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ABSTRACT OF THE THESIS 

USING UNMANNED AERIAL VEHICLES FOR WIRELESS LOCALIZATION IN SEARCH 

AND RESCUE MISSIONS 

 

 

 

 

 

       

     

         

          

     

  

    UAV technology has shown limitations in the navigational performance and limited flight time. 

Procedures to optimize these limitations are presented. Additionally, how the UAV is maneuvered 

during flight is analyzed, considering different SAR flight patterns and Li-Po battery consumption 

rates of the UAV. Results show that controlling the UAV by remote-controll detected the most 

probes, but it is less power efficient compared to control it autonomously.  

 

 

 

 

 by

 Virgilio Acuna

 Florida International University, 2018

 Miami, Florida

 Professor Ismail Guvenc, Major Professor

This thesis presents how unmanned aerial vehicles (UAVs) can successfully assist in search and 

rescue (SAR) operations using wireless localization. The zone-grid to partition to capture/detect 

WiFi probe requests follows the concepts found in Search Theory Method. The UAV has attached 

a sensor, e.g., WiFi sniffer, to capture/detect the WiFi probes from victims or lost people’s 

smartphones. Applying the Random-Forest based machine learning algorithm, an estimation of the 

user's location is determined with a 81.8% accuracy.
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CHAPTER I 

Introduction 

 

Search and Rescue Emergency scenarios demand a rapid response from first responders to gather 

information about the localization of victims and reach them promptly. A scenario, for example, 

can be people who are left trapped inside a building after it collapsed, including unconscious 

victims, without the availability of a wireless connection to call for assistance and disclose their 

location to the search and rescue personnel [1, 2]. Search and Rescue (SAR) scenarios involved 

natural and human-made disasters that can cause damages to the existing cellular infrastructure [3] 

and situations in which the victims may have stepped outside the cellular coverage area, as in the 

case of lost hikers in national parks [4]. What is the most effective and systematic way of searching 

an area of distress to localize lost people or affected victims? According to the national SAR 

manual, which is the standard reference document adopted by all the SAR communities, the grid 

(zone) searching pattern is defined as the most effective search pattern to localize either lost people 

or distressful victims during SAR Emergency scenarios.  

SAR operations involve temporal and spatial components that must be considered when 

planning and managing a mission. Detecting the location of the victims in the least possible amount 

of time is critical since any delays will likely reduce the chances of survival [27]. Obtaining a rapid 

overview of the situation becomes crucial, and the sky supplies a mobile vantage position to deploy 

assistance at the right time and location. Gathering the maximum data over the affected area or 

designated search area provides a wide-area situational awareness for distributing the scarce 

resources of time and rescue team/equipment. With many onboard sensors (e.g., thermal and 

optical cameras, LIDAR, remote sensing devices, and GPS), an Unmanned Aerial Vehicle (UAV) 

can capture data during SAR operations and transfer it to a ground base station in real time [28]. 
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Recent advances in hardware and software technology have allowed UAVs to perform a 

broad set of tasks and enable their use in many different civilian applications, including SAR, 

mapping, and surveillance of a region of interest. UAVs have shown to be a promising and 

powerful technology to conduct SAR operations safer, faster, and more efficiently due to their 

agility, portability, and aerial advantages. Furthermore, UAVs reduce the likelihood of exposing 

SAR members to unnecessary danger during SAR operations and provide access to remote or 

difficult-to-reach locations deemed dangerous for the SAR crew or those that take a long time to 

reach. The introduction of UAVs will make disaster relief operations faster and safer [29]. 

As UAVs are becoming more ubiquitous, the SAR communities have capitalized on their 

use to assist and supplement in a search procedure or disaster response and relief [30, 31,32]. In 

an UAV-based search and rescue operation, a good line of sight and the discretization of the search 

area render a high probability of localizing a victim in a given zone [9]. Hence, UAVs can employ 

different search strategies to localize victims in a given designated search area. An image 

processing technique to locate victims is used by the UAVs in [10, 11]. 

However, given the limited visibility and cluttering conditions observed during the 

emergency, it might not be possible to accurately detect and track individuals using wireless 

cameras or real-time video, especially from longer distances. As an alternative to the camera 

vision-based localization of victims, Wi-Fi signals from victims’ wireless devices may also be 

used by UAVs for SAR operations [12, 13]. Attached to the UAV is the Tetra Wi-Fi Pineapple 

sensor to detect Wi-Fi probe requests, which are a ubiquitous feature used in smartphones, enabled 

by default and rarely ever disabled by the user. Smartphones use probe request transmissions to 

scan and to find Wi-Fi access points (APs) [47, 48, 49]. The smartphones send out probe requests 

to connect to previous APs or discover new APs available in the vicinity. Probe request 

transmissions, i.e., beacons, take place every few seconds, and the smartphone can be detected if 
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it is within signal range, even if the user does not connect to the APs. By deploying a packet 

analyzer tool to sniff Wi-Fi, Tetra Wi-Fi Pineapple [50] detects the probe requests transmitted by 

smartphones and can potentially reduce the area of interest to search during SAR operations. 

Hence, a machine learning technique is used to localize Wi-Fi devices by capturing/detecting 

probes using a UAV.   

The use of a UAV as a tool for SAR operations contains limitations. The flight time of a 

UAV is limited. The flight performance of the UAV can be affected by the addition of weight to 

its overall payload mass. For example, the UAV stability performance controlled by the embedded 

navigational sensors found in the flight controller can be reduced, the already limited flight time 

can be further lessened, and the climb rate reduced, especially during autonomous flight in altitude 

hold and hovering flight mode. Not only the navigational performance of the UAV is reduced, but 

also the power consumption of the UAV works harder by drawing more energy from the battery.  

The search trajectory set by the SAR crew for the UAV to fly also has an adverse impact on the 

flight time, the power consumption of the UAV, and the number of probes detected/collected.   

In this thesis, a machine learning algorithm is used to predict the correct occupancy zone of 

Wi-Fi devices from a geographical zone grid division. The chosen algorithm for this application 

depends on the size and quality of the data and the extracted parameters from the sensor used. 

Then, the algorithm classifies the collected observations and predicts an outcome with high 

accuracy.  

The thesis also addresses the limitations posed by the UAV technology. It presents in-depth 

procedures to maximize the flight time of the UAV, improves its flight performance, and how the 

sensory operations are affected in detecting probes by the search flight patterns flown by the UAV. 

The thesis is organized in the following order: 
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Chapter 2 discusses a literature review about the main issues on Wi-Fi localization and UAV 

technology. 

Chapter 3 concentrates on the localization of Wi-Fi devices using probe requests captured by 

Unmanned Aerial Vehicles. 

Chapter 4 presents procedures to extend the flight time of Unmanned Aerial Vehicles and 

flight patterns detecting the most probes.  

Chapter 5 draws conclusions on Wi-Fi localization captured by Unmanned Aerial Vehicles, 

processes to extend their flight time, the effective flight pattern to detect probes, and future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4



	

	 		

CHAPTER II 

Literature Review 
 
2.1    UAVs as SAR Platforms 

UAV’s platforms have rapidly begun to be adopted for search and rescue operations [5, 6,  8]. The 

SAR teams have realized the lifesaving capabilities of UAVs due to their easy deployability and 

airborne characteristics that render a good line of sight with the ground entities. Once they are 

deployed to conduct a flight mission, UAVs can monitor the designated search areas using various 

sensors mounted onto their frames and connected to the flight controller. UAVs can be used as 

aerial platforms to collect images to monitor a disaster area [33, 34]; to rescue natural disaster 

victims and transport medical samples and supplies [35]; to carry a payload of different visual 

sensors and digital image stabilization circuit to stabilize thermal and RGB video to support first 

responders in disaster scenarios [36, 37]; to generate fast and actionable 3D maps modeling a 

disaster scene for emergency response [38]; to provide orthomosaics images of the data captured 

during a SAR flight mission to assist responding agencies [39]; and to use RGB-Depth sensors to 

build 3D point cloud models of disaster scenes and import them into a state-of-the-art game engine 

for first responders to interact with the simulated environment [40]. 

