
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-2-2005

Secure routing and trust computation in multihop
infrastructureless networks
Tirthankar Ghosh
Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/etd
Part of the Electrical and Electronics Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Ghosh, Tirthankar, "Secure routing and trust computation in multihop infrastructureless networks" (2005). FIU Electronic Theses and
Dissertations. 3933.
https://digitalcommons.fiu.edu/etd/3933

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3933?utm_source=digitalcommons.fiu.edu%2Fetd%2F3933&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SECURE ROUTING AND TRUST COMPUTATION IN MULTIHOP

INFRASTRUCTUREL ESS NETWORKS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Tirthankar Ghosh

2005

To: Dean Vish Prasad
College of Engineering and Computing

This dissertation, written by Tirthankar Ghosh, and entitled Secure Routing and Trust

Computation in Multihop Infrastructureless Networks, havin been approved in respect to style

and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kia Makki

Kang Yen

Shih-Ming Lee

Niki Pissinou, Major Professor

Date of Defense: June 2 2005

The dissertation of Tirthankar Ghosh is approved.

Dean Vish Prasad
College of Engineering and Computing

Dean Douglas Wrtzok

University Graduate School

Florida International University, 2005

11

DEDICATION

I dedicate this dissertation to my wife and my parents whose love and sincere

support gave me inspiration to complete the work.

iii

ACKNOWLEDGMENTS

I take this opportunity to thank my advisor and co-advisor, Dr. Niki Pissinou and Dr. Kia

Makki who helped me successfully finish my dissertation. I am deeply indebted to them for

professional guidance, encouragement, constructive criticism and thoughtful insights into every

step of my dissertation. This work would not have been possible without their able guidance and

support. I also thank the other members of my dissertation committee, Dr. Kang Yen, and Dr.

Shih-Ming Lee who helped me in every step in completing my dissertation.

I acknowledge National Science Foundation (Grant Nos. ANI-0 123950 and CCR-

0196557), Department of Transportation (Project No. FL-26-7102- 00), Department of Defense

(Award No. H98230-04-C-0460) and IBM-SUR grant for supporting my research. I sincerely

extend my warm regards to all my fellow colleagues for their help and co-operation in carrying

out this research.

I thank Dr. Subbarao Wunnava and Dr. Tadeusz Babij for serving on my PhD qualifying

exam committee.

Last, but not the least, I sincerely acknowledge the inspiration I received from my wife,

Ms. Sukanya Ghosh, my parents Mr. Kamalesh K. Ghosh and Ms. Anjana Ghosh and my parents

in law Mr. Rajat K. Dasgupta and Ms. Supriya Dasgupta. Without their inspiration and support it

would not have been possible for me to carry out my research with enough motivation and hard

work.

iv

ABSTRACT OF THE DISSERTATION

SECURE ROUTING AND TRUST COMPUTATION IN MULTIHOP

INFRASTRUCTURELESS NETWORKS

by

Tirthankar Ghosh

Florida International University, 2005

Miami, Florida

Professor Niki Pissinou, Major Professor

Today's wireless networks rely mostly on infrastructural suppo for their operation. With

the concept of ubiquitous computing growing more popular, research on infrastructureless

networks have been rapidly growing. However, such types of net orks face serious security

challenges when deployed. This dissertation focuses on designing a secure routing solution and

trust modeling for these infrastructureless networks.

The dissertation presents a trusted routing protocol that is capable of finding a secure

end-to-end route in the presence of malicious nodes acting either independently or in collusion,

The solution protects the network from active internal attacks, own to be the most severe es

of attacks in an ad hoc application. Route discovery is based on trust levels of the nodes, which

need to be dynamically computed to reflect the malicious behavior in the network. As such, we

have developed a trust computational model in conjunction with the secure routing protocol that

analyzes the different malicious behavior and quantifies them in the model itself. Our work is the

first step towards protecting an ad hoc network from colluding internal attack. To demonstrate the

feasibility of the approach, extensive simulation has been carried out to evaluate the protocol

efficiency and scalability with both network size and mobility.

This research has laid the foundation for developing a variety of techniques that will

permit people to justifiably trust the use of ad hoc networks to perform critical functions, as well

v

as to process sensitive information without depending on any infras ctural support and hence

will enhance the use of ad hoc applications in both military and civilian domains.

vi

TABLE OF CONTENTS

CHAPTER PAGE

Chapter 1 1... 1
Introduction 1

1.1 Background and M otivation .. 2
1.1.1 An Insight into Ad Hoc Networks .. 2
1.1.2 Security Challenges in Ad Hoc Networks 4
1.1.3 Routing in Ad Hoc N etworks 6

1.1.3.1 Ad Hoc On Demand Distance Vector Routing (AODV)............................... 7
1.1.3.1.1 Route Discovery ... 7
1.1.3.1.2 Route Maintenance 8

1.1.3.2 Dynamic Source Routing (DSR) ... 8
1.1.3.2.1 Route Discovery ... 9

1.1.3.2.2 Route Maintenance .. 9

1.1.3.3 Comparison Between AODV and DSR... 10
1.1.3.4 Attacks on Routing Protocols .. 12

1. 1.4 M otivational Exam ple 13

1.2 Problem Statement .. 15

1.3 Research Goals and Issues .. 16

1.4 Significance and Contribution.. 19

1.5 Methodology ... 19
1.6 Organization of the Dissertation ... 20

Chapter 2 ... 21

2.1 Key Management in Ad Hoc Networks .. 22

2.2 Secure Routing in Ad Hoc Networks.. 26
2.3 Trust Computation in Ad Hoc Networks .. 31

Chapter 3 38
Collaborative Trust-based Secure Routing Protocol ... 38

3.1 Introduction... 38
3.2 Assumptions ..-......... 39

3.3 Design of Trust-em bedded AODV (T-AODV) ... 39
3.3.1 Overall Protocol Description ... 40

3.3.2 High Level Description of T-AODV ... 40

3.3.3 Proof of Protocol Security under Attack from Independent Malicious Nodes 44
3.3.4 Threat Model 5
3.3.5 Preventing Colluding Attack 46

3.4 Sim ulation M odel ... 49
3.5 Analysis of Results 5

3.6 Security Analysis ... 58

3.7 Conclusion 59

Chapter 4... ... 60
Trust M odeling against Selfish and M alicious Behavior ... 60

4.1 Trust Issues in fras ctureless Networks 62

vii

4.1 A > ~n of the Trust M odel ... 65

4.2.1 Assumptions 6

4.2.2 Trust ' ' gai st Self .'-ivior ...

4.2.2.1 F tra eters used in he Model .. 66
4.2.2.2 Model Formulation... 67

4.2.3 Trust M odel Against M alicious accuser 68
4.2.4 Trust Model Against Malicious Topology Change ... 69

4.3 Simulation Setup and Analysis of Results .. 72
4.4 Conclusion .. 78

Chapter 5 .. 7

Conclusion ;.,....,........ 9

.1 Trusted outing Protocol 79

.2 Trust Computational Model .. :.......a... S

5. Future Direction .. Q

Bibliography .. 4

Appendices .. :....... 92

Vita .. ®............................ 221

viii

LIST OF FIGURES

FIGURE PAGE

Figure 1.1 A fully independent ad hoc network ..--... 2

Figure 1.2 A hybrid ad hoc wireless LAN 3

Fgure 13 example scenario........ 15..........
Figur 1. n e a p e s e a i 15

Figure 3.1 Route Request packet structure in T-AODV .. 41

Figure 3.2 Procedure for the action of a node after receiving the RREQ packet 42

Figure 3.3 Procedure for the action of the source node .. 43

Figure 3.4 Procedure for the Cross checks trust level function 43

Figure 3.5 Procedure for the alternative implementation of Cross checks trust level 44

Figure 3.6 example of the threat model . 46... 46

Figure 3.7 The RWARN message structure .. 48

Figure 3.8 The receive RWARN function 49

Figure 3.9 Comparison of routing overhead between AODV and T-AODV................................ 51

Figure 3.10 Comparison of routing overhead ...-........................... 52

Figure 3.11 Comparison of number of routes selece.. 52

Figure 3.12 Comparison of route errors sent with number of nodes ... 53

Figure 3.13 Comparison of average end-to-end delay ..-....... 54

Figure 3.14 Comparison of throughput with number of nodes-.. 54

Figure 3.15 Comparison of routing overhead with node speed.. .. 55

Figure 3.16 Comparison of routes selected with node speed .. 56

Figure 3.17 Comparison of route errors with node speed ...-.......... 56

Figure 3.18 Comparison of average end-to-end delay with node speed.....................................- 57

Figure 3.19 Comparison of throughput with node speed .. 58

Figure 4.1 Variation of (Packets received / Packets sent) with malicious nodes 64

ix

Figure 4.2 Comparison of routing overhead with number of nodes . .. 73

Figure 4.3 Comparison of routes selected with number of nodes ... 74

Figure 4.4 Comparison of route errors with number of nodes .. 74

Figure 4.5 Comparison of average end-to-end delay with number of nodes................................ 75

Figure 4.6 Comparison of throughput with number of nodes .. 75

Figure 4.7 Comparison of routing overhead with node speed... 76

Figure 4.8 Comparison of route errors with node speed ... 77

Figure 4.9 Comparison of routes selected with node speed .. 77

Figure 4.10 Comparison of Average End-to-end Delay... 78

x

LIST OF ABBREVIATIONS

ACK: Acknowledgement

AODV: Ad Hoc On Demand Distance Vector Routing

ARAN: Authenticated Routing for Ad Hoc Network

CA: Certificate Authority

CBR: Constant Bit Rate

CTS: Clear To Send

DH: Diffie Hellman

DOS: Denial of service

DSDV: Destination Sequence Distance Vector

DSR: Dynamic Source Routing

FTP: File Transfer Protocol

HF: Has Forwarded

IP: Internet Protocol

LAN: Local Area Network

LER: Local Evaluation Record

MAC: Media Access Control

MOCA: Mobile Certificate Authority

NNL: Neighbor Node List

OER: Overall Evaluation Record

PDA: Personal Digital Assistant

PK: Public Key

RERR: Route Error

RF: Request to Forward

RREP: Route Reply

xi

RREQ: Route Request

RSA: Rivest, Shamir, Adleman algorithm

RTS: Request To Send

RWARN: Route Warning

SK: Private Key

SORI: Secure and Objective Reputation-based Incentive

SRP: Secure Routing Protocol

T-AODV: Trust-embedded AODV

TCP: Transmission Control Protocol

xii

Chapter 1

Introduction

Mobile computing has experienced a very sharp rise since the last decade. The continued

increase in the processing power of mobile devices, together with competitive prices and

attractive design, has made them available to a growing number of the population around the

globe. There is an increasing interest among the industries as well as academia to bring wireless

voice and data networks together. With the concept of ubiquitous computing growing more and

more popular, people now want to remain connected "anytime, anywhere". The growth of

wireless Internet access has also been phenomenal in the past ten years.

With the advent of wireless communications and mobile computing, another form of

networking has also enmerged. This is known as "infras ctureless' or "ad hoc" networking. This

form of peer-to-peer (or even multicast), multihop networking is growing more popular in an

infras ctureless environment (like the absence of access points or base stations). These ad hoc

networks have given rise to active research issues since their evolution [Zho99, Hie0l, Yi01,

Sta99]. The research community has been actively working on various challenges and problems

arising out of the effective implementation of ad hoc networks.

Most of the research so far has been done in the area of routing protocols [HuO2a, HuO2b,

Pap03, Pap02], although in recent years security issues have also been explored. Although the

basic security goals and requirements of an ad hoc network are very similar to those of a wireless

network, some inherent characteristics of the former make security issues more challenging.

These include absence of infrastructure, high probability of node compromise, frequent and

dynamic topology change and low level of trust among the nodes.

1

1.1 Background and Motivation

In the following subsections we are going to elaborate on the principles of ad hoc

networking with an emphasis on their routing protocols and security challenges and finally will

discuss about the motivation behind this research.

1.1.1 An Insight into Ad Hoc Networks

Ad hoc networks are formed without any centralized administration or infrastructure, and

depend upon the mutual agreement between all the nodes to cooperate with one another for their

operation. The vision for implementing an ad hoc network can be supported by many

applications, many of which can be temporary but exchanging highly sensitive information. The

implementations can range from totally independent application and network formation (Figure

1.1) to a peripheral ad hoc zone in integration with existing wireless networks to form a hybrid ad

hoc wireless LAN (Figure 1.2).

Figure 1.1 A fully independent ad hoc network

2

Backbone
Network

Peripheral
Ad Hoc

Wireless
Zone

LAN

Figure 1.2 A hybrid ad hoc wireless LAN

There are several design challenges when implementing an ad hoc network, some of

which have been mentioned in [Per01]. The first consideration is whether the transmission range

of the ad hoc nodes should be within the range of one another [Per01]. In that case, there is no

need for routing in the network and moreover, considerable amount of power is needed for the

nodes to remain connected to one another, thus wasting precious battery life. Hence, there is a

need of routing protocols in such an ad hoc implementation.

The second consideration should be whether there would be any location-centric

approach for the ad hoc nodes where each node can measure its own relative position and use the

status information of the appropriate link. This gives rise to the question of geographic routing

where "routing decisions are to be made based not on destination addresses, but on destination

attributes of packet content" [Zha04]. This is better to avoid as it compromises user convenience

is using and configuring an ad hoc network.

3

Another design consideration should be concerned with the directional characteristics of

the wireless channels. The routing and MAC protocols in any ad hoc implementation have to be

designed based on whether the wireless channels used are bidirectional or unidirectional.

A major consideration when designing and deploying an ad hoc network is its

communication security. It is always preferable to incorporate security at the desired layers

during the developrent and standardization of the protocols at that layer. This was seriously

lacking when the routing protocols were designed for ad hoc applications. Later on many

researchers carne up with secure routing solutions to make the existing protocols robust.

However, a seamless inter-layer approach is still missing when a secure communication

infrastructure has been designed.

1.2 Security Challenges in Ad Hoc Networks

Before discussing the security challenges that a typical ad hoc network has, we should

give an insight into the different treats that such networks face. Broadly, threats can be divided

into two types - passive and active. In a passive threat an attacker quietly listens to the ongoing

communication without taking part in it with an intention to capture the packets and read their

contents. These es of passive threats can easily be eliminated by using basic cryptographic

mechanisms to encrypt the message contents that are flowing into the network.

an active threat an attacker not only tries to capture packets, but also takes part in the

active communication in the network. Active threats can be camred out either by malicious

inclusion of the attacker(s) into the active routes or by injecting bogus messages in the network

with an intention to flood the networks and wasting precious bandwidth. These threats can either

be external where the attack is carried out by somebody not initially a part of the network, or

internal where the attacker is already a par of the network. External threats can be prevented by

reverting to aditional cryptographic algorithms [Des87, Dif76, Riv78] or desi ing new

4

cryptographic schemes suitable for the typical application. The deadliest of all the threats are

from the internal ones, where the attacker has already been an active part of the network, for

example in the form of comprorised nodes. An internal attacker has all the secrets used in the

network in his/her disposal and can use those secrets to effectively authenticate him(her)self to

their peers or take part in the ongoing communication. Hence, the main goal of designing a secure

communication mechanism in an ad hoc application should be to protect the network from the

active threats in the form of internal a cks.

