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ABSTRACT OF THE DISSERTATION 

RECONFIGURABLE ANTENNAS USING LIQUID CRYSTALLINE ELASTOMERS 

by 

John Gibson 

Florida International University, 2018 

Miami, Florida 

Professor Stavros. V. Georgakopoulos, Major Professor 

This dissertation demonstrates the design of reversibly self-morphing novel liquid 

crystalline elastomer (LCE) antennas that can dynamically change electromagnetic 

performance in response to temperature. This change in performance can be achieved by 

programming the shape change of stimuli-responsive (i.e., temperature-responsive) LCEs, 

and using these materials as substrates for reconfigurable antennas. Existing reconfigurable 

antennas rely on external circuitry such as Micro-Electro-Mechanical-Systems (MEMS) 

switches, pin diodes, and shape memory alloys (SMAs) to reconfigure their performance. 

Antennas using MEMS or diodes exhibit low efficiency due to the losses from these 

components. Also, antennas based on SMAs can change their performance only once as 

SMAs response to the stimuli and is not reversible. Flexible electronics are capable of 

morphing from one shape to another using various techniques, such as liquid metals, 

hydrogels, and shape memory polymers. 

LCE antennas can reconfigure their electromagnetic performance, (e.g., frequency 

of operation, polarization, and radiation pattern) and enable passive (i.e., battery-less) 

temperature sensing and monitoring applications, such as passive radio frequency 



vi 

 

identification device (RFID) sensing tags. Limited previous work has been performed on 

shape-changing antenna structures based on LCEs. To date, self-morphing flexible 

electronics, including antennas, which rely on stimuli-responsive LCEs that reversibly 

change shape in response to temperature changes, have not been previously explored. Here, 

LCE antennas will be studied and developed. Also, the metallization of LCEs with different 

metal conductors and their fabrication process, by either electron beam (E-Beam) 

evaporation or optical gluing of the metal film will be observed. The LCE material can 

have a significant impact on sensing applications due to its reversible actuation that can 

enable a sensor to work repeatedly.  This interdisciplinary research (material polymer 

science and electrical engineering) is expected to contribute to the development of 

morphing electronics, including sensors, passive antennas, arrays, and frequency selective 

surfaces (FSS).
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement  

Traditional electronic devices, including antennas, are generally planar, rigid, and 

static. A static communication system relies on one or more single-function antennas and 

is designed to meet specific parameters. Reconfigurable antennas can change their 

performance to support different services, e.g., operating frequency, polarization, and 

radiation pattern. Reconfigurable antennas have previously relied on external circuitry 

employing shape memory alloys (SMAs) and solid-state switches (i.e., pin diodes, RF 

switches, etc.) [1-3]. Antennas using MEMS or diodes exhibit low efficiency due to the 

losses from these components. Flexible electronics have been developed for diverse 

applications, such as biosensors [4] and antennas [5]. However, fewer examples of 

electronic devices capable of morphing from one shape to another are available. Even 

though various techniques, such as, liquid metals [6], hydrogels [7], and shape memory 

polymers [8] have been recently applied to produce self-morphing electronics, these 

strategies each have significant disadvantages. Liquid metals are either highly toxic or 

rapidly oxidize in the presence of air [9]; hydrogels only work in aqueous environments 

[7], and shape memory polymers exhibit irreversible changes in shape [10]. The proposed 

novel LCE antennas can provide multi-functionality and enable passive (i.e., battery-less) 

temperature sensing and monitoring. LCEs exhibit reversible actuation, larger shape 

deformation, simpler processing, and lower cost in comparison to shape memory alloys 

[11, 12]. 
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Metallization is required for LCE substrates to be used as functional antennas. 

Metallized polymer films are widely used in industries ranging from food packaging to 

biosensors [13, 14]. One of the problems to consider is the adhesion of the metal layer to 

the LCE substrate as well as the film thickness [15-17]. It has been observed that when 

metal films are stretched or bent, the compliant substrate deforms, but the stiff films may 

end up cracking or delaminating. Adhesion of the metal layer to the polymer can be 

increased by various methods, including chemical changes, plasma charge, laser and ion 

beam irradiation [18]. Mechanical failure is one of the main challenges for the development 

of flexible and stretchable electronics. It is expected that the metal thickness achievable 

using metal evaporation will not be able to exceed the skin-depth in the RF range. The 

effects of the material thickness to self-morphing abilities of the LCE antennas will be also 

considered and performance trade-offs (i.e., thinner materials are easier to fold versus 

thicker materials that exhibit less resistive loss) will be studied.  

Temperature is also an important environment parameter in a diverse variety of 

fields such as infrastructure monitoring, chemistry, environmental engineering, and cold 

supply chain management. Current methods to monitor temperature are typically powered 

by batteries or only detect threshold violations. Also, in the cold supply-chain, temperature 

is poorly monitored, which leads to nearly 20% loss of fresh food in transit, which in turn 

results in significant financial loss and environmental burden [19]. Due to these problems, 

the need for temperature sensors has increased. Most of the wireless temperature sensors 

[20] consist of transceivers, memory, and batteries to maintain a temperature log history, 

but these sensors are expensive and can only be used in limited deployments. 
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1.2 Research Objectives and Contribution 

According to our knowledge, no previous work has been performed on self-

morphing flexible electronics, including antennas, which rely on stimuli-responsive LCEs 

that reversibly change shape in response to temperature. Consequently, the lack of 

fundamental knowledge on how to design and fabricate shape-changing LCE antennas is 

an important problem. This dissertation addresses these four main components: 1) To 

design novel reversibly self-morphing LCE antennas that dynamically reconfigure their 

electromagnetic performance (e.g., frequency, radiation pattern, or polarization) in 

response to temperature for passive sensing, 2) To develop simulation electromagnetic 

models that can validate the performance of reconfigurable structures and fabricate LCE 

antennas that can be reconfigured in a repeatable and robust way, 3) To study the electrical 

and mechanical performance of metalized LCEs, via evaporation deposition or glued metal 

films, and 4) To develop multifunctional LCE antennas. 

The objective of this interdisciplinary research is to design reversibly self-morphing 

novel LCE antennas that can dynamically change electromagnetic performance in response 

to different temperatures. Also, the metallization of the LCEs with different conductors 

(aluminum and gold) and their fabrication process, by either electron beam (E-Beam) 

evaporation or optical gluing of the metal film will be observed. The LCE material can 

have a significant impact on various communication and sensing applications due to its 

reversible actuation. LCE antennas can provide a reconfigurable performance in terms of 

radiation pattern, gain, and frequency of operation. 
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1.3 Methodology 

This research involves three main parts: 1) Program stimuli-responsive LCE 

material capable of reversible actuation in response to temperature, 2) Fabricate LCE 

antennas using a metallization technique and characterize antenna shape change, and 3) 

Analyze and measure electromagnetic performance. This research integrates material 

science with electromagnetics. Key parameters for enabling mechanical responses and 

generating spatial variation in the directionality and hierarchical orientation of LCE 

materials are surface-alignment techniques, which can include traditional rubbing, 

magnetic fields and light (photoalignment) [21]. For example, the formations of a helical 

or spiral shape are dictated by the aspect ratio (width-to-thickness) of the film. Appropriate 

twisted nematics (TN) can be programmed in metallized LCEs to generate reversibly self-

twisting antennas in response to temperature changes. 

Our antenna analysis was performed using ANSYS HFSS, which is a full-wave 

electromagnetic simulation software [22]. An external stimuli enclosure will be 

constructed for the light-weight responsive material to smoothly change its structure 

without ambient temperature interference. To form the antennas using LCE films, a thin 

metallized layer is attached on the film using different techniques. An analysis of the effects 

of skin depth will be performed. The LCE antenna prototypes will be tested and validated 

using a vector network analyzer and an anechoic chamber. The measurements will be 

analyzed with mathematical tools, such as Matlab and Origin 8. 
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1.4 Dissertation Outline 

The dissertation is organized as follows: Chapter 2 reviews background and related 

work for different types of reconfigurable antennas and different types of smart materials. 

In Chapter 3, the pattern and frequency reconfigurable antennas based on shape-morphing 

LCEs are presented in a fixed (static) state. In Chapter 4, the measurement setup and 

metallization of reconfigurable LCE antennas are optimized for dynamic reconfiguration. 

Chapter 5 discusses novel reversibly self-morphing LCE antennas that can dynamically 

change frequency performance in response to cold temperatures. Finally, Chapter 6 

provides the conclusions of this dissertation along with future work.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 In this chapter, previous work on reconfigurable antennas is reviewed in Section 2.1. 

Also, self-morphing antennas using smart material are reviewed in Section 2.2. Liquid 

crystalline elastomer (LCE) materials are presented in Section 2.3. Finally, RFID cold-

chain applications are introduced in Section 2.4. 

2.1 Reconfigurable Antennas  

Traditional wireless systems are designed to provide a single pre-determined 

performance. Therefore, the antennas of these systems also possess some fixed parameters 

such as frequency band, radiation pattern, polarization, and gain. A single reconfigurable 

antenna can replace a number of single-function antennas. Thereby reconfigurable 

antennas can reduce the overall size, cost and complexity of a system. Reconfigurable 

antennas are able to vary their performance characteristics, i.e., steer their pattern, place a 

null in their pattern, switch from right-hand to left-hand circular polarization, and/or 

change their operating frequency [23]. 

The reconfiguration of antennas is achieved by altering the radiated fields of the 

antennas’ effective aperture, redistributing the antenna currents or reconfiguring the 

radiating edges [24]. The first reconfigurable antennas were based on mechanical 

movement of part of the antenna, such as the feed. Smart antenna arrays took 

reconfigurability to a new level with the electronic control of the antenna’s pattern. 

Recently, reconfigurable antennas have gained research interest in numerous applications. 
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In mobile and satellite communications, reconfigurable antennas are used to support a large 

number of standards (e.g., UMTS, Bluetooth, WiFi, and WiMA) to mitigate strong 

interference and cope with changing environmental conditions [25].  

There are several methods that have been proposed for reconfigurable antennas. These 

methods are divided into four major categories: electrical, optical, geometrical change, and 

material change [26], which are shown in Table 2.1. Electrically reconfigurable antennas 

are based on switches such as, radio-frequency microelectromechanical systems (RF-

MEMS) [27-29], PIN diodes [30-32], or varactors [33, 34] that redirect their surface 

currents. Microelectromechanical systems (MEMS) switches possess good RF 

characteristics and can be used for low- and high-frequency applications [27]. A pin-diode 

is a versatile device and can be biased to behave like an open circuit, a short circuit, or 

exhibit any desired reflection coefficient in between [35]. Despite all their advantages, the 

use of these switching elements reduces the efficiency of antennas and increases the 

complexity of antenna systems as biasing networks are needed to control the switches. 

