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ABSTRACT OF THE DISSERTATION 

CONFORMATIONAL DYNAMICS OF BIOMOLECULES BY TRAPPED ION 
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by 
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Professor Francisco Fernández-Lima, Major Professor 

One of the main goals in structural biology is to understand the folding mechanisms and 

three-dimensional structure of biomolecules. Many biomolecular systems adopt multiple 

structures as a function of their microenvironment, which makes them difficult to be 

characterized by traditional structural biology tools (e.g., NMR, X-ray crystallography). 

As an alternative, complementary tools that can capture and sample multiple conformations 

needed to be developed. In the present work, we pioneered the application of a new variant 

of ion mobility spectrometry, trapped ion mobility spectrometry (TIMS), which provides 

high mobility resolving power and the possibility to study kinetically trapped intermediates 

as a function of the starting solution (e.g., pH and organic content) and gas-phase 

conditions (e.g., collisional activation, molecular dopants, hydrogen/deuterium back-
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exchange). When coupled to mass spectrometry (TIMS-MS), action spectroscopy 

(IRMPD), molecular dynamics and biochemical approaches (e.g., fluorescence lifetime 

spectroscopy), a comprehensive description of the biomolecules dynamics and 

tridimensional structural can be obtained. These new set of tools were applied for the first 

time to the study of Flavin Adenine Dinucleotide (FAD), Nicotineamide Adenine 

Dinucleotide (NAD), globular protein cytochrome c (cyt c), the 31 knot YibK protein, 52 

knot ubiquitin C terminal hydrolase (UCH) protein, and the 61 knot halo acid 

dehydrogenase (DehI) protein. 
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INTRODUCTION 
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Traditionally, the study of biomolecular conformations has focused on the condensed phase 

by well established methodologies, such as nuclear magnetic resonance, crystallography, 

cryo-electron microscopy, circular dichroism, among others.1 However, these techniques 

pose unavoidable challenges when the research interest deviates from the study of the 

native conformation: the structure of disordered proteins cannot be resolved in detail by 

the aforementioned techniques as they are problematic to crystallize; the conformational 

dynamics of proteins can only be analyzed by a handful of practices and only broad 

conclusions can be derived from such studies; and many of the kinetic intermediates that 

are involved in the folding of proteins cannot be isolated or identified, complicating the 

proposal of folding mechanisms.2,3 

In the gas-phase, a world of analytical possibilities opens for the thorough study of the 

conformational dynamics and folding pathways of proteins and biomolecules. By using 

mass spectrometry (MS) based techniques, we can isolate and identify molecules (i.e., 

molecular identification), we can study the intramolecular interactions that define the 

conformation of molecules (i.e., infrared spectroscopy, IR), we can analyze and fingerprint 

the accessible surface area of proteins and peptides (i.e., hydrogen/deuterium exchange, 

HDX), and we can isolate and measure the size of the trapped kinetic intermediates that 

are part the folding pathway of biomolecules (i.e., ion mobility spectrometry, IMS).4-6 All 

these procedures allow the unambiguous selection and isolation of the target analytes, their 

study in the absence of solvents, or in the presence of selected of collisional partners. 

The main goal of the projects presented here was to propose and implement analytical 

methodologies for the analysis of the conformational dynamics of biomolecules by using 
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trapped ion mobility spectrometry (TIMS). Unlike other IMS variants, TIMS permits the 

interrogation and manipulation of mobility separated ion populations in the gas-phase with 

high resolving power. In TIMS, the mobility separation is based on holding the ion 

packages stationary using an electric field that compensates the exerted drift force against 

a moving bath gas. This allows the molecular separation based on the ion mobility of each 

package, which in turn is dependent on the size and shape of each trapped intermediate. 

The ions are also radially confined by a quadrupolar field, significantly increasing the 

transmission and sensitivity, compared to other IMS instruments. Since the separation is 

related to the number of ion-neutral collisions, using first principles we can measure the 

ion-neutral collision cross section (CCS) of each mobility-resolved trapped intermediate.7-

10 These measurements, combined with molecular dynamics, permits the structural 

assignment of the candidate structures that populate the conformational landscape of 

biomolecules.7,8,10-12 In our group, we have successfully showed the application of TIMS 

based techniques on the study of inorganic13-17 and organic molecules,18,19 

oligonucleotides,20 peptides,21-23 and proteins.24-27 The fast analyses and high mobility 

separations routinely achieved, makes TIMS an attractive alternative, and perhaps a staple, 

in the growing fields of structural biology, proteomics, metabolomics, and lipidomics. 

During the development of this dissertation, several complimentary techniques using 

TIMS-MS were proposed and their results were published for the first time, such as the 

thermalization kinetics of intermediates in the millisecond timescale, the gas-phase 

solvation effects of dopants in the TIMS cell, the implementation of collision induced 

activation (CIA) for the interrogation of other than solution accessible intermediates, and 
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the measurement of hydrogen/deuterium back-exchange rates of mobility selected trapped 

intermediates. The following chapters provide a better understanding on the 

conformational dynamics of biomolecules studied with TIMS, and the wide variety of 

complimentary approaches employed.  

Chapter 2, “Flavin adenine dinucleotide structural motifs: from solution to gas-phase”, 

published in Analytical Chemistry in 2014,19 describes the conformational changes of 

Flavin Adenine Dinucleotide (FAD) in solution and in the gas-phase by measuring the 

fluorescence time decay and ion-neutral collision cross sections as a function of the solvent 

conditions and gas-phase collisional partner. Our results showed that FAD can exist in four 

conformations in solution, where the abundance of the extended conformations increases 

with the organic content. TIMS-MS experiments showed that FAD can exist in the gas-

phase as deprotonated and protonated forms and that 12 conformations can be observed as 

a function of the starting solution for the [M + H]+ and [M + Na]+ molecular ions. 

Additionally, changes in the relative abundances of the gas-phase structures were observed 

from a "stack" to a "close" conformation when organic molecules were introduced in the 

TIMS cell as collision partners.  

In chapter 3, “Insights from Ion Mobility – Mass Spectrometry, Infrared Spectroscopy, and 

Molecular Dynamics on Nicotinamide Adenine Dinucleotide Structural Dynamics: NAD+ 

vs NADH”, published in Physical Chemistry Chemical Physics in 2018,28 we propose a 

new analytical workflow for study NAD+ and NADH dynamics as a function of the organic 

content in solution using fluorescence lifetime spectroscopy and in the gas-phase using 

nESI-TIMS-MS and infrared multiple photon dissociation (IRMPD). Our results suggest 
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that in solution, NAD can change from a “close” to “open” conformation with the increase 

of the organic content. NAD gas-phase studies using nESI-TIMS-MS displayed two ion 

mobility bands for NAD+ protonated and sodiated species, while four and two ion mobility 

bands were observed for NADH protonated and sodiated species, respectively. Changes in 

the mobility profiles were observed for NADH as a function of the starting solution 

condition and the time after desolvation, while NAD+ profiles showed no dependence. The 

IRMPD spectroscopy of NAD+ and NADH protonated species in the 800-1800 and 3200-

3700 cm-1 spectral regions showed common and signature bands between the NAD forms.  

In chapter 4, “Characterization of Intramolecular Interactions of Cytochrome c Using 

Hydrogen-Deuterium Exchange-Trapped Ion Mobility Spectrometry-Mass Spectrometry 

and Molecular Dynamics”, published in Analytical Chemistry in 2017,27 we showed the 

advantages of TIMS-MS with respect to previously IMS-MS studies for the case of a model 

globular protein Cytochrome c (cyt c). The structural interrogation of kinetically trapped 

intermediates of cyt c was performed by correlating the CCS and charge state with the 

starting solution conditions and time after desolvation using CIA, time-resolved HDX and 

TIMS-MS. The high ion mobility resolving power of the TIMS analyzer allowed the 

identification of new ion mobility bands, yielding a total of 63 mobility bands over the +6 

to +21 charge states and 20 mobility bands over the -5 to -10 charge states. Mobility 

selected HDX rates showed that for the same charge state, conformers with larger CCS 

present faster HDX rates in both positive and negative ion mode, suggesting that the charge 

sites and neighboring exchange sites on the accessible surface area define the exchange 

rate regardless of the charge state. Complementary molecular dynamic simulations 
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permitted the generation of candidate structures and a mechanistic model of the folding 

transitions from native (N) to molten globule (MG) to kinetic intermediates (U) pathways. 

Our results suggest that cyt c major structural unfolding is associated with the distancing 

of the N- and C-terminal helices and subsequent solvent exposure of the hydrophobic, 

heme-containing cavity. 

Finally, in chapter 5, “Structural Characterization of the Knot Protein YibK using Trapped 

Ion Mobility Spectrometry – Mass Spectrometry and Enzymatic Digestion”; chapter 6, 

“Insights from Trapped Ion Mobility Spectrometry – Mass Spectrometry on the 

Conformation of the Knot Protein Ubiquitin C terminal Hydrolase”; and chapter 7 

“Elucidation of the Structural Integrity and Stability of the knot protein halo acid 

dehydrogenase using Trapped Ion Mobility Spectrometry – Mass Spectrometry”, we 

discuss the conformation of the 31, 52, and 61 knots found in the proteins YibK, UCH, and 

DehI using TIMS-MS based tools, respectively. The nascent area of research on knotted 

proteins requires new experimental approaches to provide conclusive answers about the 

roles of knots in proteins, and TIMS-MS provided sufficient information for the elucidation 

of the folding dynamics of these particular conformations. Using a combination of TIMS-

MS based techniques, we studied the integrity, and stability of the aforementioned knots 

as a function of the solution conditions, the activation energy, and the cooperative effect of 

temperature and the starting solution composition on the conformational space. 

Additionally, we developed a novel methodology using TIMS-MS, enzymatic digestion 

and molecular dynamics to better characterize the knot core and knotted proteins. These 

findings are under review in the Journal of the American Society of Mass Spectrometry. 
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ABSTRACT 

Flavin adenine dinucleotide (FAD) is involved in important metabolic reactions where the 

biological function is intrinsically related to changes in conformation. In the present work, 

FAD conformational changes were studied in solution and in gas phase by measuring the 

fluorescence decay time and ion-neutral collision cross sections (CCS, in a trapped ion 

mobility spectrometer, TIMS) as a function of the solvent conditions (i.e., organic content) 

and gas-phase collisional partner (i.e., N2 doped with organic molecules).  Changes in the 

fluorescence decay suggest that FAD can exist in four conformations in solution, where 

the abundance of the extended conformations increases with the organic content. TIMS-

MS experiments showed that FAD can exist in the gas phase as de-protonated (M = 

C27H31N9O15P2) and protonated forms (M = C27H33N9O15P2) and that multiple 

conformations (up to 12) can be observed as a function of the starting solution for the 

[M+H]+ and [M+Na]+molecular ions. In addition, changes in the relative abundances of 

the gas-phase structures were observed from a ‘stack” to a “close” conformation when 

organic molecules were introduced in the TIMS cell as collision partners. Candidate 

structures optimized at the DFT/B3LYP/6-31G(d,p) were proposed for each IMS band and 

results showed that the most abundant IMS band corresponds to the most stable candidate 

structure. Solution and gas-phase experiments suggest that the driving force that stabilizes 

the different conformations is based on the interaction of the adenine and isoalloxazine 

rings that can be tailored by the “solvation” effect created with the organic molecules.  
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INTRODUCTION 

Flavin adenine dinucleotide (FAD) is involved in multiple metabolic reactions. Its primary 

role is as a cofactor necessary for the activity of numerous flavoproteins, which play an 

important role in electron transport pathways in living systems like respiration1, 

photosynthesis2,3, DNA repair4,5, photoreceptors and nitrogen fixation6. Since Weber et al  

7 reported a weakness in the fluorescence of FAD in comparison with the fluorescence of 

free riboflavin, a number of studies have proposed the existence of at least two conformers 

for FAD in solution 8,9. One “stack” conformer that exhibits a quenching of fluorescence, 

which presents a π-π interaction between aromatic rings and intramolecular hydrogen 

bonds that stabilizes the adenine moiety and isoalloxazine ring,10,11 which might contribute 

to 80% of the molecules of FAD in solution.12 And an “open” conformer, which does not 

present quenching of the fluorescence.7,13. Even though the existence of an “open” and a 

“stack” conformation is generally accepted, little is known about the structural details and 

the conformational space of FAD. Studies on free riboflavin and the adenosine derivative 

5’-bromo-5’-deoxyadenosine using crystallographic methods have shown an average 

structure of the π-π systems. 14 Different models for the interaction between the flavin and 

adenine moieties have been proposed based on NMR studies.11,15-18 However, all NMR 

studies presented the complication of intermolecular stacking between the flavin 

complexes at millimolar concentrations. 

During the last decades, ion mobility spectrometry (IMS) combined with molecular 

dynamic simulations has proven to be a versatile technique for the analysis of intermediate 

and equilibrium structures of biomolecules enabling the correlation of ion-neutral, collision 
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cross sections (CCS) with candidate structures. 19-24 In particular, it has been shown that 

using soft ionization techniques (e.g., electrospray ionization, ESI 25) the evaporative 

cooling of the solvent leads to a freezing of multiple conformations, which has permitted 

the study of the conformational space dependence on the solvent conditions (e.g., native vs 

denatured), bath gas collision partner and temperature. 26-37 With the recent introduction of 

trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS), 38,39 we have 

shown that high mobility separations (R = 100 - 250) can be routinely achieved.40 In 

particular, we have shown that the study of biomolecules traditionally named 

“unstructured” by NMR and XRD is feasible due to the ability to measure multiple 

conformations at a given time and to perform kinetic studies of conformational inter-

conversion as a way to elucidate folding/unfolding pathways.41,42 

In the present work, the conformational space of FAD in solution phase and in gas phase 

as a function of the solution composition was studied using a combination of TIMS-MS, 

fluorescence time decay, and molecular dynamics (MD) simulations. We present evidence 

that FAD [M+H]+ and [M+Na]+ molecular ions observed during ESI can be de-protonated 

and protonated, which leads to multiple stable conformations (totaling 12 IMS bands) 

whose relative abundance can be tailored by the solvent conditions and the gas-phase 

collision partner. Special attention was given to the interrelation between the MD and IMS 

data, and candidate structures for each IMS bands are proposed. 
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METHODS 

Materials and reagents 

Flavin adenine dinucleotide disodium salt hydrate (F6625) powder was purchased from 

Sigma-Aldrich (St. Louis, MO) and used as received. All solvents and ammonium acetate 

salts used in these studies were analytical grade or better and purchased from Fisher 

Scientific (Pittsburg, PA). A stock solution was prepared in 10 mM ammonium acetate and 

aliquots were diluted to a final concentration of 1, 5, and 10 µM in 70:30, 50:50, and 30:70 

(v/v) water-methanol/ethanol solutions. A Tuning Mix calibration standard (TuneMix, 

G24221A) was purchased from Agilent Technologies (Santa Clara, CA) and used as 

received. Details on the Tunemix structures (e.g., m/z = 322 K0 = 1.376 cm2 V−1 s−1 and 

m/z = 622 K0 = 1.013 cm2 V−1 s−1) can be found elsewhere. 40,43 All experiments were 

performed in triplicates. 

Trapped Ion Mobility Spectrometry – Mass Spectrometry Separation 

Details regarding the TIMS operation and specifics compared to traditional IMS can be 

found elsewhere. 38-42 Briefly, in TIMS mobility separation is based on holding the ions 

stationary using an electric field against a moving gas. The separation in a TIMS device 

can be described by the center of the mass frame using the same principles as in a 

conventional IMS drift tube.44 Since mobility separation is related to the number of ion-

neutral collisions (or drift time in traditional drift tube cells), the mobility separation in a 

TIMS device depends on the bath gas drift velocity, ion confinement and ion elution 

parameters. The reduced mobility, K0, of an ion in a TIMS cell is described by: 
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𝐾0 =  
𝑣𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛− 𝑉𝑏𝑎𝑠𝑒)
     (1) 

where vg , E, Velution and Vbase are the velocity of the gas, applied electric field, elution and 

base voltages, respectively. The constant A can be determined using calibration standards 

of known reduced mobilities.  In TIMS operation, multiple geometric isomers/conformers 

are trapped simultaneously at different E values resulting from a voltage gradient applied 

across the TIMS tunnel. After thermalization, geometrical isomers/conformers are eluted 

by decreasing the electric field in stepwise decrements (referred to as the “ramp”). Each 

isomer/conformer eluting from the TIMS cell can be described by a characteristic voltage 

(i.e., Velution - Vbase). Eluted ions are then mass analyzed and detected by a maXis impact 

Q-ToF mass spectrometer (Bruker Daltonics Inc, Billerica , MA).  

In a TIMS device, the total analysis time can be described as: 

Total IMS time = Ttrap + (Velution/Vramp)*Tramp + ToF = To + (Velut/Vramp)*Tramp 

 (2) 

where, Ttrap is the thermalization/trapping time, ToF is the time after the mobility 

separation, and Vramp and Tramp are the voltage range and time required to vary the electric 

field, respectively.  The elution voltage can be experimentally determined by varying the 

ramp time for a constant ramp voltage. This procedure also determines the time ions spend 

outside the separation region To (e.g., ion trapping and time-of-flight). 

The TIMS funnel is controlled using in-house software, written in National Instruments 

Lab VIEW, and synchronized with the maXis Impact Q-ToF acquisition program. 38,39  
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TIMS separation was performed using nitrogen as a bath gas at ca. 300 K, and the gas flow 

velocity was controlled by the pressure difference between entrance funnel P1 = 2.6 mbar, 

and the exit funnel P2 = 1.0 mbar. P1 and P2 values were held constant for all experiments. 

Dopant additives were introduced at the entrance of the tunnel region of the TIMS analyzer 

and monitored with an external capacitance gauge from MKS instruments (Andover, MA). 

Methanol, ethanol and acetone were used as dopant additives and introduced through a 

1mm i.d. aperture at 10 mbar. The same RF (880 kHz and 200Vpp) was applied to all 

electrodes including the entrance funnel, the mobility separating section, and the exit 

funnel. An electrospray ionization source (ESI Apollo II design, Bruker Daltonics, Inc., 

MA) was used for all the analyses. The TIMS cell was operated using a fill/trap/ramp/wait 

sequence of 10/10/50-500/50 ms. Average mobility resolution at 10/10/500/50 was 160-

190. 

Reduced mobility values (K0) were correlated with CCS (Ω) using the equation: 
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where z is the charge of the ion, k
B

 is the Boltzmann constant, N* is the number density 

and m
I
 and m

b
 refer to the masses of the ion and bath gas, respectively. 44 
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Fluorescence Decay Analysis 

Fluorescence decay experiments were performed on FAD as a function of the solvent 

conditions using a ChronosFD spectrofluorometer (ISS, Champaign, IL) in the frequency 

domain mode. A 10 μM FAD solution was excited using a 470 nm laser diode and 

fluorescent emission was collected using a 500nm and 650 nm long and short pass filters, 

respectively (Andover, Salem, NH).  A rhodamine B water solution was used for lifetime 

calibration (τ =1.7 ns). 45 Polarizers were set at magic angle configuration. The 

fluorescence decay lifetime were recovered by a non-linear fit of the data using a triple 

exponential decay using GlobalWe software (Laboratory of Fluorescence Dynamics, 

Irvine, CA). 

Theoretical Calculations 

A pool of candidate structures were proposed for each molecular ion observed in the TIMS-

MS experiments. The initial pool of candidate structures was obtained using serial 

molecular dynamics simulations of annealing and geometry optimization cycles in a NVT 

thermostat (equivalent to the approach described in ref 31) using AMBER03 force field in 

YASARA software. In particular, the NVT thermostat was set to recreate the TIMS cell 

experiment; the simulation box contained the molecular ion of interest with bath and dopant 

gas molecules. Final structures were optimized at the DFT/B3LYP/6-31G(d,p) level using 

Gaussian software.46 Vibrational frequencies were calculated to guarantee that the 

optimized structures correspond to a real minima in the energy space and zero-point energy 

corrections were applied to calculate the relative stability between the structures. 

Theoretical ion-neutral collision cross sections were calculated using MOBCAL version 
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for helium 47,48 and nitrogen,49-50 as a bath gas at ca. 300K.  It should be noted that 

MOBCAL version for nitrogen was used assuming the similarity of the molecules to those 

used to develop the Lennard-Jones potential at 300K in ref 49-50; for other molecules 

alternatives methods are encouraged 51 Partial atomic charges were calculated using the 

Merz-Singh-Kollman scheme constrained to the molecular dipole moment. 52,53 All 

optimized geometries and partial atomic charges used in the MOBCAL input files are 

provided in the supporting information.  

RESULTS AND DISCUSSION 

The MS analysis of FAD shows that four molecular ions are produced by the ESI source, 

independent of the water: organic content ratio (Figure 2.1). The most abundant [M+H]+ 

and [M+Na]+ molecular ions correspond to the protonated form of FAD 

(M=C27H33N9O15P2 ), while similar molecular ions were observed for the deprotonated 

form (M=C27H31N9O15P2). This result is consistent with previously reported MS 

experiments (KNA00612 record from www.massbank.jp). Taking advantage of the high 

resolution of the MS spectrometer (R>30-40k), mass signals were isolated (m/z < 1 Da, 

monoisotopic peak) and mobility experiments were performed for each molecular ion as a 

function of the solvent condition and bath gas composition. 

Mobility experiments were performed as a function of the organic content in the starting 

solutions (e.g., water: ethanol/methanol content) using nitrogen as a bath gas (Figure 2.2). 

Inspection of the mobility spectrum showed that multiple conformations exist as a function 

of the solvent conditions (label A-L). Ion-neutral CCS were determined for all molecular 
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ions observed using Tuning Mix species as external calibrants (Table 1). Major differences 

in the relative abundances were not observed as a function of the starting solution (e.g., 

organic content) and the  IMS trapping time. This suggests that all structures formed during 

the ESI process (labeled A-L) are stable in the TIMS experiments time scale (50-2000 ms).  

The conformational heterogeneity of FAD in solution was characterized by measuring the 

FAD lifetime in water: ethanol/methanol mixtures using frequency domain fluorescence 

spectroscopy (Figure 2.3).  The data were analyzed using triple exponential decay model 

and the results are summarized in Table 2. Three distinct components were resolved: a fast 

component of ~ 270 ps and two nanosecond components with the lifetimes of 2.43 ns and 

4.6 ns in water. The observed lifetimes are in agreement with previous reports of FAD 

emission lifetimes in water and water-ethanol mixtures. 54-55 The fast decaying component 

of ~ 270 ps is attributed to a “closed” FAD conformation with relatively weak interactions 

between the isoalloxazine and adenine ring that lead to a less efficient intramolecular 

transfer between the hetero-aromatic groups. 7,13 The nanosecond lifetimes of ~ 2.5 ns and 

~ 4.6 ns correspond to the “partially open” and “open” FAD conformation, respectively. In 

the “open” conformation, the distance between the isoalloxazine and adenine ring was 

proposed to be approximately 16 Å, preventing an efficient quenching of the flavine 

emission. 56 An additional lifetime of ~ 10 ps (not resolved in our measurements) was 

identified in femtosecond fluorescence lifetime studies and attributed to a “stack” 

conformation with the intramolecular distance between the hetero-aromatic groups of ~ 4 

Å. 54 Inspection of Figure 2.3 and Table 2.2 shows that the increase in the organic content 

(i.e., methanol/ethanol) leads to the increase in the fraction of the open conformation that 
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is characterized by ~ 4.6 ns lifetime; this is in good agreement with previous experiments 

where the increase in the dielectric constant of medium altered the population of “stack” 

and “open” conformations of FAD. 54,56 

Candidate structures were proposed for IMS bands A-L (Figure 2.4). For the [M+H]+ and 

[M+Na]+ molecular ions observed of the deprotonated (M=C27H31N9O15P2 ) and protonated 

(M=C27H33N9O15P2 ) forms of FAD, the lowest energy structure for each molecular ion 

form corresponds to most abundant IMS band; that is, the lowest energy structures are the 

most thermodynamically stable and appear with the larger relative abundance in the IMS 

spectra. Both deprotonated forms of FAD show more IMS bands than the protonated forms. 