Although the basic security needs of an ad hoc network are the same as in conventional

networks, namely authentication, integrity, confidentiality, availability, non-repudiation and

access control, there are certain characteristics of such a network, which make the security issues

challenging. Ad hoc networks are formed without the aid of any infrastructure. Hence, unlike an

infras c ed wireless network, the ad hoc networks cannot rely on any central entity for

securi issues. This lack of infrastructure has posed serious threats so far as key distribution

[Hie0l, Yi03, Yi02] authentication [NgaO4, PirO4c] and trust computation [Dav04, Esc02] are

concerned.

Nodes forming an ad hoc network are vulnerable to physical compromise. This lack of

physical security gives rise to internal' threats within the network, which make the issues of

authentication, integrity and confidentiality even more challenging than in conventional wireless

networks. Security must also be incorporated in the network layer to make the routing protocols

robust enough to withstand attack from compromised 2 or disloyal 3 nodes trying to inject

malicious information into the network. The third most important characteristic of an ad hoc

We define an internal threat in a network as an active attack by a corpromised node or a disloyal node
which actively takes part in the ongoing communication.

2 We use the term compromised node to indicate a node which has been physically taken over by an
intruder thus giving access to all its stored secrets and system codes.

3 We use the term disloyal node to indicate a node which has ended its loyalty to the network and has
decided to disrupt the network operation by non-cooperation of some means.

5

network is that the topology of the network changes dynamically. Hence any security model

based on a fixed architecture cannot be used in such a scenario.

addition to the above three network centric features, the nodes in an ad hoc network

are characterized by their low battery power and limited computational abilities. These are even

more prominent in applications like personal computing and small sensor networks. These

restrictions seriously limit the ability of the nodes to perform intensive public key computations

like RSA. As the nodes are characterized by minimum trust for each other, key distribution and

secure routing have been challenging research issues. Most of the work on key distribution in ad

hoc ne orks is based on threshold cryptography [Zho99, Bec98, Bur95, Des87, Sha79, Ste00],

and assumes the use of public key cryptosystem which involves intensive computation. Even

secure routing solutions proposed by many [PapO3, Pap02, Zap02, SanO2] are based on public

key infrastructure. Eventually, all routing protocols in ad hoc networks tend to find the shortest

path to the destination, irrespective of the presence of a malicious node in between.

1.1.3 Routing in Ad Hoc Networks

Most routing protocols have been divided into two broad types: proactive or table-driven

and reactive or on-demand [Per0l]. In proactive or table-driven protocols each node stores the

routes to other nodes in its routing table, and uses these routes during communication. These

routing protocols, although having the advantage of selecting the routes quickly, suffer from the

major drawback of generating more control traffic into the network by exchanging large number

of messages needed to update the route entries. This is even more critical in ad hoc networks with

high degree of mobility where the existing routes are more frequently broken.

To solve this problem, reactive or on-demand routing protocols have been designed. In

these protocols each node seeks a route to the destination only when it is needed, thus generating

lesser number of control packets. These routing protocols normally take more time to kick-off,

6

because of the initiation of the route discovery process at the start of the application, but they

have significantly lower overhead as compared to the proactive routing protocols. Below we

briefly describe two of the reactive routing protocols that are used most often in ad hoc networks,.

For details in the design of these routing protocols interested readers may refer to [Per99, Per01,

Joh99].

1.1.3.1 Ad Hoc On Demand Distance Vector Routing (AODV)

The ad hoc on demand distance vector routing protocol was proposed by Perkins and

Royer in [Per99] and has been the most widely used since its standardization. It's perfornance

has been found to be superior as compared to the other routing protocols designed, especially

with higher mobility. A detailed comparison has been carried out in later sections. The

characteristics of the protocol are:

• It responds to any change in the network topology in a quick and timely manner. This makes

the protocol suitable for an ad hoc network application as it demands a routing protocol to

adapt quickly to topological changes;

* It is capable of building routes with small overheads in terms of control messages;

* It stores only next hop information in the route tables, thus reducing storage space

significantly;

* It does not place any additional overhead on data packets, as it does not utilize source routing.

AODV has two phases - route discovery phase and route maintenance phase. We

describe each phase separately.

1.1.3.1.1 Route Discovery

A node initiates a route discovery when no route to a destination is found on its route

table. It broadcasts a route request (RREQ) message containing source IP address, destination IP

address, source sequence number, destination sequence number, broadcast ID and hop count. The

7

source address and broadcast ID together form a unique identifier to the RREQ packet On

receiving a R Q, a node first checks whether the packet is duplicate. case it is duplicate, the

node dops it without taking any further action. If it is a new RREQ, the node checks whether it is

the destination of the packet, in case of which it unicasts a route reply (RREP) back to the source

node. If the node is any intermediate node, it searches its route table to look for a fresh route to

the specified destination having sequence number eater than that specified in the RREQ. If a

fresh route is found, it sends the route to the source of the RREQ. If no fresh route is found, the

node increments the hop count and re-broadcasts the packet.

Each node also maintains a reverse route entry on receiving the RREQ packet containing

the source IP address, sequence number, number of hops to the source node and the address of the

node from which it has received the RREQ. The reverse route is used to forward the RREP

corresponding to the RREQ.

1.1.3.1.2 Route Maintenance

The route that has been discovered by any node needs to be maintained. When a source

node moves out, it re-initiates the route discovery phase to discover a route to the destination.

When a destination node or any intermediate node moves out, the link breakage is reported by the

node upsteam to the break. The node reporting the breakage broadcasts route error (RERR)

packets. On receiving a RE packet, a node marks the route to the destination invalid in its

route table. It re-initiates route discovery when it needs to communicate with the destination.

1.1.3.2 Dynamic Source Routing (DSR)

Dynamic source routing protocol was developed by Johnson and Maltz in [Joh99]. It is a

reactive routing protocol similar to AODV, where the source node initiates route discovery only

when the route is needed. The major difference that DSR has from AODV is in the fact that the

former is a source routing protocol where the source node appends the entire route to the packet

8

header when sending data. Similar to AODV, DSR also has two phases - route discovery and

route maintenance.

1.1.3.2.1 Route Discovery

In DSR a node initiates route discovery when no route to the destination is found in its

route table (route cache). The node broadcasts a route request (RREQ) packet containing source

and destination addresses, a unique request ID and also a sequence of addresses of each

intermediate node though which the RREQ packet has been forwarded. This sequence of

interrediate addresses are all initialized to an emp set. When a node receives a RREQ, it

checks whether the packet is duplicate by matching the request ID and source address pair with

that anything seen previously. If it is not a duplicate packet and if the node itself is the destination

of the packet, it sends a route reply (RREP) back to the source node. If the node is any

intermediate node, it appends its o address in the route record and re-broadcasts the packet.

In forwarding a RRP, each node either looks in its route cache to find a route to he

source node, or initiates a route request to discover the route. It can also sirply reverse he

sequence of hops in the packet's route record and use this as the source route on the packet

carrying the RREP itself.

1.1.3.2.2 Route Maintenance

In DSR each node forwarding a RREQ or RREP is responsible for the confirmation that

the packet is delivered properly. This is ensured either by MAC layer acknowledgement or by a

passive acknowledgement where each node overhears the next node's transmission of the packet.

Alternatively, a node may set a bit in the packet header to ask for an application specific

acknowledgement. If a node fails to receive any ac kowledg ent from its next node, it sends a

route error (RERR) message to the source node indicating a broken link, which is duly removed

by the source node from its route cache.

9

11.3.3 Comparison Between AODV and DSR

Extensive comparison between the two on demand routing protocols, AODV and DSR

have been carried out in [DasOO] through simulation. The difference in the performance can be

attributed to several fundamental design differences between the two protocols which are briefly

highlighted below. Interested readers may refer to [DasO0] for further details.

The most fundamental difference between AODV and DSR lies in the route request-reply

cycle. DSR route requests are designed to accumulate the whole route in the packet itself, thus

allowing the nodes to learn the routes to multiple nodes in the network other than the source and

the destination. This results in lower number of route request generation in DSR. AODV,

however, allows only few routes to be discovered in a route request-reply cycle, essentially routes

to source nodes are only discovered. This results in larger route request floods in AODV.

However, in DSR more route replies are generated than that in AODV, as in the former all copies

of route requests received by the destination are replied back. In AODV, however, only one route

reply is sent back to the source node, the one which corresponds to the first request received.

Because of this difference in the design of a request-reply cycle, each node in AODV has at most

one route to the destination, while DSR allows the nodes to maintain extensive route caches with

multiple routes to a particular destination. Thus any link break will trigger a new route discovery

phase in AODV, while in DSR a route discovery is triggered only when all the routes in the cache

become invalid. Moreover, in AODV, stale routes are deleted from the route table by setting an

expiration timer, while DSR does not allow the expiration of stale routes from route cache. Route

error messages are also propagated in different ways in the two protocols. AODV, route errors

are essentially broadcast messages, while in DSR it is a unicast, sent out by backtracking the data

packet.

The simulation carried out in [DasO0] shows that the routing load is almost always lower

in DSR. The routing load has been defined by the authors as the number of routing packets

10

transmitted per data packet delivered. As DSR uses extensive route cache, it generates much less

route request packets than that in AODV, as the possibility of finding a route is almost always

higher in DSR. Most of the routing load in AODV comes from the route request packets, while in

DSR the routing load is mainly generated by route reply and route error packets. In summary, it

can be said that DSR always generates more route reply and route error packets than in AODV,

but has lower route request packets in higher proportion. This brings do the routing load in

DSR.

In spite of the above fact, it has been observed that DSR performance goes down when

the whole ne ork load is considered, as it has significantly higher MAC load than in AODV.

The MAC load has been defined by the authors as the number of routing, ARP (Address

Resolution Protocol) and layer 2 control packets generated per data packet delivered. As DSR

generates more route reply messages and each route reply message is a unicast packet with MAC

layer RTS/CTS/Data/ACK exchange, it imparts higher MAC layer load than in AODV. Route

error messages are also unicast in DSR unlike in AODV where they are broadcast messages. This

also increases the MAC load in DSR.

Mobility also has different effects on the performance of DSR and AODV. It has been

observed that AODV performs better than DSR in higher mobility conditions. When the mobility

is low, the possibility of link failure is also low. But low mobility results in some localized node

concentration because of which the network may get congested. Due to this congestion, packets

may get lost in the MAC layer tiggering false route error messages indicating broken link,

although the physical links still exist. This will trigger the route discovery phase generating more

route request messages in AODV. DSR, however, remains unaffected due to this problem

because of its extensive route cache. Hence, the performance of AODV degades with low

mobility condition. contrast, higher mobility causes higher possibility of link failure, and hence

trigger more route request packets in AODV. But higher mobility also causes stale routes in the

11

route cache in DSR. Thus, when route requests are initiated in DSR, they generate higher route

replies and also higher MAC load. This results in the degradation of DSR performance with

higher mobility in the network.

1.1.3.4 Attacks on Routing Protocols

adversary can carry out active attacks on the routing protocols in different forms. The

main goals of attacking the routing protocols are: to be a part of the active end-o-end route; and

to inject bogus information in the form of routing overhead with an intention to flood the

network. In order to carry out attacks in the routing layer, an adversary has to manipulate the

metrics used in the control packets and deceive the source nodes to believe in either a non-

existent route or a route through the adversary itself, Below we briefly describe some of the

attacks carried out in AODV and DSR routing protocols:

An adversary decreases the hop count information in the route request packet in AODV

with an intention to make the destination and source believe that the shortest path exists through

itself. Subsequently, the route through the adversary will be selected as it will have the lowest hop

count metric maliciously injected by the adversary.

An adversary advertises a fresh route through itself in AODV by sending a route reply

back to the source node having a high destination sequence number. The source will be forced to

believe that a fresh route exists through the adversary and uses that route to send the data.

An adversary places itself in the active route and discards all data packets received for

forwarding. This attack is known as the black hole attack as the adversary behaves as a black hole

in the sense that it absorbs all data packets. This attack can be carried out in any routing protocol,

be it AODV or DSR.

More than one adversary collude together to carry out a wormhole attack in the DSR

routing protocol. When the first adversary receives a route request packet in DSR, it unicasts the

12

packet to the second adversary who then broadcasts it to the destination. The destination is thus

forced to believe that the shortest path exists through these two adversaries and effectively the

route is selected.

Other than the attacks discussed above, there are several other ways by which an

adversa can disrupt the network operation. Denial of service (DOS) attacks can be carried out in

MAC layer or application layer, channel jamming can be implemented in physical layer, Sybil

attack [DouO2, NewO4] can be carried out with address spoofing, Man-in-the-middle attack

[StaO2] can be launched to fool the source and the destination, or even the transport layer

protocols can be mishandled by manipulating the metrics. our research we only concentrate on

the attacks in the routing layer and leave the rest as a future extension with an intention to

develop a cross-layer approach towards designing a secure communication mechanism.

1.1.4 Motivational Example

While there is a plethora of applications to support our proposed environments, especially

in the military, emergency crisis management, homeland security, and medicine, we will look at a

simple medical scenario in this section. this scenario, let us consider the formation of a hospital

medical board, where doctors and staff create a network "on the fly" without the aid of any

infrastructure. They share substantial confidential information and data which they want to keep

restricted within themselves. An ad hoc multihop network is formed using their laptops or PDAs.

The members can actually communicate among themselves from different locations inside the

hospital, with each member appropriately forwarding data. All the data flowing though the

network is cryptographically protected using shared secrets. Shared secrets are formed by the

collaborative effort of some trusted members within the network. A person who is not authorized

to join the network cannot take part as he/she is unable to encrypt or decrypt the necessary

information. But he/she can easily get hold of a member's laptop and steal all network secrets,

13

Using these secrets, he/she can communicate with the others without getting detected. It is easy

for the person to include himself/herself in the routing path by injecting malicious routing

information into the network. The malicious information goes undetected as appropriate keys are

used to encrypt and decrypt the headers, the face of such an attack, even the cryptographically

protected network breaks down. In view of the above fact, it is of itmost importance to find a

trusted route in the network to disseminate confidential information. The trusted route must

include nodes who are are proven to be trustworthy, which gives rise to further issues like trust

computation and distribution in the network.

A similar example can be cited in a war front situation where army officials form a

multihop ad hoc network to exchange confidential information. A similar attack can be launched

by compromising any of the nodes comprising the network. Although the network is

cryptographically protected by secrets formed by collaborative efforts, an internal attack in the

form of a compromised node can completely disrupt it.

