Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-2-2005
Secure routing and trust computation n multihop
infrastructureless networks

Tirthankar Ghosh

Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/etd
b Part of the Electrical and Flectronics Commons

Recommended Citation

Ghosh, Tirthankar, "Secure routing and trust computation in multihop infrastructureless networks" (2005). FIU Electronic Theses and
Dissertations. 3933.
https://digitalcommons.fiu.edu/etd/3933

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3933?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SECURE ROUTING AND TRUST COMPUTATION IN MULTIHOP

INFRASTRUCTURELESS NETWORKS

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in
ELECTRICAL ENGINEERING
by

Tirthankar Ghosh

2005

To: Dean Vish Prasad
College of Engineering and Computing

This dissertation, written by Tirthankar Ghosh, and entitled Secure Routing and Trust
Computation in Multihop Infrastructureless Networks, having been approved in respect to style
and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kia Makki

Kang Yen

Shih-Ming Lee

Niki Pissinou, Major Professor

Date of Defense: June 2, 2005

The dissertation of Tirthankar Ghosh is approved.

Dean Vish Prasad

College of Engineering and Computing

Dean Douglas Wartzok
University Graduate School

Florida International University, 2005

H

DEDICATION
I dedicate this dissertation to my wife and my parents whose love and sincere

support gave me inspiration to complete the work.

il

ACKNOWLEDGMENTS

[take this opportunity to thank my advisor and co-advisor, Dr. Niki Pissinou and Dr. Kia
Makki who helped me successfully finish my dissertation. I am deeply indebted to them for
professional guidance, encouragement, constructive criticism and thoughtful insights into every
step of my dissertation. This work would not have been possible without their able guidance and
support. I also thank the other members of my dissertation committee, Dr. Kang Yen, and Dr.
Shih-Ming Lee who helped me in every step in completing my dissertation.

I acknowledge National Science Foundation (Grant Nos. ANI-0123950 and CCR-
0196557), Department of Transportation (Project No. FL-26-7102- 00), Department of Defense
(Award No. H98230-04-C-0460) and IBM-SUR grant for supporting my research. I sincerely
extend my warm regards to all my fellow colleagues for their help and co-operation in carrying
out this research.

I thank Dr. Subbarao Wunnava and Dr. Tadeusz Babij for serving on my PhD qualifying
exam committee.

Last, but not the least, I sincerely acknowledge the inspiration I received from my wife,
Ms. Sukanya Ghosh, my parents Mr. Kamalesh K. Ghosh and Ms. Anjana Ghosh and my parents
in law Mr. Rajat K. Dasgupta and Ms. Supriya Dasgupta. Without their inspiration and support it
would not have been possible for me to carry out my research with enough motivation and hard

work.

v

ABSTRACT OF THE DISSERTATION
SECURE ROUTING AND TRUST COMPUTATION IN MULTIHOP
INFRASTRUCTURELESS NETWORKS
by
Tirthankar Ghosh
Florida International University, 2005
Miami, Florida
Professor Niki Pissinou, Major Professor

Today’s wireless networks rely mostly on infrastructural support for their operation. With
the concept of ubiquitous computing growing more popular, research on infrastructureless
networks have been rapidly growing. However, such types of networks face serious security
challenges when deployed. This dissertation focuses on designing a secure routing solution and
trust modeling for these infrastructureless networks.

The dissertation presents a trusted routing protocol that is capable of finding a secure
end-to-end route in the presence of malicious nodes acting either independently or in collusion,
The solution protects the network from active internal attacks, known to be the most severe types
of attacks in an ad hoc application. Route discovery is based on trust levels of the nodes, which
need to be dynamically computed to reflect the malicious behavior in the network. As such, we
have developed a trust computational model in conjunction with the secure routing protocol that
analyzes the different malicious behavior and quantifies them in the model itself. Our work is the
first step towards protecting an ad hoc network from colluding internal attack. To demonstrate the
feasibility of the approach, extensive simulation has been carried out to evaluate the protocol
efficiency and scalability with both network size and mobility.

This research has laid the foundation for developing a variety of techniques that will

permit people to justifiably trust the use of ad hoc networks to perform critical functions, as well

as to process sensitive information without depending on any infrastructural support and hence

will enhance the use of ad hoc applications in both military and civilian domains.

Vi

TABLE OF CONTENTS

CHAPTER PAGE
CRAPLET T ittt et te e eeees s aeeaesesaetentonaeessassesssentensenssarnssseabensssanasesssensenes 1
INETOQUOTION ..t b bttt s s eas s a e nnts 1
1.1 Background and MOUVATION.ccvviiiiieiiieceeeceresreestennecenssassesasersansnenesnssssessecssesnsssessesans 2
1.1.1 An Insight into Ad HOC NEtWOTKS ...c..coiviieeieieiciseree ettt 2

1.1.2 Security Challenges in Ad HOC NEtWOrkscvcveververreciieiiniesecesenieeesesresrensinsscssannes 4

1.1.3 Routing in Ad HOC NEIWOTKScocviieeiiierreieerieee e sens e st sanee s enesscesncsnsessennenns 6
1.1.3.1 Ad Hoc On Demand Distance Vector Routing (AODV).....ccccovviiviniiinnnnne 7

1.1.3.1.1 ROULE DDISCOVETY eveviirieiieirerreriteseesessreesssessaesenseenecenessvecansasssssssescsanens 7

1.1.3.1.2 Route Maintenancecocvoreerreriearriorneecreneesrerensssiormanmsssssessoserssssnssnns 8

1.1.3.2 Dynamic Source Routing (DSR) ..coccviiiivcnenrcccicinrinsncene 8

1.1.3.2.1 Route DISCOVETY .vviiriirireeceieiimsieniessisnmecseseeeneenscenesnessossasssosssnmessssnsoss 9

1.1.3.2.2 Route Maintenanceccuvirreeireriricrviescinieinesisnesness s sssseseens 9

1.1.3.3 Comparison Between AODV and DSR.......coooiimnviniiiiviinicivcncniienn 10

1.1.3.4 Attacks on Routing Protocolsc.eeevveiricrercnecneccnccininnrencecnieenens 12

1.1.4 Motivational EXQMPIEccceeiierirerieeeirieseencsseeseeneestenssaensesssescssensaseseesesensssescnne 13

1.2 Problem Statementc.vcovveeerieecerine ettt e e et n e bbb et re s 15
1.3 Research Goals and ISSUES .o.c.veverieeiiieieieeccsie et cer et sbentesmn s nasnenn 16
1.4 Significance and ContrIDULION.c.veierrveiiereee s e e eeseern e s srsensesenersesensesanssenesansons 19
1.5 MethOQOIOZY ..ottt e v e s n e s ssnesenseanseanssaneantsonseseesassns 19
1.6 Organization of the DiSSertationccovveciieriisese s ciierieeiirrsereesvaesressrnesnesuesssesasrensesses 20
CRAPLET 2 .ottt s et e ae s b e sase b e eaa e s bt a s e e b an s e e s saea e e en s e s ae e R R e nr et et e s R b e bt e e sesnEea 21
REIAtEd WOTK..o.viritiriiiirriienesie et s s et e sttt ettt r e st a e s s e sn s anebe s s e e enssnnsnns 21
2.1 Key Management in Ad HOC NetWorkscocoiriivieciniinricencenie e srsenns 22
2.2 Secure Routing in Ad HOC NetWorks....c.coceiiiiiniiviieiicccrniccmncnineencss s 26
2.3 Trust Computation in Ad Hoc NetWOTKScocvreinininiiinceereccrecrcemrn et 31
Chapter 3 ..ottt e ettt ettt ee e ne e a et nees 38
Collaborative Trust-based Secure Routing Protocolccocciivvvviinnnnicncncinceene, 38
3.1 INIrOAUCHON ..ottt nre sttt a et et es e n e sr s e et et e e e raeae e s e enene 38
3.2 ASSUIMPIONS .c.eerirerreriernrn oo sier et seeteetesse s s s ese s s eat et s s s essbesaesobeesbessarssut s nssasmsrasanrssansnns 39
3.3 Design of Trust-embedded AODV (T-AODV) (.ot 39
3.3.1 Overall Protocol DesCriPtioncc.occimieerrierinnieeniiinireess e ciresnee s aessinnessreeesasssnenss 40
3.3.2 High Level Description of T-AODV (.o 40
3.3.3 Proof of Protocol Security under Attack from Independent Malicious Nodes............ 44
3.3 4 Threat MOE] .ottt st e as s r e 45

3.3.5 Preventing Colluding Aackccoivereniriiienrceine e sssanes s s 46

3.4 SIMUlation MOUEL. ..ottt e st et e 49
3.5 Analysis Of RESUILS....cccoviiriiiiiiiiiiicc st e 50
3.6 Security ANALYSIS ocvcccieriiiiiiciiticnci it 58
3.7 CONCIUSION ..uvitriereecreeiinteeiiesieeeeeresresese st estere e nesenesresnecentsshssasassrasiabs s ass b e s st s s s e bnassssnens 59
CREPLET 4 1.eeceeiet ettt er et s e bbb a8 s bRt 60
Trust Modeling against Selfish and Malicious Behavior ... 60
4.1 Trust Issues in Infrastructureless NetWorks ..o, 62

vii

4.2 Design of the Trust MOdeloooiiiiiiiieeccee et 65

4.2.7 ASSUIMPLIONS ..oooviiriniiiiiiiitere et vt saeeseevresbebeeonesseeresate s essnesseosessesissaesansensasnnaseossones 65
4.2.2 Trust Model Against Selfish Behavioroovvevieiiiiecieiiecee e 66
4.2.2.1 Parameters used in the Model........cocoveieeeineiiniienrcncsis s 66

4.2.2.2 Model FOrmulationc.ccvveeieeeieeineieiiineseesineneeerenesnearcnassssssssosssssosssenns 67

4.2.3 Trust Model Against MaliCious ACCUSETcvveeverivnrieiessrsceinsereeemmesserasosseesssssssrsnsens 68
4.2.4 Trust Model Against Malicious Topology Changeccovvvevivvirirmineieninninnisinenen 69

4.3 Simulation Setup and Analysis 0Of ReSUMScccevrinivririiccriccsn e 72
4.4 CONCIUSION oeovieiiiiiceriecerenre et eebe e se ettt sres e s e e s e s sbssae s s o b s nr s n e s et e ssaensents 78
CRAPLET 5 o.oierieiietreiesiieecr ettt et s b sunens s e sesshesae ks e cbesn s s s s e s onsssbssrnerasshaesssarE e sasaeensescaas 79
COMCIUSION et veerteiaeitese e et e rt et sesecrner e s e e s s e basenseeneenaesnsasconeneontarasssassnrntabananeessnasnssseanans 79
5.1 Trusted RoUting ProtoCol...ccovvivieeinirieiiecin ittt s 79
5.2 Trust Computational Model ... 80
5.3 FULUTE DITECTION .. eeveeveeieitesveseeirsersssserscrivecesssesssesessesrosennessossssssesmnssassansstassssnsansessaensasnanss 80
BIBHOZIAPRY ..ottt sttt n R b rererrereerrrins 84
ADPEIIAICES «.vvveverreerreeerserseeseeeesessesssaceassesesrentasestesessesseseare st st st s s S Rs e R e s AR R Ae b SR a S st 92
VBB 1tieeieieereerentesesreeser e e e setesae e b s seese e s e eseassaasaasees b s e e e st s ae b et e aeeaesae eSS RSB R oA s e R R AR SRS R b e s R enr e 221

viii

LIST OF FIGURES

FIGURE PAGE
Figure 1.1 A fully independent ad hoc networkcocvveiicieiiieniciciccicnn s 2
Figure 1.2 A hybrid ad hoc wireless LAN ...t ce st se s ennsnenenssnenees 3
Figure 1.3 An eXample SCENATIO....ccviimriiiiiirrrereioriessetsssesnessessnesecssessessesasssassniebbesnsosssanssssnssons 15
Figure 3.1 Route Request packet structure in T-AODV ..o 41
Figure 3.2 Procedure for the action of a node after receiving the RREQ packetccooovevreiinnnnns 42
Figure 3.3 Procedure for the action of the source node......cccoovvinvinicicninniniinnns eererebeenren e raee 43
Figure 3.4 Procedure for the Cross checks trust level function.....c..coviecnincnnn 43
Figure 3.5 Procedure for the alternative implementation of Cross checks trust level................... 44
Figure 3.6 An example of the threat model.........cooeveeioiierninii i 46
Figure 3.7 The RWARN mMessage SIUCTUTEcooveiievenriceniceeieircniicncneineensess s sesssnssrassssssassasss 48
Figure 3.8 The receive RWARN fUNCHON.....oiiierirnierieceiirnencnicrreecreereeersnanesssneessssssessenssrnss 49
Figure 3.9 Comparison of routing overhead between AODV and T-AODV ..o 51
Figure 3.10 Comparison of routing overhead.......c...oocoevnne ettt bt e E e n et e ne e nrneas 52
Figure 3.11 Comparison of number of routes selected......oviiiiiiiiinienniiccs 52
Figure 3.12 Comparison of route errors sent with number of nodes...........cocoveiiniiinicnninnnnn, 53
Figure 3.13 Comparison of average end-to-end delay ... 54
Figure 3.14 Comparison of throughput with number 0f nodes ..o 54
Figure 3.15 Comparison of routing overhead with node speed...........cccoovvviriminnciiinnncnnien .55
Figure 3.16 Comparison of routes selected with node speed ..o 56
Figure 3.17 Comparison of route errors with node speed ..o 56
Figure 3.18 Comparison of average end-to-end delay with node speed..........ccoorvciiiniinnnn. 57
Figure 3.19 Comparison of throughput with node speed ... 58
Figure 4.1 Variation of (Packets received / Packets sent) with malicious nodesccovccennen. 64

X

Figure 4.2 Comparison of routing overhead with number of nodes...........cooeeeviiiicinninn 73

Figure 4.3 Comparison of routes selected with number of nodes ..o 74
Figure 4.4 Comparison of route errors with number 0f nodes ... 74
Figure 4.5 Comparison of average end-to-end delay with number of nodes........c.ccocoeecnnnnnnn. 75
Figure 4.6 Comparison of throughput with number 6f nodes ... 75
Figure 4.7 Comparison of routing overhead with node speed...........ccooovevivninmnenccniininnn 76
Figure 4.8 Comparison of route errors with node speedcocvvvcivnininennnsscesnccennn 77
Figure 4.9 Comparison of routes selected with node speedccovviineiininnieiniii, 77
Figure 4.10 Comparison of Average End-to-end Delay......c.ooivvvivcnminniininninncnenin . 78

LIST OF ABBREVIATIONS
ACK: Acknowledgement
AODV: Ad Hoc On Demand Distance Vector Routing
ARAN: Authenticated Routing for Ad Hoc Network
CA: Certificate Authority
CBR: Constant Bit Rate
CTS: Clear To Send
DH: Diffie Hellman
DOS: Denial of service
DSDV: Destination Sequence Distance Vector
DSR: Dynamic Source Routing
FTP: File Transfer Protocol
HF: Has Forwarded
IP: Internet Protocol
LAN: Local Area Network
LER: Local Evaluation Record
MAC: Media Access Control
MOCA: Mobile Certificate Authority
NNL: Neighbor Node List
OER: Overall Evaluation Record
PDA: Personal Digital Assistant
PK: Public Key
RERR: Route Error
RF: Request to Forward

RREP: Route Reply

Xi

RREQ: Route Request

RSA: Rivest, Shamir, Adleman algorithm

RTS: Request To Send

RWARN: Route Warning

SK: Private Key

SORI: Secure and Objective Reputation-based Incentive
SRP: Secure Routing Protocol

T-AODV: Trust-embedded AODV

TCP: Transmission Control Protocol

X11

Chapter 1

Introduction

Mobile computing has experienced a very sharp rise since the last decade. The continued
increase in the processing power of mobile devices, together with competitive prices and
attractive design, has made them available to a growing number of the population around the
globe. There is an increasing interest among the industries as well as academia to bring wireless
voice and data networks together. With the concept of ubiquitous computing growing more and
more popular, people now want to remain connected “anytime, anywhere”. The growth of
wireless Internet access has also been phenomenal in the past ten years.

With the advent of wireless communications and mobile computing, another form of
networking has also emerged. This is known as “infrastructureless” or “ad hoc” networking. This
form of peer-to-peer (or even multicast), multihop networking is growing more popular in an
infrastructureless environment (like the absence of access points or base stations). These ad hoc
networks have given rise to active research issues since their evolution [Zho99, Hie01, Yi0l,
Sta99]. The research community has been actively working on various challenges and problems
arising out of the effective implementation of ad hoc networks.

Most of the research so far has been done in the area of routing protocols [Hu02a, Hu02b,
Pap03, Pap02], although in recent years security issues have also been explored. Although the
basic security goals and requirements of an ad hoc network are very similar to those of a wireless
network, some inherent characteristics of the former make security issues more challenging.
These include absence of infrastructure, high probability of node compromise, frequent and

dynamic topology change and low level of trust among the nodes.

Another design consideration should be concerned with the directional characteristics of
the wireless channels. The routing and MAC protocols in any ad hoc implementation have to be
designed based on whether the wireless channels used are bidirectional or unidirectional.

A major consideration when designing and deploying an ad hoc network is its
communication security. It is always preferable to incorporate security at the desired layers
during the development and standardization of the protocols at that layer. This was seriously
lacking when the routing protocols were designed for ad hoc applications. Later on many
researchers came up with secure routing solutions to make the existing protocols robust.
However, a seamless inter-layer approach is still missing when a secure communication

infrastructure has been designed.

1.1.2 Security Challenges in Ad Hoc Networks

Before discussing the security challenges that a typical ad hoc network has, we should
give an insight into the different threats that such networks face. Broadly, threats can be divided
into two types — passive and active. In a passive threat an attacker quietly listens to the ongoing
communication without taking part in it with an intention to capture the packets and read their
contents. These types of passive threats can easily be eliminated by using basic cryptographic
mechanisms to encrypt the message contents that are flowing into the network.

In an active threat an attacker not only tries to capture packets, but also takes part in the
active communication in the network. Active threats can be carried out either by malicious
inclusion of the attacker(s) into the active routes or by injecting bogus messages in the network
with an intention to flood the networks and wasting precious bandwidth. These threats can either
be external where the attack is carried out by somebody not initially a part of the network, or
internal where the attacker is already a part of the network. External threats can be prevented by

reverting to traditional cryptographic algorithms [Des87, Dif76, Riv78] or designing new

cryptographic schemes suitable for the typical application. The deadliest of all the threats are
from the internal ones, where the attacker has already been an active part of the network, for
example in the form of compromised nodes. An internal attacker has all the secrets used in the
network in his/her disposal and can use those secrets to effectively authenticate him(her)self to
their peers or take part in the ongoing communication. Hence, the main goal of designing a secure
communication mechanism in an ad hoc application should be to protect the network from the
active threats in the form of internal attacks.

Although the basic security needs of an ad hoc network are the same as in conventional
networks, namely authentication, integrity, confidentiality, availability, non-repudiation and
access control, ther;a are certain characteristics of such a network, which make the security issues
challenging. Ad hoc networks are formed without the aid of any infrastructure. Hence, unlike an
infrastructured wireless network, the ad hoc networks cannot rely on any central entity for
security issues. This lack of infrastructure has posed serious threats so far as key distribution
[Hie01, Yi03, Yi02] authentication [Nga04, Pir04c] and trust computation [Dav04, Esc02] are
concerned.

Nodes forming an ad hoc network are vulnerable to physical compromise. This lack of
physical security gives rise to internal' threats within the network, which make the issues of
authentication, integrity and confidentiality even more challenging than in conventional wireless
networks. Security must also be incorporated in the network layer to make the routing protocols
robust enough to withstand attack from compromised® or disloyal’ nodes trying to inject

malicious information into the network. The third most important characteristic of an ad hoc

! We define an internal threat in a network as an active attack by a compromised node or a disloyal node
which actively takes part in the ongoing communication.

2 We use the term compromised node to indicate a node which has been physically taken over by an
intruder thus giving access to all its stored secrets and system codes.

* We use the term disloyal node to indicate a node which has ended its loyalty to the network and has
decided to disrupt the network operation by non-cooperation of some means.

network is that the topology of the network changes dynamically. Hence, any security model
based on a fixed architecture cannot be used in such a scenario.

In addition to the above three network centric features, the nodes in an ad hoc network
are characterized by their low battery power and limited computational abilities. These are even
more prominent in applications like personal computing and small sensor networks. These
restrictions seriously limit the ability of the nodes to perform intensive public key computations
like RSA. As the nodes are characterized by minimum trust for each other, key distribution and
secure routing have been challenging research issues. Most of the work on key distribution in ad
hoc networks is based on threshold cryptography [Zho99, Bec98, Bur95, Des87, Sha79, Ste(0],
and assumes the use of public key cryptosystem which involves intensive computation. Even
secure routing solutions proposed by many [Pap03, Pap02, Zap02, San02] are based on public
key infrastructure. Eventually, all routing protocols in ad hoc networks tend to find the shortest

path to the destination, irrespective of the presence of a malicious node in between.

1.1.3 Routing in Ad Hoc Networks

Most routing protocols have been divided into two broad types: proactive or table-driven
and reactive or on-demand [Per01]. In proactive or table-driven protocols each node stores the
routes to other nodes in its routing table, and uses these routes during communication. These
routing protocols, although having the advantage of selecting the routes quickly, suffer from the
major drawback of generating more control traffic into the network by exchanging large number
of messages needed to update the route entries. This is even more critical in ad hoc networks with
high degree of mobility where the existing routes are more frequently broken.

To solve this problem, reactive or on-demand routing protocols have been designed. In
these protocols each node seeks a route to the destination only when it is needed, thus generating

lesser number of control packets. These routing protocols normally take more time to kick-off,

because of the initiation of the route discovery process at the start of the application, but they
have significantly lower overhead as compared to the proactive routing protocols. Below we
briefly describe two of the reactive routing protocols that are used most often in ad hoc networks.
For details in the design of these routing protocols interested readers may refer to [Per99, Per01,

Joh99].

1.1.3.1 Ad Hoc On Demand Distance Vector Routing (AODV)

The ad hoc on demand distance vector routing protocol was proposed by Perkins and

Royer in [Per99] and has been the most widely used since its standardization. It’s performance

has been found to be superior as compared to the other routing protocols designed, especially

with higher mobility. A detailed comparison has been carried out in later sections. The
characteristics of the protocol are:

o It responds to any change in the network topology in a quick and timely manner. This makes
the protocol suitable for an ad hoc network application as it demands a routing protocol to
adapt quickly to topological changes;

» Itis capable of building routes with small overheads in terms of control messages;

o It stores only next hop information in the route tables, thus reducing storage space
significantly;

o It does not place any additional overhead on data packets, as it does not utilize source routing.

AODV has two phases — route discovery phase and route maintenance phase. We

describe each phase separately.

1.1.3.1.1 Route Discovery

A node initiates a route discovery when no route to a destination is found on its route
table. It broadcasts a route request (RREQ) message containing source IP address, destination IP

address, source sequence number, destination sequence number, broadcast ID and hop count. The

source address and broadcast ID together form a unique identifier to the RREQ packet. On
receiving a RREQ, a node first checks whether the packet is duplicate. In case it is duplicate, the
node drops it without taking any further action. If it is a new RREQ), the node checks whether it is
the destination of the packet, in case of which it unicasts a route reply (RREP) back to the source
node. If the node is any intermediate node, it searches its route table to look for a fresh route to
the specified destination having sequence number greater than that specified in the RREQ. If a
fresh route is found, it sends the route to the source of the RREQ. If no fresh route is found, the
node increments the hop count and re-broadcasts the packet.

Each node also maintains a reverse route entry on receiving the RREQ packet containing
the source IP address, sequence number, number of hops to the source node and the address of the
node from which it has received the RREQ. The reverse route is used to forward the RREP

corresponding to the RREQ.

1.1.3.1.2 Route Maintenance

The route that has been discovered by any node needs to be maintained. When a source
node moves out, it re-initiates the route discovery phase to discover a route to the destination.
When a destination node or any intermediate node moves out, the link breakage is reported by the
node upstream to the break. The node reporting the breakage broadcasts route error (RERR)
packets. On receiving a RERR packet, a node marks the route to the destination invalid in its

route table. It re-initiates route discovery when it needs to communicate with the destination.

1.1.3.2 Dynamic Source Routing (DSR)

Dynamic source routing protocol was developed by Johnson and Maltz in [Joh99]. It is a
reactive routing protocol similar to AODV, where the source node initiates route discovery only
when the route is needed. The major difference that DSR has from AODYV is in the fact that the

former is a source routing protocol where the source node appends the entire route to the packet

header when sending data. Similar to AODV, DSR also has two phases — route discovery and

route maintenance,

1.1.3.2.1 Route Discovery

In DSR a node initiates route discovery when no route to the destination is found in its
route table (route cache). The node broadcasts a route request (RREQ) packet containing source
and destination addresses, a unique request ID and also a sequence of addresses of each
intermediate node through which the RREQ packet has been forwarded. This sequence of
intermediate addresses are all initialized to an empty set. When a node receives a RREQ, it
checks whether the packet is duplicate by matching the request ID and source address pair with
that anything seen previously. If it is not a duplicate packet and if the node itself s the destination
of the packet, it sends a route reply (RREP) back to the source node. If the node is any
intermediate node, it appends its own address in the route record and re-broadcasts the packet.

In forwarding a RREP, each node either looks in its route cache to find a route to the
source node, or initiates a route request to discover the route. It can also simply reverse the
sequence of hops in the packet’s route record and use this as the source route on the packet

carrying the RREP itself.

1.1.3.2.2 Route Maintenance

In DSR each node forwarding a RREQ or RREP is responsible for the confirmation that
the packet is delivered properly. This is ensured either by MAC layer acknowledgement or by a
passive acknowledgement where each node overhears the next node’s transmission of the packet.
Alternatively, a node may set a bit in the packet header to ask for an application specific
acknowledgement. If a node fails to receive any acknowledgement from its next node, it sends a
route error (RERR) message to the source node indicating a broken link, which is duly removed

by the source node from its route cache.

1.1.3.3 Comparison Between AODV and DSR

Extensive comparison between the two on demand routing protocols, AODV and DSR
have been carried out in [Das00] through simulation. The difference in the performance can be
attributed to several fundamental design differences between the two protocols which are briefly
highlighted below. Interested readers may refer to [Das00] for further details.

The most fundamental difference between AODV and DSR lies in the route request-reply
cycle. DSR route requests are designed to accumulate the whole route in the packet itself, thus
allowing the nodes to learn the routes to multiple nodes in the network other than the source and
the destination. This results in lower number of route request generation in DSR. AODV,
however, allows only few routes to be discovered in a route request-reply cycle, essentially routes
to source nodes are only discovered. This results in larger route request floods in AODV.
However, in DSR more route replies are generated than that in AODV, as in the former all copies
of route requests received by the destination are replied back. In AODV, however, only one route
reply is sent back to the source node, the one which corresponds to the first request received.
Because of this difference in the design of a request-reply cycle, each node in AODV has at most
one route to the destination, while DSR allows the nodes to maintain extensive route caches with
multiple routes to a particular destination. Thus any link break will trigger a new route discovery
phase in AODV, while in DSR a route discovery is triggered only when all the routes in the cache
become invalid. Moreover, in AODYV, stale routes are deleted from the route table by setting an
expiration timer, while DSR does not allow the expiration of stale routes from route cache. Route
error messages are also propagated in different ways in the two protocols. In AODV, route errors
are essentially broadcast messages, while in DSR it is a unicast, sent out by backtracking the data
packet.

The simulation carried out in [Das00] shows that the routing load is almost always lower

in DSR. The routing load has been defined by the authors as the number of routing packets

10

transmitted per data packet delivered. As DSR uses extensive route cache, it generates much less
route request packets than that in AODV, as the possibility of finding a route is almost always
higher in DSR. Most of the routing load in AODV comes from the route request packets, while in
DSR the routing load is mainly generated by route reply and route error packets. In summary, it
can be said that DSR always generates more route reply and route error packets than in AODV,
but has lower route request packets in higher proportion. This brings down the routing load in
DSR.

In spite of the above fact, it has been observed that DSR performance goes down when
the whole network load is considered, as it has significantly higher MAC load than in AODV.
The MAC load has been defined by the authors as the number of routing, ARP (Address
Resolution Protocol) and layer 2 control packets generated per data packet delivered. As DSR
generates more route reply messages and each route reply message is a unicast packet with MAC
layer RTS/CTS/Data/ACK exchange, it imparts higher MAC layer load than in AODV. Route
error messages are also unicast in DSR unlike in AODV where they are broadcast messages. This
also increases the MAC load in DSR.

Mobility also has different effects on the performance of DSR and AODV. It has been
observed that AODV performs better than DSR in higher mobility conditions. When the mobility
is low, the possibility of link failure is also low. But low mobility results in some localized node
concentration because of which the network may get congested. Due to this congestion, packets
may get lost in the MAC layer triggering false route error messages indicating broken link,
although the physical links still exist. This will trigger the route discovery phase generating more
route request messages in AODV. DSR, however, remains unaffected due to this problem
because of its extensive route cache. Hence, the performance of AODV degrades with low
mobility condition. In contrast, higher mobility causes higher possibility of link failure, and hence

trigger more route request packets in AODV. But higher mobility also causes stale routes in the

11

route cache in DSR. Thus, when route requests are initiated in DSR, they generate higher route
replies and also higher MAC load. This results in the degradation of DSR performance with

higher mobility in the network.

1.1.3.4 Attacks on Routing Protocols

An adversary can carry out active attacks on the routing protocols in different forms. The
main goals of attacking the routing protocols are: to be a part of the active end-to-end route; and
to inject bogus information in the form of routing overhead with an intention to flood the
network. In order to carry out attacks in the routing layer, an adversary has to manipulate the
metrics used in the control packets and deceive the source nodes to believe in either a non-
existent route or a route through the adversary itself. Below we briefly describe some of the
attacks carried out in AODV and DSR routing protocols:

An adversary decreases the hop count information in the route request packet in AODV
with an intention to make the destination and source believe that the shortest path exists through
itself. Subsequently, the route through the adversary will be selected as it will have the lowest hop
count metric maliciously injected by the adversary.

An adversary advertises a fresh route through itself in AODV by sending a route reply
back to the source node having a high destination sequence number. The source will be forced to
believe that a fresh route exists through the adversary and uses that route to send the data.

An adversary places itself in the active route and discards all data packets received for
forwarding. This attack is known as the black hole attack as the adversary behaves as a black hole
in the sense that it absorbs all data packets. This attack can be carried out in any routing protocol,
be it AODV or DSR.

More than one adversary collude together to carry out a wormhole attack in the DSR

routing protocol. When the first adversary receives a route request packet in DSR, it unicasts the

12

packet to the second adversary who then broadcasts it to the destination. The destination is thus
forced to believe that the shortest path exists through these two adversaries and effectively the
route is selected.

Other than the attacks discussed above, there are several other ways by which an
adversary can disrupt the network operation. Denial of service (DOS) attacks can be carried out in
MAC layer or application layer, channel jamming can be implemented in physical layer, Sybil
attack {Dou02, New(04] can be carried out with address spoofing, Man-in-the-middle attack
[Sta02] can be launched to fool the source and the destination, or even the transport layer
protocols can be mishandled by manipulating the metrics. In our research we only concentrate on
the attacks in the routing layer and leave the rest as a future extension with an intention to

develop a cross-layer approach towards designing a secure communication mechanism.

1.1.4 Motivational Example

While there is a plethora of applications to support our proposed environments, especially
in the military, emergency crisis management, homeland security, and medicine, we will look at a
simple medical scenario in this section. In this scenario, let us consider the formation of a hospital
medical board, where doctors and staff create a network “on the fly” without the aid of any
infrastructure. They share substantial confidential information and data which they want to keep
restricted within themselves. An ad hoc multihop network is formed using their laptops or PDAs.
The members can actually communicate among themselves from different locations inside the
hospital, with each member appropriately forwarding data. All the data flowing through the
network is cryptographically protected using shared secrets. Shared secrets are formed by the
collaborative effort of some trusted members within the network. A person who is not authorized
to join the network cannot take part as he/she is unable to encrypt or decrypt the necessary

information. But he/she can easily get hold of a member’s laptop and steal all network secrets.

13

Using these secrets, he/she can communicate with the others without getting detected. It is easy
for the person to include himself/herself in the routing path by injecting malicious routing
information into the network. The malicious information goes undetected as appropriate keys are
used to encrypt and decrypt the headers. In the face of such an attack, even the cryptographically
protected network breaks down. In view of the above fact, it is of itmost importance to find a
trusted route in the network to disseminate confidential information. The trusted route must
include nodes who are are proven to be trustworthy, which gives rise to further issues like trust

computation and distribution in the network.

A similar example can be cited in a war front situation where army officials form a
multihop ad hoc network to exchange confidential information. A similar attack can be launched
by compromising any of the nodes comprising the network. Although the network is
cryptographically protected by secrets formed by collaborative efforts, an internal attack in the

form of a compromised node can completely disrupt it.

Secured communication is also desired in applications where an ad hoc network is used
in an archeological mission. The nature of the network demands exchange of confidential data
between trusted hosts. A secure end-to-end path needs to be set up to ensure safe data exchange.
Efficient use of cryptographic keys can provide a feasible solution, but an internal compromise
can lead to disclosure of confidential data. Consider the following scenario as depicted in
Figurel.3.

Let us assume that the nodes a and b have somehow managed to share a secret. When
node a wants to communicate with node b, it broadcasts a route request packet; its format being
the same as in AODV [Per99]. Now, let node ¢ get compromised and get hold of the secret group
key. It will place malicious routing information into the network and wants all the packets to go

through itself. This will disrupt the network operation since the compromised node can drop

14

demands the design of an efficient and secure solution in ad hoc communications based on the
issues and challenges arising out of their inherent characteristics and applications.
Our motivation for this proposed research is twofold:

1. Finding a secure end-to-end route in an ad hoc network, which will be able to withstand
active internal attacks from compromised nodes, either acting independently or in
collusion, trying to inject malicious routing information.

2. Designing a trust computational model that will analyze the psychology of the attacker

and quantify them in the model itself.

1.3 Research Goals and Issues

The overall goal of this research is to provide a secure solution for communication in ad
hoc network applications strong enough to withstand an active internal threat within the network.
None of the solutions, proposed so far, can actually resist an internal attack in the form of a
compromised or disloyal node. If an efficient cryptographic algorithm is used, a compromised
node can always give away the secrets to the attacker. The same is true for a disloyal node. It can
be argued, however, that the disclosure of secrets can be prevented by making the nodes (or some
of their selected modules) tamper-proof, which is easier to visualize than to implement. The
discussion of tamper-proof components are outside the scope of this thesis and we consider it a
separate research issue altogether.

The first aspect of the research will be to design a trusted routing protocol that will be
able to find a trusted end-to-end route free of any malicious node. The malicious nodes willing to
take part in ongoing communication in the network by trying to put themselves into the active
routes will be detected and isolated by collaborative effort of their neighbors. This demands the
determination of a suitable trust metric in the routing protocol which will play an active role in

the final route selection.

16

Another aspect of this research is to develop a framework for computing, distributing and
updating trust in an ad hoc network application. Modeling and computing trusts in such an
application is a challenging problem. It is very difficult to form a true and honest opinion about
the trustworthiness of the nodes, as they can be engaged in malicious activities in different ways.
This intricacy in trust computation, together with frequent topology changes among nodes, quite
often causes the whole network to get compromised or disrupted. Different malicious activities of
the nodes can very well be misinterpreted as the regular erratic behavior of the wireless networks
in general and ad hoc networks in particular, thus making trust computation all the more difficult.
In this paper we have proposed a framework for modeling and computing trusts that take into
account different malicious behavior of the nodes. Our proposed model tries to explore the
psychology of the attacker in different ways and quantifies those behaviors to form a computing
framework.

Selfish behavior in ad hoc networks has been prevented by proposed schemes that used
either a reputation-based incentive mechanism [Buc02, He04, Mic02], or a price-based incentive
mechanism [But02]. In both the mechanisms, nodes are given incentives to suppress their
malicious intention in favor of the network. But nodes with malicious intention at their
subconscious self always try to find ways to bypass these incentive mechanisms.

In view of the above issues and challenges and keeping in mind the severity of an internal

threat, we intend to incorporate two components into our research.

1. A network layer security scheme in the form of a robust routing protocol which will
address the following issues:
« Can the routing protocol be robust enough to withstand all forms of internal attack?
« Can the protocol find an end-to-end secure and reliable path (which may not be the
shortest) free of malicious nodes without the latter altering information and including

itself in such a path?

17

+ Can the protocol successfully isolate a compromised node trying to inject malicious

routing information?

o Can the isolation be done by the collaborative effort of the neighboring nodes,

instead of relying on a single node?

2. An efficient trust management system that takes into account different malicious
behavior of the nodes in trying to disrupt the network operation. The trust computational
framework should address the following issues:

o Can the computational framework incorporate different malicious behavior and

quantify them in the model?