Antennas that rely on photoconductive switching elements are called optically 

reconfigurable. These switches are incorporated into an antenna structure that becomes 

conductive once it is subjected to light source (e.g., a laser beam) [36]. Physically 

reconfigurable antennas can be achieved by altering their geometry. Such antennas have 

been developed based on origami principles [37-40]. Currently dipole antenna arrays in 

various configurations constitute one of the most common antennas deployed on CubeSats 

[41]. The merging of reconfigurable and deployable antennas appears to be a solution with 

increased demand for communication agility in space [42]. Many types of actuators can be 
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used to achieve mechanical reconfiguration. The choice of such actuators depends on the 

nature of the antenna and its material composition. For example, a helical antenna [43] 

deploys in stages by resorting to actuators. The sequential deployment tunes the antenna’s 

operating frequency. The concept is based on the fact that only the part of the antenna that 

is above the deployed ground plane radiates [43]. Finally, reconfigurable antennas can be 

implemented through smart adaptive materials. RFID antennas have been used in the past 

as temperature sensors [44-46] and most existing RFID solutions rely on active or semi-

passive tags that require batteries to power a dedicated temperature sensor.  

Table 2.1. Reconfiguration Techniques 

Reconfigurable 

Techniques 

Types Function References 

Electrical RF-MEMS 

switches, PIN 

diodes, Varactors 

Redistribute the surface 

currents and alter the 

antenna radiating 

structure topology 

[27-34] 

Optical Photoconductive 

switches 

Activate conductivity on 

silicon switches by 

shining light (e.g., laser) 

[36] 

Geometrical 

change 

Altering antenna 

structure, Origami 

Reconfiguration by 

changing the antenna 

radiating structure 

[37-40] 

Material 

properties 

change 

Liquid crystal, 

Ferrites, Liquid 

metals, 

Ferroelectronics 

The material change in 

relative electrical 

permittivity or magnetic 

permeability 

[7-10, 47, 48] 

 

Antennas can have various designs with enhanced performance and unique capabilities, 

such as patch antennas [49] or array antennas [33]. Recent MEMS technology enables the 

realization of MEMS with switching speed and compact size. A switching time of 225 ns 
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has been reported [28], and MEMS with dimensions as small as a few microns have been 

developed [29]. However, integrating large numbers of lumped components might increase 

the RF loss, noise, and complexity of the bias circuitry. For this reason, an alternative 

approach for developing reconfigurable antennas relies on tunable materials, such as 

ferrite, ferroelectric materials, shape memory alloys, and shape memory polymers. 

2.2 Reconfigurable Antennas Using Smart Materials  

A smart material is defined as material that can sense and adapt to external stimuli [50]. 

Recently, adaptive/additive material research introduced new approaches to reconfigurable 

antennas via self-morphing materials that change their shape in response to external 

stimuli, as shown in Figure 2.1. To date, adaptable electromagnetic (EM) structures that 

use control of macroscopic shape to control antenna performance have not been explored 

in a widely-applicable or reliable manner. Even though various techniques, such as, liquid 

metals [6], hydrogels [7], ferroelectronics [47, 48], and shape memory polymers [8] have 

been recently used to develop self-morphing electronics, shown in Figure 2.2, these 

strategies each have disadvantages. Liquid metals are either highly toxic or rapidly oxidize 

in the presence of air [51]; hydrogels only work in aqueous environments; and shape 

memory polymers exhibit irreversible changes in shape [10]. Some other approaches use 

conventional electronic materials coupled to active polymer substrates. Shir used 

stretchable gold micro-heaters on a thermally-responsive hydrogel to actively modulate 

shape [52], but these materials only work in aqueous environments [7]. 
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Figure 2.1.  Diagram of various techniques of smart materials [53].  

 

A reconfigurable helical antenna was implemented using shape memory alloy spring 

actuators to adjust its height [1]. A microstrip patch antenna operating at 5 GHz was tuned 

by liquid crystals (LC) [49]. However, due to the high losses in the LC material, the 

antennas suffered from poor efficiency (20-40%). Both antennas used tunable material [1, 

49], with drawbacks of low efficiency and a required DC bias affecting the antenna’s 

performance.  

Very promising passive RFID tags in terms of cost and size are tags that use the antenna 

itself as the temperature sensor. Such RFID tags have been developed before [20, 45] with 
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single-use tags that use an irreversible shape memory polymer to cause a frequency shift 

that can be used to detect only one temperature threshold violation. Therefore, such tags 

cannot provide continuous monitoring of temperature. LCEs support reversible changes in 

shape in response to changes in temperature. Therefore, they can be used to develop a new 

generation of passive (i.e., battery-less) RFID sensors, which are capable of real-time 

monitoring of temperature and detecting multiple temperature threshold. 

 

Figure 2.2.  Examples of self-morphing electronics using smart materials: shape memory 

alloy (SMA) [1], shape memory polymer (SMP) [10], and shape memory ceramic (SMC) 

[48]. 
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2.3 Liquid Crystalline Elastomers 

Liquid Crystal Elastomers (LCEs), shown in Figure 2.3, are a class of responsive 

polymers [54] in which molecular order can be programmed spatially and hierarchically to 

give rise to anisotropic shape change in response to stimuli, such as temperature [55, 56], 

light [57], or solvents [58]. By patterning the molecular orientation nematic director, these 

actuators can morph from flat into a 3D shape [59-61]. Stimuli-responsive LCEs are shape-

changing materials that provide an unprecedented amount of reversible strain and 

programmability, and are well-suited for morphing electronics [11]. Such LCE materials 

can enable the development of new passive antenna systems with novel capabilities, such 

as 2-D and 3-D antenna elements that can reversibly morph their geometrical shape to 

control the performance parameters when the temperature changes and achieves multi-

functionality. 

 

Figure 2.3.  Example of a twisted nematic LCE actuating in response to heat. 

 

Actuation of LCEs has some potential advantages compared to shape memory alloys 

(SMAs), including a considerable increase in the magnitude of shape deformation as well 

as simpler processing [11, 12]. The stimuli-induced response is reversible wherein the 3-D 

2 mm 
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shape restores to a 2-D flat shape after removal of the stimuli. Temperature is the most 

common stimulus for directing shape change in LCEs. Even when compared to shape-

memory polymers, which recover deformation only once [10], LCEs show repeated shape 

shifting over many cycles. This repeated shape shifting opens the possibility for self-

reconfiguring electronics and new sensors.  

Four-dimensional (4D) printing is a term that has made significant advances in 3D 

printing technology with respect to materials, printers, and processes because 4D printed 

structures have the capability to change form or function over time (t) in response to 

stimuli. 4D printing describes additive manufacturing of stimuli-responsive materials and 

enables a wide variety of material strategies morphing structures from soft robots [62-64] 

to morphing medical devices [65-67]. Direct-write printing enables fabrication of 3D 

thermally responsive liquid crystal elastomers (LCEs) structures with molecular order 

encoded during fabrication, and the resulting structures undergo programmed shape 

change. Each aligned LCE filament undergoes 40% reversible contraction along the print 

direction on heating. Shear forces intrinsic to direct-write printing processes orient LC 

reactive inks along the print path, and these inks can be subsequently polymerized into 

responsive elastomers. The interplay of molecular orientation and geometry enables an 

array of thermally driven structural adaptations [55]. Printing LCEs with nonuniaxial print 

paths within the plane or through the thickness leads to materials that undergo complex 

deformations on heating. Directing the printer to extrude the LC ink in an Archimedean 

chord pattern results in LCE films programmed with the director pattern associated with a 

+1 topological defect, where orientation varies azimuthally around a single point. The 
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printed +1 topological defect LCE morphs from flat at room temperature, as shown in 

Figure 2.4(a), into a cone at a higher temperature, as shown in Figure 2.4(b). Such LCEs 

can reach heights up to 10 times larger than the original film thickness [55].  

 

Figure 2.4.  (a) Side-view images of 3D-printed 4x2 array of 1 mm diameter disk, printed 

in an Archimedean chord pattern at room temperature and (b) a cone shaped array when 

heated. 

2.4 Radio Frequency Identification Devices (RFID) Applications for Cold Chains 

Perishables (produce, meat, and dairy) products require temperature controlled supply 

chains, since exposure to certain ambient temperature conditions can result in deterioration 

of the product and financial loss. Cold chain is a term that describes a supply chain that 

provides the best temperature conditions required to maintain the initial quality of the 

product, and prolong its shelf life. The unbroken cold chain should be uninterrupted after 

the initial cooling of the product, and maintain a desired low-temperature range. Current 

methods to monitor temperature of perishables use either expensive data loggers or 

disposable time-temperature color indicators. Typically, these devices are color-changing 

indicators, which, while simple, require a direct line of sight to the sensor and are inefficient 
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to read in bulk. Furthermore, once “triggered” these sensors no longer provide useful data 

and must be discarded [68]. A sensing system is needed that provides real-time, battery-

less and non-visual sensing of temperature to improve product safety. 

RFID technology’s usage is growing in supply chain management systems. RFID 

tagging overcomes the limitations of optical barcodes, which are line-of-sight and weather 

dependent and require manual inspection. RFID systems are beneficial for many food 

manufacturing operations and supply chains. Retail chains such as WalMart and Home 

Depot already use RFID, because RFID systems provide safety and security benefits by 

tracking the origin of food supplies, retailers are considering ways to integrate this 

technology into the management of their supply chains. 

An RFID system consists of a transponder (tag), with electronically programmed 

information, and of a detector (reader) that is capable to retrieve the identity of the tags 

through a wireless wave. The passive RFID tag usually is composed of a tag antenna and 

an IC chip. Various temperature-sensing RFID tags have been developed. However, most 

existing solutions rely on active or semi-active RFID tags that utilize a battery and a 

dedicated temperature sensor, such as, FreshtimeTM semi-active RFID tags from Infratab 

Inc, RFID-based temperature datalogger (i-Q32T) by Identec Solutions, and IDS-SL13A 

from IDS Microchip AG [69]. Passive RFID tags are preferred over active and semi-active 

tags as they are low cost, do not require batteries, and can uniquely identify each product. 

