the two candidate paths, the bottom one is more efficient, because the

load of its second path link is 0.5 instead of 2 as in the top path.

The second constraint faced by routing in an NFV network is the dependency

relation that may or may not exist between a pair of services. For instance, an

IPSec VPN proxy is usually placed before a NAT gateway to terminate tunneling

[cis], while it can be placed either before or after a firewall [ms-]. For the example

in Fig. 5.1(b), if there is a constraint that service s must be placed before s′, then

the bottom path that was more efficient is now invalid.

In this work, we study the Service-Aware Routing problem in NFV networks

that finds the optimal path for a flow to efficiently traverse a deployed instance

for each of its required services. Different from existing works [Y. 17, V. 17, T. 16,

M. 17b, Q. 17, DW16, MMP15, MSB+17, MBP+17] that study the deployment of

NFV VM instances, this work optimizes routing among the already deployed NFV

instances, which is critical for delay-sensitive flows that cannot tolerate the VM
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instantiation delay. Furthermore, this work considers the traffic changing effects

of different services and dependency relations between them, and also proposes

practical solutions with an implemented prototype. To the best of our knowledge,

no existing work has studied the traffic changing effects for routing flows among

deployed NFV instances.

Our solutions leverage the emerging Software-Defined Networking (SDN) tech-

nology as the implementation platform, as it enables efficient network optimization

by decoupling the network control plane from the data plane. We have developed

an SDN based prototype to demonstrate the practicality of our design and validate

it in realistic environments.

The main contributions in this work are summarized as follows.

1. We formulate the Service Aware Routing (SAR) problem for NFV networks

as a graph optimization problem with the objective to load-balance the net-

work, and prove that it is NP-hard by reduction from the Hamiltonian Cycle

problem.

2. For the special scenario when the set of required services is a totally-ordered

set, we propose an efficient polynomial-time algorithm, and show its optimal-

ity.

3. For the NP-hard general scenario of a partially-ordered service set, we pro-

pose two practical heuristics: one by converting the partially-ordered set to a

totally-ordered one, and the other using a greedy approach.

4. We have evaluated our design using prototype based experiments and large

scale simulations. Extensive experimental and simulation results are presented

to demonstrate the effectiveness of the proposed algorithms.
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5.2 Problem Formulation

In this section, we formulate the service aware routing (SAR) problem. Use S to

denote the set of NFV services. Each service s ∈ S has an associated traffic changing

ratio ratio[s]2, which is the (average) ratio of the traffic rate of a flow after and before

being processed by s. The dependency relation← is defined as a strict partial order

on S that is

1. Irreflexive: s8 s,

2. Transitive: s← s′ and s′ ← s′′ then s← s′′, and

3. Asymmetric: s← s′ then s′ 8 s.

If s← s′, we say that the service s′ depends on s, or intuitively s′ must be applied

after s. If s depends on no other service, i.e., ∀s′ ∈ S, s′ 8 s, we say that s has

no dependency. For easy representation, define depend[s, s′] = 1 if s ← s′, and 0

otherwise.

Consider a network modeled as a directed graph G = (V,E). A node v ∈ V

may have existing instances of various services. Use pc[v, s] to denote the available

processing capacity of service s at v, which may be the aggregate capacity of multiple

instances located at v. For a link (u, v) ∈ E, use bc[u, v] to denote its remaining

bandwidth capacity. The existing load of the link is denoted as load[u, v].

For route calculation, each link (u, v) ∈ E is assigned a weight, denoted as

weight(u, v, l), which is a non-decreasing function of the link load l, i.e., ∀l ≤

l′, weight(u, v, l) ≤ weight(u, v, l′). A broad category of weight functions satisfy the

non-decreasing requirement, such as the ones used by the popular Cisco EIGRP [eig]

2We use square brackets [] to denote properties or known values, and round brackets
() denote to functions or variables.
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and OSPF [osp] protocols. The non-decreasing link weight function helps load-

balance network traffic when the routing protocol aims to minimize the path cost,

which is defined as the weight sum of all the path links.

A flow f is denoted as a 4-tuple (src, dst, t, S), in which src ∈ V is the source

node, dst ∈ V is the destination node, t is the initial traffic rate at the ingress point

of the network, and S is the set of required services.