Furthermore, an essential role of UAVs in SAR operations has been a combination of aerial 

photography, including associated pattern recognition and image processing algorithms [41] and 

remote image sensing [42, 43, 44]. Thermal sensitivity and zoom capabilities, enhanced IR 

sensors, and a higher heat detection combined with pan tilt zoom capabilities are some of the 

advanced features provided by thermal imaging cameras that can be mounted onto the UAV for 

SAR operations. With the designed image recognition algorithm captured by the UAV, the 

technology has shown levels of success by detecting the search objects or victims. Hence, UAVs 
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are capable and adaptable to be used, as aerial platforms to collect disaster scenes data over 

designated search areas that used to be carried out by conventional airborne platforms. 

2.2    Wireless Localization 

As an alternative to the camera vision-based localization of victims, Wi-Fi signals from victims’ 

wireless devices may also be used by UAVs for search [12, 13, 14, 15, 16, 17]. 

This search strategy can help in delivering food and medical packages using UAVs [12], analyzing 

pedestrian/vehicular traffic pattern during evacuation [18], and identifying the indoor location of 

people stuck in a fire building [19]. Therefore, using a passive sniffer, such as a Wi-Fi Pineapple 

[21], it is possible to capture and decode ambient Wi-Fi probe requests broadcasted by Wi-Fi 

devices, such as smartphones and tablets [20]. To find a Wi-Fi device’s location, we extract the 

received signal strength indicator (RSSI), unique MAC address of the Wi-Fi devices from the Wi-

Fi probe requests, and record them at different locations of a UAV (captured using GPS).  

   While triangulation based techniques can be used to estimate the location of the Wi-Fi device 

from an estimated distance at different locations [19], for localization in 3D scenarios, RSSI no 

longer depends monotonically on the distance and can show significant variations, as a function 

of the UAV elevation [See Fig. 4].  

2.3    Similar Work 

In [51], a UAV is used to reliably detect Wi-Fi-enabled mobile phones from relatively long ranges, 

giving the sensor’s range capability. From the air, the UAV detects the probes, and on the ground, 

the mobile phones have a custom application installed to extend the battery life and to continue 

sending Wi-Fi frames, even while the phones’ display is turned off. As long as the phones remain 

on, they will continue to broadcast Wi-Fi probe requests scanning for any active Wi-Fi access 

point in the vicinity. In [61], a UAV captures Wi-Fi probes in a zone-grid area flying at different 
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heights. Smartphones are placed in each partition of the zone-grid area, and the UAV captures the 

Wi-Fi probe requests to determine the localization of each device.  

In this thesis, a different approach is taken in that the UAV is kept in the air the longest 

possible amount of time by implementing the procedures outlined to extend the flying time of the 

UAV.  Keeping the UAV longer in the air is crucial for the continuous capture/detection of Wi-Fi 

probes to collect more probes and increase the probability of their localization. The more probes, 

the better the prediction model, e.g., Random Forest Algorithm, to associate a Wi-Fi device 

accurately with the correct zone that provides a coarse location information about the Wi-Fi 

devices. 

  However, UAVs have a downside of additional power consumption to the addition of 

sensors and flight maneuvers while conducting SAR operations. Additional weight to the payload 

mass of the UAV takes energy away from the battery and affects the duration of the overall flight 

time. Similar works [45, 46] have also addressed the effect of weight on the flight duration of a 

UAV and have simulated the energy consumption of the UAV battery on various flight scenarios. 

The analysis in this thesis uses a different approach by flying in real time a UAV autonomously 

and manually to show how flight patterns affect the battery performance. The concepts of 

propellers’ calibration and functions of Lithium Polymer (LiPo) batteries are analyzed. These 

concepts show either a positive or negative effect on the navigational performance, which is crucial 

to have during SAR missions, and either reducing or extending the flight time of the UAV, which 

is a significant constraint to the limited time the aircraft has in the air. These concepts have had 

limited analysis in real time in the literature. Furthermore, this work differs in that different actual 

search patterns are flown, and how each pattern is more efficient at detecting probes. The flight  

pattern and search area are determined by understanding the type of terrain and search object, as 

outlined by Search Theory Method. 
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CHAPTER III 

Localization of Wi-Fi Devices Using Probe Requests Captured at Unmanned Aerial Vehicles 
 

3.1    Environmental Setup for the Experimentation  

3.1.1    Wi-Fi Pineapple  
The Wi-Fi Pineapple Mark V is a wireless network auditing tool [21], which is accessible remotely 

via a Wi-Fi interface. It is power up using a rechargeable battery connected to its DC port. The 

rechargeable battery is light in weight, making it portable and ideal to use in the experiment. The 

Wi-Fi Pineapple has dual Atheros AR9331 system on a chip with integrated radios, including a 

400 MHz MIPS processor, a 16 MB ROM, and a 64 MB RAM. The Wi-Fi Pineapple is accessible 

through a web interface or an inbuilt Unix machine called BusyBox [22]. In this experiment, the 

Wi-Fi Pineapple equipment [23] is mounted onto a Tarot 650 UAV as shown in Fig. 1. 

3.1.2    Mission Planner 

Mission planner is a ground control station that can be used to remotely control a plane, copter, 

UAV, or rover [24]. It is used as a configuration utility or a dynamic control supplement for 

autonomous vehicles. Using mission planner, we can analyze the telemetry logs obtained from the 

UAV and stored on the SD card. The telemetry log includes the communication messages between 

the ground station and the UAV. These messages are known, as the MAVlink command messages, 

and they provide information on the UAV flight path, dynamics, and status. The real-time GPS 

coordinates of the UAV, needed for this experiment are extracted from the telemetry logs. The 

GPS coordinates are expressed 
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Fig. 1. (a) Experimental setup with Wi-Fi Pineapple mounted on a drone, and (b) Model used to 
access packets from Wi-Fi Pineapple remotely to localize a Wi-Fi device. 

 

as a combination of the latitude, longitude, and altitude. The altitude information enables a 3D 

localization of the Wi-Fi devices on the ground. 

3.1.3    Virtual Private Network 

The experimental setup of the Wi-Fi Pineapple mounted onto the UAV is shown in Fig. 1(a). We 

can access the Wi-Fi (a) Google Earth image of the path traveled by the UAV and (b) Processed 

path in the coordinate system, as illustrated in Fig. 2. However, the UAV, having the Wi-Fi 

Pineapple mounted onto the bottom of the frame, will be flying at different heights and remote 

locations. Therefore, a smartphone is mounted onto the UAV 

9



	

	 		

 

Fig. 2. UAV flight plan used for Wi-Fi localization. 
 

to provide Internet connection to the Wi-Fi Pineapple. Alternatively, a USB modem can also be 

used, instead of a smartphone, to reduce the payload on the UAV. Through the Internet connection, 

we establish a virtual private network (VPN) connection between the Wi-Fi Pineapple and the user 

terminal, as illustrated in Fig. 1(b). The experiment used an open-source software application 

called OpenVPN that implements VPN. OpenVPN uses the OpenSSL library to provide encryption 

of  the data and the control channels. The public safety data available captured by the Wi-Fi 

Pineapple and the UAV during SAR operations can be critical and sensitive. Therefore, a VPN 

connection ensures a secure communication between the UAV and the emergency first responders’ 

terminal. The VPN connection presents an ability to safeguard the public safety data from any 

possible cybersecurity threat. 