Inspection of the [M+H]+ molecular ion form of the deprotonated (C27H31N9O15P2) FAD 

form shows that main differences between the candidate structures proposed for the five 

IMS bands (A-E) is on the distance and orientation between the adenine and isoalloxazine 

rings, where the de-protonation of the phosphate group near the adenine generates a 

resonance structure that stabilizes the π- π system between both rings. The [M+Na]+ 

molecular ions of the deprotonated (C27H31N9O15P2) FAD (F-H) form also showed the 

same orientation between both aromatic systems with an additional stabilization of the 

sodium ion present in the adduct. Moreover, the inspection of the [M+H]+ molecular ion 

form of the protonated (C27H33N9O15P2) FAD form shows that main differences between 

the candidate structures proposed for the (I-J) IMS bands is on the interaction between the 

ring systems without the stabilization provided by the resonance structure of the phosphate 

groups. The [M+Na]+ molecular ions of the protonated (C27H33N9O15P2) FAD form (K-L) 

also encounter the destabilization of the sodium ion present in the adduct. Inspection of the 
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distances between the rings (4-6 Å) in the proposed candidate structures showed a good 

agreement with the solution experiments for the “stack” and “close” conformations, as well 

as previous reports. 54,56 A candidate structure for the “open” conformation will result in a 

CCS of 320 Å2 (see structure in the supplemental information) but no IMS band was 

experimentally observed. The later suggest that solvation effects may equilibrate the 

“open” conformation in solution, while in the gas-phase the ring interaction dominates and 

stabilizes in the “stack” and “close” conformations. Since the molar fraction of the “close” 

FAD conformation of ~ 270 ps lifetime is higher in the ethanol: water mixture compare to 

the methanol-ammonium acetate mixture or methanol-water mixture, we attribute the 

fraction of FAD with 270 ps lifetime to the larger CCSs conformations identified in IMS 

measurements (e.g., band H). Despite that different molecular ions are observed, inspection 

of the IMS spectra shows that mainly five IMS bands are detected (considering the 

expected CCS small shift between [M+H]+ and [M+Na]+ ions) but a direct correlation from 

the number of IMS bands to the number of fluorescence decay times is not possible. 

Moreover, the decay times can be related to the distances between the isoalloxazine and 

adenine ring. Inspection of the distances from the proposed candidate structures shows 

three main groups: 4.3 Å (conformer A), 4.8-5.6 Å (conformer B, C, D, F, G, H, I, J, K and 

L), and 5.9 Å (conformer E). That is, the IMS experiments suggest that at least three decay 

times should be expected; however, differences between the distances of the three group 

of conformers can be too small to be resolved in life time measurements. 54,56 

The “solvation” and organic context effect on the number of FAD conformations was 

studied in the TIMS cell by using dopant gas additives (Figure 2.5). That is, each molecular 
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ion conformation is isolated in the TIMS cell, and by introducing the dopant gas, we studied 

the influence of the collisional partner in the FAD conformational space in a single 

molecular ion – dopant molecule fashion. Inspection of Figure 5 shows that the interaction 

with the collision partner (electrostatic in nature) results in changes in the relative 

abundances of the “stack” and “close” FAD conformers in the absence and presence of the 

dopant gas additives. That is, experiments suggest that at the molecular level, the 

interaction with the organic molecules can induce the transition from “stack” to “close” 

conformations. Previous IMS studies have shown that different degrees of solvation are 

attainable as a function of the IMS experimental conditions and can be used to: i) increase 

IMS separation (e.g., drift tube, high field and differential IMS analyzers 57-60), and ii) for 

structural assignments (e.g., determination of the solution state structures 28,29,36). Polar 

molecules (e.g., methanol, ethanol and acetonitrile) interact with ions very strongly via ion-

dipole interactions (since they have a permanent dipole moment). Although changes in the 

IMS profile occurred with the dopant introduction (i.e., structure L and K relative 

abundances), the transition into the “open” conformation was not observed. The later 

suggest that a higher abundance of dopant molecules with respect to the bath gas is 

necessary to reach the FAD “open” state. Comparison between the solution and gas-phase 

results suggest that the FAD solution state distribution can be preserved in the gas-phase 

and gas-phase conformation-friendly conditions can be induced using dopant gases. 

Moreover, in both solution and gas-phase, FAD three-dimensional structures are 

determined by the interplay between intramolecular interactions (e.g., π- π system formed 

by the adenine and isoalloxazine rings) and interactions with the surrounding solvent/gas 

molecules. The workflow described here (TIMS-MS combined with MD using gas 
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dopants) provides a powerful tool for the investigation of the gas phase “solvation” state 

of molecular ions.  

CONCLUSIONS 

In the current study, TIMS-MS combined fluorescence time decay and theoretical 

calculations was used to study FAD conformational space. Gas-phase experimental results 

showed that [M+H]+ and [M+Na]+ molecular ions are observed during ESI for the 

deprotonated (C27H31N9O15P2) and protonated (C27H33N9O15P2) FAD forms. For the first 

time, CCSs of 12 FAD conformations found by IMS experiments are reported and 

compared with theoretical calculations of candidate structures that correspond to the 

“stack” and “close” conformations identified in solution by fluorescence lifetime 

measurements. The abundance of each conformer was consistent with their relative 

stability; that is, the larger intensity observed for a conformer corresponds to the most 

stable conformer. The examination of the conformational space generated by the candidate 

structures shows that the main motif that defines FAD conformational space is the 

interaction between the isoalloxazine and adenine groups. It was shown that the use of 

dopants in the TIMS cell permits the investigation of single molecular ion- dopant molecule 

interaction and can be used to study the gas-phase “solvation” state of biological molecules.  
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Figure 2.1 Structure and typical MS spectra for the deprotonated (M=C27H31N9O15P2) and 

protonated (M=C27H33N9O15P2) FAD forms. Monoisotopic peaks of the [M+H]+ and 

[M+Na]+ molecular ions used in the mobility analysis are highlighted with a dashed 

rectangle. 
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Figure 2.2 Typical TIMS spectra as a function of the organic content for the [M+H]+ and 

[M+Na]+ molecular ions of the deprotonated (M=C27H31N9O15P2) and protonated 

(M=C27H33N9O15P2) FAD forms. 
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Figure 2.3 Frequency domain phase delay (solid squares) and modulation ratio (open 

circles) of 10 μM FAD in mixture of a) ethanol: water, b) methanol: water and c) 10 μM 

FAD in mixture of ammonium acetate buffer: water as a function of the volume ratio of 

0:100 (black line), 30:70 (red line), (50:50) green line and 70:30 (blue line).  Solid lines 

represent the best to the data using a triple exponential decay. 
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Figure 2.4 Candidate structures for the IMS bands observed for the [M+H]+ and [M+Na]+ 

molecular ions of the deprotonated (M=C27H31N9O15P2) and protonated 

(M=C27H33N9O15P2) FAD forms. 
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Figure 2.5 Typical IMS spectra of the [M+Na]+ ions of the protonated FAD form 

(M=C27H33N9O15P2) as a function of the bath gas conditions. Notice the variation of the 

relative abundances of IMS bands as a function of the bath gas composition using 

ethanol, methanol and acetonitrile as additives in the TIMS mobility cell. 
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Table 2.1 Experimental and theoretical ion-neutral collision cross section for the [M+H]+ 

and [M+Na]+ molecular ions of the deprotonated (M=C27H31N9O15P2) and protonated 

(M=C27H33N9O15P2) FAD forms. Energies were calculated at level B3LYP/6-31G(d,P) and 

shown relative to the most stable isomer. The distances (d) between the isoalloxazine and 

adenine ring are shown for each conformation. 

    MOBCAL He MOBCAL N2 

Conformation  

Experimental 

CCS [Å2] 

d 

[Å] 

PA EHS TM 

TM 

(B3LYP/6-

31G(d,p) 

with 

charges) 

Relative 

Energy 

[kcal/mol] 

 

[M+H]+ 

C27H31N9O15P2 

m/z = 784.14 

Δ 1.6 ppm 

A 235 4.318 159.79 174.53 159.15 238.31 27.23 

B 240 4.831 160.73 175.18 160.42 240.11 0 

C 242 5.122 162.16 176.32 161.97 244.85 24.86 

D 246 5.244 162.64 177.77 161.99 247.92 20.92 

E 253 5.915 164.88 179.08 162.46 252.79 41.61 

[M+Na]+ 

C27H31N9O15P2 

m/z = 806.13 

Δ 0.2 ppm 

F 233 5.204 159.58 173.20 159.05 234.28 16.93 

G 240 5.570 161.11 176.99 162.10 241.53 0 

H 259 5.993 163.96 179.18 164.61 258.08 4.329 

         

[M+H]+ 

C27H33N9O15P2 

m/z = 786.15 

Δ 1.7 ppm 

I 240 4.969 165.36 181.55 162.81 241.26 0 

J 246 5.102 169.50 186.66 167.02 247.51 31.43 

[M+Na]+ 

C27H33N9O15P2 

m/z = 808.14 

Δ 0.9 ppm 

K 240 5.027 164.64 180.06 168.46 242.83 0 

L 248 5.382 166.50 180.80 169.11 248.64 15.07 

 

  



30 

 

Table 2.2 Fluorescence decay parameters recovered for FAD in ethanol-water, methanol-

water, and methanol-ammonium acetate mixtures. 

 

 α0 τ0 (ns) α1 τ1 (ns) α2 τ2 (ns) χ2 

Water           0.28 0.27 0.50 2.43 0.23 4.62 1.02 

EtOH-Water (%)        

30-70 0.27 0.27 0.41 2.43 0.32 4.62 0.58 

50-50 0.21  0.31  0.49  0.33 

70-30 0.22  0.26  0.52  1.32 

MetOH-Water (%)             

30-70 0.19 0.36 0.71 2.45 0.09 4.25 1.33 

50-50 0.22  0.68  0.10  2.84 

70-30 0.20  0.66  0.14  1.18 

        
MetOH-Ammonium 

Acetate (%)             

30-70 0.17 0.29 0.73 2.75 0.10 5.06 0.33 

50-50 0.15  0.67  0.18  0.68 

70-30 0.13  0.56  0.31  0.67 

Parameters recovered using a triple exponential decay model. Decay lifetimes were set as 

linked variables. Errors of the recovered values not shown but did not exceed 17 % of 

their values.  
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CHAPTER 3.  

INSIGHTS FROM ION MOBILITY – MASS SPECTROMETRY, INFRARED 

SPECTROSCOPY, AND MOLECULAR DYNAMICS ON NICOTINAMIDE 

ADENINE DINUCLEOTIDE STRUCTURAL DYNAMICS: NAD+ VS NADH 

 

This chapter was published in Physical Chemistry Chemical Physics and adapted with 

permission from all authors. 
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ABSTRACT 

Nicotinamide adenine dinucleotide (NAD) is found in all living cells where the oxidized 

(NAD+) and reduced (NADH) forms play important roles in many enzymatic reactions. 

However, little is known about NAD+ and NADH conformational changes and kinetics as 

a function of the cell environment. In the present work, an analytical workflow is utilized 

to study NAD+ and NADH dynamics as a function of the organic content in solution using 

fluorescence lifetime spectroscopy and in the gas-phase using trapped ion mobility 

spectrometry coupled to mass spectrometry (TIMS-MS) and infrared multiple photon 

dissociation (IRMPD) spectroscopy. NAD solution time decay studies showed a two-

component distribution, assigned to changes from a “close” to “open” conformation with 

the increase of the organic content. NAD gas-phase studies using nESI-TIMS-MS 

displayed two ion mobility bands for NAD+ protonated and sodiated species, while four 

and two ion mobility bands were observed for NADH protonated and sodiated species, 

respectively. Changes in the mobility profiles were observed for NADH as a function of 

the starting solution condition and the time after desolvation, while NAD+ profiles showed 

no dependence. IRMPD spectroscopy of NAD+ and NADH protonated species in the 800-

1800 and 3200-3700 cm-1 spectral regions showed common and signature bands between 

the NAD forms. Candidate structures were proposed for NAD+ and NADH kinetically 

trapped intermediates of the protonated and sodiated species, based on their collision cross 

sections and IR profiles. Results showed that NAD species exist in an open, stack, and 

closed conformations and that the driving force for conformational dynamics is via 

hydrogen bonding of the N-H—O and O-H—O form with the ribose rings. 
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INTRODUCTION 

Nicotinamide adenine dinucleotide (NAD) is a ubiquitous molecule found in all living 

cells. The structure of NAD consists of two nucleotides, ribose rings with adenine and 

nicotinamide joined together by a diphosphate bond.1 The oxidized (NAD+) and reduced 

(NADH) forms of NAD have important roles in cellular metabolism, functioning both as 

hydride-accepting and hydride-donating coenzymes in over 300 enzymatically catalyzed 

oxidation-reduction reactions, that control transcription and gene expression, DNA repair, 

regulation of energy metabolism, cell death, and aging.2-13 Besides serving as a 

multipurpose coenzyme, NAD is also used as a substrate of NAD-dependent ligases, NAD-

dependent oxidoreductases, poly(ADP-ribose) polymerase (PARP) and the NAD-

dependent deacetylases of the Sir2p family.7, 10, 14-18 

Numerous human diseases are linked to fluctuations in the ratio between NAD+ and NADH 

forms.19 NAD+ is converted to NADH mostly in catabolic reactions including glycolysis 

and the tricarboxylic acid cycle.20 This delicate balance between the levels of NAD+ and 

NADH forms plays an important role in regulating the intracellular redox state and is often 

considered as a readout of the metabolic state as it fluctuates in response to a change in 

metabolism.21-25 The fluorescence emission of NADH has been used extensively for the 

study of the redox status of tissues when the cofactor is bound to enzymes,26-30 while the 

identification of free and bound NADH is challenging because the fluorescence decay 

times are on the sub-nanosecond timescale.31 Several studies have been focused on the 

theoretical structural interrogation of both NAD+ and NADH.  Ab initio calculations were 

used to evaluate the conformational preferences of the nicotinamide ring while NAD+ and 
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NADH were bound to dependent dehydrogenases.32 It was found that the redox potential 

of the cofactor is a function of the ribose orientation, were the glycosidic C-O bond of 

NAD+ is near the plane of the nicotinamide ring, while the glycosidic C-O bond of NADH 

is nearly perpendicular to the dihydronicotinamide ring. The parametrization of empirical 

force fields for the modelling of NAD was performed following the methodology used in 

the development of CHARMM22 all-hydrogens parameters for proteins, nucleic acids, and 

lipids.33 Molecular dynamic simulations of NAD+ in the presence of different solvents 

showed the presence of folded and extended conformations.34  

Recently, trapped ion mobility spectrometry (TIMS) was used successfully in combination 

with fluorescence time decay studies and molecular dynamics in order to characterize the 

conformational populations of flavin adenine dinucleotide in solution and in the gas-

phase.35 The combination of these techniques has proven to be a versatile and powerful 

analytical workflow in the study of intermediate and equilibrium structures of 

biomolecules.35-38 More recent development of analytical instrumentation integrating both 

ion mobility separation and optical spectroscopy, either in the infrared,39, 40 or UV−visible 

41, 42 regions, has been shown to be effective for providing structural information on mass-

selected ions. Infrared free electron lasers (IR FEL) and optical parametric 

oscillator/amplifier (OPO/A) benchtop lasers provide access to a wide frequency range, 

allowing to record vibrational spectra in the mid-infrared and in the X−H (X = C, N, O) 

stretching regions, respectively. This so-called action spectroscopy has been particularly 

successful for distinguishing isomers 43, 44 and unravelling the hydrogen bonding 

association to peptide structuration.45, 46 
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In the present work, NAD+ and NADH forms were studied as a function of the solution 

organic content using fluorescence lifetime spectroscopy, TIMS-MS with collision induced 

activation (CIA), IRMPD spectroscopy and molecular dynamics. Candidate structures 

were proposed for the kinetically trapped intermediates based on ion-neutral collision cross 

section (CCSN2), IRMPD spectroscopy, and molecular dynamics. In particular, this study 

focuses on describing the differences in the intramolecular interactions of NAD+ and 

NADH. 

MATERIALS AND METHODS 

Materials and reagents 

β-Nicotinamide adenine dinucleotide disodium salt hydrate (EC number 210-123-3) 

powder was purchased from Sigma-Aldrich (St. Louis, MO). All solvents and ammonium 

acetate salts were analytical grade or better and purchased from Fisher Scientific (Pittsburg, 

PA). A stock solution was prepared in 10 mM ammonium acetate (pH 7.0) and aliquots 

were diluted to a final concentration of 10 µM in 100:00 to 50:50 (v/v) water-

methanol/ethanol solutions in stepwise increments of 10% organic content. A Tuning Mix 

calibration standard (TuneMix, G24221A) was purchased from Agilent Technologies 

(Santa Clara, CA). Details on the Tuning Mix structures (e.g., m/z 322 K0 = 1.376 cm2 V−1 

s−1 and m/z 622 K0 = 1.013 cm2 V−1 s−1) can be found elsewhere.47, 48 

NanoESI-CIA-TIMS-MS Analysis 

Ion mobility experiments were performed on a custom built nanoESI-TIMS coupled to a 

maXis Impact Q-ToF mass spectrometer (Bruker Daltonics Inc., MA). A 10 µL aliquot of 

the sample solution was loaded in the pulled-tip capillary and sprayed at 600-1200 V. 
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Details regarding the TIMS operation and specifics compared to traditional IMS can be 

found elsewhere (the TIMS cell schematics can be found in Figure S1).48-50 Briefly, TIMS 

ion mobility separation is based on holding the ions stationary using an electric field against 

a moving gas. The separation in a TIMS device can be described in the center of mass 

frame using the same principles as in a conventional IMS drift tube.51 Since ion mobility 

separation is related to the number of ion-neutral collisions (or drift time in traditional drift 

tube cells), the ion mobility separation in a TIMS device depends on the bath gas drift 

velocity, ion confinement and ion elution parameters. The mobility, K, of an ion in a TIMS 

cell is described by: 

𝐾 =  
𝑣𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛− 𝑉𝑜𝑢𝑡)
 (1) 

where vg, E, Velution and Vout are the velocity of the gas, applied electric field, elution and 

last electrode voltages, respectively. The constant A can be determined using calibration 

standards of known mobilities. In TIMS operation, multiple isomers/conformers are 

trapped simultaneously at different E values resulting from a voltage gradient applied 

across the IMS tunnel region. After thermalization, isomers/conformers are eluted by 

decreasing the electric field in stepwise decrements (referred to as the “ramp”). Each 

isomer/conformer eluting from the TIMS cell can be described by a characteristic voltage 

(Velution). In a TIMS device, the total analysis time (tTotal) can be described as: 

𝑡𝑇 = 𝑡𝑡𝑟𝑎𝑝 + (
𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛

𝑉𝑟𝑎𝑚𝑝
) 𝑡𝑟𝑎𝑚𝑝 + 𝑡𝑜𝑓 = 𝑡𝑜 + (

𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛

𝑉𝑟𝑎𝑚𝑝
)𝑡𝑟𝑎𝑚𝑝 (2) 

where, ttrap is the thermalization/trapping time, tof is the time after the ion mobility 

separation, and Vramp and tramp are the voltage range and time required to vary the electric 
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field, respectively.37, 38 The elution voltage can be experimentally determined by varying 

the ramp time for a constant ramp voltage range. 

The TIMS funnel is controlled using in-house software, written in National Instruments 

Lab VIEW, and synchronized with the maXis Impact Q-ToF acquisition program.49, 50 

TIMS separation was performed using nitrogen as a bath gas at ca. 300 K, and the gas flow 

velocity was controlled by the pressure difference between entrance funnel P1 = 2.6 mbar, 

and the exit funnel P2 = 1.0 mbar. P1 and P2 values were held constant for all experiments. 

The same RF (880 kHz and 200 Vpp) was applied to all electrodes including the entrance 

funnel, the ion mobility separating section, and the exit funnel. The TIMS cell was operated 

using a fill/trap/ramp/wait sequence of 10/10/100-500/50 ms.49, 50  

Mobility values (K) were correlated with CCS (Ω) using the equation: 

𝛺 =
(18π)1/2

16

𝑧

(𝑘𝐵𝑇)1/2 (
1

𝑚𝐼
+

1

𝑚𝑏
)

1/2 1

𝐾

760

𝑃

𝑇

273.15

1

𝑁∗      (3) 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density of 

the bath gas and mI and mb refer to the masses of the ion and bath gas, respectively.51 All 

resolving power (R) values reported herein were determined from Gaussian peak fits of the 

features in the TIMS distributions (R = Ω/ΔΩ) using OriginPro (version 9.3.226). The 

FWHM of the mobility band was used to calculate the ΔΩ. 

Collision induced activation (CIA) experiments were performed to assess the effect of the 

activation energy on the conformational space of NAD. Soft activation energy conditions 

were implemented to study the memory effect from the starting solution (capillary (Vcap): 

50 V; deflector start (Vdef): 60 V; entrance funnel (Vfun): 0 V). For CIA experiments, the 

injection energy was incremented by 10 V steps until Vcap: 190 V, Vdef: 200 V and Vfun: 150 
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V. A total of 500 accumulations and 10 frames were acquired per ramp time (e.g., tramp = 

100-500 ms).  