When the flow f enters the network, a multi-hop path, denoted as route, will be

assigned for the flow, which is a decision variable defined as

route(v, i) =


1, if v ∈ V is the ith hop on the path of f .

0, otherwise.

(5.1)

We define i to start from one, and denote the last hop number as n for convenience.

Note that repeating nodes are allowed on the path to enable more general solutions.

To avoid performance degradation for TCP flows, a flow is not allowed to be split

among multiple paths [B. 10].In addition, a service scheme, denoted as service,

determines the service location for each required service s ∈ S of flow f , which is a

decision variable defined as

service(s, i, j) =


1, if s ∈ S is served at the ith hop

as the jth service of that hop.

0, otherwise.

(5.2)

Note j ≤ |S| since there are at most |S| services.

Use tin(i) and tout(i) to denote the incoming and outgoing traffic rate of flow

f at the ith hop on the path, respectively. If f is processed by a single service

s at the ith hop, then tout(i) = tin(i)ratio[s]. Note that the incoming traffic rate

at the flow source is the initial traffic rate, i.e., tin(1) = t. For convenience, use
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t(u, v) =
∑

i∈[1,n−1] route(u, i)route(v, i + 1)tout(i) to represent the traffic rate of f

on its path link (u, v).

Consistent with most popular routing protocols, such as Cisco EIGRP and

OSPF, our optimization objective is to minimize the path cost of flow f as in

Equation (5.3), by calculating route and service. The proposed solutions can easily

adapt to other optimization objectives, such as minimizing the maximum link load

in the network.

min
n−1∑
i=1

∑
u∈V

∑
v∈V

route(u, i)route(v, i+ 1)×

weight(u, v, t(u, v) + load[u, v]) (5.3)

subject to the following constraints:

∀i > n,∀v ∈ V : route(v, i) = 0 (5.4)

route(src, 1) = 1, route(dst, n) = 1 (5.5)

∀i < n : tin(1) = t, tin(i+ 1) = tout(i) (5.6)

∀i ≤ n,∀j < |S| : t̂(i, 1) = tin(i),

t̂(i, j + 1) = t̂(i, j)(1 +
∑
s∈S

service(s, i, j)(ratio[s]− 1)),

tout(i) = t̂(i, |S|+ 1) (5.7)

∀v ∈ V, ∀s ∈ S :∑
i∈[1,n]

∑
j∈[1,|S|]

route(v, i)service(s, i, j)t̂(i, j) ≤ pc[s, v] (5.8)

∀(u, v) ∈ E : t(u, v) ≤ bc[u, v] (5.9)

∀s ∈ S :
∑
i∈[1,n]

∑
j∈[1,|S|]

service(s, i, j) = 1 (5.10)

∀s, s′ ∈ S :
( ∑

i′∈[1,n]

∑
j′∈[1,|S|]

service(s′, i′, j′)(i′|S|+ j′)−
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∑
i∈[1,n]

∑
j∈[1,|S|]

service(s, i, j)(i|S|+ j)
)
×

depend[s, s′] > 0 (5.11)

Equation (5.3) defines the optimization objective to be the path cost, which

is the weight sum of all links on the path. Equation (5.4) defines the nth hop

to be the last hop on the flow path. Equation (5.5) enforces the first hop and

last hop of the flow path to be the source src and destination dst, respectively.

Equation (5.6) defines the incoming traffic rate tin(i) of a flow f at each hop i on

its path. Equation (5.7) defines t̂(i, j) to be the traffic rate of a flow f before it is

processed by the jth service at the ith hop on its path, and tout(i) to be the traffic

rate after being processed by the last service at the ith hop. Equation (5.8) states

that, for the service s instances deployed at node v, the total amount of processed

traffic should not exceed the available processing capacity pc[v, s]. Equation (5.9)

states that, for a link (u, v), the traffic rate t(u, v) of the flow on this link should

not exceed the available bandwidth capacity bc[u, v]. Equation (5.10) states that

the flow should be processed by a service s once and only once. Equation (5.11)

enforces the dependency relation between services, or in other words s′ must be

placed after s if the former depends on the latter.