 

3.2 Capturing Data with WI-FI Pineapple  

3.2.1 UAV Deployment to Capture Wi-Fi Probe Requests 

The UAVs fall into two broad categories, as either rotary wings or fixed wings. Given the 

application of this experiment, a Tarot 650 rotary-wing UAV is utilized. The Tarot 650 quadcopter, 

since it has 4 propellers, is equipped with a Pixhawk autopilot suitable for a rotary wing UAV, 
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having autonomous navigation, a power source, and telemetry. It can communicate to a ground 

base station and capable of carrying a payload of 6 lbs. The blueprint for a random flight plan of 

the UAV can be obtained from the mission planner ground control station. Furthermore, we also 

use the mission planner to create the KML and the GPX files of the UAV flight plan. These files 

record the GPS flight data from the very beginning the UAV is connected to the mission planner 

via telemetry and generate the map annotation to open with Google Earth, as shown in Fig. 2a, and 

view the flight plan in the coordinate system, as shown in Fig. 2b. The telemetry radios are used 

to connect wirelessly to the UAV and to communicate with the ground control station from the air, 

using the MAVLink protocol. During SAR missions, this interactive communication link allows 

the reception of real-time data from the UAV. The telemetry radios are connected to the user’s 

laptop or tablet using a USB cable, and the laptop serves as the ground control station. The 

approximate range of telemetry radios is about one mile and on a periodic basis provide the UAV 

status.  

3.2.2    UAV Flight Trajectory to Capture Wi-Fi Probe Requests  

The Federal Aviation Administration (FAA) has created the National Airspace System (NAS) to 

establish standard operating procedures and regulations for UAV operations in  
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Fig. 3. Unique devices identified from different manufacturers based on the Wi-Fi probe requests 
captured at the UAV. 

 

the civilian airspace safely and efficiently. The FAA newer provisions to Part 107 integrates the 

UAVs into the NAS . The FAA rules prohibit any operators to fly a UAV beyond 400 feet and 

beyond the operator's line of sight. Moreover, the flights must not operate within five miles of any 

major airports and two miles from any heliports. In our experiment, the UAV operates following 

all the FAA regulations. The test cellphones are positioned in the field in the form of a grid. All 

the test cellphones are separated from each other a distance of 24 feet, as shown in Fig. 5. In our 

experiment, the UAV follows a flight pattern used for mapping missions. In this flight plan, the 

UAV flies in a circular pattern at different altitudes over the geographical area of interest to capture 

Wi-Fi probe requests.		
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3.2.3    Using Wi-Fi Pineapple to Capture Wi-Fi Probe Requests  

In our experimentation, we automate the scripts to control Wi-Fi Pineapple through the 

customizable boot modes. Using the Wi-Fi Pineapple web interface, we specify the script to run 

on boot up, and on subsequent bootup, the Wi-Fi Pineapple executes the commands listed in the 

script. Once the Internet connection is established, the date and time in the Wi-Fi Pineapple are 

updated using an NTP server. Upon boot up, the Wi-Fi Pineapple starts capturing Wi-Fi probe 

requests in the 2.4 GHz band. The Wi-Fi Pineapple also captures the Wi-Fi packets originating 

from the nonexperimental Wi-Fi devices that are within the range of the Wi-Fi Pineapple. The data 

obtained by the Wi-Fi Pineapple is time stamped and includes the MAC address, the RSSI, and 

the manufacturer’s name of the Wi-Fi enabled devices. Based on the Wi-Fi probe requests 

captured, Fig. 3 illustrates the different type of devices detected during the flight trajectory of the 

UAV. 

3.2.4    Wi-Fi Probe Requests Traffic Capturing using Wireshark  

To obtain the live Wi-Fi probe requests captured by the tcpdump analyzer, we SSH into the Wi-Fi 

Pineapple over the VPN tunnel. The captured packets are dumped into the console of the ground 

control station, and then, they are further analyzed using Wireshark packet analyzer. These packets 

contain SSIDs, RSSIs, timestamps, MAC addresses, and packets count. However, we only retain 

Wi-Fi probe request packets relevant to our experiment, as shown inTable I. These are the Wi-Fi 

devices we are interested in localizing.  
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Packet 
number 

Time 
stamp 

RSSI 

(dBm) 

MAC 
Address 

Device 
number 

Latitude Longitude Elevation 

(ft.) 

857 20:02:55 -65 10:c3:7b 3 25.7491 -80.37400 35.10499 

860 20:02:55 -63 10:c3:7b 3 25.7491 -80.37400 35.10499 

863 20:02:58 -75 AsustekC 2 25.7491 -80.37403 36.28609 

866 20:03:00 -67 SamsungE 4 25.7491 -80.37400 37.86089 

870 20:03:01 -56 SamsungE 4 25.7491 -80.37410 39.63255 

879 20:03:01 -67 MurataMa 5 25.7491 -80.37412 39.30446 

TABLE I. Example for Captured WiFi probe request packets for a duration of 6 seconds. 

The GPS coordinates are obtained by synching the time of the Wi-Fi Pineapple and the flight 

controller internal clock. The timestamp of each captured Wi-Fi probe request is then mapped to 

its corresponding GPS coordinate. 

3.3    Random Forest Algorithm 

In this thesis, the random forest machine learning algorithm [25] is used to localize the Wi-Fi 

devices into the predefined zones, based on the observation of RSSIs from the Wi-Fi devices. The 

Random Forest Algorithm (RFA) produces a high accuracy classifier with a low error rate, which 

is the main motivation for choosing this technique. Furthermore, it can efficiently run on large 

databases, handle thousands of input variables without variable deletion, provide estimates of what 

variables are important in the classification, provide an effective methodology for estimating 

missing data, and build the models quickly where large samples are employed. Therefore, in this 

experimentation, we analyze a larger number of observations to provide an accurate localization 

of the Wi-Fi devices using the RFA. 
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The RFA is a combination of machine learning methods, using an ensemble of decision trees 

in which each node is split, using the best among a subset of predictors. The main goal is to reduce 

the variance of the predictor while the bias remains the same. A randomness is injected into the 

forest by applying bagging (bootstrap aggregation), where the labeled training data is randomly 

sampled [26]. The variance reduction of bagging the tree-growing process is improved by using a 

random selection of the input variables. The intuition behind this approach is to build a strong 

classifier utilizing a combination of weak classifiers [26]. 

As illustrated in Fig. 4, the RFA employs decision trees that place data into a categorical 

classification and uses an aggregating approach. Rather than just using and growing one tree, the 

random forest utilizes the aggregating output, considering many shallow trees. The reason behind 

this is that aggregating the errors from all the shallow trees provide a better accurate prediction to 

the overall classification objective. Each decision tree is a weak learner. However, the RFA is a 

combination of all weak trees to create a strong learner. The RFA has terminal nodes lying at the 

bottom of the decision tree. The algorithm starts at the top and then traverses down by choosing a 

small sample of data at random, creating smaller subsets, starting at Tree 1, Tree 2, and until 

reaching a total number of Tree B to create a Random Forest. The objective is to combine all the 

smaller subsets, which are individual decision trees, to model a single forecast prediction. 
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Fig. 4. RFA for aggregating output decision trees. 

The operation of the RFA classifier can be summarized as follows. Suppose we have the 

training set 𝐷 = 𝑥$𝑦$ , 𝑖 = 1,… , 𝑛,	with 𝑥$	𝜖	ℜ.. Then, 

1) RFA generates the bootstrap samples 𝐷0 from the training set 𝐷 with replacement where 
𝑏 = 1,2, … , 𝐵. 