Photo-physical characterization of NADH in solution 

All fluorescence measurements were conducted using a PC1-ChronosFD custom 

instrument (ISS, Champaign Illinois). NAD was used without further purification and 

diluted from powder kept at -20 °C into 10 mM ammonium acetate buffer at pH 8 at 100 

μM concentration, and ethanol or methanol was added to the desired v/v ratio. All 

measurements were conducted at a room temperature of ~18 °C. Steady-state emission 

spectra were obtained by exciting the sample with 350 ± 4 nm light along the 2 mm path 

of a 2×10 mm quartz cuvette, and the emission was collected through a vertical polarizer 

with an emission bandwidth of ± 4 nm. Fluorescence and anisotropy decay experiments 

were performed in the frequency domain mode. NADH solutions were excited using a 370 

nm intensity modulated laser diode and fluorescent emission was collected using a 400 nm 

long pass filter (Andover, Salem, NH).  A solution of POPOP (1,4-bis(5-phenyloxazol-2-

yl)benzene) in ethanol was used as a lifetime reference. Polarizers were set at the magic 

angle configuration for the lifetime measurements.52 Modulation-phase data were analyzed 

using GlobalsWE software (Laboratory of Fluorescence Dynamics, Irvine, CA) 53 and the 

2 parameter was used as criterion for goodness of fit.54  

ESI-FT-ICR MS-IRMPD Analysis 

Infrared action spectroscopy experiments were carried out employing a 7 T Fourier 

transform ion cyclotron resonance (FT-ICR) mass spectrometer (Apex Qe, Bruker) coupled 

with tunable infrared lasers at the CLIO facility (Orsay, France). A detailed layout of this 

experimental apparatus is described elsewhere.55 Mass-selected ions were accumulated in 
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an argon pressurized linear hexapole ion trap. Ions were then pulse extracted and stored in 

the ICR cell where they were irradiated with infrared light. Infrared action spectroscopy 

was carried out by monitoring the intensities of precursor (Iprecursor) and resulting fragment 

ions (Ifragment) as a function of the laser wavenumber. The infrared action spectra were 

obtained by plotting the photo-dissociation efficiencies, defined as ln (1 + 

ΣIfragment/Iprecursor), as a function of the laser wavenumber. Infrared action spectra of NAD+ 

and NADH were recorded in the 3200−3700 cm−1 spectral range using an optical 

parametric oscillator/amplifier (OPO/A from Laser Vision, Bellevue, WA) benchtop 

laser.56 The irradiation time was 1 s. In order to enhance the infrared induced fragmentation 

efficiency, an auxiliary broadband CO2 laser (BFI Optilas, Evry, France) was used.57 The 

CO2 pulse length was 500 μs for both NAD+ and NADH. Infrared spectroscopy in the 

800−1800 cm−1 spectral range was performed using the free electron laser (FEL, from 

CLIO, Orsay, France).58 The irradiation time was set to 700 ms for both NAD+ and NADH 

to record vibrational spectra in the mid-infrared.  

Theoretical Calculations 

A pool of candidate structures was proposed for the IMS bands observed in the nESI-

TIMS-MS experiments. Briefly, consecutive molecular dynamics simulations were used to 

reproduce the experimental conditions (e.g. “TIMS” thermostat) in order to generate the 

initial pool of structures. This approach is equivalent to that previously described by 

Fernández-Lima and co-workers.59 Molecular dynamics simulations of annealing and 

geometry optimization cycles were carried out in a NVT thermostat using AMBER03 60 

force field in YASARA software.61 Final structures were optimized at the DFT/B3LYP/6-

31G* level using Jaguar (Schrödinger, LLC, Cambridge, MA).62 Vibrational frequencies 
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were calculated and scaled by 0.961, according to the Computational Chemistry 

Comparison and Benchmark DataBase NIST.63 Zero-point energy corrections were applied 

to the relative stability analysis between the structures. Theoretical ion-neutral collision 

cross sections were calculated using MOBCAL version for helium,64, 65 nitrogen,66 and the 

software package iMos.67, 68 Partial atomic charges were calculated using the Merz-Singh-

Kollman scheme constrained to the molecular dipole moment.69, 70  

RESULTS AND DISCUSSION 

nESI-TIMS-MS analysis of NAD showed protonated and sodiated molecular ions (Figure 

3.1). The most abundant [M + H]+ and [M + Na]+ ions correspond to the reduced form, 

NADH (M = C21H29N7O14P2), while similar molecular ions were observed for the oxidized 

form, NAD+ (M = C21H27N7O14P2). 

nESI-TIMS-MS as a function of the organic content in solution (e.g. 0-50 mM NH4Ac, 0-

50% MeOH or EtOH) and activation energy (CIA-TIMS-MS) showed multiple IMS bands 

for the protonated and sodiated species of NAD+ and NADH (labels A-J in Figure 3.2). 

Inspection of the ion mobility profile for [MNADH + H]+ showed four mobility bands (labels 

A-D) for all starting solutions. Moreover, the relative abundance of B was greater when the 

solution contains NH4Ac or EtOH, while C was more abundant when MeOH was added to 

the starting solution. For [MNADH + Na]+ (labels E and F), the intensity of E was slightly 

greater than F in the NH4Ac solution, considerably greater when MeOH was added, and 

smaller than F when EtOH was added. These changes in the relative abundances of the 

mobility bands suggests that, at the molecular level in solution, the interaction with the 

organic molecules drives the equilibria between the multiple conformations. Major 
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differences in the relative abundances of the ion mobility profiles for [MNAD+ + H]+ (labels 

G and H), and [MNAD+ + Na]+ (labels I and J) were not observed as a function of the starting 

solution conditions (Figure 3.2) and the trapping time (e.g.; 100-500 ms, data not shown). 

This suggests that the species formed during the nanoESI process are stable in the TIMS-

MS experiments time scale, and that the solvation effects of the organic molecules are not 

enough to favor conformational interconversion of the oxidized NAD. Moreover, no 

changes in the CCSN2 values were observed as a function of the organic content in the 

starting solutions, which suggests that the observed ion mobility bands correspond to 

different conformations of NAD and not to organic solvent clustering with the molecular 

ions in the gas-phase. 

Further sampling of the conformational space of NAD in the gas phase was performed via 

collision induced activation (CIA) prior to the ion mobility separation (Figure 3.2, red 

panel). While the same number of mobility bands were observed as a function of the CIA 

condition, some changes in the relative abundances of the mobility bands were observed; 

we interpret this variation as the interconversion between the most energetically favorable 

conformational populations. Moreover, population interconversion between NADH 

mobility bands was observed as a function of the trapping time (e.g., 100-500 ms) and the 

organic content (e.g., MeOH and EtOH) for the protonated and sodiated species (Figure 

3.3). Inspection of the mobility profiles showed a decrease (red pattern area under the 

curve) of B for [MNADH + H]+, favoring the increase (blue pattern area under the curve) in 

the abundance of C. Similarly, inspection of the profiles for [MNADH + Na]+ showed that the 

relative abundance of E increased while the abundance of F mobility band decreased. These 

results suggested that kinetically trapped intermediates can interconvert into other local 
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free energy minima after thermalization in the TIMS cell.71 The effect of the nature of 

organic content on the conformational space was observed by changes in the starting 

relative abundance of the mobility bands, for example, B and C mobility bands for [MNADH 

+ H]+ and E and F mobility bands for [MNADH + Na]+ showed different relative abundances 

with the starting solution organic content (MeOH vs EtOH). 

The heterogeneity of NAD in solution was characterized by measuring the NAD lifetime 

as a function of the organic content (e.g., 10-70% methanol and ethanol) using frequency 

domain florescence spectroscopy (Figure 3.4). The data were analyzed using a double 

exponential decay model and the results are summarized in Table S3.1. Two different 

components that can be attributed to different conformational groups were resolved: a fast 

decaying component of 0.3 ns, attributed to intermediates with a “closed” conformation; 

and a slow component of 0.94 ns, attributed to intermediates belonging to both a “stack” 

and “open” conformations.31 Inspection of figure 3.4 shows that a change in the solution 

dielectric constant with the organic content, alters the fraction of the “stack” and “open” 

conformation. The analysis in methanol and ethanol showed the fast and slow decay times 

with a faster change in the fast/slow ratio for ethanol when compared to methanol. These 

observations are in good agreement with the trends observed during the TIMS-MS analysis 

(i.e., kinetic trapped intermediates, Figure 3.3) and support the hypothesis that “memory 

effects” of the starting solution can be retained in the mobility profiles using “soft” ion 

transmission settings in the TIMS-MS experiments. 

Complementary studies of NAD+ and NADH using IRMPD spectroscopy permitted the 

interrogation of the chemical local environment of the gas-phase ions (Figure 3.5). 

Comparison of IR spectra of NAD+ and NADH protonated species showed the presence of 
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common as well as signature bands. A tentative assignment of the observed infrared bands 

and the atoms involved in the intramolecular interactions of the protonated species of 

NAD+ and NADH are proposed in Tables S3.3 and S3.4. In the high energy range (e.g., 

3300-3700 cm-1), the bands observed at ∼3660 cm−1 were present for both NADH and 

NAD+ forms and were assigned to free phosphate OH stretches (Figure 3.5).72 The bands 

observed near ∼3560 cm−1 are typical signatures of free NH2 asymmetric stretches.73 Two 

other common bands between NAD+ and NADH were observed at ∼3430 and ∼3540 cm−1, 

and could be tentatively assigned to N-H—O and O-H—O stretch interactions, 

respectively.74, 75 

A clear evidence for changes in the hydrogen bonding network between the NAD+ and 

NADH could be observed in the OPO spectral range. While no band was observed in the 

case of NADH, a band at ~3480 cm-1 was observed for NAD+. The ~3480 cm-1 band could 

be assigned to red-shifted alcohol OH stretches. This assignment was further supported by 

the differences in the infrared spectra of NAD+ and NADH in the 800-1800 cm-1 spectral 

range. In fact, the P=O stretch band was red-shifted (~1290 cm-1) for NAD+, compared to 

NADH for where the corresponding band (1335 cm-1) is typical of free P=O stretch and is 

indicative of the presence of an O-H—O stretch interaction (Figure 3.5). In addition, 

IRMPD spectra of NADH exhibited P-OH bend and stretch bands in the 900-1000 cm-1 

spectral range, while these bands were observed with very low intensity in the case of 

NAD+. Moreover, IRMPD spectra of NAD+ showed two signature bands at 1110 and 1255 

cm-1, not present in the case of NADH, corresponding to PO2- symmetric and asymmetric 

stretches, respectively. That is, the P-OH stretch and P-OH bend bands in the IRMPD 

spectra of NADH suggest a non-zwitterionic form, while characteristic bands of PO2- 
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asymmetric and symmetric stretches in the case of NAD+ suggests that at least one of the 

phosphate groups is not protonated. In addition, comparison between IRMPD and FTIR 

spectroscopy of NAD+ in solution at low pH showed similar profiles in the 900-1300 cm-1 

spectral range.76 In fact, Nadolny and co-workers confirmed that the protonation of NAD+ 

is located on the adenine residue (labeled N9 in Figure S3.9) and that no additional proton 

is bound to phosphate group with decreasing pH. 

Further interpretation of the TIMS-MS and IRMPD spectra was assisted by the theoretical 

CCSN2 and IR profiles from candidate structures obtained from molecular dynamics 

(Figure 3.5 and Tables S3.3 and S3.4). The selection of candidate structures was performed 

by comparing the three lowest energy candidates per IMS band observed (CCSN2 within 

5% error) and their calculated IR spectra. Candidate structures of the sodiated forms of 

NAD can be found in Figure S3.12 and Table S3.2; moreover, since IRMPD spectra were 

not collected for the sodiated form, data is limited to the CCS and relative energy. The 

candidate structures of the protonated NAD species can be grouped in three main 

conformational families: “close” (structures A and G in Figures S3.2 and S3.6), “stack” 

(peaks B and C in Figures S3.3 and S3.4), and “open” (peaks D and H in Figures S3.5 and 

S3.7). Note that the atoms in the structures of NAD+ and NADH are numbered to facilitate 

the visualization of the intramolecular interactions (Figure S3.9). Since the IRMPD spectra 

contain information from all conformers, candidate structure assignment assumed that for 

each mobility band, the proposed candidate structure per IMS band can match most but not 

necessary all the IRMPD bands. Further inspection of the candidate structures revealed 

more details on the intramolecular interactions that stabilize the kinetically trapped 

intermediates species of NADH and NAD+. For example, the theoretical calculations 
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indicated intramolecular interactions involving an N2-H-O11 and O5-H-O11 for the two 

common bands observed at ∼3430 and ∼3540 cm−1 (Figure S3.10 and Tables S3.3-S3.6). 

Furthermore, the characteristic band of NAD+ observed near ∼3480 cm−1 is defined by an 

O3-H-O6 intramolecular interaction. Theoretical calculations of the candidate structures 

(Figures S3.2-S3.7) also showed common as well as signature intramolecular interactions 

in both NADH and NAD+ (Figure S3.10 and Tables S3.5 and S3.6). For example, the O6-

H-O10, O6-H-O11, O6-H-N9, N8-H-O12 and O4-H-O6 intramolecular interactions appeared 

specific to the NADH, while the N2-H-O5, O5-H-N7, O6-H-N7, N2-H-O6 and O3-H-O6 

intramolecular interactions are involved in the NAD+ form. That is, specific intramolecular 

interactions define the three main conformational families (Figure S3.11). For example, the 

O6-H-O10 and N2-H-O6 intramolecular interactions appeared specific to the “closed” 

conformation for NADH and NAD+, respectively. The O5-H-N7 intramolecular interactions 

is characteristic to NAD+ “open” conformations and the N8-H-O12 intramolecular 

interactions is characteristic to NADH “stack” conformation. Common intramolecular 

interactions to the three conformational families are O1-H-N8, O5-H-O11 O5-H-N9, and N2-

H-O11 interactions. While this information mostly reflects the findings made in the gas-

phase (e.g., TIMS-MS and IRMPD experiments), it can be extrapolated to better 

understand the possible mechanism that drive the conformational changes in solution, 

especially when memory effects of the solution conditions and similar trends with 

fluorescence lifetime spectroscopy and IRMPD were observed.  
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CONCLUSIONS 

This work highlights an analytical workflow for complementary solution and gas-phase 

studies of biomolecules that utilizes fluorescence lifetime spectroscopy, trapped ion 

mobility spectrometry coupled to mass spectrometry (TIMS-MS), infrared multiple photon 

dissociation spectroscopy (IRMPD) and molecular dynamics. The high resolving power of 

TIMS-MS permitted the separation of multiple IMS band and retain the solvent “memory” 

as shown with the variation of the starting organic content. IRMPD and theoretical 

calculations permitted the assignment of intramolecular interactions and highlighted the 

main differences between the oxidized and reduced NAD forms. IRMPD spectra of NADH 

suggest a non-zwitterionic form, while characteristic bands of PO2- symmetric and 

asymmetric stretches in the case of NAD+ suggests that at least one the phosphate groups 

is not protonated. For the first time, the intramolecular interactions that stabilize the 

conformational space of NAD+ and NADH as well as the specific intramolecular 

interactions involved in the three main conformational families are described. The results 

obtained from the study of NAD in both solution and in the gas-phase, and the 

conformational exploration using molecular dynamics show that NAD species can exist in 

an “open”, “stack”, and “closed” conformations, and that the driving force for the structural 

stability of each group and their conformational dynamics is via hydrogen bonding. This 

study also highlights the need to further integrate TIMS-MS and IRMPD measurements in 

a single experiment to better differentiate the motifs that stabilize different mobility bands 

as suggested by others.39, 40 
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Figure 3.1 Structures of the oxidized (M = C21H27N7O14P2) and reduced (M = 

C21H29N7O14P2) NAD forms. Typical MS spectra of protonated and sodiated molecular 

ions of both NAD species are shown. 
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Figure 3.2 Ion mobility profiles of NAD (ttrap=500ms) as a function of the organic content 

in the starting solution (blue panel) and the collision induced activation energy (red 

panel). Labels A-D are assigned to the IMS bands of the NADH [M+H]+ species; E-F to 

NADH [M+Na]+ species; G-H to NAD+ [M+H]+ species; and I-J to NAD+ [M+Na]+ 

species. 
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Figure 3.3 Typical IMS and interconversion plots as a function of the trapping time and 

starting solvent conditions (70:30 H2O:MeOH and H2O:EtOH) for NADH [M+H]+ and 

[M+Na]+ species. 

 

  



55 

 

Figure 3.4 Emission spectra of NAD as a function of the organic content. In the inset, 

changes in the pre-exponential factor (α) is shown as a function organic content for the 

fast (0) and slow (1) components. 
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Figure 3.5 Experimental and theoretical IRMPD spectra for the protonated NADH (blue) 

and NAD+ (red) forms. The three lowest energy candidate structures per mobility band 

and corresponding IR spectra are shown. The boxes represent simplified calculated IR 

spectra to facilitate the visualization (complete calculated IR spectra are provided in 

Figure S8). 
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CHAPTER 4.  

CHARACTERIZATION OF INTRAMOLECULAR INTERACTIONS OF 

CYTOCHROME C USING HYDROGEN DEUTERIUM EXCHANGE - TRAPPED 

ION MOBILITY – MASS SPECTROMETRY AND MOLECULAR DYNAMICS 

 

This chapter was published in Analytical Chemistry and adapted with permission from all 

authors. 

J. C. Molano-Arevalo, K. Jeanne Dit Fouque, K. Pham, J. Miksovska, M. E. Ridgeway, 

M. A. Park, F. Fernandez-Lima. Anal. Chem., 2017, 89 (17), 8757–8765 
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ABSTRACT 

Globular proteins, such as cytochrome c (cyt c), display an organized native conformation, 

maintained by a hydrogen bond interaction network. In the present work, the structural 

interrogation of kinetically trapped intermediates of cyt c was performed by correlating the 

ion-neutral collision cross section (CCS) and charge state with the starting solution 

conditions and time after desolvation using collision induced activation (CIA), time 

resolved hydrogen/deuterium back exchange (HDX) and trapped ion mobility 

spectrometry - mass spectrometry (TIMS-MS). The high ion mobility resolving power of 

the TIMS analyzer allowed the identification of new ion mobility bands, yielding a total of 

63 mobility bands over the +6 to +21 charge states and 20 mobility bands over the -5 to -

10 charge states. Mobility selected HDX rates showed that for the same charge state, 

conformers with larger CCS present faster HDX rates in both positive and negative ion 

mode, suggesting that the accessible surface area defines the exchange rate regardless of 

the charge state. Complementary molecular dynamic simulations permitted the generation 

of candidate structures and a mechanistic model of the folding transitions from native (N) 

to molten globule (MG) to kinetic intermediates (U) pathways. Our results suggest that cyt 

c major structural unfolding is associated with the distancing of the N- and C- terminal 

helices and subsequent solvent exposure of the hydrophobic, heme-containing cavity. 

 



64 

 

INTRODUCTION 

Cytochrome c (cyt c) has been widely investigated using mass spectrometry based 

techniques, and it has become an intriguing system for ion mobility spectrometry (IMS) 

and hydrogen/deuterium exchange (HDX) experiments. The appeal for IMS-based studies 

of cyt c comes from its involvement in key cellular processes,1-4 and the interactions of the 

protein with multiple substrates and/or intracellular proteins, which in turn are associated 

with subtle changes in conformation. These conformational changes include fluctuations 

in the heme iron coordination, and tertiary and secondary structure alterations, suggesting 

that cyt c can populate different conformational species under native conditions.5-9 With 

the development of soft ionization sources (e.g., electrospray ionization, ESI), the 

evaporative cooling of the solvent can lead to a freezing of multiple stable conformations, 

otherwise known as the “memory effect”.10,11 Although this effect is solvent and 

biomolecule dependent, previous works have reported the benefits of studying the 

conformational space as a function of the charge heterogeneity, the solvent conditions, as 

well as the transitions as a function of the bath gas collision partner and ion effective 

temperature.12-16 For example, the unfolding of cyt c, induced with denaturing conditions, 

was examined by Konermann et al.15 using a combination of ESI and solution-based 

techniques revealing that a decrease in pH induced a cooperative unfolding transition 

accompanied by a disruption of the secondary and tertiary structure. Mass spectra analysis, 

obtained as a function of the starting solution conditions, showed that the transition from 

low to high charge states was due to the breakdown of the tertiary structure. Early studies 

on cyt c using a drift tube, conducted by Jarrold and co-workers,17 showed that, for the 
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lower charge states (centered at +7, +8), the collision cross sections (CCS) of cyt c were 

consistent with those expected from native structure found in solution (PDB: 1HRC, X-

ray18). The intermediate charge states displayed metastable structures that unfolded upon 

heating, while the higher charge states (centered at +15, +16) exhibited CCS related to 

extended conformations.  

Moreover, complementary structural studies were performed on cyt c in the gas-phase by 

McLafferty and co-workers19 using a Fourier-transform ion-cyclotron-resonance mass 

spectrometer (FT-ICR-MS) and HDX experiments. They showed that HDX exchange of 

cyt c in the gas-phase occurs only in three different reactive forms, while in solution the 

reaction involves nearly all labile hydrogen atoms because of a fast dynamic equilibrium 

between conformers. The mass spectra of the deuterated +12 to +14 charges states 

exhibited peak splitting, indicating that two different ionic forms of identical molecular 

mass had different numbers of reactive hydrogens. These values were also observed for 

other charge states with 74 reactive hydrogens for the +12 to +16, 113 for the +8 to +14, 

and 53 for the +6 and +7 charge states. Later on, McLafferty and coworkers20 have reported 

at least six different states for gaseous cyt c ions based on their accessible sites for 

exchange. They also found that manipulation of these ions by infrared radiation, high 

velocity collisions, or proton stripping, can alter the levels of exchange in discrete steps. 