As can be seen, our formulation for the SAR problem considers only a single

flow. The reason is that the SAR problem with a single flow is already NP-hard

as will be seen in Section 5.3, and the SAR problem with multiple flows will be

even harder and meaningless. Instead, the proposed algorithms for a single flow

are of practical interest, because in reality flows tend not to arrive at the exactly

same time, and even if multiple flows arrive simultaneously in an SDN network, the

central controller will have to process them one by one. Furthermore, given the

algorithms for a single flow, multiple flows can be processed one at a time.
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Figure 5.2: Reduction from Hamiltonian Cycle to SAR.

5.3 Algorithm Design

In this section, we first prove that the SAR problem formulated in Section 5.2 is

NP-hard by reduction from the Hamiltonian Cycle problem. Then for the spe-

cial scenario when the service set is a totally-ordered set, we propose an efficient

polynomial-time algorithm and prove its optimality. On the other hand, for the

NP-hard general scenario, we propose two practical heuristics with low time com-

plexity, one by converting the partially-ordered service set to a totally-ordered one,

the other using a greedy approach. Finally, we also discuss the scenario when the

existing processing capacity of a service is insufficient.

5.3.1 NP-Hardness Proof

The following theorem shows the hardness of the SAR problem.

Theorem 5.3.1 The Service Aware Routing problem is NP-hard.

Proof. The proof of this theorem is similar to the proof of Theorem 4.4.1 in Chapter

4. For ease of reading, we give a detailed proof below.

Given an instance of the Hamiltonian Cycle problem with a graph G , we con-

struct an instance of the SAR problem with a graph G′ = (V ′, E ′) and a flow f as

follows.
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• For each node v ∈ V , the service set S contains a service sv corresponding to

it. The traffic changing ratio of any service is set to one, i.e., ratio[sv] = 1.

There is no dependency between the services.

• For each node v ∈ V , create two nodes vi, vo ∈ V ′, where vo has an instance

of service sv with a processing capacity of one, i.e., pc[vo, sv] = 1. Con-

nect the two nodes with a link (vi, vo) ∈ E ′, and set its weight to one, i.e.,

∀l, w[vi, vo, l] = 1, and bandwidth capacity to one, , bc[vi, vo] = 1.

• For each link (u, v) ∈ E, create a link (uo, vi) ∈ E ′, and set its weight to zero,

i.e., ∀l, w[uo, vi, l] = 0, and bandwidth capacity to one, i.e, bc[uo, vi] = 1. An

example to create G′ from G is shown in Fig. 5.2.

• For the flow f , its source and destination are both ai, i.e., src = dst = ai,

where a is an arbitrary node in V . The initial traffic rate is one, i.e., t = 1.

The set of required services is S.

Clearly, the above reduction process can be done in polynomial time. Next, we

show that if G has a Hamiltonian cycle, then the SAR instance with G and f has

a viable path with a cost of |V |. Given the Hamiltonian cycle of G we construct

a similar path route in G′ as follows. Assuming that the Hamiltonian cycle in G

starts with a ∈ V , for each node v and link (u, v) in the Hamiltonian cycle, add

links (vi, vo) and (uo, vi) to route, respectively. For the example in Fig. 5.2, G

has a Hamiltonian cycle a ⇒ c ⇒ b ⇒ a, and the constructed route in G′ is

ai ⇒ ao ⇒ ci ⇒ co ⇒ bi ⇒ bo ⇒ ai. Since the Hamiltonian cycle traverses each

node in G exactly once, and each node v in G maps to a pair of nodes vi and vo

in G′, route traverses each node in G′ exactly once as well. Thus, we can see that

route traverses all the |V | required service instances. Further, route traverses any

link in G′ at most once, resulting in a path cost of |V |.
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Reversely, given route in G′, we construct a Hamiltonian cycle in G as follows.

Starting with src = ai, sequentially add the corresponding node v ∈ V of each

incoming node vi ∈ V ′ on route to the cycle in G. Since route traverses all outgoing

nodes vo to reach the instance of service sv, the constructed cycle traverses all the

nodes in G. Further, since the path cost is |V |, route traverses each link of (vi, vo)

for any v at most once. Thus, the constructed cycle in G traverses each node exactly

once, and is a Hamiltonian cycle. To ensure that a path of SAR can be converted

to a path of the Hamiltonian Cycle problem, we add the link (vi, vo) to G′ to detect

whether a node is traversed multiple times.