2) For each 𝐷$, RFA constructs a classification tree 𝑇$ and grow it until the minimum node is 
reached. At each node, the RFA chooses the random subset of features 𝑚	 𝑚 < 𝑑 , and 
only consider splitting at those features. 

3) Let 𝐶0 𝑥  denote the class prediction of random forest tree 𝑇0 by 𝑏9: tree. Then, the RFA 
prediction is given by the following majority vote: 
 

𝐶;<= 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑥 	 𝛴0BC= 	𝐼 𝐶0 𝑥 = 𝑔 . 

 

3.4    Numerical and Experimental Results 

In this section, we apply the machine learning technique to the larger amount of data captured from 

the Wi-Fi Pineapple and the UAV GPS, and then, present numerical results on the accuracy of the 

RFA for the considered scenario. 
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Fig. 5. Classification of Wi-Fi devices into different zones using the longitude, latitude, altitude, 
and RSSI captured at UAVs. 

3.4.1    Device Localization Using RFA 

The main goal of our experimentation is to accurately associate a Wi-Fi device with the correct 

zone that provides a coarse location information about the Wi-Fi device’s location. We deploy six 

different phones at specific locations (zones) and have the arrangement, as displayed in Fig. 5. We 

divided our region into six zones and labeled them, as 𝑦E where n ∈ {1, 2, 3, 4, 5, 6}. The partition 

design is chosen to allow the UAV flying at any given zone to capture Wi-Fi probe requests from 

adjacent and nonadjacent regions. The design permits the creation of many decision trees chosen 

from any given zone and even many trees from the same zone, and each has a different subset of 

features to create the random forest.  

Device 1 216 Device 2 408 

Device 3 407 Device 4 499 

Device 5 110 Device 6 170 
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TABLE II. Size of the training data for each device. 
 

Actual Predicted 

 Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5 Dev. 6 Class 
error 

1 183 8 9 13 0 2 0.1488372 

2 2 340 36 20 2 8 0.1666667 

3 6 30 337 20 3 5 0.1596010 

4 7 20 15 440 6 10 0.1164659 

5 2 9 13 19 61 5 0.4403670 

6 2 16 10 20 2 119 0.2958580 

 

TABLE III. Confusion matrix constructed using captured data. 

Let D denote the total number of observations captured by the UAV, where we have 𝐷 =

1810	for our experiment. The training data set is distributed among the six devices, as shown in 

Table II. Out of 𝐷 observations, 𝐷$ sample cases are chosen at random, to start training the data 

and constructing multiple trees. In this experimentation, each tree will have a random selection of 

variables as input, having a different set of features chosen from the data. For instance, zone-1 may 

have predictors chosen at random, having Phone1 and Phone2 and using a random subset of 

features of Altitude and MAC address to create TREE1, while another tree TREE2 may have 

predictors chosen at random from zone-2, having Phone3 and Phone4 and, using a random subset 

of features of RSSI and Longitude. The process will continue to create randomness into the model 

by considering the subsets of distinctive features falling into different zones. 

 

The algorithm shows how a combination of decision trees are constructed using the 

bootstrapping technique with replacement. The five attributes utilized in the method are  
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longitude(x), latitude(y), altitude(z), RSSI, and MAC Addresses, which are randomly selected 

from the best possible split among the variables. For each split, the best split among all attributes 

are chosen. The number of attributes to search at each best possible split is 2, which is determined 

by taking the square root of the total number of the 5 attributes used in this experiment. Using 

bootstrapping techniques for classification experiments and taking the square root of the total 

number of attributes or features are preferred. The process continues until a complete random 

forest is created by displaying the data in a confusion matrix, as depicted in Table III. Since RFA 

is capable of handling a significantly large amount of data as input variables, the method is utilized 

by experts in categorical classification as presented in this thesis. 

3.4.2    Confusion Matrix 

The data is displayed using a confusion matrix, as shown in Table III. The matrix is composed of 

zones, with each row representing the original classification of the test devices arrangement on the 

ground and the columns representing the predicted classification. In Table III, the diagonal 

elements in the confusion matrix signify the number of Wi-Fi probe requests captured and 

correctly identified to the test device on the ground. For example, consider the diagonal element 

[1, 1] = 183 of the matrix, the value of 183 implies that the number of captured Wi-Fi probe 

requests belong to device#1, during the original and generated classification. Whereas, the non-

diagonal matrix element represents mismatched classification falling under a different test device. 

For example, matrix cell [1, 2] = 8 implies the Wi-Fi probe requests were incorrectly classified 

under device#2 instead of device#1. 

  The last column in the confusion matrix shows the class error for each of the six classified 

devices on the ground. Intuitively, we can conclude that the UAV correctly captured and mapped 

the bulk of the classification generated from the original Wi-Fi probe requests to the test devices 

on the ground. For example, the device #2 has a class error of 0.1666667, indicating that 
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approximately 16% of the originally captured Wi-Fi probe requests from the device will not show 

up in the classification generated. However, an interesting advantage of having the data tabulated 

in a confusion matrix is the overall accuracy of the classification model. In the case of device #5 

and #6, a higher class error is obtained, as compared to the other devices due to a smaller size of 

the observation data. The smaller size of the observation data is due to the captured probe requests 

not being part of the classification generated, negative GPS coordinates recorded for the captured 

Wi-Fi probe requests,  or the interval at which the device transmits the Wi-Fi probe requests. 

3.4.3    Results Analysis 

In this experimentation, we observe that the prediction of the random forest has an 81.8% accuracy. 

Overall, the accuracy describes how often the performance of the classifier is correct. We use the 

following equation to determine the overall accuracy of the method:  

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 =
𝑁MN + 𝑁MP
𝑁MQ9RS

	 , 

 

(1) 

 

   
 

 

where the number of true positives (TP) (𝑁MN) is the number of occurrences when the model 

predicts the correct probe requests captured in the correct cell, which are found by adding all the 

diagonal elements in the confusion matrix, as depicted in Table III. The number of true negatives 

(TN) is denoted by 𝑁MP, which predicts correctly the probe requests captured not falling in the 

correct cells and are found in the row elements of the confusion matrix, except for the diagonal 

elements, as illustrated in Table III. The 𝑁MQ9RS is the number of all observed probe requests 

captured during the experiment, as shown in Table II. 

  This implies that there is an 81.8% chance that the phone location on the ground is correctly 

identified in the zone where the Wi-Fi device is located, as illustrated in Fig. 5. However, if 
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precision and recall for the entire classification model are to be computed, the model does show 

larger gains. In particular, the precision can be calculated as:  

 𝑃 =
𝑁MN + 𝑁<N	
𝑁MQ9RS

	, (2) 

 

where 𝑁<N is the number of false positives (FP), which classify data in the model, as the Wi-Fi 

probe requests captured falling in the correct cell classification generated but falling in the wrong 

cell. FPs are the row elements in the Confusion Matrix. For this experiment, the predicted and 

generated Wi-Fi probe requests captured by the Wi-Fi Pineapple belong to the same test device on 

the ground. The precision model has an 82% precision classification, implying the predicted Wi-

Fi probe requests coming from any of the six test devices is matched correctly to the generating 

test device. 

  On the other hand, the recall for the RFA is calculated as:  

 
 𝑅 =

𝑁MN
𝑁<P

	, 

 

(3) 

where 𝑁<P is defined as the number of false negatives, which classify WiFi probe requests 

captured, as falling in the wrong cell classification but having actually falling in the correct cell. 