« Can the algorithm successfully isolate a non-trusted entity with the collaborative

effort from all its neighbors?

« Can the model form a true opinion about malicious entities colluding together to

disrupt the network?

We propose to combine these two components to come up with a robust security solution
against an active internal attack in the network. The trusted routing protocol, when designed, will
be able to find a trusted end-to-end route free of any malicious entity, effectively isolating any
node trying to inject malicious information into the network. A trust computational model will be
developed and integrated with the routing protocol to act as a basis for selecting end-to-end
trusted path based on trust metric. Message integrity, authenticity and confidentiality will be
incorporated in this solution by efficiently encrypting the messages using either shared secrets or
reverting to a public key infrastructure. We will not address these issues now as they have been
well addressed in past studies. In the next section we will briefly discuss the routing protocols

most commonly used in ad hoc networks.

18

1.4 Significance and Contribution

This research will lay a foundation to develop a variety of techniques that will permit
people to justifiably rely on ad hoc networks to perform critical functions, as well as rely on ad-
hoc networks to process sensitive information. This will in turn potentially allow mobile ad hoc
networks to gain even more attention in both national scale infrastructures and localized systems,
since they could securely serve as the primary communications networks where no infrastructure
can be deployed. The solutions proposed in this research will be one of the first of its kinds to
secure the network from colluding malicious nodes actively carrying out internal attacks. In
addition, the trust computational model proposed in this work will also provide a solid foundation
for developing a policy-based autonomous system to develop a trusted communication

infrastructure in the absence of any support.

1.5 Methodology

Our work involves the combination of model development, protocol design, simulation
and experimentation. Model development involves a critical assessment of the requirements and
challenges of the security needs. The secure protocol has been designed to satisfy those
challenges and needs with concentration to minute details. To evaluate the design of our protocol
we are going to use simulation techniques. Although we know that simulation is not quite
foolproof, and only implementation in a real environment can assure us of the effectiveness of the
design, we will first turn our attention to simulation. Since mobile ad hoc networks are
characterized by the lack of a centralized entity, dynamically changing topologies due to the
mobility of the nodes, and a hostile wireless communication medium, it is difficult to obtain
theoretical analysis on these types of networks. The system performance is primarily measured
and evaluated through data statistics, which can be obtained through simulation, emulation, or a

real life network. Despite the recent surge in research activities in ad hoc wireless networks,

19

software simulation remains the primary approach to evaluate the network performance, as it is
easy to implement and manipulate. We observe that among all the protocols proposed for ad hoc
wireless networks, few are practical for implementation and operation. Some are too complicated
to implement, and some use parameters that are not available in practical systems. In order to
evaluate the trustworthiness and overhead of the proposed protocol, we will adopt an
experimental approach, and an obvious extension of the work will be to create an ad hoc testbed
and evaluate our designed protocol with real-time data. In addition to simulation, we will also
analyze the security of the routing protocol by evaluating different threat scenarios and will show

that the protocol is secure against those scenarios.

1.6 Organization of the Dissertation

The remaining chapters are organized as follows. In chapter 2 we give an overview of the
related work that have been done to secure communication in ad hoc networks. Chapter 3
discusses the design of the trusted routing algorithm with a detailed analysis of results obtained
from extensive simulation. A security analysis of the protocol has also been carried out by
evaluating different threat scenarios Chapter 4 describes the trust computational model designed
with a detailed analysis of the results obtained. Finally, in chapter 5 we conclude with a summary

of our research follwed by future extensions.

20

Chapter 2

Related Work

The discussions presented in this chapter are inspired by the recent developments and
also the ongoing work that are being done in the area of security in ad hoc networking. The
chapter summarizes in details the state of the art in the area of key management, routing security
and trust computation in ad hoc networks.

Ever since the evolution of ad hoc networks researchers focused on designing
communication protocols suitable for typical ad hoc applications to fit into the TCP/IP protocol
stack. Security considerations for those types of networks did not play a major role in the research
activities in the designing stages of the communication protocols. Some effort has been given to
securing such networks in the past few years [Zho99, Hie01, Yas02, Yi02, Sta99, Alb02, Den02,
Yi01, Pap02, Pap03, Hu02a, Hu02b, Zap02, San02, Yan02], arising out of the need for their
effective implementation [Hub01, Wro02, Sta99]. Different means of securing ad hoc networks
have been proposed, which involve key management [Hie01, Yas02, Y103, Yi02, Zho99], routing
security [Buc02c, Den02, Hu02a, Hu02b, Pap03, Pap02, Pir04b, San02, Smi97, Yi01, Zap02] and
trust computation [Dav04, Esc02, He04, Li04, Nga04, PirO4a, The04, Ver01, Yan03].

Although security issues in ad hoc networks have drawn considerable attention over the
past few years, no solution has been proposed so far to secure the network against an internal
attack by colluding malicious nodes by discovering a trusted end-to-end route. Most of the work
done so far [Den02, Yi01, Pap02, Pap03, Hu02a, Hu02b, Zap02, San02, Smi97, Pis04, Buc02c]
fail in the face of an active internal attack where the adversaries have the network secrets in their
possession. A collusion of more than one malicious node increases the severity of the threat

manifold.

21

2.1 Key Management in Ad Hoc Networks

Sharing of secrets [Des87, Sha79] and secure key exchange [Bec98, Bur95, Ste00,
Blu83] have been actively explored by researchers over decades, but very little effort has been
given to extend the concepts to ad hoc networks. After the discovery of the Diffie-Hellman key
exchange in a Public key scenario [Dif76], some researchers tried to implement the concept in
group communication and even in ad hoc networks [Zho99, Ste96, Hie01, Bur95, Des87, Sha79,
Ste00, Yas02, Yi02]. One of the first extensions of the Diffie-Hellman key exchange protocol to
group communication was proposed by Steiner er. al. which is referred to as the generalized
Diffie-Hellman protocol [Ste96]. Each member contributes its own part of the key by performing

an exponentiation. The group key is given by:

K=a* (1

where
K = group key
o = exponentiation base or the generator
N = random exponent generator by member k

n = total number of members in the group

[Ste96] discusses three protocols, each one optimizing on the number of messages
exchanged and the number of exponentiations. However, all the protocols suffer from one big
disadvantage; they allow all the group members to have the entire key. Thus the group key can be
obtained by compromising any of its members.

There are other protocols which follow the generalized Diffie-Hellman protocol. Some of

them are the Hypercube protocol and the Octopus protocol presented by Becker and Wille in

22

[Bec98]. In the Hypercube protocol, the 2" members are arranged in hypercube. Key exchange is
done in steps, one for each square. In the Octopus protocol, four of the participants form a square
at the center and the remaining members form tentacles that are attached to the central nodes.
First, the key exchange is done between the central nodes by the 4-node hypercube protocol and
then the key is distributed to the surrounding nodes. Another protocol, called the tree-based
protocol, is presented by Burmester and Desmedt in [Bur95]). This protocol is applicable for
networks having the topology of a binary tree. The root of the tree generates the key and
distributes it along the tree. This protocol is not contributory and hence can not be applied to an
ad hoc network. All of these protocols for distributing a group key are based on a fixed
architecture and are not suitable for an ad hoc network scenario.

Some work on key distribution in ad hoc networks is based on threshold cryptography
[Zho99, Bec98, Bur95, Des87, Sha79, Ste00, Gen96a, Gen96b]. The concept of threshold
cryptography was first proposed by Desmedt in [Des87, Des97]. He proposed a protocol, which
accepts k out of n players to create a valid signature, but ignores the signature if less than &
players take part in the signing process. This was based upon the concept of sharing a secret as
proposed by Shamir in 1979 [Sha79]:

“Consider, for example, a company that digitally signs all checks. If each executive is
given a copy of the company’s secret signature key, the system is inconvenient but easy to misuse.
If the cooperation of all the company’s executives is necessary in order to sign each check, the
system is safe but inconvenient. The standard solution requires at least three signatures per
check, and it is easy to implement with a (3,n) threshold scheme.”

Another implementation of threshold cryptography is the CLIQUES protocol proposed
by Steiner et al [Ste00]. In this protocol, the key computation proceeds from node to node, with
each node doing an exponentiation with its private Diffie-Hallman (DH) value. The final node

computes the key and broadcasts it to all other members. The main drawbacks of this protocol,

23

when applied to an ad hoc network, are that key generation has to be in serial order, which
violates the dynamic configuration change in ad hoc networks, and that nodes have the final
group key, which can be hacked by compromising any of the nodes.

Alec Yasinsac et al modified this CLIQUES proposal in [Yas02] to make it more suitable
for an ad hoc network, by optimizing the number of messages and taking care of the serialization
problem. The protocol works as follows:

« One member announces the formation of a group;

« The potential group members (i = I...n) select and publish a coordinator (member #0), the
DH base g and modulus p, with base and modulus having all the necessary properties to
ensure that the impending DH computations are secure;

» Each /" member (except the coordinator) chooses a random x; as their private DH number and

broadcasts their public DH number g ;
« The coordinator generates the random numbers z and x,, g, g"™ for each i, and encrypts

ef[z] g™ for each i. The coordinator then concatenates g™ with all the encrypted values and
broadcasts the concatenated message;

« After receiving the broadcast from the coordinator, each member computes g™ using their

private x;, decrypts z, and computes a combining function F = f (g g g), and the
group key, K = g~
Although this modified protocol solves the serialization problem, the problem of the
nodes having access to the entire key remains unresolved. Any node can still be compromised,
giving away the entire group key. This is a major threat in an ad hoc scenario where the physical
security of a node is always threatened.
Yi and Kravets [Yi02] proposed a key management service in an ad hoc scenario

whereby the functionalities of a Certificate Authority (CA) are distributed among a number of

24

mobile nodes (called MOCA). The proposed key management service satisfies tﬁe three broad
criteria, namely fault-tolerance, vulnerability and availability. The paper extended the concept of
threshold cryptography by sharing the digital signature among a number of MOCAs. A client
requiring a certification service, contacts at least £ number of MOCAs, each of which generates
its own share of signature and sends it back. The client reconstructs the full signature after
receiving k partial signatures. This proposed key management service overcomes the
disadvantage of a single CA in an ad hoc scenario by distributing the functionalities to a number
of them. But it fails to overcome the threat of key disclosure by compromising a node. An
intruder can easily compromise the client to get the key and hack into the network. A similar
approach is proposed in {Kon01]. The authors proposed a model for intrusion detection based on
the distribution of certificate authority functionalities using a threshold secret sharing mechanism.
Their model works under the assumption that the network elements have some information which
is untrustworthy or unknown to any intruder. This assumption does not hold true for a
compromised node or a disloyal node. A certificate distribution algorithm is also proposed in
[Hub01] based on a public key infrastructure where users are responsible for storing and
distributing the certificates by building local certificate repositories.

In [Zho99], Zhou and Haas have proposed a key management model again based on
threshold cryptography. Their model is built upon the distribution of trust and the assumption of
using a public key infrastructure. Public key infrastructure is assumed because of its superior key
distribution and its ability to achieve message integrity and non-repudiation. The functionalities
of a certification authority are distributed among n number of nodes called servers. A threshold
level of (+ + 1) has been used so that at least (# + 1) servers can combine to form the final
signature. With (¢ + 1) valid partial signatures, a combiner can compute the full signature for the
certificate. However, compromised servers cannot create a valid signature as they can generate at

most ¢ partial signatures. The protocol also takes care of mobile adversaries. The concept of

25

mobile adversaries was first proposed by Ostrovsky and Yung [Dif76]. This type of adversary
moves on compromising each server until it compromises at least (+ + 1) of them. It can gather at
least (¢ + 1) partial signatures to compute the entire key. The authors proposed a proactive
scheme to counter this mobile adversary. The scheme uses share refreshing through which each
server computes a new share from the old one. However, the protocol works under the
assumption that the shares from each server are put together by the combiner to compute the full
signature. This combiner, being any server, can always be a single point of attack. A combiner, if
compromised, can give out the full signature and because of this will not work in an ad hoc

scenario.

2.2 Secure Routing in Ad Hoc Networks

Routing protocols have been designed for ad hoc networks since their evolution. None of
these routing protocols incorporated security into them during their design stage. However,
researchers have started looking into the vulnerabilities of these routing protocols for the past few
years and have proposed solutions to make them secure and robust. Most of these protocols revert
to cryptographic techniques for their security and essentially find the shortest path from source to
destination.

There have been some work [Den02, Yi01, Pap02, Pap03, Hu02a, Hu02b, Zap02, San02,
Yan02, Smi97] to secure the distance vector routing protocols in ad hoc networks. In [San02], the
authors have proposed an authenticated routing for ad hoc applications. This protocol named
ARAN uses digital signature by each node to authenticate itself, which is duly verified by the
next node. Their work has also assumed the existence of a trusted certificate server. Both
assumptions may not be applicable in an ad hoc network scenario. The presence of a trusted
certificate server cannot be assumed because it violates the basic norms of an ad hoc paradigm.

Also, the use of digital signature in a public key infrastructure is of very high computational

26

complexity and hence is not suitable for ad hoc nodes with limited computational power. In this
context, some points need to be emphasized when using a public key communication system for
ad hoc application.

First, if a message is encrypted with the receiver’s public key, then the authentication of
the sender can be questioned. This is more applicable in an ad hoc scenario where there is little or
no trust between nodes. Thus, every message must be signed digitally by the sender. Second, if
the message is signed by the sender (i.e., encrypted with the sender’s private key), then any node
in the network can decrypt the message with the sender’s public key which is known to all.
Consequently, the confidentiality and integrity of the message are questioned. The ideal system
would be to use both digital signature as well as public key encryption.

The most widely used public key cryptosystem is the RSA algorithm. Although this
algorithm is widely implemented, its computational complexity is very high. The computational
aspects of RSA involve the following:

Generation of two large prime numbers- it has been undoubtedly proved that primes near
N are spaced, on an average, one in every (/nN) integer. So, to generate a prime number of order
of magnitude 2’ would require /n(2°"’) /2 (to discard the even integers) = 70 trials. It can be
shown that for a 100-digit number, 1 in every 230 is a prime.

To test the primality of a number, an algorithm was proposed based on the well-known
Fermat’s theorem which states that:

If p is prime, then, o’ T =] mod p where <a<p

By this algorithm, if (') is not equal to 1, then the number p is definitely not prime. But
if the result is 1, then the probability the number is prime would be 1/10". Even if the probability
is very low, it proves a great risk for a high security ad hoc application. If the primality test does

not work, the RSA algorithm will totally fail.

27

Computing exponentiation of a large number by another large number also takes much
computational time. To ensure authentication and message confidentiality and integrity, it has to
be done twice, once for computing digital signature, and again for public key encryption.

To avoid using a public key cryptosystem in an ad hoc scenario, some researchers have
come up with secure routing solutions using symmetric key systems. In [Hu02b], the authors have
proposed a new on-demand secure routing protocol called Ariadne. The protocol is based on
symmetric key cryptography and its security depends on the secrecy and authenticity of secret
keys stored in nodes. A source node performs route discovery, based on the assumption that it
already shares a secret key with the destination node. The source node simply includes a message
authentication code (MAC)* computed with the shared key which the destination node can easily
verify. Thus the protocol relies on the distribution of shared secret keys between source and
destination, which itself is a burning research problem in an ad hoc network, without the presence
of any trusted entity.

While Ariadne uses an end to end security solution, a hop by hop approach is proposed in
[Hu02b]. The authors have proposed a secure routing protocol based on the destination sequence
distance vector (DSDV) routing. The security is based on the efficient use of one-way hash
function, unlike the use of MAC in Ariadne. The source node generates the elements of its hash
chain upon initialization and uses some elements from the chain to secure its routing update over
time. The authentication protocol works under the assumption that a secure means of distributing
the elements of the hash chain is already there, an assumption which itself defies the MANET

paradigm because of the absence of any trusted entity.

In [Zap02], the authors have proposed to extend the existing AODV [Per99] routing

protocol to make it secure. They have proposed to use digital signature to secure the non-mutable

4 We have used MAC to represent both Media Access Control and Message Authentication Code
interchangeably. We have specified the meaning of MAC during each use.

28

fields of the AODV messages and hash chains to secure the hop count information, which is the
only mutable field in AODV. The protocol works under the assumption of the existence of an
efficient key management system enabling all the ad hoc nodes to obtain public key information
of all other nodes. The authors also did not consider the problem of compromised nodes, which
they think is not critical in non-military application. However, this assumption is too strong in
securing ad hoc communication as compromised nodes can disrupt network operation in sensitive
applications outside the military environment. The security of the proposed scheme is also limited
by an attacker who deliberately keeps the information unchanged and can force the source node
to select the path.

Another extension of AODV is proposed in [Yan02]. The proposed protocol requires
each node to carry a token signed with a secret system key, which can be appropriately verified
by its neighbors. A node without a valid token is singled out in the network and all other nodes
stop communicating with it. They have referred to the threshold cryptographic scheme to secretly
distribute the token among nodes.

Some work has also been done to secure routing protocols based on the existing DSR
[Joh99] protocol. In [Buc02b] the authors have proposed a CONFIDANT protocol based on DSR.
It aims at isolating the misbehaving nodes, making non-cooperation unattractive. The monitoring
mechanism is implemented by a neighborhood watch concept where the no-forwarding behavior
of the nodes are monitored and reported. No-forwarding behavior or so-called selfishness of the
nodes is also taken care of by a mechanism proposed in [But02]. The authors have proposed a
protocol based on having simple counters at each node, called nuglets, which will encourage the
nodes to forward the packets. However, this protocol only ensures the selfless act of nodes in
forwarding others’ packets. It does not ensure such an act in forwarding packets with malicious

routing information. Although the protocol secures the network from the presence of selfish

29

nodes, it does not secure it from malicious nodes which enthusiastically forward others’ packets

by modifying information in it.

The above protocols use a secure way of route discovery, but do not consider any secure
means to discover the topology of the network [Pap03, Pap02]. In [Pap03], the authors have
proposed a protocol for securely discovering the network topology in a public key infrastructure.
The protocol is responsible for securing the discovery and distribution of link state information.
Each node broadcasts signed hello messages to its neighbors giving its MAC address, IP address
pair. The receiving node retains that information after validating the signature. However, the
protocol fails in face of a colluding attack, and also does not scale well to frequent topology
changes. Another protocol to achieve a similar goal is proposed in [Pap02]. The authors have
proposed a source-routing protocol that can securely discover correct connecting information. It
works under the assumption of an already established shared secret between the source and the
destination. The security of the protocol is based upon the computation of a Message
Authentication Code (MAC) using the source, destination, unique query identifiers and the shared
secret. However, an internal attacker in the network, who can get hold of the shared secret, can
easily place itself on the end-to-end route, and get hold of all the data packets. Moreover, the
protocol does not secure the network from an attack by colluding malicious nodes.

All the above solutions have used either a symmetric or a public key cryptosystem,
intending to use either a shared secret key or a digital signature to authenticate and protect the
routing information. They still tend to find the shortest path from source to destination,
irrespective of some untrustworthy links in between. In [Yi01], the authors have proposed a
secured routing protocol based upon the trust level of the nodes. Their protocol is based on an on-
demand protocol like AODV [Per99] or DSR [Joh99]. The authors have defined a security metric
and embedded it into the RREQ packet. When an intermediate node receives a RREQ with a

specified security metric or trust level, it can only process or forward the packet if it meets the

30

required security level, otherwise it drops it. If an end to end path with the required security
metric is found, then only a RREP is sent back. However, this solution does not prevent a
compromised node from changing its trust level to match the higher trust level of the packet, and
getting all the messages it is not supposed to. The authors also did not discuss any model for
computing and distributing the trust levels.

A similar approach to compute trusted routes based on trust levels has been proposed in
[Pir04b]. The trust computation is based on the actions of three components, namely the trust
agent, the reputation agent and the combiner. Each node in the network computes a direct trust
value for its immediate neighbor based on the latter’s honesty in executing the routing protocol.
The nodes share their trust opinions about other nodes through an effective reputation exchange
protocol. The trust values are used as the metric to compute end-to-end routes. However, it has
not been clearly mentioned how these trust levels are used in the route computation. Also the
proposed protocol does not secure the network from colluding malicious entities.

All the secure routing protocols proposed so far lack any formal model to prove their
security. The first such attempt to develop a formal model to prove the security of a routing
protocol was done in [But04]. The authors have suggested two attacks on SRP [Pap02] and
Ariadne [Hu02b] based on the method. However the authors assumed that the adversary only
advertises non-existent routes. This tfpe of attack, although degrades network performance, is not
detrimental to the confidentiality of the network secrets. There is however no discussion that the
proposed method can prove the security of the routing protocols in face of other attacks such as

the modification of routing metrics by a malicious entity.

2.3 Trust Computation in Ad Hoc Networks

All the security solutions proposed so far and discussed in the last section have at least

one direct point of weakness. This point, when compromised, can disclose the group key and,

31

thus, threaten some of the basic security requirements like authentication, confidentiality and
integrity. The use of a trust computational model can be thought of as an alternative approach to
cryptographic solutions. Establishing security associations based on distributed trust among nodes
is an important consideration while designing a secure routing solution, though not much work
has been done to develop a trust model to build-up, distribute and manage trust levels among the
ad hoc nodes. Most of the proposed schemes talk about the general requirement of trust
establishment [Buc02¢, Ver01, Esc02, Kag01], but do not come up with any specific model or
computational framework to do so. None of the models proposed so far have tried to understand
and analyze different malicious behavior of the attacker and quantify those behaviors in a policy-

based computational framework.

Modeling and computing trust for a distributed environment has been actively researched
for quite a long time [Zhu03, Bet94, Abd97], though not much work has been done to extend the
concept in ad hoc networks. Most of these distributed trust models combine direct and
recommended trusts to come up with trust computations. The concept of direct and recommended
trusts was given in [Bet94]. The authors defined a direct trust relationship as:

P trusts, ™ Q value V
Where x is the trust class, V is the value of trust relationship, which is an estimation of the
probability that O behaves well when being trusted. Thus, a direct trust relationship exists
between P and Q if P has all positive experiences with Q. seq is the sequence of entities that
mediated the experiences. In a similar way, a recommendation trust has been defined as follows:

P trusts.rec, ** Q when.path S, when.target S, value V
A recommendation trust exists between P and Q if P is willing to accept from Q reports about
third entities with a specific trust class x. This trust is restricted to the experiences with entities in
S, (target constraint set) mediated by entities in S, (path constraint set). seq is the sequence of

entities that mediated the recommendation and ¥ is the value of the trust relationship.

32

The computation of trust based on values of trust relationships and sequence of mediating
entities results into continuous values which necessitates the specification of a threshold, which is
not easy to contemplate in a sensitive and dynamic application. When extending the concept of
direct and recommendation trusts in ad hoc networks, it is desirable to avoid the later as it
encourages the collusion between malicious nodes. Moreover, there is a need to understand and
analyze different malicious behavior and quantify them in the computational model.

A similar approach of direct and recommendation trust has been taken by the authors in
[Abd97]. They have suggested a recommendation protocol to formalize the propagation of trust
information by issuing recommendation request and recommendation messages. However, the
proposed model lacks any mathematical basis to calculate the trust values. The authors have not
discussed how the trust values are computed and updated. In addition, this model, when extended
to an ad hoc network with frequent topology changes, results in generating a large routing
overhead in the form of control packets with each node generating more and more
recommendation request messages.

A pairwise trust establishment based on self trust and group trust has been proposed in
[Vir05]. The authors proposed to use the trust establishment model for establishing pairwise keys
between nodes. However, the problem of key distribution still exists which cannot be solved from
a trust establishment angle. The trust model proposed here also does not take into account
different forms of malicious behavior.

In [Gra02] the authors have proposed a trust formation and risk assessment schemes
based on the small world concept [Mil67]. The small world concept suggests that “any pair of
entities in a seemingly vast, random network can actually connect in a predictable way through
relatively short paths of mutual acquaintances” [Gra02]. The authors have proposed a trust-based

security architecture consisting of four components namely, entity recognition, trust-based

33

admission control, risk assessment and trust management. The trust formula, as given by the

authors, is as follows:

Tp() (pm) = = (2)

where

Ty, (p,) = trust value p, forms for any py,

po= principal making admission control decision
Pw = principal m steps away from p, and requesting admission
m = total steps between py and p,,

w; = discounting factor (decreases as k increases)

In a similar way, the authors presented the risk assessment formula as follows:

where

R Poipy) risk assessment p, forms for interaction with any p,;

the other parameters being same as the previous formula.

The above two formulae for computing the trust factor and the risk assessment factor are
based upon the recommendation of each entity about its next entity in the path chain. This model,
when extended to a security-sensitive ad hoc application can attract collusion among different
malicious entities, and hence is not welcome. The trust management component, as designed by
the authors, is based upon the small world assumption that an entity, when roaming in a particular

environment, knows specific information about that environment. This assumption is primarily

34

based upon the Small World Clustering algorithm described in [Mat02] as “a cluster ofien shows
the particular context”. However, this assumption is too strong when applied to an security-
sensitive ad hoc application.

A policy based approach has been proposed in [Bla96], based on a simple language to
specify trust actions and relationships. The authors proposed a trust management system called
PolicyMaker which binds Public Keys to the predicates defining actions for which they are used.
PolicyMaker accepts as input a set of policy statements, a collection of credentials and a
description of a proposed trusted action. It then evaluates the proposed actions by interpreting the
policy statements and credentials. A simple example of the PolicyMaker language is shown
below:

keyy, keys, , key, REQUESTS ActionString

Where the ActionString describes a trusted action requested by a sequence of (or a single)
public keys. This PolicyMaker language is too simplistic to use in an ad hoc scenario where the
actions of an entity can be forcefully implemented by an intruder. For example, when a node is
compromised it can carry out the same set of trusted actions with the key(s) which will be
authorized as per the PolicyMaker language specification.

Watchdog mechanism [Mar00], based on promiscuous mode operation of the ad hoc
nodes, has been the fundamental assumption in any trust computational model. In [Yan03] the
authors have proposed a trust evaluation-based secure routing solution. The trust evaluation is
done based on a trust matrix stored at each ad hoc node. The matrix consists of several parameters
on which the final trust evaluation is computed. However, the mechanism for collecting the
required parameters was not discussed by the authors. They also did not discuss the means of
measuring communication success or failure pertaining to the parameter experience statistics.
Also, some of the parameters suggested by the authors are not realistic in a highly sensitive

application; for example, the parameter personal preference may attract colluding attack in the

35

network. In [Pir04a] a similar concept has been proposed. The authors have defined different trust
categories based on the effectiveness of the protocol functionalities. The final trust computation

has been formulated as follows:

LU= 2L e @

where

T ()is the trust of node x in node y
W, (i) is the weight of the i" trust category

T, (i)is the situational trust of x in the i" trust category

The trust computation is based only on the success and failure of transmission of different
packets and does not take into account different forms of malicious behavior. In [Nga04] the
authors have proposed an authentication scheme based on Public Key infrastructure and
distributed trust relationship. The trust relationship is established by direct as well as
recommended trusts. Composite trust is computed by combining both direct and recommended
trust relationships. Some work has also been done to establish trust based on distribution of
certificates. In [Dav04] the authors have proposed such a trust management scheme. However,
the proposed scheme lacks any specific framework for computing the indices.

Another model has been proposed based on subjective logic [Li04]. The concept of
subjective logic was first proposed by Josang [Jos01, Jos98, Jos97]. Subjective logic is “a logic
which operates on subjective beliefs about the world, and uses the term opinion to denote the
representation of a subjective belief’ [Jos01]. An opinion towards another entity x is represented
by three states: belief [b(x)], disbelief [d(x)] and uncertainty [u(x)], with the following equality:

bix) +dx) +ux) =1

36

The concept of subjective logic has been extended to propose a trusted routing solution
in [Li04]. The opinion of a node about another node is represented in a 3-dimensional matrix
representing frust, distrust and uncertain opinions. The opinions are updated by a positive or a
negative feedback from the node in question. The proposed model, however, fails to protect the
network from an internal attack, where a malicious node either refuses to forward the packets and
duly authenticates itself to the source, or it cooperates with the source node and acts as a black
hole. The vulnerabilities are discussed in details in the following cases:

Case 1: A compromised node B does not forward node A’s message. A’s opinion towards
B changes to (0, 0.33, 0.67) from (0, 0, 1), where the values represent trust, distrust and
uncertainty respectively. A subsequently asks for B’s digital signature, which is duly supplied by
B. Consequently, A’s opinion towards B changes towards positive.

Case 2: B duly forwards all messages sent by A, hence A’s opinion towards B changes
towards positive. B can inject false routing information to place itself into the route and
subsequently act as a black hole.

Some mechanisms have been proposed to give incentives to the nodes for acting
unselfishly. In [He04] authors have proposed a secure reputation-based incentive scheme (SORI)
that prevents the nodes from behaving in a selfish way. The scheme, however, does not prevent a
malicious node from selectively forwarding packets or from other malicious behavior.

In view of the above, we prefer to model a trust computational framework based on
different malicious behavior. The problem is not easy, as it requires intricate understanding of the
different malicious intentions and actions and model them in the computational framework. This
trust model can then be used with the trust based routing solution designed by us which will

eventually be discussed in later chapters.

37

Chapter 3

Collaborative Trust-based Secure Routing Protocol

This chapter highlights the design of the trusted routing protocel, which we call Trust-
embedded AODV (T-AODV). We will discuss our assumptions towards designing the protocol,
give an overview of the design and finally talk about the protocol in details with analysis of the
results obtained from extensive simulation. We will also carry out a case by case analysis to

demonstrate the security of T-AODV against different threats in the network.

3.1 Introduction

In our quest for developing a solution for the problems defined in chapter 1, we have
developed a trusted routing solution for ad hoc network applications. The solution has been
developed with an extension of the Ad Hoc On Demand Distance Vector (AODV) [Per99]
routing protocol. The selection of AODV was motivated by its superior performance over the
Dynamic Source Routing (DSR) [Joh99] protocol as highlighted in chapter 1, especially with
increased mobility in the network. Our trusted protocol is unique from other solutions proposed in
the literature in that it is capable of finding a trusted end-to-end route free of any malicious entity
acting either independently or in collusion. It is the first such solution proposed to counter an
internal attack from colluding malicious nodes. The protocol does not encourage shortest path
route discovery as in traditional AODV, but relies on a trust metric to do so. To formulate and
distribute the trust values, we have developed a trust computational model that takes into account
different malicious behavior typical to an ad hoc application. The model is unique and different
from other solutions proposed in the sense that it analyzes different malicious behavior of the

nodes and quantifies them in the model itself.

38

The remainder of this chapter is organized as follows. In the next section we will discuss
the assumptions for designing the protocol, followed by an overall description and detailed
overview. Extensive simulation resilts will follow with analysis of the results. Finally, we will

carry out a security analysis of the protocol by evaluating different threat scenarios.

3.2 Assumptions

Our trusted routing protocol is based on the following assumptions that we think are
justified. First, all the nodes communicate via a shared wireless channel and all communication
channels are bi-directional. Second, all the nodes operate in a promiscuous mode. Third, our main
focus is on the network layer and the protocol that we propose here is an extension of the Ad hoc
On Demand Distance Vector (AODV) [Per99] routing protocol which we call Trust-embedded
AODV (T-AODV). We have assumed a reliable link layer protocol to be in place. Fourth, we
assume that all the nodes are identical in their physical characteristics, i.e., if node A is within the

transmission range of B, then B is also within the transmission range of A.

The above assumptions are very fundamental and used for all the solutions proposed so
far. Finally, we do not encourage the notion of trust transitivity, i.e., ‘if A trusts B and B trusts C,
then A also trusts C’. This trust transitivity encourages more colluding attack in the network from
multiple malicious nodes. For example, if a trusted routing solution [Gho04b] is in use in the
network, then more than one malicious nodes can collude and make their combined trust high
enough to put them in the active route. Instead, our trust model is based on collaborative effort of

all the nodes and analysis of different malicious behavior.

3.3 Design of Trust-embedded AODV (T-AODV)

Essentially all routing protocols in the ad hoc community tend to find the shortest path to

the destination irrespective of the presence of any malicious node in that path. We can argue that,

39

as internal threat in the network in the form of a compromised or disloyal node is of significant
concern, a path free of malicious node is more important than the shortest path. In the following

section we present a detailed description of T-AQDV.

3.3.1 Overall Protocol Description

The motivation for designing T-AODV comes from finding a trusted end-to-end path free
of malicious nodes. The basic idea behind the protocol is for a node to append the trust level of its
predecessor from which has received the route request packet. Trust levels are defined to be
unique values of the level of trustworthiness of a node on another node, a detailed modeling of
which will be discussed in chapter 4. A path with maximum trust level will eventually be selected
by the destination node and will be sent to the source as the end-to-end active path to be used. A
node with malicious intention will try to put itself into that active route by trying to inject
malicious trust information. The protocol will ensure that all the trust level information provided
by a node will be checked by its predecessor node in order to ensure information authenticity.
The preliminary design of T-AODV has also been extended to protect the network from colluding
attack where any accusation about a node will also be checked. This is ensured by computing a
signature with the Private Key of the node, alongwith the trust level computation. In the next

sections we are going to discuss the protocols in depth.

3.3.2 High Level Description of T-AODV

When a node wants to find a route to another node, it initiates a route discovery. The
route request packet header contains a trust_level field which is concatenated with the IP address
of the node whose trust level is being appended, in addition to the other fields in AODV route
request, as shown in figure 3.1. The header also contains a cumulative trust level field which
reflects the sum of the accumulated trust level of all the nodes in the path. When an intermediate

node receives the route request packet, it rebroadcasts it after modifying the trust_level field to

40

include the trust level of the node that sends it the route request and also increases the cumulative
trust level field by the trust level of its previous node. Every node checks back the rebroadcasted
route request packet from its next node to see whether it has provided the proper information. If
not, it immediately broadcasts a warning message questioning the intended malicious action of
that node. Our protocol does not encourage any intermediate node to send a route reply. The final
route selection is based upon the trust_level metric where the destination node selects the path
with the maximum Cumulative Trust Level. Hop count plays a role in deciding the final route

only when more than one packet has same trust_level.

Source | Destination | Source Destination | Last Broadcast | Hop Previous | Cumulative
Address | Address Sequence | Sequence Address | ID Count | node IP: | Trust
Number Number Trust Level
Level

Figure 3.1 Route Request packet structure in T-AODV

where

o Source Address is the address from which the RREQ packet originates;

o Destination Address is the address to which source node wants to send data;

o Source Sequence Number is the latest sequence number received in the past by the source
for any route towards the destination;

o Destination Sequence Number is the most recent sequence number used by the source;

o Last Address is the address of the node from which its next node receives RREQ;

o Broadcast ID is a sequence number uniquely identifying the particular RREQ when taken
in conjunction with the originating node's IP address;

« Hop Count is the number of hops from the source node to the node handling the RREQ;

« Previous Node IP is the IP address of the previous node from which a node receives the

RREQ;

41

o Trust Level is a unique value identifying the level of trust of a node on another node;
s Cumulative Trust Level is the sum of trust levels of all the nodes in the path.

The route reply packet has the next hop information. This is in line with the solution
given in [Den02] to counter the black hole problem. When the source node gets back the first
route reply, it waits for a specified amount of time before using that route. If within that time
another route reply comes, the source node queries the next hops of the two route replies. The
next hop of the malicious route reply will obviously not have the same route to the destination.
Thus, malicious route injection into the network can be prevented. The procedure below shows

the action of a node after it receives a route request packet.

// when a node receives a Route Request packet

Receice RREQ{) {
// check whether it is the destination of the route request
if destination
compute highest trust level()
// in case more than one RREQ has same trust_level
// decides on the basis of lowest hop count
sends_RREP_to_source()
else (not destination)
if duplicate packet
cross_checks_trust_level()
if found correct
drops the packet
else
broadcasts roure warning message()
end if
else (not duplicate)
concatenates the previous node trust level with
previous node IP address
increases the cumulative trust level
increments hop_count
rebroadcasts RREQ
end if
end if
} // end of function Receice RREQ

Figure 3.2 Procedure for the action of a node afier receiving the RREQ packet

42

A node first checks whether it is the destination of the packet. If it is the destination, it
creates a route reply and sends it back along the reverse route. If it is not the destination, it checks
whether the packet is duplicate. If found duplicate, the node cross checks its trust level provided
by its neighbor and takes action according to the correctness of the information. If the packet is
not a duplicate, it appends the necessary information and rebroadcasts it.

The procedure below shows the detailed action of the source node after it receives the

first route reply.

// when the source node gets back the first Route Reply
Receive RREP() ({
waits for a specified period
if receives another RREP
queries next hop()
else
sends data{)
end if
} // end of function Receive RREP

Figure 3.3 Procedure for the action of the source node after receiving the first route reply

The function cross checks trust level can be implemented in two ways. When an
intermediate node receives a duplicate route request packet, it extracts the concatenation of (IP
Address : Trust level). If it finds that the IP addess matches its own address, it cross checks the

trust level appended by the node. The following algorithm implements this function.