5.3.2 Optimal Routing for Totally-Ordered Service Set

Although the general SAR problem is NP-hard, we are able to design a polynomial-

time optimal algorithm called Totally-Ordered Set Routing (TOSR), for the special

scenario when the set of required services is a totally-ordered set. Specifically, the

service set S of a flow f has a total order if ∀s, s′ ∈ S, either s← s′ or s′ ← s, or in

other words the services form a dependency chain. For convenience, we denote the

kth service in the chain as sk. For instance, s1 ← s2 ← s3 is a total order chain, in

which s1 must be applied before s2, and s2 before s3.

Given the determined order of services, the flow has to visit an instance of each

service one by one. Thus, the basic idea of TOSR is to use an iterative approach to

find the least cost path to the instances of each service in the total order chain.

In detail, TOSR starts its first iteration from the flow source src, and searches

for the least cost path to each instance of the first service s1. The traffic rate of

the flow in this portion of the path, i.e., before being processed by s1, is tin(1) = t.

Thus, Dijkstra’s algorithm is applied to find the least cost path with more than

tin(1) bandwidth to each instance of s1 with more than tin(1) processing capacity.
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Figure 5.3: Totally-ordered set routing example.

An example is given in Fig. 5.3(a). For simplicity, assume that each link has the

same weight of a unit and a sufficient bandwidth capacity, and each service instance

has a sufficient processing capacity. In the example, the first iteration of TOSR

finds the least cost paths from the source to the two instances of s1 at nodes a and

e, the former with a cost of 1 and latter of 2.

After finishing the (k−1)th iteration, TOSR has found the least cost path to each

instance of the (k − 1)th service sk−1 in the total order chain. In the kth iteration,

TOSR will continue from the instances of sk−1, and search for the least cost path to

each instance of the next service sk. This is done by a revised version of Dijkstra’s

algorithm. For nodes with sk−1 instances, their initial costs will be those calculated

from the (k − 1)th iteration, i.e., the cost so far from the source src to each sk

instance; for the remaining nodes, their initial costs are set to infinity. In addition,

the traffic rate in this portion of the path, i.e., after leaving an sk−1 service instance

and before entering an sk service instance, is tin(k). After initialization, TOSR

uses a dynamic programming approach to iteratively find the least cost path with

a sufficient bandwidth capacity to each of the remaining nodes and stop when the

least cost paths to all the sk instances have been found. Note that the kth iteration

of TOSR runs the revised Dijkstra’s algorithm only once, because it calculates the

least cost paths from the single source src to each sk instance instead of all-pair

least cost paths. In Fig. 5.3(b), the second iteration initializes the costs of nodes
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a and e as 1 and 2, respectively, based on the results from the first iteration, and

finds the least cost paths to the two instances of s2 at nodes c and f , the former

with a cost of 3 and latter of 2.

In a similar way, after finishing the |S|th iteration, TOSR has found the least

cost path to each instance of the last service s|S|. In the final iteration, TOSR

calculates the least cost path from the instances of s|S| to the destination dst, and

stops immediately once one such path is found. In Fig. 5.3(c), the final iteration

initializes the costs of nodes c and f as 3 and 2, respectively, and finds the least cost

path to dst with a cost of 3.

A shortcut can be taken by TOSR if the source src has an instance with a

sufficient processing capacity for each of the first K services. Since the flow can

receive the first K services at the source with a path cost of zero, TOSR can skip

the first K iterations, and continue from the (K + 1)th iteration.

Theorem 5.3.2 The TOSR algorithm achieves the minimum path cost.

Proof. The proof can be done by induction on the iteration number.

• Basis case: TOSR starts the first iteration from the source src with a cost of

zero.

• Inductive case: If the (k − 1)th iteration finds the least cost path to each

instance of service sk−1, Dijkstra’s algorithm guarantees that the kth iteration

will find the least cost path to each instance of service sk, and eventually to

the destination dst.

The time complexity of the algorithm is O(|S|(|E|+ |V | log |V |)), because Dijk-

stra’s algorithm complexity is O(|E| + |V | log |V |), and we need to run it for each

of the |S| services.
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5.3.3 Converting Partially-Ordered Set to Totally-Ordered Set

Given the NP-hardness of the general scenario when the service set is a partially-

ordered one, we propose two practical heuristic algorithms with low time complexity.

