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ABSTRACT OF THE THESIS 

SABERMETRICS – STATISTICAL MODELING OF RUN CREATION AND 

PREVENTION IN BASEBALL 

by 

Parker Chernoff 

Florida International University, 2018 

Miami, Florida 

Professor Sneh Gulati, Major Professor 

     The focus of this thesis was to investigate which baseball metrics are most conducive 

to run creation and prevention. Stepwise regression and Liu estimation were used to 

formulate two models for the dependent variables and also used for cross validation. 

Finally, the predicted values were fed into the Pythagorean Expectation formula to 

predict a team’s most important goal: winning. 

     Each model fit strongly and collinearity amongst offensive predictors was considered 

using variance inflation factors. Hits, walks, and home runs allowed, infield putouts, 

errors, defense-independent earned run average ratio, defensive efficiency ratio, saves, 

runners left on base, shutouts, and walks per nine innings were significant defensive 

predictors. Doubles, home runs, walks, batting average, and runners left on base were 

significant offensive regressors. Both models produced error rates below 3% for run 

prediction and together they did an excellent job of estimating a team’s per-season win 

ratio. 
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GLOSSARY OF BASEBALL TERMS 

Offensive:  

-At-bats (AB): number of plate appearances resulting in either a hit or an out 

-Batting Average (BA): number of hits divided by at-bats 

-Batting Age (BatAge): average age of all batters used by a team in a season 

-Walk (BB): base on balls; when a batter reaches first base by receiving four balls from 

pitcher 

-Batting Park Factor (BPF): 
ℎ𝑜𝑚𝑒 𝑅𝑢𝑛𝑠 𝑆𝑐𝑜𝑟𝑒𝑑

𝑟𝑜𝑎𝑑 𝑅𝑢𝑛𝑠 𝑆𝑐𝑜𝑟𝑒𝑑
 

-Caught Stealing (CS): when a running tries to steal but is tagged out 

-Doubles (Doub): subset of hits where the runner reaches second base 

-Grounded Into Double Play (GDP): number of times one swing of the bat resulted in two 

outs 

-Hits (H): reaching at least first base after hitting the ball without an error being 

committed 

-Hit by Pitch (HBP): when a pitcher hits a batter with the ball, resulting in the batter 

automatically being sent to first base 

-Homeruns (HR): subset of hits where runner rounds bases and reaches home plate 

-Intentional Walks (IBB): times a batter was walked on purpose 

-Runners Left on Base (LOB): number of runners remaining on base when an inning ends 

-Number of Batters (NumBat): number of batters a team utilizes in a season 

-On-Base Percentage (OBP): 
𝐻+𝐵𝐵+𝐻𝐵𝑃

𝐴𝐵+𝐻+𝐵𝐵+𝐻𝐵𝑃
 

-On-Base Plus Slugging Percentage (OPS): OBP+SLG 
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-OPS Plus (OPSplus or OPS+): 
𝑂𝑃𝑆

𝐿𝑒𝑎𝑔𝑢𝑒𝑤𝑖𝑑𝑒 𝑂𝑃𝑆 (𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝𝑎𝑟𝑘 𝑓𝑎𝑐𝑡𝑜𝑟𝑠)
∗ 100 

-Sacrifice Bunts (SacBunt): intentional bunt out used to advance another runner to the 

next base 

-Stolen Base (SB): when a runner already on base runs to the next base during a pitch 

-Sacrifice Fly (SF): intentional fly out used to advance another runner to the next base 

-Slugging Percentage (SLG): 
1𝐵+2∗2𝐵+3∗3𝐵+4∗𝐻𝑅

𝐴𝐵
 

-Strikeout (SO): out where batter receives three strikes from pitcher 

-Total Bases (TB): 1𝐵 + 2 ∗ 2𝐵 + 3 ∗ 3𝐵 + 4 ∗ 𝐻𝑅 

-Triples (Trip): subset of hits where the runner reaches third base 

 

Defensive: 

-Outfield Assists (A): number of times an outfielder throws a ball to the infield to record 

an out 

-Walks per 9 Innings (BB9): number of walks allowed per 9 innings of play 

-Balks (BK): illegal pitching motion resulting in a one base advancement by all runners 

and the batter 

-Blown Saves (BLSV): times when a pitcher enters a game with a lead of one to three 

runs and gives up that lead 

-Complete Games (CG): number of games during season where one pitcher started and 

finished game 

-Fielding Chances (Ch): 𝐴 + 𝐼𝑃𝑜𝑢𝑡𝑠 + 𝐸 

-Caught Stealing Percentage (CSpct): 
𝐶𝑆

𝑆𝑡𝑒𝑎𝑙𝑖𝑛𝑔 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
∗ 100 
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-Defensive Efficiency Ratio (DefEff): 1 −
𝐻𝐴−𝐻𝑅𝐴

𝐴𝐵−𝑆𝑂𝐴−𝐻𝑅𝐴+𝑆𝐵+𝑆𝐹
 

-Defense-Independent Earned Run Average Ratio (DIPpct): a pitcher’s projected ERA 

when accounting for the effects of surrounding fielding and luck 

-Double Plays Turned (DP): times two outs are recorded in one play by the defense 

-Errors (E): times a fielder misplays a ball so as to allow an at-bat to continue or a base 

runner to advance 

-Earned Run Average (ERA): number of runs 1 pitcher allows per 9 innings of play 

-Component Earned Run Average Ratio (ERCpct): 9 ∗
(𝐻𝐴+𝐵𝐵𝐴+𝐻𝐵𝑃)∗𝑇𝐵

(𝐵𝑎𝑡𝑡𝑒𝑟𝑠 𝐹𝑎𝑐𝑒𝑑)∗(𝐼𝑛𝑛𝑖𝑛𝑔𝑠 𝑃𝑖𝑡𝑐ℎ𝑒𝑑)
−

.56 

-Fielding Independent Pitching (FIP): 
13∗𝐻𝑅𝐴+3∗(𝐵𝐵𝐴+𝐻𝐵𝑃)−2∗𝑆𝑂𝐴

𝐼𝑛𝑛𝑖𝑛𝑔𝑠 𝑃𝑖𝑡𝑐ℎ𝑒𝑑
+ 𝐹𝐼𝑃 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where 

𝐹𝐼𝑃 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = log(𝐸𝑅𝐴) −
13 log(𝐻𝑅𝐴)+3∗(log(𝐵𝐵𝐴)+log(𝐻𝐵𝑃)−2log (𝑆𝑂𝐴)

log (𝐼𝑛𝑛𝑖𝑛𝑔𝑠 𝑃𝑖𝑡𝑐ℎ𝑒𝑑)
 

-Hits per 9 Innings (H9): number of hits allowed per 9 innings of play 

-Infield Put Outs (IPouts): outs recorded by first, second, and third basemen as well as 

pitchers and catchers 

-Strikeouts per 9 Innings (K9): number of strikeouts per 9 innings pitched 

-Number of Fielders (NumFld): number of fielders utilized by a team in a season 

-Number of Pitchers (NumP): number of pitchers utilized by a team in a season 

-Pitcher Age (Page): average age of all pitchers used by a team in a season 

-Pitching Park Factor (PPF): 
ℎ𝑜𝑚𝑒 𝑅𝑢𝑛𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑

𝑟𝑜𝑎𝑑 𝑅𝑢𝑛𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑
 

-Run Support Average per Start (RS): number of runs scored in games a particular pitcher 

starts 



x 

 

-Shutouts (SHO): games in which a team allows zero runs 

-Strikeouts Versus Walks (SOvBB): 
𝑆𝑂𝐴

𝐵𝐵𝐴
 

-Saves (SV): times when a pitcher enters a game with a lead of one to three runs and 

finishes the game without giving up that lead 

-Walks plus Hits per Inning Pitched (WHIP): 
𝐵𝐵𝐴+𝐻𝐴

𝐼𝑛𝑛𝑖𝑛𝑔𝑠 𝑃𝑖𝑡𝑐ℎ𝑒𝑑
 

-Wild Pitches (WP): a pitch that is not hit and is uncatchable by the catcher 

-Hits Allowed (HA), Homeruns Allowed (HRA), Walks Allowed (BBA), Strikeouts 

Allowed (SOA): see offensive counterparts for definitions 
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I. INTRODUCTION 

     Sabermetrics has existed in the game of baseball for as long as the sport itself.  