// Extracts (IP Address : Trust Level)
if (IP Adress = = own address)
cross_checks _trust_level()
if (trust level does not match)
broadcasts roure warning message()
else
drops the packet()
else
drops the packet()

end if

Figure 3.4 Procedure for the Cross checks trust level function

43

The second possible implementation takes care of the above assumption. An intermediate
node, on receiving a duplicate route request packet, extracts the address stored in the Jastaddr
field (the /astaddr field contains the address of the node from which the next node receives a
route request packet) and checks from the neighbor table whether it is from any of its neighbor.
The neighbor table contains a list of all the nodes in the one-hop neighborhood of a node. The
table is populated by the Hello messages received in regular intervals.The algorithm works as

follows:

if (lastaddr = = neighbortable->addr)
cross_checks trust level()
else
drops the packet()
end if
Figure 3.5 Procedure for the alternative implementation of
Cross checks trust level function

The above implementation can actually increase the computational overhead in each
node. However, the computational overhead can be reduced by efficient searching of the neighbor

table.

3.3.3 Proof of Protocol Security under Attack from Independent Malicious Nodes

Below we present a simple proof to show the security of the protocol. The proof uses
method of contradiction and shows that the protocol is secure under the assumption of an
independent attack’ from malicious nodes.

Theorem: In the presence of malicious nodes acting independently, our protocol (T-AODV) is
secure.
Proof Let us assume that the protocol is not secure in presence of malicious nodes acting

independently. In that case, any malicious node will inject faulty information into the network to

5 An independent attack is carried out by one or more malicious nodes without the aid of any other node.

44

include itself in the routing path. Eventually, all information will be forwarded through it. The
malicious node will be able to do this successfully by putting a very high trust level for its
_previous node. This act will go unnoticed and the route selected by the destination will eventually
include the malicious node.
Let us assume a n-node network, where n > 2. Let §;be the set of nodes in the neighborhood of
node ;. In case node j has 4 nodes in its neighborhood we can denote S; as:

Si={(-):-25i<+2,i#0), where je N
Lets; < S; be the set of nodes from which node jreceives route request. Let,

s ={(j-i):i=12

Now, if node j gets compromised, it will want to put malicious routing information. So.
after receiving the route request, j puts the wrong trust _level for either or all of its predecessors, j-
i (j-i € s;) andrebroadcasts it. When the nodes j-i (j-i € s;) receive copies of the rebroadcasted
route request from node ;j, they cross check the information. If either of them finds that j is trying
to put malicious information, it immediately broadcasts a warning message to all its neighbors
about the sanctity of node j. Thus, injection of any faulty information by a malicious node will be
detected by its predecessor. Hence, we can argue that our assumption is not correct. Thus, our
protocol is secure in presence of independent malicious nodes. Q.E.D.

We recognize that, the protocol that we have designed so far, has one possible
vulnerability. It fails to secure the network against multiple malicious nodes colluding together.
In the following section we discuss a threat model with multiple colluding malicious nodes and

design solutions to secure against it.

3.3.4 Threat Model

As we have discussed in the earlier section, our secure routing protocol fails to secure the

network against multiple malicious nodes colluding together. In this section we describe the

45

Our algorithm to counter the colluding attack assumes the existence of a Public Key
infrastructure. Each node has a <Public Key (PK), Private Key (SK)> pair, the generation of
which can be done by any existing algorithm. Further assumptions are already discussed in
section 3.1. We extended the T-AODV protocol discussed in section 3.1.1 to incorporate the
security needed to counter the colluding attack. Each node, before broadcasting the RREQ packet,
not only computes the trust_level field, but also computes a signature and appends it to the RREQ

packet header. The signature is computed as follows:

Sign; = (Source_Address, Broadcast ID, trust_level,,, IP_Address;: SK)), i€ N
where

Source Address is the address of the node from which RREQ originates,

Broadcast ID is a sequence number uniquely identifying the particular RREQ when

taken in conjunction with the originating node's IP address,

trust_level,; is the trust level of the node from which node i receives the RREQ, ie N

IP Address; is the TP address of nodei ie N,

SK; is the private key of node i, ie N,

N is the number of nodes

The (Source_Address, Broadcast ID) pair has been used in the signature to prevent replay
attack. A malicious node can store a copy of the signature from another node and use it at a later
point of time to accuse the honest node. If the trust level of the malicious node has already been
changed, then the re-used signature will reflect its previous trust level and the honest node will be
misinterpreted as dishonest and subsequently will be isolated.

After receiving the RREQ packet, a node, besides computing the #rust level,

concatenates the source address, broadcast ID and its own [P address with the trust level of the

47

node from which it receives the RREQ and signs it with its private key to compute the signature.
It then appends the signature in the RREQ packet before broadcasting it to its neighbors. When a
node questions about another node’s trustworthiness and broadcasts a route warning (RWARN)
message, it not only sends the IP address of the accused node, but also the signature provided by

the later. The RWARN message structure is shown below:

Source Address Broadcast ID Malicious node IP Signature RWARN source IP

Figure 3.7 The RWARN message structure

where

Source Address 1s the address from which the RREQ packet originates;

» Broadcast ID is a sequence number uniquely identifying the particular RREQ when
taken in conjunction with the originating node's IP address;

o Maliciosu Node IP is the IP address of the node being accused;

o Signature is the Signature generated by a node;

¢ RWARN source IP is the IP address of the accusing node.

The inclusion of source address and broadcast ID into the signature is to prevent any
replay attack that a malicious node can carry out. A malicious node can copy the signature field
from the RREQ packet and use it at a later time to falsely accuse another node after its own trust
level has changed. The inclusion of the source address and broadcast ID fields in the signature
generation can successfully prevent such a replay attack.

When a node receives a RWARN message, it verifies the accusation by the sender of the
message. It decrypts the signature with the public key of the accused node and checks whether the
trust level matches the trust level of the accuser. If the two trust levels match, the node concludes

that the accused node has provided right information, and hence cannot be malicious. Thus the

48

trustworthiness of the accuser is in question. However, if the trust levels are different, then it

concludes that the accused node is malicious. The procedure is shown below:

receive RWARN () {
decrypt Sign () |
if (decrypt = = yes)

Check trust level provided by the accused node
if (trust_level provided = trust level of the accuser)
the accuser is malicious
else
the accused node 1is malicious
end if
else (decrypt = = no)
the accuser is maliciocus
end if
} //end of function decrypt MAC
} //end of function receive RWARN

Figure 3.8 The receive RWARN function

We have carried out extensive simulation to show the effectiveness of the protocols that
we have designed. In the next chapter we are going to highlight the simulation scenario and

discuss the results in details.

3.4 Simulation Model

We have used Glomosim [Zen98] for our simulation. Glomosim is a scalable simulation
software used for mobile ad hoc networks. We have carried out the simulation with two different
scenarios. The mobility model selected for the simulation is random waypoint mobility. In this
model a node randomly selects a destination from the physical terrain. It moves towards the
chosen destination with a speed uniformly chosen between a minimum and a maximum speed
limit. After reaching the destination, the node stays there for a certain pause time before it selects

another destination and starts moving in that direction.

49

We have chosen two types of traffic for our simulation - CBR (Constant Bit Rate) and
FTP (File Transfer Protocol). For each CBR traffic we have used 10000 packets each of length
512 bytes. In FTP tcplib has been used to simulate the file transfer protocol. In each FTP traffic
we have used either 10 or 5 items to be sent to the destination node.

We defined a region of 2 Km by 2 Km and placed the nodes randomly within that region.
In the first scenario, the nodes moved with uniform speed chosen between 0 to 10 meters/sec with
30 seconds pause between each successive movement. We increased the number of nodes and
studied the network performance. In the second scenario, we have increased the node speed,
keeping the similar infrastructure, to carry out our analysis. With these two scenarios, we are able
to evaluate the scalability of our protocol with increased network size and increased mobility. The

parameters for both the scenarios are shown in the table below.

Independent | Set of parameters compared
Scenario | variable
1 Number of | Routing | Number | Number
nodes overhead of of route
routes eITors
selected
Independent
Scenario | variable | Set of parameters compared
2 Routing | Number | Number
Node speed | overhead of of route
routes €ITOoTS
selected

Table 3.1 Parameters Chosen For Simulation

3.5 Analysis of Results

In our earlier work, when we designed the T-AODV routing protocol, we found that it
had a very small increase in routing overhead than AODV (Figure 3.9), which we think can be

traded off with the incorporation of security into the protocol.

50

it fails to recompute the signature as it lacks the knowledge of the accused node’s Private key.
Thus any attempt to alter the original information gets detected.
Scenario 3: A node falsely accuses another node, alters the information provided by the later and
recomputes the signature with its own Private key — this malicious act gets detected, as the nodes
receiving the warning messages cannot decrypt the signature using the accused node’s Public key.
Scenario 4: A node falsely accuses another node and provides the signature of a different node
other than the accused one -~ this act also gets detected, as the neighboring nodes receiving the
warning messages cannot decrypt the signature using the accused node’s Public key.
Scenario 5: A node whose trust level has changed, falsely accuses another node by using a copy
of the old Signature field that the later used at some earlier point of time. This false accusation
gets detected as the decryption of the signature will reveal the actual source address and broadcast
ID pair.,

We recognize that these scenarios are not exhaustive but at least demonstrate that the

protocol is secure under these threats.

3.7 Conclusion

From the above discussion and analysis of the results obtained from extensive simulation,
we can conclude that the secure routing solution developed by us in course of our research scales
extremely well to both network size and mobility. It has been observed that the routing protocol
performs even better than the original AODV routing protocol with increased mobility in the
network. In the next chapter we are going to discuss the design of the trust computational model

and carry out simulation analysis to prove its efficiency.

59

Chapter 4

Trust Modeling against Selfish and Malicious Behavior

Although it is extremely difficult to put forward a formal definition of trust, many people
have tried to do so since past several years. Generally speaking, trust is looked upn as a belief in
the honesty and truthfulness of an entity in carrying out certain protocols that have already been

(13

agreed upon mutually. A precise definition of trust is given in [Gam90] as “..trust (or,
symmetrically, distrust) is a particular level of the subjective probability with which an agent
assesses that another agent or group of agents will perform a particular action, both before he
can monitor such action (or independently of his capacity ever to be able to monitor it) and in a
context in which it affects his own action” [Liu04]. This definition of trust has led to the concept
of confidence® into the action of an entity. Hence, the terms trust and confidence have been linked
with each other since the concepts evolved in our society.

Trust has been an important concept behind the civilized evolution of our society. A
sociological interpretation of trust has been given in [Szt00] as follows: It is a “clear and simple
fact that, without trust, the everyday social life which we take for granted is simply not possible”.
Most people would now agree that “the existence of trust is an essential component of all
enduring social relationships”.

This social interpretation of trust can be mapped exactly to the context of our research.
Indeed the basic motivation of our work in developing a trut model has been evolved from this
fundamental concept. In the following section, we talk about this motivation.

In chapter 3 we have designed a trusted routing solution that depends on the trust levels

to compute end-to-end routes. The solution was developed under the assumption of static and pre

¢ Confidence has been defined to be the level of belief on an entity’s action.

60

distributed trust levels among the nodes in the network. In reality, this would not work in many
situations, as described below:
1. In a network deployed by the military in a war front there is a high possibility of nodes
getting compromised, in which case the trust levels of the nodes should change. But this
would not be reflected if static truts levels are used in the network;
2. In any commercial sensor networking application, a node may act selfish in forwarding
other nodes’ data to conserve its own power and eventually bring down the network
performance. This selfish act must also be reflected in the trust computation which should
dynamically compute the trust levels;
3. In multimedia applications for video and audio file sharing, nodes sometimes show
selfish behavior for which they are accused by others. This also changes the trust levels
of the nodes dynamically.
Hence, realistically speaking, the trust levels used in route computation should be dynamically
computed based on the behavior of the nodes. In this chapter we develop a framework for
computing, distributing and updating trust in an ad hoc network application. Modeling and
computing trusts in such an application has been a challenging problem since the concept of trust
has been extended for infrastructureless scenario. It is very difficult to form a true and honest
opinion about the trustworthiness of the nodes, as they can be engaged in malicious activities in
different ways. This intricacy in trust computation, together with frequent topology changes
among nodes, quite often causes the whole network to get compromised or disrupted. Different
malicious activities of the nodes can very well be misinterpreted as the regular erratic behavior of
the wireless networks in general and ad hoc networks in particular, thus making trust computation
all the more difficult.

As we have already discussed in chapter 2, most of the trust computations proposed for

ad hoc networks talk about the general requirement of trust establishment [Buc02¢, Ver01, Esc02,

61

Kag01], but do not come up with any specific model or computational framework to do so. Some
researchers have proposed to use trust tables populated by different parameters [Pir04a, Yan03]
collected by the nodes in promiscuous mode. However, none of the models proposed so far have
tried to understand and analyze different malicious behavior of the attacker and quantify those
behaviors in a policy-based computational framework. Some research has been done to prevent
selfish behavior in ad hoc networks by using either a reputation-based incentive mechanism
[Buc02b, He04, Mic02], or a price-based incentive mechanism [But02]. In both the mechanisms,
nodes are given incentives to suppress their malicious intention in favor of the network. But
nodes with malicious intention at their subconscious self always try to find ways to bypass these

incentive mechanisms.

Keeping in view the above facts, our objective is to design an efficient trust management
system that takes into account different malicious behavior of the nodes in trying to disrupt the
network operation. The trust computational framework should address the following issues:

1. Incorporation of different malicious behavior and quantifying them in the model;
2. TIsolation of a non-trusted entity with the collaborative effort from all its neighbors;
3. Formation of true opinion about malicious entities colluding together to disrupt the
network.
This chapter focuses on the design of the trust computation model that we have developed to
integrate with the trusted routing protocol discussed in the previous chapter. A simulated analysis

of the model has been carried out to prove the efficiency and scalability of the model.

4.1 Trust Issues in Infrastructureless Networks

As we have already discussed, our motivation for developing the trust model is to forma

true and honest impression about the trustworthiness of the nodes and to punish the nodes with

62

the slightest malicious intention. To do this we need to understand clearly the ways a node can
engage itself in different malicious acts. Below we highlight three different malicious behavior:

1. A node engaging in selfish behavior by not forwarding packets meant for other nodes, or
selectively forwarding smaller packets while discarding larger ones;

2. A node falsely accusing another node for not forwarding its packets, thus isolating the
node from normal network operation;

3. A node placing itself in active route and then coming out to break the route, thus forcing
more route request packets to be injected into the network. By repeating this malicious
act, a large number of routing overhead is forcefully generated wasting valuable
bandwidth and disrupting normal network operation.

Lets go back to the example of the medical board in chapter 1. We concluded from that example
that a trusted route establishment is of utmost importance where confidential data dissemination
is in use. Even if a trusted route is established, some nodes may act selfish by not forwarding
other nodes’ data or even selectively forwarding them. This will slow down the performance of
the network, eventually defeating the purpose of setting up the medical board. In forming a true
opinion about other nodes’ trustworthiness, it is essential to have a trust model in place by which
nodes can compute the levels of trust they can have on others. Some nodes may act malicious in
accusing other nodes falsely and thus be a good guy in the eyes of others. Even some nodes, after
putting themselves in the active routes, may break the route frequently, thus forcing the injection
of more control packets in the network.

All the malicious acts discussed above, if undetected, bring down the network
performance. This has been found from simulation analysis where we implemented the malicious
behaviors in the AODV routing protocol. We have used Glomosim [Zen98] and incorporated the
malicious behaviors in the network layer. We selected a network size of 50 nodes and increased

the number of malicious nodes from 10 % to 50 % exhibiting the malicious behaviors. The

63

4.2 Design of the Trust Model

Our model has been developed with a view to form a true and honest opinion about the
trustworthiness of the nodes with collaborative effort from their neighbors. Our trust model is not
transitive, i.e., we do not consider the notion “if A trusts B and B trusts C, then A trusts C”. This
trust transitivity encourages more colluding attack in the network from multiple malicious nodes.
For example, when T-AODV [Gho04b] is used in the network, them more than one malicious
nodes can collude and make their combined trust high enough to put them in the active route.
Instead, our trust model is based on collaborative effort of all the nodes and analysis of different
malicious behavior. In the following section we analyze some of the possible malicious behaviors

exhibited by the nodes and quantify them to gradually develop the model.

4.2.1 Assumptions

While designing the trust model, we have made the following assumptions which are
realistic. First, all the nodes communicate via a shared wireless channel and all communication
channels are bi-directional. This has been the fundamental assumption while designing any
standard MAC layer protocol for wireless networks. Second, all the nodes operate in a
promiscuous mode. Third, our main focus is on the network layer and we have incorporated trust
computations in the network layer to avoid any unwanted inter-layer cross functioning. We have
assumed a reliable link layer protocol to be in place. The above assumptions are very fundamental
and used for all the solutions proposed so far. Finally, we do not encourage the notion of trust
transitivity, i.e., ‘if A trusts B and B trusts C, then A also trusts C’. This trust transitivity
encourages more colluding attack in the network from multiple malicious nodes. For example,
when our trusted routing solution [GhoO4b] is in use in the network, then more than one

malicious nodes can collude and make their combined trust high enough to put them in the active

65

route. Instead, our trust model is based on collaborative effort of all the nodes and analysis of

different malicious behavior.

4.2.2 Trust Model Against Selfish Behavior

The development of the model to punish a node for selfish behavior is based on the
Secure and Objective Reputation-based Incentive (SORI) scheme proposed in [He04] with
several modifications. We will elaborate more on these modifications as we describe the trust

model.

4.2.2.1 Parameters used in the Model

Below we describe the parameters used in our trust computational model. We have

represented nodes by N, X and i. A detailed description can be found in [He04].
(i) NNL, = Neighbor Node List (each node maintains a list of its neighbors, either by receiving

Hello messages, or by learning from overhearing).

(ii) RF, (X)(Bequest for Forwarding) = total number of packets node N has forwarded to node X

for further forwarding.

(iii) HF ,(X) (Has Forwarded) = total number of packets that have been forwarded by X and

noticed by N.

(iv) LER,, (X)= Local Evaluation Record of node N of node X. It reflects the evaluation of the

behavior of node X by another node N.

) Gy (X)'—" Forwarding ratio of node N on node X.

(vi) Cy (X)= Confidence level of N on X.

66

(vii) OER,, (X): Overall Evaluation Record of node N on node X. It is the overall evaluation of

a node on another node based on its own local evaluation and collaborative evaluation from its

neighbors.

4.2.2.2 Model Formulation

With the above parameters, node N can create a local evaluation record (denoted

by LER,, (X)) about X. The record LER,, (X) consists of two parameters shown below:
LER, (X) = {GN (X)aCN (X)}
where

Gy (X) is the forwarding ratio given by Gy(X) = (HFx(X) |/ RFMX))
Co(x) is the confidence level of N on X

In [He04] the authors have set C,(X)= RF,(X). This gives quite an accurate

estimation about the trustworthiness of a node when weighted by the confidence level. But the
trust computation does not take into account a node’s “selective forwarding” behavior, where it

only forwards small packets while selectively discarding larger ones. To reflect this kind of
malicious behavior in our trust model, we compute the confidence level C (X) as shown in

equation (5).

SUHF(X), ! RF, (X)),)* (Pkt _size),
CyX)=~r—m = ®)

Z (Pkt _size),

i

67

Node N computes its confidence level on X after sending a specified number of packets to
X. The computation is weighted by the packet size to reflect the “selective forwarding” behavior

of a node.

We propose a similar propagation model proposed in SORI [He04]. Each node updates

its local evaluation record (LER) and sends it to its neighbors. When a node N receives the
LER, (X) from node i, it computes the overall evaluation record of X (denoted by OER,, (X N

as shown in equation (6).

> Cu(i)xC(X)*G, (X)
OER,(X)=ite=d ©

> Cyli)*C(x

ieNNL,i=X

where
Cy (i) = confidence level of node N on node i from which it receives LER/(X)
C, (X) = confidence level of node i on node X

G,(X) = forwarding ratio of node i on X

4.2.3 Trust Model Against Malicious Accuser

A malicious accuser is defined to be a node falsely accusing another node for non-
cooperation. We foresee a threat where a node falsely accuses another node of not forwarding its
packets, eventually to isolate the later as an untrustworthy one. This malicious act should also be
reflected in the trust computation, where every node should be given a chance to defend itself.
We extend the trust model against selfish behavior developed in section 4.2.1.2 to take into

account the malicious accusation of a node about another node.We have modified equation (5) to

68

reflect such a malicious act in the computation of the confidence level. The modified equation is

shown below:

Z(HFN(X)i /RFN(X)i)*(PkrwSize)i
CylX)=- Z(Pktmsize)i

H

T2 () N — (7

where
0 if X falsely accuses N

ay(X) = accusation index of Nby X =
1 otherwise

Node N keeps a track of the packets it received from X and packets it forwarded. If N

finds out that X is falsely accusing it for non-cooperation, it recomputes its confidence level on X

by taking into account the accusation index. It then broadcasts the new LER N(X) with

new C,, (X), thus resulting in computation of a new OER,, (X), which is low enough to punish

X. Thus, any sort of malicious behavior of X by falsely accusing other nodes gets punished

eventually.

4.2.4 Trust Model Against Malicious Topology Change

Malicious topology changes are carried out deliberately by malicious nodes in order to
inject more control packets in the network with a view to slow down the network operation. This
is a special type of Denial of Service (DoS) attack by which network resources are wasted. In this
section our proposed model is extended to reflect this malicious behavior of a node. If such a
behavior is detected, the confidence level must be changed in order to punish the malicious node.

However, detection of such a behavior is not easy, as any such topology change can be viewed as

69

a normal characteristic of an ad hoc network. We have tried to capture such a malicious act by

statistically modeling the action and reflecting it in the computation of trust.

To develop the model, we require each node to maintain a table called a neighbor remove
table, where it keeps track of any node moving out of the path. The table is populated by
successive Hello misses in AODV, or from the unreachable node address field in the route error
packet in DSR. In AODV each node periodically broadcasts Hello messages to its neighbors to
ensure connectivity. If successive Hello messages are missed, a node is removed from the
neighbor table and an entry is made in the neighbor remove table. On the other hand, if DSR is
used, the neighbor remove table can be updated from the unreachable node address in the route
érror message. Each route error message carries the the address of the node that is unreachable.
This address is entered in the neighbor remove table for further action.

A snapshot of the neighbor remove table is shown below:

Node Address Time of Leaving Time Difference
X T1 t0=0
X T2 t1=T2-T1
X T3 t2=T3-T2
X T4 T3=T4-T3
Mean =

Table 4.1 Snapshot of Neighbor Remove Table

Each node periodically scans the table to find whether any particular node is leaving at
frequent intervals. It computes the mean, , of the time difference of any particular node leaving
the network. If p, is found lower than a threshold value (denoted by tuesnoi), then the node is

identified as malicious and the confidence level is computed as follows:

70

0 (HE 060, RE (), (Pt _sie)
C (X) = Z (Pkt _size),

i

where
0 lfp't <= tthreshoid
m(X)= malicious index of node X =

U if e > toceshold

The choice of the threshold value can be selected based on the typical application for
which the ad hoc network is deployed. A network that demands frequent topology change can
have a higher threshold to accommodate the normal network behavior. An example can be a
typical application in the military where the deployed network demands frequent movement of
the nodes. A similar application can be thought of in an emergency relief operation. On the other
hand, a network deployed for medical boards does not demand frequent node movements, and
hence can be characterized by a lower threshold value.

Finally, to combine all the malicious behavior discussed earlier and to reflect those

behavior in trust computation, the confidence level of node N on X is computed as shown below:

Z (HF,(X),/ RF,(X),)*(Pkt _size),
CylX)== Z (Pkr _size),

i

TP () L1710, ¢ JEm——)

The final overall evaluation record (OER), when computed based on the local LERs, will
reflect the different malicious behavior of a node as computed in the confidence level, and finally

any malicious act gets detected and punished.

71

4.3 Simulation Setup and Analysis of Results

Our simulation setup for the trust computational model has been designed in a similar
fashion as that designed for T-AODV. The mobility model selected for the simulation is random
waypoint mobility. In this model a node randomly selects a destination from the physical terrain.
It moves towards the chosen destination with a speed uniformly chosen between a minimum and
a maximum speed limit. After reaching the destination, the node stays there for a certain pause

time before it selects another destination and starts moving in that direction.

We have chosen two types of traffic for our simulation - CBR (Constant Bit Rate) and
FTP (File Transfer Protocol). For each CBR traffic we have used 10000 packets each of length
512 bytes. In FTP tcplib has been used to simulate the file transfer protocol. In each FTP traffic
we have used either 10 or 5 items to be sent to the destination node.

We have evaluated the network performance with both increasing network size and
mobility. We have selected node speed from 0 to 10 meters/second with 30 seconds pause
between each successive movement. We increased the number of nodes from 20 to 100 and
studied the network performance with increasing network size. To evaluate the performance of
the protocol with increasing mobility, we have increased the node speed from 10 to 60
meters/second. This range of speed can give us a very good approximation of real time movement
and has been selected to simulate the moderate human speed as well as that of a high speed

vehicle. The parameters are shown in the Table 4.2.

We have incorporated trust computation directly into the routing protocol to avoid any
unnecessary layering interoperability. We have extended the Ad Hoc On-Demand Distance
Vector (AODV) routing protocol [Per99] to incorporate the trust computation and exchange. The

modified protocol has been benchmarked with AODV to study its scalability and efficiency. To

72

Chapter 5

Conclusion

This dissertation makes two important contributions towards designing a secure
communication system for infrastructureless networks. The designs and formulations used can
have significant contributions for securing next generation ad hoc or sensor networks. The results
obtained can form a solid foundation for future developmental work. This chapter summarizes

our main contribution and presents related problems and future extension.

5.1 Trusted Routing Protocol

The quest for finding a secure communication infrastructure led us to design a trusted
routing protocol, which we call Trust-embedded AODV (T-AODV) that relies on the
collaborative effort of all the nodes to find a trusted end-to-end path. The protocol is capable of
securing the network from an active internal attack, be it from malicious node acting
independently or in collusion. The working of the protocol depends upon the collaborative effort
from all the nodes and any malicious node trying to inject false information gets isolated and
punished. This is one of the first major contributions towards designing a secure routing scheme
against colluding attack where more than one malicious nodes collude with one another to attack
the network. A concept of trust level is introduced which plays a critical role in the final route
selection. Our extensive simulation shows that our protocol is efficient as well as scalable with
network size and node speed. A case by case threat analysis has also been carried out to show that

the protocol is secure against most types of attacks.

79

5.2 Trust Computational Model

We have also designed a trust computational model and integrated it with the routing
protocol. The trust model is unique in the sense that it analyzes different malicious behavior and
quantifies those behavior in the model itself. This is one of the first efforts given to formulate
trusts by analyzing different forms of malicious behavior. The model can lay down a solid
foundation for carrying out future research on trust computations in infrastructureless scenarios.
We have carried out extensive simulation to show the efficiency and scalability of our protocol

with both network size and mobility.

5.3 Future Direction

Although our work is extensive and forms a solid basis for developing a secure
communication infrastructure in multihop ad hoc networks, we believe that there is much more to
be done in this area. Up to now, the promiscuous operation of the nodes was assumed to be power
efficient. Although this was not the primary focus of our research plan at the time, we realize the
need to address the issue of making our protocol power-efficient. In particular, when each node
works as a router to help deliver packets to the destination, relaying packets to others can result in
the device expending its own energy. In addition, since the nodes are working in a “promiscuous”
mode, the amount of energy consumed in this case can be quite significant. Hence, a mobile node
should examine its own “well-being” before committing to forwarding packets or sniffing on
behalf of the others. Such a limitation in energy supply implies the need for developing power
control schemes to prolong the battery life. Some power control techniques are geared at reducing
the amount of interference between devices and, therefore, the number of power-consuming
retransmissions. Security can also be enhanced by proper power control. To preserve a low
probability of being intercepted and being detected (a major issue in military applications), ad hoc

nodes have to be controlled so that they transmit as little power as necessary, hence significantly

80

reducing the probability of being intercepted or being detected. In view of this, we need to
develop an innovative framework which takes into consideration power aware secure routing.

The power consideration is more pronounced in sensor network applications, where the
nodes are characterized by their power constraints. So far the routing protocols designed for
sensor applications are not matured enough to incorporate security and power together into their
design. Although the design will be very much application specific, the basic need for trusted
routing will be there for multihop applications. However, in broadcast networks, designing
reliable MAC protocols will suffice. To extend our trusted routing protocol in sensor applications,
we have to give serious considerations to power-constrained design.

Our current “collaborative trust-based secure routing protocol” does not consider the
probability of MAC layer collisions. Nodes forming an ad hoc network typically have single
antenna to transmit and receive. Thus, it is impossible for the nodes to transmit data, and at the
same time, sense the network. This limitation could result in a higher probability of collisions.
One possible solution is to use RTS/CTS handshaking to avoid a MAC layer collision. An
obvious disadvantage to this approach is the significant increase in overhead. Although we have
not considered the probability of MAC layer collisions in our existing solution, the trust
interpretation of a node changes when some packets are lost. Even though our existing protocol
has a network layer security mechanism, the sheer possibility of losing packets due to layer two
collisions makes our protocol ineffective. Therefore, part of our research plan is to consider this
issue when designing a secure solution which not only has multiple levels of security, but also a
reliable MAC transmission mechanism.

Our solution also finds a secure end-to-end path without considering the reliability of that
path. Much work in the field of routing are based on cluster-based solutions [Kri95], where
clusters are defined on the basis of mobility, energy and degree parameters. This would allow

adopting more reliable solutions other than a flat P2P approach. A still unanswered question is

81

“what would be preferable, a non-secure reliable path or a secure unreliable one?” Our solution
would be the incorporation of path reliability along with security. This will give us a robust and

reliable path discovery protocol.

The trust computational model developed by us, although unique in its approach to take
different malicious behavior into account, is not exhaustive. With the growing popularity of
ubiquitous computing and more and more applications of infrastructureless networking, a wide
variety of threats and attacks will be in vogue. To defend the network from those attacks, the trust
model has to be updated and designed in accordance to these new threats. The ultimate goal will
be to develop a policy-based autonomous trust computational system that will be capable of
protecting the network from various threats. In this respect, it can be discussed that a new way of
looking at the trust modeling is to develop it from a Markov chain point of view, where the
decision to have trust on a node will only depend on the current state of trust on that node and not
on the history of its behavior. The motivation for this approach lies in the fact that any
infrastructureless application can have a very high probability of instantaneous node compromise,
and hence the history of its behavior should carry no impression in deciding the next course of
action. However, this thought is only at its preliminary stage, and a more matured approach needs

to be designed based on this model.

Our work can also lay a solid foundation for developing a policy-based security
management paradigm. The overall goal will be to design and develop rules based on different
malicious behavior and threats which will act as a basis for developing policies to secure the

network from external and internal attacks.

Finally in the previous section, we have considered security only at the network layer.
This can be further extended to incorporate multiple levels of security to make our design strong

and robust. We strongly believe that a cross layer approach needs to be taken to design a secure

82

communication infrastructure which incorporates security into multiple layers and provide a

seamless communication between the layers to make the network robust and secure.

83

Bibliography

[Abd97]

[Abe01]

[A1b02]

[BecH8]

[Bet94]

[Bla96]

[Blus3]

{Buc02a]

[Buc02b]

[BucO2c]

[Bur9s]

Alfarez Abdul-Rahman & Stephen Hailes, “A Distributed Trust Model”, ACM New
Security Paradigm Workshop, 1997.

Karl Aberer, Zoran Despotovic, “Managing Trust in a Peer-2-Peer Information
System”, in Proceedings of the Tenth International Conference on Information and
Knowledge Management (CIKM '01), Atlanta, Georgia, USA, November 5-10, 2001.

Patrick Albers et. al., “Security in Ad Hoc Networks: a General Intrusion Detection
Architecture Enhancing Trust Based Approaches”, Wireless Information Systems,
Ciudad Real, Spain, 2002.

Becker and Wille, “Communication complexity of group key distribution”,
Proceedings of the 5th ACM conference on Computer and communications security
San Francisco, California, United States Pages: 1 — 6, 1998, ISBN:1-58113-007-4.

Thomas Beth, Malte Borcherding, Bitgit Klein, “Valuation of Trust in Open
Networks”, Proceedings of the European Symposium on Research in Computer
Security (ESORICS), 1994, Brighton, UK, pp.3-18, LNCS 875, Springer-Verlag.

Matt Blaze, Joan Feigenbaum, Jack Lacy, “Decentralized Trust Management”, in Proc.
IEEE Conference on Security and Privacy, Oakland, CA, May 1996.

Manuel Blum, “How to Exchange (Secret) Keys”, ACM Transactions on Computer
Systems, vol. 1, no. 2, pp. 175-193, May 1983.

Sonja Buchegger, Jean-Yves Le Boudec, “The Effect of Rumor Spreading in
Reputation Systems for Mobile Ad-hoc Networks”, in Proceedings of WiOpt 03,
Modeling and Optimization in Mobile Ad Hoc and Wireless Networks, Sophia-
Antipolis, France, March 2003.

Sonja Buchegger and Jean-Yves Le Boudec, “Performance Analysis of the
CONFIDANT Protocol (Cooperation Of Nodes: Fairness In Dynamic Ad-hoc
Networks)”, in Proceedings of the Third ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC '02), Switzerland, June 9-11, 2002.

Sonja Buchegger, Jean-Yves Le Boudec, “Nodes Bearing Grudges: Towards Routing
Security, Fairness, and Robustness in Mobile Ad Hoc Networks”, in Proceedings of
the Tenth Euromicro Workshop on Parallel, Distributed, Network-based Processing,
pages 403-410, Canary Islands, Spain, January 2002.

M.V.D. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key
Distribution System”, in 4.D.Santis, editor, Advances in Cryptology — EUROCRYPT
'94, volume 950 of Lecture Notes in Computer Science, pp. 275-286, Springer-Verlag,
1995.

84

[But04]

[But02]

[Cap03]

[Car03]

[Das00]

[Dav04]

[Den02]

[Des97]

[Des87]

[Dif76]

[Dou02]

[Esc02]

[Gam90]

Levente Buttyan and Istvan Vajda, “Towards Provable Security for Ad Hoc Routing
Protocols”, in Proceedings of the ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN '04), Washington, DC, USA, October 25, 2004.

Levente Buttyan and Jean-Pierre Hubaux, “Stimulating Cooperation in Self-
Organizing Mobile Ad Hoc Networks”, Mobile Networks and Applications(MONET)
Journals of Mobile Networks, 2002.

Srdjan Capkun, Jean-Pierre Hubaux, Levente Buttyan, “Mobility Helps Security in Ad
Hoc Networks”, in Proceedings of the Fourth ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc ’03), Annapolis, Maryland,
USA, June 1-3.

Marco Carbone, Mogens Nielsen, Vladimiro Sassone, “A Formal Model of Trust in
Dynamic Networks”, Basic Research in Computer Dscience (BRICS) Report RS-03-4,
2003,

Samir R. Das, Charles E. Perkins, Elizabeth M. Royer, Mahesh K. Marina,
“Performance Comparison of Two On-demand Routing Protocols for Ad Hoc
Networks”, in Proceedings of IEEE Infocom, 2000.

Carlton R. Davis, “A Localized Trust Management Scheme for Ad Hoc Networks”, in
Proceedings of the 3" International Conference on Networking (ICN ’04), March
2004.

Hongmei Deng, Wei Li and Dharma P. Agrawal, “Routing Security in Wireless Ad
Hoc Networks”, [EEE Communications Magazine, vol. 40, issue 10, pp. 70-75,
October 2002.

Yvo Desmedt, “Some Recent Research Aspects of Threshold Cryptography”,
Proceedings of the First International Workshop on Information Security, pp. 158 —
173, 1997, ISBN: 3-540-64382-6.

Y. Desmedt, “Society and group oriented cryptography: a new concept”, in Advances
in Cryptology- Crypto’87, pp. 120-127, 1987.

W. Diffie and M.E. Hellman, “New Directions in Cryptography”, JEEE Trans. Inform.
Theory, 1T-22, (6): pp. 644-654, November 1976.

John R. Douceur, “The Sybil Attack”, in First International Workshop on Peer-to-Peer
Systems (IPTPS’02), March 2002.

Laurent Eschenauer, Virgil D. Gligor and John Baras, “On Trust Establishment in
Mobile Ad Hoc Networks”, in Proceedings of the Security Protocols Workshop,
Cambridge, U.K.: Springer-Verlag, April 2002.

D. Gambetta, “Can We Trust Trust?”, in Trust, Making and Breaking Cooperative
Relations, basil Blackwell , 1990, pp. 213-237.

85

[Gen96a]

[Gen96b]

[Gho05]

[GhoO4a]

[Gho04b]

[{Gon90]

[Gra02]

[Gra00]

[He04]

[Hie01]

[Hu02a]

[Hu02b]

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin, “Robust and
Efficient Sharing of RSA Functions”, Crypto '96, 1996.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk and Tal Rabin, “Robust
Threshold DSS Signatures”, Advances in Cryptology — Eurocrypt '96, Springer-
Verlag, 1996.