Using drift tube IMS experiments, Clemmer and coworkers21 showed that it is possible to 

study specific conformers of cyt c by varying the voltage used to inject the ions into the 

drift tube. The number of exchangeable hydrogen atoms was independent of the charge 

state for diffuse conformers obtained at high injection voltages (63 of a possible 198) while 
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the number of exchangeable hydrogens for the compact conformers, observed for the +8 

to +10 charge states, was 46. These results suggested that compact structures protect some 

hydrogens in the gas-phase and that many sites that exchange in solution are restricted for 

exchange in the gas-phase, even for open conformers. Douglas and co-workers22 

investigated the conformational transitions of cyt c induced by denaturing conditions using 

HDX followed by ESI-MS and showed that the exchange rate is equal for intermediates 

found in both contributions of a bimodal charge state distribution. These results suggested 

that the intermediates are very flexible and may involve two or more rapidly 

interconverting conformers. They also found that at high concentrations of methanol (i.e., 

90% MeOH), cyt c denatures into non-native helices, which protect against HDX in a 

similar manner to the native conformation. A later study from Douglas and coworkers23 

displayed the expanded denatured states and expanded helical denatured states of cyt c 

generated from solutions with 50% and 90% MeOH, respectively. They showed no 

differences in CCS and HDX for ions of a given charge state of cyt c for either the expanded 

or helical expanded denatured states. Clemmer’s group later studies24 on the HDX 

temperature dependence of compact (+5) and elongated (+9) cyt c showed that the 

exchange rates of HDX in the gas-phase decrease an order of magnitude when the exchange 

occurs at high temperature (i.e., >400 K). The exchange levels of compact (+5) and 

elongated (+9) conformers at 300 K were 53 and 63, respectively. At temperature values 

greater than 335 K, the levels increase to ~200 for the +5 charge state and ~190 for the +9 

charge state while the CCS remained invariant at all temperatures. Beauchamp and 

coworkers25 suggested that the proximity between the charge site and exchange site are 

important factors in the exchange profiles of both conformers. Previous studies have also 
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reported the independence between the charge states with the levels of HDX exchange in 

the gas-phase.19-21,26 As noted by Clemmer and coworkers21, HDX numbers appear to 

depend strongly on the instrumentation and operating conditions used. Moreover, when 

CCS and HDX values are complemented with molecular dynamics (MD), candidate 

structures can be proposed for every kinetically trapped intermediate species observed.27-

30 

With the recent introduction of trapped ion mobility spectrometry coupled to mass 

spectrometry (TIMS-MS),31-35 and more recently complemented with hydrogen/deuterium 

back exchange (HDX-TIMS-MS),36 the mobility measurement and number of HDX back 

exchanges can be performed simultaneously as a function of time after desolvation. TIMS 

high resolving power (Rp up to 400)37-39 combined with the possibility to measure kinetic 

intermediates and to perform collision induced activation (CIA) prior to the TIMS analysis, 

provides a powerful tool for the analysis of biomolecules. 40-43 

In the present work, we explore for the first time the potential of CIA-HDX-TIMS-MS to 

study the kinetically trapped intermediates of cyt c by populating the conformational free 

energy landscape as a function of the starting solution conditions (e.g., organic content and 

pH) and as a function of the CIA prior to the HDX-TIMS-MS measurements. MD 

simulations were used to propose candidate structures for each kinetically trapped 

intermediate observed and a mechanistic model of the folding transitions from native to 

molten globule to kinetic intermediates is proposed. 
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EXPERIMENTAL SECTION 

Materials and reagents 

Horse heart cyt c (C2506) was purchased from Sigma-Aldrich (St. Louis, MO). All 

solvents used in these studies were analytical grade or better and purchased from Fisher 

Scientific (Pittsburg, PA). Cyt c stock was prepared in 10 mM ammonium acetate (NH4Ac) 

buffer for the positive ion mode experiments, dialyzed against the same buffer and diluted 

to a final concentration of 0.5, 1, 5, and 10 µM in: A) 10 mM NH4Ac (pH 7.1), B) 95:5 and 

50:50 (v/v) H2O/MeOH (pH 4.6), and C) 94:5:1, 89:10:1, 79:20:1, 69:30:1, 59:40:1 and 

49:50:1 H2O/MeOH/CH3COOH (pH 3.3). In the case of the negative ion mode analysis, a 

stock solution of 100 µM was used and then diluted to 40:60 (v/v) H2O/MeOH, and 

40:50:10 H2O/TFE/Et3N. For the HDX experiments operating in the positive ion mode, cyt 

c was prepared in D2O (Sigma-Aldrich, 151882) at 1 µM (pH 7.02)  incubated for 3 h and 

48 h at 37 °C and 0.1% CH3COOH was added to solutions prior to the HDX-TIMS-MS 

analysis (pH 6.88). For HDX experiments operating in the negative ion mode, cyt c was 

incubated in D2O at 50 µM. Nano-ESI emitters were pulled from quartz capillaries (O.D.: 

1.0 mm and I.D.: 0.70 mm) using Sutter Instruments Co. P2000 laser puller. Low-

concentration Tuning Mix calibration standard (TuneMix, G24221A) was purchased from 

Agilent Technologies (Santa Clara, CA). 

CIA-HDX-TIMS-MS 

Details regarding the TIMS operation compared to traditional IMS can be found 

elsewhere.32,33,41,44,45 Briefly, TIMS mobility separation is based on holding the ions 
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stationary using an electric field against a moving buffer gas.46 During HDX-TIMS-MS 

experiments, the rate of HDX back exchange is measured as a function of the trapping 

time.36 That is, in HDX-TIMS-MS deuterated, molecular ions are introduced into the TIMS 

cell and they can undergo back exchange reaction with residual molecules of the bath gas. 

The rate of HDX can be tuned by changing the velocity of the gas and the trapping time 

while simultaneously measuring the elution voltage directly related to the CCS as shown 

below.  

The mobility, K, of an ion in a TIMS cell is described by: 

𝐾 =  
𝑣𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛− 𝑉𝑜𝑢𝑡)
                     (1) 

where vg, E, Velution and Vout are the gas velocity, applied electric field, elution voltage and 

base voltage, respectively. The constant A was determined using a Tuning Mix calibration 

standards (m/z 322 Ko= 1.376 cm2 V-1 s-1, m/z 622 Ko= 1.013 cm2 V-1 s-1, and m/z 922 Ko= 

0.835 cm2 V-1 s-1).33,47   

The same RF (880 kHz and 280 Vpp) was applied to all electrodes including the entrance 

funnel, the ion mobility separating section, and the exit funnel (Figure S4.1). A custom-

made nano-electrospray ionization source was used for all the analyses. TIMS separation 

was performed using nitrogen as a bath gas at 300 K, and the gas flow velocity was held 

constant in all the experiments (P1 = 2.6 and P2 = 1.0 mbar). P1 and P2 values were held 

constant for all experiments. A fill/trap/ramp/wait sequence of 1-10/1-10/5-500/50 ms was 

used and an average mobility resolution of 180-250 was observed. A total of 500 

accumulations and 10 frames were acquired per TIMS experiment. 
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Mobility values (K) were correlated with CCS (Ω, Å²) using the following equation: 

𝛺 =
(18π)1/2

16

𝑧

(𝑘𝐵𝑇)1/2 
(

1

𝑚𝐼
+

1

𝑚𝑏
)

1/2 1

𝐾

760

𝑃

𝑇

273.15

1

𝑁∗
         (2) 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density and 

mI and mb refer to the masses of the ion and bath gas, respectively.46  

The number of HDX back-exchanges is obtained by the mass shift relative to the non-

deuterated protein (Figure S4.2). Collision induced activation were performed prior to the 

TIMS-MS by varying the electric field between the capillary outlet (Vcap: 50-190 V), 

deflector plate (Vdef: 60-200 V) and funnel entrance (Vfun: 0-150 V) in 10V steps.  

Theoretical method 

A candidate structure generation algorithm was used to sample cyt c conformational 

space.48 The 1HRC protein data bank entry for cyt c was utilized as the starting 

structure.18,49 Briefly, molecular dynamics simulations were used to reproduce the 

experimental conditions and to generate the identity vectors that define cyt c 

conformational space. This approach is similar to that previously described by Fernández-

Lima et al.13 for peptides, with the main characteristic that the initial search targets the 

generation of the identity vectors, followed by charge assignment and energy minimization. 

Once the candidate structures were identified for each IMS band, charge assignment was 

performed by scoring the accessible surface area based on the score of the amino acid 

residues.50,51 For example, solvent accessibility and the pKa of the acidic and basic residues 

were primarily used to assign the protonation and de-protonation sites. It is known that 
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charge localization can influence electrostatic interactions and therefore the 

conformational dynamics of molecular ions.52,53 To account for the charge state influence 

on the CCS, energy optimization steps were performed following the charge assignments. 

All simulations were performed in a NVT thermostat using AMBER03 force field in 

YASARA software. The molecular dynamic simulations yielded identity vectors that cover 

the +6 to +13 distribution and the theoretical CCSN2 for each structure were calculated 

using the TM algorithm implemented in the IMoS software.54-56  

RESULTS AND DISCUSSION 

The mass spectrometry analysis of cyt c in positive and negative ion mode displayed a 

charge state distribution dependence with the solvent conditions in agreement with 

previous studies.15,22 Under native conditions (e.g. 0% MeOH, 10 mM NH4Ac), a narrow 

distribution of charge states centered at +7 was observed (Figure 4.1, left panel on the top). 

An increase in the concentration of MeOH to 5% showed a conformational change in the 

protein, represented by a bimodal distribution with two envelopes centered at +9 and +17. 

Further increases in the concentration of MeOH decreased the relative intensity of the 

envelope for the lower native-like charge states (e.g. +6 to +9) and a single distribution 

was observed at 40% MeOH centered at +17. For the negative ion mode, the -5 and -6 

charge states were observed for a solution with 40% MeOH (Figure 4.1, left panel on the 

bottom). A change in the starting solvent condition using 50% TFE and 10% Et3N showed 

a conformational change in the cyt c represented by a different charge state distribution 

centered at -8. To confirm the conformational diversity of cyt c under different solution 

conditions, ultraviolet-visible (UV-VIS) spectroscopy was used to trace the Soret band 
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intensity to monitor the accessibility of solvent to the heme group as the band shifts from 

400 to 395 nm after acidification of the solution (Figure S4.3). As previously described by 

Konermann et al.,15 in aqueous solutions of low ionic strength, cyt c is in the native state 

and the heme iron is coordinated by the strong-field ligands His18 and Met80 residues, 

which produces a low spin complex with a Soret absorption maximum between 400 and 

410 nm.18,57-61 Further acidification of the solution or an increase in the MeOH 

concentration induces a cooperative unfolding transition to a molten-globule state,60,62,63 

and the displacement of both strong-field ligands by weak-field ligands from the solvent 

(e.g., H2O) produces a high-spin complex with a Soret absorption between 390 and 395 

nm.59,60,64  

IMS profiles for the observed charge states on each condition were normalized to the 

intensity of each charge state in the mass spectrum (Figure 4.1, right panel). The overall 

CCS profiles (Figure 4.1, black lines) obtained by summation of the ion mobility resolved 

data (Figure 4.1, color lines), exhibited a distribution of conformations from native (Figure 

4.1, red background) to molten globular (Figure 4.1, blue background), and finally to the 

denatured states trapped as kinetic intermediates (Figure 4.1, yellow background). Ion 

mobility experiments were performed as a function of the starting solution conditions and 

the collision induced activation (CIA) energy (Figure 4.2) in the positive ion mode. Soft 

activation energy conditions were used to preserve the conformation from the solution 

(e.g., Vcap: 50 V; Vdef: 60 V; Vfun: 0 V). In addition, TIMS analyzers permit the study of the 

temporal evolution of the IMS distribution as a function of the time after the molecular 

ions are formed during the nanoESI process (e.g., trapping time of 100-500 ms after 
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desolvation). Inspection of the IMS bands as a function of the trapping time did not show 

variation in terms of the relative abundance. However, previous reports have shown 

variation of the IMS profiles of cyt c at shorter times after desolvation.29 This result 

suggests that the observed IMS bands in TIMS correspond to stable “desolvated”, 

kinetically trapped intermediates. As displayed in the mass spectrometry analysis, the IMS 

profiles for the +8 to +11 charge states are obtained when the starting solution contains at 

least 5% MeOH, suggesting that a solution only with 10 mM NH4Ac cannot induce the 

necessary conformational changes that allows basic sites to be protonated during the 

nanoESI process. The overall IMS profiles for all the solution conditions are shown next 

to the contour plots, where IMS bands are labeled for the kinetically trapped intermediates 

(Figure 4.2, left panel). Most IMS profiles are uniform as a function of the starting solution 

conditions. Interestingly, the contour plot for the +9 charge state is broad and displays 

heterogeneity in the relative intensity of B and C, whereas an increase is observed after the 

addition of 20% MeOH to the solution (Figure 4.2, left panel). We interpret this result as 

evidence of kinetic intermediates involved in the transition from native-like to molten 

globular conformation. In a similar way, the IMS profiles for the +10, label B, and +11, 

labels B and C, charge states are more intense when the solution contains 30% and 20% 

MeOH respectively. 

Another way to probe the conformational space of cyt c in the gas phase is to activate the 

ions prior to IMS analysis (Figure 4.2, right panel). Note that the label in the CIA plots 

only shows the deflector voltage (Vdef) as the variable, but the voltage of the both capillary 

(Vcap) and entrance funnel (Vfun) regions were increased accordingly using 10 V increments 
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per experiment. The solution used for these experiments was 10 µM of cyt c in 10 mM 

NH4Ac, 5% MeOH, and 1% CH3COOH. Examination of the contour plots exhibited little 

variation in the IMS profiles for the +6, +10, and +11 charge states as a function of the 

activation energy (Figure 4.2, right panel). It is possible that the energy used to activate the 

ions is not enough to disrupt the intramolecular interactions from the hydrogen bond 

network that holds together the compact native-like conformations observed in the +6 

charge 

state. The conformations for the +10 and +11 charge states are already open, and the 

additional energy does little to populate more extended structures. However, it is 

interesting to note the changes in the intensity of the IMS bands (labels D and E) for the 

+10 charge state relative to the to the solution obtained profile, suggesting that, even though 

all the conformers are observed, the open conformations are more stable and abundant 

when the activation takes place. Inspection of the contour plot for the +7 charge state 

showed a broad band, which combines the compact conformers A and B (Figure 4.2, right 

panel). A stepwise transition between conformations C through F end in the trapping of 

two new open conformers (labels G and H) when the CIA energy is high (i.e., Vcap: 130 V; 

Vdef: 140 V; Vfun: 80 V). The IMS profile for the +8 charge state showed the trapped 

intermediates observed in solution (labels A and B) and two generated as the CIA energy 

increases and the trapped intermediates are allowed to climb the energy funnel barriers and 

populate different local minima (i.e., labels C and D at Vcap: 80 V; Vdef: 90 V; Vfun: 30 V; 

and label E at Vcap: 140 V; Vdef: 150 V; Vfun: 90 V). The IMS profile for the +9 charge state 

also displays a broad transition between conformers as the solution conditions changes 
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(Figure 4.2, right panel). However, when the ions are activated, it is possible to better 

distinguish the A, B, and C IMS bands. These results for the +7, +8, and +9 charge states 

show that the transition between compact and open conformers can be induced via CIA. 

That is, when the internal energy of the protein increases and overcomes the 

conformational energy barrier, other local minima are accessible. The CCS and K0 values 

are summarized in Table S1. 

The high IMS resolving power of the TIMS analyzer allowed to observe a larger number 

of IMS bands that have been overlooked in previous works for charge states higher than 

+11 (Figure 4.3 and Table S2). Moreover, inspection of the +12 to +21 charge states 

exhibited a reduction in the number of IMS bands and narrower distributions when 

compared to the +8 to +11 charge states. No major differences are found in the IMS profiles 

for the +12 to +21 charge states as a function of the solution conditions, the activation 

energy, or the trapping time. Nevertheless, when compared to previous IMS experiments a 

larger number of IMS bands are now separated using TIMS for the +12 to +21 charge 

states. Complementary TIMS experiments with varying cyt c concentration (e.g., 0.5, 1, 5, 

and 10 µM) rule out the possibility of IMS bands corresponding to the formation of 

multimeric assemblies. The TIMS data are consistent with previous CCS reports on cyt c 

using other IMS variants (Figure S4.4). 

This discussion can be followed by the inspection of the cyt c back-exchange HDX 

dynamics in the TIMS analyzer (Figure 4.4). Two HDX incubation time were considered 

3 and 48 h in D2O followed by 50 ms TIMS measurement intervals (Figure S4.5). IMS 

resolved HDX data were acquired for all the IMS bands of the +6 to +13 charge states. In 
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solution, at physiological conditions (e.g., 37 °C, pH 7.0), most molecules of cyt c are 

probably populating the “native” state conformations (lower minima of the free energy 

landscape). Local unfolding events in an excess of D2O allow the exchange reaction 

between amide hydrogens and deuterons by any of the three well-known mechanisms (i.e., 

base catalysis, acid catalysis by N-protonation, and acid catalysis by O-protonation).65-68 

During the nanoESI process, the cyt c molecules are protonated in positive ion mode as a 

function of the degree of exposure of basic residues. If a low amount of acid is added to 

the solution, the conformation of some of the protein molecules is disturbed from the native 

state, allowing the fast exchange of usually slow-exchanging hydrogens. Our results 

showed independence between the initial number of deuterons and the charge state for all 

the incubation conditions, and the number of initial deuterons was never close to the 

maximum number of possible exchanges (i.e., 196). For example, HDX-TIMS analysis 

without trapping (ttrap = 0 ms) and with back-exchange trapping (ttrap = 100-500 ms) 

showed that the number of deuterons is independent from the charge state for the two 

incubation times considered (Figure 4.4). The initial number of deuterons at 48 h is 

considerably higher than at 3 h, as many of the non-exposed hydrogen atoms involved in 

the hydrogen bond network that preserves the protein structure may have exchanged during 

incubation, most likely due to conformational rearrangements and small movements that 

expose these otherwise protected atoms. To generate ions of higher charge states, a small 

amount of acid (i.e., 0.1% CH3COOH) was added to the incubated solutions (pH 6.88). It 

is possible that the addition of a small amount of acid might be enough to quench, at least 

in some degree, the exchange reaction between the exposed slow-exchanging hydrogens 

and the deuterons from the solvent, or, as the quenching is not complete, some exchange 
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still occurs when the protein unfolds due the denaturing effect of the acid, which leads to a 

slight overestimation of the number of initial deuterons for the higher charge states. 

However, the range of HDX-TIMS back-exchange after 100 ms is narrower at 48 h 

compared to 3 h; this result suggests that some hydrogen atoms can slowly exchange in 

solution but they are not readily accessible for back-exchange in the gas-phase. Clustering 

of the number of conformations based on the number of deuterons at ttrap =100 ms revealed 

four major conformational groups (Figure 4.4), which can be associated with different 

levels of protection (Figure S4.6). It is important to note that small shortcomings of the 

current approach is that the residual water content cannot be controlled at the moment and 

measurement differences are observed from sample to sample. However, the experimental 

design allows a direct comparison of the exchange levels between charge states and 

mobility bands within the same sample. The HDX-TIMS back-exchange follows a general 

declining trend (Figure S4.5). For some cases (e.g., +13 charge state) a bimodal distribution 

is observed, where a fast back exchange occurs within the first 200 ms. Since changes are 

not observed in the CCS distribution over the trapping time, we interpret the bimodal 

distribution as a consequence of similar conformations with different charge configuration, 

and to a lesser extend to minor conformational rearrangements exposing more hydrogens 

that are not resolved in the CCS domain.  

Traditional HDX experiments use the relay-mechanism to explain the isotopic exchange in 

the gas-phase via charge-mediated exchanges in a timely-efficient manner 69-72 The HDX-

TIMS experiments share some analogy with thermal energy HDX ion-molecule reactions 

used to probe conformational differences by Smith and coworkers,73 but HDX-TIMS back-
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exchange ion-neutral reactions are performed at lower pressures (few mbar), larger free 

mean path, and low energy transfer per collision. The HDX-TIMS back-exchange relies on 

collisions of the kinetically trapped intermediates with residual water molecules, which can 

be experimentally tailored by the velocity of the gas or by the amount of residual water in 

the system. Closer inspection to the back-exchange rates for a given charge state, in both 

positive and negative ion mode, showed that as the CCS increases faster, HDX rates are 

observed (Figure 4.4 and Table S1 and S3). Moreover, similar rates are observed for 

conformers of the same conformational state (e.g., N or MG) regardless of the charge state 

or polarity (Figure S4.7). We interpret these results as a consequence of the accessible 

surface area per conformational state. That is, there are regions on the surface of the protein 

that allow for the back HDX to occur, probably mediated by a proton. For example, 

differences in back HDX rates with the CCS per charge state can be related to different 

charge configurations, which based on the position of the charge and neighboring amino 

acids will ultimately define the HDX rate. Notice that HDX-TIMS experiments are 

particularly suitable for the study of cyt c accessible surface area during its unfolding 

pathway. Exposed deuterons back-exchange faster while buried deuterons are protected, 

providing a better insight into the structural dynamics of cyt c unfolding. While this initial 

set of experiments only give a qualitative view of the hydrogen network, charge 

configuration, and the CCS of the cyt c kinetic intermediates, further experiments using 

top-down strategies on mobility selected HDX time points will permit further assessment 

of the intramolecular forces that stabilize the cyt c kinetic intermediates.  
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Candidate structures were proposed for all IMS bands (Figure 4.5). Closer inspection to 

the candidate structures permitted the generation of a mechanistic model of the main 

intramolecular interactions that define the folding pathways and their intermediates (Figure 

S4.8). For example, inspection of the candidate structures revealed that major structural 

differences are associated with the increase in distance between the N- and C- terminal 

helices and the solvent exposure of the heme cavity at higher charge states are consistent 

with previous results.74-76 That is, the +10 charge state structures are characterized by the 

destabilization of the secondary structure of the N- and C- terminal helices and cleavage of 

the Trp59 and of the Met80 residues and the heme propionate hydrogen bond. It has been 

reported that Trp59 and Met80 residues provide a unique hydrophobic environment to the 

heme crevice.77,78 Without these interactions, the crevice opens up, exposing Thr78 and 

Pro71, which are residues involved in the formation and stabilization of the heme crevice 

due a network of hydrogen bonds around the heme group.79 The interface formed by the 

interaction of the helices occurs 

immediately after the covalent binding of the heme group to the polypeptide via thioether 

bonds.80 Closer inspection of the candidate structures for the +6, +7, and +8 charge states 

revealed that the π-π interaction of Phe10 and Tyr97 aromatic groups is lost followed by 

the loss of the “peg-in-a-hole” Gly6 and Leu94 interaction, which is also consistent with 

previous observations.81 For example, the +8 charge state of cyt c showed that Gly6 and 

Leu94 residues are interacting while there is a distancing between Phe10 and Tyr97 

residues compared to the structures generated for the +6 and +7 charge states. Moreover, 

structures for the +8 charge state displayed an increasing separation between the N- and C- 
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terminal helices while conserving the interaction between Gly6 and Leu94 residues. The 

+9 charge state of cyt c showed that Gly6 residue is no longer interacting with Leu94 

residue, and the +9 conformations exhibited a widening gap between these two amino acids 

while conserving the general structure of the N- and C- terminal helices. It should be noted 

that when compared to the myoglobin folding/unfolding pathway,36 the covalent 

attachment of the heme in cyt c stabilizes the MG and U intermediate states (less structural 

flexibility) into more defined IMS bands. 

CONCLUSIONS 

The high mobility resolving power of the TIMS analyzer allowed the identification of new 

ion mobility bands for cyt c, yielding a total of 63 mobility bands over the +6 to +21 charge 

states and 20 mobility bands over the -5 to -10 charge states. Experimental results showed 

that only 5% methanol and 1% acetic acid can disrupt the intramolecular interactions (i.e., 

hydrogen bond network) that holds together the integrity of the native conformation. 

TIMS-MS experiments enabled us to establish a general trend where the trapped 

intermediates increase in CCS as a function of the charge state and the inspection of the 

candidate structures proposed for the lower charge states (i.e., +6 and +7, and -5 and -6) 

confirmed that the solution “native” states are retained in the gas-phase. For the first time 

using a TIMS analyzer, we describe how the collisional activation of the desolvated ions 

permitted the generation of other conformational states of cyt c that are not readily 

accessible by varying the starting solution. Our results suggest that major structural 

unfolding motifs were associated with the distance between the N- and C- terminal helices 

and the solvent exposure of the heme cavity.  
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The possibility of measuring CCS and HDX back-exchange rates simultaneously, 

permitted the identification of local fluctuations which might later be useful in the 

identification of features that define the structure of cyt c kinetically trapped intermediates. 