Defined as “the search for objective knowledge about baseball” by baseball historian and 

statistician Bill James in 1980, sabermetrics has gained much traction in recent years as a 

result of the “Moneyball” approach taken by the Oakland Athletics (A’s) in the early 

2000s (SABR).  Lacking the payroll to compete with big-market teams such as the New 

York Yankees, A’s general manager Billy Beane turned to analytics in an attempt to find 

players who were undervalued by other clubs.  Upon doing so, he could then sign them 

for Oakland at a fraction of the salaries paid to Major League Baseball superstars.  When 

the A’s won their division only two years later, the rest of the league – and fans around 

the world – began to take notice. 

     Statistical tracking existed decades before Moneyball became popular; metrics 

including Earned Run Average (ERA, runs a pitcher allows every nine innings except in 

the case where a fielding error is committed) and Home Runs (HR) were present as early 

as the 1800s (Birnbaum). The usage of such statistics, however, has evolved greatly in 

the years since.  One of the first steps was taken in the 1970s by Bill James using data 

from the Society of American Baseball Research (SABR), from which the term 

“sabermetrics” was derived. His work involved taking “conventional” baseball statistics, 

those that one might find in a game’s box score, and combining them into “sabermetric” 

statistics. These were believed to “more accurately gauge a player’s value of relative 

worth” (Beneventano et al., 2012).  
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     Expanding on his own work, James devised several advancements in sabermetrics. In 

the late 1970s, he established a formula for Runs Created that would predict the number 

of runs a player contributed to his team (Albert). The formula is detailed below:  

𝑅𝑢𝑛𝑠 𝐶𝑟𝑒𝑎𝑡𝑒𝑑 =
(𝐻+𝐵𝐵)(𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑠𝑒𝑠)

𝐴𝐵+𝐵𝐵
       (1.1) 

where H=hits, AB=at-bats, and BB=walks="base on balls," when a batter reaches first base as a 

result of a pitcher throwing four balls.    

Eight years later, he developed a method known as “Pythagorean Expectation”, an 

uncomplicated but valuable formula that could predict how many games a team would 

win based on its runs scored and runs allowed (Moy, 2006): 

𝑊𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 =
(𝑅𝑢𝑛𝑠 𝑆𝑐𝑜𝑟𝑒𝑑)2

(𝑅𝑢𝑛𝑠 𝑆𝑐𝑜𝑟𝑒𝑑)2+(𝑅𝑢𝑛𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑)2
                (1.2) 

The Pythagorean Expectation formula is still in use by the MLB today, with an 

adjustment of the exponent from 2 to 1.83. 

     In the years since Bill James’ breakthroughs, an abundance of research has been 

conducted on accurate evaluation and prediction of player performance.  Much less 

research, however, has been performed with the goal of modeling team performance. 

Although individual players are important, baseball is a team sport. Notably, Bill James’ 

Pythagorean Expectation uses team runs scored and allowed in order to predict wins. His 

data involved past performance, but it would be extremely useful to be able to predict 

both a team’s future scored and allowed runs to use his formula to its fullest potential.  

This thesis aimed to do just that.  
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II. LITERATURE REVIEW 

     Numerous studies have been conducted with respect to baseball statistics. Those 

concerning run production and prevention are the studies that were the focus of this 

thesis.  The first of these was done in 1963, when George Lindsey assigned run values to 

each of the four basic hit types (single, double, triple, and homerun) for a player’s at-bat 

(Albert). He proposed the following formula:  

𝑅𝑢𝑛𝑠 = (. 41) ∗ 1𝐵 + (. 82) ∗ 2𝐵 + (1.06) ∗ 3𝐵 + (1.42) ∗ 𝐻  (2.1) 

where 1B=singles, 2B=doubles, 3B=triples, and HR=homeruns.   

Though a bit crude, this was the first dedicated attempt at predicting runs from 

conventional statistics using linear weights and was thus considered highly innovative in 

the field of sabermetrics. 

     A study at Bucknell University took data from 1996-2000 and plotted runs per game 

against various metrics including on-base percentage (OBP, times on base divided by 

plate appearances), slugging percentage (SLG, total number of bases divided by at-bats), 

on-base plus slugging percentage (OPS, defined as SLG+OBP), and batting average (BA, 

number of hits divided by at-bats). Using simple linear regression, best fit lines were 

drawn for the plots.  The R2 values were then used to determine if lines fit the scatterplots 

well.  A value closer to 1 indicated a model explained most of the variability in the 

response model, whereas a value closer 0 suggested that the model was a poor fit. It was 

concluded that OPS had the highest correlation with runs per game (R2=.900) out of the 

eight metrics tested, and thus OPS was the best predictor of that statistic (Vollmayr-Lee, 

2001).  
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     A few other points were of note during the study. First, the data for OPS were far 

more linearly distributed than the data for BA. The realization was eye-opening for 

baseball analysts who had largely considered BA to be a player’s defining statistic, 

beyond even homeruns or hits. By combining a few metrics into one, a person could get a 

better sense of a player’s performance. Development and use of combined values led 

directly to the second point: using multiple statistics often yields more accurate results 

than using just one. The example used by Vollmayr-Lee was the comparison of the pre-

2001 versions of Tony Gwynn and Mark McGuire (before their declines and the latter’s 

steroid accusations). Earlier baseball scouts would have placed a higher value on Gwynn 

than McGuire because of his higher batting average. In hindsight, most now consider 

McGuire to have been the better player. Indeed, McGuire held the advantage in multiple 

categories including homeruns, OPS, SLG, and OBP. Combining those statistics into a 

model painted a more accurate picture than a model consisting of any one statistic alone. 

This conclusion is backed by the fact that R2 improved in models with more than one 

statistic.  Finally, he raised the issue that OPS can be a “ballpark dependent stat,” 

meaning that some teams’ home parks give them an edge over their opponents 

(Vollmayr-Lee,2001).  

     Some of the studies in the literature used regression analysis, and since that was the 

primary tool used by this thesis, some background on the process of regression is 

presented here. Simple regression uses a single predictor variable, whereas multiple 

regression uses more than one as the name implies. Linear regression is applied when the 

relationship between the response variable and the regressors follows a straight line. 
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     Work at the University of Minnesota-Duluth with regression modeling was done to try 

and directly predict winning percentage using a combination of eighteen offensive and 

defensive independent variables. Runs scored were not predicted, as it was one of the 

variables used in the prediction. Team data from the 1997-2006 seasons were used for 

model training. Selection was done in three different ways: forward, backward, and 

stepwise (University of Minnesota-Duluth, 2007). Forward selection involves adding 

variables one at a time in order of significance until none of the remaining variables reach 

a pre-set significance level. Forward selection chose runs scored, runs allowed, and saves 

for inclusion. Backward selection fits a model with all of the possible variables and 

removing one at a time in reverse order of significance until no variables left in the model 

fall below a pre-set level of significance. The backward selection strongly suggested 

including runs scored and saves while moderately suggesting the inclusion of runs 

allowed. Lastly, stepwise selection is a hybrid of the other two types by alternating 

between dropping and adding variables that are below and above the pre-set significance 

level, respectively. Once again, R, RA, and SV were recommended for model inclusion. 

     With those results in mind, a multiple regression model including runs scored, runs 

allowed, and saves was fitted and thoroughly analyzed. An R2 value of .9321 was 

observed, suggesting a strong fit. Beyond that, the study also examined three other 

models for winning percentage that had already been established, the most notable being 

Bill James’ Pythagorean Expectation. James later updated his formula from Equation 2 

by changing the exponents of the terms from 2 to 1.83, so a man named Steven Miller 

attempted to derive this formula (Birnbaum). Miller postulated that runs scored and runs 
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allowed follow Weibull distributions and used Chi-square tests to demonstrate 

independence. The density for a 3-parameter Weibull distribution is as follows:  

𝑓(𝑥) = {
𝛾

𝛼
(

𝑥−𝛽

𝛼
)

𝛾−1

𝑒−(
𝑥−𝛽

𝛼
)

𝛾

,  𝑥 > 𝛽  

  0                               , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (2.2) 

where γ is the shape parameter (i.e. the exponent in the Pythagorean Expectation 

formula), β is the location parameter, and α is the scale parameter (University of 

Minnesota-Duluth, 2007).  

Using Least Squares and Maximum Likelihood, his calculations yielded exponent values 

of γ=1.79 and γ=1.74, respectively, which are very close to James’ newest value and thus 

gave him ammunition to silence the doubters who attacked his work. 