Tirthankar Ghosh , Niki Pissinou, Kia Makki, "Towards Designing a Trusted Routing
Solution in Mobile Ad Hoc Networks", to appear in the ACM Journal “Mobile
Networks and Applications (MONET)” Special issue on Non-Cooperative Wireless
Networking and Computing, 2005.

Tirthankar Ghosh, Kia Makki, Niki Pissinou, “An Overview of Security Issues for
Multihop Mobile Ad Hoc Networks”, Network Security: Technology Advances,
Strategies, and Change Drivers, pp. 149-160, ISBN: 0-931695-25-3, 2004.

Tirthankar Ghosh, Niki Pissinou, Kia Makki "Collaborative Trust-based Secure
Routing Against Colluding Malicious Nodes in Multi-hop Ad Hoc Networks", in
Proceedings of the 29" IEEE Annual Conference on Local Computer Networks (LCN),
Nov 16-18, Tampa, USA, 2004,

Li Gong, Roger Needham, Raphael Yahalom, “Reasoning about Belief in
Cryptographic Protocols”, in Proceedings of IEEE Symposium on Security and
Privacy, Oakland, California, pp. 234-248, May 1990.

Elizabeth Gray, Jean-Marc Seigneur, Yong Chen, Christian Jensen, “Trust Propagation
in Small World”, in Proceedings of First International Conference on Trust
Management, 2002.

Tyrone Grandison and Morris Sloman, “A Survey of Trust in Internet Applications”,
IEEE Communications Surveys, hitp://www.comsoc.org/pubs/surveys, Fourth Quarter
2000.

Qi He, Dapeng Wu, Pradeep Khosla, “SORI: A Secure and Objective Reputation-
based Incentive Scheme for Ad-hoc Networks”, in Proceedings of the IEEE Wireless
Communication and Networking Conference (WCNC), 2004.

Maarit Hietalahti, “Key Establishment in Ad hoc Networks”, Technical Report, Lab of
Theoretical Computer Science, Helsinki University of Technology, 2001.

Yih-Chun Hu, David B. Johnson and Adrian Perrig, “SEAD: Secure Efficient Distance
Vector Routing for Mobile Wireless Ad hoc Networks”, In Fourth IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA '02), June 2002, pp. 3-13, June
2002.

Yih-Chun Hu, Adrian Perrig and David B. Johnson, “Ariadne: A Secure On-Demand
Routing Protocol for Ad-hoc Networks”, in Proceedings of the &th annual
international conference on Mobile computing and networking (MobiCom) 02,
September 23-26, 2002, Atlanta, Georgia, USA.

86

[Hub01)

[Joh99]

[Jos01]

[Jos98]

[J0s97]

[Kag0Ol]

[Kon01]

[Kri95]

[Li04]

[Liu04]

[Lou04]

{Lou03]

[Mar00]

Jean-Pierre Hubaux, Levente Buttyan, Srdan éapkun, “The Quest for Security in
Mobile Ad Hoc Networks”, in Proceedings of the Second ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2001.

David B. Johnson and David A. Maltz, “The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks”, Internet Drafi, MANET Working Group, IETF, October,
1999.

A. Josang, “A Logic for Uncertain Probabilities”, International Journal of Uncertainty,
Fuzziness and Knowledge-based Systems, 9(3): 279-311, 2001.

A. Josang, “A Subjective Metric of Authentication”, in Proceedings of ESORICS:
European Symposium on Research in Computer Security, LNCS, Springer-Verlag,
1998.

A. Josang, “Prospectives for Modelling Trust in Information Security”, in Proceedings
of Australasian Conference on Information Security and Privacy, pp. 2-13, 1997.

Lalana Kagal, Tim Finin and Anupam Joshi, “Moving from Security to Distributed
Trust in Ubiquitous Computing Environments”, IEEE Computer, December 2001.

Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang, “Providing Robust
and Ubiquitous Security Support for Mobile Ad-Hoc Networks”, International
Conference on Network Protocols(ICNP), 2001.

P. Krishna, M. Chatterjee, N. H. Vaidya, D. K. Pradhan, “A Cluster based Approach
for Routing in Ad Hoc Networks”, second USENIX Symposium on Mobile and
Location Independent Computing, April 1995.

Xiaogi Li, Michael R. Lyu, Jiangchuan Liu, “A Trust Model Based Routing Protocol
for Secure Ad Hoc Networks”, Proceedings 2004 IEEE Aerospace Conference, Big
Sky, Montana, U.S.A., March 6-13 2004.

Jinshan Liu, Valérie Issarny, “Enhanced Reputation Mechanism for Mobile Ad Hoc
Networks:, in Proceedings of iTrust 2004, Oxford, UK, March 2004.

Wenjing Lou, Wei Liu, Yuguang Fang, “SPREAD: Enhancing Data Confidentiality in
Mobile Ad Hoc Networks”, IEEE Infocom, Hong Kong, March 2004.

Wenjing Lou and Yuguang Fang, “A Survey of Wireless Security in Mobile Ad Hoc
Networks: Challenges and Available Solutions”, A4d Hoc Wireless Networking, X.
Cheng, X. Huang and D. Z. Du (Eds.), pp. 319-364, Kluwer Academic Publishers,
2003.

Sergio Marti, T.J. Giuli, Kevin Lai and Mary Baker, “Mitigating Routing Misbehavior
in Mobile Ad Hoc Networks”, in Proceedings of the 6" Annual International
Conference on Mobile Computing and Networking (MobiCom), Boston,
Massachusetts, United States, August 06 - 11, 2000.

87

[Mat02]

[Mic02]

[Mil67]

[New04]

[Nga04]

[Pap03]

[Pap02]

[Per03]

[Per01]

[Per99]

[Pir04a]

[Pir04b]

[Pir04c]

Y. Matsuo, “Clustering Using Small World Structure”, in Knowledge based Intelligent
Information and Engineering Systems, Crema, Italy, 2002.

Pietro Michiardi and Refik Molva, “CORE: A Collaborative Reputation Mechanism to
Enforce Node Cooperation in Mobile Ad hoc Networks”, in Proceedings of the 6th
IFIP Communications and Multimedia Security Conference, Portorosz, Slovenia, 2002.

Stanley Milgram, “The Small World Problem”, Psychology Today, 61, 1967.

James Newsome, Elaine Shi, Dawn Song, Adrian Perrig, “The Sybil Attack in Sensor
Networks: Analysis & Defenses”, in Proceedings of Information Processing in Sensor
Networks (IPSN '04), Berkeley, California, USA, April 26-27, 2004.

Edith C. H. Ngai and Michael R. Lyu, “Trust and Clustering-Based Authentication
Services in Mobile Ad Hoc Networks”, Proceedings of the 2 International Workshop
on Mobile Distributed Computing (MDC '04), Tokyo, Japan, March 23-26, 2004.

Panagiotis Papadimitratos and Zygmunt J. Haas, “Secure Link State Routing for
Mobile Ad hoc Networks”, In Proc. IEEE Workshop on Security and Assurance in
Adhoc Networks, in conjunction with the 2003 International Symposium on
Applications and the Internet, Orlando, FL, January 28, 2003.

Panagiotis Papadimitratos and Zygmunt J. Haas, “Secure Routing for Mobile Ad hoc
Networks”, In Proc. SCS Communication Networks and Distributed Systems Modeling
and Simulation Conference(CNDS 2002), San Antonio, TX, January 27-31, 2002.

Charles E. Perkins, E. Belding-Royer, S. Das, “RFC 3561 - Ad hoc On-Demand
Distance Vector (AODV) Routing”, July 2003,

Charles E. Perkins, “Ad Hoc Networking”, Addison-Wesley, ISBN 0-201-30976-9,
2001.

C. Perkins and E. Royer, “Ad hoc On-Demand Distance Vector Routing”, In Proc.
IEEE Workshop on Mobile Computing Systems and Applications, 1999.

Asad Amir Pirzada and Chris McDonald, “Establishing Trust in Pure Ad-hoc
Networks”, appeared in 27" Australian Computer Science Conference, The Univ. of
Otago, Dunedin, New Zealand, 2004.

Asad Amir Pirzada, Amitava Datta, Chris McDeonald, “Trustworthy Routing with the
AODV Protocol”, in Proceedings of the International Conference on Networking and

. Communication (INCC 2004), 2004,

Asad Amir Pirzada and Chris McDonald, “Kerberos Assisted Authentication in Mobile
Ad-hoc Networks”, in the Proceedings of the 27th Australasian Computer Science
Conference, The University of Otago, Dunedin, New Zealand, 2004.

88

[Pis04]

[Riv78]

[San02]

[Sha79]

[Smi97]

[Son03]

[Sta02]

[Sta99]

[Ste00]

[Ste96]

[Szt00]

[Tan04]

Niki Pissinou, Tirthankar Ghosh, Kia Makki, “Collaborative Trust Based Routing in
Multihop Ad Hoc Networks”, in Proceedings of Networking '04: Springer Verlag,
Series:Lecture Notes in Computer Science, vol. 3042, pp. 1446 — 1451, Athens,
Greece, May 9-14, 2004

R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signature
and publickey cryptosystems”, Communication of ACM, vol. 21, 1978.

Kimaya Sanzgiri et al, “A Secure Routing Protocol for Ad hoc Networks”, In Proc. of
the 10™ IEEE International Conference on Network Protocols (ICNP02), 2002.

A. Shamir, “How to share a secret”, Commun. ACM, 22, pp. 612-613, November
1979.

Bradley R. Smith, Shree Murthy, J.J. Garcia-Luna-Aceves, “Securing Distance-Vector
Routing Protocols”, In Proceedings of Internet Society Symposium on Network and
Distributed System Security, San Diego, CA, Feb 1997.

Joo-Han Song, Vincent W.S. Wong, Victor C.M. Leung, “Efficient On-Demand
Routing for Mobile Ad Hoc Wireless Access Networks”, partly in JEEE Vehicular
Technology Conference, Spring 2003, Jeju, Korea, April 2003 and partly in JEEE
Globecom 03, SanFrancisco, CA, December 2003.

William Stallings, “Cryptography and Network Security: Principles and Practice”,
Prentice Hall, 3™ Edition, August 2002.

Frank Stajano and Ross Anderson, “The Resurrecting Duckling: Security Issues for Ad
hoc Wireless Networks”, in Proceedings of the 7" International Workshop on Security
Protocols, vol. 1796 of LNCS, pp. 172-194, Springer Verlag, September, 1999.

Michael Steiner, Gene Tsudik, and Michael Waidner, “Key Agreement in Dynamic
Peer Groups”, IEEE Transactions on Parallel and Distributed Systems, vol. 1, No. 8,
pp. 769-80, Aug 2000.

M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution extended to
group communication”, in Proceedingsof the 3" ACM Conference on Computer and
Communications Security (CCS), New Delhi, India, pp. 31-37, May 14-16, 1996.

Piotr Sztompka, “Trust: A Sociological Theory”, Cambridge University Press,
February 3, 2000.

Sapon Tanachaiwiwat, Pinalkumar Dave, Rohan Bhindwale, Ahmed Helmy,
“Location-centric Isolation of Misbehavior and Trust Routing in Energy-constrained
Sensor Networks”, in Proceedings of The Workshop on Energy-Efficient Wireless
Communications and Networks (EWCN 04) in conjunction with IEEE International
Performance, Computing, and Communications Conference (IPCCC), 2004

89

[The04]

[Tse03]

[Tsu93]

[Ver01]

[Vir05]

[Wro02]

[Yan02]

[Yan03]

[Yas02]

[Yi03]

[Yi02]

[yiot]

[Zap02]

George Theodorakopoulos, John S. Baras, “Trust Evaluation in AdHoc Networks”, in
Proceedings of the ACM Workshop on Wireless Security (WiSe'04), Philadelphia,
Pennsylvania, USA, October 1, 2004.

Yu-Chee Tseng, Jehn-Ruey Jiang, Jih-Hsin Lee, “Secure Bootstrapping and Routing in
an Ipv6-Based Ad Hoc Network”, Workshop on Wireless Security and Privacy, 2003
(in conjunction with Int’l Conf. on Parallel Processing, 2003).

Gene Tsudik and Els Van Herreweghen, “On Simple and Secure Key Distribution”,
Conf.— Computer & Comm. Security '93-11/93 -VA, USA, 1993.

Raja Rai Singh Verma, Donal O’Mahony and Hitesh Tewari, “NTM — Progressive
Trust Negotiation in Ad Hoc Networks”, in Proceedings of the 1" joint IEI/IEE
Symposium on Telecommunications Systems Research, Dublin, November 27, 2001.

Mohit Virendra, er. al., “Quantifying Trust in Mobile Ad-Hoc Networks”, in
Proceedings of IEEE International Conference on Integration of Knowledge Intensive
Multiagent Systems (KIMAS), Weltham, MA, April 18-21, 2005.

Konrad Wrona, “Distributed Security: Ad Hoc Networks & Beyond”, Ad Hoc
Networks SecurityPampas Workshop, Rhul, September 16-17, 2002.

Hao Yang, Xiaogiao Meng, Songwu Lu, “Self-Organized Network Layer Security in
Mobile Ad hoc Networks”, in Proceedings of the ACM Workshop on Wireless Security
(WiSe '02), Atlanta, Georgia, USA, September 28, 2002.

Zheng Yan, Peng Zhang, Teemupekka Virtanen, “Trust Evaluation Based Security
Solution in Ad Hoc Networks”, in Proc. of NordSec 2003, Norway, 2003.

Alec Yasinsac, et. al., “A Family of Protocols for Group Key Generation in Ad Hoc
Networks”, International Conference on Communications and Computer Networks
(CCNG2), Nov 3-4, 2002.

Seung Yi, Robin Kravets, “Composite Key Management for Ad Hoc Networks”,
Report No.UIUCDCS-R-2003-2392, UILU-ENG-2003-1778, 2003.

Seung Yi and Robin Kravets, “Key Management for Heterogeneous Ad hoc Wireless
Networks”, Report No. UIUCDCS-R-2002-2290, UILU-ENG-2002-1734, July, 2002.

Seung Yi, Prasad Naldurg and Robin Kravets, “Security-Aware Ad hoc Routing for
Wireless Networks”, Report No. UIUCDCS-R-2001-2241, UILU-ENG-2001-1748,
August 2001.

Manuel Guerro Zapata and N. Asokan, “Securing Ad hoc Routing Protocols”, in

Proceedings of the ACM Workshop on Wireless Security (WiSe’02), Atlanta, Georgia,
USA, September 28, 2002,

90

[Zen04]

[Zen98]

[Zha04]

[Zho99]

[Zhu03]

Weilin Zeng, Tatsuya Suda, “Path Based Routing Algorithm for Ad Hoc Networks”, in
Proceedings of the 1 3" International Conference on Computer Communication and
Networks (ICCCN 2004), Chicagi, IL, USA, 11-13 October 2004.

Xiang Zeng, Rajive Bagrodia and Mario Gerla, “Glomosim: A Library for Parallel
Simulation of Large-scale Wireless Networks”, Proceedings of the 12" Workshop on
Parallel and Distributed Simulations — PADS ’98, Alberta, Canada, May 26-29 1998.

Feng Zhao, Leonidas Guibas, “Wireless Sensor Networks: An Information Processing
Approach”, Elsevier Science & Technology Book, ISBN: 1558609148, May 2004.

Lidong Zhou and Zygmunt J. Haas, “Securing Ad Hoc Networks”, IEEE Network, vol.
13, issue 6, pp. 24-30, November/December 1999.

Huafei Zhu, Bao Feng, Robert H. Deng, “Computing of Trust in Distributed
Networks”, http.//eprint.iacr.org/, 2003/056.

91

APPENDIX A
Header File of Simulation for Preventing Colluding
Attack

/*

* This modified AODYV routing header was written by Tirthankar Ghosh in FIU to make the
protocol secured against colluding attack.

* The modified code was written in May 2004.

*/

/*

* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSim is available
* at no cost to educational users only.

*

* Commercial use of this software requires a separate license. No cost,

* gvaluation licenses are available for such purposes; please contact

* info@scalable-networks.com

Ed

* By obtaining copies of this and any other files that comprise GloMoSim2.02,
* you, the Licensee, agree to abide by the following conditions and

* understandings with respect to the copyrighted software:

%

* 1.Permission to use, copy, and modify this software and its documentation
for education and non-commercial research purposes only is hereby granted
to Licensee, provided that the copyright notice, the original author's
names and unit identification, and this permission notice appear on all

such copies, and that no charge be made for such copies. Any entity
desiring permission to use this software for any commercial or
non-educational research purposes should contact:

Professor Rajive Bagrodia

University of California, Los Angeles
Department of Computer Science
Box 951596

3532 Boelter Hall

Los Angeles, CA 90095-1596
rajive@cs.ucla.edu

* K K K ¥ K X X X K ¥ X R ®

*

* 2. NO REPRESENTATIONS ARE MADE ABOUT THE SUITABILITY OF THE
SOFTWARE FOR ANY

* PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
*

* 3 Neither the software developers, the Parallel Computing Lab, UCLA, or any

* affiliate of the UC system shall be liable for any damages suffered by

* Licensee from the use of this software.

*/

92

// Use the latest version of Parsec if this line causes a compiler error.
/*

* Name: aodv.h

%

* Implemented by SJ Lee (sjlee@cs.ucla.edu)

*/

/ *

NOTE: The parameter values followed the AODV Internet Draft
(draft-ietf-manet-aodv-03.txt) and NS2 code by Samir R. Das
Read the NOTE of aodv.pc for more details

*/

#ifndef AODV_H_
#define AODV _H

#include "ip.h"
#include "main.h"
#include "nwcommon.h"

#define ACTIVE_ROUTE_TO 10 * SECOND

#define NODE_TRAVERSAL TIME 40 * MILLI_SECOND
#define NET_DIAMETER 35

#define RREP_WAIT TIME 3 * NODE_TRAVERSAL TIME * NET DIAMETER /2
#define BAD _LINK_LIFETIME 2 * RREP_WAIT TIME
#define BCAST ID SAVE 30 * SECOND

#define REV_ROUTE_LIFE RREP WAIT TIME
#define MY_ROUTE_TO 2 * ACTIVE_ROUTE_TO
#define RREQ RETRIES 2

#define TTL_START 1

#define TTL_INCREMENT 2

#define TTL_THRESHOLD 7

#define AODV_INFINITY 255

#define BROADCAST JITTER 10 * MILLI_SECOND
#define Public 17 /* added */

93

#define Private 593 /* added */
#define n 2623 /* added */
#define message 5 /* added */

/* Packet Types */

typedef unsigned char AODV_PacketType;

#define AODV_RREQ 0
#define AODV_RREP 1
#define AODV_RERR 2
#define AODV_RWARN3 /* added */

typedef struct
{
AODV_PacketType pktType;
int beastld;
NODE_ADDR destAddr;
int destSeq;
NODE_ADDR srcAddr;
int srcSeq;

NODE_ADDR lastAddr; /* address of the node from which next node receives a
RREQ packet */

nt hopCount;

int trust_level; /* parameter added */

long int MAC; /* parameter added */

} AODV_RREQ _Packet;

/* : : new structure for RWARN packet
*/
typedef struct
{
AODV_PacketType pktType;
NODE_ADDR srcAddr;
int beastld;
int srcSeq;
NODE_ADDR maliciousIP;
//int trust_level;
long int MAC;
NODE_ADDR rwarn_sourcelP;
clocktype lifetime;

94

} AODV_RWARN_Packet;

/* ey

typedef struct
{
AODV_PacketType pktType;
NODE_ADDR srcAddr;
NODE_ADDR destAddr;
int destSeq;
int hopCount;
int trust_level; /* parameter added */
NODE_ADDR next_hop; /* parameter added */
NODE_ADDR lastAddr; /* address of the node from which next node receives a
RREP packet */
clocktype lifetime;
} AODV_RREP Packet;

typedef struct
{
NODE _ADDR destinationAddress;
int destinationSequenceNumber;
} AODV_AddressSequenceNumberPairType;

#define AODV_MAX RERR_DESTINATIONS 250

typedef struct
{
AODV_PacketType pktType; //'1 byte
unsigned char filling[2];
unsigned char destinationCount;
AODV_AddressSequenceNumberPairType
destinationPairArray[AODV_MAX RERR DESTINATIONS];
} AODV_RERR Packet;

static //inline//
int AODV_RERR_PacketSize(const AODV_RERR_Packet* rerrPacket) {
return
(sizeof(rerrPacket->pktType) +
sizeof(rerrPacket->filling) +
sizeof(rerrPacket->destinationCount) +
(rerrPacket->destinationCount *
sizeof(AODV_AddressSequenceNumberPairType)));

typedef struct RTE

95

NODE_ADDR destAddr;
int destSeq;
int hopCount;
int trust_level,
int lastHopCount;
NODE_ADDR nextHop;
clocktype lifetime;
BOOL activated;
BOOL source;
struct RTE *next;

} AODV_RT Node;

typedef struct

{
AODV_RT_Node *head,;
nt size;

} AODV_RT;

typedef struct NTE

NODE_ADDR destAddr;
struct NTE *next;
} AODV_NT Node;

typedef struct

{
AODV_NT Node *head;
int size;

} AODV_NT;

typedef struct RSE
{
NODE_ADDR srcAddr;
int beastld;
int hopCount;
int trust_level;
struct RSE *next;
} AODV_RST Node;

typedef struct

AODV_RST_Node *front;

AODV_RST_Node *rear;
int size;
} AODV_RST;

typedef struct FIFO
{

/* parameter added */

/* parameter added */

/* parameter added */

96

NODE ADDR destAddr;
clocktype timestamp;
Message *msg;
struct FIFO *next;

+ AODV_BUFFER Node;

typedef struct

{
AODV_BUFFER_Node *head;
nt size;

} AODV_BUFFER;

typedef struct SE

NODE_ADDR destAddr;
int ttl;
int times;
struct SE *next;
} AODV_SENT Node;

typedef struct
AODV_SENT Node *head;
int size;

} AODV_SENT,;

/!

new structure added

/Mtypedef struct

I

// NODE_ADDR node;

/f int trust_level;

/1y AODV_Trust_Table[20];

/f

typedef struct

{
int numRequestSent;
int numReplySent;
int numWarningSent;
int numWarning?2Sent;
int numRerrSent;
int numRerrResent;

/* new statistic added */
/* new statistic added */

int numDataSent; /* Data Sent as the source of the route */

int numPDataTxed,;

int numDataReceived; /* Data Received as the destination of the route */

int numHops;
int numRoutes;
int numPacketsDropped;

int numBrokenLinks;

mt numBrokenLinkRetries;

long int encr_message; /* new statistic added to display
encrypted message */

long int decr_message; /* new statistic added to display

decrypted message */
} AODV _Stats;

typedef struct glomo_network_aodv_str

{
AODV_RT routeTable;

AODV_NT nbrTable;
AODV_RST seenTable;
AODV_BUFFER buffer;
AODV_SENT sent;
AODV _Stats stats;
int seqNumber;
int beastld,;

} GlomoRoutingAodv;

void RoutingAodvInit(
GlomoNode *node,
GlomoRoutingAodv **aodvPtr,
const GlomoNodeInput *nodelnput);
void RoutingAodvFinalize(GlomoNode *node);
void RoutingAodvHandleData(GlomoNode *node, Message *msg, NODE_ADDR destAddr);
void RoutingAodvHandleRequest(GlomoNode *node, Message *msg, int ttl);

void RoutingAodvHandleReply(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr, NODE_ADDR destAddr);

void RoutingAodvHandleWarning(GlomoNode *node, Message *msg, NODE_ADDR srcAddr,
NODE_ADDR destAddr, int trust_level, long int MAC);

/* new function added */

void RoutingAodvInitRouteTable(AODV_RT *routeTable),

void RoutingAodvInitNbrTable(AODV_NT *nbrTable);

void RoutingAodvInitSeenTable(AODV_RST *seenTable);

void RoutingAodvinitBuffer(AODV_BUFFER *buffer);

void RoutingAodvinitSent(AODV _SENT *sent);

void RoutingAodvInitStats(GlomoNode *node);

98

void RoutingAodvInitSeq(GlomoNode *node);
void RoutingAodvInitBcastld(GlomoNode *node);

NODE_ADDR RoutingAodvGetNextHop(NODE_ADDR destAddr, AODV_RT *routeTable);
int RoutingAodvGetBcastld(GlomoNode *node);

int RoutingAodvGetSeq(NODE_ADDR destAddr, AODV_RT *routeTable);

int RoutingAodvGetMySeq(GlomoNode *node);

int RoutingAodvGetHopCount(NODE_ADDR destAddr, AODV_RT *routeTable);

int RoutingAodvGetLastHopCount(NODE_ADDR destAddr, AODV_RT *routeTable);

int RoutingAodvGetTtI(NODE ADDR destAddr, AODV_SENT *sent);

int RoutingAodvGetTimes(NODE ADDR destAddr, AODV_SENT *sent);

clocktype RoutingAodvGetLifetime(NODE_ADDR destAddr, AODV_RT *routcTable);

Message *
RoutingAodvGetBufferedPacket{NODE _ADDR destAddr, AODV_BUFFER *buffer);

BOOL RoutingAodvCheckRouteExisttNODE_ADDR destAddr, AODV_RT *routeTable);
BOOL RoutingAodvCheckNbrExisttNODE_ADDR destAddr, AODV_NT *nbrTable);
BOOL RoutingAodvLookupSeenTable(NODE_ADDR srcAddr,

int beastld,
AODV_RST *seenTable);

/* new function */
//BOOL RoutingAodvLookupSeenTable WARN(int srcSeq,

/ int beastld,

" AODV_RST *seenTable. WARN);

/* */

/fvoid RoutingAodvLookupSeenTable1(GlomoNode *node,Message *msg, *
parameter added */

/" NODE_ADDR srcAddr,NODE_ADDR lastAddr,int beastld,int hopCount,
1 int trust_level, AODV_RST *seenTable, AODV_NT *nbrTable);

void RoutingAodvLookupSeenTable1(GlomoNode *node,Message *msg, *

parameter added */
NODE_ADDR srcAddr,NODE ADDR lastAddr,int beastld,int hopCount,
int trust_level,long int MAC,AODV_RST *seenTable);

99

BOOL RoutingAodvLookupBuffer(NODE_ADDR destAddr, AODV_BUFFER *buffer);
BOOL RoutingAodvCheckSent(NODE_ADDR destAddr, AODV_SENT *sent);

void RoutingAodvHandleProtocolPacket(

GlomoNode *node, Message *msg, NODE_ADDR srcAddr,

NODE ADDR destAddr, int ttl, int trust_level, long int MAC);
void RoutingAodvHandleProtocolEvent(GlomoNode *node, Message *msg);
void RoutingAodvRouterFunction(

GlomoNode *node,

Message *msg,

NODE ADDR destAddr,

BOOL *packetWasRouted);

void RoutingAodvPacketDropNotificationHandler(
GlomoNode *node, const Message* msg, const NODE_ADDR nextHopAddress);

void RoutingAodvSetTimer(
GlomoNode *node, long eventType, NODE ADDR destAddr, clocktype delay);

void RoutingAodvInitiateRREQ(GlomoNode *node, NODE ADDR destAddr);

void RoutingAodvRetryRREQ(GlomoNode *node, NODE_ADDR destAddr);

void RoutingAodvTransmitData(GlomoNode *node, Message *msg, NODE_ADDR destAddr);
void RoutingAodvRelayRREQ(GlomoNode *node, Message *msg, int ttl);

void RoutingAodvinitiateRREP(GlomoNode *node, Message *msg);

void RoutingAodvInitiateRREPbyIN(GlomoNode *node, Message *msg);

void RoutingAodvRelayRREP(GlomoNode *node, Message *msg, NODE_ADDR destAddr);

void RoutingAodvRelayWarning(); /* new function added */
void RoutingAodvRelayWarning_1(); /* new function added */
/fvoid initTrustTable() /* new function added */

#endif /* AODV_H_*%/

100

APPENDIX B
Sample Code of Simulation for Preventing Colluding
Attack

/*

* This modified AODV routing protocol was written by Tirthankar Ghosh in FIU to make the
protocol secured against colluding attack.

* The modified code was written in May 2004.

*/

/*

* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSim is available
* at no cost to educational users only.

*

* Commercial use of this software requires a separate license. No cost,

* evaluation licenses are available for such purposes; please contact

* info@scalable-networks.com

*

* By obtaining copies of this and any other files that comprise GloMoSim2.02,
* you, the Licensee, agree to abide by the following conditions and

* understandings with respect to the copyrighted software:

%k
1.Permission to use, copy, and modify this software and its documentation
for education and non-commercial research purposes only is hereby granted
to Licensee, provided that the copyright notice, the original author's

names and unit identification, and this permission notice appear on all

such copies, and that no charge be made for such copies. Any entity
desiring permission to use this software for any commercial or
non-educational research purposes should contact:

*
*
*
*
*
*
®
%
* Professor Rajive Bagrodia

* University of California, Los Angeles
* Department of Computer Science

* Box 951596

* 3532 Boelter Hall

* Los Angeles, CA 90095-1596

* rajive@cs.ucla.edu

*

* 2 NO REPRESENTATIONS ARE MADE ABOUT THE SUITABILITY OF THE
SOFTWARE FOR ANY

* PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
*

* 3 Neither the software developers, the Parallel Computing Lab, UCLA, or any

* affiliate of the UC system shall be liable for any damages suffered by

* Licensee from the use of this software.

*/

101

// Use the latest version of Parsec if this line causes a compiler error.
/*

* Name: aodv.pc

%

* Implemented by SJ Lee (sjlee@cs.ucla.edu)
*/

/*
NOTE: - Followed the specification of AODV Internet Draft

(draft-ietf-manet-aodv-03.txt)

- This implements only unicast functionality of AODV.

- Assumes the MAC protocol sends a signal to the routing protocol
when it detects link breaks. MAC protocols such as IEEE 802.11
and MACAW has this functionality. In IEEE 802.11, when no CTS
is received after RTS, and no ACK is received after retransmissions
of unicasted packet, it sends the signal to the routing protocol

- If users want to use MAC protocols other than IEEE 802.11, they
must implement schemes to detect link breaks. A way to do this is,
for example, using HELLO packets, as specified in AODV documents.

- No Precursors (Implemented other mechanism so that the protocol can
still function the same as when precursors are used)

- Unsolicited RREPs are broadcasted and forwarded only if the node
is part of the broken route and not the source of that route

- If more than one route uses the broken link, send RREP multiple times
(this should be fixed based on new specification by C. Perkins,
E. Royer, and S. Das)

- Rev route of RREQ overwrites the one in the route table

- May need slight modifications when draft-ietf-manet-aodv-04.txt

comes out
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <math.h>

#include "api.h"
#include "structmsg.h”
#include "fileio.h"
#include "message.h”
#include "network.h"
#include "aodv.h"
#include "ip.h"
#include "nwip.h"
#include "nwcommon.h"
#include "application.h”
#include "transport.h"
#include "java_gui.h"

102

#define max(a,b) a>b%a:b

/*
* RoutingAodvReplaceInsertRouteTable
*
* Insert/Update an entry into the route table
*/

static void
RoutingAodvReplacelnsertRouteTable(
NODE_ADDR destAddr,
int destSeq,
int hopCount,
/* parameter added */
int trust_level,
NODE_ADDR next_hop,
* */
NODE_ADDR nextHop,
clocktype lifetime,
BOOL activated,
BOOL source,
AODV_RT* routeTable)

AODV_RT Node* theNode = NULL;
AODV_RT Node* current;
AODV_RT Node* previous;

// Find Insertion point.

previous = NULL;

current = routeTable->head;

while ((current != NULL) && (current->destAddr < destAddr)) {
previous = current;
current = current->next;

}/while//

if ((current == NULL) || (current->destAddr != destAddr)) {
++(routeTable->s1ze);

theNode = (AODV_RT_Node *)checked pc_malloc(sizeof(AODV_RT_Node));
theNode->lifetime = lifetime;

theNode->activated = activated;

theNode->source = source;

theNode->destAddr = destAddr;

if (previous == NULL) {

theNode->next = routeTable->head;
routeTable->head = theNode;

103

}else {
theNode->next = previous->next,

previous->next = theNode;
Ynti

} else {
assert(current->destAddr == destAddr);

current->lifetime = max(lifetime, current->lifetime);
if (lcurrent->activated) {

current->activated = activated,
Whtl/

if (fcurrent->source) {
current->source = source;
Yntl

theNode = current;
YAfl

theNode->destSeq = destSeq;
theNode->hopCount = hopCount;

/* parameter added */
theNode->trust_level = trust_level;
//theNode->next_hop = next_hop;

/* */
theNode->lastHopCount = hopCount;
theNode->nextHop = nextHop;

} /* RoutingAodvReplacelnsertRouteTable */

static
void RoutingAodvInsertNbrTable(NODE_ADDR destAddr, AODV_NT* nbrTable)
{

AODV_NT Node* current;

AQODV_NT_ Node* previous;

AODV_NT Node* newNode =
(AODV_NT_Node *)checked_pc_malloc(sizeof(AODV_NT_Node));

newNode->destAddr = destAddr;
newNode->next = NULL;

++(nbrTable->size);

// Find Insertion point. Insert after all address matches.

104

previous = NULL;

current = nbrTable->head;

while ((current '= NULL) && (current->destAddr <= destAddr)) {
previous = current;
current = current->next;

}/while//

if (previous == NULL) {
newNode->next = nbrTable->head,;
nbrTable->head = newNode;

}else {
newNode->next = previous->next;
previous->next = newNode;

javid

} /* RoutingAodvInsertNbrTable */

/%
* RoutingAodvInsertSeenTable
*

* Insert an entry into the seen table
*/

static void

RoutingAodvInsertSeenTable(
GlomoNode *node,
NODE_ADDR srcAddr,

int beastld,
int hopCount, /* parameter added */
it trust_level, /* parameter added */
AODV_RST *seenTable)
{
if (seenTable->size == 0)
{
seenTable->rear = (AODV_RST Node *) pc_malloc(sizeoff AODV_RST_Node));
assert(seenTable->rear = NULL);
seenTable->front = seenTable->rear;
}
else
{

seenTable->rear->next = (AODV_RST Node *)
pc_malloc(sizeof(AODV_RST Node));

assert(seenTable->rear->next = NULL);

seenTable->rear = seenTable->rear->next;

}

seenTable->rear->srcAddr = srcAddr;
seenTable->rear->bcastld = beastld;

105

seenTable->rear->hopCount = hopCount; /* parameter added */
seenTable->rear->trust_level = trust_level; /* parameter added */

seenTable->rear->next = NULL;
++(seenTable->size);

RoutingAodvSetTimer(
node, MSG_NETWORK FlushTables, ANY DEST, (clocktype)BCAST ID_SAVE);

} /* RoutingAodvInsertSeenTable */

/ *
* RoutingAodvInsertBuffer

*

* Insert a packet into the buffer if no route is available
*/
static
void RoutingAodvInsertBuffer(
Message* msg,
NODE_ADDR destAddr,
AODV_BUFFER* buffer)
{
AODV_BUFFER_Node* current;
AODV_BUFFER_Node* previous;

AODV_BUFFER_Node* newNode =
(AODV_BUFFER_Node *)checked_pc_malloc(sizeoff AODV_BUFFER_Node));

newNode->destAddr = destAddr;
newNode->msg = msg;
newNode->timestamp = simclock();
newNode->next = NULL;

++(buffer->size);
// Find Insertion point. Insert after all address matches.

previous = NULL,;

current = buffer->head;

while ((current != NULL) && (current->destAddr <= destAddr)) {
previous = current;
current = current->next;

V//while//

if (previous == NULL) {
newNode->next = buffer->head;
buffer->head = newNode;

106

} else {
newNode->next = previous->next;

previous->next = newNode;
it/

} /* RoutingAodvInsertBuffer */

* RoutingAodvInsertSent

* Insert an entry into the sent table if RREQ 1s sent
*/

static void

RoutingAodvInsertSent(
NODE_ADDR destAddr,
int ttl,

AODV_SENT *sent)

AODV_SENT Node* current;
AODV_SENT Node* previous;

AODV_SENT Node* newNode =
(AODV_SENT Node *)checked_pc_malloc(sizeofAODV_SENT Node));

newNode->destAddr = destAddr;
newNode->tt] = ttl;
newNode->times = 0;
newNode->next = NULL;

(sent->size)++;
// Find Insertion point. Insert after all address matches.

previous = NULL;

current = sent->head;

while ((current != NULL) && (current->destAddr <= destAddr)) {
previous = current;

current = current->next;
Vwhile//

if (previous == NULL) {
newNode->next = sent->head;
sent->head = newNode;

}else {
newNode->next = previous->next;
previous->next = newNode;

i

107

} /* RoutingAodvInsertSent */
/ %
* RoutingAodvDeleteRouteTable

*

* Remove an entry from the route table
*/
void RoutingAodvDeleteRouteTable(NODE_ADDR destAddr, AODV_RT *routeTable)

AODV_RT Node *toFree;
AODV_RT Node *current;

if (routeTable->size == 0 || routeTable->head == NULL)
{

return;
}
else if (routeTable->head->destAddr == destAddr)

if (routeTable->head->lifetime <= simclock())
{
toFree = routeTable->head,;
routeTable->head = toFree->next;
pc_free(toFree);
--(routeTable->size);
}
}
else
{
for (current = routeTable->head,;
current->next |= NULL && current->next->destAddr < destAddr;
current = current->next)
{
¥

if (current->next != NULL && current->next->destAddr == destAddr &&
current->next->lifetime <= simclock())

{
toFree = current->next;
current->next = toFree->next;
pc_free(toFree);
--(routeTable->size);

!