The false negatives (FNs) are found in the column elements of the matrix. The model has an 80% 

recall classification, implying the predicted Wi-Fi probe requests from any of the six test devices 

is matched correctly to the generating test device. This model shows a strong correlation between 

precision and recall, demonstrating how accurate the model is in predicting the location of the test 

devices on the ground grid, as shown in Table III. 
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CHAPTER IV 
UAV Procedures to Extend Flight Time for Search and Rescue Operations Using Wi-Fi Probe 

Requests 
 

 
4.1    Environment of Experimental Design  

4.1.1    Sensor to Detect Wi-Fi Probes  

The sensor used in this research to detect Wi-Fi probe requests is called Wi-Fi Pineapple Tetra, 

which is a Wireless Auditing Arsenal [50] that is used for Wireless Penetration Testing. Unlike 

the Wi-Fi Pineapple previously discussed in section 3.1.1, the Tetra is bigger. Therefore, it has a 

more extensive footprint, and the antennas are upgraded to a 5dBi range, increasing the coverage 

area. The Tetra dual-band (2.4/5 GHz) capabilities provide the solution to the continuous detection 

of probes in either band. Tetra is powered up by a DC battery, providing its own entirely 

independent power and does not strain the battery of the UAV. Due to its design implication for 

portability, long-term deployment, and on-the-move auditing, Tetra is ideal for mounting by straps 

at the bottom of the UAV frame. The weight difference compared to the Wi-Fi Pineapple, the 

architecture of the Tarot 650 is able to handle the added payload of  the Tetra when flying over the 

designated search area detecting probes. For our research, to establish a secure connection between 

the Laptop and Kali Linux to code the Tetra, we used a Virtual Private Connection and PuTTY. 

PuTTY is an open source software that is used as an SSH client for the Unix Machine. For 

collecting data, we used a virtual machine application Kali Linux VMware to operate the Tetra 

relative to the ground base station. The Kali Linux contains pre-install applications, including 

Wireshark, an application that analyzes packets [52]. Each probe detected is synced to the UAV 

flight controller to obtain the GPS coordinates in a 3-D format from the telemetry logs obtained 

from the ground base station.  
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4.1.2    DroneDeploy 

DroneDeploy is a software platform for UAVs to create a real-time mapping of an area of interest 

and to provide information about the planned flight [53]. The planned flight of the UAV includes 

the entire search area, the total time based on the flight pattern, the altitude to fly the mission, and 

the number of batteries required to complete the planned flight. DroneDeploy works great in 

scanning and creating SAR flight patterns of the search area without having to deploy the UAV. 

In this work, DroneDeploy is used to create different search patterns for the UAV to fly 

autonomously and compare the results to piloting the UAV remote-control. Each search pattern 

takes different total time and has a different effect on the battery consumption of the UAV. The 

variation of probes identified is based on the search pattern flown by the UAV. 

4.1.3    FAA Rules and Regulations for UAVs  

There are a set of rules outlining safety guidelines for operators to follow when flying a UAV that 

is set by the Federal Aviation Administration (FAA) [54]. The FAA is the agency responsible for 

overseeing the safety of civil aviation. Operators must maintain the UAV within visual line of 

sight, i.e., they must be able to see the UAV with their naked eyes, and fly it only in the daylight. 

The maximum altitude to keep the UAV is under 400 ft. from the ground, and it cannot be flown 

over people or nearby buildings. Due to the UAV flight tests conducted for this thesis in an area 

the size of about two acres and without the involvement of any pilot using the fully autonomous 

capabilities of the UAV, the operator must fly following the FAA guidelines to keep any damages, 

if any were to occur, to a minimum. To assist the operator in determining whether there is any 

flight restriction at the location where the UAV is operated, the B4UFLY smartphone app is used. 

All FAA safety guidelines are followed during all flight tests conducted for this study.  
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4.1.4    UAV Used for the Experiment  

Given the application of this experiment, a rotary-wing UAV is used for its capabilities of vertical 

takeoff and landing, capacity to hover at specific locations as set by the autonomous function or 

by the pilot when flying in RC mode and perform a variety of flight maneuvering. The UAV is a 

quadcopter, having a Tarot 650 frame. The Tarot 650 is a lightweight and sturdy frame made up 

of carbon fiber material. The Tarot 650 is equipped with four 620 kV high power brushless motors, 

30-amps Electronic Speed Controllers to supply the amperes controlling the speed of the brushless 

motors, 13-inch carbon fiber propellers, and a 4S 4000 mAh Lipo-battery, which provides between 

15 and to 20 minutes of quality flight time. The payload capacity of the UAV is about 2.5 kg and 

a 3-4 kg takeoff weight. The Tarot 650 quadcopter is equipped with a power distribution board 

(PDB) to distribute power efficiently to all the components on the UAV. The PDB is a crucial 

component of the UAV, and if it is not chosen and configured the right way, the UAV could end 

up crashing to the ground. The PDB is a circuit board that connects the LiPo battery to all the ESCs 

on the UAV. Furthermore, the Pixhawk autopilot is positioned at the top plate of the frame and 

connected to an external GPS module away from the different components of the UAV, avoiding 

or keeping to a minimum any interference from the motors, propellers, or sensors. The GPS module 

connects to the GPS satellites to receive precise navigational data for Stabilize and Auto flight 

mode. 

4.2    Search Theory Method 

In this paper, we use the search theory method of probability that has been utilized for SAR 

operations since WWII [55]. Applying its mathematical foundation to SAR operations, the theory 

has shown to be valuable by optimizing the allocation efforts to designated search areas and 

increasing the likelihood of detecting the lost subject in the least possible amount of time. This 

method is chosen for its practical applications to search planning techniques and for its 
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effectiveness in increasing the probability of the overall search success rate. Moreover, the study 

extends the concept of search theory used in the ground to the air, using a UAV and the Wi-Fi 

Pineapple Tetra as the sensor to detect the search object(s).  

  There are uncertainties in any SAR mission, i.e., what areas to begin searching in any given 

terrain to maximize any Wi-Fi probe requests detection. Other types of uncertainties include how 

the weather may impact the UAV itself, the Wi-Fi Pineapple Tetra sensor mounted onto the UAV 

to detect probes, and any foliage, which might be covering the phones on the ground. Considering 

and understanding these uncertainties quantitatively using probability theory techniques will 

maximize the overall chances of a successful SAR mission. 

4.2.1    Probability of Containment 

The amount of area to cover during SAR missions is limited to maximize the chances of finding 

the search object quickly. After all available facts have been gathered, a search area is determined, 

providing the possible location of the search object. This process is known as the probability of 

containment (POC). The POC not only determines the possibility area by eliminating the less likely 

areas not containing the search object but also divides a larger area into sub-areas since the amount 

of area to efficiently cover is limited. Sensor technology is used on UAVs to carry out one or more 

tasks during SAR missions, and the measure of how well the sensors performed undertaking the 

SAR missions is known as the probability of detection (POD). 

4.2.2    Probability of Detection 

Factors that affect the probability of detection (POD) are the type of terrain, the type of search 

object or the detection of probes, and the type of sensors use. POD performance is measured by 

the ability to detect the search object only if the search area includes the object. Based on 

probability theory, this concept is known as conditional probability. By  definition, conditional 
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probability explains the probability of an event occurring given the previous or other events have 

already occurred.  

An area can be searched under different circumstances giving a different probability of 

detecting the search object. The likelihood of finding the search object is high if the object is in 

the area at the time of the search. During the search, the POD predicts how well the sensors perform 

or how thoroughly an area has been searched. In some SAR cases, an area may have to be searched 

multiple times to increase the likelihood of detecting the search object. Neither the POC nor the 

POD stand-alone is a valid measure to predict the chances of success during a search. The 

probability of success (POS), however, is an accurate measure to predict the chances of success 

during a search. 