Such advantages are expected to help the supply chain to operate very fast and efficiently.  

Some challenges for RFID systems in food supply chains is that environmental factors, 

such as water and the presence of metal, can affect the quality of RF signals thereby 
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affecting their operation. The first challenge is the use of multiple frequencies around the 

globe. The fast development of the global economy, the exchanges of products made from 

different countries have become more and more frequent. The different regulations with 

respect to frequency ranges allocated for RFID commercial purposes, vary according to the 

country and complicate global RFID ventures. For example, UHF tags sent in a shipment 

from the U.S. (with a UHF frequency allocation between 902–928 MHz) will be able to be 

read in Europe (frequency allocation of 865–868 MHz) if used EPC Global Gen-2 

standards (which call for readers to be able to read along the entire UHF spectrum) but will 

not be able to be reprogrammed and sent back with a shipment. In order to make the tag 

attached to the products effective, the RFID system should operate in dual-band or multi-

band region [70-73]. Therefore, a design of dual-frequency or multi-frequency tag antenna 

is of great importance for RFID application in different countries. 

The other challenge of RFID systems related to the presence of metal near tags, which 

introduces a parasitic capacitance that changes the performance of tags including their 

radiation pattern, impedance, gain and bandwidth. As a result, tags can become unreadable 

from readers within normal reading range. There has been prior research into the 

development of RFID tag based sensors. For example, the development of displacement 

sensor was developed using the fact that RIFD tags performance changes in close proximity 

to metals [20]. Also, changes in the background dielectric material will certainly influence 

RFID tag performance both in terms of the power backscattered by the tag as well as the 

threshold transmitted power required to power up the tag [74]. 
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CHAPTER 3 

RECONFIGURABLE ANTENNAS BASED ON SELF-MORPHING LCES AT 

STATIC (FIXED) STATES WITH HEAT 

 In this chapter, pattern- and frequency-reconfigurable antennas using metallized 

LCEs that can change their geometries from flat to spiral and helical shapes are studied. 

The design of the LCE with twisted nematic (TN) orientation used for antennas is described 

in Section 3.1. The pitch angle and number of turns in this transformation are controlled 

by temperature. The reconfigurable antennas built on an LCE substrate are presented in 

Section 3.2. The results which show the pattern- and frequency-reconfigurability at a fixed 

state is presented in Section 3.2.1, Section 3.2.2, Section 3.2.3, respectively [75, 76]. An 

external heat source is applied to reshape the geometry of these antennas, thereby 

reconfiguring their performance in terms of radiation and frequency of operation.  

3.1 LCE Twisted Nematics (TN) Structures Used in Antennas 

The magnitude and direction of the thermomechanical response are controlled by the 

orientation of the nematic director to the film geometry. By programming twist directly 

into the molecular orientation (90°) through the thickness of the LCE twisted nematic (TN) 

alignment, torsional actuation can be induced, as illustrated in Figure 3.1. The orientation 

generates large deflection when subjected to thermal or optical stimuli due to the 

cooperation of the front and back surfaces. Twisted alignment is achieved by aligning the 

front surface (FS) of the film along the long axis, and offsetting the bottom surface (BS) 

alignment 45° the top director to the principal axes of the sample, resulting in shear that 

yields a three-dimensional torsional deformation [77-79]. The handedness of the twisting 
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is controlled by the material's chirality across the LCE thickness. When the nematic 

director rotates from a negative angle to a positive angle through the film thickness, an 

originally flat LCE spontaneously forms a left-handed (LH) helix upon heating. When the 

nematic director rotates from a positive angle to a negative angle through the film 

thickness, the originally flat LCE spontaneously forms a right-handed (RH) helix upon 

heating. The nature and degree of the twist are dependent upon the aspect ratio of the 

printed material. Appropriate TN will be programmed in the metallized LCEs to generate 

reversibly self-twisting antennas in response to temperature changes both above and below 

room temperature. 

To prepare LCEs in the TN orientation, a monomer mixture is initially melted to 

isotropic state for homogenous mixing on a glass substrate coated with an Elvamide film, 

then cooled into the nematic phase and photopolymerized after a chain-extension reaction, 

as described previously [80]. The thickness of the LCE used in our studies is 50 μm. LCE 

samples were prepared to genearte both RH and LH spirals. The sample strips are 18 mm 

long by 2 mm wide. Figure 3.2 shows the variation of the nematic director within the two 

strips and their corresponding helices. Specifically, in Figure 3.2(a), the nematic director 

rotates from +60° (FS) to -30° (BS) when it is heated at 130 °C above the glass transition 

temperature (Tg) and it forms a RH helix. This orientation will be represented as +60°/-30°. 

In Figure 3.2(b), the nematic direction rotates from -60° (FS) to +30° (BS) when it is heated 

at 130 °C and it forms a LH helix. This nematic director will be represented as -60°/+30°. 
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Figure 3.1.  Illustration of the 90 degree twist in the orientation of the nematic director in 

the so-called twisted nematic configuration. 

 

 
Figure 3.2.  LCE prepared in the TN orientation transform from flat to helical shape upon 

heating. Images shown when the LCEs are heated at 130 °C: (top) +60° (FS) to -30° (BS) 

yields a right-handed helix; and (bottom) -60° (FS) to 30° (BS) yields left-handed helix. 
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Due to the substantial mismatch of the coefficient of thermal expansion (CTE) between 

FS and BS above the glass transition temperature of the polymer (Tg) [81] the tightness of 

the spiraling can be controlled by temperature [78]. Figure 3.3 illustrates the number of 

turns versus temperature for two LCE strips: one that produces a left-handed (LH) helix 

and one that produces a right-handed (RH) helix. Figure 3.4 shows that, as the temperature 

increases, the number of turns increases. The external heat source varies the temperature 

of the LCE film from 30°C to 150°C. Notably, the LH twisting LCE strips achieve a larger 

number of turns, than the RH ones for the same temperature. The asymmetric response is 

also observed from other literature [82]. In Figure 3.5, the inverse of the pitch angle for the 

RH and LH strips is plotted versus temperature. As the temperature increases, the LH pitch 

angle increases more rapidly than the RH. 

 
Figure 3.3.  Temperature dependence of the number of turns of an LCE strip. 
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Figure 3.4.  Temperature dependence of the inverse of the helical pitch angle (PH). 

 

In order to form antennas using these LCE strips, a thin aluminum layer is attached 

using optical glue to the LCE. In this bi-strip, the thickness of the polymer is 50μm, which 

is considerably larger than the thickness of the aluminum layer (1.8μm). To prepare the 

antennas, the LCE films were spin-coated with a thin layer of Norland optical adhesive #75 

and immediately attached to 1.8μm thick Aluminum (Geisnote). After UV curing the 

optical glue (~5 min), the film was cut into strips 20-30mm in length and 2-3mm in width. 

Once the aluminum was attached to the polymer, experiments were conducted to confirm 

that the nascent thermomechanical response of the LCEs illustrated in Figures 3.2-3.4 is 

not affected by the thin aluminum layer. Figure 3.5 shows an LCE strip, which has 

aluminum attached to it, reshaping itself at different temperatures. The aspect ratio (i.e., 

length/width) of the LCE strips had to be large enough to achieve the shape transformations 

that are of interest, such as, helices or spirals. The aspect ratio used in all the films in this 

chapter ranges from 8.5 to 11. 
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Figure 3.5.  LCE with aluminum showing the different stages of the polymer changing its 

structure due to the increased temperature. 

 

3.2 Reconfigurable Antennas Based on LCEs 

Two pattern-reconfigurable antennas and a frequency-reconfigurable antenna are 

proposed here based on LCEs laminated with an aluminum layer. The pattern-

reconfigurable antennas can reshape itself at different temperatures to radiate: (1) 

omnidirectionally when it is straight, and (2) directionally when it is coiled into a helical 

or spiral due to heating. On the other hand, the frequency-reconfigurable antenna can 

change its number of turns at varying temperatures to radiate directionally at different 

frequencies. These reconfigurable antennas were simulated using ANSYS HFSS and the 

simulation models are shown in Figures 3.6- 3.8. 

 

2 mm 
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The helix consists usually of N turns, diameter D and spacing S between each turn. The 

total length of the antenna is 𝐿=𝑁𝑆 while the total length of the wire is 𝐿𝑛 = 𝑁𝐿0 = 𝑁√𝑆2+ 

𝐶2 where 𝐿0= √𝑆2+ 𝐶2 is the length of the wire between each turn and C = πD is the 

circumference of the helix. Helical antennas have different modes of operation (Normal 

and Axial) [23]. In Normal mode, the circumference is very small with respect to the 

wavelength (NLo << λo). The radiation is perpendicular to the axis of the helix and acts 

like a linear dipole. In the Axial mode, the circumference is in the order of the wavelength 

or large fractions of it (3/4 < Cλo < 4/3) [23]. 

The first antenna proposed here is a pattern-reconfigurable antenna that was built using 

an LCE with aluminum strip, which was cut at an orientation with nematic director 60°/-

30°. This LCE strip is 33mm long and 3mm wide and it is attached to the SMA bulkhead 

connector, using epoxy. It was discovered during experiments that attaching the aluminum 

foil to a different side of the polymer would affect the spiraling direction of the antenna 

upon heating. Also, the side length of the square ground is 20 mm. This design is larger 

from the other two shown in this chapter.  

The second antenna proposed here is another design for a pattern-reconfigurable 

antenna (i.e., reconfigures its radiation pattern) that was built using an LCE with aluminum 

strip, which was cut at an orientation with nematic director 70°/-20°. This LCE with 

aluminum strip is 17mm long and 2mm wide. The ground plane is a square with side 

lengths of 15mm cut from a double-sided copper FR-4 substrate (εr=4). Both of the ground 

plane sides are connected to the outer conductor of the SMA bulkhead connector and 

function as ground. The copper thickness of each side of the substrate is 0.035mm. The 
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substrate is 1.5mm thick and an LPKF ProtoMat S103 was used to fabricate the ground 

plane. Conductive silver epoxy was used to electrically connect the LCE strip to the feed 

line of the 50Ω SMA bulkhead connector that is connected to the ground plane as shown 

in Figure 3.9. The epoxy needed to be cured under room temperature for approximately 4 

hours. 