Secured communication is also desired in applications where an ad hoc netork is used

in an archeological mission. The nature of the network demands exchange of confidential data

between trusted hosts. A secure end-to-end path needs to be set up to ensure safe data exchange.

Efficient use of cryptographic keys can provide a feasible solution, but an internal compromise

can lead to disclosure of confidential data. Consider the following scenario as depicted in

Figure l.3.

Let us assume that the nodes a and b have somehow managed to share a secret When

node a wants to communicate with node b, it broadcasts a route request packet; its forrat being

the same as in AODV [Per99]. Now, let node c get compromised and get hold of the secret group

key. It will place malicious routing information into the network and wants all the packets to go

through itself. This will disrupt the network operation since the compromised node can drop

14

important information, refuse to forward them or can even forward information after altering

them suitably.

a

b

Figure 1.3 An example scenario

In view of the above discussion, our research will focus mainly on securing an ad hoc

network from an active internal attack. We mainly consider the threats posed by compromised

nodes, acting either independently or in collusion, and propose to secure the network from such

attack. As we have already discussed, we will carry out the research in two steps: designing a

trusted routing solution that will find a trusted end-to-end route free of any malicious entity; and

developing a framework for computing, distributing and updating trusts in ad hoc applications.

1.2 Problem Statement

Based on our discussions in the previous sections, we can emphasize that the overall goal

of this research is to provide a secure solution for communication in ad hoc networks that will be

strong enough to withstand the most serious type of internal threat. None of the solutions,

proposed so far, can resist an internal attack in the form of a compromised or disloyal node. This

15

demands the design of an efficient and secure solution in ad hoc communications based on the

issues and challenges arising out of their inherent characteristics and applications.

Our motivation for this proposed research is twofold:

1. Finding a secure end-to-end route in an ad hoc network, which will be able to withstand

active internal attacks from compromised nodes, either acting independently or in

collusion, trying to inject malicious routing information.

2. Designing a trust computational model that will analyze the psychology of the attacker

and quantify them in the model itself.

1.3 Research Goals and Issues

The overall goal of this research is to provide a secure solution for communication in ad

hoc network applications strong enough to withstand an active internal threat within the network.

None of the solutions, proposed so far, can actually resist an internal attack in the form of a

compromised or disloyal node. If an efficient cryptographic algorithm is used, a compromised

node can always give away the secrets to the attacker. The same is true for a disloyal node. It can

be argued, however, that the disclosure of secrets can be prevented by making the nodes (or some

of their selected modules) tamper-proof, which is easier to visualize than to implement. The

discussion of tamper-proof components are outside the scope of this thesis and we consider it a

separate research issue altogether.

The first aspect of the research will be to design a trusted routing protocol that will be

able to find a trusted end-to-end route free of any malicious node. The malicious nodes willing to

take part in ongoing communication in the netork by trying to put themselves into the active

routes will be detected and isolated by collaborative effort of their neighbors. This demands the

determination of a suitable trust metric in the routing protocol which will play an active role in

the final route selection.

16

Another aspect of this research is to develop a framework for computing, distributing and

updating trust in an ad hoc network application. Modeling and computing trusts in such an

application is a challenging problem. It is very difficult to form a true and honest opinion about

the trustworthiness of the nodes, as they can be engaged in malicious activities in different ways.

This intricacy in trust computation, together with frequent topology changes among nodes, quite

often causes the whole network to get compromised or disrupted. Different malicious activities of

the nodes can very well be misinterpreted as the regular erratic behavior of the wireless networks

in general and ad hoc networks in particular, thus making trust computation all the more difficult.

this paper we have proposed a framework for modeling and computing trusts that take into

account different malicious behavior of the nodes. Our proposed model tries to explore the

psychology of the attacker in different ways and quantifies those behaviors to form a computing

framework.

Selfish behavior in ad hoc networks has been prevented by proposed schemes that used

either a reputation-based incentive mechanism [Buc02, He04, Mic02], or a price-based incentive

mechanism [But02]. In both the mechanisms, nodes are given incentives to suppress their

malicious intention in favor of the network. But nodes with malicious intention at their

subconscious self always try to find ways to bypass these incentive mechanisms.

In view of the above issues and challenges and keeping in mind the severity of an internal

threat, we intend to incorporate two components into our research.

1. A network layer securi scheme in the form of a robust routing protocol which will

address the following issues:

. Can the routing protocol be robust enough to withstand all forms of internal attack?

. Can the protocol find an end-to-end secure and reliable path (which may not be the

shortest) free of malicious nodes without the latter altering information and including

itself in such a path?

17

• Can the protocol successfully isolate a compromised node trying to inject malicious

routing information?

• Can the isolation be done by the collaborative effort of the neighboring nodes,

instead of relying on a single node?

2. An efficient trust management system that takes into account different malicious

behavior of the nodes in trying to disrupt the network operation. The trust computational

framework should address the following issues:

" Can the compu ational framework incorporate different malicious behavior and

quantify them in the model?

* Can the algorithm successfully isolate a non-trusted entity with the collaborative

effort from all its neighbors?

* Can the model form a true opinion about malicious entities colluding together to

disrupt the network?

We propose to combine these two components to come up with a robust security solution

against an active internal attack in the network. The trusted routing protocol, when designed, will

be able to find a trusted end-to-end route free of any malicious entity, effectively isolating any

node trying to inject malicious information into the network. A trust computational model will be

developed and integrated with the routing protocol to act as a basis for selecting end-to-end

trusted path based on trust metric. Message integrity, authenticity and confidentiality will be

incorporated in this solution by efficiently encrypting the messages using either shared secrets or

reverting to a public key infrastructure. We will not address these issues now as they have been

well addressed in past studies. In the next section we will briefly discuss the routing protocols

most commonly used in ad hoc networks.

18

1.4 Significance and Contribution

This research will lay a foundation to develop a variety of techniques that will permit

people to justifiably rely on ad hoc networks to perform critical functions as well as rely on ad-

hoc networks to process sensitive information. This will in turn potentially allow mobile ad hoc

networks to gain even more attention in both national scale infrastructures and localized systems,

since they could securely serve as the primary communications networks where no infrastructure

can be deployed. The solutions proposed in this research will be one of the first of its kinds to

secure the network from colluding malicious nodes actively carrying out internal attacks. In

addition, the trust computational model proposed in this work will also provide a solid foundation

for developing a policy-based autonomous system to develop a trusted communication

infrastructure in the absence of any support.

1.5 Methodology

Our work involves the combination of model development, protocol design, simulation

and experimentation. Model development involves a critical assessment of the requirements and

challenges of the security needs. The secure protocol has been designed to satisfy those

challenges and needs with concentration to minute details. To evaluate the design of our protocol

we are going to use simulation tech iques. Although we know that simulation is not quite

foolproof, and only implementation in a real environment can assure us of the effectiveness of the

design, we will first turn our attention to simulation. Since mobile ad hoc networks are

characterized by the lack of a centralized entity, dynamically changing topologies due to the

mobility of the nodes, and a hostile wireless communication medium, it is difficult to obtain

theoretical analysis on these types of networks. The system performance is primarily measured

and evaluated through data statistics, which can be obtained through simulation, emulation, or a

real life network. Despite the recent surge in research activities in ad hoc wireless networks,

19

software simulation remains the primary approach to evaluate the network performance, as it is

easy to implement and manipulate. We observe that among all the protocols proposed for ad hoc

wireless networks, few are practical for implementation and operation. Some are too complicated

to implement, and some use parameters that are not available in practical systems. In order to

evaluate the trustworthiness and overhead of the proposed protocol, we will adopt an

experimental approach, and an obvious extension of the work will be to create an ad hoc testbed

and evaluate our designed protocol with real-time data. In addition to simulation, we will also

analyze the security of the routing protocol by evaluating different threat scenarios and will show

that the protocol is secure against those scenarios.

1.6 Organization of the Dissertation

The remaining chapters are organized as follows. chapter 2 we give an overview of the

related work that have been done to secure communication in ad hoc networks. Chapter 3

discusses the design of the trusted routing algorithm with a detailed analysis of results obtained

from extensive simulation. A security analysis of the protocol has also been carried out by

evaluating different threat scenarios Chapter 4 describes the trust computational model designed

with a detailed analysis of the results obtained. Finally, in chapter 5 we conclude with a summary

of our research follwed by future extensions.

20

Chapter 2

Related Work

The discussions presented in this chapter are inspired by the recent developments and

also the ongoing work that are being done in the area of security in ad hoc networking. The

chapter summarizes in details the state of the art in the area of key management, routing security

and trust computation in ad hoc networks.

Ever since the evolution of ad hoc networks researchers focused on designing

communication protocols suitable for typical ad hoc applications to fit into the TCP/IP protocol

stack. Security considerations for those types of networks did not play a major role in the research

activities in the designing stages of the communication protocols. Some effort has been given to

securing such networks in the past few years [Zho99, Hie01, Yas02, Yi02, Sta99, AlbO2, DenO2,

YiO 1, Pap02, Pap03, Hu02a, Hu02b, Zap02, SanO2, YanO2], arising out of the need for their

effective implementation [HubO1, Wro02, Sta99]. Different means of securing ad hoc networks

have been proposed, which involve key management [Hie 1, Yas02, YiO3, Yi02, Zho99], routing

security [Buc02c, DenO2, Hu02a, HuO2b, Pap03, Pap02, PirO4b, SanO2, Smi97, YiO1, Zap02] and

trust computation [Dav04, Esc02, He04, LiO4, Nga04, PirO4a, TheO4, Ver01, YanO3].

Although security issues in ad hoc networks have drawn considerable attention over the

past few years, no solution has been proposed so far to secure the network against an internal

attack by colluding malicious nodes by discovering a trusted end-to-end route. Most of the work

done so far [DenO2, Yi01, Pap02, Pap03, Hu02a, Hu02b, Zap02, SanO2, Smi97, Pis04, Buc02c]

fail in the face of an active internal attack where the adversaries have the network secrets in their

possession. A collusion of more than one malicious node increases the severity of the threat

manifold.

21

2.1 Key Management in Ad Hoe Networks

Sharing of secrets [Des87, Sha79] and secure key exchange [Bec98, Bur95, SteO0,

Blu83] have been actively explored by researchers over decades, but very little effort has been

given to extend the concepts to ad hoc networks. After the discovery of the Diftie-Hellman key

exchange in a Public key scenario [Dif76], some researchers tried to implement the concept in

group communication and even in ad hoc networks [Zho99, Ste96, Hie0l, Bur95, Des87, Sha79,

Ste00, Yas02, Yi02]. One of the first extensions of the Diffie-Hellman key exchange protocol to

group communication was proposed by Steiner et. al. which is referred to as the generalized

Diffie-Hellman protocol [Ste96]. Each member contributes its own part of the key by performing

an exponentiation. The group key is given by:

n

where

K group key

= exponentiation base or the generator

Nk = random exponent generator by member k

n = total number of members in the group

[Ste96] discusses three protocols, each one optimizing on the number of messages

exchanged and the number of exponentiations. However, all the protocols suffer from one big

disadvantage; they allow all the group members to have the entire key. Thus the group key can be

obtained by compromising any of its members.

There are other protocols which follow the generalized Diffie-Hellman protocol. Some of

them are the Hypercube protocol and the Octopus protocol presented by Becker and Wille in

[Bec98]. In the Hypercube protocol, the 2" members are arranged in hypercube. Key exchange is

done in steps, one for each square. In the Octopus protocol, four of the participants form a square

at the center and the remaining members form tentacles that are attached to the central nodes.

First, the key exchange is done between the central nodes by the 4-node hypercube protocol and

then the key is distributed to the surrounding nodes. Another protocol, called the tree-based

protocol, is presented by Burmester and Desmedt in [Bur95]. This protocol is applicable for

networks having the topology of a binary tree. The root of the tree generates the key and

distributes it along the tree. This protocol is not contributory and hence can not be applied to an

ad hoc network. All of these protocols for distributing a group key are based on a fixed

architecture and are not suitable for an ad hoc network scenario.

Some work on key distribution in ad hoc networks is based on threshold cryptography

[Zho99, Bec98, Bur95, Des87, Sha79, SteO0, Gen96a, Gen96b]. The concept of threshold

cryptography was first proposed by Desmedt in [Des87 Des97]. He proposed a protocol, which

accepts k out of n players to create a valid signature, but ignores the signature if less than k

players take part in the si ing process. This was based upon the concept of sharing a secret as

proposed by Shamir in 1979 [Sha79]:

"Consider, for example, a company that digitally signs all checks. If each executive is

given a copy of the company's secret signature key, the system is inconvenient but easy to misuse.

If the cooperation of all the company's executives is necessary in order to sign each check, the

system is safe but inco venient. The standard solution requires at least three signatures per

check, and it is easy to impiem e t with a (3,n) threshold scheme,"

Another irnplementation of threshold cryptography is the CLIQUES protocol proposed

by Steiner et al [SteO0]. In this protocol, the key computation proceeds from node to node, with

each node doing an exponentiation with its private Diffie-Hallman (DI) value. The final node

computes the key and broadcasts it to all other members. The main drawbacks of this protocol,

23

when applied to an ad hoc network, are that key generation has to be in serial order, which

violates the dynamic configuration change in ad hoc networks, and that nodes have the final

group key, which can be hacked by compromising any of the nodes.

Alec Yasinsac et al modified this CLIQUES proposal in [Yas02] to make it more suitable

for an ad hoc network, by optimizing the number of messages and taking care of the serialization

problem. The protocol works as follows:

* One member announces the formation of a group;

. The potential group members (i = 1.. n) select and publish a coordinator (member #0), the

DH base g and modulus p, with base and modulus having all the necessary properties to

ensure that the impending DH computations are secure;

* Each ith member (except the coordinator) chooses a random xi as their private DH number and

broadcasts their public DH number g;

« The coordinator generates the random numbers z and xo, g r, g "O for each i, and encrypts

e[gre for each i. The coordinator then concatenates gr with all the encrypted values and

broadcasts the concatenated message;

. After receiving the broadcast from the coordinator, each member computes g using their

private xi, decrypts z, and computes a combining function F f(gr, ,g2 ,.....,g) and the

group key, K=gF Z

Although this nodified protocol solves the serialization problem, the problem of the

nodes having access to the entire key remains unresolved. y node can still be compromised,

giving away the entire group key. This is a major threat in an ad hoc scenario where the physical

security of a node is always threatened.

Yi and Kravets [YiO2] proposed a key management service in an ad hoc scenario

whereby the functionalities of a Certificate Authority (CA) are distributed among a number of

24

mobile nodes (called MOCA). The proposed key management service satisfies the three broad

criteria, namely fault-tolerance, vulnerability and availability. The paper extended the concept of

threshold cryptography by sharing the digital signature among a number of MOCAs. A client

requiring a certification service, contacts at least k number of MOCAs, each of which generates

its own share of signature and sends it back. The client reconstructs the full signature after

receiving k partial signatures. This proposed key management service overcomes the

disadvantage of a single CA in an ad hoc scenario by distributing the functionalii es to a number

of them. But it fails to overcome the threat of key disclosure by compromising a node.

intruder can easily compromise the client to get the key and hack into the network. A similar

approach is proposed in [KonO1]. The authors proposed a model for intrusion detection based on

the distribution of certificate authority functionalities using a threshold secret sharing mechanism.