Our first solution works in two steps by first converting the partially-ordered set to

a totally-ordered one and then applying TOSR.

Based on the observation from the example in Fig. 5.1(b), the basic idea of the

conversion algorithm is to arrange the services in the result total order chain in the

increasing order of their traffic changing ratios, so that the traffic rate of the flow

can be minimized on the path.

In detail, the conversion algorithm iteratively finds the services without depen-

dency (e.g., 1.1 and 0.8 in the first iteration for the following example), removes

among them the one with the minimum traffic changing ratio, and adds it to the

end of the total order chain. For instance, given four services with the following

traffic changing ratios and dependencies: 1.1 ← 0.7 and 0.8 ← 1.2, the conversion

result will be the following total order chain: 0.8← 1.1← 0.7← 1.2.

The time complexity of the conversion algorithm is O(|S| log |S|)), because there

are up to |S| iterations, and the time complexity to select the service with the

minimum traffic changing ratio is O(log |S|) using a heap. Once the totally-ordered

service set has been obtained, the TOSR algorithm can be applied to calculate the

flow path route and service locations service.

5.3.4 Greedy Routing for Partially-Ordered Service Set

Next, we propose a greedy heuristic for the general scenario of a partially-ordered

service set as the benchmark for evaluation. The basic idea is to work in iterations to

add the services without dependency one at a time. Note that the greedy heuristic
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also applies to routing for a totally-ordered service set, since it is a special case of

the general scenario.

In detail, the greedy algorithm starts by listing the candidates for the first ser-

vice on the path, which are the services with no dependency. After finding the

candidate services, the algorithm calculates the least cost path to each instance of

those services. It then greedily picks the instance with the least cost, breaks a tie

by selecting the service with the minimum traffic changing ratio, and removes the

service from the service set S. Each iteration will find the path to the instance

for one service and remove it from the set S. The iteration stops when S becomes

empty. Finally, the algorithm finishes by finding the least cost path from the last

service instance to the destination.

The time complexity of the algorithm is O(|S|(|E|+ |V | log |V |)), because there

will be O(|S|) iterations, each for a required service, and the time complexity of

each iteration is O(|E|+ |V | log |V |).

5.3.5 Mix of Existing and New Instances

In case none of the deployed instances of a service has a sufficient capacity to process

the flow, a new instance needs to be started. In such a case, the flow path will

traverse a mix of existing instances for some services and newly started instances for

others. We extend the problem model in Section 5.2 with the following notations:

sc[v] to denote the space capacity of a node v ∈ V , sr[s] to denote the space

requirement of an instance of service s ∈ S, pc[s] to denote the initial processing

capacity added by a new instance of s ∈ S.

The first step of our solution to the mix problem is to apply the conversion

algorithm to convert a partially-ordered service set, because the evaluation data in

Section 5.4 show that the conversion algorithm working with TOSR consistently
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outperforms the greedy heuristic. Next, if the services that need new instances

are not consecutive in the total order chain, TOSR can be applied to obtain the

optimal result by treating the function to start a new instance as a special service.

In other words, when it is necessary to start a new instance for a service, TOSR

finds the least cost paths from the previous iteration to the nodes with sufficient

space capacities, and then from such nodes to the deployed instances of the next

service in the total order chain. Otherwise, the problem is NP-hard, and the greedy

heuristic can be applied. Whenever it is necessary to start an instance of a missing

service, the greedy heuristic will search for the least cost path to a node with a

sufficient space capacity.

5.4 Experimental And Simulation Results

In this section, we present extensive experimental and simulation results to demon-

strate the effectiveness of the proposed algorithms.

We first implemented our algorithms on the top of the prototype system de-

scribed in Section 3.5 of chapter 3, and then implemented the algorithms in the ns-3

simulator for performance evaluation in large scale networks. In the experiments

and simulations, we use the same performance metrics as previous chapters. Since

there is no existing algorithm for the SAR problem that considers various service

traffic changing effects and dependency relations, our focus in this section will be

the algorithms proposed in this chapter.