     A pair of linear regression-related analyses were performed first at the University of 

California-Berkeley and then at Pennsylvania State University. The Berkeley study used 

multiple linear regression (MLR) with two regressors for the offensive model, on-base 

percentage (OBP) and slugging percentage (SLG), and two for the defensive model: 

WHIP (walks + hits per inning pitched) and DER (defensive efficiency ratio, which 

measures fielding of balls put in play). The paper noted that earned run average (ERA) 

was not included as a regressor because even though most would list ERA among the 

most important defensive metrics, adding it to the model would result in “runs” of some 

sort being on both sides of the equation, leading to unnecessary correlation.  Both 

offensive regressors had positive correlation with runs scored; the same was true for 

WHIP and runs allowed. Runs allowed and Defensive Efficiency Ratio (DER) were 

negatively correlated, which was expected since poor fielding would intuitively lead to a 

team giving up more runs on average (Moy, 2006). 
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     Going beyond the regression equation, author Dennis Moy (2006) evaluated a trend he 

noticed in which runs scored increased overall between 1986 and 2005. He wondered 

whether hitting ability had improved or defensive ability had declined. Examining the 

scatterplots of each of his four model variables versus Year and then constructing 

regression planes, Moy could not determine conclusively which hypothesis was correct. 

It was possible, he said, that the widespread abuse of steroids during this era of baseball 

or the MLB’s potential introduction of “juiced” balls was resulting in higher offensive 

firepower. 

     The researchers at Pennsylvania State University decided to use a stepwise regression 

approach for both the offensive and defensive models, with six conventional and six 

sabermetric statistics used as regressors in each case. They hoped to determine which 

type of statistic would make better regressors for runs scored/allowed.  Their data ranged 

from 2002-2010, and they too used linear regression. It is unknown if other regression 

methods were attempted. The final model for runs scored included wOBA (weighted on-

base average, whose formula is altered slightly every year as hitting rises and falls), 

percentage of plate appearances where a strikeout occurred, SLG, and OBP. The first two 

are sabermetric statistics, while the latter two are conventional. The wOBA had an R2 

value of .896 on its own, while the full model had an R2 of .953. Most of the variation in 

runs scored then was explained by wOBA, with relatively minor contributions coming 

from the other variables (Beneventano et al., 2012). 

     A similar result was noted in the runs prevented model, with three conventional 

statistics (HR allowed per nine innings, fielding percentage=error-free defensive plays 

divided by total number of opportunities, and number of double plays) and two 



8 

 

sabermetric statistics (LOB%: left on base percentage=number of players left on base 

when an inning ends, and WHIP). The WHIP value had an R2 of .940 compared to the 

full model value of .988. The main difference between the two models was that the 

coefficients for each regressor in the offensive model were much larger than their 

defensive counterparts. The authors explain that the runs allowed model is actually 

predicting earned run average, which is on a per-9-innings basis. Runs scored operates 

over the scale of a full season. The disparity in tabulation methods can be corrected by 

multiplying the full regression equation for defense by 162 (the number of games in a 

season). 

     Reflecting on the results, the researchers discussed observations specific to the 

fielding metrics in the defensive model. They displayed surprise that fielding percentage 

was chosen by the stepwise regression over UZR (Ultimate Zone Rating), a complex 

sabermetric fielding statistic that in the 2000s was considered a rising star in analytic 

circles. Potential justifications for the inclusion were the relatively recent introduction of 

the metric as well as UZR’s dependence on a team’s ballpark. Whereas fielding 

percentage is a simple portrayal of how well players handle a ball that comes their way, 

UZR’s purpose is to “estimate each fielder’s defensive contribution in theoretical runs 

above or below an average fielder at his position in that player’s league and year,” which 

is not something that can be uniformly evaluated across different parks with unequal 

fielding properties. 

     Another method of regression is Liu estimation, developed by Kejian Liu in 1993. 

Designed to deal with the problem of collinearity, Liu took the ridge estimator and Stein 

estimator, two other known methods of minimizing collinearity, and merged them to 
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create his own new regression equation. The resulting parameter estimates are simpler to 

approximate. Furthermore, the estimates for the regression parameters have lower Mean 

Square Error (MSE) than other prediction types. Liu demonstrates this property for the 

simple regression model in his paper (Liu, 1993).  

     Numerous variations of the Liu estimator have been introduced since the original 

paper was written in 1993. One of these is the restricted Liu (RL) estimator, which has a 

better dispersion than its predecessor (Kaciranlar et al., 1999). Another is the almost 

unbiased Liu estimator (AULE) that improves upon the Liu estimator’s MSE (Alheety 

and Kibria, 2009). Kejian Liu himself developed the two-parameter Liu estimator, equal 

in performance to the regular Liu estimator but designed to “address the ill-conditioning 

problem” where the matrix of regression parameters becomes unstable due to collinearity 

(Liu, 2003).  The work done in the present thesis used the original Liu estimator because 

it is the most commonly used, and the most applicable to the data at hand. 
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III. STATISTICAL METHODOLOGY 

     Relative to other studies done in this area of sabermetrics, my thesis aims to present 

the most modern analysis to date. Towards that end, current data as well as some of the 

newest metrics were utilized. The implementation of tools such as Statcast have changed 

the way baseball data are being studied as well as what types of data can be collected, 

with some being linked to the generation of outcomes rather than the outcomes 

themselves (Arthur). Several of these are included in the analytic work done in my thesis, 

which will hopefully shed some new light on how teams can best build their 

organizations to create the most runs and give up the least runs possible. It is simpler and 

more effective to impose a team model on players than it is to use a player model to 

predict team performance, which provides more support for taking a team-oriented 

approach as done in this paper. 

     Using data obtained from the Lahman Baseball Database, ESPN, and Baseball 

Reference, a preliminary analysis was performed (Lahman, 2017; “MLB Team Stats,” 

2017; “Major League Baseball”, 2017). The analysis included producing scatterplots on 

numerous predictor variables determine which metrics seemed useful in predicting runs 

scored and runs allowed. The metrics along with their abbreviations (if applicable) and 

definitions are listed in the Glossary on page vi.  Because sports change over time, only 

data from the turn of the century onward (2000-2016) were considered.  Data points from 

2000 to 2014 were used for this portion of the thesis. These chosen metrics were then 

incorporated into two larger multiple linear regression models (one for runs scored and 

one for runs allowed). Both models underwent stepwise regression analysis until two 
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final models containing only significant regressors remained. All computations were 

done with R statistical software. 

     Following the determination of the regression equations, variance inflation factors 

(VIFs) were examined for all model components. Any value above 10 indicated that there 

was excess collinearity between one or more of the regressors. The defensive model had 

all eleven variables with VIFs under 5, but the offensive model displayed far too much 

collinearity to be useful. To compensate for this, Liu estimation was used to fit that 

model instead. Ridge and Lasso regression were considered, but the error rates were 

extremely high, sabotaging the usefulness of the models. 

     In a multiple linear regression (MLR) scenario, the model is as follows: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖        (3.1) 

where i is the index, p is the number of predictors, the Xi are the regressors/predictors, βi 

are the regression coefficients, and εi is the error term (University of Minnesota-Duluth, 

2007).   

Two key model assumptions are necessary: 

1. The regressors must be linearly independent and thus uncorrelated. 

2. The residuals/errors are i.i.d (independent and identically distributed) normal with 

mean=0 and variance=σ2. 

For other forms of regression, the parameter estimates are represented by βi*. 

     Liu estimation works with essentially the same MLR model: 

𝑌𝑖 = 𝛽0
∗ + 𝛽1

∗𝑥𝑖1 + ⋯ + 𝛽𝑝
∗𝑥𝑖𝑝 + 𝜀𝑖, where everything is the same as before except for 

the estimation of the βi*  terms. The vector of estimators is defined as: 

 �̂�𝑑 = (𝑿′𝑿 + 𝑰)−1(𝑿′𝒀 + 𝑑�̂�)       (3.2) 
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where X  is the matrix of regressors, Y  is the response vector, �̂� is the vector of least 

squares estimates for the βi  for normal MLR, and d is Liu’s parameter.     

This parameter can be estimated in several ways, including MSE minimization, the 

method used by the liureg R package.  The equation for the estimator is:  

�̂� = 1 − �̂�2 (∑
1

𝜆𝑖(𝜆𝑖+1)

𝑝
𝑖=1 ∑

∝̂𝑖
2

(𝜆𝑖+1)2

𝑝
𝑖=1⁄ )     (3.3) 

where �̂�2 is the estimated variance, p is the number of parameters, the 𝜆𝑖 are the 

eigenvalues of the centered form of X’X, and the ∝̂𝑖= 𝑞𝑖′𝛽�̂�, where 𝑞𝑖 are the 

corresponding eigenvectors for the 𝜆𝑖 (Liu, 1993).      