Their model works under the assumption that the network elements have some information which

is untrustworthy or unknown to any intruder. This assumption does not hold true for a

compromised node or a disloyal node. A certificate distribution algorithm is also proposed in

[HubO 1] based on a public key infrastructure where users are responsible for storing and

distributing the certificates by building local certificate repositories.

In [Zho99], Zhou and Haas have proposed a key management model again based on

threshold cryptography. Their model is built upon the distribution of trust and the assumption of

using a public key infrastructure. Public key infrastructure is assumed because of its superior key

distribution and its ability to achieve message integrity and non-repudiation. The functionalities

of a certification authority are distributed among n number of nodes called servers. A threshold

level of (t + 1) has been used so that at least (t + 1) servers can combine to form the final

signature. With (t + 1) valid partial signatures, a combiner can compute the full signature for the

certificate. However, compromised servers cannot create a valid signature as they can generate at

most t partial signatures. The protocol also takes care of mobile adversaries. The concept of

25

mobile adversaries was first proposed by Ostrovsky and Yung [Dif76]. This type of adversary

moves on compromising each server until it compromises at least (t + 1) of them. It can gather at

least (t + 1) partial signatures to compute the entire key. The authors proposed a proactive

scheme to counter this mobile adversary. The scheme uses share refreshing through which each

server computes a new share from the old one. However, the protocol works under the

assumption that the shares from each server are put together by the combiner to compute the full

signature. This combiner, being any server, can always be a single point of attack. A combiner, if

compromised, can give out the full signature and because of this will not work in an ad hoc

scenario.

2.2 Secure Routing in Ad Hoc Networks

Routing protocols have been designed for ad hoc networks since their evolution. None of

these routing protocols incorporated security into them during their design stage. However,

researchers have started looking into the vulnerabilities of these routing protocols for the past few

years and have proposed solutions to make them secure and robust. Most of these protocols revert

to cryptographic techniques for their security and essentially find the shortest path from source to

destination.

There have been some work [DenO2, Yi0 , Pap02, Pap03 Hu02a, Hu02b, Zap02, SanO2,

YanO2, Smi97] to secure the distance vector routing protocols in ad hoc networks. In [SanO2], the

authors have proposed an authenticated routing for ad hoc applications. This protocol named

ARAN uses digital signature by each node to authenticate itself, which is duly verified by the

next node. Their work has also assumed the existence of a trusted certificate server. Both

assumptions may not be applicable in an ad hoc network scenario. The presence of a trusted

certificate server cannot be assumed because it violates the basic norms of an ad hoc paradigm.

Also, the use of digital signature in a public key infrastructure is of very high computational

26

complexity and hence is not suitble for ad hoc nodes with limited corputational power. In this

context, some points need to be emphasized when using a public key communication system for

ad hoc application.

First, if a message is encrypted with the receiver's public key, then the authentication of

the sender can be questioned. This is more applicable in an ad hoc scenario where there is little or

no trust between nodes. Thus, every essage must be signed digitally by the sender. Second, if

the message is signed by the sender (e. encryp ted with the sender's private key), then any node

in the network can decrypt the message with the sender's public key which is known to all.

Consequently, the confidentiality and integrity of the message are questioned. The ideal system

would be to use both digital signature as well as public key encryption.

The most widely used public key cryptosystem is the RSA algorithm. Although this

algorithm is widely implemented, its computational complexity is very high. The computational

aspects of RSA involve the following:

Generation of two large prime numbers- it has been undoubtedly proved that primes near

N are spaced, on an average, one in every (inN) integer. So, to generate a prime number of order

of magnitude 2200 would require ln(2200) /2 (to discard the even integers) = 70 trials. It can be

shown that for a 100-digit number, 1 in every 230 is a prime.

To test the primality of a number, an algorithm was proposed based on the well-known

Fermat's theorem which states that:

Ifp is prime, then, a' = 1 modp where 0 < a <p

By this algorithm, if (a') is not equal to 1, then the number p is definitely not prime. But

if the result is 1, then the probability the number is prime would be 1/10". Even if the probability

is very low, it proves a eat risk for a high security ad hoc application. If the primality test does

not work, the RSA algorithm will totally fail.

27

Computing exponentiation of a large number by another large number also takes much

computational time. To ensure authentication and message confidentiality and integrity, it has to

be done twice, once for computing digital signature, and again for public key encryption.

To avoid using a public key cryp tosystem in an ad hoc scenario, some researchers have

come up with secure routing solutions using symmetric key systems. [Hu02b], the authors have

proposed a new on-demand secure routing protocol called Ariadne. The protocol is based on

symmetric key cryptography and its security depends on the secrecy and authenticity of secret

keys stored in nodes. A source node performs route discovery, based on the assumption that it

already shares a secret key with the destination node. The source node simply includes a nessa e

authentication code (MAC) 4 computed with the shared key which the destination node can easily

verify. Thus the protocol relies on the distribution of shared secret keys between source and

destination, which itself is a burnin research problem in an ad hoc network, without the presence

of any trusted entity.

ile iadne uses an end to end security solution, a hop by hop approach is proposed in

[Hu02b]. The authors have proposed a secure routing protocol based on the destination sequence

distance vector (DSDV) routing. The security is based on the efficient use of one-way hash

function, unlike the use of MAC in Ariadne. The source node generates the elements of its hash

chain upon initialization and uses some elements from the chain to secure its routing update over

time. The authentication protocol works under the assumption that a secure means of distributing

the elements of the hash chain is already there, an assumption which itself defies the MANET

paradigm because of the absence of any trusted entity.

In [Zap02], the authors have proposed to extend the existing AODV [Per99] routing

protocol to make it secure. They have proposed to use digital signature to secure the non-mutable

4 We have used MAC to represent both Media Access Control and Message Authentication Code

interchangeably. We have specified the meaning of MAC during each use.

28

fields of the AODV messages and hash chains to secure the hop count information, which is the

only mutable field in AODV. The protocol works under the assumption of the existence of an

efficient key management system enabling all the ad hoc nodes to obtain public key information

of all other nodes. The authors also did not consider the problem of compromised nodes, which

they think is not critical in non-military application. However, this assumption is too strong in

securing ad hoc communication as compromised nodes can disrupt network operation in sensitive

applications outside the military environment. The security of the proposed scheme is also limited

by an attacker who deliberately keeps the information unchanged and can force the source node

to select the path.

Another extension of AODV is proposed in [YanO2]. The proposed protocol requires

each node to carry a token signed with a secret system key, which can be appropriately verified

by its neighbors. A node without a valid token is singled out in the network and all other nodes

stop communicating with it. They have referred to the threshold cryptographic scheme to secretly

distribute the token among nodes.

Some work has also been done to secure routing protocols based on the existing DSR

[Joh99] protocol. In [Buc02b] the authors have proposed a CONFIDANT protocol based on DSR.

It aims at isolating the misbehaving nodes, making non-cooperation unattractive. The monitoring

mechanism is implemented by a neighborhood watch concept where the no-forwarding behavior

of the nodes are monitored and reported. No-forwarding behavior or so-called selfishness of the

nodes is also taken care of by a mechanism proposed in [But02]. The authors have proposed a

protocol based on having simple counters a each node, called nuglets, which will encourage the

nodes to forward the packets. However, this protocol only ensur s the selfless act of nodes in

forwarding others' packets. It does not ensure such an act in forwarding packets with malicious

routing information. Although the protocol secures the net ork from the presence of selfish

29

nodes, it does not secure it from malicious nodes which enthusiastically forward others' packets

by modifying information in it.

The above protocols use a secure way of route discovery, but do not consider any secure

means to discover the topology of the network [Pap03, Pap02]. In [Pap3], the authors have

proposed a protocol for securely discovering th e ork topology in a public key infrastructure.

The protocol is responsible for securing the discovery and distribution of link state information.

Each node broadcasts signed hello messages to its neighbors giving its MAC address, IP address

pair. The receiving node retains that information after validating the signature. However, the

protocol fails in face of a colluding attack, and also does not scale well to frequent topology

changes. Another protocol to achieve a similar goal is proposed in [Pap02]. The authors have

proposed a source-routing protocol that can securely discover correct connecting information. It

works under the assumption of an already established shared secret between the source and the

destination. The security of the protocol is based upon the computation of a Message

Authentication Code (MAC) using the source, destination, unique query identifiers and the shared

secret. However, an internal attacker in the network, who can get hold of the shared secret, can

easily place itself on the end-to-end route, and get hold of all the data packets. Moreover, the

protocol does not secure the network from an attack by colluding malicious nodes.

All the above solutions have used either a symmetric or a public key cryptosystem,

intending to use either a shared secret key or a digital signature to authenticate and protect the

routing information. They still tend to find the shortest path from source to destination,

irrespective of some untrustworthy links in between. [Yi 1], the authors have proposed a

secured routing protocol based upon the trust level of the nodes. Their protocol is based on an on-

demand protocol like AODV [Per99} or DSR [Joh99]. The authors have defined a security metric

and embedded it into the RREQ packet. When an intermediate node receives a RREQ with a

specified security metric or trust level, it can only process or forward the packet if it meets the

30

required security level, otherwise it drops it. If an end to end path with the required security

metric is found, then only a RREP is sent back. However, this solution does not prevent a

compromised node from changing its trust level to match the higher trust level of the packet, and

getting all the messages it is not supposed to. The authors also did not discuss any model for

computing and distributing the trust levels.

A similar approach to compute trusted routes based on trust levels has been proposed in

[Pir04b]. The trust computation is based on the actions of three components, namely the trust

agent, the reputation agent and the corbiner. Each node in the network computes a direct trust

value for its immediate neighbor based on the latter's honesty in executing the routing protocol.

The nodes share their trust opinions about other nodes through an effective reputation exchange

protocol. The trust values are used as the metric to compute end-to-end routes. However, it has

not been clearly mentioned how these trust levels are used in the route computation. Also the

proposed protocol does not secure the network from colluding malicious entities.

All the secure routing protocols proposed so far lack any formal model to prove their

security. The first such attempt to develop a formal model to prove the security of a routing

protocol was done in [But04]. The authors have suggested two attacks on SRP [PapO2] and

Ariadne [Hu02b] based on the method. However the authors assumed that the adversary only

advertises non-existent routes. This type of attack, although degrades network performance, is not

detrimental to the confidentiality of the network secrets. There is however no discussion that the

proposed method can prove the security of the routing protocols in face of other attacks such as

the modification of routing metrics by a malicious entity.

2.3 Trust Computation in Ad Hoc Networks

All the security solutions proposed so far and discussed in the last section have at least

one direct point of weakness. This point, when compromised, can disclose the group key and

31

thus, threaten some of the basic security requirements like authentication, confidentiality and

integrity. The use of a trust computational model can be thought of as an alternative approach to

cryptographic solutions. Establishing security associations based on distributed trust among nodes

is an important consideration while designing a secure routing solution, though not much work

has been done to develop a trust model to build-up, distribute and manage trust levels among the

ad hoc nodes. Most of the proposed schemes talk about the general requirement of trust

establishment [Buc02c, VerO 1, EscO2, Kag01], but do not corne up with any specific model or

computational framework to do so. None of the models proposed so far have tried to understand

and analyze different malicious behavior of the attacker and quantify those behaviors in a policy-

based computational framework.

Modeling and computing trust for a distributed environment has been actively researched

for quite a long time [Zhu03, Bet94, Abd97], though not much work has been done to extend the

concept in ad hoc networks. Most of these distributed trust models combine direct and

recommended trusts to come up with trust computations. The concept of direct and recommended

sts was given in [Bet94]. The authors defined a direct trust relationship as:

P trusts,,"e Q value V

Where x is the trust class, V is the value of trust relationship, which is an estination of the

probability that Q behaves well when being trusted. Thus, a direct trust relationship exists

between P and Q if P has all positive experiences with Q. seq is the sequence of entities that

mediated the experiences. In a similar way, a recommendation trust has been defined as follows:

P trusts.rec,", Q wh e.path S, when.target S value V

A recommendation trust exists between P and Q if P is willing to accept from Q reports about

third entities with a specific trust class x. This trust is restricted to the experiences with entities in

S, (target constraint set) mediated by entities in , (path constraint set). seq is the sequence of

entities that mediated the recommendation and V is the value of the trust relationship.

32

The computation of st based on values of trust relationships and sequence of mediating

entities results into continuous values which necessitates the specification of a threshold, which is

not easy to contemplate in a sensitive and dynamic application. When extending the concept of

direct and recommendation trusts in ad hoc networks, it is desirable to avoid the later as it

encourages the collusion between malicious nodes. Moreover, there is a need to understand and

analyze different malicious behavior and quantify them in the computational model.

A similar approach of direct and recommendation trust has been taken by the authors in

[Abd97]. They have suggested a recommendation protocol to formalize the propagation of trust

information by issuing recommendation request and recommendation messages. However, the

proposed model lacks any mathematical basis to calculate the trust values. The authors have not

discussed how the trust values are computed and updated. addition, this model, when extended

to an ad hoc network with frequent topology changes, results in generating a large routing

overhead in the form of control packets with each node generating more and more

reco mendation request messages.

A pairwise trust establishment based on self trust and group trust has been proposed in

[Vir05]. The authors proposed to use the st establishment model for establishing pairwise keys

between nodes. However, the problem of key distribution still exists which cannot be solved from

a trust establishment angle. The trust model proposed here also does not take into account

different forms of malicious behavior.

In [Gra02] the authors have proposed a trust formation and risk assessment schemes

based on the small world concept [Mil67]. The small world concept suggests that "any pair of

entities in a seemingly vast, random network can actually connect in a predictable way through

relatively short paths of mutual acquaintances" [Gra2]. The authors have proposed a trust-based

security architecture consisting of four components namely, entity recognition, trust-based

33

admission control, risk assessment and trust management. The trust formula, as given by the

authors, is as follows:

ZWk (fl,)(k

m

where

T (trust value po forms for any p,

po = principal making admission control decision

p, = principal m steps away from po and requesting admission

m= total steps between po and p,,

Wk = discounting factor (decreases as k increases)

In a similar way, the authors presented the risk assessment formula as follows:

R = 1 - -RP) 1 -R, P) 1 -) (3)

where

= risk assessment p0 forms for interaction with any p;

the other parameters being same as the previous formula.

The above two formulae for computing the trust factor and the risk assessment factor are

based upon the recommendation of each entity about its next enti in the path chain. This model,

when extended to a security-sensitive ad hoc application can attract collusion among different

malicious entities, and hence is not welcome. The trust management component, as designed by

the authors, is based upon the small world assumption that an entity, when roaming in a particular

environment, knows specific information about that environment. This assumption is primarily

34

based upon the Small World Clustering algorithm described in [Mat02] as "a cluster often shows

the particular context". However, this assumption is too strong when applied to an security-

sensitive ad hoc application.