}

} /* RoutingAodvDeleteRouteTable */
/*
* RoutingAodvDeleteNbr Table

£

* Remove an entry from the neighbor table

108

*/
void RoutingAodvDeleteNbrTable(NODE_ADDR destAddr, AODV_NT *nbrTable)
{

AODV_NT Node *toFree;

AODV_NT Node *current;

if (nbrTable->size == 0)
{
return;
}
else if (nbrTable->head->destAddr == destAddr)
{
toFree = nbrTable->head;
nbrTable->head = toFree->next;
pec_free(toFree);
--(nbrTable->size);

}

else
{
for (current = nbrTable->head;
((current->next != NULL) && (current->next->destAddr < destAddr));
current = current->next)
{
}
if (current->next != NULL && current->next->destAddr == destAddr)
{
toFree = current->next;
current->next = toFree->next;
pc_free(toFree);
--(nbrTable->size);
‘}
}
} /* RoutingAodvDeleteNbrTable */

/' ES
* RoutingAodvDeleteSeenTable
*

* Remove an entry from the seen table
*/
void RoutingAodvDeleteSeenTable(AODV_RST *seenTable)

{
AODV_RST Node *toFree;

toFree = seenTable->front;
seenTable->front = toFree->next;
pc_free(toFree);
--(seenTable->size);

109

if (seenTable->size == ()
{

seenTable->rear = NULL,;
}

} /* RoutingAodvDeleteSeenTable */

/ *
* RoutingAodvDeleteBuffer
*

* Remove a packet from the buffer; Return TRUE if deleted
*/
BOOL RoutingAodvDeleteBuffer™NODE_ADDR destAddr, AODV_BUFFER *buffer)
{
AODV_BUFFER_Node *toFree;
AODV_BUFFER_Node *current;
BOOL deleted;

if (buffer->size == ()

deleted = FALSE;
}
else if (buffer->head->destAddr == destAddr)
{
toFree = buffer->head;
buffer->head = toFree->next;
pe_free(toFree);
--(buffer->size);
deleted = TRUE,;
¥

else
{
for (current = buffer->head;
current->next 1= NULL && current->next->destAddr < destAddr;
current = current->next)
{
}
if (current->next = NULL && current->next->destAddr == destAddr)
{
toFree = current->next;
current->next = toFree->next;
pc_free(toFree);
--(buffer->size);
deleted = TRUE;
}

else

deleted = FALSE;

110

}
}

return (deleted);
} /* RoutingAodvDeleteBuffer */

/*
* RoutingAodvDeleteSent
%k

* Remove an entry from the sent table
*/
void RoutingAodvDeleteSent(NODE_ADDR destAddr, AODV_SENT *sent)

{
AODV_SENT Node *toFree;

AODV_SENT Node *current;

if (sent->size == ()
{
return;
}
else if (sent->head->destAddr == destAddr)
{
toFree = sent->head;
sent->head = toFree->next;
pe_free(toFree);
--(sent->size);
}
else
{
for (current = sent->head;
current->next != NULL && current->next->destAddr < destAddr;
current = current->next)
{
}

if (current->next != NULL && current->next->destAddr == destAddr)
{

toFree = current->next;
current->next = toFree->next;
pe_free(toFree);
--(sent->size);
}
}

} /* RoutingAodvDeleteSent */

/’*

111

* RoutingAodvUpdateLifetime
sk

* Update the lifetime field of the destination entry in the route table
*/
void RoutingAodvUpdateLifetime(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head,;
current = NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
current->lifetime = simclock() + ACTIVE_ROUTE_TO;
return;
}
}

} /* RoutingAodvUpdateLifetime */

/' *
* RoutingAodvIncreaseSeq
*

* Increase the sequence number

*/
void RoutingAodvIncreaseSeq(GlomoNode *node)
{

GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.network Var;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
aodv->seqNumber++;

L /* RoutingAodvIncreaseSeq */

/ *
* RoutingAodvIncreaseTtl
E3

* Increase the TTL value
*
V(Z/’id RoutingAodvincrease THH(NODE_ADDR destAddr, AODV_SENT *sent)
AODV_SENT Node *current;
for (current = sent->head;
current != NULL && current->destAddr <= destAddr;

current = current->next)

if (current->destAddr == destAddr)

112

current->ttl += TTL_INCREMENT;

if (current->ttl > TTL_THRESHOLD)

{
current->ttl = NET_DIAMETER;

}

return;

et

}
} /* RoutingAodvincreaseTt] */

/ &
* RoutingAodvUpdateTtl

*

* Update the ttl value

*/

void RoutingAodvUpdateTtIINODE_ADDR destAddr, int ttl, AODV_SENT *sent)

AODV_SENT Node *current;

for (current = sent->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
current->ttl = ttl;
return;
}
}

} /* RoutingAodvUpdateTtl */

/ *
* RoutingAodvIncreaseTimes
*

* Increase the number of times RREQ sent in TTL = NET _DIAMETER
*/
void RoutingAodvIncreaseTimes(NODE_ADDR destAddr, AODV_SENT *sent)

AODV_SENT_ Node *current;
for (current = sent->head;

current 1= NULL && current->destAddr <= destAddr;
current = current->next)

113

{
if (current->destAddr == destAddr)

current->times++;
return;

H
}

} /* RoutingAodvIncreaseTimes */

/ *
* RoutingAodvActivateRoute
*

* Activate a route in the route table
*/
void RoutingAodvActivateRoute(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head;
current |= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
current->activated = TRUE;
current->lifetime = simclock() + ACTIVE_ROUTE_TO;
return,
}
}

} /* RoutingAodvActivateRoute */

/*

* RoutingAodvInactivateRoutesAndGetDestinations

*

* Inactivate routes that use the broken link

* Returns the destAddr and whether the node must relay the RREP
*/

void RoutingAodvInactivateRoutesAndGetDestinations(
GlomoNode* node,
AQODV_RT* routeTable,
NODE_ADDR nextHop,
AODV_AddressSequenceNumberPairType destinationPairs[],
int maxNumberDestinationPairs,
int* numberDestinations)

AODV_RT Node *current;

114

int numDests = 0;

for (current = routeTable->head;
current != NULL;
current = current->next)

{
if ((current->nextHop == nextHop) && (current->activated == TRUE))
{
current->activated = FALSE;
current->hopCount = AODV_INFINITY;
current->lifetime = simclock() + BAD _LINK_LIFETIME;
current->destSeq++;
RoutingAodvSetTimer(
node, MSG NETWORK _CheckRouteTimeout, current->destAddr,
(clocktype)BAD LINK LIFETIME);
if (lcurrent->source) {
destinationPairs[numDests].destination Address =
current->destAddr;
destinationPairs[numDests].destinationSequenceNumber =
current->destSeq;
numDests++;
ALY
Whtl/
Yiifor//

*numberDestinations = numDests;

} /* RoutingAodvInactivateRoute */

/*

* RoutingAodvMarkRouteBroken

*

* Mark the route with destAddr broken; returns TRUE if relay is required

*/

BOOL RoutingAodvMarkRouteBroken(GlomoNode *node,
NODE_ADDR destAddr,
AODV_RT *routeTable)

AODV_RT_Node *current;
BOOL relay = FALSE;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr && current->activated == TRUE)

115

current->activated = FALSE;

current->hopCount = AODV_INFINITY;
current->lifetime = simclock() + BAD LINK LIFETIME;
current->destSeq++;

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, current->destAddr,
(clocktype)BAD_LINK LIFETIME);

if (current->source == FALSE)

{
relay = TRUE;
}
return (relay);
}
}

return (relay);

} /* RoutingAodvMarkRouteBroken */

/’ *
* RoutingAodvUpdateSeq
*

* Update the sequence number of a certain destination
*/
void RoutingAodvUpdateSeq(NODE_ADDR destAddr, int seq, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
current->destSeq = seq;
return;
}
}

1 /* RoutingAodvUpdateSeq */

116

static //inline//
void SendRouteErrorPacket(
GlomoNode* node,
const AODV_RERR_Packet* rerrPacket)
{
Message* newMsg = GLOMO_MsgAlloc(node, 0, 0, 0);
int packetSize = AODV_RERR_PacketSize(rerrPacket);

assert(rerrPacket->pktType == (unsigned short)ACDV_RERR);
assert(rerrPacket->destinationCount >= 1);

GLOMO MsgPacketAlloc(node, newMsg, packetSize);
memcpy(GLOMO_ MsgReturnPacket(newMsg), rerrPacket, packetSize);
NetworkIpSendRawGlomoMessage(
node, newMsg, ANY_ DEST, CONTROL, IPPROTO_AODV, 1);
} .

/*
* RoutingAodvInit
%
* nitialization function for AODV protocol
*/
void RoutingAodvInit(
GlomoNode *node,
GlomoRoutingAodv **aodvPtr,
const GlomoNodeInput *nodelnput)
{
GlomoRoutingAodv *aodv =
(GlomoRoutingAodv *)checked_pc_malloc (sizeof(GlomoRoutingAodv));

(*aodvPtr) = aodv;

if (aodv == NULL)

{
fprintf(stderr, "AODV: Cannot alloc memory for AODV struct!\n");
assert (FALSE);

}

RoutingAodvInitStats(node);
RoutingAodvInitRouteTable(&aodv->routeTable);
RoutingAodvInitNbrTable(&aodv->nbrTable);
RoutingAodvInitSeenTable(&aodv->seenTable);
RoutingAodvinitBuffer(&aodv->buffer);
RoutingAodvInitSent(&aodv->sent);
RoutingAodvInitSeq(node);
RoutingAodvinitBeastld(node);

117

NetworklpSetPacketDropNotificationFunction(
node, &RoutingAodvPacketDropNotificationHandler);

NetworkIpSetRouterFunction(node, &RoutingAodvRouterFunction);
} /* RoutingAodvInit */

/*
* RoutingAodvFinalize
%k
* Called at the end of the simulation to collect the results
*/
void RoutingAodvFinalize(GlomoNode *node)
{
GlomoNetworklp *ipLayer = (GlomoNetworklp *)node->networkData.networkVar;
GlomoRoutingAodv *aodv = (GlomoRoutingAodv *)ipLayer->routingProtocol;
FILE *statQut;
float avgHopCnt;
char buf[GLOMO_MAX STRING_LENGTH];

sprintf(buf, "Number of Route Requests Txed = %d",
aodv->stats.numRequestSent);
GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Replies Txed = %d",
aodv->stats.numReplySent);
GLOMO_PrintStat(node, "RoutingAodv", buf);

/¥ new statistic */

sprintf(buf, "Number of Warnings Txed = %d",
aodv->stats.numWarningSent);
GLOMO _PrintStat(node, "RoutingAodv", buf);
/*
sprintf(buf, "Encrypted message = %d",
aodv->stats.encr_message);
GLOMO PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Decrypted message = %d",
aodv->stats.decr_message);
GLOMO _PrintStat(node, "RoutingAodv", buf);
*/
sprintf(buf, "Number of 2nd Warnings Txed = %d",
aodv->stats.numWarning2 Sent);

GLOMO_PrintStat(node, "RoutingAodv”, buf);
/%) */

sprintf(buf, "Number of Route Errors (RERR) Txed = %d",
aodv->stats.numRerrSent);
GLOMO_PrintStat(node, "RoutingAodv", buf);

118

sprintf(buf, "Number of Route Errors (RERR) Re-sent = %d",
aodv->stats.numRerrResent);
GLOMO_PrimntStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of CTRL Packets Txed = %d",
aodv->stats.numRequestSent + aodv->stats.numReplySent + aodv-
>stats.numWamningSent);
GLOMO PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Routes Selected = %d", aodv->stats.numRoutes);
GLOMO PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Hop Counts = %d", aodv->stats.numHops);
GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Data Txed = %d",
aodv->stats.numDataTxed);

GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Data Packets Originated = %d",
aodv->stats.numDataSent);

GLOMO _PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Data Packets Received = %d",
aodv->stats.numDataReceived);

GLOMO _PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Packets Dropped or Left waiting for Route = %d",
(aodv->stats. numPacketsDropped + aodv->buffer.size));
GLOMO _PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Broken Links = %d", aodv->stats.numBrokenLinks);

GLOMO _PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Broken Link Retries = %d", aodv->stats.numBrokenLinkRetries);
GLOMOQ _PrintStat(node, "RoutingAodv", buf);

} /* RoutingAodvFinalize */

/*
* RoutingAodvHandleData
*
* Processing procedure when data is received
*/
void RoutingAodvHandleData(GlomoNode *node, Message *msg, NODE_ADDR destAddr)
{
GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node->networkData networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
IpHeaderType *ipHeader = (IpHeaderType *)GLOMO_MsgReturnPacket(msg);
NODE_ADDR sourceAddress = ipHeader->ip_src;

119

assert(sourceAddress != node->nodeAddr);

/* the node is the destination of the route */
if (destAddr == node->nodeAddr)
{

aodv->stats.numDataReceived++;
RoutingAodvUpdateLifetime(sourceAddress, &aodv->routeTable);

RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
sourceAddress, (clocktype)ACTIVE _ROUTE _TO);

!

else if (destAddr '= ANY DEST)

{
// The node is an intermediate node of the route.
// Relay the packet to the next hop of the route

if (RoutingAodvCheckRouteExist(destAddr, &aodv->routeTable)) {
RoutingAodvTransmitData(node, msg, destAddr);

} else {
// Broken Route. Drop Packet, send RERR again to make them stop
// sending more.
AODV_RERR_Packet newRerrPacket;
newRerrPacket.pktType = AODV_RERR;
newRerrPacket.destinationCount = 1;
newRerrPacket.destinationPairArray[0].destinationAddress = destAddr;
newRerrPacket.destinationPair Array[0].destinationSequenceNumber

= RoutingAodvGetSeq(destAddr, &aodv->routeTable);

SendRouteErrorPacket(node, &newRerrPacket);
aodv->stats.numRerrResent++;

aodv->stats numPacketsDropped++;
GLOMO_MsgFree(node,msg);

VIt
V//if)/

} /* RoutingAodvHandleData */

/ *
* RoutingAodvHandleRequest

*

* Processing procedure when RREQ is received
*/
void RoutingAodvHandleRequest(GlomoNode *node, Message *msg, int ttl)

GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.network Var;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol,

120

AODV_RREQ_Packet *rreqPkt = (AODV_RREQ_Packet
*YGLOMO_MsgReturnPacket(msg);

/* Process only if the packet 1s not a duplicate */
if ('RoutingAodvLookupSeenTable(

rreqPkt->src Addr, rreqPkt->bcastld, &aodv->seenTable))
{

RoutingAodvInsertSeenTable(

node, rreqPkt->srcAddr, rreqPkt->bceastld, rreqPkt->hopCount, rreqPkt->trust_level,
&aodv->seenTable); /* added parameter */

/* Update the neighbor table if the upstream is new */
if ('RoutingAodvCheckNbrExist(rreqPkt->lastAddr, &aodv->nbrTable))
{
RoutingAodvinsertNbrTable(rreqPkt->lastAddr, &aodv->nbrTable);
RoutingAodvIncreaseSeq(node);

}

/* The node is the destination of the route */
if (node->nodeAddr == rreqPkt->destAddr)
{
RoutingAodvReplacelnsertRouteTable(
rreqPkt->srcAddr, rreqPkt->srcSeq, rreqPkt->hopCount, rreqPkt->trust_level, /*
added parameter */

rreqPkt->lastAddr, rreqPkt->lastAddr, simelock() + ACTIVE_ROUTE_TO, TRUE,
TRUE,

&aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK _CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)ACTIVE_ROUTE _TO);

/* Send a Route Reply */
RoutingAodvinitiateRREP(node, msg);

/% f dest */
else
/* No route to destination is known */

/%
*/

not reqd

// if ('RoutingAodvCheckRouteExist(rreqPkt->destAddr,
I &aodv->routeTable))
/ {

/% not reqd
*/

121

/%
*/

//
1
1
i
/"
1
/1
1/
/1
/!
i

1
"
1

I
1
1
1
I
/f
i
1

RoutingAodvReplacelnsertRouteTable(

rreqPkt->srcAddr, reqPkt->srcSeq, rreqPkt->hopCount, rreqPkt->trust_level, /*
added parameter */

rreqPkt->lastAddr, rreqPkt->lastAddr, simclock() + REV_ROUTE_LIFE, FALSE,

FALSE, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)REV_ROUTE_LIFE);

if (ttl > 0)
{
/* Relay the packet only if TTL is not zero */
RoutingAodvRelayRREQ(node, msg, ttl);
y/xAftl >0/
else

{
GLOMO MsgFree(node, msg);

/- ¥ /* if no route */

/* Knows a route to the destination */

else

{
1

/* However, the known route is not a fresh one */
if (RoutingAodvGetSeq(rreqPkt->destAddr, &aodv->routeTable) <
rreqPkt->destSeq)
{
RoutingAodvReplacelnsertRouteTable(
rreqPkt->src Addr, rreqPkt->srcSeq, rreqPkt->hopCount,
rreqPkt->lastAddr, simclock() + REV_ROUTE_LIFE,
FALSE, FALSE,
&aodv->routeTable);

RoutingAodvSetTimer(

node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,

(clocktype)REV_ROUTE_LIFE);

if (tt1 > 0)
{
/* Relay the packet only if TTL is not zero */
RoutingAodvRelayRREQ(node, msg, ttl);
YR >0 ¥/
else

{
GLOMO_MsgFree(node, msg);

122

not reqd

1)

1 } /* if seq no is not fresh */

1 /* has a fresh route to the destination */

1 else

1/ {

/ RoutingAodvReplaceInsertRouteTable(

1 rreqPkt->src Addr, rreqPkt->srcSeq, rreqPkt->hopCount,

/7 rreqPkt->lastAddr, simelock() + ACTIVE_ROUTE_TO,

4 TRUE, FALSE,

" &aodv->routeTable);

1 RoutingAodvSetTimer(

I node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
/" (clocktype) ACTIVE_ROUTE_TO);

/ /* Send a Route Reply */

/! RoutingAodvInitiateRREPbyIN(node, msg);

/ }/* else */

/" L /* else */

[* s not reqd
*/

} /* else (not dest) */
Y /* if new pkt */

else // packet is duplicate

{
// GLOMO_MsgFree(node, msg);

RoutingAodvLookupSeenTable1(node,msg,rreqPkt->src Addr,rreqPkt->lastAddr,rreqPkt-
>beastld,rreqPkt->hopCount,rreqPkt->trust_level,rreqPkt->MAC,&aodv->seenTable);

}
} /* RoutingAodvHandleRequest */

/* added code for
checking trust_level */
void RoutingAodvLookupSeenTable1(GlomoNode *node,Message *msg, NODE_ADDR
srcAddr,NODE ADDR lastAddr,int beastld,int hopCount,int trust_level,long int
MAC,AODV_RST *seenTable)
{

AODV_RST_Node *current;

int countl;

struct Struct2 /* defining the structure for trust table */

{
NODE_ADDR node;
int trust_level;

123

}AODV _Trust_Table[50];

AODV_Trust_Table[0].node = 0;
AODV_Trust_Table[0].trust_level = 5;
for(count1=1; count1<50; countl++)
{
AODV_Trust Table[count]].node = AODV_Trust_Table[countl-1].node + 1;
AODV _Trust_Table[count1].trust_level = AODV_Trust_Table[count]-1].trust_level;

for (current = seenTable->front; current != NULL; current = current->next)
{
if (current->srcAddr==srcAddr && current->bcastld==bcastld)
{
if (current->hopCount==hopCount -1)
{

for(count1=0;count1<50;count1++)
if (AODV_Trust_Table[countl].node == node->nodeAddr)

{
if(trust_level - current->trust_level I=
AODV_Trust_Table[countl].trust_level)

{

RoutingAodvRelayWarning(node, MAC,lastAddr,srcAddr);

}
else
{
GLOMO_MsgFree(node, msg);
}
}
)
¥
}
!
} /* RoutingAodvLookupSeenTablel */
/* added code for

checking trust_level */
/*
* RoutingAodvHandleReply
*
* Processing procedure when RREP is received

*/
void RoutingAodvHandleReply(

124

GlomoNode *node, Message *msg, NODE_ADDR srcAddr, NODE_ADDR destAddr)
{

GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData network Var,
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

Message *newMsg;

AODV_RREP_ Packet *rrepPkt = (AODV_RREP_Packet *)GLOMO_MsgReturnPacket(msg);
BOOL relay;

clocktype lifetime;

/* clocktype must be copied to access the field of that type */
memmove(&lifetime, &rrepPkt->lifetime, sizeof(clocktype));

/* Source of the route */
if (rrepPkt->src Addr == node->node Addr)
/* The packet 1s the first reply received */
if (!RoutingAodvCheckRouteExist(rrepPkt->destAddr,
&aodv->routeTable))
{
RoutingAodvReplacelnsertRouteTable(
rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trust_level,
rrepPkt->next _hop, /* added parameter */
srcAddr, simclock() + lifetime, TRUE,
TRUE, &aodv->routeTable);

aodv->stats.numRoutes++;
aodv->stats.numHops += rrepPkt->hopCount;

RoutingAodvDeleteSent(rrepPkt->destAddr, &aodv->sent);
/* Send any buffered packets to the destination */
while (RoutingAodvLookupBuffer(
rrepPkt->destAddr, &aodv->buffer))
{

newMsg = RoutingAodvGetBufferedPacket(
rrepPkt->destAddr, &aodv->buffer);

RoutingAodvTransmitData(node, newMsg, rrepPkt->destAddr);
aodv->stats. numDataSent++; 4
RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aodv->buffer);

} /* while */
} /* if no route */

/* The packet contains a better route compared to the one already
known */

125

else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable) <
rrepPkt->destSeq) ||
((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)
== rrepPkt->destSeq) &&
(RoutingAodvGetHopCount(rrepPkt->destAddr,
&aodv->routeTable) >
rrepPki->hopCount)))
{
RoutingAodvReplacelnsertRouteTable(
rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trust_level,
rrepPkt->next_hop, /* added parameter */
srcAddr, simelock() + lifetime, TRUE,
TRUE, &aodv->routeTable);

/* Send any buffered packet to the destination */

while (RoutingAodvLookupBuffer(
rrepPkt->destAddr, &aodv->buffer))

{

newMsg = RoutingAodvGetBufferedPacket(
rrepPkt->destAddr, &aodv->buffer);

RoutingAodvTransmitData(node, newMsg, rrepPkt->destAddr);
aodv->stats.numDataSent++;
RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aodv->buffer);

Y /* while */
3 /* else if */

GLOMO _ MsgFree(node, msg);
} /* if source */

/* Intermediate node of the route */

else

{

/* the packet is the first reply received */

if ('RoutingAodvCheckRouteExist(
rrepPkt->destAddr, &aodv->routeTable))

{

RoutingAodvReplacelnsertRouteTable(
rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trust_level,
rrepPkt->next_hop, /* added parameter */

srcAddr, simclock() + lifetime, TRUE, FALSE,
&aodv->routeTable);

RoutingAodvSetTimer(

node, MSG_NETWORK CheckRouteTimeout, rrepPkt->destAddr,
(clocktype)lifetime);

126

RoutingAodvActivateRoute(rrepPkt->srcAddr, &aodv->routeTable),;

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->srcAddr,
(clocktype)ACTIVE_ROUTE_TO);

/* Forward the packet to the upstream of the route */
RoutingAodvRelayRREP(node, msg, destAddr);

} /* if new route */

/* the packet carries a better route compared to the one already
known */
else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable) <
rrepPkt->destSeq) ||
((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)
== rrepPkt->destSeq) &&
(RoutingAodvGetHopCount(rrepPkt->destAddr,
&aodv->routeTable) >
rrepPkt->hopCount)))
{
RoutingAodvReplacelnsertRouteTable(
rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trust_level,
rrepPkt->next_hop, /* added parameter */
srcAddr, simclock() + lifetime, TRUE,
FALSE, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->destAddr,
(clocktype)lifetime);
RoutingAodvActivateRoute(rrepPkt->src Addr, &aodv->routeTable);
RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->srcAddr,
(clocktype) ACTIVE_ROUTE_TO);

/* Forward the packet to the upstream of the route */
RoutingAodvRelayRREP(node, msg, destAddr);

} /* else if newer route or shorter route */
else
GLOMO MsgFree(node, msg);
Yt/
Y0l

} /* RoutingAodvHandleReply */

127

1
// RoutingAodvHandleRouteError
/I

// Processing procedure when RERR is received
I

void RoutingAodvHandleRouteError(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr)

{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV_RERR_Packet* rerrPkt =

(AODV_RERR_Packet*)GLOMO_MsgReturnPacket(msg);

AODV_RERR_Packet newRerrPacket;
mt I

newRerrPacket.pktType = (unsigned short) AODV_RERR,;
newRerrPacket.destinationCount = 0;

for(I1= 0; I < rerrPkt->destinationCount; I+-+) {
// Mark the route inactive in the route table; Must not remove it
// right away since the last hop count known 1s needed for future use
// Remove destination from packet if it doesn't need to be forwarded
// further,

NODE_ADDR destination =
rerrPkt->destinationPairArray[I].destinationAddress;

int sequenceNum =
rerrPkt->destinationPair Array[I].destinationSequenceNumber;

BOOL mustRelay =
RoutingAodvMarkRouteBroken(
node,
destination,
&aodv->routeTable);

RoutingAodvUpdateSeq(destination,
sequenceNum,
&aodv->routeTable);

NetworkIpDeleteOutboundPacketsToANode(
node, srcAddr, destination, FALSE);

if (mustRelay) {
newRerrPacket.destinationPairArray[newRerrPacket.destinationCount} =
rerrPkt->destinationPairArray[l];
newRerrPacket.destinationCount++;
yVihtlf

128

Y iwhile//

if (newRerrPacket.destinationCount > 0} {
SendRouteErrorPacket(node, &newRerrPacket);
aodv->stats numRerrSent++;

YAt

GLOMO_MsgFree(node, msg);
}//RoutingAodvHandleRouteError//

/* new function to handle warning message-------------
....... */

//

// RoutingAodvHandleWarning

I

// Processing procedure when RWARN is received

1

void RoutingAodvHandleWarning(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr, NODE_ADDR destAddr, int
trust_level, long int MAC)
{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.network Var,
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV_RWARN_Packet* rwarnPkt =
(AODV_RWARN_Packet*)GLOMO_MsgReturnPacket(msg);
AODV_RWARN_Packet newRwarnPacket;
int countbinary, countdecrypt, s2,y2,d2 ;
int temp_array[16];
MAC = 2093;
trust_level = 5;

//aodv->stats.encr_message = MAC; //to show the received MAC
/* Process only if the packet is not a duplicate */

if (1RoutingAodvLookupSeenTable(
rwarnPkt->src Addr, rwarnPkt->bcastld, &aodv->seenTable))

{
// implement the function here

/* decrypting MAC */
s2 = Public;
for (countbinary = 0; countbinary <= 15; countbinary ++)

{

y2 = 82/2;

temp_array[countbinary] = s2 % 2;

s2 =y2;
}

129

d2 =1,
fpr (countdecrypt = 15; countdecrypt >= 0; countdecrypt --)

d2 =(d2*d2) % n;
if (temp_array[countdecrypt] == 1)

d2 = (d2*MAC) % n;

B
}
aodv->stats.decr_message = d2; /* to display decrypted message */
// RoutingAodvRelayWarning_1(node);
/* %/

if (d2 == trust_level)

// concludes that the accusing node is malicious
RoutingAodvRelayWarning_1(node);

else //concludes that the accused node is malicious
{

GLOMO_MsgFree(node, msg);
}

}

else // packet is duplicate
GLOMO_ MsgFree(node, msg);

}

H/RoutingAodvHandleWarning//

/* *

/ *
* RoutingAodvInitRouteTable
*

* Initialize the route table
*/
void RoutingAodvInitRouteTable(AODV_RT *routeTable)
{
routeTable->head = NULL;
routeTable->size = 0;
} /* RoutingAodvInitRouteTable */

/' *
* RoutingAodvinitNbrTable

*

130

* Initialize the neighbor table
*/
void RoutingAodvInitNbrTable(AODV_NT *nbrTable)
{
nbrTable->head = NULL;
nbrTable->size = 0;

} /* RoutingAodvnitNbrTable */

/ %
* RoutingAodvinitSeenTable
*

* Initialize the seen table
*/
void RoutingAodvinitSeenTable(AODV_RST *seenTable)

seenTable->front = NULL,;
seenTable->rear = NULL;
seenTable->size = 0;

} /* RoutingAodvInitSeenTable */

/*

* RoutingAodvinitButfer

*

* Initialize the buffer

*/

void RoutingAodvInitBuffer(AODV_BUFFER *buffer)

{
buffer->head = NULL;
buffer->size = 0;

} /* RoutingAodvInitBuffer */

/ *
* RoutingAodvInitSent
*

* Initialize the sent table
*/
void RoutingAodvInitSent(AODV_SENT *sent)

{
sent->head = NULL;

sent->size = 0
} /* RoutingAodvInitBuffer */
/ %
* RoutingAodvInitStats

*

131

* Initialize all the stat variables

*/

void RoutingAodvInitStats(GlomoNode *node)

{
GlomoNetworklp* ipLayer = (GlomoNetworklIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->stats.numRequestSent = 0;
aodv->stats.numReplySent = 0;
aodv->stats.numWarningSent = 0;
aodv->stats numWarning2Sent = 0;
aodv->stats.numRerrSent = (;
aodv->stats.numRerrResent = {);
aodv->stats.numDataSent = 0;
aodv->stats.numDataTxed = 0;
aodv->stats.numDataReceived = 0;
aodv->stats. numRoutes = Q;
aodv->stats.numHops = 0;
aodv->stats.numPacketsDropped = 0;
aodv->stats.numBrokenLinks = 0;
aodv->stats.numBrokenLinkRetries = 0;
} /* RoutingAodvInitStats */

/ *
* RoutingAodvinitSeq
*

* Initialize the sequence number

*/

void RoutingAodvInitSeq(GlomoNode *node)
{

GlomoNetworklp* ipLayer = (GlomoNetworklp *) node->networkData. networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
aodv->seqNumber = 0;

}+ /* RoutingAodvInitSeq */

/*

* RoutingAodvInitBeastld

*

* Tnitialize the broadcast id

*/

void RoutingAodvinitBeastld(GlomoNode *node)

GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.network Var;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->beastld = 0;

132

} /* RoutingAodvInitBcastld */

/ *
* RoutingAodvGetNextHop
%

* Looks up the routing table to obtain next hop to the destinaton
*/
NODE_ADDR RoutingAodvGetNextHop(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head;
current '= NULL && current->destAddr <= destAddr;
current = current->next)
{
if (current->destAddr == destAddr && current->activated == TRUE)

{

return{current->nextHop);
!
i

}

return (ANY_DEST);
} /* RoutingAodvGetNextHop */

/ *
* RoutingAodvGetBeastld

*

* Obtains the broadcast ID for the outgoing packet
*/
int RoutingAodvGetBcastld(GlomoNode *node)

{
GlomoNetworkIp* ipLayer = (GlomoNetworklIp *) node->networkData.networkVar;

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
int beast;

beast = aodv->bcastld;
aodv->bcastld++;

return (bcast);
} /* RoutingAodvGetBcastld */

/ &
* RoutingAodvGetSeq

ES

* Obtains the sequence number of the destination node

*/

int RoutingAodvGetSeq(NODE_ADDR destAddr, AODV_RT *routeTable)
{

133

AODV_RT Node *current;

for (current = routeTable->head;
current |= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
return{current->destSeq);
)
}
return (-1);

} /* RoutingAodvGetSeq */

/ *
* RoutingAodvGetMySeq
%

* Obtains the node's seq number

*/

int RoutingAodvGetMySeq(GlomoNode *node)
{

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

return (aodv->seqNumber);
} /* RoutingAodvGetMySeq */

/*

* RoutingAodvGetHopCount

&

* Obtains the hop count to the destination node

*/

int RoutingAodvGetHopCount(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
return({current->hopCount);
}
3

134

return (-1);
} /* RoutingAodvGetHopCount */

/ *
* RoutingAodvGetLastHopCount
%

* Obtains the last hop count known to the destination node
*/
int RoutingAodvGetLastHopCount(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT_Node *current;

for (current = routeTable->head,
current |= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{

return{current->lastHopCount);

}
}

return (-1);
1 /* RoutingAodvGetLastHopCount */

/ *
* RoutingAodvGetTtl

sk

* Obtains the ttl value for the outgoing RREQ
*/
int RoutingAodvGetTtI(NODE_ADDR destAddr, AODV_SENT *sent)

{
AODV_SENT Node *current;

for (current = sent->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

if (current->destAddr == destAddr)
{

return{current->ttl);

}
}

return (TTL_START);

} /* RoutingAodvGetTtl */

135

/*

* RoutingAodvGetTimes
E3

* Obtains the number of times the RREQ was sent in TTL = NET_DIAMETER
*/
int RoutingAodvGetTimes(NODE_ADDR destAddr, AODV_SENT *sent)

{
AODV_SENT Node *current;

for (current = sent->head,;
current 1= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{

return(current->times);

}
}

return (0);
} /* RoutingAodvGetTimes */

/*
* RoutingAodvGetLifetime
F2
* Obtains the lifetime value of an entry in the route table
*/
clocktype RoutingAodvGetLifetime(NODE_ADDR destAddr, AODV_RT *routeTable)

AODV_RT Node *current;

for (current = routeTable->head;
current 1= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{

return(current->lifetime);

}
}

return (0);
} /* RoutingAodvGetLifetime */

/ *
* RoutingAodvGetBufferedPacket
*

* Extract the packet that was buffered

136

*/
Message *
RoutingAodvGetBufferedPacket(NODE_ADDR destAddr, AODV_BUFFER *buffer)

{
AODV_BUFFER_Node *current;

for (current = buffer->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)
{
if (current->destAddr == destAddr)
{

return(current->msg);
}
} |
assert(FALSE); abort(); return NULL;
} /* RoutingAodvGetBufferedPacket */

/ *
* RoutingAodvCheckRouteExist
*

* Returns TRUE if any route to the destination is known
*/

BOOL RoutingAodvCheckRouteExisttNODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

if (routeTable->size == ()

{
return (FALSE);
¥

for (current = routeTable->head;
current '= NULL && current->destAddr <= destAddr;
current = current->next)

{
if ((current->destAddr == destAddr) &&

(current->hopCount = AODV_INFINITY) &&
(current->lifetime > simclock()) &&
(current->activated == TRUE))

return(TRUE);

}
}

return (FALSE);

} /* RoutingAodvCheckRouteExist */

137

/’ *
* RoutingAodvCheckNbrExist

s

* Returns TRUE if the node is already a neighbor

*/

BOOL RoutingAodvCheckNbrExist(NODE_ADDR destAddr, AODV_NT *nbrTable)

{
AODV_NT Node *current;

if (nbrTable->size == 0)
{
return (FALSE);

}

for (current = nbrTable->head;
current 1= NULL && current->destAddr <= destAddr;
current = current->next) i

(
if (current->destAddr == destAddr)

{
return(TRUE};

!
}

return (FALSE);
} /* RoutingAodvCheckNbrExist */
/%

* RoutingAodvLookupSeenTable
*

* Returns TRUE if the broadcast packet is processed before

*/
BOOL RoutingAodvLookupSeenTable(NODE_ADDR srcAddr,
int beastld,
AODV_RST *seenTable)
{

AODV_RST Node *current;
if (seenTable->size == 0)

return (FALSE);
}

for (current = seenTable->front;
current {= NULL;
current = current->next)

{
if (current->srcAddr == srcAddr && current->beastld == beastld)

138

{
return (TRUE);

}
}

return (FALSE);

} /* RoutingAodvLookupSeenTable */

/ *
* RoutingAodvLookupBuffer
£

* Returns TRUE if any packet is buffered to the destination
*

*/
BOOL RoutingAodvLookupBuffer(NODE_ADDR destAddr, AODV_BUFFER *buffer)
{

AODV_BUFFER_Node *current;
if (buffer->size == 0)

return (FALSE);
}

for (current = buffer->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

return{TRUE);
¥
}

return (FALSE);
} /* RoutingAodvLookupBuffer */

/ *
* RoutingAodvCheckSent
*

* Check if RREQ has been sent; return TRUE if sent
*/
BOOL RoutingAodvCheckSent(NODE_ADDR destAddr, AODV_SENT *sent)
{
AODV_SENT_Node *current;

if (sent->size == 0)

139

{
return (FALSE);

}

for (current = sent->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)
{
if (current->destAddr == destAddr)
{
return{TRUE);
}
}

return (FALSE);

} /* RoutingAodvCheckSent */

/ *
* RoutingAodvHandleProtocolPacket
*

* Called when the packet is received from MAC

*/

void RoutingAodvHandleProtocolPacket(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr,
NODE_ADDR destAddr, int ttl, int trust_level, long int MAC)