     At this point, the data that were not used in creating the models (2015-2016 data 

points) were employed in cross-validating the models.  After plugging these data into the 

regression equations, the predicted values for runs were compared to the actual values 

that were listed in the database. As a result of the stepwise process, the most important 

statistics as they relate to run scoring and prevention were identified. Discussions on 

whether the models were adept at predicting their respective response variables will be 

featured in the Data Analysis chapter. Thereafter the model predictions were inserted into 

the Pythagorean Expectation formula, where projected wins in a given season were 

evaluated for accuracy and predictive value.  
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IV. DATA ANALYSIS 

     The data were combined from all three sources and compiled into two Excel 

spreadsheets, separated by offensive and defensive data. All data tables are available 

upon request, where the abbreviations used are as defined in the Glossary on pages 26-28. 

Following these are the R codes that contain comments throughout for comprehensible 

reading. Twenty-three offensive statistics were obtained as well as forty-two defensive 

statistics.  

     Scatterplots were examined for each potential variable against Runs Scored (for 

offense) and Runs Allowed (for defense).  Shown below in Figure 1 are a pair of relevant 

single-variable scatterplots: 

 

Figure 1A: Scatterplot of Home Runs vs. Runs Scored  
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Figure 1B: Scatterplot of Hits Allowed vs. Runs Allowed 

As seen in these plots, HR and HA seem to have significant correlation with Runs. Other 

scatterplots are not included here, but plots for variables with significant run correlation 

are located in the Appendix. Those metrics that did not seem to have any relationship 

with runs were removed immediately, giving us the following significant variables: 

Offense: H, Doubles, HR, BB, SO, BA, OBP, SLG, OPS, OPS Plus, TB, LOB 

Defense: SHO, SV, HA, Doubles Allowed, Triples Allowed, HRA, BBA, H9, BB9, 

SOA, SOvBB, FIP, WHIP, LOB Against, IPouts, DefEff, E, OBP Against, SLG Against, 

OPS Against, TB Against, K9, DIPpct   

      After running separate stepwise regression procedures for the two models, the model 

summaries and variance inflation factors were as follows: 
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Figure 2: Summaries and VIFs for Stepwise Regression Models 

     The variables inflation factors for the offensive models greatly exceeded our cutoff of 

10 for OBP, BB, BA, and H. These results indicated disproportionate collinearity and so 
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the model was not acceptable. Conversely, the defensive model did not have collinearity 

issues as evidenced in the figure; all VIFs were below 5, satisfying the necessary 

independence assumption. Therefore, the model could be used and analyzed. The 

stepwise process in Rchose HA, BBA, HRA, IPouts, E, DIPpct, DefEff, SV, LOB, SHO, 

and BB9 as significant predictors of RA. The regression was significant: an F-test on the 

hypotheses H0: All βi’s are 0 vs. Ha: At least one of the βi’s is nonzero gave an F statistic 

of 700.7 with a p-value of <0.0001, allowing us to reject the null hypothesis at the .05 

significance level and conclude that the overall regression model was significant. 

     The summary also included t-tests for each of the regression coefficients individually. 

These tests were of the form H0: βj = 0 vs. Ha: βj  ≠ 0 where the test statistic is 

t0=�̂�𝑗/𝑆𝐸(�̂�𝑗) for j between 0 and p (the number of predictors). SE is the standard error of 

the estimate.  Despite being selected by the stepwise process, BB9 had a t-value of .956 

with a corresponding p-value of .339486 which suggests that this particular metric was 

not in fact significant. Complicating matters further, the procedure also chose BBA, 

another walks-based statistic as a regressor. The intercept was likewise deemed 

ineffective with a t-value of .270 and a p-value of .787166. However, VIFs were kept in 

check and the model followed the AIC criterion for selection, so neither BB9 nor the 

intercept were removed. The R2 value, the coefficient of determination for the model, was 

.9462, telling us over ninety percent of the variability in Runs Allowed was explained by 

this model as-is, suggesting a strong model fit and confirming the decision to keep BB9 

and the intercept, whose coefficients were higher than those of other variables. 

     Figure 3 presents a correlation matrix, scatterplot matrix, and residual plot to further 

examine the model assumptions: 
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Figure 3A: Correlation Matrix and Scatterplot Matrix for Defensive Model 
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Figure 3B: Residual Plot for Defensive Model 

Ignoring the diagonal of the correlation matrix since it is just each variable’s correlation 

with itself (always 1.00), we see very few cases where the absolute value of the 

correlation was greater than .70. Even these did not exceed more than one per row or 

column. The scatterplot matrix tells the same story; there are limited linear trends 

throughout, with most plots consisting of a randomized pattern indicative of little to no 

correlation, thus satisfying the assumption of the regressors being uncorrelated. The 

residual plot allows us to test the normality assumption, which is satisfied as seen by the 

randomness in the plot of residuals versus fitted values. Any sort of pattern would have 

been a violation of normality, but no such pattern was present here. Partial residual plots 
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for each of the regressors are in the Appendix, while simple regression summaries are not 

listed here for the sake of brevity but are available by request. 

     To try and fix the collinearity problem of the offensive model, Liu estimated 

regression was run for Runs Scored against each of the twelve possible predictor 

variables that survived the initial scatterplot phase. Figure 4 shows the model summary 

output: 

 

Figure 4: Summary of Liu Offensive Model with 12 Variables 

Although the R2 of .9609 was extremely high, the p-values of the t-tests for the respective 

variables showed some obviously insignificant predictors. H, SO, SLG, OPS, OPSplus, 
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and LOB had p-values of .193409, .976440, .324752, .688086, .504183, and .071509, 

respectively, all of which were greater than the significance level of α=.05. These 

variables were subsequently removed. It is worth noting that the intercept also had a high 

p-value, but there was no need to examine it before a reduced model was decided upon.  

     Before running the regression again with the six variables that were not eliminated, a 

correlation matric was evaluated to see if any clear trends could be identified as seen in 

Figure 5: 

 

Figure 5: Correlation Matrix for 6 Remaining Offensive Variables after Liu 

Regression 

One row/column stood out: OBP. As it is constructed from various metrics including 

walks were one of the other five remaining variables, OBP had correlations between .52 

and .85 with every other variable. It was decided that to avoid more collinearity 

problems, OBP would be removed as well. 

     Figure 6 shows the summary of the final offensive model when Liu regression was 

performed for Runs Scored against Doub, HR, BB, BA, and LOB: 
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Figure 6: Summary of Final Liu Offensive Model 

     Once again the model resulted in a stellar R2 of .938, so 93.8% of the variability in 

Runs Scored was explained by the reduced model including Doub, HR, BB, BA, and 

LOB. The F-statistic was 1345, where the numerator degrees of freedom were n=450 data 

points and the denominator degrees of freedom where n-p-1=444. The test statistic gave a 

p-value of <0.0001, showing the major significance of the overall model. The largest p-

value in the t-tests for the five variables on their own was 1.47*10-8, so these too were 

significant, including the intercept which had not been significant in the full model. The 

MSE of the model was 14264.17, with the minimum MSE occurring when the parameter 

d was equal to 1. 

     With a statistically significant model in place, it was necessary to calculate the VIFs 

for each variable to see if collinearity had been mitigated. The liureg package in R does 

not have a built in function compatible with “vif”, so these were calculated manually by 
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running Liu regression for each predictor variable against the four others, finding each 

respective R2 value, and applying the formula 𝑉𝐼𝐹 =
1

1−𝑅2
. The results are summarized in 

Figure 7: 

Variable: Doub HR BB BA LOB 

VIF: 1.668613 1.694915 3.281917 2.046664 3.280840 

 

Figure 7: VIFs for Final Liu Offensive Model 

 

The VIFs from the reduced Liu model were all under 5, which was a massive 

improvement over the regular MLR version. Collinearity was no longer an issue, so the 

model was accepted for use in cross validation.  

     As with the defensive model, the offensive model was evaluated to see if the 

regression assumptions were satisfied. The correlation matrix, scatterplot matrix, and plot 

of residuals versus fitted values are displayed in Figure 8 below: 

 

 

 

 

 

 

 

 

 

Figure 8A: Residual Plot for Final Liu Offensive Model 
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Figure 8B: Correlation Matrix and Scatterplot Matrix for Final Liu Offensive 

Model 

 

     We see only one correlation that was above .70 in the matrix; BB and LOB had a 

correlation of .75. The scatterplot also shows only slight linear trends. Therefore the 

independence assumption is satisfied. Looking at the residual plot, the points are 

randomly distributed with no evidence of a pattern. Thus the normality assumption is also 

satisfied and the model is appropriate. 