A policy based approach has been proposed in [Bla96], based on a simple language to

specify trust actions and relationships. The authors proposed a trust management system called

PolicyMaker which binds Public Keys to the predicates defining actions for which they are used.

PolicyMaker accepts as input a set of policy statements, a collection of credentials and a

description of a proposed trusted action. It then evaluates the proposed actions by interpreting the

policy statements and credentials. A simple example of the PolicyMaker language is shown

below:

key , key2 , keyn REQUESTS ActionString

ere the Action String describes a usted action requested by a sequence of (or a single)

public keys. This PolicyMaker language is too simplistic to use in an ad hoc scenario where the

actions of an entity can be forcefully implemented by an intruder. For example, when a node is

compromised it can carry out the same set of trusted actions with the key(s) which will be

authorized as per the PolicyMaker language specification.

Watchdog mechanism [Mar00], based on promiscuous mode operation of the ad hoc

nodes, has been the fundamental assumption in any trust computational model. In [Yan03] the

authors have proposed a trust evaluation-based secure routing solution. The trust evaluation is

done based on a trust matrix stored at each ad hoc node. The matrix consists of several parameters

on which the final trust evaluation is computed. However, the mechanism for collecting the

required parameters was not discussed by the authors. They also did not discuss the means of

measuring communication success or failure pertaining to the parameter experience statistics.

Also, some of the parameters suggested by the authors are not realistic in a highly sensitive

application; for example, the parameter personal preference may attract colluding attack in the

35

network. In [PirO4a] a similar concept has been proposed. The authors have defined different trust

categories based on the effectiveness of the protocol nctionalities. The final trust computation

has been formulated as follows:

T y = W,(i* Ti ----------- (4)

where

T (y)is the trust of node x in node y

Si) is the weight of the i' trust category

S(i) is the situational trust of x in the i trst category

The trust computation is based only on the success and failure of transmission of different

packets and does not take into account different forms of malicious behavior. In [NgaO4] the

authors have proposed an authentication scheme based on Public Key infrastructure and

distributed trust relationship. The trust relationship is established by direct as well as

recommended trusts. Composite trust is computed by combining both direct and recommended

trust relationships. Some work has also been done to establish trust based on distribution of

certificates. In [Dav04] the authors have proposed such a trust management scheme. However,

the proposed scheme lacks any specific framework for computing the indices.

Another model has been proposed based on subjective logic [Li04]. The concept of

subjective logic was first proposed by Josang [Jos 1, Jos98, Jos97]. Subjective logic is "a logic

which operate on subjective beliefs about the world, and uses the ter opinion to denote the

representation of a subjective belief' [Jos01]. An opinion towards another entity x is represented

by three states: belief fb(x)], disbelief[d(x)] and uncertainty [u(x)], with the following equality:

b(x) + d(x) + u(x) =1

36

The concept of subjective logic has been extended to propose a trusted routing solution

in [Li04]. The opinion of a node about another node is represented in a 3-dimensional matrix

representing trust, distrust and uncertain opinions. The opinions are updated by a positive or a

negative feedback from the node in question. The proposed model, however, fails to protect the

network from an internal attack, where a malicious node either refuses to forward the packets and

duly authenticates itself to the source, or it cooperates with the source node and acts as a black

hole. The vulnerabilities are discussed in details in the following cases:

Case 1: A compromised node B does not forward node A's message. A's opinion towards

B changes to (0, 0.33, 0.67) from (0, 0, 1), where the values represent trust, distrust and

uncertainty respectively. A subsequently asks for B's digital signature, which is duly supplied by

B. Consequently, A's opinion towards B changes towards positive.

Case 2: B duly forwards all messages sent by A, hence A's opinion towards B changes

towards positive. B can inject false routing information to place itself into the route and

subsequently act as a black hole.

Some mechanisms have been proposed to give incentives to the nodes for acting

unselfishly. in [He04] authors have proposed a secure reputation-based incentive scheme (SORI)

that prevents the nodes from behaving in a selfish way. The scheme, however, does not prevent a

malicious node from selectively forwarding packets or from other malicious behavior.

In view of the above, we prefer to model a trust computational framework based on

different malicious behavior. The problem is not easy, as it requires intricate understanding of the

different malicious intentions and actions and model them in the computational framework. This

trust model can then be used with the trust based routing solution designed by us which will

eventually be discussed in later chapters.

37

Chapter 3

Collaborative Trust-based Secure Routing Protocol

This chapter highlights the design of the trusted routing protocol, which we call Trust-

embedded AODV (T-AODV). We will discuss our assumptions towards designing the protocol,

give an overview of the design and finally talk about the protocol in details with analysis of the

results obtained from extensive simulation. We will also carry out a case by case analysis to

demonstrate the security of T-AODV against different threats in the ne ork.

3.1 Introduction

In our quest for developing a solution for the problems defined in chapter 1, we have

developed a trusted routing solution for ad hoc network applications. The solution has been

developed with an extension of the Ad Hoc On Demand Distance Vector (AODV) [Per99}

routing protocol. The selection of AODV was motivated by its superior performance over the

Dynamic Source Routing (DSR) [Joh99] protocol as highlighted in chapter 1, especially with

increased mobility in the network. Our trusted protocol is unique from other solutions proposed in

the literature in that it is capable of finding a trusted end-to-end route free of any malicious entity

acting either independently or in collusion. It is the first such solution proposed to counter an

internal attack from colluding malicious nodes. The protocol does not encourage shortest path

route discovery as in traditional AODV, but relies on a trust metric to do so. To formulate and

distribute the trust values, we have developed a trust computational model that takes into account

different malicious behavior typical to an ad hoc application. The model is unique and different

from other solutions proposed in the sense that it analyzes different malicious behavior of the

nodes and quantifies them in the model itself.

38

The remainder of this chapter is organized as follows. In the next section we will discuss

the assumptions for designing the protocol, followed by an overall description and detailed

overview. Extensive simulation resilts will follow with analysis of the results. Finally, we will

carry out a security analysis of the protocol by evaluating different t reat scenarios.

3.2 Assumptions

Our trusted routing protocol is based on the following assumptions that we think are

justified. First, all the nodes communicate via a shared wireless channel and all communication

channels are bi-directional. Second, all the nodes operate in a promiscuous mode. Third, our main

focus is on the network layer and the protocol that we propose here is an extension of the Ad hoc

On Demand Distance Vector (AODV) [Per99] routing protocol which we call Trust-embedded

AODV (T-AODV). We have assumed a reliable link layer protocol to be in place. Fourth, we

assume that all the nodes are identical in their physical characteristics, i.e. if node A is within the

transmission range of B, then B is also within the transmission range of A.

The above assumptions are very fundamental and used for all the solutions proposed so

far. Finally, we do not encourage the notion of trust transitivity, i.e., 'if A trusts B and B trusts C,

then A also trusts C'. This trust transitivity encourages more colluding attack in the network from

multiple malicious nodes. For example, if a trusted routing solution [Gho04b} is in use in the

network, then more than one malicious nodes can collude and make their combined trust high

enough to put them in the active route. Instead, our trust model is based on collaborative effort of

all the nodes and analysis of different malicious behavior.

3.3 Design of Trust-embedded AODV (T-AODV)

Essentially all routing protocols in the ad hoc community tend to find the shortest path to

the destination irrespective of the presence of any malicious node in that path. We can argue that,

39

as internal threat in the network in the fo of a compromised or disloyal node is of significant

concern, a path free of malicious node is more important than the shortest path. In the following

section we present a detailed description of T-AODV.

3.3.1 Overall Protocol Description

The motivation for designing T-AODV cones frorn finding a trusted end-to-end path free

of malicious nodes. The basic idea behind the protocol is for a node to append the trust level of its

predecessor from which has received the route request packet. Trust levels are defined to be

unique values of the level of trustworthiness of a node on another node, a detailed modeling of

which will be discussed in chapter 4. A path with maximum trust level will eventually be selected

by the destination node and will be sent to the source as the end-to-end active path to be used. A

node with malicious intention will try to put itself into that active route by trying to inject

malicious trust information. The protocol will ensure that all the trust level information provided

by a node will be checked by its predecessor node in order to ensure information authenticity.

The preliminary design of T-AODV has also been extended to protect the network from colluding

attack where any accusation about a node will also be checked. This is ensured by computing a

signature with the Private Key of the node, alongwith the trust level computation. In the next

sections we are going to discuss the protocols in depth.

3.3.2 High Level Description of T-AODV

When a node wants to find a route to another node, it initiates a route discovery. The

route request packet header contains a trustlevel field which is concatenated with the IP address

of the node whose trust level is being appended, in addition to the other fields in AODV route

request, as shown in figure 3.1. The header also contains a cumulative trust level field which

reflects the sum of the accumulated trust level of all the nodes in the path. When an intermediate

node receives the route request packet, it rebroadcasts it after modifying the trustlevel field to

40

include the trust level of the node that sends it the route request and also increases the cumulative

trust level field by the trust level of its previous node, Every node checks back the rebroadcasted

route request packet from its next node to see whether it has provided the proper information. If

not, it immediately broadcasts a warning message questioning the intended malicious action of

that node. Our protocol does not encourage any intermediate node to send a route reply. The final

route selection is based upon the trustlevel metric where the destination node selects the path

with the maximum Cumulative Trust Level. Hop _count plays a role in deciding the final route

only when more than one packet has same trustlevel.

Sourc Destinatio Source De tinatn Last Broadcast Hop Previous Cumulative

Address Address Sequence Sequence Address ID Count node IP: Trust
Number Number Trust Level

Level

Figure 3.1 Route Request packet structure in T-AODV

where

. Source Address is the address from which the RREQ packet originates;

* Destination Address is the address to which source node wants to send data;

* Source Sequence Number is the latest sequence number received in the past by the source

for any route towards the destination;

* Destination Sequence Number is the most recent sequence number used by the source;

* Last Address is the address of the node from which its next node receives RREQ;

• Broadcast ID is a sequence number uniquely identifying the particular RREQ when taken

in conjunction with the originating node's P address;

* Hop Count is the number of hops from the source node to the node handling the RREQ;

* Previous Node IP is the IP address of the previous node from which a node receives the

RREQ;

41

• Trust Level is a unique value identifying the level of trust of a node on another node;

* Cumulative Trust Level is the sum of trust levels of all the nodes in the path.

The route reply packet has the next hop information. This is in line with the solution

given in [DenO2] to counter the black hole problem. When the source node gets back the first

route reply, it waits for a specified amount of time before using that route. If within that time

another route reply comes, the source node queries the next hops of the two route replies. The

next hop of the malicious route reply will obviously not have the same route to the destination.

Thus, malicious route injection into the network can be prevented. The procedure below shows

the action of a node after it receives a route request packet.

// when a node receives a Route Request packet

Receice_RREQ () {

// check whether it is the destination of the route request
if destination

compute_highest_trust-level ()
// in case more than one RREQ has same trust level
// decides on the basis of lowest hopcount
sends RREP to source()

else (not destination)
if duplicate packet

cross_ checkstrust_level(
if found correct
drops the packet

else
broadcasts roure warning message ()
end if

else (not duplicate)
concatenates the previous node trust level with

previous node IP address
increases the cumulative trust level
increments hopcount
rebroadcasts RREQ

end if
end if
} // end of function ReceiceRREQ

Figure 3.2 Procedure for the action of a node after receiving the RREQ packet

42

A node first checks whether it is the destination of the packet. If it is the destination, it

creates a route reply and sends it back along the reverse route. If it is not the destination, it checks

whether the packet is duplicate. If found duplicate, the node cross checks its trust level provided

by its neighbor and takes action according to the correctness of the information. If the packet is

not a duplicate, it appends the necessary information and rebroadcasts it.

The procedure below shows the detailed action of the source node after it receives the

first route reply.

/ when the source node gets back the first Route Reply
Receive_RREP () {

waits for a specified period
if receives another RREP

queries nexthop()
else

sends data(
end if

} // end of function Receive RREP

Figure 3.3 Procedure for the action of the source node after receiving the first route reply

The function cross-check s_trust level can be implemented in two ways. When an

intermediate node receives a duplicate route request packet, it extracts the concatenation of (IP

Address : Trust level). If it finds that the IP addess matches its o address, it cross checks the

trust level appended by the node. The following algorithm implements this function.

/ Extracts (IP Address : Trust Level)
if (IP Adress = = own address)

cross_checkstrustlevel()
if (trust level does not match)

broadcasts roure warning message()
else

drops the packet(
else

drops the packet()

end if

Figure 3.4 Procedure for the Cross checks trust level function

43

The second possible implementation takes care of the above assumption. An intermediate

node, on receiving a duplicate route request packet, extracts the address stored in the lastaddr

field (the lastaddr field contains the address of the node from which the next node receives a

route request packet) and checks from the neighbor table whether it is from any of its neighbor.

The neighbor table contains a list of all the nodes in the one-hop neighborhood of a node. The

table is populated by the Hello messages received in regular intervals.The algorithm works as

follows:

if (lastaddr = = neighbortable->addr)
crosscheckstrustlevel()

else
drops the packet()

end if
Figure 3.5 Procedure for the alternative implementation of

Cross checks trust level function

The above implementation can actually increase the computtional overhead in each

node. However, the computational overhead can be reduced by efficient searching of the neighbor

table.

3.3.3 Proof of Protocol Security under Attack from Independent Malicious Nodes

Below we present a simple proof to show the securiy of the protocol. The proof uses

method of contradiction and shows at the protocol is secure under the assurnption of an

independent a ck5 from malicious nodes.

Theorem: In the presence of malicious nodes acting independently, our protocol (T-AOD) is

secure.

Proof. Let us assume that the protocol is not secure in presence of malicious nodes acting

independently. In that case, any malicious node will inject faul information into the network to

5 An independent attack is carried out by one or more malicious nodes without the aid of any other node.

44

include itself in the routing path. Eventually, all information will be forwarded through it. The

malicious node will be able to do this successfully by putting a very high trust level for its

previous node. This act will go unnoticed and the route selected by the destination will eventually

include the malicious node.

Let us assume a n-node network, where n > 2. Let S; be the set of nodes in the neighborhood of

nodej. case nodej has 4 nodes in its neighborhood we can denote S; as:

S;= {(ji): -2 i +2Ji O0}, where je N

Let s; c S; be the set of nodes from which node] receives route request. Let,

s;= (j):i = 1, 2)

Now, if node j gets compromised, it will want to put malicious routing information. So.

after receiving the route request, j puts the wrong trust_level for either or all of its predecessors, j-

i (j-i e sj) and rebroadcasts it When the nodes j-i -i E sj) receive copies of the rebroadcasted

route request from node j, they cross check the information. If either of them finds that jis trying

to put malicious information, it immediately broadcasts a warning message to all its neighbors

about the sanctity of node j. Thus, injection of any faulty information by a malicious node will be

detected by its predecessor. Hence, we can argue that our assumption is not correct. Thus, our

protocol is secure in presence of independent malicious nodes. Q.E.D.