4.2.3   Probability of Success 

The POS is defined as the probability of finding or detecting the search object in the designated 

search area. The POC and POD determine the value of POS. The POS can be expanded using 

probability theory notation and expressed as: 

 𝑃 𝐴⋂𝐵 = 𝑃 𝐴  		𝑃(𝐵|𝐴), (4) 

 
where event A is the search object  in the designated area to be searched; event B is the sensor 

used to detect the search object given a designated area to be searched; P(A) is the probability that 

the search object is in the designated search area (event A) or POC will be true; P(B|A) is the 

conditional probability that the sensor detects the search object in the designated search area (event 

B) or POD will be true, given that the search object is in the search area; and P(A ∩ B) is the 

probability that during a particular search (POS) the search object is located in the designated 

search area.  
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Predicted values for POC and POD are based on factors, such as what are the actual 

conditions in the designated search area, what amount of the selected area is covered, and what is 

the most up-to-date data analysis from all the gathered information. Then, an estimated value of 

the POS can be determined. The POS is only an estimated value for which the actual value cannot 

be determined, and the value may have to be adjusted for the POS as newer data comes to light. 

When the value of either the POC or the POD is updated, the POS needs to be adjusted. By 

searching an area and not detecting the search object, the probability of POD is reduced by an 

amount proportional to its predicted value. 

 
4.3   Ways to Maximize UAV Flight Time 
4.3.1   Optimization of Propellers 

A UAV system integrates many components to optimize its flight performance. However, the 

flight controller (FC) or autopilot is considered the most important component of the UAV. The 

FC functions as the brain of the UAV, managing all of its functionalities. The FC is not only 

composed of hardware but also of the software comprising of advanced programs and 

mathematical algorithms. One of the sources connected to the FC is the Inertial Measurement Unit 

(IMU).  

The IMU hosts the accelerometer and gyroscope sensors. Advanced FCs come with 6-axis 

accelerometer/gyroscope. An accelerometer measures the orientation of the UAV relative to the 

earth’s surface, while the gyroscope measures the rotational force. The IMU combines these two 

measurements for the flight controller to be able to calculate the angle at which the UAV is flying 

and performing the necessary adjustments to improve the UAV flight capabilities.  

The three principal axes that control the motion of a UAV are Pitch, Yaw, and Roll. The 

forward or backward movement of the UAV is the function of Pitch. The forward Pitch makes the 

UAV to tilt slightly in the forward direction and to move away from the pilot, and the backward 
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Pitch brings the UAV back to the pilot. Yaw controls the rotation of the UAV either to the left or 

the right, while Roll controls the sideward flying of the UAV either to the left or the right. 

A UAV will undergo continuous changes in acceleration during a flight trajectory. The IMU 

6-axis accelerometer sensor is responsible for detecting changes in the current rate of acceleration 

by using one or more of its accelerometers. The IMU also detects changes in Pitch, Yaw, and Roll 

making use of one or more of its gyroscopes. The IMU calculates the UAV’s current velocity by 

integrating its acceleration and gravity.  

UAVs experience natural vibration during flight, and vibration is one of the overlooked 

challenges for UAVs. A primary source of vibration in a UAV is due to the propellers being out 

of balance. Hence, balancing the UAV’s propellers is essential to have an optimal flight 

performance, avoiding inaccurate estimates of the UAV position by disrupting the flight controller 

accelerometers/gyroscopes, and preventing the LiPo battery from draining faster. The IMU can 

negatively be affected by the excessive vibration from unbalanced propellers.  

The accelerometer sensors have a threshold to resist vibration frequencies during a flight. 

Exceeding the sensor threshold by the frequency of the vibrations is illustrated in Fig. 6. Inside the 

sensor’s range, the IMU sends accurate data of the position and the altitude of the UAV. The high-

frequency vibrations produced by the propellers outside the sensor’s range generate discrepancies 

between the calculated position and the actual position [30]. As the throttle is applied to increase 

the UAV speed, the motors spin faster causing propellers to turn faster and increasing vibration, 

which produce a drift or divergence in the attitude estimation of the UAV. The software parameters 

to control and  
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Fig. 6. Accelerometer sensors’ threshold to resist vibration [56]. 

adjust the UAV IMU cannot always fix the vibration problems. The balancing of propellers to 

prevent or to minimize vibrations must be performed as a pre-flight UAV safety checklist to 

enhance performance and increase the flight time, which are two crucial elements to conduct SAR 

operations. 

4.3.2    LiPo Battery Basics 

The primary source to power up a UAV is the battery. For UAVs, the ideal type of battery is the 

Lithium Polymer (LiPo) due to its lighter weight, high power, and fast and high discharge rates. 

Extended flight time and performance of the UAV are dependent on the LiPo capacity, while at 

the same time not adding scaling problems to the positive correlation between LiPo capacity and 

weight. The bigger the LiPo capacity, the heavier the LiPo becomes, which might not be efficient 

since a heavier LiPo will require lower motor KV ratings operating at higher voltage ranges. The 

addition of weight to the overall 
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Fig. 7. LiPo battery functions [57]. 

payload of the UAV affects the duration of the flight time and navigational performance. The LiPo 

battery needs to fit within the frame of the UAV. The size of the LiPo will depend on the size, 

type, and the number of motors of the UAV. Understanding how to read the specifications on a 

LiPo, as illustrated in Fig. 7, means a longer flight time, better maneuverability, and a faster flying. 

LiPo batteries are made up of cells in series ranging from 1S to 6S. These cells specify the 

LiPo voltage. Each cell is composed of a nominal voltage of 3.7 V. Nominal voltage is a term 

manufacturers have come up with to designate a middle safe voltage range. As shown in Fig. 7, 

the LiPo has three cells and an 11.1V, which is the nominal voltage calculated by multiplying the 

number of cells by 3.7 V. The UAV motors’ RPM is directly 
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Fig. 8. Actual LiPo battery discharge curve [58]. 

proportional to the voltage supplied by the LiPo. A higher cell count LiPo is capable of providing 

faster spinning in the motors and ESCs if these components support a higher voltage.   

LiPo batteries operate in a 4.2V when fully charged and safely discharged when they reach 

the cutoff voltage of a 3.0V. Either charging it above a 4.2V or below the cutoff voltage can cause 

the LiPo to explode or permanent damaging it. Discharging the LiPo below a 3.0V will also 

negatively affect the flight performance of the UAV by diminishing the performance levels of the 

LiPo and shortening the UAV flight time. The UAV needs to have sufficient time to return to its 

home position (RTH), which is the position where the UAV was armed to takeoff. A cutoff voltage 

of a 3.3V is used instead of a 3.0V to compensate for the distance the UAV needs to RTH. Setting 

the right voltage cutoff and the process of discharging functions in a LiPo is critical to understand 

to get the maximum flight performance of the UAV. 

Fig. 8 illustrates an actual case showing how a LiPo is discharged during use. An actual Lipo 

discharging process starts at its maximum charging voltage of a 4.2V. Then, it proceeds to 

discharge slowly, as the UAV continues its flight trajectory, drawing current from the LiPo until 
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reaching the cutoff point of a 3.3V, which is the safest level of discharging, as previously 

explained. In Fig. 8, a cutoff voltage of a 3.3V is used, but not all LiPo batteries are manufactured 

the same. Depending on the brand, each LiPo will need to be set at either a 3.0V or a 3.3V as the 

cutoff value based on the manufacturer's datasheet or by performing actual flying tests of the UAV 

to determine the value. 