The third antenna proposed here is a frequency-reconfigurable antenna that uses an 

LCE with the aluminum strip cut at an orientation with nematic director 60°/-30°. This 

antenna is smaller with the LCE strip being 18mm long and 2mm wide and it is attached 

to the SMA bulkhead connector, using epoxy (Figure 3.10). The side length of the square 

ground is 18mm. The side lengths of the square ground planes for these two antennas are 

selected so that: (a) the omnidirectional radiation of the straight LCE strip is not negatively 

affected, and (b) the directional gain of the LCE antennas is enhanced at the coiled states. 

Specifically, the pattern-reconfigurable antenna is designed to radiate: (a) 

omnidirectionally at the straight state, and (b) directionally at the 1.1-turn helical state. 

However, the frequency-reconfigurable antenna is designed to radiate directionally at 

different frequencies as the LCE antenna morphs from 0.5-turn loop to 1.5-turn helix for 

different temperatures.  

The temperatures at which the different states of these last two antennas reconfigure 

themselves are listed in Table 3.1. The heat was uniformly applied by wrapping an 

insulated heat-tape around a PYREX beaker that enclosed the antenna. The temperature 

was measured using a temperature probe alongside the antenna. The metallic heat-tape that 

was used to heat the LCE antennas affects the antenna performance. Also the heating 
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equipment was difficult to fit in our anechoic chamber, therefore 3-D supports printed by 

the MakerBot Replicator Z18 were used to fix the antennas at different states. These 

supports were used to fix the antennas in different states after they had reshaped themselves 

in response to different temperatures. The 3-D supports were polylactic acid (PLA) with a 

relative permittivity (εr) of 3.2 [83]. Return-loss measurements (S11) were taken using a 

vector network analyzer (E5071C, Agilent Technologies). The radiation patterns of the 

first LCE antenna design were measured an AMS-8050 (ETS-Lindgren) anechoic 

chamber. The other two designs’ radiation patterns and gain measurements were conducted 

using a StarLab antenna measurement system. 

 

 

Figure 3.6.  Simulated models of LCE pattern-reconfigurable antenna #1 from: (a) 

straight to (b) 1.1-turn spiral. 
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             (a)                                           (b) 

Figure 3.7.  Simulated models of LCE pattern-reconfigurable antenna #2 from: (a) 

straight to (b) 1.1-turn helix. 

 

 

      (a)                                                       (b) 

Figure 3.8.  Simulated model of LCE frequency-reconfigurable antenna from: (a) 0.5-turn 

loop to (b) 1.5-turn helix. 
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(a)                                                                           (b) 

Figure 3.9.  Prototype LCE pattern-reconfigurable antenna at different temperatures: (a) 

straight at 30°C, (b) 1.1-turn helix at 92°C. 

 

 
(a)                                                       (b) 

Figure 3.10.  Prototype of LCE frequency-reconfigurable antenna at different 

temperatures: (a) 0.5-turn loop at 80°C, (b) 1.5-turn helix at 104°C. 

 

 

 

2 mm 

 

2 mm 
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Table 3.1. Temperatures of Reconfigurable States of LCE Antennas 

 Pattern-reconfigurable LCE 

Antenna #2 

Frequency-reconfigurable 

LCE Antenna 

States Straight 1.1-turn Helix 0.5-turn Loop 1.5-turn Helix 

Temp (°C) 30 92 80 104 

 

3.2.1 Pattern Reconfigurable LCE Antenna #1 

When the pattern-reconfigurable LCE antenna is at a fixed straight state and parallel 

to the ground as shown in Figure 3.11(a), it works in the normal mode. Its resonant 

frequency can be approximated using fr = c/(4L), where L is the length of the antenna. 

When this LCE antenna is heated to a 1.1-turn spiral state, it was fixed with a PLA support 

and works in the axial mode as shown in Figure 3.11(b). The resonant frequency of the 

axial mode can be approximated using fr=c/λ=cN/L, where L is the total length of the 

antenna, and N is the number of loops of the antenna. The simulated and measured S11 for 

the straight and 1.1-turn spiral states are shown in Figure 3.12 accordingly. The measured 

operating frequencies and 3D patterns of the two states are respectively 2.48 GHz and 13.2 

GHz, as denoted by triangles in Figure 3.12. The measured frequency is in close agreement 

with the simulated frequency and 3D patterns of the two states, 2.6 GHz and 13.3 GHz, 

respectively. 
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(a)                                                               (b) 

Figure 3.11.  Static prototype of pattern-reconfigurable LCE antenna #1 at different 

states: (a) straight and (b) 1.1-turn spiral. 

 

 

(a) 

 

2 mm 
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(b) 

Figure 3.12.  Simulated and measured S11 of pattern-reconfigurable LCE antenna #1 at: 

(a) straight state operating in omnidirectional mode; and (b) 1.1-turn spiral state operating 

in directional mode. 

 

3.2.2 Pattern Reconfigurable LCE Antenna #2 

The fixed straight state of the pattern-reconfigurable LCE antenna is shown in 

Figure 3.13(a). When this LCE antenna is heated to 92°C, it self-coils to a 1.1-turn helical 

state, and it was fixed with a PLA support as shown in Figure 3.13(b). The simulated and 

measured S11 for the straight and 1.1-turn helical states are shown in Figure 3.14 

accordingly.  

The purpose of this section is to illustrate that this LCE antenna can reconfigure its 

radiation pattern from omnidirectional to directional as it changes states (i.e., from straight 

state to 1.1-turn helical state). Therefore, the operating frequencies of the two states are 

picked based on the radiation pattern performance and not based on the S11 nulls shown in 
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Figure 3.14. The operating frequencies and 3D patterns of the two states are respectively 

4.9 GHz and 14.04 GHz, as denoted by triangles in Figure 3.14. Specifically, the operating 

frequency of the straight state is picked to be 4.9 GHz as it was found through our 

measurements that the best omnidirectional pattern is achieved at this frequency with a 

return loss of 8.5 dB and maximum measured realized gain of 1.7 dB, as shown in Figures 

3.14(a) and 3.15(a). Also, the operating frequency of the 1.1-turn helical state is picked to 

be 14.04 GHz as it was found through our measurements that the best directional pattern 

is achieved at this frequency with the lowest side lobes, as shown in Figure 3.14(b). The 

1.1-helical turn state exhibits a return loss of 6.6 dB at 14.04 GHz, which does not 

correspond to the null of S11, as shown in Figure 3.14(b); however, at 14.04 GHz, this 

antenna exhibits directional pattern with a maximum measured realized gain of 6.6 dB, as 

shown in Figures 3.14(b) and 3.15(b).The return loss of both antenna states can be 

increased by adding matching networks. However, this was not implemented in this 

section, because the goal of this work is to illustrate that this LCE antenna can reconfigure 

its radiation pattern. The radiation patterns of Figure 3.15 clearly illustrate that the LCE 

antenna of Figure 3.9 is able to change its shape (i.e., reshape itself) in response to heat, 

which in turn changes its radiation pattern from omnidirectional to directional. Figure 3.16 

compares the measured radiation patterns of the two states at 4.9 GHz and 14.04 GHz.The 

following can be concluded from Figure 3.16: (a) the straight state (achieved at 30°C) 

exhibits a significantly better omnidirectional pattern than the 1.1-turn helical state 

(achieved at 92°C), and (b) the 1.1-turn helical state (achieved at 92°C) exhibits a 

significantly better directional pattern toward zenith at 14.04 GHz than the straight state 

(achieved at 30°C). This data is summarized in Table 3.2. 
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(a)                                                                   (b) 

Figure 3.13.  Static prototype of pattern-reconfigurable LCE antenna #2 at different 

states: (a) straight and (b) 1.1-turn helix. 

 
 

 
(a) 

 

2 mm 
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(b) 

Figure 3.14.  Simulated and measured S11 of pattern-reconfigurable LCE antenna #2 at: 

(a) straight state operating in omnidirectional mode; and (b) 1.1-turn helical state 

operating in directional mode. 

 

 

(a)                                                                      (b) 

Figure 3.15.  Simulated and measured elevation patterns of the pattern-reconfigurable 

antenna #2 at (a) straight state, and (b) 1.1-turn helix. 
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Table 3.2. Performance of the Pattern-Reconfigurable LCE Antenna 

                                            States 

Performance Straight 
1.1-turn 

helix 

Operating Mode Omnidirectional Directional 

Operating Frequency (GHz) 4.9 14.04 

Simulated Realized Gain at Zenith (dB) -0.53 4.15 

Measured Realized Gain at Zenith (dB) -0.88 5.13 

 

 

(a)                                                                 (b) 

Figure 3.16.  Comparison of measured elevation-plane patterns of the pattern-

reconfigurable antenna at two different states. 

 

3.2.3 Frequency Reconfigurable LCE Antenna 

In order to measure the two states of the frequency-reconfigurable antenna shown 

in Figure 3.10 (namely 0.5-turn loop and 1.5-turn helix) the states were fixed, as shown in 

Figure 3.17, after the LCE antenna morphed itself at 80°C and 104°C. The simulated and 

measured S11 for the two states are shown in Figure 3.18. All patterns of the two states 
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were measured by a StarLab antenna measurement system. The operating frequencies of 

the two states were picked by measuring their radiation patterns and finding the frequencies 

where their patterns were directional toward the zenith and exhibited the lowest side-lobe 

level. Specifically, the operating frequencies and 3D patterns of the 0.5-turn loop and 1.5-

turn helix were picked to be 12 GHz and 10.7 GHz, respectively, as denoted by the triangles 

in Figure 3.18. 

The S11 and realized gain of this LCE antenna at the operating frequencies of the 

two states are shown in Table 3.3. The elevation radiation patterns of the two states are 

shown in Figure 3.19 at their corresponding frequencies. Figure 3.19 and Table 3.3 

illustrates that this LCE antenna exhibits directional patterns at both states and can operate 

at either: (a) 12 GHz with a measured gain of 5.37 dB towards the zenith of the 0.5-turn 

state, or (b) 10.7 GHz with a measured gain of 3.53 dB towards the zenith of the 1.5-turn 

helical state. The higher realized gain can be possibly achieved at 10.7 GHz with a 

matching network. However, this was not implemented in this section because the goal of 

this work is to illustrate that this LCE antenna can reconfigure its frequency of operation 

by reshaping itself when it is heated. Also, based on the measured axial ratio shown in 

Table 3.3, this LCE antenna is linearly polarized for both states. 