We recognize that, the protocol that we have designed so far, has one possible

vulnerability. It fails to secure the network against multiple malicious nodes colluding together.

In the following section we discuss a threat model with multiple colluding malicious nodes and

design solutions to secure against it.

3.3.4 Threat Model

As we have discussed in the earlier section, our secure routing protocol fails to secure the

network against multiple malicious nodes colluding together. In this section we describe the

45

threat model and propose a secure solution for it. Let us consider the following example shown in

Figure l below.

A M2
M1

C
B

Figure 3.6 An example of the threat model

M1 gets a RREQ from A (it also gets a copy from B which is redundant). It rebroadcasts

the RREQ packet to M2 and C. Let us assume that M1 and M2 are malicious and colluding to

disrupt the routing operation. M2 appends a high trust level for MI and rebroadcasts the packet.

C, however, appends the right trust level. MI broadcasts a RWARN message that C is malicious.

C subsequently gets isolated from the network and the route through MI and M2 is selected, as it

has a high trust level. Thus, the malicious nodes collude with each other to bring down the entire

network. The sheer purpose of finding a secure end-to-end route is defied and trusted nodes are

isolated from the network as malicious.

3.3.5 Preventing Colluding Attack

The fact that ad hoc nodes are characterized by low level of trust among themselves,

motivated us to design a secure algorithm based on internal spying and verification. We recognize

the need of developing a mechanism to verify the claim of an accuser accusing another node of

malicious behavior. For example, when MI broadcasts a RWARN message to A and B about C's

trustworthiness, there must be a mechanism by which both A and B check back MI's accusation.

46

Our algorithm to counter the colluding attack assumes the existence of a Public Key

infrastructure. Each node has a <Public Key (PK), Private Key (SK)> pair, the generation of

which can be done by any existing algorithm. Furer assumptions are already discussed in

section 3.1. We extended the T-AODV protocol discussed in section 3.1.1 to incorporate the

security needed to counter the colluding attack. Each node, before broadcasting the RREQ packet,

not only computes the trustlevel field, but also computes a signature and appends it to the RREQ

packet header. The signature is computed as follows:

Sign, = (SourceAddress, Broadcast ID, trust level, IP Address SK), i N

where

SourceAddress is the address of the node from which RREQ originates,

Broadcast ID is a sequence number uniquely identifying the particular RREQ when

taken in conjunction with the originating node's IP address,

trust levels; is the trust level of the node from which node i receives the RREQ, i e N

IP Address, is the IP address of node i i e N ,

SK is the private key of node i, i E N,

N is the number of nodes

The (SourceAddress, Broadcast ID) pair has been used in the signature to prevent replay

attack. A malicious node can store a copy of the signature from another node and use it at a later

point of time to accuse the honest node. If the trust level of the malicious node has already been

changed, then the re-used signature will reflect its previous trust level and the honest node will be

misinterpreted as dishonest and subsequently will be isolated.

After receiving the RREQ packet, a node, besides computing the trust-level,

concatenates the source address, broadcast ID and its own IP address with the trust level of the

47

node from which it receives the RREQ and signs it with its private key to compute the signature.

It then appends the signature in the RREQ packet before broadcasting it to its neighbors. When a

node questions about another node's trustworthiness and broadcasts a route warning (RWA

message, it not only sends the address of the accused node, but also the signature provided by

the later. The RWARN message structure is shown below:

Source Address Broadcast ID Malicious node I Signature RWARN source IP

Figure 3.7 The RWARN message structure

where

. Source Address is the address from which the RREQ packet originates;

. Broadcast ID is a sequence number uniquely identifying the particular RREQ when

taken in conjunction with the originating node's IP address;

* Maliciosu Node IP is the IP address of the node being accused;

a Signature is the Signa re generated by a node;

• R WARN source IP is the address of the accusing node.

The inclusion of source address and broadcast ID into the si ature is to prevent any

replay attack that a malicious node can carry out. A malicious node can copy the signature field

from the RREQ packet and use it at a later time to falsely accuse another node after its own trust

level has changed. The inclusion of the source address and broadcast ID fields in the signature

generation can successfully prevent such a replay attack.

When a node receives a RWARN message, it verifies the accusation by the sender of the

message. It decrypts the signature with the public key of the accused node and checks whether the

trust level matches the trust level of the accuser. If the two trust levels match, the node concludes

that the accused node has provided right information, and hence cannot be malicious. Thus the

48

trustworthiness of the accuser is in question. However, if the trust levels are different, then it

concludes that the accused node is malicious. The procedure is shown below:

receive RWARN () {
decrypt_ Sign () {
if (decrypt = = yes)

Check trust level provided by the accused node
if (trust level provided = trust level of the accuser)

the accuser is malicious
else

the accused node is malicious
end if

else (decrypt = = no)
the accuser is malicious

end if
} //end of function decryptMAC

} //end of function receive RWARN

Figure 3.8 The receive RWARN function

We have carried out extensive simulation to show the effectiveness of the protocols that

we have designed. In the next chapter we are going to highlight the simulation scenario and

discuss the results in details.

3.4 Simulation Model

We have used Glomosir [Zen98] for our simulation. Glomosim is a scalable simulation

software used for mobile ad hoc networks. We have carried out the simulation with two different

scenarios. The mobility model selected for the simulation is random waypoint mobility. In this

model a node randomly selects a destination from the physical terrain. It moves towards the

chosen destination with a speed uniformly chosen between a minimum and a maximum speed

limit. After reaching the destination, the node st ys there for a certain pause time before it selects

another destination and starts moving in that direction.

49

We have chosen two types of traffic for our simulation - CBR (Constant Bit Rate) and

FTP (File Transfer Protocol). For each CBR traffic we have used 10000 packets each of length

512 bytes. In FTP tcplib has been used to simulate the file transfer protocol. each FTP traffic

we have used either 10 or 5 items to be sent to the destination node.

We defined a region of 2 Km by 2 Km and placed the nodes randomly within that region.

In the first scenario, the nodes moved with uniform speed chosen between 0 to 10 meters/sec with

30 seconds pause between each successive movement. We increased the number of nodes and

studied the network performance. In the second scenario, we have increased the node speed,

keeping the similar infrastructure, to carry out our analysis. With these two scenarios, we are able

to evaluate the scalability of our protocol with increased network size and increased mobility. The

parameters for both the scenarios are shown in the table below.

Independent Set of parameters compared
Scenario variable

1 Number of Routing Number Number
nodes overhead of of route

routes errors
selected

Independent
Scenario variable Set of parameters compared

2 Routing Number Number
Node speed overhead of of route

routes errors
selected

Table 3.1 Parameters Chosen For Simulation

3.5 Analysis of Results

In our earlier work, when we desiged the T-AODV routing protocol, we found that it

had a very small increase in routing overhead than AODV (Figure 3.9), which we think can be

traded off with the incorporation of security into the protocol.

50

This increase in overhead is due to retransmission of some route request packets because

of delayed receipt of route reply by the source nodes as we do not encourage intermediate nodes

to send route reply in our protocol. We can also see from Figure 3.9 that the percentage variation

in overhead decreases with increasing number of nodes, which can be explained as follows. In

AODV, as more and more nodes join the network, the probability of sending route replies by

intermediate nodes from their caches increases, which accounts for more increase in overhead. In

our protocol, as we do not encourage intermediate nodes to send route replies, the overhead does

not increase much with increase in number of nodes. Hence the percentage variation of routing

overhead actually decreases in our protocol from that in AODV.

300000

c 250000

200000

150000

0 100000 --

0

50000
- `

c 0

0 20 40 60 60 100

number of nodes

+ Routing Overhead(AODV) ---- Routing Overhead(T-AODV)

Figure 3.9 Comparison of routing overhead between AODV and T-AODV

Figure 3.10 shows the comparison between the routing overhead for AODV, T-AODV

and modified T-AODV. We can conclude that modified T-AODV also has a small increase in its

overhead. This increase in overhead is again due to retransmission of some route request packets

because of delayed receipt of route reply by the source nodes. The average percentage increase in

overhead for modified T-AODV than AODV has been found to be 5.5 %.

51

200000
180000

-z 160000
140000
120000

o 100000
8 60000

t 60000
2 40000

20000
0

0 20 40 60

number of nodes

80 100

--- Routing Overhead(AODV) + Routing Overhead(T-AODV)

-A- Routing Overhead(modified T-AODV)

Figure 3.10 Comparison of routing overhead

2500

2000

S1500

C 1000
500

0
-500

0
0 20 40 60 80 100

number of nodes

-4- Routes selected(AODV) -- a- Routes selected(T-AODV)

-- Routes selected(modified T-AODV)

Figure 3.11 Comparison of number of routes selected

As no intermediate node is encouraged to come up with route replies, we obviously have

lesser number of routes selected in T-AODV and modified T-AODV than that in AODV. This

can be seen from Figure 3.10, which compares the number of routes selected for all the three

protocols. However, this should not give any misconception that some of the routes are not

properly selected. In fact, both T-AODV and modified T-AODV have lesser number of route

errors reported than that in AODV as can be seen from Figure 3.12. If less number of routes are

52

selected, it renders lower processing overhead for the source nodes, as they do not have to process

all the route replies from the intermediate nodes.

The reason for getting lesser number of route errors can be explained as follows. In

AODV as the intermediate nodes come up with route replies, more MAC layer load is generated

because of the unicast nature of route reply packets. However, in modified T-AODV, as no

intermediate node is allowed to send a route reply, this leads to a lower MAC layer load and

hence lower number of MAC layer collisions. This accounts for lower number of route error

packets in our protocol.

6000

5000

4000

3000 -

o 2000

1000

0
0 20 40 60 80 100

number of nodes

-+- Route Errors sent(AODV) -N-- Route Errors sent(T-AODV)

-A-- Route Errors sent(modified T-AODV)

Figure 3.12 Comparison of route errors sent with number of nodes

Figure 3.13 compares the average end-to-end delay for AODV and modified T-AODV.

The variation of the delay has been found to be random, as quite naturally expected because of

the ad hoc nature of the network. However, the delay for modified T-AODV can be found to be in

close proximity to that of the original AODV, which also establishes the efficiency of our trusted

routing protocol.

53

3.5
-. 3.

2.5
r 2

W- 1.5*
1

0 0.5 '
} 0

-0.5 -20 40 60 80 100

NumbeI of Ilodes

-+- Average end-to-end Delay (sec) (AODV)

--- Average end-to-end Delay (sec) (mod T-AODV)

Figure 3.13 Comparison of average end-to-end delay

Figure 3.14 compares the throughput in bits/sec for the two protocols. We can see from

the figure that the throughput for modified T-AODV is sometimes lower than that of AODV. This

is because, for random waypoint mobility model, the speed is chosen from a range specified; and

for higher speed the throughput for T-AODV is higher. This will be discussed in more details in

the our next set of simulations.

- 40000

30000

20000 -

r 10000

0

0 20 40 60 80 100

Ilumlei of 1odes

-+- Throughput (bits/sec) (AODV)

+ Throughput (bitslsec) (mod T-AODV)

Figure 3.14 Comparison of throughput with number of nodes

54

The results from our second set of simulations are shown below. We have varied the

speed of node movement from 5 meters/sec to 30 meters/sec and compared our modified T-

AODV protocol with the original AODV. This range of speed has been selected to simulate the

moderate human speed as well as that of a high speed vehicle. The range can give us a very good

approximation of real time movement.

We can see from the comparison of routing overhead (Figure 3.15) that the modified T-

AODV performs better than AODV with higher speed of node movement. The explanation for

this is that, the topology of the network would change when the nodes move faster resulting in

more route requests to be generated. In AODV more and more intermediate nodes come up with

route replies, which increases the overhead. On the other hand, in modified T-AODV, only

destination nodes come up with replies, hence the overhead is smaller. The small increase in

overhead for modified T-AODV with lesser speed is because of the retransmission of some route

request packets due to delayed receipt of route reply by the source nodes.

180000
160000

140000

120000

100000

80000

60000
2 40000

20000
0

0 5 10 15 20 25 30 35

speed (mtrisec)

--- Routing Overhead(AODV) -a- Routing Overhead(modified T-AODV)

Figure 3.15 Comparison of routing overhead with node speed

55

Figure 3.16 and 3.17 respectively compare the number of routes selected and the number

of route errors sent with node speed. We can see the efficiency of our protocol from these two

parameters also. Significantly lesser number of routes selected by modified T-AODV at higher

node speed imposes lesser processing overhead at the nodes. A significant reduction of route

errors can also be observed for modified T-AODV at higher speed, which can be attributed to the

lower MAC layer load as discussed before.

3500

3000

2500 -
2000

21500

1000

500

c 0
0 5 10 15 20 25 30 35

speed (mtr/sec)

-+- Routes selected(AODV) -=- Routes selected(modified T-AODV)

Figure 3.16 Comparison of routes selected with node speed

7000

6000 -
0

5000

4000

c 3000 _ -

2000

: 1000

0
0 5 10 15 20 25 30 35

speed (mtr/sec)

--- Route Errors sent(AODV) -U-- Route Errors sent(modified T-AODV)

Figure 3.17 Comparison of route errors with node speed

56

Finally, figure 3.18 compares the average end-to-end delay with increasing node speed

for the two routing protocols. Again, the delay has been found to be extremely random in nature,

as predicted by the ad hoc characteristic of the network.

6

S0

0 10 20 30 40

(lode Speed (mntr -Sec)b

--- Average End-to-end Delay (secs) AODV

--- Average End-to-end Delay (secs) mod T-AODV

Figure 3.18 Comparison of average end-to-end delay with node speed

Figure 3.19 compares throughput for modified T-AODV and AODV. We can see from

the figure that T-AODV has higher throughput than AODV for higher node speed, which can be

explained as follows. With the increase in node speed, network topology changes faster and hence

the probability of broken routes increases. This will result in more number of route request

packets being generated. In AODV, more route replies will result which will increase the MAC

load, as route replies, being unicast packets will require MAC layer handshaking in the form of

RTS/CTS/Data/ACK. Thus throughput for AODV comes down with higher node speed. On the

other hand, in modified T-AODV, lesser number of route reply messages are generated which

will result in lower MAC layer load. Hence throughput for modified T-AODV decreases at a

slower rate than that of AODV, resulting in higher throughput than AODV with increased node

speed.

57

12000 -
t 10000

t8000
6000
4000
2000

0
0 10 20 30 40

Ilode Speed (mt sec)

-4- Throughput (bitslsec) (AODV)

+ Throughput (bits/sec) (mod T-AODV)

Figure 3.19 Comparison of throughput with node speed

To conclude briefly, we have also noted that the average running time for modified T-

AODV is about 11 % higher than that of T-AODV. This increase in the running time is because

of the incorporation of cryptographic operations into modified T-AODV protocol. In the

following section, we analyze the security of the protocol by evaluating different threat scenarios.