     From the outputs in Figure 2 (defensive) and Figure 6 (offensive), we can see that the 

fitted linear models for Runs Allowed and Runs Scored were: 
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𝑅 = −517.62282 + .26553 ∗ 𝐷𝑜𝑢𝑏 + .71563 ∗ 𝐻𝑅 + .53980 ∗ 𝐵𝐵 + 4533.31413 ∗

𝐵𝐴 − .35430 ∗ 𝐿𝑂𝐵        (4.1) 

𝑅𝐴 = 50.27032 + .56974 ∗ 𝐻𝐴 + .35979 ∗ 𝐵𝐵𝐴 + .77499 ∗ 𝐻𝑅𝐴 − .16889 ∗

𝐼𝑃𝑜𝑢𝑡𝑠 + .50861 ∗ 𝐸 − 2.13819 ∗ 𝐷𝐼𝑃𝑝𝑐𝑡 + 830.83624 ∗ 𝐷𝑒𝑓𝐸𝑓𝑓 − .55728 ∗ 𝑆𝑉 −

.10243 ∗ 𝐿𝑂𝐵 − .74646 ∗ 𝑆𝐻𝑂 + 4.49708 ∗ 𝐵𝐵9    (4.2) 

These were used to test the remaining 60 data points from 2015-2016, and the cross 

validation results table is located in the Appendix, with the key points discussed here. 

     Using both models to fit the data, the program calculated predicted runs scored and 

allowed for each set of values of the regressors. It then calculated a signed error 

percentage between the predicted runs and the actual runs from the database. Each model 

performed very well; taking the mean relative error percentage for the two models, the 

defensive model yielded a 2.67% error rate and the offensive model produced a 2.58% 

error rate. The predicted run totals were plugged into the Pythagorean Expectation 

formula (with the newer 1.83 exponent) and compared to the Pythagorean Expectation 

values when using actual runs. The mean relative error percentage for this was 3.74%. 

Finally, the model Pythagorean Expectations were tested against real winning 

percentages. There was more variation here, but the error percentage was still relatively 

low at 9.53%. 
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V. CONCLUSION 

     This study successfully produced models for predicting run creation and prevention in 

the sport of baseball. The significant variables for runs scored as determined by stepwise 

regression were: doubles, home runs, walks, batting average, and runners left on base. 

Liu regression and elimination for collinearity yielded the following significant predictors 

of runs allowed: hits allowed, walks allowed, home runs allowed, infield putouts, errors, 

defense-independent earned run average ratio, defensive efficiency ratio, saves, runners 

left on base, shutouts, and walks per nine innings. 

     A somewhat surprising result was that both models were dominated by traditional 

statistics. Only defense-independent earned run average ratio and defensive efficiency 

ratio made the defensive model among the sabermetric statistics, while no sabermetric 

statistics were included in the offensive model. An obvious reason for this is that since 

sabermetric statistics are largely constructed from traditional statistics, they were too 

correlated with other variables to be included in the model. However, variance inflation 

factors were low for the defensive model even with two sabermetric statistics, suggesting 

that they simply might not have been as useful as their highly touted nature made them 

appear. 

     Runners left on base and home runs made the models in both their offensive and 

defensive forms, the only two metrics to accomplish that feat. This implies that LOB and 

HR are very important in analyzing the game of baseball as a whole. Walks allowed and 

walks per nine innings both qualified for the defensive model, and the correlation 

between them (.68) was lower than one might imagine given the variables’ names. One 

other fascinating result was that the two models had approximately the same error rate 

(Offensive: 2.58%, Defensive: 2.67%) when the offensive model used five variables and 

the defensive model used eleven; the five run scoring metrics are much stronger 
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predictors individually than are the defensive metrics. Looking back at the scatterplots 

reveals that the data have a tighter fit for the significant offensive predictors, supporting 

this hypothesis. 

     Similarly low error rates were produced for the Pythagorean Expectation (3.74%) and 

win ratio (9.53%). Possessing the ability to accurately determine which metrics influence 

winning has important ramifications for the MLB. Teams can use this information to gain 

an advantage over their opponents when constructing their rosters. By pinpointing what 

they desire in players that differs from standard requirements, executives can target 

players that might otherwise not have gotten the same sort of attention as “top prospects” 

and obtain them via the draft and free agency. This in turn leads to a more competitive 

team, and possibly a lower payroll. 

     There are a few ways in which this study can be improved in the future. The first of 

these is to acquire more data. Once more seasons play out, more applicable data will 

become available. Next, new statistics could be developed over time that more strongly 

correlate with runs and winning. At this time twenty years ago, defense-independent 

earned run average ratio and defensive efficiency, two metrics that were considered vital 

by the stepwise regression procedure, did not even exist. Finally, current data that are 

inaccessible could become public knowledge. For instance, pitch velocity and bat head 

speed are two statistics that baseball aficionados discuss regularly. However, neither of 

these are available in a database except to the MLB and the thirty teams.  As we move 

toward a more data-driven society, previously unimaginable techniques will come to the 

forefront and help make baseball prediction than ever before. 
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APPENDIX 

A. Scatterplots for Offense Variables Correlated with Runs Scored 
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B. Scatterplots for Defensive Variables Correlated with Runs Allowed 
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C. Residual Plots for Offensive Variables Correlated with Runs 
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D. Residual Plots for Defensive Variables Correlated with Runs Allowed 
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E. Cross Validation Results Table 

 

Year Team Rmodel Ractual OffPctErrorRAModel RAActual DefPctErrorWPct PythActualPythModelsPythPctErrorWPctError