The hydrogens exposed in the surface of the protein, which can be partially involved (or 

not) in the hydrogen bond interaction network, are readily exchangeable. The effect of the 

rearrangement of the contact points between secondary structures, which disrupts the 

hydrogen bond interaction network but keep the overall integrity of the protein, allows the 

identification of the number of hydrogens completely buried that are not going to exchange 

because of their role preserving the native conformation of the protein. In the case of cyt c, 

changes in the HDX rates were observed as a function of the CCS for the same charge 

state, which can be related to different charge configurations. The HDX-TIMS-MS 

experiments provide a powerful analytical tool for the study of protein folding and 

intermediates. While major advances are highlighted in the present case, further 

improvements by performing top-down experiments in HDX-TIMS selected intermediates 

will provide a more detailed description on the charge configuration for more accurate 

candidate structure generation.  
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Figure 4.1 Left panel: typical mass spectra of cyt c as a function of the starting solvent 

conditions. Right panel: overall CCS profiles (black lines) obtained by summation of the 

intensity-normalized IMS resolved data (color lines). The results obtained in the positive 

and negative ion mode are represented on the top and bottom part, respectively. 
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Figure 4.2 Left panel: IMS spectra of the +6 to +11 charges states of cyt c as a function of 

the organic content (e.g., % methanol). Right panel: IMS spectra of the +6 to +11 charge 

states of cyt c as a function of the activation energy (e.g., deflector voltage). 
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Figure 4.3 Bottom: IMS profiles obtained with CIA (blue line), and without CIA (green 

line). Top: High resolution IMS profiles for the +12 to +21 charge states of cyt c. 
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Figure 4.4 HDX back exchange as a function of the incubation time (e.g., 3 and 48 h) and 

the time after desolvation (e.g., 0, 100, and 500 ms), in terms of charge state and CCS in 

the positive ion mode. Clustering of the number of kinetically trapped intermediates and 

the initial levels of exchange allows the identification of four groups with different levels 

of exchange protection (color rectangles and data points). 
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Figure 4.5 Candidate structures proposed for the kinetic intermediates IMS bands of cyt 

c. Conformations G and H for the +7 charge state (dark red background); and C, D, and E 

(dark green background), for the +8, and +9 charge states, were obtained after CIA. 
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CHAPTER 5.  

CHARACTERIZATION OF THE 31 KNOT PROTEIN YIBK USING ENZYMATIC 

DIGESTION. MOLECULAR DYNAMICS AND TRAPPED ION MOBILITY 

SPECTROMETRY – MASS SPECTROMETRY  
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ABSTRACT 

Knot proteins display a wide range of topologically interesting features; however, little is 

known about their folding pathways or the stability of the knot core. In the present work, 

the native state stability, intermediates and enzymatically digested knot-conserved 

fragments of YibK were investigated using trapped ion mobility – mass spectrometry 

(TIMS-MS) and molecular dynamics. Despite the high protein temperature stability under 

native conditions (20-95ºC), the conformational micro-heterogeneity and the existence of 

multiple unfolding intermediates were accessed using solvent denaturing agents (e.g., 

organic) and collisional activation. The high mobility resolving power allowed the 

identification of 51 mobility bands, from the native state to the unfolded state.  Collisional 

cross sections, m/z measurement and molecular dynamics allowed the identification of the 

fragment sequences (9 out of 32) that possess the 31 knot in the Yibk protein. The use of 

the gas-phase density of the 31 knot (CCS dependence on mass) to differentiate enzymatic 

fragments with a conserve knot from a collapse or unfolded fragments allows for correction 

of typically made mistakes during knot assignment by purely enzymatic approaches.  
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INTRODUCTION 

Proteins with topological knots in their structure represent a new challenge for structural 

biology because of their untraditional folding pathways.1,2 In fact, it remains a major puzzle 

why these intricate structures exist and how are they formed in nature.3,4 Since their 

discovery, it has been shown that thousands of proteins from multiple folds and classes 

contain topological knots.5,6 The native state of these proteins embeds an open knot that 

does not disentangle completely after being pulled from both ends.7 One of these knot 

topologies is a 31 knot, present in the YibK methyltransferase from Haemophilus influenza 

(Figure 5.1).  Crystallography studies revealed that YibK adopts a structure consistent with 

the SpoU-type MTase,8 while a deep trefoil knot is formed at the C-terminus by the 

threading of the last 40 residues though a knotting loop of 39 residues.9 It has been shown 

that YibK can be denatured reversibly in vitro using urea, demonstrating that chaperones 

are not essential for the folding of the 31 knot, while experiments using secondary and 

tertiary structural probes established that the protein unfolds by a mechanism involving at 

least one partially unfolded monomeric intermediate state.10-12 The effect of mutations in 

the knot core showed that the native structure remains undeveloped until very late in the 

folding reaction.13 It has also been suggested that a mechanism that involves an 

intermediate conformation with a slipknot is necessary for the folding of the 31 knot 

proteins in order to reduce the topological bottlenecks during the folding process,4 while 

the existence of knots in the denatured state of YibK might represent kinetically trapped 

states, which might be precursors to the folding pathway of the protein.14 Small-angle X-

ray scattering (SAXS) experiments showed that these knotted structures in the denatured 
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states are different from typical random coils, while following the same random coil-like 

behavior.15 Computational methods suggest that the trefoil knot disappears at the end of 

the unfolding process, while the unfolding proceeds though four putative intermediate 

states.16,17 Despite the progress made on the study of 31 knots, there is little experimental 

evidence on the folding intermediates and stability of 31 knots overall. In contrast to 

traditional structural biology tools, ion mobility spectrometry coupled to mass 

spectrometry (IMS-MS) has unique advantages for the study of intrinsically disordered 

proteins as well as systems with multiple intermediates. With the recent development of 

high resolution trapped IMS coupled to MS (TIMS-MS), 18-22 we have shown the potential 

to measure collisional cross sections (CCS) and assess the micro-heterogeneity of the 

conformation space of biomolecules as a function of the starting solvent conditions and 

time after desolvation. 23-28  

In the present work, the thermal stability and microheterogeneity of the conformational 

space of the 31 knot protein YibK was investigated using high resolution TIMS-MS as a 

function of the starting solvent conditions (i.e., organic content and temperature) and 

collisional activation. The knot core was uniquely identified by enzymatic digestion using 

carboxypeptidase Y (CPDY), followed by TIMS-MS and molecular dynamics. In the 

following discussion, a special emphasis will be placed on the challenges for the 

identification of 31 knot using purely enzymatic digestion, in contrast to the assessment of 

the 31 knot structure using collisional cross sections, m/z measurement and molecular 

dynamics of the enzymatic fragments of YibK. 
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MATERIALS AND METHODS 

Materials and Reagents 

The YibK protein was expressed recombinantly in Escherichia coli BL21(DE3) and 

purified using a nickel column. A stock solution of YibK was prepared in a 10 mM 

ammonium acetate (NH4Ac) buffer, dialyzed against the same buffer and diluted to a final 

concentration of 1 µM in 10 mM of NH4Ac, 95:5, 90:10, 80:20, 70:30, 60:40, and 50:50 

(v/v) H2O/MeOH prior to TIMS-MS analysis. For the enzymatic digestion, solutions with 

1 µM YibK in 10 mM NH4Ac were incubated between 1 and 18 h with 10 µL of CPDY 

stock in 0.1 M sodium acetate buffer at 26.5ºC. The reaction was quenched with the 

addition of 20 µL of glacial acetic acid prior to TIMS-MS analysis. Carboxypeptidase Y 

(CPDY) was purchased from MilliporeSigma (St. Louis, MO) and diluted to a final 

concentration of 5 µg/mL. Nano-ESI emitters were pulled from quartz capillaries (O.D.: 

1.0 mm and I.D.: 0.70 mm) using a P2000 laser puller (Sutter Instruments Co.). Low-

concentration Tuning Mix calibration standard (TuneMix, G24221A) was purchased from 

Agilent Technologies (Santa Clara, CA) and used as received. All solvents used in these 

studies were analytical grade or better and purchased from Fisher Scientific (Pittsburg, 

PA). 

TIMS-MS Experiments 

We employed a custom nESI-TIMS unit coupled to an Impact Q-TOF mass spectrometer 

(Bruker, Billerica, MA).29,30 The TIMS unit is run by custom software in LabView 

(National Instruments) synchronized with the MS platform controls.30 Sample aliquots (10 
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L) were loaded in a pulled-tip capillary biased at ~700-1200 V relative to the MS inlet. 

Details regarding the TIMS operation compared to traditional IMS can be found 

elsewhere.19,20,26,31,32 Briefly, TIMS mobility separation is based on holding the ions 

stationary while using an electric field against a moving buffer gas.33 The mobility, K, of 

an ion in a TIMS cell is described by: 

𝐾 =  
𝑣𝑔

𝐸
 

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛− 𝑉𝑜𝑢𝑡)
                     (1) 

where vg, E, Velution and Vout are the gas velocity, applied electric field, elution voltage and 

base voltage, respectively. Mobility measurements were calibrated using a Tuning Mix 

calibration standard (m/z 322 Ko= 1.376 cm2 V-1 s-1, m/z 622 Ko= 1.013 cm2 V-1 s-1, and m/z 

922 Ko= 0.835 cm2 V-1 s-1) as previously described. 20,34 The same rf (880 kHz and 280 

Vpp) was applied to all electrodes including the entrance funnel, the ion mobility 

separating section, and the exit funnel (Figure S5.1). The TIMS separation was performed 

using nitrogen as a bath gas at 300 K, and the gas flow velocity was held constant in all the 

experiments (P1 = 2.6 and P2 = 1.0 mbar). A total of 500 accumulations and 10 frames 

were acquired per TIMS experiment. Collision induced activation experiments were 

performed prior to the TIMS-MS by varying the electric field between the capillary outlet 

(Vcap: 50-190 V), deflector plate (Vdef: 60-200 V) and funnel entrance (Vfun: 0-150 V) in 

10V steps.  

The measured mobility values (K) were converted into collision cross sections (CCS, Ω, 

Å²) using the Mason-Schamp equation: 
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𝛺 =
(18π)1/2

16

𝑧

(𝑘𝐵𝑇)1/2 (
1

𝑚𝐼
+

1

𝑚𝑏
)

1/2 1

𝐾0

760

𝑃

𝑇

273.15

1

𝑁∗         (2) 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density and 

mI and mb refer to the masses of the ion and bath gas, respectively.33  

Theoretical method 

Briefly, molecular dynamics simulations were used to reproduce the experimental 

conditions and to generate the identity vectors that define YibK conformational space. The 

approach is similar to that previously described by Fernández-Lima et al.35 for peptides, 

with the main characteristic that the initial search targets the generation of the identity 

vectors, followed energy minimization. The 1MXI protein data bank entry for YibK was 

utilized as the starting structure.9 All simulations were performed in a NVT thermostat 

using AMBER03 force field in YASARA software. The molecular dynamic simulations 

yielded identity vectors that cover the +7 to +12 (native) and +13 to +22 (denatured) 

mobility distributions, as well as models of the enzymatic fragments from CPDY digestion. 

The theoretical CCSN2 for each structure were calculated using the TM algorithm 

implemented in the iMOS software.36,37  

RESULTS AND DISCUSSION 

A charge state distribution dependence with the starting solution composition was observed 

for YibK in the positive ion mode (Figure 5.2). A bimodal distribution of charge states was 

observed under native-preserving solution conditions (e.g., 0% MeOH, 10 mM NH4Ac), 

with envelopes centered at +9 (native-like state) and +12 (denatured state) charge states. 
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An increase in the concentration of MeOH to 5% did not show a significant change in both 

distributions. Conversely, the center of the denatured species envelope shifts from the +12 

to the +17 charge state at 10% MeOH, indicating a second conformational change in the 

protein. Further increases in the concentration of MeOH decreased the relative intensity of 

the envelope for the lower native-like charge states (e.g., +7 to +9) and a single distribution 

centered at +17 was observed when the organic content was 30-50% MeOH.  

The IMS profiles show more clearly the major conformational transitions by looking at 

IMS bands and relative abundances as a function of the starting solvent conditions. For 

example, a transition from the native-like (Figure 5.2B, green background) to the first 

unfolded intermediates (Figure 5.2B, blue background), and finally to the second fully 

unfolded species (Figure 5.2B, red background) is observed. In addition, other less 

pronounced conformational transitions can be distinguished.  

In addition to the starting solvent dependence, the conformational space 

microheterogeneity of the 31 knot YibK protein was studied using collisional induced 

activation (Figures 5.3, S5.2 and S5.3). Examination of the mobility profiles showed that 

native-like ions with CCSN2 ~2200-2500 Å2 are generated during the nanoESI process for 

the +7 to +11 charge states, followed by a structural transition where the knot core is 

undone, and finally, a fully open conformation with CCSN2 ~5600 Å2 for the +22 charge 

state. The IMS profiles generated from starting solutions with 0 and 10% MeOH (e.g., 

Figure 5.2, blue, yellow, and green profiles) showed that the transition intermediates are 

generated for the +10 charge state and forward. However, the solvation effect of the higher 

amount of organic content when the starting solution contains 50% MeOH caused a rapid, 
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cooperative unfolding towards the unknotted conformation, observed as early as in the +8 

charge state. It is noteworthy that following the disrupture of the knot, the additional 

collisional energy can trigger a structural collapse (e.g., Figure 5.2b, green profiles and 

yellow profiles). We interpret this result as a consequence of the unfolding of the knot core, 

driven by the added internal energy, followed by the rearrangement of the protein backbone 

into a compact conformation with a local minima in the free energy landscape.  Under the 

CIA regime, the fully denatured conformation with little contribution from the unfolding 

intermediates is observed at the +15 charge state. 

The 31 knot YibK protein conformational space was studied as a function of the charge 

state varying the staring solution and CIA conditions (Figures S5.2 and S5.3). Examination 

of the TIMS countor plots (Figures S5.2 and S5.3) showed that an open intermediate is 

observed for most charge states (e.g., +8 to +17) when the amount of organic content 

increases in the starting solution. This result suggests that a cooperative unfolding is 

favored by the MeOH in solution (Figures S5.2). In contrast to the starting solution 

conditions experiments, the examination of the contour plots generated as a function of the 

CIA energy also showed that a structural collapse takes place with the collisional energy 

increased. The contour plots for the +7 to +10 charge states exhibited little variation when 

the activation energy is increased (Figures S5.3), as the energy used to activate the ions is 

not enough to disrupt the intramolecular interactions from the hydrogen bond network that 

holds together the more compact, native-like knotted conformations. The contour plots for 

the +18 to +22 showed that the kinetic intermediates are already unfolded, and the 

additional energy does leads to more extended conformations.  
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Theoretical CCSN2 were calculated for the native and the unfolded structures of YibK using 

IMoS (Figure 5.2A,  blue and red triangles). It is important to note that the TM algorithm 

implemented on IMoS can measure the CCSN2 for different charge states on the same 

structure, using the location and accessibility of basic sites where protonation is possible. 

The results of these calculations were in good agreement with the experimental results 

obtained with TIMS for the low (i.e., +7 to +9) and high (i.e., +19 to +22) charge states, 

while a pronounced deviation is evident after the +10 charge state. The residues that make 

up the knot core of YibK is shown in red in the candidate structures shown on Figure 5.2. 

Solutions in 0, 10, and 50% MeOH were incubated at 20, 35, 50, 65, 80, and 95ºC for 1 h 

to study the thermal stability of the knotted structure of YibK (Figure 5.3). As in Figure 

5.1, the overall CCSN2 profiles (Figure 5.3, black lines) were obtained by summation of the 

ion mobility resolved data (Figure 5.3, color lines), where a predominantly population of 

native-like conformations is observed at all temperature values when the starting solution 

does not contain any amount of organic content (Figure 5.3A). In contrast, when the 

solution had 10 and 50% MeOH, the population of ions observed was mostly unfolded, 

while a mixture of folded/knotted, native-like species (i.e., lower charge states) was also 

observed in lesser abundance (Figures 5.3B and 5.3C). Remarkably, the effect of 

temperature in the overall mobility distribution is not very noticeable, as only a slight 

narrowing of the profiles was observed when the temperature increased. These results 

suggest that the stability of the knot core is more susceptible to structural changes that 

result the solvation effects of the organic molecules than the effects of the additional energy 

provided by the increasing temperature in the starting solution. The narrowing of the 
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mobility bands can be explained as the overall flexibility of the trapped kinetic 

intermediates is decreased to achieve a stable conformation and counteract the increasing 

energy provided by the surrounding solvent molecules in solution. 

This discussion can be followed by the study of the stability and integrity of the knot core. 

The region is defined as the shortest sub-chain within the protein for which a knot is stable. 

So far, the residues in the core are predicted using algorithms described by the 

mathematical field of knot theory, which studies the entanglement in closed chains, but has 

been extended to characterize knotting in open polypeptide chains.38,39 It is worth 

mentioning that to date, no experimental methodologies have been reported to interrogate 

the integrity of the core without the stabilizing interactions provided by the residues that 

belong to the C- and N-termini, or to predict the size (i.e., CCS) of fragments that embed 

an intact core (i.e., not unfolded nor collapsed). By investigating the digestion products of 

YibK using IMS, we can accurately determine which fragments are retaining the native 

conformation and integrity of the knot core. The high resolution of TIMS-MS permits to 

concomitantly analyze all the digestion products of YibK in terms of their size. Then, it is 

possible to identify which fragments unfold, collapse, or retain the integrity of the core by 

comparing between the experimental and theoretical CCSN2 of the models generated by 

MD for each one of the observed fragments. The trefoil 31 knot core found in the 

recombinant YibK is 43 amino acids long, between residues 91 and 134 (Figure 5.4B, blue 

region). An enzymatic digestion of YibK using CPDY was performed to isolate the core 

from the knot tails (Figure 5.4 and Table S5.1). TIMS-MS analysis of the digestion showed 

that after 18 h of incubation, the reaction yielded 32 fragments with a maximum of 74 
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residues missing from the C-terminal, 53 from the N-terminal, and 128 from both termini 

concomitantly (Figure 5.4B). Our results exhibited that the fragments containing a knot in 

their structure had a larger size than globular proteins of similar mass. This was evident 

when comparing the reported CCS of globular proteins (Figure 5.4A, blue trendline) with 

the CCS of the digestion fragments of YibK. Moreover, the fragments that lost the integrity 

provided by the knot core, collapsed while a rearrangement of their overall structure adopts 

a conformation smaller than expected if the protein was globular (Figure 5.4A, black 

circles). Among the 32 fragments, 9 conserved the knot integrity in their structure (Figures 

5.4A, black stars and 5.4B). Only the native charge states of the full sequence (i.e., +7 to 

+9) displayed a unique conformation, while the rest of the fragments unfolded and 

collapsed evidenced by multiple conformations (Figure 5.4C). All the fragments containing 

the knot core in their structure display a trend (Figure 5.4A, grey line), while is considered 

that the structures with CCS above this threshold unfold due the loss of the knot core. 

CONCLUSIONS 

Our work provides, for the first time, insight into the unique structural dynamics and 

conformational landscape of the knotted protein YibK in the gas-phase. The high ion 

mobility resolving power of the TIMS analyzer allowed the identification of detailed 

mobility bands between the +7 to +22 charge states as a function of the starting solution 

conditions and the activation energy regime implemented. The experimental results 

showed that, under native preserving solution and energy conditions, a bimodal distribution 

of charge states for the native/knotted and denatured/unfolding is observed, while a 

cooperative unfolding is favored by the solvation effect of the organic content in solution. 
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Overlapping of the IMS bands for the observed charge states under different 

solution/energy conditions revealed that the knotting/folding pathway of YibK follows, at 

least, four conformational trends. The calculated CCSN2 of molecular models for the native 

and denatured forms of YibK is consistent with the experimentally measured CCSN2. The 

temperature dependence of the knotted conformation of YibK was also examined, 

revealing that the tertiary structure is stable between 20-95ºC. However, the solvation 

effect of as little as 10% MeOH is enough to cause a major a disruption of the 

intramolecular interactions that hold this intricate conformation together. Nevertheless, the 

increasing temperature did not change the relative population of the higher charge states 

when MeOH was present in the starting solution. Finally, the stability and integrity of the 

knot core was also studied. Removal of the knot tails by enzymatic digestion with CPDY 

allowed the analysis of charged fragments that contained the residues that makeup the knot 

core. The experimentally measured CCSN2 of each fragment was compared with 

theoretically calculated CCSN2 of models that matched the amino acid length of each 

fragment. A total of 32 fragments were observed, while the knot was found to be intact in 

9 of them. Our results suggest that the loss of the knot core can either cause a structural 

collapse or an unfolding of protein. The collapsed structures are found to be smaller than 

globular proteins of the similar mass. 

The analytical workflow implemented in this work describes powerful TIMS-based 

strategies for the analysis of the complex conformations found in many biomolecules. 

Empirical information was obtained by modifying the conditions of the starting solutions, 

the activation energy regime, the thermal stability of the protein conformation, and the 
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isolation of the structural regions of interest by enzymatic digestion. Combined with 

molecular dynamics and algorithms that calculate the CCSN2 of molecular models, is 

possible to obtain important information on the conformational landscapes of these rare 

topologies. 
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Figure 5.1 Typical mass spectra of YibK in the positive mode as a function of the starting 

solvent conditions. Overall CCSN2 profiles (black lines) obtained by summation of the 

intensity-normalized IMS resolved data (color lines). Green background, native-like 

states; blue background: transition states; red background: unfolded states. 
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Figure 5.2 IMS profiles of the +7 to +22 charge states of YibK as a function of the 

organic content (e.g., % MeOH) in the starting solution. Molecular representations and 

theoretical CCSN2 of the native/knotted (blue triangles) and denatured/unfolded (red 

triangles) of YibK are shown. IMS profiles of the +8 to +22 charge states of YibK as a 

function of the CIA regime (e.g., on/off) for a solution with 10% MeOH. 
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Figure 5.3 Overall CCSN2 profiles (black lines) obtained by summation of the intensity-

normalized IMS resolved data (color lines) obtained as a function of the starting solution 

temperature. 
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Figure 5.4 Digestion of YibK with CPDY. A: CCSN2 distribution of the observed 

fragments as a function of the mass of each fragment. Orange circles: undigested protein; 

Green triangles: fragments with residues removed exclusively from the C-terminal; Red 

triangles: fragments with residues removed exclusively from the N-terminal; Blue 

rhomboids: fragments with residues removed from the both termini; Black circles: 

fragments where a structural collapse is observed; Black stars and grey line: fragments 

where the knot is preserved after the digestion; Blue line: distribution of reported CCSN2 

for globular proteins. B: Sequence coverage by the digestion. C: IMS profiles of the 

fragments that preserve the knot. 
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CHAPTER 6.  