3.6 Security Analysis

The security of our protocol lies in the verification of the information provided by other

nodes. We evaluate different scenarios of attack by a malicious entity, acting either independently

or in collusion, and show that the protocol is secure against these attacks.

Scenario 1: A malicious node wants to include itself into the path and provides wrong

information in the RREQ packet - this attack has already been prevented while designing the T-

AODV protocol. The malicious node is effectively isolated by the collaborative effort of its

neighbors.

Scenario 2: A node falsely accuses another node and alters the information provided by the later -

the accuser has to append the signature computed by the accused node. In order to alter the

information, it has to decrypt the signature, change the original information and recompute it. But

58

it fails to recompute the signature as it lacks the knowledge of the accused node's Private key.

Thus any attempt to alter the original information gets detected.

Scenario 3: A node falsely accuses another node, alters the information provided by the later and

recomputes the signature with its own Private key - this malicious act gets detected, as the nodes

receiving the warning messages cannot decrypt the signature using the accused node's Public key.

Scenario 4: A node falsely accuses another node and provides the signature of a different node

other than the accused one - this act also gets detected, as the neighboring nodes receiving the

warning messages cannot decrypt the sigature using the accused node's Public key.

Scenario 5: A node whose trust level has changed, falsely accuses another node by using a copy

of the old Signature field that the later used at some earlier point of time. This false accusation

gets detected as the decryption of the signature will reveal the actual source address and broadcast

ID pair.

We reco ize that these scenarios are not exhaustive but at least demonstrate that the

protocol is secure under these threats.

3.7 Conclusion

From the above discussion and analysis of the results obtained from extensive simulation,

we can conclude that the secure routing solution developed by us in course of our research scales

extremely well to both network size and mobility. It has been observed that the routing protocol

performs even better than the original AODV routing protocol with increased mobility in the

network. In the next chapter we are going to discuss the design of the trust computational model

and carry out simulation analysis to prove its efficiency.

59

Chapter 4

Trust Modeling against Selfish and Malicious Behavior

Although it is ext enely difficult to put forward a formal definition of trust, many people

have tried to do so since past several years. Generally speaking, trust is looked upn as a belief in

the honesty and truthfulness of an entity in carrying out certain protocols that have already been

agreed upon mutually. A precise definition of trust is given in [Gam90] as "...trust (or,

symmetrically, distrust) is a particular level of the subjective probability with which an agent

assesses that another agent or group of agents will perform a particular action, both before he

can monitor such action (or independently of his capacity ever to be able to monitor it) and in a

context in which it affects his own action" [LiuO4]. This definition of trust has led to the concept

of confidence6 into the action of an entity. Hence, the terms trust and confidence have been linked

with each other since the concepts evolved in our society.

Trust has been an important concept behind the civilized evolution of our society. A

sociological interpretation of trust has been given in [SztO0 as follows: It is a "clear and simple

fact that, without trust, the everyday social life which we take for granted is simply not possible".

Most people would now agree that "the xistence of trust is an essential component of all

enduring social relation si ps.

This social interpretation of trust can be mapped exactly to the context of our research.

Indeed the basic motivation of our work in developing a trut model has been evolved from this

fundamental concept. the following section, we talk about this motivation.

In chapter 3 we have designed a trusted routing solution that depends on the trust levels

to compute end-to-end routes. The solution was developed under the assumption of static and pre

6 Confidence has been defined to be the level of belief on an entity's action.

60

distributed trust levels among the nodes in the network. reality, this would not work in many

situations, as described below:

1. a network deployed by the military in a war front there is a high possibility of nodes

getting compromised, in which case the trust levels of the nodes should change. But this

would not be reflected if static truts levels are used in the network;

2. In any commercial sensor networking application, a node may act selfish in forwarding

other nodes' data to conserve its own power and eventually bring down the network

performance. This selfish act must also be reflected in the trust computation which should

dynamically compute the trust levels;

3. multimedia applications for video and audio file sharing, nodes sometimes show

selfish behavior for which they are accused by others. This also changes the trust levels

of the nodes dynamically.

Hence, realistically speaking, the trust levels used in route computation should be dynamically

computed based on the behavior of the nodes. In this chapter we develop a framework for

computing, distributing and updating trust in an ad hoc network application. Modeling and

computing trusts in such an application has been a challenging problem since the concept of trust

has been extended for infrastructureless scenario. It is very difficult to form a true and honest

opinion about the trustworthiness of the nodes, as they can be engaged in malicious activities in

different ways. This intricacy in trust computation, together with frequent topology changes

among nodes, quite often causes the whole network to get compromised or disrupted. Different

malicious activities of the nodes can very well be misinterpreted as the regular erratic behavior of

the wireless networks in general and ad hoc networks in particular, thus making trust computation

all the more difficult.

As we have already discussed in chapter 2, most of the trust computations proposed for

ad hoc networks talk about the general requirement of trust es ablishment [BucO2c, Ver 1, EscO2

61

Kag01], but do not come up with any specific model or computational framework to do so. Some

researchers have proposed to use trust tables populated by different parameters [Pir04a, YanO3]

collected by the nodes in promiscuous mode. However, none of the models proposed so far have

tried to understand and analyze different malicious behavior of the attacker and quantify those

behaviors in a policy-based computational framework. Some research has been done to prevent

selfish behavior in ad hoc networks by using either a reputation-based incentive mechanism

[BucO2b, He04, Mic02], or a price-based incentive mechanism [ButO2]. In both the mechanisms,

nodes are given incentives to suppress their malicious intention in favor of the network, But

nodes with malicious intention at their subconscious self always try to find ways to bypass these

incentive mechanisms.

Keeping in view the above facts, our objective is to design an efficient trust ranagement

system that takes into account different malicious behavior of the nodes in trying to disrupt the

network operation. The trust computational framework should address the following issues:

1. Incorporation of different malicious behavior and quantifying them in the model;

2. Isolation of a non-trusted entity with the collaborative effort from all its neighbors;

3. Formation of true opinion about malicious entities colluding together to disrupt the

network.

This chapter focuses on the design of the trust computation model that we have developed to

integrate with the trusted routing protocol discussed in the previous chapter. A simulated analysis

of the model has been carried out to prove the efficiency and scalability of the model.

4.1 Trust Issues in Infrastructureless Networ

As we have already discussed, our motivation for developing the st model is to form a

true and honest impression about the trustworthiness of the nodes and to punish the nodes with

62

the slightest malicious intention. To do this we need to understand clearly the ways a node can

engage itself in different malicious acts. Below we highlight three different malicious behavior:

1. A node engaging in selfish behavior by not forwarding packets meant for other nodes, or

selectively forwarding smaller packets while discarding larger ones;

2. A node falsely accusing another node for not forwarding its packets, thus isolating the

node from normal network operation;

3. A node placing itself in active route and then coming out to break the route, thus forcing

more route request packets to be injected into the network. By repeating this malicious

act, a large number of routing overhead is forcefully generated wasting valuable

bandwidth and disrupting normal network operation.

Lets go back to the example of the medical board in chapter 1. We concluded from that example

that a trusted route establishment is of utmost importance where confidential data dissemination

is in use. Even if a trusted route is established, some nodes may act selfish by not forwarding

other nodes' data or even selectively forwarding them. This will slow do the performance of

the network, eventually defeating the purpose of setting up the medical board. forming a true

opinion about other nodes' trustworthiness, it is essential to have a trust model in place by which

nodes can compute the levels of trust they can have on others. Some nodes may act malicious in

accusing other nodes falsely and thus be a good guy in the eyes of others. Even some nodes, after

putting themselves in the active routes, may break the route frequently, thus forcing the injection

of more control packets in the network.

All the malicious acts discussed above, if undetected bring down the network

perfo ance. This has been found from simulation analysis where we inplemented the malicious

behaviors in the AODV routing protocol. We have used Glomosim [Zen98] and incorporated the

malicious behaviors in the network layer. We selected a network size of 50 nodes and increased

the number of malicious nodes from 10 % to 50 % exhibiting the malicious behaviors. The

63

network size has been kept to a moderate level to remain at par with any real-life ad hoc

implementation. It has been found that theree is a substantial degradation of the (packets received

/ packets sent) ratio with the increase in the number of malicious nodes (Figure 4.1).

1.17 - - - 1

o 1.15

Y 1.15

1.14

C 11
a~ 1.13
0

00 1.12__ __

0 5 10 15 20 25 30

No. of malicious nodes

Figure 4.1 Variation of (Packets received / Packets sent) with malicious nodes

A more severe degradation has been found in the network throughput as the number of

malicious nodes increases. We have found that the network throughput decreases by 28% as the

malicious nodes increase from 10 % to 50 %, whereas the throughput of the honest nodes

decreases by 61% with the similar increase in malicious nodes.

In view of the above, we can argue that there is a need to develop a trust computational

model that not only depends upon the history of the nodes' behavior, but also is able to analyze

different froms of malicious behavior and quantify them in the model itself.

The rest of the chapter is organized as follows. In the next sections we will discuss the

trust model that has been built up based on different malicious behaviors alongwith the

assumptions and parameters used towards developing the model. Next, we will talk about the

simulation setup and analyze the results. The final section will conclude the chapter.

64

4.2 Design of the Trust Model

Our model has been developed with a view to form a true and honest opinion about the

trustworthiness of the nodes with collaborative effort from their neighbors. Our trust model is not

transitive, i.e., we do not consider the notion "if A trusts B and B trusts C, then A trusts C". This

trust transitivity encourages more colluding attack in the network from multiple malicious nodes.

For example, when T-AODV [GhoO4b] is used in the network, them more than one malicious

nodes can collude and make their combined trust high enough to put them in the active route.

Instead, our trust model is based on collaborative effort of all the nodes and analysis of different

malicious behavior. In the following section we analyze some of the possible malicious behaviors

exhibited by the nodes and quantify them to gradually develop the model.

4.2.1 Assumptions

While designing the trust model, we have made the following assurptions which are

realistic. First, all the nodes communicate via a shared wireless channel and all communication

channels are bi-directional. This has been the fundamental assumption while designing any

standard MAC layer protocol for wireless networks. Second, all the nodes operate in a

promiscuous mode. Third, our main focus is on the network layer and we have incorporated trust

computations in the network layer to avoid any unwanted inter-layer cross functioning. We have

assumed a reliable link layer protocol to be in place. The above assumptions are very fundamental

and used for all the solutions proposed so far. Finally, we do not encourage the notion of trust

transitivity, i.e., 'if A trusts B and B trusts C, then A also trusts C'. This trust transitivity

encourages more colluding attack in the network from multiple malicious nodes. For example,

when our trusted routing solution [GhoO4b] is in use in the network, then more than one

malicious nodes can collude and make their combined trust high enough to put them in the active

65

route. Instead, our trust model is based on collaborative effort of all the nodes and analysis of

different malicious behavior.

4.2.2 Trust Model Against Selfish Behavior

The development of the model to punish a node for selfish behavior is based on the

Secure and Objective Reputation-based Incentive (SORI) scheme proposed in [He04] with

several modifications. We will elaborate more on these modifications as we describe the trust

model.

4.2.2.1 Parameters used in the Model

Below we describe the parameters used in our trust computational model. We have

represented nodes by N, X and i. A detailed description can be found in [He04].

(i) NLN = Neighbor Node List (each node maintains a list of its neighbors, either by receiving

Hello messages, or by learning from overhearing).

(ii) RFN (X)(Request for Forwarding)= total number of packets node N has forwarded to node X

for further forwarding.

(iii) HFA (X) (Has Forwarded) = total number of packets that have been forwarded by X and

noticed by N.

(iv) LERN (X)= Local Fvaluation Record of node N of node X. It reflects the evaluation of the

behavior of node X by another node N.

(v) GN (X)= Forwarding ratio of node N on node X.

(vi) CN X)= Confidence level of N on .

66

(vii) OERNX)= Overall Evaluation Record of node N on node X. It is the overall evaluation of

a node on another node based on its own local evaluation and collaborative evaluation from its

neighbors.

4.2.2.2 Model Formulation

With the above parameters node N can create a local evaluation record (denoted

by LERN (X)) about X. The record LERN(X) consists of two parameters shown below:

LERN(X)= {GN(X),CN

where

G (X) is the forwarding ratio given by GN(X) = (HFN() N()

C A(X) is the confidence level of N on X

In [He04] the authors have set CN V() = RFv (A). This gives quite an accurate

estimation about the trustworthiness of a node when weighted by the confidence level. But the

trust computation does not take into account a node's "selective forwarding" behavior, where it

only forwards small packets while selectively discarding larger ones. To reflect this kind of

malicious behavior in our trust model, we compute the confidence level C (A) as shown in

equation (5).

HF(N X)/RFN(X))(Pkt size

c (X)= (Pc)(5)

67

Node N computes its confidence level on _after s ending a specified number of packets to

X The computation is weighted by the packet size to reflect the "selective forwarding" behavior

of a node.

We propose a similar propagation model proposed in SORI [Heo4. Each node updates

its local evaluation record (LER) an sends it to its neighbors. When a node N receives the

LER, X) from node i, it computes the overall evaluation record of X (denoted by ERN),

as shown in equation (6).

CN i*,X)*G (X)
OER (X)= ENNL X C (x) (6)

I eNNL iX

where

CN i confidence level of node N on node i from which it receives LER i(X)

C (X) = confidence level of node i on node X

G (X) = forwarding ratio of node i on X

42.3 Trust Model Against Malicious Accuser

A malicious accuser is defined to be a node falsely accusing another node for non-

cooperation. We foresee a threat where a node falsely accuses another node of not forwarding its

packets, eventually to isolate the later as an untrustworthy one. This malicious act should also be

reflected in the trust computation, where every node should be given a chance to defend itself.

We extend the trust model against selfish behavior developed in section 4.2.1.2 to take into

account the malicious accusation of a node about another node.We have modified equation (5) to

68

reflect such a malicious act in the computation of the confidence level. The modified equation is

shown below:

ZHFN(X) / RFN())Pkse)
(Pkt size)

where { 0if X fasly accusesN

aN (X) accusation index of N by X 0 i

I otherwise

Node N keeps a track of the packets it received from X and packets it forwarded. If N

finds out that Xis falsely accusing it for non-cooperation, it recomputes its confidence level on X

by taking into account the accusation index. It then broadcasts the new LERN (A) with

new C (), thus resulting in computation of a new OERN(A) which is low enough to punish

. Thus, any sort of malicious behavior of X by falsely accusing other nodes gets punished

eventually.

4.2.4 Trust Model Against Malicious Topology Change

Malicious topology changes are carried out deliberately by malicious nodes in order to

inject more control packets in the network with a view to slow down the network operation. This

is a special type of Denial of Service (DoS) attack by which network resources are wasted. In this

section our proposed model is extended to reflect this malicious behavior of a node. If such a

behavior is detected, the confidence level must be changed in order to punish the malicious node.