1 2015 ARI 722.1165 720 0.00294 759.7261 760 -0.00036 0.487654 0.475284 0.474636 -0.00136 -0.0267

2 2015 ATL 607.0273 573 0.059384 701.5648 693 0.012359 0.41358 0.413876 0.428131 0.034443 0.035184

3 2015 BAL 711.202 713 -0.00252 754.9621 753 0.002606 0.5 0.475049 0.47018 -0.01025 -0.05964

4 2015 BOS 730.4065 748 -0.02352 715.4762 701 0.020651 0.481481 0.529655 0.510325 -0.03649 0.059906

5 2015 CHC 676.4154 689 -0.01826 579.5049 608 -0.04687 0.598765 0.556969 0.576706 0.035436 -0.03684

6 2015 CHW 622.8234 622 0.001324 741.253 754 -0.01691 0.469136 0.412852 0.413829 0.002367 -0.11789

7 2015 CIN 655.4002 640 0.024063 604.6711 640 -0.0552 0.395062 0.5 0.540194 0.080388 0.367365

8 2015 CLE 705.6015 669 0.054711 888.5234 844 0.052753 0.5 0.395265 0.386744 -0.02156 -0.22651

9 2015 COL 739.0459 737 0.002776 769.2941 803 -0.04197 0.419753 0.460842 0.479954 0.041472 0.14342

10 2015 DET 743.1568 689 0.078602 622.3458 618 0.007032 0.45679 0.549591 0.587786 0.069498 0.286776

11 2015 HOU 749.4111 729 0.027999 671.7616 675 -0.0048 0.530864 0.535152 0.554475 0.036108 0.044476

12 2015 KCR 705.4283 724 -0.02565 568.0358 595 -0.04532 0.58642 0.588823 0.606647 0.030272 0.034493

13 2015 LAA 663.959 661 0.004477 731.9467 713 0.026573 0.524691 0.46541 0.45141 -0.03008 -0.13967

14 2015 LAD 726.1056 667 0.088614 687.4571 678 0.013948 0.567901 0.492517 0.527321 0.070665 -0.07146

15 2015 MIA 636.8053 613 0.038834 668.2353 641 0.042489 0.438272 0.479577 0.47593 -0.0076 0.085926

16 2015 MIL 655.6508 655 0.000994 754.3217 737 0.023503 0.419753 0.446245 0.43036 -0.0356 0.02527

17 2015 MIN 672.4526 696 -0.03383 718.2737 700 0.026105 0.512346 0.497378 0.467088 -0.0609 -0.08833

18 2015 NYM 667.9097 683 -0.02209 714.1233 698 0.023099 0.555556 0.490062 0.466599 -0.04788 -0.16012

19 2015 NYY 735.4324 764 -0.03739 596.1784 613 -0.02744 0.537037 0.599401 0.603444 0.006745 0.123655

20 2015 OAK 664.2441 694 -0.04288 725.0921 729 -0.00536 0.419753 0.477505 0.456287 -0.04444 0.087038

21 2015 PHI 607.6516 626 -0.02931 836.8753 809 0.034456 0.388889 0.384782 0.345213 -0.10283 -0.11231

22 2015 PIT 674.5008 697 -0.03228 594.1524 596 -0.0031 0.604938 0.571133 0.563081 -0.0141 -0.06919

23 2015 SDP 624.6625 650 -0.03898 713.4378 731 -0.02402 0.45679 0.446477 0.433946 -0.02806 -0.05001

24 2015 SEA 697.8216 656 0.063752 718.6746 726 -0.01009 0.469136 0.453747 0.485282 0.069498 0.034416

25 2015 SFG 712.9048 696 0.024289 630.7079 627 0.005914 0.518519 0.54762 0.560948 0.024339 0.081828

26 2015 STL 668.8099 647 0.033709 560.5344 525 0.067685 0.617284 0.594446 0.587398 -0.01186 -0.04842

27 2015 TBD 672.5849 644 0.044387 641.6024 642 -0.00062 0.493827 0.501423 0.523562 0.044153 0.060214

28 2015 TEX 715.7758 751 -0.0469 745.475 733 0.017019 0.54321 0.511097 0.479684 -0.06146 -0.11695

29 2015 TOR 882.8444 891 -0.00915 655.7927 670 -0.0212 0.574074 0.627539 0.644422 0.026904 0.122541

30 2015 WSN 713.5384 703 0.014991 630.5917 635 -0.00694 0.512346 0.546408 0.561476 0.027576 0.095893

31 2016 ARI 732.8145 752 -0.02551 745.408 779 -0.04312 0.425926 0.483867 0.491481 0.015735 0.153912

32 2016 ATL 664.0071 649 0.023123 745.1113 715 0.042114 0.419753 0.455807 0.442633 -0.0289 0.054509

33 2016 BAL 769.6276 744 0.034446 666.9156 694 -0.03903 0.549383 0.531785 0.571136 0.073998 0.039595

34 2016 BOS 890.2168 878 0.013914 747.4408 715 0.045372 0.574074 0.592864 0.586525 -0.01069 0.021689

35 2016 CHC 786.0482 808 -0.02717 539.0726 556 -0.03044 0.635802 0.66464 0.680123 0.023294 0.069708

36 2016 CHW 695.329 686 0.013599 859.3455 854 0.006259 0.481481 0.401104 0.395662 -0.01357 -0.17824

37 2016 CIN 718.5547 716 0.003568 657.1558 676 -0.02788 0.419753 0.526276 0.544542 0.034708 0.297291

38 2016 CLE 786.858 777 0.012687 839.4094 860 -0.02394 0.580247 0.4537 0.46772 0.0309 -0.19393

39 2016 COL 840.2991 845 -0.00556 714.8011 721 -0.0086 0.462963 0.572098 0.580179 0.014125 0.253186

40 2016 DET 785.3088 750 0.047078 712.4467 701 0.016329 0.530864 0.530872 0.548533 0.033268 0.033282

41 2016 HOU 735.3545 724 0.015683 807.0979 727 0.110176 0.518519 0.498108 0.453588 -0.08938 -0.12522

42 2016 KCR 675.417 675 0.000618 580.652 638 -0.08989 0.5 0.525768 0.575019 0.093673 0.150037

43 2016 LAA 733.6014 717 0.023154 850.7717 890 -0.04408 0.45679 0.402383 0.426449 0.059808 -0.06642

44 2016 LAD 710.1952 725 -0.02042 720.9036 682 0.057043 0.561728 0.527943 0.492518 -0.0671 -0.12321

45 2016 MIA 661.422 655 0.009805 763.2941 712 0.072042 0.487654 0.461899 0.42886 -0.07153 -0.12056

46 2016 MIL 737.3456 671 0.098876 754.9036 733 0.029882 0.450617 0.459656 0.488236 0.062177 0.083482

47 2016 MIN 718.5272 722 -0.00481 896.6232 889 0.008575 0.364198 0.405941 0.391059 -0.03666 0.073754

48 2016 NYM 699.5732 671 0.042583 688.5484 702 -0.01916 0.537037 0.479349 0.507942 0.059649 -0.05418

49 2016 NYY 688.1763 680 0.012024 667.2725 617 0.081479 0.518519 0.544363 0.515418 -0.05317 -0.00598

50 2016 OAK 661.7485 653 0.013397 760.8959 761 -0.00014 0.425926 0.430431 0.430645 0.000496 0.011079

51 2016 PHI 606.2715 610 -0.00611 784.1583 796 -0.01488 0.438272 0.380592 0.374124 -0.01699 -0.14637

52 2016 PIT 717.7215 729 -0.01547 761.4214 758 0.004514 0.481481 0.482161 0.470482 -0.02422 -0.02285

53 2016 SDP 643.089 686 -0.06255 772.2268 770 0.002892 0.419753 0.447349 0.40951 -0.08458 -0.0244

54 2016 SEA 766.5077 768 -0.00194 714.4799 707 0.01058 0.530864 0.53779 0.535087 -0.00503 0.007955

55 2016 SFG 707.2152 715 -0.01089 627.8714 631 -0.00496 0.537037 0.556929 0.559221 0.004115 0.041307

56 2016 STL 768.3868 779 -0.01362 716.7668 712 0.006695 0.530864 0.541052 0.534715 -0.01171 0.007255

57 2016 TBD 681.8384 672 0.01464 743.3989 713 0.042635 0.419753 0.472932 0.456887 -0.03393 0.088467

58 2016 TEX 759.8015 765 -0.0068 758.1555 757 0.001526 0.58642 0.504809 0.501084 -0.00738 -0.14552

59 2016 TOR 782.4232 759 0.030861 656.3946 666 -0.01442 0.549383 0.559517 0.586925 0.048984 0.068335

60 2016 WSN 757.1773 763 -0.00763 601.4752 612 -0.0172 0.58642 0.599543 0.613115 0.022637 0.045522
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F. R Codes with Comments for Model Creation 

#Import the csv files and view them 

off_data<-read.csv("D:\\Users\\Parker\\Desktop\\FIU Classwork\\Thesis\\Offensive 

Combined Data.csv",header=TRUE) 

View(off_data) 

def_data<-read.csv("D:\\Users\\Parker\\Desktop\\FIU Classwork\\Thesis\\Defensive 

Combined Data.csv",header=TRUE) 

View(def_data) 

 

#Make scatterplots for all 65 variables. Will remove those that have no relation to R 

or RA. 

plot(off_data$H[1:450],off_data$R[1:450]) 

plot(off_data$Doub[1:450],off_data$R[1:450]) 

plot(off_data$Trip[1:450],off_data$R[1:450]) 

plot(off_data$HR[1:450],off_data$R[1:450]) 

plot(off_data$BB[1:450],off_data$R[1:450]) 

plot(off_data$SO[1:450],off_data$R[1:450]) 

plot(off_data$SB[1:450],off_data$R[1:450]) 

plot(off_data$CS[1:450],off_data$R[1:450]) 

plot(off_data$HBP[1:450],off_data$R[1:450]) 

plot(off_data$SF[1:450],off_data$R[1:450]) 

plot(off_data$NumBat[1:450],off_data$R[1:450]) 

plot(off_data$BatAge[1:450],off_data$R[1:450]) 

plot(off_data$BA[1:450],off_data$R[1:450]) 

plot(off_data$OBP[1:450],off_data$R[1:450]) 

plot(off_data$SLG[1:450],off_data$R[1:450]) 

plot(off_data$OPS[1:450],off_data$R[1:450]) 

plot(off_data$OPSplus[1:450],off_data$R[1:450]) 

plot(off_data$TB[1:450],off_data$R[1:450]) 

plot(off_data$GDP[1:450],off_data$R[1:450]) 

plot(off_data$SacBunt[1:450],off_data$R[1:450]) 

plot(off_data$IBB[1:450],off_data$R[1:450]) 

plot(off_data$LOB[1:450],off_data$R[1:450]) 

plot(off_data$BPF[1:450],off_data$R[1:450]) 