{
AODV _PacketType *aodvHeader = (AODV_PacketType*)GLOMO_MsgReturnPacket(msg);

switch (*aodvHeader)

{
case AODV_RREQ:

{
RoutingAodvHandleRequest(node, msg, ttl);

break;

} /# RREQ */

case AODV_RREP:

{
RoutingAodvHandleReply(node, msg, srcAddr, destAddr);
break;

} /* RREP */

case AODV_RERR:

assert(destAddr == ANY_DEST);

140

RoutingAodvHandleRouteError(node, msg, sreAddr);

break;
} /* RERR */

/* new code for warning handling
*/

case AODV_RWARN:
{
//GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
//GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
/faodv->stats.encr_message = MAC; /* to display the MAC */
RoutingAodvHandieWarning(node, msg, srcAddr, destAddr, trust_level, MAC);

break;
Y/ RWARN */

default:
assert{FALSE); abort();
break;
} /* switch */
1 /* RoutingAodvHandleProtocolPacket */

*
/* RoutingAodvHandleProtocolEvent
*
: Handles all the protocol events
vo/id RoutingAodvHandleProtocolEvent(GlomoNode *node, Message *msg)
{ GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

switch (msg->eventType) {

/* Remove an entry from the RREQ Seen Table */

case MSG_NETWORK FlushTables: {
RoutingAodvDeleteSeenTable(&aodv->seenTable);
GLOMO_MsgFree(node, msg);
break;

}

/* Remove the route that has not been used for awhile */
case MSG_NETWORK_CheckRouteTimeout: {
NODE_ADDR *destAddr = (NODE_ADDR *)GLOMO_MsgReturnInfo(msg);

141

RoutingAodvDeleteRouteTable(*destAddr, &aodv->routeTable),
GLOMO_MsgFree(node, msg);

break;
}

/* Check if RREP is received after sending RREQ */
case MSG_NETWORK_CheckReplied: {
NODE ADDR *destAddr = (NODE_ADDR *)GLOMOQO_MsgReturnInfo(msg);

/* Route has not been obtained */
if ('RoutingAodvCheckRouteExist(*destAddr, &aodv->routeTable))

if (RoutingAodvGetTimes(*destAddr, &aodv->sent) < RREQ_RETRIES)

{
/* Retry with increased TTL */

RoutingAodvRetryRREQ(node, *destAddr);
¥ /* if under the retry limit */

/* over the limit */
else

while (RoutingAodvLookupBuffer(*destAddr, &aodv->buffer))
{

Message* messageToDelete =
RoutingAodvGetBufferedPacket(
*destAddr, &aodv->buffer);
RoutingAodvDeleteBuffer(*destAddr, &aodv->buffer);

GLOMO_MsgFree(node, messageToDelete);
aodv->stats numPacketsDropped++;

h
}/* else */
1 /7* if no route */

GLOMO_ MsgFree(node, msg);

break;
}

default:
fprintf(stderr, "RoutingAodv: Unknown MSG type %d\n",
msg->eventType);
abort();
} /* switch */

} /* RoutingAodvHandleProtocolEvent */

142

/*
* RoutingAodvRouterFunction
*
* Determine the routing action to take for a the given data packet
* set the PacketWasRouted variable to TRUE if no further handling of
* this packet by IP is necessary
*/
void RoutingAodvRouterFunction(
GlomoNode *node,
Message *msg,
NODE_ADDR destAddr,
BOOL *packetWasRouted)
{
GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;

/* Control packets */
if (ipHeader->ip_p ==IPPROTO_AODV)
{

retumn;

}

if (destAddr == node->nodeAddr)
{

}

else

{
*packetWasRouted = TRUE;

}

*packetWasRouted = FALSE;

/* intermediate node or destination of the route */
if (ipHeader->ip_src != node->nodeAddr)

{
RoutingAodvHandleData(node, msg, destAddr);

}

/* source has a route to the destination */
else if (RoutingAodvCheckRouteExist(destAddr, &aodv->routeTable))

{
RoutingAodvTransmitData(node, msg, destAddr);
aodv->stats numDataSent++;

}

/* There is no route to the destination and RREQ has not been sent */
else if ('RoutingAodvLookupBuffer(destAddr, &aodv->buffer))

RoutingAodvInsertBuffer(msg, destAddr, &aodv->buffer);

143

RoutingAodvinitiateRREQ(node, destAddr);
}

/* There is no route but RREQ has already been sent */
else

{
RoutingAodvInsertBuffer(msg, destAddr, &aodv->buffer);

}

} /* RoutingAodvRouterFunction */

/ *
* RoutingAodvMacLayerStatusHandler

*k

* Reacts to the signal sent by the MAC protocol after link failure
*/
void RoutingAodvPacketDropNotificationHandler(
GlomoNode *node, const Message* msg, const NODE_ADDR nextHopAddress)

{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAody *) ipLayer->routingProtocol;

IpHeaderType* ipHeader;

NODE_ADDR destAddr;
int numberRouteDestinations;

ipHeader = (IpHeaderType *) GLOMO_MsgReturnPacket(msg);
if (ipHeader->ip_p == IPPROTO_AODV)
{

return,;

YAt

destAddr = ipHeader->ip_dst;

if (nextHopAddress == ANY_DEST) {
aodv->stats numBrokenLinkRetries++;
return,;

VIS

NetworkIpDeleteOutboundPacketsToANode(
node, nextHopAddress, ANY DEST, FALSE);

aodv->stats.numBrokenLinks++;

RoutingAodvDeleteNbrTable(nextHopAddress, &aodv->nbrTable);

144

RoutingAodvIncreaseSeq(node);

do {
AODV_RERR_Packet newRerrPacket;
newRerrPacket.pktType = AODV_RERR;

RoutingAodvInactivateRoutesAndGetDestinations(
node,
&aodv->routeTable,
nextHopAddress,
newRerrPacket.destinationPairArray,
AODV_MAX RERR_DESTINATIONS,
&numberRouteDestinations);

newRerrPacket.destinationCount = numberRouteDestinations;

if (newRerrPacket.destinationCount > 0) {
SendRouteErrorPacket(node, &newRerrPacket);
aodv->stats.numRerrSent++;

VAL

} while (numberRouteDestinations == AODV_MAX_RERR_DESTINATIONS);

}//RoutingAodvMaclayerStatusHandler//

* RoutingAodvSetTimer

* Set timers for protocol events
*/

void RoutingAodvSetTimer(

GlomoNode *node, long eventType, NODE_ADDR destAddr, clocktype delay)

Message *newMsg;
NODE_ADDR *info;

newMsg = GLOMO_MsgAlloc(node,
GLOMO NETWORK_LAYER,
ROUTING PROTOCOL_AODYV,
eventType);

GLOMO_ MsgInfoAlloc(node, newMsg, sizeof(NODE_ADDR));
info = (NODE_ADDR *) GLOMO_MsgReturninfo(newMsg);
*info = destAddr;

GLOMO_ MsgSend(node, newMsg, delay);

} /* RoutingAodvSetTimer */

/ %
* RoutingAodvInitiateRREQ
*

* Initiate a Route Request packet when no route to destination is known
*/
void RoutingAodvInitiate RREQ(GlomoNode *node, NODE_ADDR destAddr)
{
GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;
AODV_RREQ_Packet *rreqPkt;
char *pktPtr;
int pktSize = sizeof{ AODV_RREQ_Packet);
int ttl;

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0,
MSG_MAC_FromNetwork);
GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rreqPkt = (AODV_RREQ_Packet *) pktPtr;

rreqPkt->pktType = AODV_RREQ;

rreqPkt->beastld = RoutingAodvGetBeastld(node);

rreqPkt->destAddr = destAddr;

rreqPkt->destSeq = RoutingAodvGetSeq(destAddr, &aodv->routeTable);
rreqPkt->srcAddr = node->node Addr;

rreqPkt->srcSeq = RoutingAodvGetMySeq(node);

rreqPkt->lastAddr = node->nodeAddr;

rreqPkt->hopCount = 1;

rreqPkt->trust_level = 0; /* added parameter */
rregPkt->MAC = 0; /* added parameter */

if (RoutingAodvCheckSent(destAddr, &aodv->sent))

{
ttl = RoutingAodvGetTtl(destAddr, &aodv->sent);

RoutingAodvIncreaseTtl(destAddr, &aodv->sent);
}

else

{
ttl = RoutingAodvGetLastHopCount(destAddr, &aodv->routeTable);
if (it ==-1)

{
tfl = TTL_START;
}

RoutingAodvInsertSent(destAddr, ttl, &aodv->sent);

146

RoutingAodvIncreaseTtl(destAddr, &aodv->sent),
}

NetworkIpSendRawGlomoMessage(
node, newMsg, ANY _DEST, CONTROL, IPPROTO_AODYV, ttl);

aodv->stats.numRequestSent++;

RoutingAodvInsertSeenTable(

node, node->nodeAddr, rreqPkt->beastld, rreqPkt->hopCount, rreqPkt->trust_level,
&aodv->seenTable); /* added parameter */

RoutingAodvSetTimer(node, MSG_NETWORK_CheckReplied, destAddr,
(clocktype)2 * tt1 * NODE_TRAVERSAL_TIME);

} /* RoutingAodvInitiateRREQ */

/ *
* RoutingAodvRetryRREQ
*

* Send RREQ again after not receiving any RREP
*/
void RoutingAodvRetryRREQ(GlomoNode *node, NODE_ADDR destAddr)
{
GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;
AODV_RREQ_Packet *rreqPkt;
char *pktPtr;
int pktSize = sizeof(AODV_RREQ_Packet);
int ttl;

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0,
MSG MAC_FromNetwork);
GLOMO_ MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rreqPkt = (AODV_RREQ_Packet *) pktPtr;

rreqPkt->pktType = AODV_RREQ;

rreqPkt->beastld = RoutingAodvGetBcastld(node);

rreqPkt->destAddr = destAddr;

rreqPkt->destSeq = RoutingAodvGetSeq(destAddr, &aodv->routeTable);
rreqPkt->srcAddr = node->nodeAddr;

rreqPkt->sreSeq = RoutingAodvGetMySeq(node);

rreqPkt->lastAddr = node->nodeAddr;

rreqPkt->hopCount = 1;

rreqPkt->trust_level = 0; /* added parameter */
rreqPkt->MAC = 0; /* added parameter */

147

ttl = Routing AodvGetTtl(destAddr, &aodv->sent);

NetworkIpSendRawGlomoMessage(
node, newMsg, ANY_DEST, CONTROL, IPPROTO_AODV, ttl);

RoutingAodvIncreaseTtl(destAddr, &aodv->sent);
aodv~>stats.numRequestSent++;

RoutingAodvInsertSeenTable(
node, node->nodeAddr, rreqPkt->beastld, rreqPkt->hopCount, rreqPkt->trust_level,
&aodv->seenTable); /* added parameter */

if (ttl == NET _DIAMETER)

RoutingAodvIncreaseTimes(destAddr, &aodv->sent);
}

RoutingAodvSetTimer(node, MSG_NETWORK _CheckReplied, destAddr,
(clocktype)2 * ttl * NODE_TRAVERSAL TIME);

} /* RoutingAodvRetryRREQ */

/ %k
* RoutingAodvTransmitData
ES

* Forward the data packet to the next hop

*/
void RoutingAodvTransmitData(GlomoNode *node, Message *msg, NODE_ADDR destAddr)
{

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
NODE_ADDR nextHop;

GLOMO_ MsgSetLayer(msg, GLOMO_MAC_LAYER, 0);
GLOMO_ MsgSetEvent(msg, MSG_MAC_FromNetwork);

nextHop = RoutingAodvGetNextHop(destAddr, &aodv->routeTable);
assert(nextHop = ANY_ DEST);

NetworkIpSendPacketToMacLayer(node, msg, DEFAULT_INTERFACE, nextHop);
aodv->stats.numDataTxed++;

RoutingAodvUpdateLifetime(destAddr, &aodv->routeTable);

RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
destAddr, (clocktype)ACTIVE ROUTE_TO);

} /* RoutingAodvTransmitData */

148

/ sk
* RoutingAodvRelayRREQ
%k

* Forward (re-broadcast) the RREQ
*/
void RoutingAodvRelayRREQ({GlomoNode *node, Message *msg, int ttl)
{
struct Structl /* defining the structure for trust table */

{

NODE_ADDR node;

int trust_level;

} AODV_Trust_Table[50];

NODE_ADDR recd_from_node; /*
added parameter */

int count, countbinary, countencrypt, sl,yl,d1 ; /* added
parameter */

int temp_array[16]; /* added

parameter */

GlomoNetworklIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

Message *newMsg;

AODV_RREQ Packet *oldRreq;

AODV_RREQ Packet *newRreq;

char *pktPtr;

int pktSize = sizeoff AODV_RREQ_Packet);

clocktype delay;

//AODV_Trust_Table *trustTable; /* added parameter */
/* new function
*/

// void initTrustTable()

14

AODV_Trust Table[0].node = 0;
AODV_Trust_Table[0].trust_level = 5;
for (count=1; count<50; count++)
{
AODV _Trust Table[count].node = AODV_Trust_Table[count-1].node +1;
AODV Trust Table[count].trust_level = AODV_Trust_Table[count-
1].trust_level;

}

/1y /end of function initTrustTable
/* */
oldRreq = (AODV_RREQ_Packet *) GLOMO_MsgReturnPacket(msg);

newMsg = GLOMO_MsgAlloc(node, GLOMO MAC _LAYER, 0,
MSG _MAC_FromNetwork);
GLOMO_ MsgPacketAlloc(node, newMsg, pktSize);

149

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
newRreq = (AODV_RREQ_Packet *) pktPtr;

recd_from node = oldRreq->lastAddr; /*
added parameter */
newRreq->pktType = oldRreq->pktType;
newRreq->bcastld = oldRreq->bceastld;
newRreq->destAddr = oldRreq->destAddr;
newRreq->destSeq = oldRreg->destSeq;
newRreq->srcAddr = oldRreq->srcAddr;
newRreq->sreSeq = oldRreg->sreSeq;
newRreq->lastAddr = node->node Addr;
newRreq->hopCount = oldRreq->hopCount + 1;
* added code */
for (count=0; count<50; count++)
{
ifl AODV_Trust_Table[count].node == recd_from_node)
]

1

}

}
/* ®/

newRreq->trust_level = oldRreg->trust level + AODV_Trust_Table[count].trust_level;

/* new code for computing MAC */

s1 = Private;
for (countbinary = 0; countbinary <= 15; countbinary ++)

yl =s1/2;
temp_array[countbinary] = s1%2;
sl =yl;

}

dl =1,
for (countencrypt = 15; countencrypt >= 0; countencrypt --)

{
dl = (d1*d1) % n;
if (temp_array[countencrypt] == 1)

d1 = (d1*message) % n;
-}
}
newRreq->MAC = dl;

/I aodv->stats.encr_message = dl; /* to display encrypted message */

/* */

150

delay = pc_erand(node->seed) ¥ BROADCAST JITTER;

NetworkIpSendRawGlomoMessage WithDelay(
node, newMsg, ANY_DEST, CONTROL, IPPROTO_AODV, ttl, delay);

aodv->stats.numRequestSent++;
GLOMO_MsgFree(node, msg);
+ /* RoutingAodvRelayRREQ */

/ *
* RoutingAodvinitiateRREP

*

* Destination of the route sends RREP in reaction to RREQ
*/
void RoutingAodvInitiateRREP(GlomoNode *node, Message *msg)
{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *)node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *)ipLayer->routingProtocol;
Message *newMsg;
AODV_RREQ Packet *rreqPkt;
AODV_RREP_Packet *rrepPkt;
char *pktPtr;
int pktSize = sizeof(AODV_RREP_Packet);
int seq;

rregPkt = (AODV_RREQ_Packet *) GLOMO_MsgReturnPacket(msg);

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC _LAYER, 0,
MSG_MAC_FromNetwork);
GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rrepPkt = (AODV_RREP_Packet *) pktPtr;

rrepPkt->pktType = AODV_RREP;
rrepPkt->srcAddr = rreqPkt->srcAddr;
rrepPkt->destAddr = node->nodeAddr;
seq = RoutingAodvGetMySeq(node);
if (seq >= rreqPkt->destSeq)
{

rrepPkt->destSeq = seq;
}

else

{
rrepPkt->destSeq = rreqPkt->destSeq;
RoutingAodvIncreaseSeq(node);

}

151

rrepPki->hopCount = 1;

rrepPkt->trust_level = rreqPkt->trust_level; /* parameter added */
rrepPkt->next_hop = 0; /* parameter added */
rrepPkt->lastAddr = node->node Addr; /* parameter added */

rrepPkt->lifetime = (clocktype)MY_ROUTE_TO;
NetworkIpSendRawGlomoMessageToMacLayer(
node, newMsg, rreqPkt->lastAddr, CONTROL, IPPROTO_AODV, 1,
DEFAULT INTERFACE, rreqPkt->lastAddr);
aodv->stats.numReplySent++;

GLOMO_MsgFree(node, msg);

} /* RoutingAodvInitiateRREP */

/* not reqd
*/
/*

* RoutingAodvInitiateRREPbyIN

*

* An intermediate node that knows the route to the destination sends the RREP

*/

//void RoutingAodvinitiate RREPbyIN(GlomoNode *node, Message *msg)

14

// GlomoNetworkIp* ipLayer = (GlomoNetworkIp *)node->networkData.networkVar;
/I GlomoRoutingAodv* aodv = (GlomoRoutingAodv *)ipLayer->routingProtocol;

// Message *newMsg;

/I AODV_RREQ_Packet *rreqPkt;

// AODV_RREP_Packet *rrepPkt;

/] char *pktPtr;

// int pktSize = sizeof(AODV_RREP_Packet);

// int seq;

/I newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0,
MSG _MAC_FromNetwork);
// GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

/- pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
/I rrepPkt = (AODV_RREP_Packet *) pktPtr;

/I rreqPkt = (AODV_RREQ_Packet *) GLOMO_MsgReturnPacket(msg);
// rrepPkt->pktType = AODV_RREP;
/I rrepPkt->srcAddr = rreqPkt->srcAddr;

/| rrepPkt->destAddr = reqPkt->destAddr;
// rrepPkt->destSeq = RoutingAodvGetSeq(rreqPkt->destAddr, &aodv->routeTable);

152

I
1
1
i

W
1
1
/"

1

rrepPkt->lifetime = RoutingAodvGetLifetime(
rreqPkt->destAddr, &aodv->routeTable) - simclock();
rrepPkt->hopCount = RoutingAodvGetHopCount(
rreqPkt->destAddr, &aodv->routeTable) + 1;

NetworkIpSendRawGlomoMessageToMacLayer(
node, newMsg, rreqPkt->lastAddr, CONTROL, IPPROTO_AODV, 1,
DEFAULT INTERFACE, rreqPkt->lastAddr);

aodv->stats numReplySent++;

GLOMO_MsgFree(node, msg);

/1} /* RoutingAodvInitiateRREPbyIN */

/*

not

reqd ¥/

/*

* RoutingAodvRelayRREP
*

* Forward the RREP packet
*/
void RoutingAodvRelayRREP(GlomoNode *node, Message *msg, NODE_ADDR destAddr)

{

GlomoNetworklIp* ipLayer = (GlomoNetworkIp *) node->networkData networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;

AODV_RREP_Packet *oldRrep;

AODV_RREP_ Packet *newRrep;

char *pktPtr;

NODE_ADDR nextHop;

clocktype lifetime;

int pktSize = sizeof(AODV_RREP_Packet);

oldRrep = (AODV_RREP_Packet *) GLOMO_MsgReturnPacket(msg);
memmove(&lifetime, &oldRrep->lifetime, sizeof(clocktype));

newMsg = GLOMO_ MsgAlloc(node, GLOMO_MAC_LAYER, 0,

MSG MAC_FromNetwork);

GLOMO_ MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
newRrep = (AODV_RREP Packet *) pktPtr;

newRrep->pktType = oldRrep->pktType;
newRrep->srcAddr = oldRrep->srcAddr;
newRrep->destAddr = oldRrep->destAddr;
newRrep->destSeq = oldRrep->destSeq;

153

newRrep->hopCount = oldRrep->hopCount + 1;

newRrep->trust_level = oldRrep->trust_level; /* parameter added */
newRrep->next_hop = oldRrep->lastAddr; /* parameter added */
newRrep->lastAddr = node->nodeAddr; /* parameter added */

newRrep->lifetime = lifetime;

if (destAddr == ANY_DEST)

{
NetworkIpSendRawGlomoMessage(

node, newMsg, ANY_DEST, CONTROL, IPPROTO_AODV, 1);
!

else

{
nextHop = RoutingAodvGetNextHop(oldRrep->src Addr, &aodv->routeTable);

if (nextHop 1= ANY DEST)
NetworkIpSendRawGlomoMessageToMacLayer(

node, newMsg, nextHop, CONTROL, IPPROTO_AODV, 1,
DEFAULT INTERFACE, nextHop);

}
}

// aodv->stats.numReplySent++;
GLOMO_MsgFree(node, msg);
1 /* RoutingAodvRelayRREP */

/* function added

Y

/ *
* RoutingAodvRelayWarning
F

* Broadcast the warning message

*/

void RoutingAodvRelayWarning(GlomoNode *node, long int MAC, NODE_ADDR lastAddr,
NODE_ADDR srcAddr)

GlomoNetworklIp* ipLayer = (GlomoNetworkIp *) node->networkData networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

Message *newMsg;

AODV_RWARN_Packet *rwamPkt;

char *pktPtr;

int pktSize = sizeof(AODV_RWARN_Packet);
/f int ttl;

154

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0,
MSG_MAC_FromNetwork);
GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rwarnPkt = (AODV_RWARN_Packet *) pktPtr;

rwamPkt->pktType = AODV_RWARN;
rwarnPkt->bcastld = RoutingAodvGetBcastld(node);
rwarnPkt->srcSeq = RoutingAodvGetMySeq(node);
rwarnPkt->maliciousIP = lastAddr;
/frwamPkt->trust_level = trust_level;
rwamnPkt->MAC = MAC;
rwarnPkt->rwarn_sourcelP = node->nodeAddr;
rwarnPkt->srcAddr = srcAddr;

/faodv->stats.encr_message = rwarnPkt->MAC; /* to display the MAC */

NetworkIpSendRawGlomoMessage(
node, newMsg, ANY_DEST, CONTROL, IPPROTO_AODV, rwarnPkt->MAC);

aodv->stats.numWarningSent++;
} /* RoutingAodvRelayWarning */

7 function added
/ %

* RoutingAodvRelayWarning_1

*

* Broadcast the warning message
*/
void RoutingAodvRelayWarning_1(GlomoNode *node)

{
GlomoNetworkIp* ipLayer = (GlomoNetworklIp *) node->networkData.networkVar;

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->stats. numWarning2Sent++;
} /* RoutingAodvRelayWarning 1 */

1

155

APPENDIX C
Header File of Simulation for Trust Modeling

/*

*Edited and Modified By Tirthankar Ghosh and Ahmad Farhat

%

* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSim is available
* at no cost to educational users only.

sk

* Commercial use of this software requires a separate license. No cost,

* evaluation licenses are available for such purposes; please contact

* info@scalable-networks.com

*

* By obtaining copies of this and any other files that comprise GloMoSim2.02,
* you, the Licensee, agree to abide by the following conditions and

* ynderstandings with respect to the copyrighted software:

1. Permission to use, copy, and modify this software and its documentation
for education and non-commercial research purposes only is hereby granted
to Licensee, provided that the copyright notice, the original author's
names and unit identification, and this permission notice appear on all
such copies, and that no charge be made for such copies. Any entity
desiring permission to use this software for any commercial or
non-educational research purposes should contact:

Professor Rajive Bagrodia

University of California, Los Angeles
Department of Computer Science
Box 951596

3532 Boelter Hall

Los Angeles, CA 90095-1596
rajive@cs.ucla.edu

F ¥ K K X K K K K * K K X X K K

E S

* 2 NO REPRESENTATIONS ARE MADE ABOUT THE SUITABILITY OF THE
SOFTWARE FOR ANY

* PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
B3

* 3 Neither the software developers, the Parallel Computing Lab, UCLA, or any

* affiliate of the UC system shall be liable for any damages suffered by

* Licensee from the use of this software.

*/

// Use the latest version of Parsec if this line causes a compiler error.
/*

* Name: aodv.h

*

* Implemented by SJ Lee (sjlee@cs.ucla.edu)

*/

156

/*
NOTE: The parameter values followed the AODV Internet Draft
(draft-ietf-manet-aodv-03.txt) and NS2 code by Samir R. Das

Read the NOTE of aodv.pc for more details
*/

#ifndef AODV_H_
#define _AODV_H_

#include "ip.h"
#include "main.h"
#include "nwcommon.h"

#define ACTIVE_ROUTE_TO 10 * SECOND

#define NODE_TRAVERSAL _TIME 40 * MILLI_SECOND
#define NET_DIAMETER 35

#define RREP_WAIT_TIME 3 #* NODE_TRAVERSAL TIME * NET DIAMETER /2
#define BAD_LINK_LIFETIME 2 * RREP_WAIT_TIME
#define BCAST_ID_SAVE 30 * SECOND

#define REV_ROUTE_LIFE RREP_WAIT_TIME
#define MY_ROUTE_TO 2 * ACTIVE_ROUTE_TO
#define RREQ_RETRIES 2

#define TTL_START 1

#define TTL_INCREMENT 2

#define TTL_THRESHOLD 7

#define AODV_INFINITY 255

#define BROADCAST _JITTER 10 * MILLI_SECOND

/* Packet Types */

typedef unsigned char AODV_PacketType;

#define AODV_RREQ 0
#define AODV_RREP 1

157

#define AODV_RERR 2

typedef struct
{
AODV_PacketType pktType;
int beastld;
NODE_ADDR destAddr;
int destSeq;
NODE_ADDR srcAddr;
int srcSeq;
NODE_ADDR lastAddr;

int hopCount;
ﬂoat Conf Ratlo/*******************************/
A,]

float conf Levely/**## ik skt st dohtor s dhotohfohk xokox
NODE_ADDR conf Node;/## ks iks itk skt sd st iodsox/

} AODV_RREQ Packet;

typedef struct

{
AODV_PacketType pktType;
NODE_ADDR srcAddr;
NODE_ADDR destAddr;
int destSeq;
int hopCount;
clocktype lifetime;

} AODV_RREP Packet;

typedef struct
{
NODE_ADDR destinationAddress;
int destinationSequenceNumber;
} AODV_AddressSequenceNumberPairType;

#define AODV_MAX_RERR_DESTINATIONS 250

typedef struct
{
AQDV_PacketType pktType; /1 1 byte
unsigned char filling[2];
unsigned char destinationCount;
AODV_AddressSequenceNumberPairType
destinationPairArray[AODV_MAX RERR DESTINATIONS];
1 AODV_RERR_Packet;

static //inline//
int AODV_RERR_PacketSize(const AODV_RERR_Packet* rerrPacket) {

158

return
(sizeof(rerrPacket->pktType) +
sizeof(rerrPacket->filling) +
sizeof(rerrPacket->destinationCount) +
(rerrPacket->destinationCount *
sizeof(AODV _AddressSequenceNumberPairType)));

typedef struct RTE

{
NODE_ADDR destAddr;
int destSeq;
int hopCount;
int lastHopCount;
NODE_ADDR nextHop;
clocktype lifetime;
BOOL activated;
BOOL source;
struct RTE *next;

1 AODV_RT Node;

typedef struct

{
AODV_RT _ Node *head,;
int size;

} AODV_RT;

typedef struct NTE

NODE_ADDR destAddr;
struct NTE *next,
} AODV_NT_Node;

typedef struct

{
AODV_NT_Node *head;
int size;

} AODV_NT;

typedef struct RSE
{
NODE_ADDR srcAddr;
int beastld;
struct RSE *next;
int hopCount;
NODE_ADDR lastAddr;
} AODV_RST_Node;

159

typedef struct

{
AODV_RST Node *front;
AODV_RST Node *rear;
nt size;

} AODV _RST;

SRR ks sk ok ok kR okor Rk Rk Confidence Table Structure™ F# s sttt deofsdoo s okt o ok ok ok /
typedef struct CFE
{

NODE_ADDR nodeAddr;

float conf Level;,/*C*/

float conf Ratio;/*G*/

float OER;

struct CFE *next;

} AODV_CFT Node;
typedef struct

AODV_CFT Node *front;
AODV_CFT Node *rear;
int size;

} AODV_CFT;

/*************************Conﬁdence Table Structure*****************************/

/*************************Remove Tab]e Structure********************************/
typedef struct NRE

{
NODE_ADDR nodeAddr;

mt TimeOfLeaving;
struct NRE *next;

}AODV_NRT Node;
typedef struct

AQODV_NRT_Node *front;
AODV _NRT_ Node *rear;
int size;

}AODVMNRT;
[k kR R R sk OOk R e ve Table Qructure s ok okt kR Rk

typedef struct FIFO

{
NODE_ADDR destAddr,

clocktype timestamp;
Message *msg;
struct FIFO *next;

160

} AODV_BUFFER_Node;

typedef struct

{
AODV_BUFFER_Node *head;
int size;

} AODV_BUFFER;

typedef struct SE
{
NODE _ADDR destAddr;
int ttl;
int times;
struct SE *next;
} AODV_SENT Node;

typedef struct

AODV_SENT Node *head,;
int size;
} AODV_SENT;

typedef struct
{
nt numRequestSent;
int numReplySent;
int numRerrSent;
int numeamSent; /* *************************new Stat sfe s ok ok ok ok ook ok ook sk skok */
int numRerrResent;
int numDataSent; /* Data Sent as the source of the route */
int numDataTxed;
int numDataReceived; /* Data Received as the destination of the route */
int numHops;
int numRoutes;
int numPacketsDropped;
int numBrokenLinks;
int numBrokenLinkRetries;
¥ AODV _Stats;

typedef struct glomo_network_aodv_str
{
AODV_CFT confTable;/**#ksksss*xConfidence Table*###kkkksitt/
AODV_NRT NbrRmvTable;/******#*#*Nejghbour Remove Table***#**¥%/
AODV_RT routeTable;
AODV_NT nbrTable;
AODV_RST seenTable;
AODV_BUFFER buffer;
AODV_SENT sent;
AQDV _Stats stats;

161

int seqNumber;
int beastld;
} GlomoRoutingAodv;
void RoutingAodvInit(
GlomoNode *node,
GlomoRoutingAodv **aodvPtr,
const GlomoNodeInput *nodelnput);
void RoutingAodvFinalize(GlomoNode *node);
void RoutingAodvHandleData(GlomoNode *node, Message *msg, NODE_ADDR destAddr);

void RoutingAodvHandleRequest(GlomoNode *node, Message *msg, int ttl);

void RoutingAodvHandleReply(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr, NODE_ADDR destAddr);

void RoutingAodvInitRouteTable(AODV_RT *routeTable);

void RoutingAodvInitNbrTable(AODV_NT *nbrTable);

void RoutingAodvInitSeenTable(AODV_RST *seenTable);

void RoutingAodvInitConfTable(AODV_CFT *confTable);

void RoutingAodvInsertNbrRmvTable(NODE_ADDR destAddr , AODV_NRT *NbrRmvTable);
float RoutingAodvComputeMean(NODE_ADDR targetAddr, AODV_NRT *NbrRmvTable);
void RoutingAodvInitNbrRmvTable(AODV_NRT *NbrRmvTable);

void RoutingAodvInitBuffer(AODV_BUFFER *buffer);

void RoutingAodvInitSent(AODV_SENT *sent);

void RoutingAodvInitStats(GlomoNode *node);

void RoutingAodvInitSeq(GlomoNode *node);

void RoutingAodvInitBeastld(GlomoNode *node);

NODE_ADDR RoutingAodvGetNextHop(NODE_ADDR destAddr, AODV_RT *routeTable);
int RoutingAodvGetBcastld(GlomoNode *node);

int RoutingAodvGetSeq(NODE_ADDR destAddr, AODV_RT *routeTable);

162

int RoutingAodvGetMySeq(GlomoNode *node);

int RoutingAodvGetHopCount(NODE_ADDR destAddr, AODV_RT *routeTable);

int RoutingAodvGetLastHopCount(NODE_ADDR destAddr, AODV_RT *routeTable);
int RoutingAodvGetTtI(NODE_ADDR destAddr, AODV_SENT *sent);

int RoutingAodvGetTimes(NODE_ADDR destAddr, AODV_SENT *sent);

clocktype RoutingAodvGetLifetime(NODE_ADDR destAddr, AODV_RT *routeTable);

Message *
RoutingAodvGetBufferedPacketNODE_ADDR destAddr, AODV_BUFFER *buffer);

BOOL RoutingAodvCheckRouteExisttNODE_ADDR destAddr, AODV_RT *routeTable);
BOOL RoutingAodvCheckNbrExisttNODE_ADDR destAddr, AODV_NT *nbrTable);

BOOL RoutingAodvLookupSeenTable(GlomoNode *node,
NODE_ADDR srcAddr,
int beastld,int hopCount, /* added parameter */
NODE_ADDR lastAddr,
AODV _RST *seenTable,
AODV_CEFET *confTable);

/*************************Conftable funCtiOIl
deﬁnition*******************************/

BOOL RoutingAodvComputeConfTable(GlomoNode *node, NODE_ADDR lastAddr, int
HFWD, int RTF,AODV_CFT¥* confTable),

BOOL RoutingAodvUpdateConfTable(NODE_ADDR address, float confRatio,float
confLeve, NODE_ADDR confNode,AODV_CFT* confTable);

void RoutingAodvInsertConfTable(GlomoNode *node, NODE_ADDR lastAddr,AODV_CFT
*confTable);

/*************************Conftable funCtiOn
deﬁniﬁon*******************************l/

BOOL RoutingAodvLookupBuffer(NODE_ADDR destAddr, AODV_BUFFER *bufter);
BOOL RoutingAodvCheckSent(NODE_ADDR destAddr, AODV_SENT *sent);
void RoutingAodvHandleProtocolPacket(

GlomoNode *node, Message *msg, NODE_ADDR srcAddr,

NODE ADDR destAddr, int ttl);

void RoutingAodvHandleProtocolEvent(GlomoNode *node, Message *msg);

void RoutingAodvRouterFunction(

163

GlomoNode *node,
Message *msg,
NODE_ADDR destAddr,
BOOL *packetWasRouted);

void RoutingAodvPacketDropNotificationHandler(
GlomoNode *node, const Message* msg, const NODE_ADDR nextHopAddress);

void RoutingAodvSetTimer(
GlomoNode *node, long eventType, NODE_ADDR destAddr, clocktype delay);

void RoutingAodvinitiateRREQ(GlomoNode *node, NODE_ADDR destAddr);

void RoutingAodvRetryRREQ(GlomoNode *node, NODE_ADDR destAddr);

void RoutingAodvTransmitData(GlomoNode *node, Message *msg, NODE_ADDR destAddr);
void RoutingAodvRelayRREQ(GlomoNode *node, Message *msg, int ttl);

void RoutingAodvInitiateRREP(GlomoNode *node, Message *msg);

void RoutingAodvInitiateRREPbyIN(GlomoNode *node, Message *msg);

void RoutingAodvRelayRREP(GlomoNode *node, Message *msg, NODE_ADDR destAddr);

#endif # AODV_H_*/

164

APPENDIX D
Sample Code of Simulation for Trust Modeling

/*

*Edited and Modified By Tirthankar Ghosh and Ahmad Farhat

*

* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSim is available
* at no cost to educational users only.

*

* Commercial use of this software requires a separate license. No cost,

* evaluation licenses are available for such purposes; please contact

* info@scalable-networks.com

S

* By obtaining copies of this and any other files that comprise GloMoSim2.02,
* you, the Licensee, agree to abide by the following conditions and

* understandings with respect to the copyrighted software:

%

* 1.Permission to use, copy, and modify this software and its documentation

* for education and non-commercial research purposes only is hereby granted
to Licensee, provided that the copyright notice, the original author's
names and unit identification, and this permission notice appear on all

such copies, and that no charge be made for such copies. Any entity
desiring permission to use this software for any commercial or
non-educational research purposes should contact:

Professor Rajive Bagrodia

University of California, Los Angeles
Department of Computer Science
Box 951596

3532 Boelter Hall

Los Angeles, CA 90095-1596
rajive@cs.ucla.edu

* ¥ ¥ K ¥ ¥ K X ¥ ¥ K X ¥

*

* 2 NO REPRESENTATIONS ARE MADE ABOUT THE SUITABILITY OF THE
SOFTWARE FOR ANY

* PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
%

* 3 Neither the software developers, the Parallel Computing Lab, UCLA, or any

* affiliate of the UC system shall be liable for any damages suffered by

* Licensee from the use of this software.

*/

// Use the latest version of Parsec if this line causes a compiler error.
/*

* Name: aodv.pc

%

* Implemented by SJ Lee (sjlee@cs.ucla.edu)

*/

165

/*
NOTE: - Followed the specification of AODV Internet Draft

(draft-ietf-manet-aodv-03.txt)

- This implements only unicast functionality of AODV.