5.4.1 Simulation Results

The simulation settings in ns-3 are as follows. The fat tree topology is selected,

since it is a popular choice among datacenter networks [AFLV08]. An 8-pod fat tree
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is set up with 80 switches and 128 hosts. Each link has a bandwidth capacity of 100

Mbps and a propagation delay of 2 µs. To mimic realistic networks, background

traffic is generated that consumes 60% to 70% of the link capacity. We use the Cisco

EIGRP link weight function [eig] by setting only K2 to one. For traffic generation,

we adopt the on-off model to reflect the burstiness of realistic traffic. When a flow

f is in the on state its initial traffic rate t is the product of a baseline rate and a

random number between 0.9 to 1.1; when in the off state, its traffic rate is zero. A

flow is in each state for 50% of the time. The baseline traffic rate of each flow ranges

from 5 Mbps to 50 Mbps with a stride of 5 Mbps. Each host sequentially generates

a flow to a random host. Every simulation run lasts five minutes, and the result is

the average of four runs.

Routing for Total-Ordered Service Set: First, for the routing of a totally-

ordered service set, we compare the TOSR (Section 5.3.2), Greedy (Section 5.3.4),

and Mix (Section 5.3.5) algorithms. The first two utilize only existing service in-

stances, and the last one starts new instances if no existing instance has a sufficient

processing capacity.

We consider four services with traffic changing ratios of 0.6, 0.9, 1.1, and 1.2,

respectively, and a total of 4!=24 possible total order chains formed by the four

services. Each flow randomly selects one of the 24 chains as its requested service set.

NFV servers are connected to the switches, and each switch has a 50% probability

to have an instance for each of four services, which has 60% to 90% of its 100 Mbps

processing capacity remaining after processing the existing background traffic. In

addition, each switch has a 25% probability to have a space capacity of one, which is

sufficient to create a new instance of any service with an initial processing capacity

of 100 Mbps.
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Figure 5.4: Simulation results for totally-ordered service set.

Fig. 5.4(a) compares the average end-to-end delays of the three algorithms. We

can see that TOSR consistently outperforms Greedy because of its optimal route

selection strategy as evidenced by Theorem 5.3.2. On the other hand, the delay of

the Mix algorithm increases much faster as it accommodates more flows than the

other two. In detail, when the traffic rate is less than or equal to 15 Mbps, TOSR

and Mix achieve the same delay, which is shorter than that of Greedy. The reason

for TOSR and Mix to have the same performance is that, when the traffic rate is

small, the existing service instances have sufficient processing capacities to handle all

flows, and thus no new instances are necessary. As the traffic rate increases, TOSR
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still beats Greedy with a shorter delay, but the delay of Mix increases quickly and

surpasses that of Greedy, because Mix is starting new instances to accommodate

more flows and the increased amount of traffic causes a longer delay.

Fig. 5.4(b) illustrates the packet loss ratio, and a similar conclusion can be

drawn. TOSR achieves a lower packet loss ratio than that of Greedy because of

better balanced traffic. Mix initially achieves performance on par with that of

TOSR, but has the highest packet loss ratio under high traffic rates due to a greater

number of admitted flows.

Fig. 5.4(c) shows the routing success ratios of the three algorithm. Consistent

with the observation in Fig. 5.4(a), when the flow traffic rate is no more than 15

Mbps, all the three algorithms have a 100% routing success ratio. When the traffic

rate grows above 20 Mbps, Mix consistently achieves the highest routing success

ratio because of the extra instances started, and on the other hand, TOSR achieves

a similar but slightly better routing success ratio than that of Greedy given the

same amount of available resource.

Routing for Partially-Ordered Service Set: Next, for the general scenario of

a partially-ordered service set, we compare the Conversion (Section 5.3.3, working

with TOSR), Greedy, and Mix algorithms.

We consider seven different services with traffic changing ratios of 0.6, 0.7, 0.8,

0.9, 1.1, 1.2, and, 1.3, respectively. For each flow, four random services are selected

to create a random directed acyclic graph that defines the dependency relations

between services.

Similar as above, each switch has a 50% probability to have an instance for each

of the seven services, and a 25% probability to be able to start a new instance.
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Figure 5.5: Simulation results for partially-ordered service set.