Figure 3.20 compares the elevation-plane radiation patterns of the two states in their 

corresponding two operating frequencies. Figure 3.20 clearly shows the following: (a) the 

0.5-turn loop exhibits at its own operating frequency of 12 GHz a higher gain than the 1.5-

turn helix, and (b) the 1.5-turn helix exhibits at its own operating frequency of 10.7 GHz a 

higher gain and lower side-lobe level than the 0.5-turn loop. Therefore, at its operating 
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frequency each state of the LCE antenna outperforms the other state in terms of gain and 

side-lobe level. These data are also summarized in Table 3.4. The radiation patterns shown 

in Figure 3.20 and the data in Table 3.4 clearly illustrate that the LCE antenna of Figure 

3.10 is able to change its shape (i.e., reshape itself) in response to heat and shift its operating 

frequency from 12 GHz to 10.7 GHz. 

 

(a)                                                                     (b) 

Figure 3.17.  Static prototype frequency-reconfigurable LCE antenna at two states: (a) 

0.5-turn loop, and (b) 1.5-turn helix. 

 

 

(a) 

 

2 mm 



37 

 

 
(b) 

Figure 3.18.  Simulated and measured S11 of frequency-reconfigurable antenna: (a) 0.5-

turn loop; (b) 1.5-turn helix. 

 

 

(a)                                                                 (b) 

Figure 3.19.  Simulated and measured elevation patterns of the frequency-reconfigurable 

antenna: (a) 0.5-turn loop, and (b) 1.5-turn helix. 
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Table 3.3. Performance of Each State of the Frequency Reconfigurable LCE Antenna  

 
0.5-turn loop 1.5-turn helix 

Operating Frequency (GHz) 12 10.7 

Measured S11 (dB) -13.97 -8.07 

Simulated Realized Gain at Zenith (dB) 5.53 3.79 

Measured Realized Gain at Zenith (dB) 5.37 3.53 

Measured Axial Ratio at Zenith (dB) 15.5 16.1 

 

  

(a)                                                      (b) 

Figure 3.20.  Comparison of measured elevation-plane patterns of the frequency 

reconfigurable antenna at different states 

 

Table 3.4. Comparison Between the Two States of the Frequency Reconfigurable LCE 

Antenna 

Operating Frequency (GHz) 10.7 12 

Max. Measured Realized Gain (dB) 
0.5-turn loop 5.45 6.09 

1.5-turn helix 5.06 2.09 

Max. Side Lobe Gain (dB) 
0.5-turn loop 3.1 2.49 

1.5-turn helix -0.7 -1.37 
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This chapter discussed the thermally induced mechanical responses from the liquid 

crystal elastomers (LCEs), attached to a metal layer, and are used herein to generate 

reconfigurable antennas that are tuned by external thermal stimuli. This is possible by 

programming the material’s anisotropy, orientation and alignment to dictate the response.  

The shape change from flat to spiral and helical is shown to reconfigure either the radiation 

pattern and/or frequency of operation. Three different designs were developed. The first 

LCE antenna design achieved pattern-reconfigurability by changing its shape from straight 

to a 1.1-turn spiral, which in turn changed its pattern from omnidirectional to directional. 

The second pattern-reconfigurability LCE antenna was designed to change its shape from 

straight to a 1.1-turn helix, which also changed its pattern from omnidirectional to 

directional. The third LCE antenna design achieved frequency-reconfigurability by 

changing its shape from a 0.5-turn loop to a 1.5-turn helix, which in turn changed its 

frequency of operation from 12 GHz to 10.7 GHz. LCE antennas are promising for the 

development of dynamically reconfigurable antennas [75].  
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CHAPTER 4 

SETUP DESIGN AND METALLIZATION OF DYNAMIC LCE ANTENNAS 

In Chapter 3, the pattern and frequency reconfigurable antennas based on shape-

morphing LCEs were presented in a fixed (static) state [76]. In this chapter, measurement 

setups are developed for the characterization of reconfigurable LCE antennas in a dynamic 

fashion [84, 85]. Prototype LCE reconfigurable antenna designs, are fabricated and 

experimentally characterized through measurements of their mechanical, thermal, and 

electromagnetic performance. The progression of external stimuli designs used to actuate 

the LCE antennas are presented in Section 4.1. The designs are constructed using 

temperature responsive (LCE) materials. The LCEs are also metallized and attached to a 

connector, as shown in Figure 4.1, in order to form antennas. The effects of different 

metallization techniques used for the LCE antennas are investigated in Section 4.2. The 

skin-depth effects will be considered and analyzed. Metal morphology will be examined 

before and after deformation using scanning electron microscopy (SEM).  

 

Figure 4.1.  The first design of a helical antenna using LCE in response to 

temperature of this dissertation research. 

 

2 mm 
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4.1 External Stimulus Designs 

To achieve a reversible shape change from the metallized LCEs with response to 

temperature, an external temperature source is required. The external temperature source 

should have as little metal as possible otherwise it will change the performance of the LCE 

antenna during measurement. Also, the external temperature source is required to give heat, 

but a little amount of air pressure (psi) due to the fact that LCE materials are lightweight. 

For example, a microheater and a heat gun could achieve to give the heat needed, although, 

but their air pressure is too much. There were many different types of measurements setup 

designs that will be presented in this section. The main goal is to design an external 

stimulus source to create a certain temperature in an enclosed area around the LCE antenna 

in order to reversibly change its shape and simultaneously take radiation pattern 

measurements inside the anechoic chamber without having to fix the antenna geometry 

(i.e., allow dynamic reconfiguration of the LCE antenna’s shape).  

4.1.1 External Stimulus with Soldering Tool and Beaker 

For proof-of-concept, the tip of a soldering tool was used to actuate the LCE 

antenna, shown in Figure 4.2, because it provided the heat temperature needed without air, 

such as, a hot-air gun. 
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Figure 4.2.  Dynamic LCE Antenna self-twisting in response to heat. The number of turns 

increases as the temperature increases and will return to original state once the heat is 

removed. 

 

In previous research, Section 3.2, the external heat source used was a metallic 

insulated heat-tape wrapped around a PYREX beaker that enclosed the antenna, shown in 

Figure 4.3. Due to the old heating techniques affecting the LCE antenna performance, the 

LCE strips were fixed in different states with PLA supports to measure their radiation 

patterns in the StarLab anechoic chamber. These 3-D printed PLA supports were used to 

fix the antennas in different states after they had reshaped themselves in response to 

different temperatures.  

5 mm 



43 

 

 

(a) 

 

(b) 

Figure 4.3.  A metallic insulated heat-tape wrapped around a PYREX beaker that 

encloses a dynamic LCE Antenna (b), used for an external heat source. 
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A design that could get heat into the anechoic chamber long enough for the 

antenna’s structure to change without affecting the chamber during measurements was 

needed. Figure 4.4 shows a new design of an enclosure used for an LCE antenna to 

reversibly self-actuate in response to temperature. The enclosure maintains the heat long 

enough for the StarLab anechoic chamber to do the radiation pattern measurements (this 

takes 2-3 minutes). First, the antenna without the presence of heat, Figure 4.4(a), was 

measured and temperature was recorded in real time. A PYREX beaker is placed upside 

down on a hot plate, shown in Figure 4.4(b). The hot plate heats up and the beaker contains 

the heat inside. Then the heated beaker is placed, using thermal gloves, over the LCE 

antenna and the structure begins to dynamically change, as shown in Figure 4.4(c). The 

petri dish has a hole in the center to allow the coaxial cable to fit through; therefore, the 

LCE antenna is enclosed with only small heat leakage. Once the measurement is done with 

recorded temperature, the beaker is removed and the LCE antenna returns to its original 

state. A small digital temperature probe, as shown in Figure 4.4(d), was placed inside the 

beaker but under the antenna to monitor temperature during measurements with the LCD 

screen outside the chamber to verify the temperature conditions. The antenna shown in 

Figure 4.4 is 25 mm long and 2.5 mm wide. The overall thickness is 51.8μm, with 1.8μm 

optically glued Al and a 10 mm ground square was used. The measurements were 

conducted to verify the performance of the antennas using a vector network analyzer and 

an anechoic chamber. 
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(a) 

 
(b) 



46 

 

 
(c) 

 

(d) 

Figure 4.4.  Proposed design of an external stimuli enclosure in anechoic chamber. (a) 

LCE antenna without heat (24°C); (b) Hot plate heating beaker; (c) Hot beaker enclosure 

dynamically actuating LCE antenna (50°C); (d) Digital thermometer monitoring 

temperature inside the enclosure during measurement. 
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The antenna shown in Figure 4.5 is 27 mm long and 3 mm wide. The overall 

thickness is 51.8μm, with 1.8μm optically glued Al and a 10 mm ground square was used. 

Figure 4.5(a) shows the antenna at room temperature. Figure 4.5(b) shows the antenna 

when an external heat stimulus is used. The antenna uncurled itself into a slightly twisted 

straight structure. Figure 4.5(c) shows the LCE antenna in the anechoic in the dynamic 

actuated state. 

 

        (a)                                                    (b) 
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(c) 

Figure 4.5.  LCE antenna inside beaker enclosure at different temperature states; (a) room 

temperature (24°C); (b) heated (50°C); and (c) dynamically actuated inside the anechoic 

chamber. 

 

Figure 4.6 shows the LCE antenna operating at room temperature and also inside 

the heated enclosure. The measured S11 and realized gain of the LCE antenna at the 

operating frequencies are shown in Table 4.1, for room temperature (i.e., 24°C and 50°C). 

The elevation radiation patterns for the corresponding frequencies are shown in Figure 4.7. 

In Figure 4.7 (a), at 6.7 GHz, the antenna is not heated and the pattern does not have a 

definite direction. When the LCE antenna is heated to 50°C, the reconfigurable LCE 

antenna can operate at 2.9 GHz or 6.8 GHz, and these patterns are directional in two 

different directions. 
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Figure 4.6.  Comparison of measured S11 of multiband LCE antenna at two different 

temperature states. 

 

Table 4.1 Performance of Each State of the Dynamically Reconfigurable LCE Antenna  

Operating Frequency (GHz) Measured S11 (dB) Realized Gain (dB) 

No Heat 6.7 -12 6.6 

Heated 2.9 -14 2.7 

Heated 6.8 -17 5.8 

Heated 11.1 -18 7.7 
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(a) 

 

(b)                                                                                (c) 

Figure 4.7.  The measured radiation patterns of the reconfigurable antenna at θ = 90°. (a) 

6.7GHz with no heat. (b) 2.9 GHz and (c) 6.8GHz are with heat. 