Another LiPo feature to understand is its capacity. From Fig. 7, capacity is indicated by the 

value of 3000mAh or a 3 Amp Hours measured in Amp-hrs or milliamp-hrs. Larger values allow 

the LiPo to have a more extensive capacity to store more of its total energy to last longer during a 

flight. The 3000 mAh LiPo will take an hour to discharge from the maximum voltage to the cutoff 

voltage. The 3 Amp Hours current is provided by the LiPo for one continuous hour if a constant 

current of a 3 Amp is drawn for one hour, but it is not the actual case since LiPo batteries do not 

discharge at a constant voltage rate, as depicted in Fig. 8. 

Increasing the capacity of the LiPo makes the LiPo heavier and larger, but a longer flight 

time can be attained. This positive correlation is only accurate to the point at which the UAV flight 

time becomes ineffective, as depicted in Fig. 9, e.g., and remains constant, even after the LiPo gets 

larger and heavier. Choosing a larger LiPo capacity to increase the UAV flight time is not a 

practical approach to follow most of the time. The procedure is only adding a more substantial 

payload to the UAV. Consequently, the UAV will need to draw more current from the LiPo and 

will reduce the amount of flying time. Calculating the estimated flight time of a LiPo can be done 

by conducting flights under different conditions, e.g., windy condition and unusual flight pattern, 

to get a sense of how much current the battery is drawing or checking the manufacturer’s datasheet 

if it is reliable.  

Another misconception about capacity is that if the discharged current is double from a 3 

Amp Hours to a 6 Amp Hours, flight time, while keeping the cutoff voltage at a 3.3V, will be 
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reduced by half. This capacity only applies if the assumption is made that the UAV is drawing a 

constant current from the LiPo based on a steady hover. However, in an actual case, the UAV 

experiences different speeds at which the motors spin due to the wind speed. The UAV needs to 

make the proper adjustment by using its stability sensors, which will pull current at a non-constant 

rate. Consequently, the higher current draw will reduce the flight time by more than a half. 

Depending on the LiPo, manufacturers provide datasheets of discharge curves. Most of them are 

based on a constant draw current, as in this example of a 3 Amp Hours, for a continuous hour. To 

make a better assessment of an estimated discharge rate is to test the aircraft under different 

conditions to make sure how the aircraft will perform during a critical SAR operation beforehand. 

Higher capacity also gives out higher discharge current, which is known as the C-rating. The 

C-rating is another critical feature of a LiPo to understand. It relates to the maximum amount of 

Amps a LiPo can safely deliver at a continuous and burst (maximum) discharge rating. In Fig. 7, 

20C and 30C are shown, respectively. 20C represents the continuous discharge rating delivered 

consistently by the LiPo while maintaining a stable dropping voltage. The safe maximum current 

draw is calculated as: 

 𝐼𝐶 = 𝐶	 		𝑅𝐶 = 3000	𝑚𝐴ℎ	 	20𝐶 = 60	𝐴, (5) 

 
where IC is the continuous current draw, C is the capacity of the battery, and RC denotes the C-

rating. The result of a 60A is the maximum continuous safe load handled by the LiPo. The other 

value of a 30C is the burst current, and it is the maximum current a LiPo can push out for about 

10 seconds under full throttle and dropping voltage rapidly. The burst current is defined as: 

 𝐼]R^ = 𝐶	 	𝑅𝐵 = 3000	𝑚𝐴ℎ	 	30𝐶 = 90	𝐴, 

 

(6) 
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where Imax refers to the maximum draw current, and RB refers to the burst current. How to 

determine the right C-Rating needed for a UAV is based on the type of the UAV. The number of 

propellers determines the type of a UAV. For example, a four-propeller UAV is called a 

quadcopter. Four is multiplied by each of the motors drawing current under load found in the 

datasheet specifications of the manufacturer. The combined draw current of all the four motors 

cannot exceed the safe maximum current draw by the LiPo, as illustrated in Fig. 7 and 8. 

Having a necessary and proper understanding of LiPo battery specifications is essential to 

get the most efficient and longest flight performance of a UAV. The SAR operations are critical 

and required fast action and reliability to deploy a UAV to search and rescue victims. 

 

Fig. 9. Relationship between flight time and LiPo capacity [59]. 

4.4     SAR Flight Patterns Followed by UAV Affect Optimization of UAV Flight Times 

Instructions about what type of search patterns to incorporate into a flight plan are set by the 

International Maritime Organization and International Civil Aviation Organization.  These search 

and rescue flight patterns are published in the International and Aeronautical and Maritime Search 
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and Rescue manual (IAMSR) [60]. As explained in the IAMSR manual, the search and rescue 

flight plans have their own characteristics and conditions, under which they are best suited to 

perform. One fundamental question for the task forces, specializing in search and rescue to 

consider before deploying a UAV, is how to optimally plan the UAV flight path to achieve the 

operational goals, considering the search area and sensors’ range limitations. In this section, the 

flight plan describes the different search and rescue flight patterns that suit the designated search 

areas of various sizes and shapes. The  

 

Fig. 10. Parallel Track Search Pattern traveled by the UAV.        

different flight patterns consume the UAV battery life differently. These flight patterns are 

probably the most commonly used during SAR missions, executed by airplanes, helicopters, and 

UAVs. A description of how the UAV LiPo power consumption is affected by each of the three 

flight patterns tested is presented. 
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4.4.1    Parallel Track Search Pattern (PTSP) 

As illustrated in Fig. 10, the UAV follows the long tracks straightforward. At this stage, the UAV 

performs the horizontal forward movement, maintaining a steady altitude of about 85 feet. The 

forward motion converts the takeoff air, which is vertical air, mainly onto horizontal airflow, 

allowing the incoming wind to enter the rotor system and improving the 

 

       Fig. 11. Creeping Line Search Pattern traveled by UAV. 

flight efficiency of the UAV. How propellers react to the changing induced airflow? The airflow 

becomes more horizontal and increases the propellers angle of attack, continuing to add more 

efficiency to the UAV flight. The term used to describe this added efficiency is called the 

translational lift. The forward motion causes efficiency in the rotor system, improves the UAV 

performance, and increases the LiPo flight time.  

Approaching each of the turns for the short tracks, the UAV performs either a hover for a 

few seconds at each waypoint and then continue its pre-programmed waypoint flight path or 

continue on with the mission, passing and turning at each of the waypoints without stopping. 
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Hovering at each waypoint is avoided since it requires the UAV to draw more current from the 

LiPo to maintain its thrust stability. The UAV flight plan is to take advantage of  translational lift 

from the very takeoff to completing the Parallel Track Search Pattern at landing. 

4.4.2    Creeping Line Search Pattern (CLSP) 

The Creeping Line Search Pattern is similar to the PTSP, except that the search legs, which are the 

longest track in the search pattern, are parallel to the shortest side of the area to be searched, as 

illustrated in Fig. 11. The UAV flight plan is in a vertical orientation, following the search legs 

and turning without stopping at the short tracks where the waypoints are set. Once the UAV has 

reached a waypoint, the rotation is not set in a tight or quick turn radius to avoid any current 

overdraw from the battery life. The flight plan goal is only to current draw the necessary amount 

from the LiPo to keep it at its maximum flight time and maintain the UAV peak-flight performance 

by taking advantage of translational lift throughout the flight. 

4.4.3    Sector Search Pattern (SSP) 

As illustrated in Fig. 12, the Sector Search Pattern consists of three interconnected triangles. The 

UAV starts from any of the vertices chosen as the reference and covers each of the sides until it 

has completely traversed the entire flight pattern. At each of the vertices, the waypoints are set for 

the UAV to rotate at 360 degrees gently. The 360 degrees rotation leads to a smooth navigational 

performance taking advantage of translational lift. The tuning of each waypoint radius allows the 

UAV not to rotate before or after each point to achieve smooth and efficient turns. Therefore, the 

battery life is extended to its maximum flight time 
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Fig. 12. Sector Search Pattern traveled by the UAV. 