Fig. 5.5(a) shows the average end-to-end delays of the three algorithms. We can

see that the Conversion algorithm is superior to Greedy, because it considers the

traffic changing ratios in the conversion process and then applies the optimal TOSR

algorithm. Mix has an almost coincident curve with Conversion, since it works in

a similar way by first converting the partially-ordered set to a totally-ordered one.

Compared with Fig. 5.4(a), the delay of Mix does not increase as significantly when

the traffic rate increases, because Mix does not admit as many additional flows as

in the simulations for the totally-ordered service set, also evidenced in Fig. 5.5(c).

The reasons are twofold. First, due to the increased number of services, the average
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processing capacity per service demanded by each flow is decreased. The system

bottleneck thus switches from the service processing capacity to the link bandwidth

capacity, for which Mix cannot help.

Second, with the increased number of services but the same number of available

new instances, fewer instances can be started for each service, resulting in fewer

additional admitted flows.

Fig. 5.5(b) shows the packet loss ratio. Again, Conversion outperforms Greedy

with a lower packet loss ratio. Mix is almost on par with Conversion, except that

it has a slightly higher ratio when the traffic rate is large due to the additional

admitted flows.

Fig. 5.5(c) plots the routing success ratio. Due to the two reasons explained

above, the ratios are overall higher than the results for the totally-ordered set, and

the improvement made by Mix is not as significant. Still, the pattern is clear that

Conversion performs better than Greedy because of its traffic awareness in route

calculation, and worse than Mix because of the additional instances started by the

latter.

5.4.2 Experimental Results with Prototype

To demonstrate the practicality of our solution, we have implemented the proposed

algorithms as a module running on the Floodlight controller and conducted experi-

ments on the top of the prototype system described in Section 3.4.3.

1.2
0.8

1.1
0.7 0.7

0.8

1.1
1.2

Flow from a to h Flow from i to b

Figure 5.6: Partially-ordered service sets for experiments.
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We consider four services with traffic changing ratios of 0.7, 0.8, 1.1, and 1.2,

respectively, and pick the Abilene backbone topology [abi] with eleven nodes, as

shown in Fig. 4.9. Eight nodes are randomly selected, each of which has the instances

of the four services. Each instance has 60% to 90% of its 10 Mbps processing capacity

remaining.

Each link has a bandwidth capacity of 10 Mbps. We use Iperf to generate

constant bit rate UDP flows. Four flows without required services are generate as

background traffic, with the information shown in Table 5.1. Two testing flows

are generated: one from node a to h, and the other from i to b. Each flow has

a partially-ordered service set with four services as shown in Fig. 5.6. The initial

traffic rate of the two flows ranges from 1 Mbps to 8 Mbps with a stride of 1 Mpbs.

Flow # Source Destination Traffic rate
1 e b 4 Mbps
2 a e 2 Mbps
3 d c 6 Mpbs
4 f g 6 Mbps

Table 5.1: Background flow information.

As can be seen in Fig. 5.7(a), the experiment results are consistent with the

simulation ones, and Conversion achieves a shorter end-to-end delay than that of

Greedy due to traffic awareness. Fig. 5.7(b) shows that the former also achieves

a lower packet loss ratio. Finally, Fig. 5.7(c) shows that when the flow rate is no

more than 6 Mbps, both algorithms can successfully route the two flows. When the

traffic rate increases to 7 Mbps, Greedy can only successfully route one flow, and

that happens to Conversion when the traffic rate increases to 8 Mbps.
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Figure 5.7: Prototype experiment results.

5.5 Summary

The limited processing capability of a VM makes it necessary to deploy multiple

NFV instances of the same service. Routing in NFV networks is thus a challenge to

not only find a path from the source to destination, but also determine the optimal

service locations. In this work, we have studied the service aware routing problem

in NFV networks, and consider in particular the traffic changing effects of NFV

services and dependency relations between them. First, we formulate the service

aware routing problem as a graph optimization problem, and prove that it is NP-hard
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by reduction from the Hamiltonian Cycle problem. Next, for the special scenario

of a totally-ordered service set, we propose an efficient polynomial-time algorithm

and prove its optimality. On the other hand, for the NP-hard general scenario of

a partially-ordered service set, we propose two practical heuristics with low time

complexity, one by converting the partially-ordered set to a totally-ordered one, and

the other using a greedy approach. We have validated the design in an SDN based

small-scale prototype, and also implemented the algorithms in the ns-3 simulator for

large-scale performance evaluation. Extensive simulation and experimental results

are presented to demonstrate the effectiveness of the proposed algorithms.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