 

4.1.2 External Stimulus with Acrylic/Plastic Box  

Although the enclosure of Figure 4.4(c) works with the LCE antenna, there are still 

drawbacks. One of them is the limited time for measurements before the heat leaks out and 

the LCE antenna recovers back to its original state. Another drawback is the temperature 
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control. Only two temperatures are available that can be controlled using this process: the 

maximum temperature from the hot plate needed for actuation and the recovering 

temperature as the heat leaks out of the beaker. 

To better control the heating of the LCE antennas, acrylic or polystyrene (plastic) 

boxes along with a solder reworking station were used to construct the new enclosure 

shown in Figure 4.8. The boxes have holes drilled out for the coaxial cable and for the 

solder reworking station hose. The rework station is helpful because of the airflow (psi) 

and temperature control. Therefore, the hot air is pumped into the enclosed box at the 

desired temperature and airflow setting, and the LCE antenna can be measured in the 

chamber at different stable temperatures instead of only two from the previous design. In 

addition, because the hose from the rework station is long, it can easily be setup in the 

chamber without the whole system being inside affecting the antenna radiation pattern 

measurement, as shown in Figure 4.9. The amount of the hot air pumped into the box is 

controlled by either a nozzle or the size of the drilled hole. Again, a digital thermometer is 

used to monitor the temperature inside the enclosure. This setup allows the dynamic 

actuation of  LCE antennas and real-time measurements. 
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Figure 4.8.  Examples of acrylic or polystyrene (plastic) boxes with drilled holes and 

solder reworking station external stimuli setup. 

 

 

Figure 4.9.  External stimuli enclosure setup in the chamber with reworking station hose. 

 

A frequency-reconfigurable LCE antenna is proposed here based on using external 

stimuli with the acrylic box. The LCE antenna is 20 mm long and 2 mm wide. The overall 

thickness is 50.5μm, with 500nm evaporated Al and a 30 mm ground square was used. The 
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simulation and prototype models are shown in Figures 4.10 and 4.11. The simulated and 

measured S11 for the three states are shown in Figures 4.12 and 4.13. All patterns were 

measured with the external stimuli setup in the StarLab antenna measurement system. The 

simulated and measured elevation radiation patterns of the different states are shown in 

Figure 4.14 at their corresponding frequencies. Figures 4.12 to 4.14 show that as the 

temperature changes, the antenna changes its shape and operates at a different frequency. 

 

 

(a)                                                  (b)                                                 (c) 

Figure 4.10.  Simulated model of LCE frequency-reconfigurable antenna that reshapes 

itself from (a) 1-turn helix to (b) 2-turn helix to (c) 3 turn helix. 

 

 

(a)                                                  (b)                                                 (c) 

Figure 4.11.  Dynamic prototype LCE frequency-reconfigurable antenna at different 

temperatures: (a) 1-turn helix at 45°C, (b) 2-turn helix at 60°C, and (c) 3-turn helix at 

80°C. 

 

5 mm 
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Figure 4.12.  Simulated S11 of frequency-reconfigurable antenna for three states with a 

simulated 3D radiation gain. 

 

 

Figure 4.13.  Measured S11 of frequency-reconfigurable antenna four three states 
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(a) 

    

(b)                                                                              (c)  

Figure 4.14.  Simulated and measured elevation patterns of the frequency-reconfigurable 

antenna at different states: (a) 1-turn helix, (b) 2-turn helix, and (c) 3-turn helix. 
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4.1.3 Cylinder Brace for Larger LCE Antennas 

A problem that was faced in Section 4.1.2 with the antenna setup in the anechoic 

chamber was that when as the LCE antenna becomes longer, its weight increases and 

gravity forces pull it down. Therefore, in certain long LCE antennas at room temperature 

the antenna can potentially be pulled down by gravity to the point that it touches the ground 

plane and shorts itself. One way to prevent this from happening and simultaneously 

measure the antenna as it responds to temperature changes, is to measure it upside down, 

as shown in Figure 4.15. To measure the radiation pattern, the LCE antenna would have to 

be connected to the connector at 90° degrees, which will not show the whole pattern 

towards the azimuth (see Figure 4.16); therefore, this is not practical. The LCE antenna 

shown in Figure 4.15 is 25mm long and 2.5mm wide with 50μm thick LCE substrate 

metallized with 200nm of Titanium/Copper (25nm Ti/175nm CU). Titanium was used as 

an adhesion layer for the cooper. When heated, the LCE antenna changes from a left-

handed helical state to a right-handed helical state and back to its original state after the 

heat is removed. 

To address the problem regarding the potential shorting of the LCE antenna, a 3-D 

printed PLA cylinder brace was designed to support the antenna upwards at room 

temperature. This support prevents the LCE antenna from dropping and touching the 

ground plane and has a sufficiently large diameter to allow the antenna to change its shape 

when it is heated. Figure 4.16 shows the LCE antenna with the PLA cylinder. The LCE 

antenna is 20 mm long and 2 mm wide. The overall thickness is 51μm, with 1μm 

evaporated Al and a 30 mm ground square was used. The PLA cylinder is designed at an 
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angle because the antenna spirals at an angle. The simulation and prototype models are 

shown in Figures 4.17 and 4.18. Figure 4.18 shows the LCE antenna with different turns 

inside the cylinder brace as the temperature increases. The LCE antenna dynamically 

changes its number of turns according to the temperature as follows: 0-turns at 25°C, 1-

turn at 40°C, 2-turns at 63°C, and 3-turns at 80°C. The simulated and measured S11 for 

each state are shown in Figure 4.19 (a)-(c), respectively. All patterns were measured with 

the external stimuli setup in the StarLab antenna measurement system. The simulated and 

measured elevation radiation patterns of the different states are shown in Figure 4.20 at 

their corresponding frequencies.  

 

Figure 4.15.  Prototype of LCE antenna for dynamic measurements at different 

orientations: upside down, right side up, and 90° degrees inside the anechoic chamber. 

 

2 mm 
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Figure 4.16.  Dynamic prototype LCE Antenna with and without the Polylactic Acid 

(PLA) cylinder brace. 

 

 

(a)                                                  (b)                                                 (c) 

Figure 4.17.  Simulated model of LCE frequency-reconfigurable antenna that reshapes 

itself from (a) 1-turn helix to (b) 2-turn helix to (c) 3 turn helix. 
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Figure 4.18.  Dynamic prototype LCE Antenna inside the cylinder brace at different 

states: no turns at 25°C, 1-turn at 40°C, 2-turn helix at 63°C, and 3-turn helix at 80°C. 

 

 

5 mm 
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(a) 

 

(b) 

Figure 4.19.  (a) Simulated and (b) measured S11 of dynamic frequency-reconfigurable 

LCE antenna at each different state  
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(a)                                                                              (b)  

    

(c)                                                                              (d)  

Figure 4.20.  Simulated and measured elevation patterns of the dynamic frequency-

reconfigurable LCE antenna at different states: (a) 1-turn helix at 10 GHz, (b) 2-turn 

helix at ~10Ghz, (c) 2-turn helix at 14 GHz, and (d) 3-turn helix at 15 GHz. 
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In summary, there were many different types of measurement setups, each setup 

addresses a problem that was identified in the previous setup. The designs were constructed 

for lightweight responsive (LCE) materials to smoothly change their structure without 

ambient temperature interference. The main goal was to design an external stimuli source 

mechanism to set a certain temperature in an enclosed area for LCE antennas to allow the 

dynamic characterization of their mechanical, thermal, and electromagnetic performance 

without fixing the antenna.  

4.2 Different Metallization Techniques used for LCE Antennas 

LCE substrates need to be metallized in order to function as antennas [73]. However, 

optimal metallizations should be developed that do not crack or delaminate when LCE 

antennas reversibly actuate. Here, the metallization of LCEs film will be studied for 

different conductors and fabrication processes. Specifically, optical glue or electron beam 

physical vapor deposition (E-Beam evaporation) will be used to attach the conductor to 

LCE films. Although there are many other metallization techniques available [17], the 

limitations of metallizing a temperature sensitive thin film must be considered. Once the 

metal is attached to the polymer, the ability of the metalized LCE to reversibly change its 

shape was tested. The thickness of the metallization can range from a few nanometers to 

hundreds of nanometers. It is expected that the metal thickness by evaporation will not 

exceed the skin-depth in the RF range. The effects of the material thickness to the self-

morphing ability of LCE antennas will be also considered and performance trade-offs (i.e., 

thinner materials are easier to fold, whereas thicker materials exhibit less resistive losses) 

will be studied. Electroplating can be used to increase the metal thickness and provide 
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thicknesses that are greater than 1μm. The metal morphology of the conductor will be 

characterized before and after actuation using scanning electron microscopy (SEM).  

At high frequencies, the current density is concentrated into the region near the surface 

of a good conductor. This is commonly called the skin effect. Skin depth or penetration 

depth is defined as the depth below the surface of the conductor at which the amplitude at 

an incident electric field (E) has decreased by factor 1/e (approximately 0.37) [86]. The 

skin depth, δ, is defined by  

𝛿 = √
𝜌

𝜋𝑓𝜇𝑟𝜇0
 (1) 

Where 𝜌 is the resistivity, 𝑓 is the frequency, 𝜇𝑟 is the permeability of free space and 

𝜇0 is the magnetic permeability of the conductor material. The metal thickness of our LCE 

antennas will not to exceed the skin-depth at the corresponding frequencies of operation 

since thick metallizations will not allow these antennas to change their shape. Therefore, 

thick metallizations will be avoided.  