- Assumes the MAC protocol sends a signal to the routing protocol
when it detects link breaks. MAC protocols such as IEEE 802.11
and MACAW has this functionality. In IEEE 802.11, when no CTS
is received after RTS, and no ACK is received after retransmissions
of unicasted packet, it sends the signal to the routing protocol

- If users want to use MAC protocols other than TEEE 802.11, they
must implement schemes to detect link breaks. A way to do this is,
for example, using HELLO packets, as specified in AODV documents.

- No Precursors (Implemented other mechanism so that the protocol can
still function the same as when precursors are used)

- Unsolicited RREPs are broadcasted and forwarded only if the node
is part of the broken route and not the source of that route

- If more than one route uses the broken link, send RREP multiple times
(this should be fixed based on new specification by C. Perkins,
E. Royer, and S. Das)

- Rev route of RREQ overwrites the one in the route table

- May need slight modifications when draft-ietf-manet-aodv-04.txt

comes out
*/

/f#include <iostream.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <math.h>

#include "api.h"
#include "structmsg.h"
#include "fileio.h"
#include "message.h"
#include "network.h"
#include "aodv.h"
#include "ip.h"
#include "nwip.h"
#include "nwcommon.h"
#include "application.h"
#include "transport.h”
#include "java_guih"

#define max(a,b) a>b?a:b

/* ***********global Variables*** */
int requestToForward = 0; /*holds number of requests when RREQ is initiated*/

166

int time_of leaving = 0;/*used in insertNbrRmvTable function*/
/* ***********global variables*** */

/ %
* RoutingAodvReplacensertRouteTable
&

* Insert/Update an entry into the route table
*/

static void
RoutingAodvReplacelnsertRouteTable(

NODE_ADDR destAddr,

int destSeq,

int hopCount,

NODE_ADDR nextHop,

clocktype lifetime,

BOOL activated,

BOOL source,

AODV_RT* routeTable)

AODV_RT_Node* theNode = NULL;
AODV_RT Node* current;
AODV_RT Node* previous;

/! Find Insertion point.

previous = NULL;

current = routeTable->head;

while ((current != NULL) && (current->destAddr < destAddr)) {
previous = current;
current = current->next;

Yiwhile//

if ((current == NULL) || (current->destAddr != destAddr)) {
++(routeTable->size);

theNode = (AODV_RT_Node *)checked pc_malloc(sizeof(AODV_RT_Node));
theNode->lifetime = lifetime;

theNode->activated = activated,

theNode->source = source;

theNode->destAddr = destAddr;

if (previous == NULL) {
theNode->next = routeTable->head,;
routeTable->head = theNode;

} else {
theNode->next = previous->next;
previous->next = theNode;

167

il

} else {
assert(current->destAddr == destAddr);

current->lifetime = max(lifetime, current->lifetime);
if (lcurrent->activated) {

current->activated = activated,
Yntl/

if (leurrent->source) {
current->source = source;

VI/ifl/

theNode = current;
Yt

theNode->destSeq = destSeq;
theNode->hopCount = hopCount;
theNode->lastHopCount = hopCount;
theNode->nextHop = nextHop;

}//RoutingAodvReplaceInsertRouteTable//

static
void RoutingAodvInsertNbrTable(NODE_ADDR destAddr, AODV_NT *nbrTable)

{
AODV_NT Node* current;

AODV_NT Node* previous;

AODV_NT Node* newNode =
(AODV_NT Node *)checked_pc_malloc(sizeof(AODV_NT_Node));

newNode->destAddr = destAddr;
newNode->next = NULL;

++(nbrTable->size);
// Find Insertion point. Insert after all address matches.

previous = NULL;

current = nbrTable->head;

while ((current != NULL) && (current->destAddr <= destAddr)) {
previous = current;
current = current->next;

}//while//

168

if (previous == NULL) {
newNode->next = nbrTable->head;
nbrTable->head = newNode;
}else {
newNode->next = previous->next;

previous->next = newNode;
YAt/

} /* RoutingAodvInsertNbrTable */

/ %
* RoutingAodvInsertSeenTable
%

* Insert an entry into the seen table
*/

static void
RoutingAodvInsertSeenTable(
GlomoNode *node,
NODE_ADDR srcAddr,
int beastld,
int hopCount, /* added parameter */
NODE_ADDR lastAddr,
AODV_RST *seenTable)

if (seenTable->size == 0)

~ seenTable->rear = (AODV_RST Node *) pc_malloc(sizeof(AODV_RST_Node));
assert(seenTable->rear != NULL);
seenTable->front = seenTable->rear;

}

else

{
seenTable->rear->next = (AODV_RST Node *)pc_malloc(sizeof(AODV_RST_Node));

assert(seenTable->rear->next != NULL);
seenTable->rear = seenTable->rear->next;

}

seenTable->rear->srcAddr = srcAddr;
seenTable->rear->bcastld = beastld;
seenTable->rear->next = NULL;
++(seenTable->size);

RoutingAodvSetTimer(
node, MSG_NETWORK_FlushTables, ANY _DEST, (clocktype)BCAST ID_SAVE);

} /* RoutingAodvInsertSeenTable */

169

/ *
* RoutingAodvInsertBuffer

*

* Insert a packet into the buffer if no route is available

*/

static

void RoutingAodvInsertBuffer(
Message* msg,
NODE_ADDR destAddr,
AODV_BUFFER* buffer)

{
AODV_BUFFER_Node* current;
AODV_BUFFER_Node* previous;

AODV_BUFFER_Node* newNode =
(AODV_BUFFER_Node *)checked_pc_malloc(sizeof(AODV_BUFFER_Node)):

newNode->destAddr = destAddr;
newNode->msg = msg;
newNode->timestamp = simclock();
newNode->next = NULL;

++(buffer->size);
// Find Insertion point. Insert after all address matches.

previous = NULL;

current = buffer->head;

while ((current != NULL) && (current->destAddr <= destAddr)) {
previous = current;
current = current->next;

Viiwhile//

if (previous == NULL) {
newNode->next = buffer->head;
buffer->head = newNode;

}else {
newNode->next = previous->next;
previous->next = newNode;

YAt

} /* RoutingAodvInsertBuffer */

/ %
* RoutingAodvInsertSent
*

* Insert an entry into the sent table if RREQ is sent

170

*/
static void
RoutingAodvInsertSent(
NODE_ADDR destAddr,
int ttl,
AODV_SENT *sent)
{
AODV_SENT Node* current;
AODV_SENT Node* previous;

AODV_SENT Node* newNode =
(AODV_SENT Node *)checked_pc_malloc(sizeof(AODV_SENT_Node));

newNode->destAddr = destAddr;
newNode->tt] = ttl;
newNode->times = 0;
newNode->next = NULL;

(sent->size)++;
// Find Insertion point. Insert after all address matches.

previous = NULL;

current = sent->head;

while ((current != NULL) && (current->destAddr <= destAddr)) {
previous = current;
current = current->next;

Y/while//

if (previous == NULL) {
newNode->next = sent->head;
sent->head = newNode;

else {
newNode->next = previous->next;
previous->next = newNode;

it

} /* RoutingAodvInsertSent */

/*

* RoutingAodvDeleteRouteTable

*

* Remove an entry from the route table

*/

void RoutingAodvDeleteRouteTable(NODE_ADDR destAddr, AODV_RT *routeTable)

AODV_RT_Node *toFree;
AODV_RT_Node *current;

171

if (routeTable->size == 0 || routeTable->head == NULL)
{
return;
}
else if (routeTable->head->destAddr == destAddr)
{
if (routeTable->head->lifetime <= simclock())
{
toFree = routeTable->head;
routeTable->head = toFree->next;
pc_free(toFree);
--(routeTable->size);
}
}
else
{
for (current = routeTable->head;
current->next I= NULL && current->next->destAddr < destAddr;
current = current->next)
{
}

if (current->next = NULL && current->next->destAddr == destAddr &&
current->next->lifetime <= simeclock())

{
toFree = current->next;
current->next = tokFree->next;
pe_free(toFree);
--(routeTable->size);

}

}

} /* RoutingAodvDeleteRouteTable */

/ *
* RoutingAodvDeleteNbrTable

%

* Remove an entry from the neighbor table
*/
void RoutingAodvDeleteNbrTable(NODE_ADDR destAddr, AODV_NT *nbrTable)

{
AODV_NT_Node *toFree;

AODV_NT_Node *current;
if (nbrTable->size == 0)
{

return;

}
else if (nbrTable->head->destAddr == destAddr)

172

{
toFree = nbrTable->head;
nbrTable->head = toFree->next;
pc_free(toFree);
--(nbrTable->size);
}
else
{
for (current = nbrTable->head;
((current->next != NULL) && (current->next->destAddr < destAddr));
current = current->next)
{
)

if (current->next != NULL && current->next->destAddr == destAddr)
{
toFree = current->next;
current->next = toFree->next;
pe_free(toFree);
--(nbrTable->size);
}
¥

} /* RoutingAodvDeleteNbr Table */

/*

* RoutingAodvDeleteSeenTable

£

* Remove an entry from the seen table

*/

void RoutingAodvDeleteSeenTable(AODV_RST *seenTable)

{
AODV_RST_Node *tokree;

toFree = seenTable->front;
seenTable->front = toFree->next;
pe_free(toFree);
--(seenTable->size);

if (seenTable->size == 0)

seenTable->rear = NULL;
¥

Y /* RoutingAodvDeleteSeenTable */
/*
* RoutingAodvDeleteBuffer

*

173

* Remove a packet from the buffer; Return TRUE if deleted
*/
BOOL RoutingAodvDeleteBuffer®™ODE_ADDR destAddr, AODV_BUFFER *puffer)
{
AODV_BUFFER Node *toFree;
AODV_BUFFER_Node *current;

BOOL deleted;

if (buffer->size == 0)

{ deleted = FALSE;

%lse if (buffer->head->destAddr == destAddr)

toFree = buffer->head;
buffer->head = toFree->next;
pe_free(toFree);
--(buffer->size);
deleted = TRUE;
}
else
{
for (current = buffer->head;
current->next = NULL && current->next->destAddr < destAddr;
current = current->next)
{
}

if (current->next != NULL && current->next->destAddr == destAddr)
{

toFree = current->next;

current->next = toFree->next;

pe_free(toFree);

--(buffer->size);

deleted = TRUE;
}

else

deleted = FALSE;

}
}

return (deleted);
} /* RoutingAodvDeleteBuffer */
/*

* RoutingAodvDeleteSent

E

174

* Remove an entry from the sent table

*/

void RoutingAodvDeleteSent(NODE_ADDR destAddr, AODV_SENT *sent)

{
AODV_SENT Node *toFree;
AODV_SENT Node *current;

if (sent->size == 0)
{

return;
}
else if (sent->head->destAddr == destAddr)
{
toFree = sent->head;
sent->head = toFree->next;
pc_free(toFree);
--(sent->size);
}
else
{
for (current = sent->head;
current->next 1= NULL && current->next->destAddr < destAddr;
current = current->next)
{
}

if (current->next != NULL && current->next->destAddr == destAddr)
{
toFree = current->next;
current->next = toFree->next,
pc_free(toFree);
--(sent->size);
B
}

} /* RoutingAodvDeleteSent */

/ *
* RoutingAodvUpdateLifetime
*

* Update the lifetime field of the destination entry in the route table

*/

void RoutingAodvUpdateLifetime(NODE_ADDR destAddr, AODV_RT *routeTable)
AODV_RT_Node *current;

for (current = routeTable->head;
current = NULL && current->destAddr <= destAddr;

175

current = current->next)

{
if (current->destAddr == destAddr)
{
current->lifetime = simeclock() + ACTIVE_ROUTE_TO;
return;
b
}

} /* RoutingAodvUpdateLifetime */

/ *
* RoutingAodvincreaseSeq
*

* Increase the sequence number

*/

void RoutingAodvIncreaseSeq(GlomoNode *node)
{

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->seqNumber++;
} /* RoutingAodvincreaseSeq */

/ *
* RoutingAodvIncreaseTtl
*

* Increase the TTL value
*/
void RoutingAodvincrease TtINODE_ADDR destAddr, AODV_SENT *sent)

AODV_SENT Node *current,

for (current = sent->head;
current = NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
current->ttl += TTL_INCREMENT;

if (current->ttl > TTL_THRESHOLD)

{
current->ttl = NET DIAMETER;

}

return;

}

176

H

} /* RoutingAodvIncreaseTtl */

/ *
* RoutingAodvUpdateTtl
E3

* Update the ttl value
*/
void RoutingAodvUpdate TU(NODE_ADDR destAddr, int ttl, AODV_SENT *sent)

AODV_SENT Node *current;

for (current = sent->head;
current 1= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
current->tt] = ttl;
return;
}
}

} /* RoutingAodvUpdateTt] */

/ *
* RoutingAodvIncreaseTimes
*

* Increase the number of times RREQ sent in TTL = NET_DIAMETER
*/
void RoutingAodvIncrease Times(NODE_ADDR destAddr, AODV_SENT *sent)

{
AQODV_SENT Node *current;

for (current = sent->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{

current->times++;
return;

}

1
1]
} /* RoutingAodvIncreaseTimes */

/*

177

* RoutingAodvActivateRoute
*

* Activate a route in the route table
*/
void RoutingAodvActivateRoute(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head;
current = NULL && current->destAddr <= destAddr;
current = current->next)
{
if (current->destAddr == destAddr)
{
current->activated = TRUE;
current->lifetime = simclock() + ACTIVE_ROUTE_TO;
return;
}
}

} /* RoutingAodvActivateRoute */

/*

* RoutingAodvInactivateRoutesAndGetDestinations

*

* Inactivate routes that use the broken link

* Returns the destAddr and whether the node must relay the RREP
*/

void RoutingAodvInactivateRoutesAndGetDestinations(
GlomoNode* node,
AODV_RT* routeTable,
NODE_ADDR nextHop,
AODV_AddressSequenceNumberPairType destinationPairs{],
int maxNumberDestinationPairs,
int* numberDestinations)

{
AODV_RT Node *current;

int numbDests = 0;

for (current = routeTable->head;
current != NULL;
current = current->next)

if ((current->nextHop == nextHop) && (current->activated == TRUE))

{
current->activated = FALSE;

current->hopCount = AODV_INFINITY;

178

current->lifetime = simclock() + BAD_LINK_LIFETIME;
current->destSeqt+;

RoutingAodvSetTimer(
node, MSG_ NETWORK_CheckRouteTimeout, current->destAddr,
(clocktype)BAD LINK_LIFETIME);

if (!current->source) {
destinationPairs[numDests].destinationAddress =
current->destAddr;
destinationPairs[numDests].destinationSequenceNumber =
current->destSeq;
numbDests++;
YAt
YAt
Yifor//

*numberDestinations = numbDests;

} /* RoutingAodvInactivateRoute */

/*
* RoutingAodvMarkRouteBroken
£
* Mark the route with destAddr broken; returns TRUE if relay is required
*/
BOOL RoutingAodvMarkRouteBroken(GlomoNode *node,
NODE_ADDR destAddr,
AODV_RT *routeTable)
{
AODV_RT Node *current;
BOOL relay = FALSE;

for (current = routeTable->head,;
current 1= NULL && current->destAddr <= destAddr;
current = current->next)

{

if (current->destAddr == destAddr && current->activated == TRUE)

t

current->activated = FALSE;

current->hopCount = AODV_INFINITY;
current->lifetime = simclock() + BAD_LINK_LIFETIME;
current->destSeq++;

RoutingAodvSetTimer(

node, MSG_NETWORK_CheckRouteTimeout, current->destAddr,
(clocktype)BAD_LINK_LIFETIME);

179

if (current->source == FALSE)
{

relay = TRUE;
}

return (relay);
}
}

return (relay);

} /* RoutingAodvMarkRouteBroken */

/ *
* RoutingAodvUpdateSeq

*

* Update the sequence number of a certain destination
*/
void RoutingAodvUpdateSeq(NODE_ADDR destAddr, int seq, AODV_RT *routeTable)

AODV_RT Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
current->destSeq = seq;
return,
}
}

} /* RoutingAodvUpdateSeq */

static //inline//
void SendRouteErrorPacket(
GlomoNode* node,
const AODV_RERR Packet* rerrPacket)
{
Message* newMsg = GLOMO_MsgAlloc(node, 0, 0, 0);
int packetSize = AODV_RERR_PacketSize(rerrPacket);

assert(rerrPacket->pktType == (unsigned short) AODV_RERR);
assert(rerrPacket->destinationCount >= 1);

GLOMO_MsgPacketAlloc(node, newMsg, packetSize);
memcpy(GLOMO_MsgReturnPacket(newMsg), rerrPacket, packetSize);

180

NetworkIpSendRawGlomoMessage(
node, newMsg, ANY DEST, CONTROL, [PPROTO_AODV, 1);
}

/*
* RoutingAodvInit
E3
* Initialization function for AODV protocol
*/
void RoutingAodvInit(
GlomoNode *node,
GlomoRoutingAodv **aodvPtr,
const GlomoNodeInput *nodelnput)
{
GlomoRoutingAodv *aodv =
(GlomoRoutingAodv *)checked_pc_malloc (sizeof(GlomoRoutingAodv));

(*aodvPtr) = aodv;

if (aodv == NULL)

{
fprintf(stderr, "AODV: Cannot alloc memory for AODV struct'\n");
assert (FALSE);

)
//printf("AODYV init"),
RoutingAodvInitStats(node);
RoutingAodvInitRouteTable(&aodv->routeTable);
RoutingAodvinitNbrTable(&aodv->nbrTable);
RoutingAodvInitSeenTable(&aodv->seenTable);
RoutingAodvInitConfTable(&aodv->confTable) JRrrrkikkinitialize confidence
table***********/
RoutingAodvinitBuffer(&aodv->buffer);
RoutingAodvInitSent(&aodv->sent);
RoutingAodvInitSeq(node);
RoutingAodvInitBeastld(node);

NetworkIpSetPacketDropNotificationFunction(
node, &RoutingAodvPacketDropNotificationHandler);
//printf(" AODV b4 routerfunction”);
NetworkIpSetRouterFunction(node, &RoutingAodvRouterFunction);
/fprintf("AODV routerfunction");
} /* RoutingAodvlnit */

/¥
* RoutingAodvFinalize
*

* Called at the end of the simulation to collect the results
*/
void RoutingAodvFinalize(GlomoNode *node)

181

GlomoNetworklp *ipLayer = (GlomoNetworkIp *)node->networkData.networkVar;
GlomoRoutingAodv *aodv = (GlomoRoutingAocdv *)ipLayer->routingProtocol;
FILE *statOut;

float avgHopChnt;

char buff GLOMO_ MAX_STRING_LENGTH];

sprintf{buf, "Number of Route Requests Txed = %d",
aodv->stats.numRequestSent);
GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Replies Txed = %d",
aodv->stats. numReplySent);
GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Route Errors (RERR) Txed = %d",
aodv->stats.numRerrSent);
GLOMO_PrintStat(node, "RoutingAodv", buf);

/* **********************neVV stat s sk ok sk ok 3k ok sk sk sk ok ok sk ok sk ok ok vk ok sk ok ke ok sk ke sk sk ok dkook sk sk ek skokok Rk */

sprintf(buf, "Number of Route Warnings (RWARN) Txed = %d",
aodv->stats.numRwarnSent);
GLOMO _PrintStat(node, "RoutingAodv", buf);

/* s sk sk o s ok ok ok sk e sk ok ok ok sk sk ok e ok o sk sk e s ok e e sk sk sk sk sk ok sk ok ke sk ke ok sk sk ke e ok sk sk kol e sk sk ok kel kskokoskok sk sk sk R ko Rk K/

sprintf(buf, "Number of Route Errors (RERR) Re-sent = %d",
aodv->stats.numRerrResent);
GLOMO _PrintStat(node, "RoutingAodv”, buf);

sprintf(buf, "Number of CTRL Packets Txed = %d",
aodv->stats.numRequestSent + aodv->stats numReplySent);
GLOMO _PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Routes Selected = %d", aodv->stats.numRoutes);
GLOMO _PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Hop Counts = %d", aodv->stats.numHops);
GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Data Txed = %d",
aodv->stats.numDataTxed);

GLOMO PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Data Packets Originated = %d",
aodv->stats.numDataSent);

GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Data Packets Received = %d",
acdv->stats.numDataReceived);

GLOMO _PrintStat(node, "RoutingAodv", buf);

182

sprintf(buf, "Number of Packets Dropped or Left waiting for Route = %d",
(aodv->stats.numPacketsDropped + aodv->buffer.size));
GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Broken Links = %d", aodv->stats. numBrokenLinks);

GLOMO _PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Broken Link Retries = %d", aodv->stats.numBrokenLinkRetries);
GLOMO _PrintStat(node, "RoutingAodv", buf);

} /* RoutingAodvFinalize */

/ *
* RoutingAodvHandleData

*

* Processing procedure when data is received

*/

void RoutingAodvHandleData(GlomoNode *node, Message *msg, NODE_ADDR destAddr)

{
GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
IpHeaderType *ipHeader = (IpHeaderType *)GLOMO_MsgReturnPacket(msg);
NODE_ADDR sourceAddress = ipHeader->ip_src;

assert(sourceAddress != node->nodeAddr);

/* the node is the destination of the route */
if (destAddr == node->nodeAddr)

{

aodv->stats.numDataReceived++;
RoutingAodvUpdateLifetime(sourceAddress, &aodv->routeTable);

RoutingAodvSetTimer(node, MSG NETWORK_CheckRouteTimeout,
sourceAddress, (clocktype)ACTIVE_ROUTE_TO);

}
else if (destAddr != ANY_DEST)

// The node is an intermediate node of the route.
// Relay the packet to the next hop of the route

if (RoutingAodvCheckRouteExist(destAddr, &aodv->routeTable)) {
RoutingAodvTransmitData(node, msg, destAddr);

}else {
// Broken Route. Drop Packet, send RERR again to make them stop
// sending more.
AODV_RERR_Packet newRerrPacket;
newRerrPacket.pktType = AODV_RERR;
newRerrPacket.destinationCount = 1;

183

newRerrPacket.destinationPairArray[0].destinationAddress = destAddr;
newRerrPacket.destinationPairArray[0].destinationSequenceNumber
= RoutingAodvGetSeq(destAddr, &aodv->routeTable);

SendRouteErrorPacket(node, &newRerrPacket);
aodv->stats.numRerrResent++;

aodv->stats.numPacketsDropped++;
GLOMO_MsgFree(node,msg);

VAL
VIt

} /* RoutingAodvHandleData */

/ *
* RoutingAodvHandleRequest

*

* Processing procedure when RREQ is received
*/
void RoutingAodvHandleRequest(GlomoNode *node, Message *msg, int ttl)

GlomoNetworklIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

AODV_RREQ Packet *rreqPkt = (AODV_RREQ_Packet
*GLOMO_MsgReturnPacket(msg);

float meanVal=0.0;/********34dded mean value to comapare against threshold*#*#*¥%/
frExsrErkcomputed from the NbrRmvTable s koot

float threshold_time leaving = 1.5;/****added threshold******/

/**/

//malicious node
if (node->nodeAddr == 5)

GLOMO_MsgFree(node,msg);

else //node is not malicious

{

/***************************Check lffalse accusation********************/

if (rreqPkt->conf_Node==node->nodeAddr)
if(rreqPkt->conf_Level == ()

//here broadcast warning
aodv->stats.numRwarnSent++;

184

}
}

/***************************Check]f false aCCusatiOn********************/

RoutingAodvInsertConfTable(node,rreqPkt->lastAddr,&aodv->confTable);

/* Process only if the packet is not a duplicate */
if ('RoutingAodvLookupSeenTable(
node,rreqPkt->src Addr, rreqPkt->beastld, rreqPkt->hopCount,
rreqPkt->lastAddr, &aodv->seenTable, &aodv->confTable)) /*added */
{
RoutingAodvInsertSeenTable(
node, rreqPkt->srcAddr, rreqPkt->beastld, rreqPkt->hopCount,rreqPkt->lastAddr,
&aodv->seenTable);

[k ko ok xRk A dded UpdateConfTable funcation
Cal]**************/
RoutingAodvUpdateConfTable(
rreqPkt->lastAddr,rreqPkt->conf Ratio,ireqPkt->conf Level,rreqPkt-
>conf Node,
&aodv->confTable),
/************************Added Updateconfrable funcation Can**************/

/* Update the neighbor table if the upstream is new */
if ({RoutingAodvCheckNbrExist(rreqPkt->lastAddr, &aodv->nbrTable))
{
RoutingAodvInsertNbrTable(rreqPkt->lastAddr, &aodv->nbrTable);
RoutingAodvInsertNbrRmvTable(rreqPkt->lastAddr,&aodv->NbrRmvTable);
/*added func call*/
meanVal=RoutingAodvComputeMean(rreqPkt->lastAddr,&aodv->NbrRmvTable) ;
/*added func call*###xxkksikd/
if (meanVal < threshold_time_leaving)

* //here broadcast warning
aodv->stats.numRwarnSent-++;

}

RoutingAodvIncreaseSeq(node);
}
/* The node is the destination of the route */

if (node->nodeAddr == rreqPkt->destAddr)

{

RoutingAodvReplacelnsertRouteTable(

rreqPkt->src Addr, rreqPkt->sreSeq, rreqPkt->hopCount,
rreqPkt->lastAddr, simclock() + ACTIVE ROUTE_TO, TRUE, TRUE,
&aodv->routeTable);

185

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)ACTIVE_ROUTE_TO);

/* Send a Route Reply */
RoutingAodvInitiattRREP(node, msg);

} /% if dest */

else

/* No route to destination is known */
if ('RoutingAodvCheckRouteExist(rreqPkt->destAddr,

{

&aodv->routeTable))

RoutingAodvReplaceInsertRouteTable(

rreqPkt->srcAddr, rreqPkt->srcSeq, rreqPkt->hopCount,
rreqPkt->lastAddr, simclock() + REV_ROUTE_LIFE, FALSE,
FALSE, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)REV_ROUTE_LIFE);

if (tt1 > 0)

/* Relay the packet only if TTL is not zero */
RoutingAodvRelayRREQ(node, msg, ttl);

y /Al > 0%

else

{
GLOMO_ MsgFree(node, msg);
}

+ /* if no route */

/* Knows a route to the destination */

else

{

/* However, the known route is not a fresh one */
if (RoutingAodvGetSeq(rreqPkt->destAddr, &aodv->routeTable) <

rreqPkt->destSeq)
{

RoutingAodvReplacelnsertRouteTable(
rreqPkt->srcAddr, rreqPkt->sreSeq, rreqPkt->hopCount,
rreqPkt->lastAddr, simclock() + REV_ROUTE_LIFE,
FALSE, FALSE,

&aodv->routeTable);

RoutingAodvSetTimer(

186

node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)REV_ROUTE_LIFE);

if (tt1 > 0)

{

/* Relay the packet only if TTL is not zero */
RoutingAodvRelayRREQ(node, msg, ttl);
PR HI> 0%/

else

{

GLOMO_MsgFree(node, msg);

}

} /* if seq no is not fresh */

/* has a fresh route to the destination */
else

{

RoutingAodvReplacelnsertRouteTable(
rreqPkt->srcAddr, rreqPkt->srcSeq, rreqPkt->hopCount,
rreqPkt->lastAddr, simclock() + ACTIVE_ROUTE_TO,
TRUE, FALSE,

&aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)ACTIVE_ROUTE_TOy);

/* Send a Route Reply */
RoutingAodvnitiateRREPbyIN(node, msg);

}/* else */
Y /* else */
1 /* else (not dest) */
} /* if new pkt ¥/

else // duplicate packet
{
RoutingAodvLookupSeenTable(
node,rreqPkt->src Addr, rreqPkt->beastld, rreqPkt->hopCount,

rrequt—>1astAddr,&aodv—>seen’l“able,&aodv->conff able);
/*************************** addedfhncﬁoncan

****************************/

//GLOMO_MsgFree(node, msg);

}//end else node is malicious
/*********************************added***********************/

187

} /* RoutingAodvHandleRequest */

,/ *
* RoutingAodvHandleReply
*

* Processing procedure when RREP is received
*/
void RoutingAodvHandleReply(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr, NODE_ADDR destAddr)
{
GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;
AODV_RREP_Packet *rrepPkt = (AODV_RREP_Packet *GLOMO_ MsgReturnPacket(msg);
BOOL relay;
clocktype lifetime;

/* clocktype must be copied to access the field of that type */
memmove(&lifetime, &rrepPkt->lifetime, sizeof(clocktype));

/* Source of the route */
if (rrepPkt->src Addr == node->nodeAddr)

/* The packet is the first reply received */
if ('RoutingAodvCheckRouteExist(rrepPkt->destAddr,
&aodv->routeTable))

{
RoutingAodvReplaceInsertRouteTable(

rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount,
srcAddr, simclock() + lifetime, TRUE,
TRUE, &aodv->routeTable);

aodv->stats.numRoutes++;
aodv->stats.numHops += rrepPkt->hopCount;

RoutinngdvDeleteSent(rrepPkt~>destAddr, &aodv->sent);
/* Send any buffered packets to the destination */
while (RoutingAodvLookupBuffer(
rrepPkt->destAddr, &aodv->buffer))
{

newMsg = RoutingAodvGetBufferedPacket(
rrepPkt->destAddr, &aodv->buffer);

RoutingAodvTransmitData(node, newMsg, rrepPkt->destAddr);

aodv->stats. numDataSent++;

188

RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aodv->buffer);

Y /* while */
} /* if no route */

/* The packet contains a better route compared to the one already
known */
else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable) <
rrepPkt->destSeq) ||
((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)
== rrepPkt->destSeq) &&
(RoutingAodvGetHopCount(rrepPkt->destAddr,
&aodv->routeTable) >
rrepPkt->hopCount)))
{
RoutingAodvReplacelnsertRouteTable(
rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount,
srcAddr, simclock() + lifetime, TRUE,
TRUE, &aodv->routeTable);

/* Send any buffered packet to the destination */
while (RoutingAodvLookupBuffer(
rrepPkt->destAddr, &aodv->buffer))

{
newMsg = RoutingAodvGetBufferedPacket(

rrepPkt->destAddr, &aodv->buffer);
RoutingAodvTransmitData(node, newMsg, rrepPkt->destAddr);

aodv->stats.numDataSent++;

RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aodv->buffer);

L /* while */
V /% else if ¥/
GLOMO_MsgFree(node, msg);
+ /* if source */

/* Intermediate node of the route */
else

/* the packet is the first reply received */
if ('RoutingAodvCheckRouteExist(
repPkt->destAddr, &aodv->routeTable))

RoutingAodvReplacelnsertRouteTable(
rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount,
srcAddr, simclock() + lifetime, TRUE, FALSE,
&aodv->routeTable);

189

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->destAddr,
(clocktype)lifetime);

RoutingAodvActivateRoute(rrepPkt->src Addr, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->srcAddr,
(clocktype)ACTIVE_ROUTE_TO);

/* Forward the packet to the upstream of the route */
RoutingAodvRelayRREP(node, msg, destAddr);

} /* if new route */

/* the packet carries a better route compared to the one already
known */
else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable) <
rrepPkt->destSeq) ||
((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)
== rrepPkt->destSeq) &&
(RoutingAodvGetHopCount(rrepPkt->destAddr,
&aodv->routeTable) >
rrepPkt->hopCount)))
{
RoutingAodvReplaceInsertRouteTable(
rrepPkt->destAddr, repPkt->destSeq, rrepPkt->hopCount,
srcAddr, simclock() + lifetime, TRUE,
FALSE, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->destAddr,
(clocktype)lifetime);

RoutingAodvActivateRoute(rrepPkt->src Addr, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK _CheckRouteTimeout, rrepPkt->srcAddr,
(clocktype)ACTIVE_ROUTE_TO);
/* Forward the packet to the upstream of the route */
RoutingAodvRelayRREP(node, msg, destAddr);

} /* else if newer route or shorter route */

else

GLOMO_MsgFree(node, msg);
Yt
v

150

} /* RoutingAodvHandleReply */

/
// RoutingAodvHandleRouteError
I

// Processing procedure when RERR is received
1/

void RoutingAodvHandleRouteError(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr)

{
GlomoNetworklp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV_RERR_Packet* rerrPkt =

(AODV_RERR_Packet*)GLOMO_MsgReturnPacket(msg);

AODV_RERR_Packet newRerrPacket;
mt I;

newRerrPacket.pktType = (unsigned short)AODV_RERR;
newRerrPacket.destinationCount = 0;

for(I = 0; I < rerrPkt->destinationCount; I++) {
// Mark the route inactive in the route table; Must not remove it
// right away since the last hop count known is needed for future use
// Remove destination from packet if it doesn't need to be forwarded
// further.