This flight pattern is most effective when the most probable location, which is called the 

datum, is small. According to Search Theory Method, a designated search area is further divided 

into subareas to achieve a higher probability of locating a victim or finding the search object. The 

same concept is used when the UAV flies over these patterns. The larger area is divided into 

subareas as illustrated in Fig. 12. Furthermore, only one UAV can be used for SSP flying at a 

similar altitude of 85 feet since the area to cover is small. 

4.5    Results Analysis 

In this section, we discuss the results obtained in real time from the UAV flying the three different 

SAR patterns. By setting the altitude and speed to fly the UAV over the search area, DroneDeploy 

determines an estimated time to complete the flight plan. The speed is set at 7 m/s, which is roughly 

equivalent to 16 mph. At 16 mph, the forward airspeed of the UAV becomes aerodynamically 

efficient since the forward speed is increasing. Beyond the 16 mph, the induced drag of the UAV 

forward speed prevents from obtaining any  
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Flight 
Pattern 

Area 
Covered 
(acre) 

Speed 

(m/s) 

Altitude 

(ft.) 

Est. Flight 

Time (min.) 

PTSP 2 7 85 10 

CLSP 2 7 85 12 

SSP 2 7 85 9 

 
TABLE IV. SAR Flight data obtained from DroneDeploy. 

 

benefits provided by translational lift. The altitude for the UAV to fly over the search area is set to 

85 feet to allow for the Tetra sensor coverage range the ability to detect probes. Table IV illustrates 

the UAV flight planning report that DroneDeploy generates the calculated time required to fly the 

three search patterns. 

The autonomous flight mission is set by using the Ground Control Station Mission Planner, 

as mentioned in section 3.1.2. Table V shows the data obtained by setting GPS waypoints to create 

the UAV flight plan, and the number of probes detected for each of the three search patterns. The 

altitude and forward speed are fixed throughout the UAV flight plan for each of the three SAR 

patterns. The SSP has the least energy consumption due to the fewer number of turns and mainly 

flies its path forward in a straight line. The width of all sides gets wider, leaving a larger uncovered 

gap inside all the three triangles.  

The result is a faster coverage flight plan, but fewer probes detected. The PTSP detects the 

most number of probes, and it completed the flight plan with the second fastest time, having the 

second least number of rotations since it traverses the search area in a systematic pattern. The gaps 

between the long tracks are set to 40 feet, which is the horizontal coverage range of the Tetra 

sensor. As the UAV flies over the search area, it detects probes from adjacent and nonadjacent 

long tracks. It consumes about a 60% of the  
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Flight 
Pattern 

Area 
Covered 
(acre) 

Speed 

(m/s) 

Altitude 

(ft.) 

Time 

(min.) 

Lipo Cap. 

Left (%) 

Capt. 

Probes 

PTSP 2 7 85 12 40 45 

CLSP 2 7 85 15 33 29 

SSP 2 7 85 11 45 17 

 

TABLE V. Results with an autonomous UAV over different SAR flight patterns. 

 
LiPo, as each turn is made accordingly to the set speed to flow smoothly on each waypoint turns 

and avoiding aggressive maneuvers of the UAV.  

CLSP consumes most of the LiPo compared to the other two SAR flight patterns. It contains 

the most turns. The UAV makes each of the turns smoothly by extending the long tracks. The turns 

are not compacting, or banking turns mostly to maintain the UAV flying at a forward speed to take 

advantage of translational lift. However, as shown in Table V, the more turns a flight pattern has, 

the more it consumes energy from the LiPo. Every turn is made in an extended and smooth manner 

along the short track, and the UAV trajectory is made longer, which is another reason why the 

CLSP discharged the LiPo more than the other search patterns tested.  

Table VI shows the data collected over the search area flying the UAV in a remote-control 

(RC) mode. The RC mode requires skills to operate the UAV in a smooth flight style, not at full 

speed, and without any aggressive maneuvers to avoid unnecessary overloading in discharging the 

LiPo faster. Under RC mode, the UAV captured the most probes compared to any of the three 

search flight patterns flown autonomously. However, the trajectory took longer to complete and 

consumed more power from the LiPo.  
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Flight 
Pattern 

Area Covered 
(acre) 

Speed 
(m/s) 

Altitude 
(ft.) 

Time 
(min.) 

Lipo Cap.  
Left (%) 

Capt. 
Probes 

PTSP 2 7 85 14 33 54 

CLSP 2 7 85 17 25 34 

SSP 2 7 85 12 40 21 

 
TABLE VI. Results with a remote-controlled UAV over different SAR flight patterns. 
 

A visual spotter was used to keep an eye on the ground control station to alert the pilot if 

altitude is exceeded beyond 85 feet to avoid the low quality of sensory data. Piloting the UAV to 

maintain a specific trajectory, e.g., in any of the three SAR flight patterns, can be challenging if 

the pilot does not have the necessary skills to maintain a precise flight pattern and if the sensor 

used requires a specific radius for each of the turns. 

For this study, the Tetra sensor range can cover the turning areas and detect probes, even if 

the UAV misses on target the precise location of each waypoint rotation. This is one reason why 

the RC mode consumes more power from the LiPo but provides flexibility to the flight plan. An 

example is to slowly descend in a section of the search area having no trees to increase the 

probability of success to detect more probes. 

During SAR operations, decisions need to be made to determine what search flight plan to 

follow, and the flight mode to execute based on the available resources. The autonomous flight 

mode leads to a low variability in the flight mission and more efficient power consumption. The 

RC flight mode requires skillful pilots to follow any of the three SAR flight patterns, consumes 

more power from the LiPo, provides flexibility during flight path, and captures more probes. The 

results yield a tradeoff between having a higher probability rate to detect probes with possibly 

longer flights, requiring more than one LiPo or executing the mission faster with one LiPo while 

detecting fewer probes. This is a decision any SAR teams must consider before executing the flight 

plan. 
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CHAPTER V 

Concluding Remarks 

 

In this thesis, WiFi probe requests are captured from various cell phones using a Wi-Fi Pineapple 

mounted onto the UAV. Subsequently, using the information extracted from the probe requests 

captured, the RFA machine learning technique is used to find a coarse estimate (a predefined zone) 

for the Wi-Fi device’s whereabouts. The experimental results demonstrate an accuracy of a 81.8% 

for finding the true zone location of a Wi-Fi device. The proposed approach is suited for search 

and rescue operations where a given area (e.g., different zones in a national forest) can be initially 

trained using the RFA method. Then, if a victim needs to be localized, the proposed method can 

be applied to find the zone where he/she is located. Our future work includes testing and training 

larger sets of data to evaluate the scalability of our proposed approach in larger geographical areas. 

Then, the use of UAVs in SAR operations is presented to show its reliable support services. 

Vital issues to address and to understand before a UAV is deployed to conduct search and rescue 

missions are crucial to achieving a high probability of a successful SAR operation. Some other 

issues are aspects that affect the navigational performance of a UAV, how to bypass some of the 

flight time limitations of a UAV, and how the sensory operations are affected by the search flight 

patterns flown by the UAV. The results demonstrate the importance of correctly configuring the 

UAV to obtain the best possible flight performance and the longest flight time. Furthermore, 

knowing the flight plan to execute, the UAV can detect more Wi-Fi probe requests, which are 

crucial to respond quickly and increase the probability of having more accurate data to locate the 

victims. 
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