The method for fabricating Aluminum-coated LCEs is described below. Two LCE 

antennas were prepared using two different metallization techniques. Antenna 1 used an 

optically glued aluminum (Al) and Antenna 2 used electron beam evaporation. To prepare 

Antenna 1, the LCE films on the glass slides were spin-coated with a thin layer of optical 

glue and immediately attached to 1.8μm thick Al film. After UV curing the optical glue 

(~5 min), the films were cut into strips. Antenna 2 was prepared using a thin film deposition 

process called electron beam physical vapor deposition or E-Beam evaporation (CHA SAP 
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600). The deposition rate in this process was set to 0.1nm per second with incremental 

deposition of 250nm of Al to avoid overheating the LCEs. After evaporating 1μm of Al, 

the films were also cut into strips. The deposition rate in this process can be as low as 1nm 

per minute to as high as few micrometers per minute. The material utilization efficiency is 

high relative to other methods and the process offers structural and morphological control 

of films. The Al thickness used in Antenna 2 was 1μm. Both antennas 1 and 2 were made 

on glass slides, shown in Figure 4.21 (a) and (b). Surface profiles of the LCEs and images 

of the Al films were taken using scanning electron microscopy (SEM, Jeol JSM-

7000F/JIB-4500). The metallized LCE films prepared for SEM measurements; were 5mm 

by 2mm samples of the two Al metallized LCEs. The samples were sputtered with a thin 

layer (~5nm) of gold by using a Pelco SC-7 auto sputter coater prior to SEM imaging to 

obtain a conductive surface. The Al film used with the optical glue was a foil type material, 

which displayed wrinkles and non-uniformity when it was attached to the LCE substrate. 

Figure 4.22 shows SEM images of the metallized LCE films at 100μm scale, illustrating 

the wrinkles of the glued Al and the uniformity of the E-beam evaporated Al. Figure 4.23 

shows the surface roughness of the two metallizations before and after heat. 
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(a)                                                (b) 

Figure 4.21.  Metallized LCEs on glass slides with: (a) glued Al and (b) E-beam 

evaporated Al. 

 

 

(a)                                                                    (b) 

Figure 4.22.  SEM images of metallized LCE films before heat cycles with: (a) glued Al 

and (b) E-beam evaporated Al. 

 

2 mm 
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Figure 4.23.  SEM images of metallized LCE films: (a) glued Al before heat, (b) E-beam 

evaporated Al before heat, (c) glued Al after heat, and (d) E-beam evaporated Al after 

heat. 

 

Antenna 1 is shown in Figure 24(a) and it is 20mm by 2mm by 51μm thick with 1 μm 

of Al using the E-beam evaporation. Antenna 2 is shown in Figure 24(b) and it is 20mm 

by 2mm by 51.8μm with 1.8μm thick Al film attached to the LCE substrate using an optical 

glue. An LPKF ProtoMat S103 was used to make 30mm square ground planes from FR-4 

substrate (εr = 4) with copper thickness of 0.035mm and 1.5mm thick substrate. Both 

antennas were attached to SMA connectors using Alumina thermal adhesive and the 

ground planes were attached using super glue. After 25~50 heat cycles, the glued Al LCE 

antenna began to display cracks and peeling, as shown in Figure 4.25. 
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(a)                                                                        (b)    

Figure 4.24.  Two LCE antennas were prepared using two different metallization 

methods: (a) Antenna 1 used Al attached to the LCE with optical glue, and (b) Antenna 2 

used electron beam evaporation. 

 

 

Figure 4.25.  Two LCE antennas after 50 heat cycles. 

 

1 cm 

2 mm 
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Atomic Force Microscopy (AFM) images of the glued Al confirmed that the surface 

roughness of the metallization increased after heating LCEs, as shown in Figure 4.26. 

Figure 4.27 shows the metallized LCE samples that will be actuated through a different 

number of heat cycles. These samples were 5mm by 2mm samples. The SEM micrographs 

shown in Figure 4.28 illustrate the differences in the metallization of the LCEs with 

increasing heat cycles (0, 25, 50, 100 respectively). These images clearly demonstrate the 

changes in the surface roughness and increased buckling created on the films as the number 

of heat cycles increases. Each film comes from the same sample slide and has not been 

affected with heat cycles previously. Buckling and cracking of glued Al increased at 

various sites after heating due to the geometrical change of the LCEs. 

 

Figure 4.26.  AFM images of glued Al before and after 50 heat cycles. 
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(a)                                           (b)                                            (c)  

Figure 4.27.  Metallized LCE samples that will be actuated through a different number of 

heat cycles: (a) 25 cycles, (b) 50 cycles, and (c) 100 cycles. 

 

2 mm 
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Figure 4.28.  SEM images showing Al glued (left side) and evaporated (right side) with 

(a) no heat, (b) 25, (c) 50, and (d) 100 heat (25°C-90°C) cycles from top to bottom 

respectively. 
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CHAPTER 5 

DUAL-BAND SELF-MORPHING LIQUID CRYSTALLINE ELASTOMER (LCE) 

ANTENNAS AT DYNAMIC COLD STATES 

In this chapter, two LCE antennas based on cold temperature sensing, which can 

dynamically self-morph from a monopole to a helical antenna as temperature decreases 

below room temperature, are presented. The synthesis and preparation of the TN LCE used 

for the antennas are described in Section 5.1. The results of the LCE antennas reversibly 

changing frequency in response to temperatures are presented in Section 5.2. In order to 

design an external stimuli enclosure for cold temperatures for that given range; a cooling 

bath (Dry Ice/Isopropyl Alcohol) is needed, bringing the temperature down to -77°C. The 

deeper the LCE antenna goes in, the lower the temperature will be as well as increased 

number of turns. As the temperature decrease, the LCE antennas will change their state on 

demand from flat to a helical shape with the number of turns increasing.  

5.1 Synthesis and preparation of TN LCEs 

TN LCE preparation by photoalignment was performed by adapting a previously 

described method [26]. Glass slides (50 mm × 25 mm × 1 mm) were cleaned with acetone, 

isopropyl alcohol, and deionized water and dried with nitrogen. The cleaned glass slides 

were exposed to oxygen plasma at 100 mTorr pressure and 50 mW power for 1 minute by 

Technics Series 85-RIE. A solution of 1% brilliant yellow in DMF was filtered through 0.2 

µm filter. The dye solution was then spin coated on glass slides at 1500 rpm for 30 seconds. 

After coating, photoalignment of the dye was achieved by exposing the slides with linearly 
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polarized broad-band light at an intensity of 50 mW/cm2. Then, the cells were constructed 

by two glass slides with 12.5 µm spacers to set film thickness. 

The equivalent molar ratio of liquid crystal monomer RM82 and chain extender n-

butylamine were mixed with 1.5 wt. % of photoinitiator I-369, shown Figure 5.1(a). 

Twisted aligned cells were filled with a monomer mixture with capillary force and stored 

overnight at 65°C for oligomerization.  After the oligomerization, the sample was cooled 

to room temperature and polymerized in the nematic state by 365 nm UV irradiation 

(Omnicure® LX400+, Lumen Dynamics) at an intensity of 200 mW/cm2 for 5 minutes. 

After the crosslinking, glass cell was opened for metal evaporation, shown in Figure 1(b).  

 

 

Figure 5.1.  (a) RM82 and n-butylamine used to synthesize the reactive LCEs and (b) The 

fabrication process of LCE sample metallized with gold. POM images to confirm twisted 

alignment: (c) front (d) back. (e) An evaporated Au LCE antenna at room temperature. 
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The LCE antenna dimensions are 30 mm x 2 mm x 12.7 μm, as shown in Figure 

1(e). The aspect ratio (i.e., length/width) of the LCE strips had to be large enough (>10) to 

achieve the needed shape transformations, such as, helices or spirals. The aspect ratio for 

our film is 15. The LCE antenna will be used as a sensor by relating the change of its shape 

to a detectable change in its electrical properties. 

The TN LCE film alignment was confirmed by birefringence from polarized optical 

microscopy (POM) (BX51, Olympus), shown in Figure 5.1(c) and (d). Scanning Electron 

Microscopy (SEM) was conducted using an SEM, Jeol JSM-7000F/JIB-4500 operated a 

12 μA current and 15 kV accelerating voltage, shown in Figure 5.3. Samples were of 12.5 

μm thick LCE with 200 nm Au. The the skin depth of the gold metallization is 0.940 μm 

at 7 GHz and it was calculated using the following parameters: 𝜌= 2.44 μΩ cm, 𝜇0= 4π x 

10-7 H/m, and 𝜇𝑟= 1 [87]. The two operating frequencies of the LCE antenna at room 

temperature were 2.7 GHz and ~7 GHz. The thickness of the evaporated gold, 𝑡, is 200 nm, 

which is 13% and 21% of the skin depth, δ, at 2.7 GHz and ~7 GHz, respectively. The RF 

sheet resistance, Rs, of the 200 nm-thick conductive gold layer is 0.13 Ω/sq and 0.135 Ω/sq, 

respectively at 2.7 GHz and 6.95 GHz according to the following 

𝑅𝑠 =
𝜌

𝛿

1

1−𝑒𝑥𝑝
−𝑡

𝛿⁄
 (2) 

Equation (2) shows that as the thickness of the gold layer increases the RF sheet resistance 

decreases, thereby decreasing the RF losses of the antenna. In turn, increased RF losses in 

the antenna decrease its radiation efficiency; therefore, the metal layer should not be made 

too thin. However, the thicker the metallization becomes the more difficult the self-
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morphing of the metallized LCE becomes. The metallization should not be chosen too thick 

as this will restrict the ability of the LCE to change its shape. There is a performance trade-

off in the design of the LCE antennas is controlled by the thickness of the metallization 

between RF losses and mechanical ability to self-morph. It was observed that LCEs with 

thinner metallization can change shape more easily, whereas LCEs with thicker 

metallization exhibit less RF resistive losses. The two probe resistance measurements were 

performed using Keithley 4200-SCS to obtain an I-V curve with a voltage sweep from -1V 

to 1V and a sweep step of 0.01V. The resistance is calculated as the gradient (change in 

voltage divided by the change in current) of the I-V curve. All samples were 5mm by 2mm, 

measured at room temperature in ambient air and probed at the same distance. The 5 mm 

by 2 mm Au film resistance measurements after 50 cold cycles was 4.4 Ω. 

The AR70-38 [88] regulation is concerned primarily with the mechanical operation 

or functioning of materiel under the extremes of climate to which it is likely to be exposed. 

Climatic design types. Four climatic design types are differentiated on the basis of 

worldwide temperature regimes. They are— (1) Hot climatic design type. (2) Basic 

climatic design type. (3) Cold climatic design type. (4) Severe cold climatic design type 

The areas designated as cold, and severe cold, primarily northern North America, 

Greenland, northern Asia, and the Tibetan Highlands of China, were delimited because of 

the occurrence of low temperatures. In the area of the cold design type, temperature during 

the coldest month in a normal year may be colder than the basic cold extreme of −32°C. In 

the severe cold areas, the temperature during the coldest month in a normal year may be 

colder than the cold extreme of −46°C, but colder than −51°C no more than 20 percent of 
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the hours in the coldest month in the coldest part of the area (northern Siberia where 

absolute minimum temperatures are lower than −65°C). 