INSIGHTS FROM TRAPPED ION MOBILITY SPECTROMETRY – MASS 

SPECTROMETRY ON THE STRUCTURAL INTEGRITY OF THE KNOT PROTEIN 

UBIQUITIN C-TERMINAL HYDROLASE 
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ABSTRACT 

Knotted proteins are fascinating proteins whose backbones adopt knotted configurations 

with a wide range of topologically interesting features. In the present work, we are 

providing, for the first time, experimental insights on the structural integrity of the 

kinetically trapped intermediates of the knot protein ubiquitin C-terminal hydrolase 

(UCH), investigated using trapped ion mobility spectrometry – mass spectrometry (TIMS-

MS) as a function of the starting solvent conditions (i.e., organic content), collision induced 

activation (CIA), and starting solution temperature. The approach implemented in the 

present study allowed the simultaneous interrogation of the kinetically trapped 

intermediates that are part of the conformational space of the knot proteins. Our results 

suggest that the 52 knot present in UCH provides an increased stability that protects the 

tertiary structure of the protein against denaturing agents (i.e., high organic content, 

increased activation energy, and increased temperature). In addition, the stability of the 

knot core was evaluated by enzymatic digestion of the knot tails. Our results suggest that 

the loss of the knot core can cause a structural collapse, as the knotted structure occupies a 

larger space than a globular structure of similar mass. The potential of the present approach 

is demonstrated to provide an invaluable insight necessary for the structural integrity 

elucidation of the knot proteins in the gas-phase. 
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INTRODUCTION 

Understanding the mechanisms of protein folding is critical as they underpin virtually all 

cellular processes. Our knowledge of these structural details is inevitably entwined to the 

analytical methodologies available, and their ability in overcoming the complexity of these 

macromolecules. There is a growing interest in developing ‘hybrid’ strategies which 

combine the benefits of different technologies to characterize the most challenging protein 

structures.1 One way to study the mechanisms of protein folding is to analyze protein chains 

through constricted spaces. This approach offers potentially valuable model systems for 

conducting theoretical and experimental studies of protein dynamics.2 However, 

conventional techniques cannot detect folding intermediates efficiently, and usually only 

the most stable structure for a given set of conditions is observed.3,4  

Knotted proteins are fascinating proteins whose backbones adopt knotted configurations 

with a wide range of topologically interesting features, which are clarified by looking more 

carefully at issues concerning the termini of the proteins.5 Even though the structure of 

many proteins has been elucidated, many embedded knots were overlooked as visual 

inspection is hard, requiring a computational approach.6 However, various knot types have 

been identified in proteins as current research on these structures has shown that thousands 

of proteins from multiple folds and classes are known to contain knots: trefoil (knot 

designation 31), figure eight knot (41), 52 knot, and 61 knot.7-9 Moreover, it is still not clear 

why these intricate structures exist in nature or how their folding takes place.5,10. When 

analyzing knotted proteins, questions arise immediately about how such proteins can fold 

efficiently.11-14 
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One of the most complex knots found in proteins so far is the 52 knot in the human enzyme 

ubiquitin C-terminal hydrolase (UCH). The knot core of UCH embeds five distinct 

crossings of its polypeptide chain, and is one of the two knotted structures identified in 

humans so far, along with carbonic anhydrase.8,14 UCH is a 26 kDa cysteine protease that 

plays an important role in the ubiquitin-proteasome system.15,16 Until now, only one study 

on the folding of UCH has been carried out.14 This study examined the unfolding of UCH 

under equilibrium conditions using chemical denaturants and both fluorescence and far-

UV CD to probe secondary and tertiary structures. The results of the study showed that 

UCH unfolds reversibly in vitro without the help of molecular chaperones. They also 

showed that several phases of folding and unfolding reactions are observed, while the 

folding mechanism involves two hyperfluorescent intermediates. 

The nascent area of research on knotted proteins will require new experimental approaches 

in order to provide conclusive answers about the roles of knots in proteins. Ion mobility 

spectrometry coupled to mass spectrometry (IMS-MS) can provide sufficient information 

for the elucidation of folding dynamics of proteins with knotted backbones. It is worth 

mentioning that to date, no published method regarding the combined use of IMS-MS and 

computational dynamics approaches for the determination of the folding landscape of 

knotted proteins. Trapped IMS-MS(TIMS-MS),17-21 and more recently complemented with 

collision-induced activation (CIA),22 allows the simultaneous mobility measurement of 

multiple trapped kinetic intermediates.23-26 This study combines the structure elucidation 

capabilities of TIMS-MS to explain the conformational dynamics of the knot protein UCH, 

while providing unique insights into the folding pathways and stabilization mechanisms. 
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Our results showed the potential of the present approach to provide an invaluable insight 

necessary for the structural elucidation of these intricate knotted topologies in the gas-

phase. In the following discussion, a special emphasis will be placed on the structural 

integrity and stability of the knot present in UCH.  

MATERIALS AND METHODS 

Materials and Reagents 

All solvents used were analytical grade or better and purchased from Fisher Scientific 

(Pittsburg, PA). UCH was expressed recombinantly in Escherichia coli BL21(DE3) and 

purified using a nickel column. The protein was shown to be pure using both SDS/PAGE 

and MS analysis. A stock solution of UCH was prepared in a buffer of 10 mM ammonium 

acetate (NH4Ac), dialyzed against the same buffer and diluted to a final concentration of 

10 µM in10 mM of NH4Ac, 95:5, 90:10, 80:20, 70:30, 60:40, and 50:50 (v/v) H2O/MeOH. 

Nano-ESI emitters were pulled from quartz capillaries (O.D.: 1.0 mm and I.D.: 0.70 mm) 

using Sutter Instruments Co. P2000 laser puller. Low-concentration Tuning Mix 

calibration standard (TuneMix, G24221A) was purchased from Agilent Technologies 

(Santa Clara, CA). A stock solution of carboxypeptidase y (CPDY) was prepared with a 

final concentration of 1 mg/mL. Prior incubation, 2 µL of CPDY were added to a solution 

of 200 µL of UCH. Incubation was performed at 26.5ºC for 18 h. When the incubation was 

finished, the enzymatic reaction was quenched by the addition of 20 µL of glacial acetic 

acid. 
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CIA-TIMS-MS Experiments 

We employed a custom nESI-TIMS unit coupled to an Impact Q-TOF mass spectrometer 

(Bruker, Billerica, MA).27,28 The TIMS unit is run by custom software in LabView 

(National Instruments) synchronized with the MS platform controls.28 Sample aliquots (10 

L) were loaded in a pulled-tip capillary biased at ~1000 V to the MS inlet. Details 

regarding the TIMS operation compared to traditional IMS can be found 

elsewhere.18,19,24,29,30 Briefly, TIMS mobility separation is based on holding the ions 

stationary using an electric field against a moving buffer gas.31 The mobility, K, of an ion 

in a TIMS cell is described by: 

𝐾 =  
𝑣𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛− 𝑉𝑜𝑢𝑡)
                     (1) 

where vg, E, Velution and Vout are the gas velocity, applied electric field, elution voltage and 

base voltage, respectively. The constant A was determined using a Tuning Mix calibration 

standards (m/z 322 Ko= 1.376 cm2 V-1 s-1, m/z 622 Ko= 1.013 cm2 V-1 s-1, and m/z 922 Ko= 

0.835 cm2 V-1 s-1).19,32   

The same rf (880 kHz and 280 Vpp) was applied to all electrodes including the entrance 

funnel, the ion mobility separating section, and the exit funnel (Figure S6.1). TIMS 

separation was performed using nitrogen as a bath gas at 300 K, and the gas flow velocity 

was held constant in all the experiments (P1 = 2.6 and P2 = 1.0 mbar). A fill/trap/ramp/wait 

sequence of 1-10/1-10/5-500/50 ms was used and an average resolving power of 180-250 

was observed. A total of 500 accumulations and 10 frames were acquired per TIMS 

experiment. 
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The measured mobility values (K) were converted into collision cross sections (CCS, Ω, 

Å²) using the Mason-Schamp equation: 

𝛺 =
(18π)1/2

16

𝑧

(𝑘𝐵𝑇)1/2 (
1

𝑚𝐼
+

1

𝑚𝑏
)

1/2 1

𝐾0

760

𝑃

𝑇

273.15

1

𝑁∗         (2) 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density and 

mI and mb refer to the masses of the ion and bath gas, respectively.31  

Collision induced activation experiments were performed prior to the TIMS-MS by varying 

the electric field between the capillary outlet (Vcap: 50-190 V), deflector plate (Vdef: 60-200 

V) and funnel entrance (Vfun: 0-140 V) in 10V steps.  

Theoretical method 

The 2ETL protein data bank entry for UCH, was utilized as the starting structure for the 

molecular modelling.33 Briefly, the structures were cleaned and energy minimized using 

AMBER03 force field in YASARA software. The theoretical CCSN2 for each structure 

were calculated using the TM algorithm implemented in the iMOS software.34,35  

RESULTS AND DISCUSSION 

The mass spectrometry analysis of UCH in the positive mode under native-preserving 

solution conditions (i.e., 0% MeOH, 10 mM NH4Ac), showed a single charge state 

distribution centered at the +9 charge state (Figure 6.1A). When the amount of organic 

content in the starting solution increases, a second distribution centered at the +21 charge 

state is observed. Interestingly, the charge states of the native-like species (+8 to +10) are 
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present at higher concentrations of organic content (up to 30% MeOH). This result suggest 

that the native structure of UCH is resistant to alcohol-induced denaturing, and this stability 

might be related to the presence of the 52 knot embedded in the protein. When the starting 

solution contains up to 50% MeOH, a single charge state distribution is observed, between 

the +14 and +26 charge states. IMS experiments were performed on UCH as a function of 

the starting solution conditions (Figure 6.1B). The mobility profiles obtained for each 

charge state observed on each solvent condition were normalized to the respective intensity 

of each charge state in the mass spectrum. The overall CCSN2 profiles (black lines) were 

obtained by summation of the ion mobility resolved data (color lines). Similar to the mass 

spectrometry analysis on UCH, the IMS experiments showed that the native-like 

conformation is resistant to solvent-induced denaturing, as the contribution of the profiles 

for the lower charge states is prevalent in the total IMS profile, even when the amount of 

MeOH is as high as 30%. As expected, the relative intensity of the IMS profiles of the 

higher charge states (i.e., +11 to +26) increases with the addition of MeOH to the starting 

solution. As we have reported previously, the solvent-induced denaturing allows the 

exposure of basic sites for protonation during the nESI process. The coulombic repulsion 

driven by the additional positive charges causes an opening of the protein backbone, which 

further allows the study of the kinetically trapped intermediates of the unfolded states of 

the protein.  

Further sampling of the conformational populations to study the folding pathway of UCH 

in the gas-phase was performed using CIA energy prior to the TIMS-MS analysis (Figures 

6.2, S2, and S3). The profiles in figure 6.2 are as follows: the blue profiles were obtained 
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when the starting solution did not contain any amount of methanol and the CIA energy was 

off (e.g., Vcap = 50 V, Vdef = 60 V, and Vfun = 0 V). The red profiles were obtained when 

50% of the starting solution was methanol and the CIA was off. The yellow profiles were 

obtained when 10% of MeOH was added to the starting solution and the CIA energy was 

off. Finally, the green profiles were obtained when the starting solution had 10% MeOH 

and the CIA energy was on. In fact, the additional CIA energy allowed the examination of 

additional kinetically trapped intermediates that might be part of the conformational space 

of both proteins. The amount of the organic content in each starting solution was selected 

to compare between native preserving conditions (e.g., 0%) and denaturing conditions 

(e.g., 50%, figure 6.2A), and the synergistic effect of a low amount of organic content (e.g., 

10%) when CIA is on (Figure 6.2B). The CCSN2 of the native +8 charge state of UCH is 

~2720 Å2, and for the denatured +26 is ~8730 Å2. The theoretical CCSN2 measured using 

IMoS was 2642 Å2. All the profiles obtained under the different experimental conditions 

align very closely to these values. The profiles for the lower (+8 to +10) and higher (+23 

to +26) charge states of UCH showed a single IMS band (Figure 6.2A and 6.2B), 

suggesting that at on these charge states the protein is populating a single conformation, 

either native-like or fully denatured. Additionally, the profiles obtained when the solution 

contained low amounts of MeOH (i.e., 0 and 10%) displayed broad bands with identifiable 

peaks. In contrast, the profiles obtained when the amount of MeOH accounted for 50% of 

the starting solution are broad, and only display discrete bands after the charge state +17. 

These results suggest that the knot embedded in the backbone of UCH provide greater 

conformational stability that is only disrupted by the solvation effect of the high amount of 

organic content. Interestingly, the native-like conformations where observed in the 
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presence of 10% MeOH when the CIA is off, past the +22 charge state until the +26 charge 

state (Figure 6.2B). However, when the CIA regime is on, these IMS bands disappear. 

The thermal stability provided by the knot embedded in each protein was studied by 

performing IMS experiments on solutions with 0 and 10% MeOH and incubation of the 

solutions at 20, 35, 50, 65, 80, and 95ºC (Figure 6.3). Examination of the profiles obtained 

for UCH under these conditions also showed that the native-like conformations are 

thermally stable, as the contribution of the +8 to +10 charge states is quite significant under 

all the experimental conditions analyzed (Figure 6.3A and 6.3B), while a progressive 

denaturing was also observed with the increasing temperature and in the presence of 

organic content in the starting solution. That is, a synergistic effect between temperature 

and organic content on the protein unfolding was evident when the starting solution also 

contains a small amount of MeOH. When the solution does not contain MeOH, the 

transition and unfolded conformations are evident as soon as the temperature is increased 

to 35ºC. In a similar way, profiles for the same conformations are observed whe the 

solution contains 10% MeOH but the temperature is only 20ºC. When the solution without 

MeOH is heated, the intensity of the higher charge states increases, but is always lower 

than the intensity of the native-like charge states. In contrast, the synergistic effect of the 

MeOH on the thermal stability of the protein causes a rapid increase of the intensity of the 

denatured conformations Interestingly, the IMS bands for the native-like conformations are 

always present, even when the temperature is as high as 95ºC. This result suggests that the 

52 knot in UCH does indeed confer additional stability that protects the integrity of the 

protein under thermally-denaturing conditions. 
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This discussion can be followed by the study of the stability and integrity of the knot core 

by enzymatic digestion of the protein termini using carboxypeptidase Y (CPDY). This 

region is defined using algorithms described by the mathematical field of knot theory, 

which studies the entanglement in closed chains, but has been modified to identify the 

residues that make-up the core in open polypeptide chains.36,37 By studying the fragments 

of the enzymatic digestion reaction of UCH with CPDY using IMS-MS, we can accurately 

determine which fragments are retaining the native conformation and integrity of the knot 

core. The high resolution of TIMS-MS allows the analysis of all the digestion products in 

terms of their size (CCS). Then it is possible to identify which fragments unfold, collapse, 

or retain the integrity of the core by comparing between the experimental and theoretical 

CCSN2 of the models generated by MD for each one of the observed fragments. The 51 knot 

core found in the recombinant UCH is 220 amino acids long, between residues 22 and 241 

(Figure 6.4B, cyan and magenta region). A slipknot is found between residues 169 and 

249. This means that, when a residue is removed from this section, the 51 knot will untangle 

and fold onto a 31 knot. TIMS-MS analysis of the digestion showed that after 18 h of 

incubation, the reaction yielded 43 fragments with a maximum of 99 residues removed 

from the C-terminal, 28 from the N-terminal, and 179 from both termini concomitantly 

(Figures 6.4B and S4A). Our results showed that the fragments containing a knot in their 

structure had a larger size than globular proteins of similar mass (Figure 6.4A, blue 

trendline). Moreover, the fragments that lost the integrity provided by the knot core, 

collapsed while a rearrangement of their overall structure adopts a conformation smaller 

than expected if the protein was globular (Figure 6.4A, black circles). Among the 43 

fragments, 8 conserved the knot integrity in their structure, while the knot was shown to be 
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conserved for multiple charge states of three of the fragments (Figures 6.4A, black stars 

and 4C). Only the native charge states of the full sequence (i.e., +8 to +10) displayed a 

knotted conformation, while the rest of the fragments unfolded and/or collapsed, evidenced 

by multiple conformations (Figure 6.4C). All the fragments containing the knot core in 

their structure display a trend (Figure 6.4A, grey line), while is considered that the 

structures with CCS above this threshold unfold due the loss of the knot core. 

CONCLUSIONS 

This work provides insight into the unique structural integrity of the knot protein UCH in 

the gas-phase. The high ion mobility resolving power of the TIMS analyzer allowed the 

identification of detailed mobility bands between the +8 to +26 charge states as a function 

of the starting solution conditions and the activation energy. The experimental results 

showed that the 51 knot observed in the native-like conformations confers additional 

stability to the overall integrity of UCH, which prevents the structural denaturing of the 

protein when the starting solutions contain high amounts of organic content or are 

examined under high energy regime conditions. This additional stability is also manifest 

when the starting solutions are subjected to temperatures that deviate from what is expected 

physiologically. It is noteworthy that the native-like conformations are observed even when 

the temperature of a solution with MeOH is increased, while the synergistic effect of these 

two conditions should cause a rapid denaturing of the tertiary structure. The calculated 

CCSN2 of molecular models for the native and denatured forms of UCH (i.e., +8 and +26, 

respectively) is within 5% of the experimentally measured CCSN2.  
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Finally, the stability and integrity of the knot core was also studied. Removal of the knot 

tails by enzymatic digestion with CPDY allowed the analysis of charged fragments that 

contained the residues that makeup the knot core. The experimentally measured CCSN2 of 

each fragment was compared with theoretically calculated CCSN2 of models that matched 

the amino acid length of each fragment. A total of 43 fragments were observed, while the 

knot was found to be intact in 8 of them. Our results suggest that the loss of the knot core 

can either cause a structural collapse or an unfolding of protein. The collapsed structures 

are found to be smaller than globular proteins of the similar mass. 

The analytical workflow implemented in this work describes powerful TIMS-based 

strategies for the comprehensive analysis of the complex conformations found in many 

biomolecules. Empirical information was obtained by exploring the conformational 

landscape generated by the conditions of the starting solutions, the activation energy 

regime, the thermal stability of the protein conformation, and the isolation of the structural 

regions of interest by enzymatic digestion. Combined with molecular dynamics and 

computational methods that calculate the CCSN2 of molecular models, is possible to obtain 

information on the structural makeup of these interesting topologies. 

ASSOCIATED CONTENT 

Scheme of the TIMS cell, contour plots of each charge state as a function of the staring 

solution conditions and CIA energy, and summary of the information on each fragment 

obtained after digestion with CPDY. 
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Figure 6.1 Typical mass spectra of UCH in the positive mode as a function of the starting 

solvent conditions. Overall CCSN2 profiles of UCH (black lines) obtained by summation 

of the intensity-normalized IMS resolved data (color lines). 
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Figure 6.2 IMS profiles of the +8 to +26 charge states of UCH as a function of the 

organic content (e.g., % MeOH) in the starting solution. IMS profiles of the +8 to +26 

charge states of UCH as a function of the CIA regime (e.g., on/off) for a solution with 

10% MeOH. The blue profiles were obtained when the starting solution did not contain 

any amount of methanol and the CIA energy was off (e.g., Vcap = 50 V, Vdef = 60 V, and 

Vfun = 0 V). The red profiles were obtained when 50% of the starting solution was 

methanol and the CIA was off. The yellow profiles were obtained when 10% of MeOH 

was added to the starting solution and the CIA energy was off. Finally, the green profiles 

were obtained when the starting solution had 10% MeOH and the CIA energy was on. 
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Figure 6.3 Overall CCSN2 profiles for UCH (black lines) obtained by summation of the 

intensity-normalized IMS resolved data (color lines) obtained as a function of the 

temperature of the starting solution with 0% MeOH, and 10% MeOH. 
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Figure 6.4 Digestion of UCH with CPDY. A: CCSN2 distribution of the observed 

fragments as a function of the mass of each fragment. Orange circles: undigested protein; 

Green triangles: fragments with residues removed exclusively from the C-terminal; Red 

triangles: fragments with residues removed exclusively from the N-terminal; Blue 

rhomboids: fragments with residues removed from the both termini; Black circles: 

fragments where a structural collapse is observed; Black stars and grey line: fragments 

where the knot is preserved after the digestion; Blue line: distribution of reported CCSN2 

for globular proteins. B: Sequence coverage by the digestion. C: IMS profiles of the 

fragments that preserve the knot. 
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CHAPTER 7.  

ELUCIDATION OF THE STRUCTURAL INTEGRITY AND STABILITY OF THE 

KNOT PROTEIN HALO ACID DEHALOGENASE USING TRAPPED ION 

MOBILITY SPECTROMETRY – MASS SPECTROMETRY 
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ABSTRACT 

Protein knots were regarded as structural impossibilities, until they were observed 

embedded in naturally occurring proteins. The most complex knot found in proteins so far 

is the Stevedore knot, a 61 knot found in the core of the α-haloacid dehalogenase (DehI). 

In the present work, the kinetically trapped intermediates of the knot protein DehI were 

investigated using trapped ion mobility - mass spectrometry (TIMS-MS) as a function of 

the starting solvent conditions (i.e., organic content), collision induced activation (CIA), 

and starting solution temperature. Our results suggest that the stability provided by the knot 

core is not as high as expected for an entangled structure. A rapid unfolding and expansion 

of the native-like conformations observed was evident under a wide variety of experimental 

conditions. The stability and integrity of the knot core was also assessed by enzymatic 

digestion using carboxypeptidase Y (CPDY). Molecular dynamics simulations were used 

to propose candidate models to assess the knot integrity of the observed fragments. A total 

of 50 fragments were observed after the enzymatic reaction, while the knot was found to 

be stable in 12 of the fragments. 
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INTRODUCTION 

Several protein structures incorporate a rather unusual structural feature -a knot in the 

polypeptide backbone.1 For the past 20 years, this fascinating group of proteins with 

knotted topologies have been identified to occur naturally, but for a long time, it was 

thought that these complex structures where to impossible to exist 2 The knot proteins went 

undetected for many years, as the problem of identifying the knots by visual inspection is 

tremendously difficult. 3 These intricate topological barriers can lead to energy barriers that 

difficult the structural characterization of the protein, and despite the research on these 

structures, questions about how and when in the folding process the knots are formed still 

remain unanswered by the experiments carried out so far.4 

One of the most complex knots found in proteins so far is the Stevedore knot, a 61 knot 

found in the core of the α-haloacid dehalogenase (DehI).5 The structure of DehI contains a 

knot with six crossings. To study the folding of this complex knot, simulations with a 

structure-based coarse-grained model were performed, showing a possible mechanism by 

which the knot forms when a large twisted loop in the protein flips over another previously 

twisted loop, creating the knot in a single movement.5 The folding pathway of DehI is 

different from other knot proteins that utilize partially knotted intermediates.5 Until now, 

no experimental results have been reported on the structural analysis of this protein. 

A new approach to study the folding pathway of proteins, especially those with intricate 

structures is trapped ion mobility spectrometry (TIMS-MS). In TIMS-MS, a constant 

electric field component holds ions stationary against a moving buffer gas while a 

quadrupolar rf field radially confines them to avoid losses of the ions to the 
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electrodes.36,37 The TIMS-MS systems have proven useful for the rapid separation and 

high-resolution structural elucidation of biomolecules,6-13 for example: screening6 and 

targeted14 analysis of complex mixtures, tracking the isomerization kinetics,8-10 and 

characterizing the conformational spaces of peptides,15 DNA,11 proteins,16 and 

macromolecular complexes in native and denatured states.17 

This study combines the structure elucidation capabilities of TIMS-MS to explain the 

conformational dynamics of DehI, while providing unique insights into the folding 

pathway and stabilization mechanisms of the knot core. Our results showed that this 

approach provides an invaluable insight necessary for the analysis of these intricate knotted 

topologies. In the following discussion, a special emphasis will be placed on the structural 

integrity and stability of the knot core embedded in DehI. 