NODE_ADDR destination =
rerrPkt->destinationPairArray[I].destinationAddress;

int sequenceNum =
rerrPkt->destinationPairArray[I].destinationSequenceNumber;

BOOL mustRelay =
RoutingAodvMarkRouteBroken(
node,
destination,
&aodv->routeTable);

RoutingAodvUpdateSeqg(destination,
sequenceNum,
&aodv->routeTable);

NetworkIpDeleteOutboundPacketsToANode(
node, srcAddr, destination, FALSE);

if (mustRelay) {
newRerrPacket.destinationPair Array[newRerrPacket.destinationCount] =
rerrPkt->destinationPairArray{l];

191

newRerrPacket.destinationCount++;
s

}/iwhile//

if (newRerrPacket.destinationCount > 0) {
SendRouteErrorPacket(node, &newRerrPacket);

aodv->stats.numRerrSent++;
Y1t

GLOMO_ MsgFree(node, msg);
}//RoutingAodvHandleRouteError/

/ *
* RoutingAodvinitRouteTable

*

* Initialize the route table
*/
void RoutingAodvInitRouteTable(AODV_RT *routeTable)

{
routeTable->head = NULL;

routeTable->size = 0;
} /* RoutingAodvInitRouteTable */

/ *
* RoutingAodvInitNbrTable

%

* Initialize the neighbor table

*/

void RoutingAodvInitNbrTable(AODV_NT *nbrTable)

nbrTable->head = NULL;
nbrTable->size = 0;

} /* RoutingAodvInitNbrTable */

/ *
* RoutingAodvInitSeenTable

s
* Initialize the seen table
*f
void RoutingAodvInitSeenTable(AODV_RST *seenTable)
seenTable->front = NULL;
seenTable->rear = NULL;

seenTable->size = 0;

} /* RoutingAodvInitSeenTable */

192

/ *
* RoutingAodvInitConfTable
P

* Initialize the confidence table
*/
void RoutingAodvInitConfTable(AODV_CFT *confTable)
{
//printf("confTable gets initialized here");
confTable->front = NULL;
confTable->rear = NULL;
confTable->size=0,

} /* RoutingAodvInitConfTable */

/ *
* RoutingAodvInitNbrRmvTable
*

* Tnitialize the neighbour remove table
*/
void RoutingAodvInitNbrRmvTable(AODV_NRT *NbrRmvTable)
{
NbrRmvTable->front = NULL;
NbrRmvTable->rear = NULL;
NbrRmvTable->size = 0;

}/*RoutingAodvInitNbrRmvTable*/

/ *
* RoutingAodvInitBuffer

&

* Initialize the buffer

*/

void RoutingAodvInitBuffer(AODV_BUFFER *buffer)

{
buffer->head = NULL;
buffer->size = 0;

} /* RoutingAodvInitBuffer */

/ *
* RoutingAodvInitSent
*

* Initialize the sent table
*/
void RoutingAodvInitSent(AODV_SENT *sent)

sent->head = NULL;
sent->size = 0;

193

} /* RoutingAodvInitSent */

/ *
* RoutingAodvnitStats

*

* Initialize all the stat variables

*/

void RoutingAodvInitStats(GlomoNode *node)

{
GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->stats.numRequestSent = 0;
aodv->stats.numReplySent = 0;
aodv->stats. numRerrSent = Q;
aodv->stats.numRwarnSent = 0;
aodv->stats.numRerrResent = 0;
aodv->stats. numDataSent = 0;
aodv->stats.numDataTxed = 0;
aodv->stats.numDataReceived = 0;
aodv->stats.numRoutes = (;
aodv->stats,numHops = 0;
aodv->stats.numPacketsDropped = 0;
aodv->stats.numBrokenLinks = 0;
aodv->stats. numBrokenLinkRetries = 0;
} /* RoutingAodvinitStats */

/ *
* RoutingAodvinitSeq

*

* Initialize the sequence number
*/
void RoutingAodvInitSeq(GlomoNode *node)

{
GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData networkVar;

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
aodv->seqNumber = (;
} /* RoutingAodvInitSeq */
/¥
* RoutingAodvInitBeastld

sk

* Tnitialize the broadcast id

*/

void RoutingAodvInitBeastld(GlomoNode *node)

GlomoNetworklIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;

194

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->beastld = 0;

} /* RoutingAodvInitBcastld */

/ *
* RoutingAodvGetNextHop
*

* Looks up the routing table to obtain next hop to the destinaton
*/
NODE_ADDR RoutingAodvGetNextHop(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head;
current = NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr && current->activated == TRUE)
{

return(current->nextHop);
}
}

return (ANY_DEST);
} /* RoutingAodvGetNextHop */

/ *
* RoutingAodvGetBceastld
*

* Obtains the broadcast ID for the outgoing packet
*/
int RoutingAodvGetBcastld(GlomoNode *node)
{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData. networkVar;

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
int beast;

beast = aodv->bceastid;
aodv->beastid++;

return (bcast);
} /* RoutingAodvGetBcastld */
/*

* RoutingAodvGetSeq
*

195

* Obtains the sequence number of the destination node
*/
int RoutingAodvGetSeq(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT_Node *current;

for (current = routeTable->head;
current |= NULL && current->destAddr <=destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
return(current->destSeq);
H
}
return (-1);

} 7* RoutingAodvGetSeq */

/ *
* RoutingAodvGetMySeq

*

* Obtains the node's seq number
*/
int RoutingAodvGetMySeq(GlomoNode *node)

{
GlomoNetworklIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;

GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

return (aodv->segNumber);
} /* RoutingAodvGetMySeq */

/ *
* RoutingAodvGetHopCount
*

* Obtains the hop count to the destination node
*/
int RoutingAodvGetHopCount(NODE_ADDR destAddr, AODV_RT *routeTable)

AODV_RT Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{

return(current->hopCount);

196

3
}

return (-1);

} /* RoutingAodvGetHopCount */

/ *
* RoutingAodvGetLastHopCount

*

* Obtains the last hop count known to the destination node

*/
int RoutingAodvGetLastHopCount{NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

for (current = routeTable->head,;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
return(current->lastHopCount);
}
}
return (-1);

} /* RoutingAodvGetLastHopCount */

/ *
* RoutingAodvGetTtl
*

* Obtains the ttl value for the outgoing RREQ
*/
int RoutingAodvGetTti(NODE_ADDR destAddr, AODV_SENT *sent)
{
AODV_SENT Node *current;

for (current = sent->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)
{
if (current->destAddr == destAddr)
{
return{current->ttl);
A}
h

197

return (TTL_START);
} /* RoutingAodvGetTt] */

/ *
* RoutingAodvGetTimes
*

* Obtains the number of times the RREQ was sent in TTL = NET _DIAMETER
*/

int RoutingAodvGetTimes(NODE_ADDR destAddr, AODV_SENT *sent)
{
AODV_SENT Node *current;

for (current = sent->head;

current != NULL && current->destAddr <= destAddr;
current = current->next)

{

if (current->destAddr == destAddr)

{

return(current->times);
}
}

return (0);
} /* RoutingAodvGetTimes */

/ *
* RoutingAodvGetLifetime
*

* Obtains the lifetime value of an entry in the route table
*/

clocktype RoutingAodvGetLifetime(NODE_ADDR destAddr, AODV_RT *routeTable)
{
AODV_RT Node *current;

for (current = routeTable->head;

current = NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
return(current->lifetime);
}
}
return (0);

} /* RoutingAodvGetLifetime */

198

/ ES
* RoutingAodvGetBufferedPacket
*

* Extract the packet that was buffered
*/
Message *
RoutingAodvGetBufferedPacket(NODE_ADDR destAddr, AODV_BUFFER *buffer)

{
AODV_BUFFER_Node *current;

for (current = buffer->head;
current {= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{

return{current->msg);

1
}
assert(FALSE); abort(); return NULL;

1 /* RoutingAodvGetBufferedPacket */

/ b
* RoutingAodvCheckRouteExist
*

* Returns TRUE if any route to the destination is known
*/
BOOL RoutingAodvCheckRouteExist(INODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT Node *current;

if (routeTable->size == Q)

return (FALSE);
}
for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)
{
if ((current->destAddr == destAddr) &&
(current->hopCount = AODV _INFINITY) &&
(current->lifetime > simclock()) &&
(current->activated == TRUE))

return(TRUE);

}
}

199

return (FALSE);
} /* RoutingAodvCheckRouteExist */

/ *
* RoutingAodvCheckINbrExist
¥

* Returns TRUE if the node is already a neighbor
*/
BOOL RoutingAodvCheckNbrExisttNODE_ADDR destAddr, AODV_NT *nbrTable)

{

AODV_NT Node *current;
if (nbrTable->size == 0)

return (FALSE);
}

for (current = nbrTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)
{
if (current->destAddr == destAddr)
{
return(TRUE);
}
}

return (FALSE);
} /* RoutingAodvCheckNbrExist */

/ *
* ORIGINAL RoutingAodvLookupSeenTable

*

* Returns TRUE if the broadcast packet is processed before

*/
/*
BOOL RoutingAodvLookupSeenTable(NODE_ADDR srcAddr,
int beastld,
AODV_RST *seenTable)
{

AODV _RST Node *current;
if (seenTable->size == 0)

return (FALSE);
}

for (current = seenTable->front;

200

current = NULL;
current = ¢urrent->next)

{
if (current->src Addr == srcAddr && current->beastld == beastld)

{
return (TRUE);
)
}
return (FALSE);
3/
J*

s ofe sk o e 3 sk sk ke o sk ok o ok s sk st ke ok o S e sk s o sk ok s sk sk st ofe st sl o skl sk ok sk s ke sk s ok sk sk sk sl ok sk ok sk o sk ok sk sk sk sk skosk skskeok sk sk okokok ok ok R R kR
3¢ 3 o o sk sk ke ke sk ok e ok e e sk vk sk ke ke
* Edited RoutingAodvLookupSeenTable
*
* Returns TRUE if the broadcast packet is processed before
*/
BOOL RoutingAodvLookupSeenTable(GlomoNode *node,
NODE_ADDR srcAddr,
int beastld,int hopCount, /* parameter added */
NODE_ADDR lastAddr,
AODV_RST *seenTable,
AODV_CFT *confTable)

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV_RST Node *current;

int hasForwarded=0;

if (seenTable->size == ()

{

return (FALSE);
}

for (current = seenTable->front; current = NULL; current = current->next)

{
1

if (current->srcAddr == srcAddr && current->beastld == bcastld)
{

if (current-> hopCount == hopCount - 1)

{
hasForwarded = hasForwarded + 1;/*total # packets forwarded™/

201

}
return{(TRUE);

RoutingAodvComputeConfTable(node,lastAddr,hasForwarded,request ToForward,&aodv
->¢onfTable);

/RoutingAodvComputeConfTable
//(node,lastAddr,hasForwarded,requestToForward, &aodv->confTable);

return (FALSE);

/***
***************/

+ /* RoutingAodvLookupSeenTable */

/’ &
*RoutingAodvComputeConfTable
*

*Updates the confidence table for the sending node
*1dentified by the "lastAddr"
*

*/
BOOL RoutingAodvComputeConfTable(GlomoNode *node, NODE_ADDR lastAddr, int
HFWD, int RTF,
AODV_CFT *confTable)
{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV_CFT_Node *current;
//current->node Addr=2;
float conf Ratio =HFWD /RTF;
float conf Level = conf Level + conf Ratio;
if (confTable->size == 0)
{
return (FALSE);
)

//malicious node falsely accusing
if (node->nodeAddr == 5)
{
for(current=confTable->front; current != NULL; current=current->next)
{
if(current->node Addr == lastAddr)
{

current->conf Ratio=0.0;

current->conf Level=0.0;

}

else

{
//RoutingAodvInsertConfT able(node lastAddr,&aodv->confTable);

confTable->rear->nodeAddr=lastAddr;
confTable->rear->conf Ratio=0.0;
confTable->rear->conf Level=0.0;

}

St

else // not malicious

//float conf Ratio = HFWD /RTF ;
//float conf Level = conf Level + conf Ratio;

for(current=confTable->front; current != NULL; current=current->next)

{
if(current->node Addr == lastAddr)

{

current->conf Ratio=conf Ratio;
current->conf_Level=conf Level;

}

else

{
//RoutingAodvInsertConfTable(node,lastAddr,&aodv->confTable);

confTable->rear->nodeAddr=lastAddr;
confTable->rear->conf_Ratio=conf Ratio;
confTable->rear->conf Level=conf Level;

}
}
}
return (TRUE);

}/*RoutingAodvComputeConfTable*/

void RoutingAodvInsertConfTable(GlomoNode *node,NODE_ADDR lastAddr,AODV_CFT
*confTable)
{

if (confTable->size == 0)
confTable->rear = (AODV_CFT_ Node *) pc_malloc(sizeof(AODV_CFT_Node));

assert(confTable->rear != NULL);
confTable->front = confTable->rear;

203

}

else

{
confTable->rear->next = (AODV_CFT Node *) pc_malloc(sizeof(AODV_CFT_Node));

assert(confTable->rear->next != NULL);
confTable->rear = confTable->rear->next;

}

confTable->rear->nodeAddr = lastAddr;
confTable->rear->conf_Ratio = 1.0;
confTable->rear->conf Level = 1.0;
confTable->rear->OER = 1.0;
confTable->rear->next = NULL;

++{confTable->size);

}

/*

*RoutingAodvUpdateConfTable

*Updates the node's OER using the confidence ratio and level

*/

BOOL RoutingAodvUpdateConfTable(NODE_ADDR lastAddr, float confRatio, float confLevel,
NODE_ADDR confNode, AODV_CFT* confTable)

{
AODV_CFT Node *current;

float tempOER_Num=0.0;
float tempOER_Den=0.0;

if (confTable->size == 0)

return (FALSE);
}

for(current=confTable->front; current != NULL; current=current->next)

{

if(current->node Addr == confNode)

{

tempOER_Num = current->conf_Level * confLevel * confRatio;
tempOER_Den = current->conf_Level * confLevel,

current->0ER = tempOER_Num/tempOER_Den;
!

else
confTable->rear->node Addr=lastAddr;

confTable->rear->conf Ratio=confRatio;
confTable->rear->conf Level=conflLevel;

204

}
return (TRUE);

/Nloop thru the confTable to get the pointer to the wanted address
//calculate the new OER

//if the loop ended and no match was found in the table

//insert values at the end of the table

}/*RoutingAodvUpdateConfTable*/

/*
* RoutingAodvInsertNbrRmvTable
*/
void RoutingAodvInsertNbrRmvTable(NODE_ADDR destAddr, AODV_NRT *NbrRmvTable)
{ P
AQODV_NRT Node* current;
AODV_NRT_Node* previous;

AODV_NRT Node* newNode = (AODV_NRT_Node
*)checked pc_malloc(sizeof(AODV_NRT_Node));

newNode->nodeAddr = destAddr;
newNode->TimeOfLeaving= time_of leaving + 2;
newNode->next = NULL; */

if (NbrRmvTable->size == ()

NbrRmvTable->rear = (AODV_NRT_Node *) pc_malloc(sizeoff AODV_NRT_Node));
assert(NbrRmvTable->rear != NULL);
NbrRmvTable->front = NbrRmvTable->rear;

}

else

NbrRmvTable->rear->next = (AODV_NRT_Node
*)pc_malloc(sizeofAODV_NRT_Node));

assert(NbrRmvTable->rear->next = NULL);

NbrRmvTable->rear = NbrRmvTable->rear->next;

}

NbrRmvTable->rear->node Addr = destAddr;
NbrRmvTable->rear->TimeOfLeaving = time_of leaving + 2;
NbrRmvTable->rear->next = NULL;

++(NbrRmvTable->size);

205

}/*RoutingAodvInsertNbrRmvTable*/

/*
* RoutingAodvComputeMean
* calculates the mean for the nodes' exit and entrance into network
*/
float RoutingAodvComputeMean(NODE_ADDR targetAddr, AODV_NRT *NbrRmvTable)
{
AODV_NRT Node *current;
//AODV_NRT *NbrRmvTable;
int temp=0;
int time=0;
int diff=(;
nt count=1;
float mean=0.0;

for(current = NbrRmvTable->rear; current != NULL; current = current->next)

{
if(current->node Addr == targetAddr)

{

time = current->TimeOfLeaving;
diff = diff + (time - temp);
count++;
temp = time;
}
}

mean = diff/count;

/fhere compare mean with Threshold
//if less increase warning statstic

H*RoutingAodvComputeMean*/

/*

* RoutingAodvLookupBuffer

*

* Returns TRUE if any packet is buffered to the destination

*

*/
BOOL RoutingAodvLookupBuffer(NODE ADDR destAddr, AODV_BUFFER *buffer)

AODV_BUFFER_Node *current;
if (buffer->size == 0)

return (FALSE);
}

206

for (current = buffer->head;
current 1= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
return(TRUE);

}
}

return (FALSE);
} /* RoutingAodvLookupBuffer */

/ *
* RoutingAodvCheckSent

EY

* Check if RREQ has been sent; return TRUE if sent

*/ ‘

BOOL RoutingAodvCheckSent(NODE_ADDR destAddr, AODV_SENT *sent)

{
AODV_SENT Node *current;

if (sent->size == ()
{

return (FALSE);
}

for (current = sent->head;
current |= NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
return(TRUE);

}
H

return (FALSE);
} /* RoutingAodvCheckSent */

/ *
* RoutingAodvHandleProtocolPacket
*

* Called when the packet is received from MAC
*/
void RoutingAodvHandleProtocolPacket(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr,

207

NODE_ADDR destAddr, int ttl)
{
AODV_PacketType *aodvHeader = (AODV_PacketType*)GLOMO_MsgReturnPacket(msg);

switch (*aodvHeader)
{
case AODV_RREQ:

{
RoutingAodvHandleRequest(node, msg, ttl);

break;
} /* RREQ */

case AODV_RREP:

{
RoutingAodvHandleReply(node, msg, srcAddr, destAddr);

break;

}/* RREP */

case AODV_RERR:

{
assert(destAddr == ANY_DEST);
RoutingAodvHandleRouteError(node, msg, srcAddr);

break;
1 /* RERR */

default;
assert(FALSE); abort();
break;
Y /* switch ¥/
} /* RoutingAodvHandleProtocolPacket */

/ *
* RoutingAodvHandleProtocolEvent
*

* Handles all the protocol events
*/
void RoutingAodvHandleProtocolEvent(GlomoNode *node, Message *msg)

{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

switch (msg->eventType) {
/* Remove an entry from the RREQ Seen Table */
case MSG_NETWORK FlushTables: {

RoutingAodvDeleteSeenTable(&aodv->seenTable);
GLOMO_MsgFree(node, msg);

208

break;
}

/* Remove the route that has not been used for awhile */

case MSG_NETWORK_CheckRouteTimeout: {
NODE_ADDR *destAddr = (NODE_ADDR *)GLOMO_MsgReturnInfo(msg);

RoutingAodvDeleteRouteTable(*destAddr, &aodv->routeTable);
GLOMO_MsgFree(node, msg);

break;
}

/* Check if RREP is received after sending RREQ */
case MSG_NETWORK_CheckReplied: {
NODE_ADDR *destAddr = (NODE_ADDR *)GLOMO_MsgReturnInfo(msg);

/* Route has not been obtained */
if ('RoutingAodvCheckRouteExist(*destAddr, &aodv->routeTable))

{
if (RoutingAodvGetTimes(*destAddr, &aodv->sent) < RREQ_RETRIES)

{
/* Retry with increased TTL */
RoutingAodvRetryRREQ(node, *destAddr);
Y} /* if under the retry limit */

/* over the limit */
else

{
while (RoutingAodvLookupBuffer(*destAddr, &aodv->buffer))

{
Message* messageToDelete =
RoutingAodvGetBufferedPacket(
*destAddr, &aodv->buffer);
RoutingAodvDeleteBuffer(*destAddr, &aodv->buffer);

GLOMO_ MsgFree(node, messageToDelete);
aodv->stats. numPacketsDropped++;

}
L /*else ¥/
} /* if no route */

GLOMO_MsgFree(node, msg);

break;
}

default:
fprintf(stderr, "RoutingAodv: Unknown MSG type %d'\n",

209

msg->eventType);
abort();

} /* switch */

} /* RoutingAodvHandleProtocolEvent */

* RoutingAodvRouterFunction

* Determine the routing action to take for a the given data packet
* set the PacketWasRouted variable to TRUE if no further handling of
* this packet by IP is necessary
*/
void RoutingAodvRouterFunction(
GlomoNode *node,
Message *msg,
NODE_ADDR destAddr,
BOOL *packetWasRouted)

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;

//printf("router function TOP");

/* Control packets */

if (ipHeader->ip_p ==IPPROTO_AODV)
{

return;

}

if (destAddr == node->nodeAddr)

{
*packetWasRouted = FALSE;

}

else

{
*packetWasRouted = TRUE;

}

/* mtermediate node or destination of the route */
if (ipHeader->ip_src = node->nodeAddr)
P
1

RoutingAodvHandleData(node, msg, destAddr);
!

/* source has a route to the destination */
else if (RoutingAodvCheckRouteExist(destAddr, &aodv->routeTable))
{

210

RoutingAodvTransmitData(node, msg, destAddr);
aodv->stats numDataSent++;

}

/* There is no route to the destination and RREQ has not been sent */
else if (RoutingAodvLookupBuffer(destAddr, &aodv->buffer))
{

RoutingAodvInsertBuffer(msg, destAddr, &aodv->buffer);
RoutingAodvInitiateRREQ(node, destAddr);
¥

/* There is no route but RREQ has already been sent */
else

{
RoutingAodvInsertBuffer(msg, destAddr, &aodv->buffer);

}

} /* RoutingAodvRouterFunction */

/ *
* RoutingAodvMacLayerStatusHandler
%

* Reacts to the signal sent by the MAC protocol after link failure
*/
void RoutingAodvPacketDropNotificationHandler(
GlomoNode *node, const Message* msg, const NODE_ADDR nextHopAddress)
{

GlomoNetworklIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

IpHeaderType* ipHeader;
NODE_ADDR destAddr;
int numberRouteDestinations;

ipHeader = (IpHeaderType *) GLOMO_MsgReturnPacket(msg);

if (ipHeader->ip_p ==IPPROTO_AODYV)
{

return;
VAfl

destAddr = ipHeader->ip_dst;
if (nextHopAddress == ANY_DEST) {

aodv->stats.numBrokenLinkRetries++;

return;
VIl

211

NetworkIpDeleteOutboundPacketsToANode(
node, nextHopAddress, ANY_DEST, FALSE);

aodv->stats.numBrokenLinks++;

RoutingAodvDeleteNbrTable(nextHopAddress, &aodv->nbrTable);
RoutingAodvincreaseSeq(node);

do {
AODV_RERR_Packet newRerrPacket;
newRerrPacket.pktType = AODV_RERR;

RoutingAodvInactivateRoutesAndGetDestinations(
node,
&aodv->routeTable,
nextHopAddress,
newRerrPacket.destinationPairArray,
AODV_MAX RERR DESTINATIONS,
&numberRouteDestinations);
newRerrPacket.destinationCount = numberRouteDestinations;

if (newRerrPacket.destinationCount > 0) {
SendRouteErrorPacket(node, &newRerrPacket);
aodv->stats.numRerrSent++;

Yt/

} while (numberRouteDestinations == AODV_MAX RERR_DESTINATIONS);
H/RoutingAodvMaclayerStatusHandler//

/*

*

RoutingAodvSetTimer
*

* Set timers for protocol events
*/
void RoutingAodvSetTimer(
GlomoNode *node, long eventType, NODE ADDR destAddr, clocktype delay)
{
Message *newMsg;
NODE_ADDR *info;

newMsg = GLOMO_MsgAlloc(node,
GLOMO_NETWORK LAYER,
ROUTING_PROTOCOL_AODV,
eventType);

GLOMO_MsgInfoAlloc(node, newMsg, sizeof(NODE_ADDR));

info = (NODE_ADDR *) GLOMO_MsgReturnInfo(newMsg);
*info = destAddr;

212

GLOMO_MsgSend(node, newMsg, delay);

} /* RoutingAodvSetTimer */

/’ %
* RoutingAodvInitiateRREQ
*

* Initiate a Route Request packet when no route to destination is known

*/

void RoutingAodvInitiateRREQ(GlomoNode *node, NODE_ADDR destAddr)
{

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;

AODV_RREQ Packet *rregPkt;

AODV_CFT Node *CFT;

char *pktPtr;

int pktSize = sizeof(AODV_RREQ Packet);

nt ttl;

newMsg = GLOMO_MsgAlloc(node, GLOMO MAC LAYER, 0,
MSG_MAC_ FromNetwork);
GLOMO_ MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rreqPkt = (AODV_RREQ Packet *) pktPtr;
RoutingAodvinsertConfTable(node,rreqPkt->destAddr,&aodv->confTable);

rreqPkt->pktType = AODV_RREQ;

rreqPkt->beastld = RoutingAodvGetBceastid(node);

rregPkt->destAddr = destAddr;

rreqPkt->destSeq = RoutingAodvGetSeq(destAddr, &aodv->routeTable);
rreqPkt->srcAddr = node->node Addr;

rreqPkt->srcSeq = RoutingAodvGetMySeq(node);

rreqPkt->lastAddr = node->nodeAddr;

rreqPkt->hopCount = 1;

/*************conf table info**/
rreqPkt->conf Ratio = CFT->conf Ratio;

rregPkt->conf Level = CFT->conf Level,

rregPkt->conf Node = CFT->nodeAddr;

if (RoutingAodvCheckSent(destAddr, &aodv->sent))

{
ttl = RoutingAodvGetTtl(destAddr, &aodv->sent);
RoutingAodvincreaseTtl(destAddr, &aodv->sent);

1

else

{

ttl = RoutingAodvGetLastHopCount(destAddr, &aodv->routeTable);
if (ttl == -1)

ttl = TTL_START;
}

RoutingAodvInsertSent(destAddr, ttl, &aodv->sent);

RoutingAodvincreaseTtl(destAddr, &aodv->sent);
}

NetworkIpSendRawGlomoMessage(
node, newMsg, ANY_ DEST, CONTROL, IPPROTO_AQODV, ttl);

[s ok R R ot R RS R R kR kb ok

requestToForward ++;
/**/

aodv->stats.numRequestSent++;

RoutingAodvinsertSeenTable(
node, node->nodeAddr, rreqPkt->bcastld,rreqPkt->hopCount,rreqPkt-
>lastAddr,&aodv->seenTable);

RoutingAodvSetTimer(node, MSG_NETWORK_CheckReplied, destAddr,
(clocktype)2 * ttl ¥ NODE_TRAVERSAL TIME);

} /* RoutingAodvInitiateRREQ */

[k o ke sk s ok ko ok o sk ks s o s sk e sk o ke e e o o o o ks s s sk s e e SR R Bt ok R ook ok ok ok sk ok skl o o ko ok o ok o R R
*******************/

/*

* RoutingAodvRetryRREQ

b3

* Send RREQ again after not receiving any RREP
*/
void RoutingAodvRetryRREQ(GlomoNode *node, NODE_ADDR destAddr)
{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;
AODV_RREQ_Packet *rreqPkt;
AODV_CFT Node *CFT;
char *pktPtr;
int pktSize = sizeof(AODV_RREQ Packet);
int ttl;

newMsg = GLOMO_MsgAlloc(node, GLOMO MAC LAYER, 0,

MSG MAC_FromNetwork);
GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

214

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rreqPkt = (AODV_RREQ_Packet *) pktPtr;

reqPkt->pktType = AODV_RREQ;

rreqPkt->bcastld = RoutingAodvGetBceastld(node);

rreqPkt->destAddr = destAddr;

rreqPkt->destSeq = RoutingAodvGetSeq(destAddr, &aodv->routeTable);
rreqPkt->src Addr = node->node Addr;

rreqPkt->srcSeq = RoutingAodvGetMySeq(node);

rreqPkt->lastAddr = node->nodeAddr;

rreqPkt->hopCount = 1;
/*************Conftﬂbk3hﬁb**/
rreqPkt->conf Ratio = CFT->conf Ratio;

rreqPkt->conf Level = CFT->conf_Level;

rreqPkt->conf Node = CFT->nodeAddr;

ttl = RoutingAodvGetTtl(destAddr, &aodv->sent);
NetworkIpSendRawGlomoMessage(
node, newMsg, ANY_DEST, CONTROL, IPPROTO_AODV, ttl);

RoutingAodvIncreaseTtl(destAddr, &aodv->sent);

/**/

requestToForward ++;
/**/

aodv->stats.numRequestSent++;

RoutingAodvInsertSeenTable(
node, node->nodeAddr, rreqPkt->beastld,rreqPkt->hopCount,rreqPkt-
>lastAddr,&aodv->seenTable);

if (ttl == NET_DIAMETER)
{

RoutingAodvIncreaseTimes(destAddr, &aodv->sent);

}

RoutingAodvSetTimer(node, MSG_NETWORK _CheckReplied, destAddr,
(clocktype)2 * ttl * NODE_TRAVERSAL TIME);

}+ /* RoutingAodvRetryRREQ */

*
/* RoutingAodvTransmitData

*

* Forward the data packet to the next hop

*

vo/id RoutingAodvTransmitData(GlomoNode *node, Message *msg, NODE_ADDR destAddr)
{ GlomoNetworklp* ipLayer = (GlomoNetworklp *) node->networkData.network Var;

GlomoRoutingAodv* aodv = (GlomoRoutingAody *) ipLayer->routingProtocol;

215

NODE_ADDR nextHop;

GLOMO_MsgSetLayer(msg, GLOMO_MAC_LAYER, 0);
GLOMO MsgSetEvent(msg, MSG_MAC_FromNetwork);

nextHop = RoutingAodvGetNextHop(destAddr, &aodv->routeTable);
assert(nextHop = ANY_DEST);

NetworkIpSendPacketToMacLayer(node, msg, DEFAULT INTERFACE, nextHop);
aodv->stats.numDataTxed++;

RoutingAodvUpdateLifetime(destAddr, &aodv->routeTable);

RoutingAodvSetTimer(node, MSG NETWORK CheckRouteTimeout,
destAddr, (clocktype)ACTIVE_ROUTE_TO);

} /* RoutingAodvTransmitData */

* RoutingAodvRelayRREQ
*

* Forward (re-broadcast) the RREQ
*/
void RoutingAodvRelayRREQ(GlomoNode *node, Message *msg, int ttl)

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;

AODV_RREQ Packet *oldRreq;

AODV_RREQ Packet *newRreq;

char *pktPtr;

it pktSize = sizeof(AODV_RREQ_Packet);

clocktype delay;

oldRreq = (AODV_RREQ _Packet *) GLOMO_MsgReturnPacket(msg);

newMsg = GLOMO_MsgAlloc(node, GLOMO MAC LAYER, 0,

MSG_MAC_FromNetwork);

GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
newRreq = (AODV_RREQ_Packet *) pktPitr;

newRreq->pktType = oldRreq->pktType;
newRreg->bcastld = oldRreg->bcastld;
newRreq->destAddr = oldRreq->destAddr;
newRreq->destSeq = oldRreq->destSeq;
newRreq->srcAddr = oldRreq->srcAddr;

216

newRreq->srcSeq = oldRreg->srcSeq;
newRreq->lastAddr = node->nodeAddr;
newRreq->hopCount = oldRreq->hopCount + 1;

delay = pc_erand(node->seed) ¥ BROADCAST JITTER;

NetworkIpSendRawGlomoMessageWithDelay(
node, newMsg, ANY_DEST, CONTROL, IPPROTO_AODV, ttl, delay);

/**/

requestToForward ++;
/**[

aodv->stats.numRequestSent++;
GLOMO_MsgFree(node, msg);
} /* RoutingAodvRelayRREQ */

/*
* RoutingAodvInitiateRREP
*

* Destination of the route sends RREP in reaction to RREQ
*/
void RoutingAodvInitiateRREP(GlomoNode *node, Message *msg)
{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *)node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodyv *)ipLayer->routingProtocol;
Message *newMsg;
AODV_RREQ Packet *rreqPkt;
AODV_RREP_ Packet *rrepPkt;
char *pktPtr;
int pktSize = sizeof(AODV_RREP_Packet);
int seq;

rreqPkt = (AODV_RREQ_Packet *) GLOMO_MsgReturnPacket(msg);

newMsg = GLOMO_MsgAlloc(node, GLOMO MAC LAYER, 0,
MSG _MAC FromNetwork);
GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rrepPkt = (AODV_RREP_Packet *) pktPtr;

rrepPkt->pktType = AODV_RREP;
rrepPkt->srcAddr = rreqPkt->src Addr;
rrepPkt->destAddr = node->nodeAddr;
seq = RoutingAodvGetMySeq(node);
if (seq >= rreqPkt->destSeq)

 rrepPkt->destSeq = seq;

217

}

else

{
rrepPkt->destSeq = rreqPkt->destSeq;
RoutingAodvincreaseSeq(node);

}
rrepPkt->hopCount = 1;
rrepPkt->lifetime = (clocktype)MY_ROUTE TO;

NetworkIpSendRawGlomoMessageToMacLayer(
node, newMsg, rregPkt->lastAddr, CONTROL, [IPPROTO_AODV, 1,
DEFAULT _INTERFACE, rreqPkt->lastAddr);

aodv->stats.numReplySent++;
GLOMO_MsgFree(node, msg);

} /* RoutingAodvInitiateRREP */

* RoutingAodvInitiateRREPbyIN

* An intermediate node that knows the route to the destination sends the RREP
*/
void RoutingAodvInitiateRREPbyIN(GlomoNode *node, Message *msg)

GlomoNetworkIp* ipLayer = (GlomoNetworklp *)node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *)ipLayer->routingProtocol;
Message *newMsg;

AODV_RREQ Packet *rreqPkt;

AODV_RREP Packet *rrepPkt;

char *pktPtr;

int pktSize = sizeof(AODV_RREP_Packet);

mt seq;

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0,

MSG_MAC_FromNetwork);

GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

pktPir = (char *) GLOMO_MsgReturnPacket(newMsg);
rrepPkt = (AODV_RREP_Packet *) pktPtr;

rreqPkt = (AODV_RREQ_Packet *) GLOMO_ MsgReturnPacket(msg);

rrepPkt->pktType = AODV_RREP;

rrepPkt->srcAddr = rreqPkt->src Addr;

rrepPkt->destAddr = rreqPkt->destAddr;

rrepPkt->destSeq = RoutingAodvGetSeq(rreqPkt->destAddr, &aodv->routeTable);
rrepPkt->lifetime = RoutingAodvGetLifetime(

218

rreqPkt->destAddr, &aodv->routeTable) - simclock();
rrepPkt->hopCount = RoutingAodvGetHopCount(
rreqPkt->destAddr, &aodv->routeTable) + 1;

NetworkIpSendRawGlomoMessage ToMacLayer(
node, newMsg, rreqPkt->lastAddr, CONTROL, IPPROTO_AODV, 1,
DEFAULT _INTERFACE, rreqPkt->lastAddr);

aodv->stats.numReplySent++;

GLOMO_MsgFree(node, msg);
}+ /* RoutingAodvInitiateRREPbyIN */

/’ *
* RoutingAodvRelayRREP
*
* Forward the RREP packet
*/
void RoutingAodvRelayRREP(GlomoNode *node, Message *msg, NODE_ADDR destAddr)
{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.network Var;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
Message *newMsg;
AODV_RREP Packet *oldRrep;
AODV_RREP_Packet *newRrep;
char *pktPtr;
NODE_ADDR nextHop;
clocktype lifetime;
int pktSize = sizeof(AODV_RREP_Packet);

oldRrep = (AODV_RREP Packet *) GLOMO_ MsgReturnPacket(msg);
memmove(&lifetime, &oldRrep->lifetime, sizeof(clocktype));

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC _LAYER, 0,
MSG MAC FromNetwork);
GLOMO_MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
newRrep = (AODV_RREP_Packet *) pktPtr;

newRrep->pktType = oldRrep->pktType;
newRrep->srcAddr = oldRrep->src Addr;
newRrep->destAddr = oldRrep->destAddr;
newRrep->destSeq = oldRrep->destSeq;
newRrep->hopCount = oldRrep->hopCount + 1;
newRrep->lifetime = lifetime;

if (destAddr == ANY_DEST)

219

{
NetworkIpSendRawGlomoMessage(

node, newMsg, ANY_ DEST, CONTROL, IPPROTO_AODV, 1),
}

else

{
nextHop = RoutingAodvGetNextHop(oldRrep->src Addr, &aodv->routeTable);

if (nextHop = ANY_DEST)
NetworkIpSendRawGlomoMessageToMacLayer(

node, newMsg, nextHop, CONTROL, IPPROTO_AODV, 1,
DEFAULT INTERFACE, nextHop);

}
}

aodv->stats.numReplySent++;
GLOMO_MsgFree(node, msg);

} /* RoutingAodvRelayRREP */

220

VITA

TIRTHANKAR GHOSH

Place of birth Kolkata, India

Education

08/2002 -Present Doctoral Candidate, Electrical Engineering, Florida International

University, Miami, Florida
Dissertation: Secure Routing and Trust Modeling in Multihop Infrastructure-
less Networks

01/2001 - 7/2002 Master of Science, Computer Engineering, Florida International

University, Miami, Florida

Thesis: Design of a Fast and Resource-efficient Fault Management System
in Optical Networks

07/1990 - 06/1994 Bachelor of Engineering, Electrical Engineering, Jadavpur University,

India

Work Experience

Telecommunications & Information Technology Institute, Florida International University,
Miami, FL, USA (January 2001- present)

Position: Research Assistant

Job Functions and Projects:

Implementation and maintenance of a wireless ad-hoc network testbed with IBM ThinkPads
running NIST _AODYV routing protocol on top of Red Hat Linux 9.
Setting up simulation testbed for running wireless infrastructured and ad-hoc networks with

‘Glomosim simulator having Parsec compiler running on top of Red Hat Linux.

Developing secure solutions in infrastructure-less wireless networks with large-scale
simulation and extending the results to carry out implementation with real-time traffic on the
ad-hoc network testbed.

Developing policy-based trust computational models based on the security vulnerabilities in
an ad-hoc wireless network.

Installation and maintenance of IBM xSeries and pSeries servers in the research labs.
Implementation of Security algorithms — Implemented RSA and DES to evaluate their
performance on laptops running Windows for carrying out research with the ad-hoc network
testbed.

Design and implementation of Protocol Conversion software - Designed and implemented a
protocol conversion software at the Data Link layer with C on Windows platform.

Design and implementation of an IPv4 to IPv6 conversion software at the Network layer —
implemented with C on Windows platform.

CESC Ltd., Kolkata, India (September 1994 — December 2000)
Position: Executive, Materials Management Division
Job Functions and Projects:

221

System design for a company-wide ERP implementation with Oracle Purchasing, Oracle
Financial and Oracle Inventory packages.

Design, analysis and fine-tuning of the inventory management system.

Inventory modeling for the Budge Budge Generating Station.

Implementation of ISO 9002 in the Materials Management division.

Design and generation of MIS reports for inventory and consumption analysis for the
Materials Management division.

Project Summaries:

ISO 9002 was implemented in the Material Management division integrating four generating
stations, ten distribution centers and fifteen warehouses with stringent quality control
measures and documentation.

Enterprise Resource Planning (ERP) was being planned to be implemented with Oracle
Purchasing, Oracle Financial and Oracle Inventory packages. System design was carried out
to integrate the packages and with customized needs and requirements.

The inventory management system was designed for Budge Budge Generating Station with
approximately 5000 items to cater to two units of 250 MW each.

Publications

Journal and Book Chapters

1. "Towards Designing a Trusted Routing Solution in Mobile Ad Hoc Networks", to appear
in the ACM Journal “Mobile Networks and Applications (MONET)” Special issue on
Non-Cooperative Wireless Networking and Computing, 2005.

2. "An Overview of Security Issues for Multthop Mobile Ad Hoc Networks", IEC
Publications; Network Security: Technology Advances, Strategies, and Change Drivers,
ISBN: 0-931695-25-3, 2004.

Technical Conferences

1. "Collaborative Trust-based Secure Routing Against Colluding Malicious Nodes in Multi-
hop Ad Hoc Networks", in Proceedings of the 29" IEEE Annual Conference on Local
Computer Networks (LCN), Nov 16-18, Tampa, USA, 2004.

2. "Collaborative Trust-based Secure Routing in Multthop Ad Hoc Networks", in
Proceedings of The Third IFIP-TC6 Networking Conference (Networking '04): Springer
Verlag, Series: Lecture Notes in Computer Science, Vol, 3042, pp. 1446 - 1451, Athens,
Greece, May 9-14, 2004 (co-authored with Pissinou, N. and Makki, K.).

3. "Study of Network Performance in a Simulated Network for Optimized Node Degree and
Network Cost", Internet Computing'03, Las Vegas, USA, June 2003 (co-authored with
Makki, S., Pissinou, N. and Deshpande, A.).

4. “Economic Modeling and Analysis of the Evolution Path in Current and Projected IP-

Backbone Networks", Optical Fiber Conference, March 23-28, Atlanta, Georgia, 2003
(co-authored with Wang, J., Pissinou, N. and Makki, K.).

222

	Florida International University
	FIU Digital Commons
	6-2-2005

	Secure routing and trust computation in multihop infrastructureless networks
	Tirthankar Ghosh
	Recommended Citation

	tmp.1555619333.pdf.GHJFK