The LCE antennas were immersed and measured at temperatures below 0°C. The 

apparatus and procedure used were in accordance with the standards: AR70-38 [88], MIL-

STD-883E [89], and MIL-STD-810F [90]. The apparatus used for the severe cold 

environmental test consist of a large temperature controlled flask of cold bath filled with 

dry ice and isopropyl alcohol (IPA). The temperature of the cold bath was set to -77°C. A 

thermocouple was used to measure the bath temperature and additional fresh, dry ice was 

added to the bath periodically, to maintain a constant temperature, -77°C. The antennas 

were subjected to the cold condition and ambient temperature for at least 10 cycles, with a 

transfer time of 10 s and a dwell time of 2 min according to [89]. Figure 5.2 shows the 

cooling bath’s temperature regions. The coldest temperature at which this LCE antenna is 

measured at is -65°C. This specific test temperature was determined according to [90] 

Method 502.4, based on the worldwide areas in which the material will be used with 

extended storage periods. If material is to be stored for extended periods (years) without 

shelter or protection in areas that experience very low temperatures such as the "cold pole" 

of northeast Siberia or central Greenland, there is an increased chance that the material may 

experience much lower temperatures (approaching -65°C). The LCE antenna needs to be 

able to function in such prolonged exposure to the extreme low temperatures.  
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Figure 5.2.  The cooling bath’s temperature regions 

 

5.2 Results and Discussion 

Two LCE antennas were fabricated and evaluated through measurements for their 

mechanical, thermal, and EM performance. Figure 5.3 depicts SEM micrographs of 

evaporated Au LCE film. The results show the roughness of the film formed by E-Beam 

evaporation. The metallized surface morphology of the films showed buckling at x1000 

magnification due to stretching of the LCE when lifting/handling, as shown in, Figure 

5.3(a). This LCE deformation causes the Au film to contract, producing visible cracks in 

the film, Figure 5.3(b). The shape of helical LCE with one turn shown in Figure5.3(c) and 

top view of the diameter, Figure 5.3(d), where the Au film is on the inside of the helical.  
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Figure 5.3.  SEM micrographs of: (a) evaporated Au LCE film after lift-off; (b) 

evaporated Au LCE film after 50 cycles; (c) evaporated Au LCE helical at one turn; and 

(d) top view of evaporated Au LCE film. 

 

Figure 5.4 and 5.6 show verification of the LCE antennas changing inside the cooling 

bath flask in response to the temperature lowering. As the LCE antenna is lowered into the 

flask, the temperature decreases, which changes the shape of the antenna from flat to a 

helical shape. It is important to note that as the temperature decreases the number of turns 

of the helix formed by the LCE increases. The RF tunability of the self-twisting LCE 

antenna was investigated and showed that the reflection coefficient, S11, was measured 

using a vector network analyzer while the temperature became colder simultaneously. This 

indicates the novelty of the reversible tunability of the LCE antennas with temperature. 

The mechanical deformation of our LCE antennas is caused by the mechanical response of 

the LCE substrate to different temperatures. 
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The reflection coefficient was measured using an E5071C ENA Series Network 

Analyzer to identify the resonant frequency, S11, (i.e., the frequency where the antenna 

exhibits best match to 50 Ω). Figure 5.5 and 5.7 reflection coefficient of the LCE antenna 

1 and 2, respectively, for different number of helical turns corresponding to different 

temperatures. Specifically, the LCE antenna with zero, one and two turns correspond to 

room temperature (25°C), -30°C and -65°C, respectively. Both figures illustrate that in the 

frequency range between 1-10 GHz the LCE antennas have two operating frequency bands, 

which are summarized in both Tables 5.1 and 5.2. The bandwidth is defined as the 

frequencies where S11 ≤ -10 dB and the S11 is shown at the center frequency. It should be 

noted that at room temperature (25°C) the LCE antenna has 0 turns and performs as a 

monopole antenna. Whereas, when the antenna is cooled, it forms a 3D helical antenna. 

Also, the operating frequency of the antennas increases as the temperature decreases (i.e., 

number of helical turns increases). This frequency shift occurs because as the number of 

LCE antenna turns increases, this changes its current distribution and location of these 

currents in space, which in turn changes its input impedance, reflection coefficient and 

operating frequency. It is this frequency shift that can be used to detect different 

temperature by using a transmitter that sends an interrogating signal to the LCE antenna to 

determine its the operating frequency. By knowing the operating frequency, then we can 

infer the temperature. Specifically, when the interrogating transmitter determines that the 

frequency of operation of the LCE antenna is 2.7 GHz, 2.96 GHz or 3.3 GHz then the 

inferred sensed temperature will be 25°C, -10°C or -65°C, respectively (according to Table 

5.1 and 5.2).  
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Figure 5.8 shows the measured reflection coefficient at room temperature after the 

LCE antenna has been actuated through a different number of temperature cycles (each 

cycle takes the antenna from 25°C to -65°C and back to 25°C. Figure 4(b) illustrates that 

the LCE antenna after 100 cycles exhibits approximately the same resonant frequency in 

both bands of operation, which robustness of this design.  

 

Figure 5.4.  Au LCE antenna 1’s number of turns increase as the temperature decrease. 
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Figure 5.5.  Measured reflection coefficient (S11) of the Au LCE antenna 1 as the number 

of turns increased as temperature decreases. 

 

Table 5.1. Measured Resonant Frequency and Bandwidth of Dual-band Au LCE Antenna 

1 at Each Number of Turns in Response to Temperature. 

LCE Antenna Band 1 Band 2 

# of turns 
Temp 

(°C) 

Frequency 

(GHz) 

S11 

(dB) 

BW10dB 

(MHz) 

Frequency 

(GHz) 

S11 

(dB) 

BW10dB 

(MHz) 

0 Turn 25 2.53 -17.5 420 6.95 -19.2 710 

1 Turn -10 2.78 -8.8 - 7.38 -17.2 600 

2 Turns -65 2.87 -10.8 200 7.72 -11.9 360 

 



81 

 

 

Figure 5.6.  Au LCE antenna 2’s number of turns increase as the temperature decrease. 

 

 

Figure 5.7.  Measured reflection coefficient (S11) of the Au LCE antenna 2 as the number 

of turns increased as temperature decreases. 
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Table 5.2. Measured Resonant Frequency and Bandwidth of Dual-band Au LCE Antenna 

2 at Each Number of Turns in Response to Temperature. 

LCE Antenna Band 1 Band 2 

# of turns 
Temp 

(°C) 

Frequency 

(GHz) 

S11 

(dB) 

BW10dB 

(MHz) 

Frequency 

(GHz) 

S11 

(dB) 

BW10dB 

(MHz) 

0 Turn 25 2.7 -14.5 370 6.95 -23.3 750 

1 Turn -10 2.96 -11.2 180 7.29 -15.4 1190 

2 Turns -65 3.3 -10.1 10 7.89 -19.1 850 

 

 

Figure 5.8.  Measured frequency response of the reflection coefficient (S11) after the Au 

LCE antenna has been reversibly actuated through cold temperatures from 0 to 100 

cycles. 
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This chapter discusses two reversible self-morphing novel LCE antennas that can 

dynamically change the electromagnetic performance in response to cold temperatures. 

These types of antennas are well suited for passive sensing of temperatures. Specifically, 

these LCE antenna sensors changes its shape from straight to helical as the temperature 

decreases from room temperature to cold temperatures thereby shifting their frequency of 

operation. These antennas are ideal to detect temperature that has reached a certain 

threshold. These antennas have an advantage over previous designs and it is due to the 

advanced shape-programmable LCEs that are temperature responsive. There are many 

metallization techniques available, however the limitations of metalizing the temperature 

sensitive LCEs must be considered. The LCE antennas were able to obtain temperatures as 

low as -77°C using a dry ice/IPA cooling bath.   
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusions 

This dissertation discussed the design of reversibly self-morphing novel LCE 

antennas that can dynamically change electromagnetic performance in response to 

temperature. Design and manufacturing processes of reconfigurable antennas on LCE 

polymer substrates were demonstrated for the first time. 

In Chapter 3, the pattern and frequency reconfigurable antennas based on shape-

morphing LCEs were presented in a fixed (static) state [76]. The pattern-reconfigurable 

antenna can reshape itself at different temperatures to radiate: (1) omnidirectionally when 

it is straight, and (2) directionally when it is coiled into a helix due to heating. On the other 

hand, the frequency-reconfigurable antenna can change its number of turns at varying 

temperatures to radiate directionally at different frequencies. Although, the results clearly 

demonstrated the reconfigurability, due to the external stimulus equipment limitations, 

only fixed states of the antennas were examined. Chapter 4 improved upon previous 

measurement limitations, by optimizing the design of external stimulus to allow dynamic 

shape change in response to temperature. The goal was to control the temperature in an 

enclosed area around the LCE antenna so that the antenna reversibly freely changes its 

shape. Also, this setup needed to allow simultaneous radiation pattern measurements inside 

the anechoic chamber without having to fix the geometry of the antenna to a static state. 

Different types of measurement setups were developed, each one addressing a problem 

from the previous one (i.e., decreasing metal interference, increasing the temperature time 
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allowed for measurements, avoiding larger LCE antennas from shorting out due to gravity. 

Also, two different metallization schemes for LCE materials were characterized. Finally, 

two reversible self-morphing novel LCE antennas that can dynamically change the 

electromagnetic performance in response to cold temperatures were developed. 

LCE materials can have significant impact on sensing applications due to their self-

actuation, which is reversible and can happen multiple times. This research is expected to 

contribute to future advances in morphing electronics, including sensors, passive antennas, 

arrays, and frequency selective surfaces (FSS). 

6.2 Future Work 

The future work of this research is to develop LCE materials for potential use for 

RFID applications. Different design approaches will be used, namely: 1) the RFID antenna 

will be totally constructed using metallized LCEs, 2) the RFID antenna will be constructed 

partly using LCEs and partly using traditional antenna materials (i.e., metalized PCBs, 

RFID tags), and 3) the RFID antenna will be constructed using a standard RFID antenna 

(dipole) and parasitic LCE elements that will tune the antenna at different frequencies at 

different temperatures.  
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