MATERIALS AND METHODS 

Materials and Reagents 

All solvents used were analytical grade or better and purchased from Fisher Scientific 

(Pittsburg, PA). DehI was expressed recombinantly in Escherichia coli BL21(DE3) and 

purified using a nickel column. The protein was shown to be pure using both SDS/PAGE 

and MS analysis. A stock solution of ??? was prepared in a buffer of 10 mM ammonium 

acetate (NH4Ac), dialyzed against the same buffer and diluted to a final concentration of 

10 µM in10 mM of NH4Ac, 95:5, 90:10, 80:20, 70:30, 60:40, and 50:50 (v/v) H2O/MeOH. 

Nano-ESI emitters were pulled from quartz capillaries (O.D.: 1.0 mm and I.D.: 0.70 mm) 

using Sutter Instruments Co. P2000 laser puller. Low-concentration Tuning Mix 
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calibration standard (TuneMix, G24221A) was purchased from Agilent Technologies 

(Santa Clara, CA). A stock solution of carboxypeptidase y (CPDY) was prepared with a 

final concentration of 1 mg/mL. Prior incubation, 2 µL of CPDY were added to a solution 

of 200 µL of DehI. Incubation was performed at 26.5ºC for 18 h. After the incubation, the 

enzymatic reaction was quenched by the addition of 20 µL of glacial acetic acid. 

CIA-TIMS-MS Experiments 

We employed a custom nESI-TIMS unit coupled to an Impact Q-TOF mass spectrometer 

(Bruker, Billerica, MA).18,19 The TIMS unit is run by custom software in LabView 

(National Instruments) synchronized with the MS platform controls.19 Sample aliquots (10 

L) were loaded in a pulled-tip capillary biased at ~1000 V to the MS inlet. Details 

regarding the TIMS operation compared to traditional IMS can be found elsewhere.20-24 

Briefly, TIMS mobility separation is based on holding the ions stationary using an electric 

field against a moving buffer gas.25 The mobility, K, of an ion in a TIMS cell is described 

by: 

𝐾 =  
𝑣𝑔

𝐸
=  

𝐴

(𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛− 𝑉𝑜𝑢𝑡)
                     (1) 

where vg, E, Velution and Vout are the gas velocity, applied electric field, elution voltage and 

base voltage, respectively. The constant A was determined using a Tuning Mix calibration 

standards (m/z 322 Ko= 1.376 cm2 V-1 s-1, m/z 622 Ko= 1.013 cm2 V-1 s-1, and m/z 922 Ko= 

0.835 cm2 V-1 s-1).22,26 
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The same rf (880 kHz and 280 Vpp) was applied to all electrodes including the entrance 

funnel, the ion mobility separating section, and the exit funnel (Figure S7.1). TIMS 

separation was performed using nitrogen as a bath gas at 300 K, and the gas flow velocity 

was held constant in all the experiments (P1 = 2.6 and P2 = 1.0 mbar). A fill/trap/ramp/wait 

sequence of 1-10/1-10/5-500/50 ms was used and an average resolving power of 180-250 

was observed. A total of 500 accumulations and 10 frames were acquired per TIMS 

experiment. 

The measured mobility values (K) were converted into collision cross sections (CCS, Ω, 

Å²) using the Mason-Schamp equation: 

𝛺 =
(18π)1/2

16

𝑧

(𝑘𝐵𝑇)1/2 (
1

𝑚𝐼
+

1

𝑚𝑏
)

1/2 1

𝐾0

760

𝑃

𝑇

273.15

1

𝑁∗         (2) 

where z is the charge of the ion, kB is the Boltzmann constant, N* is the number density and 

mI and mb refer to the masses of the ion and bath gas, respectively.25  

Collision induced activation experiments were performed prior to the TIMS-MS by varying 

the electric field between the capillary outlet (Vcap: 50-190 V), deflector plate (Vdef: 60-200 

V) and funnel entrance (Vfun: 0-140 V) in 10V steps. 

Theoretical method 

The 3BJX protein data bank entry for DehI was utilized as the starting structures.27 Briefly, 

the structures were cleaned and energy minimized using AMBER03 force field in 

YASARA software. The theoretical CCSN2 for each structure were calculated using the 

TM algorithm implemented in the iMOS software.28,29 
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RESULTS AND DISCUSSION 

The mass spectrum of DehI (Figure 7.1A) in positive mode showed a single charge state 

distribution for the native-like charge states (+8 to +12) when the organic content in the 

starting solution is low (i.e., 0 and 5% MeOH). When the amount of MeOH increases to 

10%, the +8 and +9 charge states vanish, and the distribution shifts to encompass the charge 

states between +10 to +20. It has been reported previously that the 61 knot of DehI is 

formed after a single flipping event.5 Our results suggest that this event is easily undone 

when the solvation effect of a small amount of MeOH in the starting solution, explaining 

the sudden disappearance of the native-like species. At 20% MeOH, the distribution shifts 

from the +13 to give rise to two distributions, centered at +16 and +20 respectively. Further 

increases of MeOH are reflected in a diminishing intensity of the lower charge states (+10 

to +12), and a single envelope is observed when the organic content constitutes 50% of the 

starting solution, encompassing the charge states between +14 to +31. 

IMS experiments were performed for DehI as a function of the starting solution conditions 

(Figure 7.1B). The mobility profiles obtained for each charge state observed on each 

solvent condition were normalized to the respective intensity of each charge state in the 

mass spectrum. The overall CCSN2 profiles (black lines) were obtained by summation of 

the ion mobility resolved data (color lines). The IMS profiles of the native-like charge 

states of DehI disappear quickly with the additional organic content in the solution. As 

mentioned previously, it has been reported that the knot on DehI might be formed after a 

single flipping event of the backbone. Our results suggest that the solvation effect of a low 

amount of methanol (i.e., up to 5%) is enough to disrupt the intramolecular interactions 
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that help conserve the integrity of the spatial constraint provided by the Stevedore knot. 

Further additions of methanol to the starting solution favor the denatured states of the 

protein, evidenced by the increased intensity of the IMS profiles of the higher charge states. 

As expected, the relative intensity of the IMS profiles of the higher charge states (i.e., +13 

to +31) increases with the addition of MeOH to the starting solution. As it has been reported 

previously, the solvent-induced denaturing allows the exposure of basic sites for 

protonation during the nESI process. The coulombic repulsion driven by the additional 

positive charges causes an unfolding of the protein backbone, which further allows the 

study of the kinetically trapped intermediates of the denatured states of the protein.  

Further sampling of the conformational populations to study the folding pathway of the 

knot protein DehI in the gas-phase was performed using CIA energy prior to the TIMS-

MS analysis (Figures 7.2, S7.2, S7.3). The profiles in figure 7.2 are as follows: the blue 

profiles were obtained when the starting solution did not contain any amount of methanol 

and the CIA energy was off (e.g., Vcap = 50 V, Vdef = 60 V, and Vfun = 0 V). The red profiles 

were obtained when 50% of the starting solution was methanol and the CIA was off. The 

yellow profiles were obtained when 10% of MeOH was added to the starting solution and 

the CIA energy was off. Finally, the green profiles were obtained when the starting solution 

had 10% MeOH and the CIA energy was on. In fact, the additional CIA energy allowed 

the examination of additional kinetically trapped intermediates that might be part of the 

conformational space of both proteins. The amount of the organic content in each starting 

solution was selected to compare between native preserving conditions (e.g., 0%) and 

denaturing conditions (e.g., 50%), and the synergistic effect of a low amount of organic 
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content (e.g., 10%) when CIA is on. IMS experiments on DehI showed that the CCSN2 of 

the native +8 charge state is ~3210Å2, and for the fully denatured +31 is ~15330Å2. The 

theoretical CCSN2 measured using IMoS was 3278 Å2 (Figure 7.2A). Our results showed 

that the structural variability of DehI is not as diverse, as mostly broad bands are observed 

while a rapid unfolding occurs as a function of the increasing charge state. The profiles 

obtained under the different experimental conditions when the amount of MeOH is low, 

are quite broad and only narrow bands are observed for some of the lower (+8 to +15) and 

higher (+26 to `+31) charge states. In contrast, the profiles obtained when the solution 

contains 50% MeOH where only for the charge states above +16, and they showed a 

narrowing of the bands after the +19 charge state, only populating the trend that leads to 

the fully denatured conformations. This result is in agreement with our previous assertion 

that DehI is more susceptible to solvent-induced denaturing, as the knot does not provide 

enough stability to the structural integrity of the protein. No major changes were observed 

as a function of the CIA regime (Figure 7.2B). That is, the mobility profiles obtained under 

the CIA regime are broad and very similar to the profiles obtained without CIA regime for 

the same solution conditions. The main differences between CIA on and off can be 

observed for the profiles of the +15 to +17 charge states, where the bands obtained under 

CIA on are broader, concealing a small feature observed with CIA off for the same charge 

states. 

The thermal stability provided by the knot was studied by performing IMS experiments on 

solutions with 0 and 10% MeOH and incubation of the solutions at 20, 35, 50, 65, 80, and 

95ºC (Figure 7.3). The native-like conformations of DehI were only observed when the 
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solution did not contained MeOH and the temperature was 20ºC. A progressive denaturing 

as a function of the temperature was observed for both proteins. However, this synergistic 

effect between temperature and organic content was very pronounced for DehI, as only the 

transition and denatured conformations were observed after the solution was heated to 65ºC 

when the solution had 10% MeOH. These results suggests that the DehI is heat sensitive, 

as the structure of the protein is easily disrupted when the temperature increases slightly, 

evidenced by the disappearance of the IMS bands that correspond to the native-like 

conformations. This observation can be explained by analyzing the amino acid composition 

of DehI. Essentially, the chain is composed of two similar regions that form a pseudo-dimer 

while they are connected by a proline rich arc. Additionally, it has been theorized that the 

final knotting event that takes place in the folding pathway of DehI, is a single flip event. 

Our results suggest that is somewhat easy to undo this flip event, causing a rapid unfolding 

of the molecular structure. 

It has been discussed that every knot protein contains a region within called the knot core, 

which is defined as the shortest sub-chain within the protein for which a knot is stable. To 

evaluate the occurrence of a knot in a protein, several algorithms have been developed to 

analyze the multitude of protein structures stored in databases, such as the PDB database. 

However, the reliability of these algorithms is far from high, as the implementation of the 

mathematical models on knots require a compromise when evaluated open chains, as found 

in naturally occurring proteins, instead of closed chains, as the models describe. In this 

study, we implemented a combination of enzymatic digestion using carboxypeptidase Y 

(CPDY) and TIMS-MS to measure the size, in terms of CCSN2, of the charged fragments 
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resulting from the biochemical reaction. Then, by comparing the empirical size with the 

theoretical CCS of molecular models generated using MD, we can determine when the core 

is stable and confers additional structural integrity to the protein (Figure 7.4). The 

Stevedore 61 knot core found in the recombinant DehI is 214 amino acids long, between 

residues 93 and 306 (Figure 7.4B, blue region). An enzymatic digestion of DehI using 

CPDY was performed to isolate the core from the knot tails (Figures 7.4, S7.4, and Table 

S7.1). TIMS-MS analysis of the digestion showed that after 18 h of incubation, the reaction 

yielded 50 fragments with a maximum of 178 residues missing from the C-terminal, 38 

from the N-terminal, and 126 from both termini concomitantly. Our results showed that, in 

contrast to observations made on the enzymatic digestion of YibK and UCH, the fragments 

that lost the integrity provided by the knot core, did not collapsed, but opened even further 

towards large-size unfolded conformations. Of the observed fragments, 12 conserved the 

structural integrity of the knot in their structure (Figures 7.4A, black stars and 4B). All the 

fragments containing the knot core in their structure display a trend (Figure 7.4A, grey 

line), while is considered that the structures with CCS above this threshold unfold due the 

loss of the knot core. 

CONCLUSIONS 

In the present work we examined the structural integrity provided by the Stevedore 61 knot 

to the conformation of the protein halo acid dehalogenase, DehI. A plethora of TIMS-MS 

techniques were used to assess the structural integrity of the protein. The high resolution 

of the TIMS analyzer allowed the examination of the trapped kinetic intermediates present 

in the 23 charge states (e.g., +8 to +31) generated by nESI as a function of the solution 
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conditions (i.e., 0-50% MeOH), and the collision induced activation energy (CIA, Vdef 60 

to 200 V). The results of these experiments showed that the native-like conformations 

(charge states +9 to +12) are not stable under a wide variety of environments, but to only 

native-preserving solution and energy conditions. This observation were also evident when 

evaluating the thermal stability of the protein. Our observations showed that a slight change 

in the temperature of the starting solution (i.e., from 20 to 35ºC) was enough to cause a 

structural disruption of the native states, evidenced by the disappearance of the mobility 

bands for the aforementioned native-like charge states. Moreover, this effect was more 

pronounced by the synergistic action of a small addition of MeOH to the starting solution 

condition. This structural instability can be explained by analyzing the structural makeup 

if DehI, where a pseudodimer is formed when the two homologous ends of the protein, 

connect by a proline rich arc. This pseudodimer rapidly unfolds under the action of 

environmental factors in the solution, such as the solvation effect of the organic molecules 

or the increase of the vibrational energy, either by CIA or temperature of the solution. 

The integrity of the knot core was also studied and the stability that this core grants to the 

overall molecular structure was assessed by removal of the knot tails by enzymatic 

digestion with CPDY. This allowed the analysis of charged fragments that contained the 

residues that makeup the knot core. The experimentally measured CCSN2 of each fragment 

was compared with theoretically calculated CCSN2 of models that matched the amino acid 

length of each fragment. A total of 50 fragments were observed, while the knot was found 

to be intact in 12 of them. Our results suggest that the loss of the knot core in DehI can 

only cause a structural unfolding of protein. 
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This work provides, for the first time, a workflow that combines the analytical capabilities 

of the TIMS analyzer with the results from biochemical reactions that allowed the isolation 

of the knot core. 

ASSOCIATED CONTENT 

Scheme of the TIMS cell, contour plots of each charge state as a function of the staring 

solution conditions and CIA energy, and summary of the information on each fragment 

obtained after digestion with CPDY. 

FUNDING SOURCES 

The authors declare no competing financial interest. The authors acknowledge the financial 

support from the National Institute of Health (R00GM106414), a Bruker Daltonics Inc. 

fellowship, and the National Science Foundation Division of Chemistry, under CAREER 

award CHE-1654274, with co-funding from the Division of Molecular and Cellular 

Biosciences to FFL. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the Instructional & Research Computing Center 

(IRCC) at Florida International University for providing high performance computing 

resources that have contributed to the research results reported within this research. 

  



148 

 

Figure 7.1 Typical mass spectra of DehI in the positive mode as a function of the starting 

solvent conditions. Overall CCSN2 profiles of DehI (black lines) obtained by summation 

of the intensity-normalized IMS resolved data (color lines). 
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Figure 7.2 IMS profiles of the +8 to +31 charge states of DehI as a function of the 

organic content (e.g., % MeOH) in the starting solution. IMS profiles of the +8 to +31 

charge states of DehI as a function of the CIA regime (e.g., on/off) for a solution with 

10% MeOH. The blue profiles were obtained when the starting solution did not contain 

any amount of methanol and the CIA energy was off (e.g., Vcap = 50 V, Vdef = 60 V, and 

Vfun = 0 V). The red profiles were obtained when 50% of the starting solution was 

methanol and the CIA was off. The yellow profiles were obtained when 10% of MeOH 

was added to the starting solution and the CIA energy was off. Finally, the green profiles 

were obtained when the starting solution had 10% MeOH and the CIA energy was on. 
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Figure 7.3 Overall CCSN2 profiles for DehI (black lines) obtained by summation of the 

intensity-normalized IMS resolved data (color lines) obtained as a function of the 

temperature of the starting solution. 
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Figure 7.4 Digestion of DehI with CPDY. A: CCSN2 distribution of the observed 

fragments as a function of the mass of each fragment. Orange circles: undigested protein; 

Green triangles: fragments with residues removed exclusively from the C-terminal; Red 

triangles: fragments with residues removed exclusively from the N-terminal; Blue 

rhomboids: fragments with residues removed from the both termini; Black circles: 

fragments where a structural collapse is observed; Black stars and grey line: fragments 

where the knot is preserved after the digestion. B: Sequence coverage by the digestion. C: 

IMS profiles of the fragments that preserve the knot. 
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SUPPORTING INFORMATION FOR CHAPTER 2. FLAVIN ADENINE DINUCLEOTIDE 

STRUCTURAL MOTIFS: FROM SOLUTION TO GAS-PHASE 

 

Figure S2.1. FAD total MS spectrum. 
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Figure S2.2. FAD “open” conformation theoretical structure. Optimization of the structure 

was done at level B3LYP/6-31G(d,P) and CCS was calculate using mobcal. 
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SUPPORTING INFORMATION FOR CHAPTER 3: INSIGHTS FROM ION 

MOBILITY – MASS SPECTROMETRY, INFRARED SPECTROSCOPY, AND 

MOLECULAR DYNAMICS ON NICOTINAMIDE ADENINE DINUCLEOTIDE 

STRUCTURAL DYNAMICS: NAD+ VS NADH 

 

Figure S3.1. Scheme of the TIMS cell 
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Figure S3.2. Lowest energy candidate structures proposed for NADH IMS band A obtained 

at DFT/B3LYP/6-31G*using Jaguar software. 
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Figure S3.3. Lowest energy candidate structures proposed for NADH IMS band B obtained at DFT/B3LYP/6-

31G*using Jaguar software. 
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Figure S3.4. Lowest energy candidate structures proposed for NADH IMS band C obtained 

at DFT/B3LYP/6-31G*using Jaguar software. 
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Figure S3.5. Lowest energy candidate structures proposed for NADH IMS band D obtained 

at DFT/B3LYP/6-31G*using Jaguar software. 
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Figure S3.6. Lowest energy candidate structures proposed for NADH IMS band G obtained 

at DFT/B3LYP/6-31G*using Jaguar software. 
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Figure S3.7. Lowest energy candidate structures proposed for NADH IMS band H obtained 

at DFT/B3LYP/6-31G*using Jaguar software. 
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Figure S3.8. Theoretical IR spectra of the three, lowest energy structure proposed based on 

the IMS bands for NAD+ and NADH obtained at DFT/B3LYP/6-31G* using Jaguar 

software. 
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Figure S3.9. Nomenclature utilized for atoms present in the structure of NADH and NAD+. 
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Figure S3.10. Characteristic and common intramolecular interactions of NADH and NAD+. 
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Figure S3.11. Intramolecular interactions of NADH and NAD+ sorted by the main 

conformational families. 
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Figure S3.12. Lowest energy candidate structures proposed for the sodiated form of NADH 

and NAD+ based on the IMS bands obtained at DFT/B3LYP/6-31G*using Jaguar software. 
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Table S3.1. Fluorescence decay parameters recovered for NADH in solution as a function 

of EtOH or MeOH content. NAD+ is not fluorescent. The phase shift as a function the 

frequency was modeled using a double exponential model, where alpha (α) and tau () are 

the pre-exponential factor and lifetime, respectively. The double exponential model was 

utilized assuming a two-state model: more “close” and more “open” conformations. The 

longer the lifetime, the more open the conformation. 

 
α0 τ0 (ns) α1 τ1 (ns) 

τaverage 

(ns) 

10mM NH4Ace pH 

8.0 
0.86 0.3 0.14 0.94 

0.50 

            

+10 % MeOH 0.86   0.14   0.52 

+30 % MeOH 0.83   0.17   0.55 

+50 % MeOH 0.81   0.19   0.57 

+70 % MeOH 0.76   0.24   0.62 

            

+10 % EtOH 0.83   0.17   0.55 

+30 % EtOH 0.80   0.20   0.58 

+50 % EtOH 0.73   0.27   0.64 

+70 % EtOH 0.68   0.32   0.68 
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Table S3.2. Experimental and theoretical ion-neutral collision cross section (CCSN2, Å²) 

for the sodiated NAD+ and NADH forms. 

 
B3LYP/6-31G(d,p) with 

charges 

Ion  
Experimental 

CCSN2 [Å
2] 

Theoretical 

CCSN2 IMos 

TM [Å2] 

Relative 

energy 

[kcal/mol] 

[MNADH + Na]+ 

C21H30N7O14P2 

m/z 688.12 

Δm/m 0.3 ppm 

E 234 235.1 0 

F 246 246.4 2.19 

 [MNAD+ + 

Na]+ 

C21H29N7O14P2 

m/z 686.09 

Δm/m 0.7 ppm 

I 227 229.5 0 

J 236 237.3 3.95 
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Table S3.3. Experimental and theoretical ion-neutral collision cross section (CCSN2, Å²) 

and vibrational frequencies (cm-1) for the protonated NADH form. 
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Table S3.4. Experimental and theoretical ion-neutral collision cross section (CCSN2, Å²) 

and vibrational frequencies (cm-1) for the protonated NAD+ form. 
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Table S3.5. Theoretical intramolecular interactions of NADH. 

 

Vibrational Frequencies [cm-1] 

Characteristic of NADH Present in Both 

Group  

Exp. 

CCS

N2 

[Å2] 

Theor. 

CCSN

2 [Å
2] 

Rel. 