 

plot(def_data$CG[1:450],def_data$RA[1:450]) 

plot(def_data$SHO[1:450],def_data$RA[1:450]) 

plot(def_data$SV[1:450],def_data$RA[1:450]) 

plot(def_data$BLSV[1:450],def_data$RA[1:450]) 

plot(def_data$HA[1:450],def_data$RA[1:450]) 

plot(def_data$Doub[1:450],def_data$RA[1:450]) 

plot(def_data$Trip[1:450],def_data$RA[1:450]) 

plot(def_data$HRA[1:450],def_data$RA[1:450]) 

plot(def_data$BBA[1:450],def_data$RA[1:450]) 
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plot(def_data$H9[1:450],def_data$RA[1:450]) 

plot(def_data$BB9[1:450],def_data$RA[1:450]) 

plot(def_data$SOA[1:450],def_data$RA[1:450]) 

plot(def_data$SOvBB[1:450],def_data$RA[1:450]) 

plot(def_data$NumP[1:450],def_data$RA[1:450]) 

plot(def_data$PAge[1:450],def_data$RA[1:450]) 

plot(def_data$IBB[1:450],def_data$RA[1:450]) 

plot(def_data$HBP[1:450],def_data$RA[1:450]) 

plot(def_data$BK[1:450],def_data$RA[1:450]) 

plot(def_data$WP[1:450],def_data$RA[1:450]) 

plot(def_data$FIP[1:450],def_data$RA[1:450]) 

plot(def_data$WHIP[1:450],def_data$RA[1:450]) 

plot(def_data$LOB[1:450],def_data$RA[1:450]) 

plot(def_data$NumFld[1:450],def_data$RA[1:450]) 

plot(def_data$IPouts[1:450],def_data$RA[1:450]) 

plot(def_data$DefEff[1:450],def_data$RA[1:450]) 

plot(def_data$Ch[1:450],def_data$RA[1:450]) 

plot(def_data$A[1:450],def_data$RA[1:450]) 

plot(def_data$E[1:450],def_data$RA[1:450]) 

plot(def_data$FldPct[1:450],def_data$RA[1:450]) 

plot(def_data$DP[1:450],def_data$RA[1:450]) 

plot(def_data$PPF[1:450],def_data$RA[1:450]) 

plot(def_data$OBP[1:450],def_data$RA[1:450]) 

plot(def_data$SLG[1:450],def_data$RA[1:450]) 

plot(def_data$OPS[1:450],def_data$RA[1:450]) 

plot(def_data$TB[1:450],def_data$RA[1:450]) 

plot(def_data$SB[1:450],def_data$RA[1:450]) 

plot(def_data$CS[1:450],def_data$RA[1:450]) 

plot(def_data$CSpct[1:450],def_data$RA[1:450]) 

plot(def_data$K9[1:450],def_data$RA[1:450]) 

plot(def_data$RS[1:450],def_data$RA[1:450]) 

plot(def_data$ERCpct[1:450],def_data$RA[1:450]) 

plot(def_data$DIPpct[1:450],def_data$RA[1:450]) 

 

#Perform SLR and make residual plots for all variables correlated with R or RA 

off_H.lm<-lm(R[1:450]~H[1:450],data=off_data) 

summary(off_H.lm) 

plot(off_data$H[1:450],resid(off_H.lm)) 

abline(0,0) 

 

off_Doub.lm<-lm(R[1:450]~Doub[1:450],data=off_data) 

summary(off_Doub.lm) 

plot(off_data$Doub[1:450],resid(off_Doub.lm)) 

abline(0,0) 
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off_HR.lm<-lm(R[1:450]~HR[1:450],data=off_data) 

summary(off_HR.lm) 

plot(off_data$HR[1:450],resid(off_HR.lm)) 

abline(0,0) 

 

off_BB.lm<-lm(R[1:450]~BB[1:450],data=off_data) 

summary(off_BB.lm) 

plot(off_data$BB[1:450],resid(off_BB.lm)) 

abline(0,0) 

 

off_SO.lm<-lm(R[1:450]~SO[1:450],data=off_data) 

summary(off_SO.lm) 

plot(off_data$SO[1:450],resid(off_SO.lm)) 

abline(0,0) 

 

off_BA.lm<-lm(R[1:450]~BA[1:450],data=off_data) 

summary(off_BA.lm) 

plot(off_data$BA[1:450],resid(off_BA.lm)) 

abline(0,0) 

 

off_OBP.lm<-lm(R[1:450]~OBP[1:450],data=off_data) 

summary(off_OBP.lm) 

plot(off_data$OBP[1:450],resid(off_OBP.lm)) 

abline(0,0) 

 

off_SLG.lm<-lm(R[1:450]~SLG[1:450],data=off_data) 

summary(off_SLG.lm) 

plot(off_data$SLG[1:450],resid(off_SLG.lm)) 

abline(0,0) 

 

off_OPS.lm<-lm(R[1:450]~OPS[1:450],data=off_data) 

summary(off_OPS.lm) 

plot(off_data$OPS[1:450],resid(off_OPS.lm)) 

abline(0,0) 

 

off_OPSplus.lm<-lm(R[1:450]~OPSplus[1:450],data=off_data) 

summary(off_OPSplus.lm) 

plot(off_data$OPSplus[1:450],resid(off_OPSplus.lm)) 

abline(0,0) 

 

off_TB.lm<-lm(R[1:450]~TB[1:450],data=off_data) 

summary(off_TB.lm) 

plot(off_data$TB[1:450],resid(off_TB.lm)) 

abline(0,0) 
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off_LOB.lm<-lm(R[1:450]~LOB[1:450],data=off_data) 

summary(off_LOB.lm) 

plot(off_data$LOB[1:450],resid(off_LOB.lm)) 

abline(0,0) 

 

 

 

def_SHO.lm<-lm(RA[1:450]~SHO[1:450],data=def_data) 

summary(def_SHO.lm) 

plot(def_data$SHO[1:450],resid(def_SHO.lm)) 

abline(0,0) 

 

def_SV.lm<-lm(RA[1:450]~SV[1:450],data=def_data) 

summary(def_SV.lm) 

plot(def_data$SV[1:450],resid(def_SV.lm)) 

abline(0,0) 

 

def_HA.lm<-lm(RA[1:450]~HA[1:450],data=def_data) 

summary(def_HA.lm) 

plot(def_data$HA[1:450],resid(def_HA.lm)) 

abline(0,0) 

 

def_Doub.lm<-lm(RA[1:450]~Doub[1:450],data=def_data) 

summary(def_Doub.lm) 

plot(def_data$Doub[1:450],resid(def_Doub.lm)) 

abline(0,0) 

 

def_Trip.lm<-lm(RA[1:450]~Trip[1:450],data=def_data) 

summary(def_Trip.lm) 

plot(def_data$Trip[1:450],resid(def_Trip.lm)) 

abline(0,0) 

 

def_HRA.lm<-lm(RA[1:450]~HRA[1:450],data=def_data) 

summary(def_HRA.lm) 

plot(def_data$HRA[1:450],resid(def_HRA.lm)) 

abline(0,0) 

 

def_BBA.lm<-lm(RA[1:450]~BBA[1:450],data=def_data) 

summary(def_BBA.lm) 

plot(def_data$BBA[1:450],resid(def_BBA.lm)) 

abline(0,0) 

 

def_H9.lm<-lm(RA[1:450]~H9[1:450],data=def_data) 

summary(def_H9.lm) 

plot(def_data$H9[1:450],resid(def_H9.lm)) 
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abline(0,0) 

 

def_BB9.lm<-lm(RA[1:450]~BB9[1:450],data=def_data) 

summary(def_BB9.lm) 

plot(def_data$BB9[1:450],resid(def_BB9.lm)) 

abline(0,0) 

 

def_SOA.lm<-lm(RA[1:450]~SOA[1:450],data=def_data) 

summary(def_SOA.lm) 

plot(def_data$SOA[1:450],resid(def_SOA.lm)) 

abline(0,0) 

 

def_SOvBB.lm<-lm(RA[1:450]~SOvBB[1:450],data=def_data) 

summary(def_SOvBB.lm) 

plot(def_data$SOvBB[1:450],resid(def_SOvBB.lm)) 

abline(0,0) 

 

def_FIP.lm<-lm(RA[1:450]~FIP[1:450],data=def_data) 

summary(def_FIP.lm) 

plot(def_data$FIP[1:450],resid(def_FIP.lm)) 

abline(0,0) 

 

def_WHIP.lm<-lm(RA[1:450]~WHIP[1:450],data=def_data) 

summary(def_WHIP.lm) 

plot(def_data$WHIP[1:450],resid(def_WHIP.lm)) 

abline(0,0) 

 

def_LOB.lm<-lm(RA[1:450]~LOB[1:450],data=def_data) 

summary(def_LOB.lm) 

plot(def_data$LOB[1:450],resid(def_LOB.lm)) 

abline(0,0) 

 

def_IPouts.lm<-lm(RA[1:450]~IPouts[1:450],data=def_data) 

summary(def_IPouts.lm) 

plot(def_data$IPouts[1:450],resid(def_IPouts.lm)) 

abline(0,0) 