NFV enables flexible implementation of middleboxes, as VMs running on standard

servers. However, the flexibility also creates a challenge for efficiently placing such

middleboxes, due to the availability of multiple hosting servers, capabilities of mid-

dleboxes to change traffic volumes, and dependencies between middleboxes. Our

proposed work focus on optimizing jointly the routing and the placement of NFV

middleboxes, taking into account of capacity restrictions of NFV servers, to mini-

mize the network congestion in software-defined networks.

With our first work (Chapter 3), we study the traffic changing effects of mid-

dleboxes, and propose SDN based non-ordered middlebox placement solutions to

achieve optimal load balance. Our major contributions are: (1) we formulate the

TAMP problem as a graph optimization problem with the objective to minimize the

maximum link load, (2) we solve the TAMP problem when the flow paths are prede-

termined, such as in the tree topology, (3) we propose the LFGL rule and prove its

optimality for a single flow, (4) for mutliple flows, we prove the problem is NP-hard

by reduction from the 3-Satisfiability problem, and then propose an efficient heuris-

tic, (5) for the general TAMP problem without predetermined flow paths, we prove

that it is NP-hard even for a single flow by reduction from the Hamiltonian Cycle

problem, and propose the LFGL based MinMax routing algorithm by integrating

LFGL with MinMax routing. We build a prototype system to evaluate our proposed

algorithms in a small scale network and also conduct extensive simulations in the

ns-3 simulator. Both results fully demonstrate the effectiveness of our design.

With our second work (Chapter 4), we take account of dependency relations

between middleboxes as a new constraint. The major contributions of this work are:

(1) we formulate the TAPIM problem as a graph optimization problem, (2) when the
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flow path is predetermined, we design optimal algorithms to place a totally-ordered

middlebox set, (3) we propose an efficient heuristic for the general scenario of a

partially-ordered middlebox set after proving its NP-hardness, (4) when the flow

path is not predetermined, we show that the problem is NP-hard even for a non-

ordered middlebox set, and propose a traffic and space aware routing heuristic. We

have evaluated the proposed algorithms using large-scale simulations and prototype

experiments, and present extensive results to show the effectiveness of our design.

Finally, with our third work (Chapter 5), we consider the scenario that some

existed middleboxes still have capacities to process new flows. Therefore, some

mice flows can take advantage of the remind process capacities of middleboxes.

We initially formulate the problem and discuss its NP-hardness. When the set

of required middleboxes of a new flow has a total priority order, we propose a

polynomial time optimal solution. When the middlebox set has a partial order,

we show that the problem is NP-hard by reduction from the Hamiltonian Cycle

problem, and propose fast heuristics. We also will evaluate our proposed algorithms

in ns-3 and our prototype.

To follow up with the work in my dissertation, some future work along the three

directions are provided.

• Considering middleboxes may have traffic changing effects, we developed a

middlebox emulator to emulate the effects. To further verify our algorithms,

we developed several types of middleboxes with some real middlebox func-

tions, and then apply them into our prototype test bed. The extra results

in Chapter 4 show that our heuristic achieves better performance than the

benchmark algorithms in small-scale experiments. But it is difficult for the

heuristics to achieve optimal solutions even in small-scale experiments. In the

future, we will try to explore whether we can convert our current problem

117



formulations into linear programming models. If they can be converted into

linear programming models, we will pick some integer programming solvers to

find optimal solutions in small-scale networks and compare our heuristics with

the optimal solutions. If not, we will try to identify the approximation ratios

of our heuristics and further improve them according to different scenarios.

• Hardware middleboxes are usually expensive, hard to operate and introduce

significant energy consumption. The replacement of middleboxes by virtual

network functions reduces energy consumption to some extent. In order to

further optimize the energy consumption of the network, we will study how

to schedule traffic and manage virtual network functions to maximize power

efficiency.

• With the development of cloud computing and NFV technology, some enter-

prises outsource their middleboxes in the cloud to reduce costs and simplify

middlebox management. We will study how to efficiently deploy and migrate

middleboxes in clouds under resource constraints.
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