Energ

y 

[kcal/

mol] 

O
6
-H

-O
1

0
 

O
6
-H

-O
1

1
 

O
6
-H

-N
9
 

N
8
-H

-O
1

2
 

O
4
-H

-O
6
 

O
5
-H

-N
9
 

O
1
-H

-N
8
 

O
5
-H

-O
1

1
 

N
2
-H

-O
1

1
 

Close 

A 234 
234.6 13.95 

36

19 

 

32

87 

 

34

21 

 

33

49 

  

  
234.3 14.37 

36

08 

 

32

80 

 

34

12 

 

33

39 

35

94 

340

9 

  
234.8 14.83 

36

15 
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98 

 

34

19 

32

51 
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B 239 
239.4 0 
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70 
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88 
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54 

33

03 

 341

4 

  
239.4 8.49 
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76 

32

82 
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51 

33

06 

36

03 

 

  
239.2 4.67 
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68 

32

83 

  

32

50 

33

03 

35

93 

341

0 

C 242 
242.7 3.67 
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77 
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43 

 

32

45 

33

10 

35

99 

342

8 

  
242.1 11.73 
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79 
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49 

33

02 
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5 

  
242.9 11.91 
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83 

 

34
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51 
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08 
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97 

343

1 

Open D 244 
244.2 7.29 

 

36

14 
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25 
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54 

33

09 
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Table S6. Theoretical intramolecular interactions of NAD+. 
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mol] 

N
2
-H

-O
5
 

O
5
-H

-N
7
 

O
6
-H

-N
7
 

N
2
-H

-O
6
 

O
3
-H

-O
6
 

O
5
-H

-N
9
 

O
1
-H

-N
8
 

O
5
-H

-O
1

1
 

N
2
-H

-O
1

1
 

Close G 230 
232.8 0 

34

11 

 

32

27 

32

80 

34

63 

32

54 

33

14 

35

97 

342

3 



179 

 

  
232.6 7.05 

34

17 

 

32

32 

32

79 

34

67 

32

50 

33

14 

36

01 

342

1 

  
232.3 6.84 

34

13 

 

32

29 

32

93 

34

68 

32

53 

33

22 

  

Open 

H 246 
246.8 5.84 

34

22 

36

17 

32

21 

 

34

68 

32

53 

 

 341

2 

  
246.7 12.61 

34

16 

36

08 

32

19 

 

34

62 

32

47 

33

09 

36

02 

341

9 

  
246.0 7.48 

34

07 

36

14 

32

27 

 

34

55 

32

55 

 

35

95 

 

 

  



180 

 

SUPPORTING INFORMATION FOR CHAPTER 4. CHARACTERIZATION OF 

INTRAMOLECULAR INTERACTIONS OF CYTOCHROME C USING HYDROGEN 

DEUTERIUM EXCHANGE - TRAPPED ION MOBILITY - MASS SPECTROMETRY 

AND MOLECULAR DYNAMICS 

Figure S4.1. Scheme of the TIMS cell. 
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Figure S4.2. Experimental and theoretical mass shift for the deuterated and non-deuterated 

+6 and +13 charge states. 
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Figure S4.3. Evidence of pH induced denaturation of cyt c by UV-VIS spectroscopy in the 

300-600 nm spectral range. a) Samples with 10 µM cyt c at different ratios of solvent 

content, 5:95 of MeOH:H2O at pH 4.6 (blue line), 5:94:1 of MeOH:H2O:AcOH at pH 3.3 

(red line), 50:50 of MeOH:H2O at pH 4.4 (green line) and 50:49:1 of MeOH:H2O:AcOH 

at pH 3.0 (yellow line). b) Samples at 5 µM cyt c at pH 3.3 and ratios of solvent content of 

5:94:1 (dark blue line), 10:89:1 (red line), 20:79:1 (green line), 30:69:1 (yellow line) and 

40:59:1 (light blue line) of MeOH:H2O:AcOH. a) and b) show optical evidence of the 

denature of the protein under these conditions. 
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Figure S4.4. Summary of CCS literature values for cyt c. 

 

a The interpolation of the linear relationship resulting from plotting helium and nitrogen 

values reported by Bush et al.,e was used to convert values originally measured in helium.  

𝛺𝐻𝑒(K0
   N2  ) = 0.982 × 𝛺He(K0

   He) + 0.8 

b Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 1997, 

119 , 2240–2248. 

c Valentine, S. J.; Clemmer, D. E. J. Am. Chem. Soc. 1997, 119 (15), 3558–3566. 

d Faull, P. A.; Korkeila, K. E.; Kalapothakis, J. M.; Gray, A.; McCullough, B. J.; Barran, 

P. E. Int. J. Mass Spectrom. 2009, 283 (1-3), 140–148. 
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e Bush, M. F.; Hall, Z.; Giles, K.; Hoyes, J.; Robinson, C. V; Ruotolo, B. T. Anal. Chem. 

2010, 82 (22), 9557–9565. 

f Smith, D.; Knapman, T.; Campuzano, I.; Malham, R.; Berryman, J.; Radford, S.; 

Ashcroft, A. Eur. J. Mass Spectrom. 2009, 15 (2), 113–130. 6 

g Sivalingam, G. N.; Yan, J.; Sahota, H.; Thalassinos, K. Int. J. Mass Spectrom. 2013, 345-

347, 54–62. 
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Figure S4.5. HDX back exchange as a function of the trapping time and the incubation 

time, without CIA (blue panel) and with CIA (red panel). 
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Figure S4.6. Clustering of HDX protection groups based on the number of deuterons and 

the number of conformations. 
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Figure S4.7. A. Comparison of the mass spectra of the +6 and -6 charge states of cyt c after 

incubation in D2O. B. Mass spectra of the +6 and -6 charge states of cyt c as a function of 

the trapping time, showing the HDX back-exchange in both positive and negative mode. 

C. HDX back-exchange as a function of the trapping time for the +5 to +8, and -5 and -6 

charge states. 
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Figure S4.8. Unfolding pathway of cyt c. 
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Table S4.1. Experimental results of HDX as a function of the incubation time and ion-

neutral collision cross section of cyt c for +6 to +13 charge states. 

[M+nH]+n 
Incubation Time in D2O of 3 h Incubation Time in D2O of 48 h 

CCSN2 

(Å2) 
Number of deuterons 

Slope 
Number of deuterons 

Slope 
z  at 0 ms at 100 ms at 500 ms at 0 ms at 100 ms at 500 ms 

6 

A 

62 ± 2 

59 ± 4 38 ± 2 
-0.06 ± 

0.01 

171 ± 3 

162 ± 6 143 ± 4 
-0.04 ± 

0.02 
1291 

B 58 ± 2 41 ± 2 
-0.05 ± 

0.02 
166 ± 4 145 ± 3 

-0.05 ± 

0.02 
1438 

C 56 ± 7 38 ± 5 
-0.04 ± 

0.01 
167 ± 9 140 ± 7 

-0.05 ± 

0.02 
1814 

7 

A 

63 ± 3 

50 ± 1 34 ± 1 
-0.07 ± 

0.03 

169 ± 4 

165 ± 5 141 ± 3 
-0.04 ± 

0.02 
1279 

B 48 ± 3 30 ± 3 
-0.06 ± 

0.01 
165 ± 5 141 ± 3 

-0.04 ± 

0.02 
1307 

C 38 ± 3 29 ± 1 
-0.02 ± 

0.01 
166 ± 2 140 ± 3 

-0.03 ± 

0.01 
1574 

D 38 ± 3 31 ± 4 
-0.03 ± 

0.02 
166 ± 2 140 ± 3 

-0.04 ± 

0.01 
1673 

E 49 ± 2 32 ± 3 
-0.07 ± 

0.02 
166 ± 2 140 ± 3 

-0.03 ± 

0.02 
1722 

F 37 ± 3 27 ± 3 
-0.03 ± 

0.01 
166 ± 2 140 ± 3 

-0.04 ± 

0.02 
1833 

G 45 ± 1 27 ± 3 
-0.04 ± 

0.02 
166 ± 2 140 ± 3 

-0.03 ± 

0.02 
1927 

H 49 ± 3 32 ± 1 
-0.03 ± 

0.02 
162 ± 3 133 ± 2 

-0.04 ± 

0.02 
2178 

8 

A 

64 ± 4 

49 ± 6 10 ± 5 
-0.10 ± 

0.03 

169 ± 4 

166 ± 2 145 ± 3 
-0.05 ± 

0.01 
1682 

B 34 ± 4 12 ± 3 
-0.06 ± 

0.02 
163 ± 5 138 ± 1 

-0.06 ± 

0.01 
1925 

C 31 ± 3 8 ± 2 
-0.06 ± 

0.01 
167 ± 3 146 ± 1 

-0.06 ± 

0.02 
2249 

D 43 ± 4 8 ± 2 
-0.08 ± 

0.03 
162 ± 2 136 ± 4 

-0.06 ± 

0.02 
2468 

E 56 ± 5 29 ± 3 
-0.07 ± 

0.02 
162 ± 6 140 ± 2 

-0.06 ± 

0.01 
2496 

9 

A 

65 ± 3 

52 ± 6 26 ± 1 
-0.07 ± 

0.02 
167 ± 4 

159 ± 3 128 ± 2 
-0.08 ± 

0.01 
1637 

B 50 ± 4 27 ± 2 
-0.07 ± 

0.01 
156 ± 4 127 ± 4 

-0.07 ± 

0.02 
2024 
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C 46 ± 7 27 ± 2 
-0.05 ± 

0.03 
154 ± 4 118 ± 3 

-0.09 ± 

0.02 
2258 

D 30 ± 3 0 ± 1 
-0.07 ± 

0.03 
151 ± 2 119 ± 3 

-0.08 ± 

0.01 
2631 

E 35 ± 4 4 ± 1 
-0.07 ± 

0.02 
153 ± 3 112 ± 4 

-0.10 ± 

0.03 
2388 

10 

A 

62 ± 5 

36 ± 4 4 ± 2 
-0.08 ± 

0.01 

164 ± 5 

139 ± 5 118 ± 3 
-0.06 ± 

0.02 
2181 

B 36 ± 4 3 ± 1 
-0.08 ± 

0.02 
152 ± 3 125 ± 4 

-0.07 ± 

0.02 
2365 

C 34 ± 3 5 ± 2 
-0.08 ± 

0.02 
140 ± 4 120 ± 5 

-0.05 ± 

0.01 
2508 

D 35 ± 5 4 ± 2 
-0.08 ± 

0.03 
157 ± 3 139 ± 4 

-0.04 ± 

0.02 
2652 

E 31 ± 2 1 ± 1 
-0.08 ± 

0.01 
154 ± 4 128 ± 3 

-0.05 ± 

0.02 
2717 

11 

A 

61 ± 5 

51 ± 3 10 ± 2 
-1.09 ± 

0.09 

161 ± 5 

143 ± 2 120 ± 4 
-0.06 ± 

0.02 
2403 

B 50 ± 2 13 ± 3 
-0.10 ± 

0.01 
145 ± 3 127 ± 2 

-0.05 ± 

0.02 
2553 

C 41 ± 3 8 ± 2 
-0.08 ± 

0.02 
143 ± 2 100 ± 4 

-0.10 ± 

0.02 
2676 

D 38 ± 3 7 ± 2 
-0.09 ± 

0.03 
157 ± 2 135 ± 3 

-0.06 ± 

0.01 
2813 

E 38 ± 5 15 ± 1 
-0.06 ± 

0.01 
155 ± 7 139 ± 3 

-0.37 ± 

0.07 
2861 

12 

A 

61 ± 5 

43 ± 4 13 ± 2 
-0.09 ± 

0.03 

166 ± 5 

162 ± 2 137 ± 3 
-0.06 ± 

0.01 
2678 

B 44 ± 4 2 ± 1 
-1.11 ± 

0.06 
157 ± 6 132 ± 3 

-0.06 ± 

0.01 
2806 

C 41 ± 3 3 ± 1 
-0.09 ± 

0.02 
160 ± 3 127 ± 2 

-0.08 ± 

0.01 
2876 

D 42 ± 5 1 ± 1 
-0.10 ± 

0.03 
158 ± 3 123 ± 4 

-0.09 ± 

0.02 
3187 

13 

A 

59 ± 5 

37 ± 4 2 ± 1 
-0.09 ± 

0.01 

168 ± 5 

166 ± 6 122 ± 3 
-0.11 ± 

0.04 
2795 

B 41 ± 2 3 ± 2 
-0.10 ± 

0.03 
162 ± 3 135 ± 4 

-0.07 ± 

0.01 
2969 

C 35 ± 4 0 ± 1 
-0.09 ± 

0.03 
161 ± 2 142 ± 3 

-0.05 ± 

0.01 
2998 

D 31 ± 3 1 ± 2 
-0.08 ± 

0.01 
159 ±5 215 ± 2 

-0.09 ± 

0.03 
3044 
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Table S4.2. Experimental ion-neutral collision cross section of cyt c. 

[M+nH]+n  TIMS Experimental 

z  Ko (cm2/Vs) CCS [Å2] 

14 

A 0.932 3017 

B 0.889 3162 

C 0.872 3223 

D 0.835 3367 

15 

A 0.918 3279 

B 0.908 3318 

C 0.897 3358 

16 

A 1.058 3036 

B 0.970 3311 

C 0.950 3382 

D 0.927 3465 

E 0.903 3557 

17 

A 0.971 3516 

B 0.945 3611 

C 0.932 3663 

D 0.916 3724 

18 

A 1.004 3598 

B 0.980 3689 

C 0.965 3743 

D 0.957 3778 

19 

 

A 1.023 3727 

B 1.004 3798 

20 A 1.034 3885 

21 
A 1.079 3907 

B 1.066 3954 
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Table S4.3. Experimental ion-neutral collision cross section of cyt c for -5 to -10 charge 

states. 

[M-nH]-n  CCSN2 

(Å2) 

5; 6 

A 1291 

B 1438 

C 1814 

7 

A 1929 

B 2258 

C 2473 

D 2942 

8 

A 1924 

B 2041 

C 2259 

D 2376 

E 2492 

F 2921 

9 
A 2175 

B 2409 

10 
A 2337 

B 2514 
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SUPPORTING INFORMATION FOR CHAPTER 5. STRUCTURAL 

CHARACTERIZATION OF THE KNOT PROTEIN YIBK USING TRAPPED ION 

MOBILITY SPECTROMETRY – MASS SPECTROMETRY AND ENZYMATIC 

DIGESTION 

Figure S5.1. TIMS instrument scheme 
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Figure S5.2. Contour plots of the +7 to +22 charge states of YibK as a function of the 

organic content (e.g., % MeOH) 
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Figure S5.3. Contour plots of the +7 to +22 charge states of YibK as a function of the 

activation energy (e.g., deflector voltage) 
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Table S5.1. Experimental and theoretical CCSN2 of the observed fragments after digestion 

with CPDY. 

Fragment Mass (Da) 
Charge 

State 

Experimental CCSN2 (A
2) 

Most Intense Band 

Theoretical CCS N2 

(A2) 

Model preserves 

integrity of the core 

1-173 20059 

+7 

+8 

+11 

+12 

+13 

+15 

1932 

1958 

2546 

3426 

3565 

3856 

2481 

2502 

2584 

2616 

2647 

2733 

1-161 18789 
+14 

+17 

3996 

4107 

2634 

2753 

1-156 18083 
+16 

+17 

4193 

3678 

2658 

2682 

1-145 16967 
+7 

+19 

1746 

5225 

2238 

2552 

1-141 16522 
+12 

+14 

2672 

3690 

2281 

2336 

1-120 14096 +6 1549 2067 
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+7 

+8 

+9 

+10 

1595 

1958 

2282 

2255 

2083 

2102 

2123 

2142 

1-108 12772 
+9 

+17 

2050 

3102 

2024 

2229 

1-101 11941 
+14 

+16 

2686 

2792 

2120 

2194 

1-155 17984 +15 3717 2579 

1-151 17614 +14 4049 2499 

1-149 17412 +14 3532 2442 

1-147 17212 +15 3796 2444 

1-143 16724 +13 2838 2316 

1-140 16451 +16 3580 2400 

1-138 16219 +14 4789 2326 

1-134 15739 +12 2401 2264 

1-130 15223 +12 2606 2239 

1-128 14994 +14 2996 2288 
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1-121 14210 +13 2348 2228 

1-119 14039 +11 2496 2169 

1-115 13556 +10 3035 2100 

26-175 17197 
+13 

+14 

2825 

3465 

2485 

2516 

33-175 16473 
+17 

+18 

3671 

5106 

2573 

2612 

40-175 15689 
+11 

+13 

2481 

3136 

2316 

2361 

54-175 14106 
+12 

+14 

3162 

4107 

2188 

2232 

77-175 11167 

+9 

+10 

+15 

1865 

2394 

2725 

1949 

1983 

2183 

90-137 5439 
+4 

+5 

900 

1144 

1014 

1026 

89-137 5595 
+5 

+6 

1261 

1430 

1007 

1038 

91-135 5057 +4 1070 990 
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90-135 5170 +4 944 970 

92-138 5276 +5 1283 1092 

85-141 6478 +6 1541 1023 
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SUPPORTING INFORMATION FOR CHAPTER 6. INSIGHTS FROM TRAPPED 

ION MOBILITY SPECTROMETRY – MASS SPECTROMETRY ON THE 

STRUCTURAL INTEGRITY OF THE KNOT PROTEIN UBIQUITIN C-TERMINAL 

HYDROLASE 

 

Figure S6.1. TIMS instrument scheme 
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Figure S6.2. Contour plots of the charge states of UCH as a function of the organic content 

(e.g., % MeOH). The solution conditions are labeled as follows: 1: 0% MeOH; 2: 5% 

MeOH; 3: 10% MeOH; 4: 20% MeOH; 5: 30% MeOH; 6: 40% MeOH; 7: 50% MeOH. 
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Figure S6.3. Contour plots of the charge states of UCH as a function of the activation 

energy (e.g., deflector voltage) 
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Table S6.1. Experimental and theoretical CCSN2 of the observed fragments after digestion 

with CPDY. 

Fragment 
Mass 

(Da) 

Charge 

State 

Experimental CCSN2 

(A2) 

Most Intense Band 

Theoretical CCS N2 (A
2) 

Model preserves integrity 

of the core 

1-243 26623 

8 2650 2638 

9 2665 2656 

10 2683 2679 

14 4783 2758 

17 6113 2823 

18 6431 2844 

1-242 26460 

8 2645 2631 

9 2657 2653 

11 2692 2701 

19 7121 2867 

21 7778 2934 

1-241 26297 8 2613 2627 
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9 2658 2644 

15 5176 2750 

16 5233 2773 

17 5241 2802 

1-239 26022 

14 4721 2734 

15 4997 2751 

17 5980 2803 

18 6138 2818 

1-235 25474 

11 3054 2671 

13 3378 2711 

1-232 25129 

8 1923 2589 

14 4756 2688 

1-228 24693 16 5321 2731 

1-225 24323 

13 3884 2667 

18 5690 2821 

1-224 24226 14 3983 2773 
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1-220 23739 13 3856 2629 

1-218 23512 15 4973 2659 

1-216 23268 15 4902 2643 

1-212 22814 14 4538 2617 

1-209 22457 19 6740 2688 

1-207 22301 12 2974 2560 

1-201 21555 9 2036 2481 

1-197 21129 16 4893 2523 

1-192 20571 14 4348 2551 

1-189 20314 15 5023 2553 

1-186 20030 15 4829 2530 

1-183 19791 14 4728 2504 

1-179 19391 13 1725 2451 

1-177 19164 10 2856 2409 

1-170 18369 10 1984 2349 

1-168 18126 11 2957 2392 



206 

 

1-164 17567 9 2785 2232 

1-160 17067 13 3358 2284 

1-155 16511 12 3326 2230 

1-149 15838 14 3685 2253 

1-145 15303 13 3580 2210 

3-244 26568 15 5103 2776 

8-244 26053 9 2613 2632 

13-244 25493 14 4658 2704 

15-244 25306 13 4384 2633 

17-244 25049 14 4584 2643 

20-244 24663 11 2554 2568 

24-244 24127 16 5428 2651 

29-244 23643 17 4856 2659 

3-243 26029 9 2650 2638 

3-238 25591 15 5023 2697 

7-203 20879 8 2485 2423 



207 

 

17-188 18064 10 2328 2296 

18-174 16531 14 3294 2259 

38-126 8940 6 2404 1823 

49-113 6250 5 2365 1754 
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SUPPORTING INFORMATION FOR CHAPTER 7. ELUCIDATION OF THE 

STRUCTURAL INTEGRITY AND STABILITY OF THE KNOT PROTEIN HALO 

ACID DEHALOGENASE USING TRAPPED ION MOBILITY SPECTROMETRY – 

MASS SPECTROMETRY 

Figure S7.1. TIMS instrument scheme 
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Figure S7.2. Contour plots of the charge states of DehI as a function of the organic content 

(e.g., % MeOH). The solution conditions are labeled as follows: 1: 0% MeOH; 2: 5% 

MeOH; 3: 10% MeOH; 4: 20% MeOH; 5: 30% MeOH; 6: 40% MeOH; 7: 50% MeOH. 
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Figure S7.3. Contour plots of the charge states of DehI as a function of the activation energy 

(e.g., deflector voltage) 
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Table S7.1. Experimental and theoretical CCSN2 of the observed fragments after digestion 

with CPDY. 

Fragment 
Mass 

(Da) 

Charge 

State 

Experimental CCSN2 

(A2) 

Most Intense Band 

Theoretical CCS N2 (A
2) 

Model preserves integrity 

of the core 

1-325 36247 

8 3177 3229 

12 4803 3301 

13 5178 3326 

14 5633 3338 

18 8687 3413 

19 9300 3422 

1-323 35920 

8 3170 3212 

9 3568 3234 

11 4353 3279 

13 5111 3303 

14 5621 3327 

15 5880 3344 



212 

 

17 7614 3380 

1-320 35509 

18 8612 3663 

21 10538 3720 

25 12748 3802 

26 13498 3817 

28 14264 3844 

29 14629 3851 

1-318 35234 

9 3220 3181 

10 3684 3210 

13 5074 3271 

14 5539 3282 

15 5801 3306 

1-315 34882 

14 5401 3382 

17 7492 3436 

1-309 34173 

8 2984 2977 

9 3399 2999 



213 

 

1-306 33762 

8 2955 2946 

14 5428 3026 

1-298 33008 

19 9102 3219 

21 10447 3287 

1-283 31292 

10 3768 2769 

13 4993 2816 

15 5701 3855 

1-266 29352 8 2784 2588 

1-243 26750 14 5406 2760 

1-238 26150 

9 3246 2451 

18 8359 2674 

1-226 24847 8 2845 2338 

1-221 24163 

14 5237 2556 

15 5482 2573 

16 6372 2589 

1-207 22617 10 3462 2332 



214 

 

1-196 21465 10 3436 2325 

1-183 19868 11 3952 2348 

1-170 18412 14 5273 2423 

1-148 16099 9 3027 1996 

7-326 35664 

8 3176 3156 

9 3585 3167 

10 3963 3201 

11 4364 3217 

12 4788 3231 

12-326 35234 

10 3926 3178 

13 5132 3227 

16-326 34846 

8 3027 3012 

11 4026 3046 

18 8674 3184 

19 9133 3202 

20-326 34365 8 3054 2967 



215 

 

9 3488 2981 

10 3782 3000 

23-326 33939 

17 7568 3403 

21 10573 3470 

22 11034 3484 

27-326 33610 

8 2989 2867 

14 5501 2978 

28-326 33538 8 2977 2855 

31-326 33122 

12 4687 2889 

17 7462 2991 

39-326 32182 

8 2920 2651 

9 3346 2667 

43-326 31827 8 2864 2611 

48-326 31273 

10 3725 2779 

12 4583 2811 

60-326 29995 8 2745 2483 



216 

 

66-326 29416 

9 3172 2491 

15 5462 2573 

74-326 28476 8 2701 2413 

83-326 27369 16 6124 2791 

90-326 26661 11 3784 2478 

99-326 25663 

8 2647 2357 

13 4736 2446 

113-326 24180 

8 2638 2316 

10 3528 2350 

123-326 22922 8 2602 2268 

133-326 21895 8 2561 2204 

148-326 20309 8 2528 2178 

89-312 25980 7 2355 2317 

90-313 24933 14 4782 2641 

87-310 24920 18 8036 2796 

83-308 25072 8 2545 2265 



217 

 

80-304 25045 6 2289 2139 

79-300 24793 7 2336 2130 

77-291 24040 10 3467 2311 

71-283 23749 13 4017 2374 

65-277 23856 14 4073 2426 

64-263 22338 10 3234 2201 
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