 

def_DefEff.lm<-lm(RA[1:450]~DefEff[1:450],data=def_data) 

summary(def_DefEff.lm) 

plot(def_data$DefEff[1:450],resid(def_DefEff.lm)) 

abline(0,0) 

 

def_E.lm<-lm(RA[1:450]~E[1:450],data=def_data) 

summary(def_E.lm) 

plot(def_data$E[1:450],resid(def_E.lm)) 
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abline(0,0) 

 

def_OBP.lm<-lm(RA[1:450]~OBP[1:450],data=def_data) 

summary(def_OBP.lm) 

plot(def_data$OBP[1:450],resid(def_OBP.lm)) 

abline(0,0) 

 

def_SLG.lm<-lm(RA[1:450]~SLG[1:450],data=def_data) 

summary(def_SLG.lm) 

plot(def_data$SLG[1:450],resid(def_SLG.lm)) 

abline(0,0) 

 

def_OPS.lm<-lm(RA[1:450]~OPS[1:450],data=def_data) 

summary(def_OPS.lm) 

plot(def_data$OPS[1:450],resid(def_OPS.lm)) 

abline(0,0) 

 

def_TB.lm<-lm(RA[1:450]~TB[1:450],data=def_data) 

summary(def_TB.lm) 

plot(def_data$TB[1:450],resid(def_TB.lm)) 

abline(0,0) 

 

def_K9.lm<-lm(RA[1:450]~K9[1:450],data=def_data) 

summary(def_K9.lm) 

plot(def_data$K9[1:450],resid(def_K9.lm)) 

abline(0,0) 

 

def_DIPpct.lm<-lm(RA[1:450]~DIPpct[1:450],data=def_data) 

summary(def_DIPpct.lm) 

plot(def_data$DIPpct[1:450],resid(def_DIPpct.lm)) 

abline(0,0) 

 

 

'Based on scatterplots, eliminate the following variables (column in respective file is 

in parentheses). 

Offense: Trip (7), SB (11), CS (12), HBP (13), SF (14), NumBat (15), BatAge (16), 

GDP (23),  

         SacBunt (24), IBB (25), BPF (27) 

Defense: CG (5), BLSV (8), NumP (18), PAge (19), IBB (20), HBP (21), BK (22), WP 

(23), NumFld (27),  

         Ch (30), A (31), FldPct (33), DP (34), PPF (35), SB (40), CS (41), CSpct (42), RS 

(44), ERCpct (45) 

' 

 

#Make correlation matrices for offense and defense 
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round(cor(off_data[1:450,c(5:6,8:10,17:22,26)]),2) 

round(cor(def_data[1:450,c(6:7,9:17,24:26,28:29,32,36:39,43,46)]),2) 

 

#Peform stepwise regression between null model and full model to find optimal 

regression equation according to AIC criterion 

null_off=lm(R~1,data=off_data[1:450,]) 

full_off=lm(R~H+Doub+HR+BB+SO+BA+OBP+SLG+OPS+OPSplus+TB+LOB,data=

off_data[1:450,]) 

step(null_off,scope=list(upper=full_off),direction="both") 

 

null_def=lm(RA~1,data=def_data[1:450,]) 

full_def=lm(RA~SHO+SV+HA+Doub+Trip+HRA+BBA+H9+BB9+SOA+SOvBB+FIP

+WHIP+LOB+IPouts+DefEff+E+OBP+SLG+OPS+TB+K9+DIPpct,data=def_data) 

step(null_def,scope=list(upper=full_def),direction="both") 

 

#Check variance inflation factors (remember to enable car package) 

library("car", lib.loc="D:/Program Files/R/R-3.4.1/library") 

off_model=lm(R~OBP+LOB+TB+BB+BA+H+OPSplus,data=off_data[1:450,]) 

summary(off_model) 

vif(off_model) 

def_model=lm(RA~HA+BBA+HRA+IPouts+E+DIPpct+DefEff+SV+LOB+SHO+BB9,

data=def_data[1:450,]) 

summary(def_model) 

vif(def_model) 

 

#Correlation and Scatterplot Matrices for Remaining Defensive Variables 

round(cor(def_data[1:450,c(6:7,9,12:13,15,26,28:29,32,46)]),2) 

pairs(def_data[1:450,c(6:7,9,12:13,15,26,28:29,32,46)]) 

 

#Residual Plot for Defensive Model 

plot(def_model$fit,resid(def_model)) 

 

#Perform ridge estimated regression for the offensive model to account for 

colinearity issues (attach liureg package) 

library("liureg", lib.loc="D:/Anaconda3/R/library") 

off_model=liu(R~H+Doub+HR+BB+SO+BA+OBP+SLG+OPS+OPSplus+TB+LOB,dat

a=off_data[1:450,]) 

summary(off_model) 

round(cor(off_data[1:450,c(6,8:9,17:18,26)]),2) 

off_model=liu(R~Doub+HR+BB+BA+LOB,data=off_data[1:450,]) #all non-sabermetric 

summary(off_model) 

 

#Perform MLR on each regressor vs others, then vif=1/(1-R^2) 

Doub_model=liu(Doub~HR+BB+BA+LOB,data=off_data[1:450,]) 

summary(Doub_model) 
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HR_model=liu(HR~Doub+BB+BA+LOB,data=off_data[1:450,]) 

summary(HR_model) 

BB_model=liu(BB~Doub+HR+BA+LOB,data=off_data[1:450,]) 

summary(BB_model) 

BA_model=liu(BA~Doub+HR+BB+LOB,data=off_data[1:450,]) 

summary(BA_model) 

LOB_model=liu(LOB~Doub+HR+BB+BA,data=off_data[1:450,]) 

summary(LOB_model) 

vifs<-c(1/(1-.4007),1/(1-.41),1/(1-.6953),1/(1-.5114),1/(1-.6952)) 

vifs 

 

lstats(off_model) 

1-pf(1345.439,5,444) #p,n-p-1 

 

#Correlation and Scatterplot Matrices for Remaining Offensive Variables 

round(cor(off_data[1:450,c(6,8:9,17,26)]),2) 

pairs(off_data[1:450,c(6,8:9,17,26)]) 

 

#Residual Plot for Offensive Model 

plot(off_model$lfit,resid(off_model)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 

 

G. R Codes with Comments for Cross Validation 

 

#Set the models used to cross validate 

off_model=liu(R~Doub+HR+BB+BA+LOB,data=off_data[1:450,]) 

def_model=lm(RA~HA+BBA+HRA+IPouts+E+DIPpct+DefEff+SV+LOB+SHO+BB9,

data=def_data[1:450,]) 

 

#Import csv file of table where output will be stored 

tcv<-read.csv("D:\\Users\\Parker\\Desktop\\FIU 

Classwork\\Thesis\\ThesisCrossValidation.csv",header=TRUE) 

View(tcv) 

 

#Iterate through remaining dataset 

for(i in 451:nrow(off_data)){ 

  #r=formula using off data columns where formula comes from regression model 

  r=predict(off_model,off_data[i,]) 

  tcv[i-450,3]=r             #Subtracting by 450 starts the new file at 1 

  #rA=formula using def data columns where formula comes from regression model 

  rA=predict(def_model,def_data[i,]) 

  tcv[i-450,6]=rA 

  #Year, Team, RActual, RAActual already copied from data files to this table 

  off_pct_error=(r-off_data[i,4])/off_data[i,4] 

  tcv[i-450,5]=off_pct_error          

  def_pct_error=(rA-def_data[i,4])/def_data[i,4] 

  tcv[i-450,8]=def_pct_error 

   

  #W already copied from data files to this table 

  pyth_actual=tcv[i-450,4]^1.83/(tcv[i-450,4]^1.83+tcv[i-450,7]^1.83) 

  tcv[i-450,10]=pyth_actual #try with 2 and 1.83 

  pyth_models=r^2/(r^2+rA^2) 

  tcv[i-450,11]=pyth_models 

  pyth_pct_error=(pyth_models-pyth_actual)/pyth_actual #pyth model vs pyth actual 

  tcv[i-450,12]=pyth_pct_error  

  w_pct_error=(pyth_models-tcv[i-450,9])/tcv[i-450,9] #pyth model vs wins 

  tcv[i-450,13]=w_pct_error  

} 

mean(abs(tcv$DefPctError)) 

mean(abs(tcv$OffPctError)) 

mean(abs(tcv$PythPctError)) 

mean(abs(tcv$WPctError)) 

 

#Write table output back into the file (make sure file isn't open or error will occur) 

write.csv(tcv,file="D:\\Users\\Parker\\Desktop\\FIU 

Classwork\\Thesis\\ThesisCrossValidation.csv") 
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