However, detection of such a behavior is not easy, as any such topology change can be viewed as

69

a normal characteristic of an ad hoc network. We have tried to capture such a malicious act by

statistically modeling the action and reflecting it in the computation of trust.

To develop the model, we require each node to maintain a table called a neighbor remove

table, where it keeps track of any node moving out of the path. The table is populated by

successive Hello misses in AODV, or from the unreachable node address field in the route error

packet in DSR. In AODV each node periodically broadcasts Hello messages to its neighbors to

ensure connectivity. If successive Hello messages are missed, a node is removed from the

neighbor table and an entry is made in the neighbor rerove table. On the other hand, if DSR is

used, the neighbor remove table can be updated from the u nreachable node address in the route

error message. Each route error message carries the the address of the node that is unreachable.

This address is entered in the neighbor remove table for furher action.

A snapshot of the neighbor remove table is shown below:

Node Address Time of Leavin Time Difference
X TI to=O
X T2 tI =T2- 1
X T3 t2 T3- T2
X T4 T3 = T4 - T3

Mean p
Table 4.1 Snapshot of Neighbor Remove Table

Each node periodically scans the table to find whether any particular node is leaving at

frequent intervals. It computes the mean, pt of the time difference of any particular node leaving

the network. If p, is found lower than a threshold value (denoted by tthreshold), then the node is

identified as malicious and the confidence level is computed as follows

70

(HFN()/ RFN(X *Ptsz)

(Pkt~)size

where

if p ii <= iddss

m(X)= malicious index of node X
1 if p > tthreshold

The choice of the threshold value can be selected based on the typical application for

which the ad hoc network is deployed. A network that demands frequent topology change can

have a higher threshold to accommodate the normal network behavior. An example can be a

typical application in the military where the deployed network demands frequent movement of

the nodes. A similar application can be thought of in an emergency relief operation. On the other

hand, a network deployed for medical boards does not demand frequent node movements, and

hence can be characterized by a lower threshold value.

Finally, to combine all the malicious behavior discussed earlier and to reflect those

behavior in trust computation, the confidence level of node N on Xis computed as shown below:

CN (X Pc~e * a (N)* m(X) -- - (9)(HF' ");Pkt i)size) ,

The final overall evaluation record (ER), when computed based on the local LERs, will

reflect the different malicious behavior of a node as computed in the confidence level, and finally

any malicious act gets detected and punished.

71

4.3 Simulation Setup and Analysis of Results

Our simulation setup for the trust computational model has been designed in a similar

fashion as that designed for T-AODV. The mobility model selected for the simulation is random

waypoint mobility. In this model a node randomly selects a destination from the physical terrain.

It moves towards the chosen destination with a speed uniformly chosen between a minimum and

a maximum speed limit. After reaching the destination, the node stays there for a certain pause

time before it selects another destination and starts moving in that direction.

We have chosen two types of traffic for our simulation - CBR (Constant Bit Rate) and

FTP (File Transfer Protocol). For each CBR traffic we have used 10000 packets each of length

512 bytes. In FTP tcplib has been used to simulate the file transfer protocol. In each FTP traffic

we have used either 10 or 5 items to be sent to the destination node.

We have evaluated the network performance with both increasing network size and

mobility. We have selected node speed from 0 to 10 meters/second with 30 seconds pause

between each successive movement. We increased the number of nodes from 20 to 100 and

studied the network performance with increasing network size. To evaluate the performance of

the protocol with increasing mobility, we have increased the node speed from 10 to 60

meters/second. This range of speed can give us a very good approximation of real time movement

and has been selected to simulate the moderate human speed as well as that of a high speed

vehicle. The parameters are shown in the Table 4.2.

We have incorporated trust computation directly into the routing protocol to avoid any

unnecessary layering interoperability. We have extended the Ad Hoc On-Demand Distance

Vector (AODV) routing protocol [Per99] to incorporate the trust computation and exchange. The

modified protocol has been benchmarked with AODV to study its scalability and efficiency. To

72

avoid any unwanted overhead we have ensured the trust information exchange to be piggybacked

with the route request packet header.

Independent Set of parameters compared
Scenario variable

1 Number of Routing Number Number
nodes overhead of of route

routes errors
selected

Independent
Scenario variable Set of parameters compared

2 Routing Number Number

Node speed overhead of of route
routes errors

selected
Table 4.2 Parameters Chosen For Simulation

Figures 4.2 to 4.10 show the comparison of the base AODV protocol and our modified

protocol with the incorporation of trust computations. From Figure 4.2 we can see that our

protocol scales as good as the original AODV with increasing number of nodes. Even though we

have incorporated extensive trust computation at each node both by its own spying mechanism as

well as by exchanging information from its neighbors, we can see that our protocol does not add

any significant overhead.

120000

100000

80000

o 60000

'0 40000

20000

0
20 30 40 50 60 70 80 90 100

Number of Nodes

-+- ORG AODV ---- MOD AODV

Figure 4.2 Comparison of routing overhead with number of nodes

73

Similar results can be seen from Figures 4.3 and 4.4 where we have benchmarked our

modified protocol with AODV in terms of routes selected and route errors sent. In both the cases

we can see that the modified protocol scales as good as AODV even with large network size.

Number of routes selected and route errors are dependent on several factors like localized

clustering of the nodes, MAC layer load and also routing and transport layer load. The parameters

show random variation as quite expected from the ad hoc nature of the whole network. However,

both the protocols show very similar variation in the characteristics.

1400

1200

-g 1000 -

2 800

600

400

200

Z 0

20 30 40 50 60 70 80 90 100

Number of Nodes

-+-ORG AODV - MOD AODV

Figure 4.3 Comparison of routes selected with number of nodes

3000

2500

2000

1500

1000

500

= 0
20 30 40 50 60 70 80 90 100

Number of Nodes

-+ ORG AODV -e- MOD AODV

Figure 4.4 Comparison of route errors with number of nodes

74

Figures 4.5 and 4.6 compare the average end-to-end delay (in seconds) and throughput

(in bits per second) respectively for the base AODV and the modified protocol. It can be

concluded from the results that the modified protocol scales as good as the original one with

respect to these parameters as well. These parameters also depend upon the localized clustering of

the ad hoc nodes and overall network load including MAC layer, network layer and transport

layer loads. Hence these parameters also show random variation for the two protocols.

3.5-

3
o 2.5

2
1.5

0.5
cE 0

0 20 40 60 80 100

IuImber of Ilodes

--- Average End-to-end Delay (secs)(AODV)

-U- Average End-to-end Delay (secs)(mod T-AODV)

Figure 4.5 Comparison of average end-to-end delay with number of nodes

35000 -
30000 _
25000 -
20000
15000
10000 -

o 5000 s
0

0 20 40 60 80 100

Humber of Ilodes

-+- Throughput (bits/sec)(AODV)

u Throughput (bitslsec)(mod T-AODV)

Figure 4.6 Comparison of throughput with number of nodes

Our next set of simulation is to evaluate the modified protocol with increasing node

speed. This parameter has been selected to see the protocol scalability and efficiency with

75

frequent changes in network topology. We can see from Figure 4.7 that our modified protocol

does not add any overhead, even with higher node movement.

200000
180000

160000
2 140000

120000 -
100000

80000
60000

5 40000
20000

0
10 20 30 40 50 60

Speed (m/sec)

-+-- ORG AODV - MOD AODV

Figure 4.7 Comparison of routing overhead with node speed

As we have piggybacked the confidence information into the route request messages to

control routing overhead, we can conclude that mobility will help in updating trust and

confidence information in our modified protocol. As the topology of the network changes more

frequently necessitating more and more route request packets to be generated, more recent

information about the trusts are circulated in the network. Thus, we can conclude that our

modified protocol is not only efficient and scalable with network size and node speed, it also

gives a better picture of trust and confidence with higher node speed. Figures 4.8 and 4.9

conclude in a similar way that the protocol scales very well in terms of routes selected and route

errors sent.

76

7000

6000 ___ -:7

5000

W 4000 r
3000

$ 2000

1000

0
10 20 30 40 50 60

Speed (m/sec)

-+- ORG AODV -a- MOD AODV

Figure 4.8 Comparison of route errors with node speed

3500

3000

M 2500

~2000 -
1500

1000

500

z 0
10 20 30 40 50 60

Speed (misec)

+-ORG AODV -U- MOD AODV

Figure 4.9 Comparison of routes selected with node speed

Figure 4.10 compares the average end-to-end delay (in seconds) for the base AODV and

the modified protocol. We can see that the modified protocol scales as good as the original

AODV with increasing node speed with respect to the delay.

As we can see from Figures 4.7 to 4.10, the parameters for the modified protocol vary

randomly with comparison to the base AODV with sometimes lower and sometimes higher

values. This is attributed mainly to the ad hoc nature of the network with random waypoint

mobility model. The parameters are dependent upon factors like localized node clustering, MAC

layer load and also transport and network layer load, as we have discussed previously. These

77

factors change with every simulation run with random waypoint mobility, which attributes to the

somewhat random variation between the two protocols.

3

v 21-

a 0

0 10 20 30 40

Ilode speed (nti sect

-+- Average End-to-end Delay (secs)(AODV)

-U- Average End-to-end Delay (secs)(mod T-AODV)

Figure 4.10 Comparison of Average End-to-end Delay

4.4 Conclusion

From the above analysis, we can conclude that the trust model developed by us scales

very well to both network size and mobility, even though we have incorporated extensive trust

computations in the routing protocol itself. In the next chapter we will conclude our thesis with

an emphasis on the possible drawbacks of our designed models and future extension that need to

be carried out.

78

Chapter 5

Conclusion

This dissertation makes two important contributions towards designing a secure

communication system for infrastructureless networks. The designs and formulations used can

have significant contributions for securing next generation ad hoc or sensor networks. The results

obtained can form a solid foundation for future developmental work. This chapter summarizes

our main contribution and presents related problems and future extension.

5.1 Trusted Routing Protocol

The quest for finding a secure communication infrastructure led us to design a trusted

routing protocol, which we call Trust-embedded AODV (T-AODV) that relies on the

collaborative effort of all the nodes to find a trusted end-to-end path. The protocol is capable of

securing the network from an active internal attack, be it from malicious node acting

independently or in collusion. The working of the protocol depends upon the collaborative effort

from all the nodes and any malicious node trying to inject false information gets isolated and

punished. This is one of the first major contributions towards designing a secure routing scheme

against colluding attack where more than one malicious nodes collude with one another to attack

the network. A concept of trust level is introduced which plays a critical role in the final route

selection. Our extensive simulation shows that our protocol is efficient as well as scalable with

network size and node speed. A case by case threat analysis has also been carried out to show that

the protocol is secure against most es of attacks.

79

5.2 Trust Computational Model

We have also designed a trust computational model and integrated it with the routing

protocol. The trust model is unique in the sense that it analyzes different malicious behavior and

quantifies those behavior in the model itself This is one of the first efforts given to formulate

trusts by analyzing different forms of malicious behavior. The model can lay do a solid

foundation for carrying out future research on trust computations in infras ctureless scenarios.

We have carried out extensive simulation to show the efficiency and scalability of our protocol

with both network size and nobility.

5.3 Future Direction

Although our work is extensive and forms a solid basis for developing a secure

communication infrastructure in multihop ad hoc networks, we believe that there is much more to

be done in this area. Up to now, the promiscuous operation of the nodes was assumed to be power

efficient. Although this was not the primary focus of our research plan at the time, we realize the

need to address the issue of making our protocol power-efficient. In particular, when each node

works as a router to help deliver packets to the destination, relaying packets to others can result in

the device expending its own energy. In addition, since the nodes are working in a "promiscuous"

mode, the amount of energy consumed in this case can be quite significant. Hence, a mobile node

should examine its own "well-being" before committing to forwarding packets or sniffing on

behalf of the others. Such a limitation in energy supply implies the need for developing power

control schemes to prolong the battery life. Some power control techniques are geared at reducing

the amount of interference between devices and, therefore, the number of power-consuming

retransmissions. Security can also be enhanced by proper power control. To preserve a low

probability of being intercepted and being detected (a major issue in military applications), ad hoc

nodes have to be controlled so that they transmit as little power as necessary, hence significantly

80

reducing the probability of being intercepted or being detected. In view of this, we need to

develop an innovative framework which takes into consideration power aware secure routing.

The power consideration is more pronounced in sensor network applications, where the

nodes are characterized by their power constraints, So far the routing protocols designed for

sensor applications are not matured enough to incorporate security and power together into their

design. Although the design will be very much application specific, the basic need for trusted

routing will be there for multihop applications. However, in broadcast networks, designing

reliable MAC protocols will suffice. To extend our sted routing protocol in sensor applications,

we have to give serious considerations to power-cons ained design.

Our current "collaborative trust-based secure routing protocol" does not consider the

probability of MAC layer collisions. Nodes forming an ad hoc network typically have single

antenna to transmit and receive. Thus, it is impossible for the nodes to transmit data, and at the

same time, sense the network. This limitation could result in a higher probability of collisions.

One possible solution is to use RTS/CTS handshaking to avoid a MAC layer collision. An

obvious disadvantage to this approach is the significant increase in overhead. Althouh we have

not considered the probability of MAC layer collisions in our existing solution, the trust

interpretation of a node changes when some packets are lost. Even though our existing protocol

has a network layer security mechanism, the sheer possibility of losing packets due to layer two

collisions makes our protocol ineffective. Therefore, part of our research plan is to consider this

issue when designing a secure solution which not only has multiple levels of security, but also a

reliable MAC transmission mechanism.

Our solution also finds a secure end-to-end path without considering the reliability of that

path. Much work in the field of routing are based on cluster-based solutions [Kri95], where

clusters are defined on the basis of mobility, energy and degr parameters. This would allow

adopting more reliable solutions other than a flat P2P approach. A still unanswered question is

81

"what would be preferable, a non-secure reliable path or a secure unreliable one?" Our solution

would be the incorporation of path reliability along with security. This will give us a robust and

reliable path discovery protocol.

The trust computational nodel developed by us, although unique in its approach to take

different malicious behavior into account, is not exhaustive. With the growing popularity of

ubiquitous computing and more and more applications of infras ctureless networking, a wide

variety of threats and attacks will be in vogue. To defend the network from those attacks the trust

model has to be updated and designed in accordance to these new threats. The ultimate goal will

be to develop a policy-based autonomous trust computational system that will be capable of

protecting the network from various threats. In this respect, it can be discussed that a new way of

looking at the trust modeling is to develop it from a Markov chain point of view, where the

decision to have ust on a node will only depend on the current state of trust on that node and not

on the history of its behavior. The motivation for this approach lies in the fact that any

infrastructureless application can have a veiy high probability of instantaneous node compromise,

and hence the history of its behavior should carry no impression in deciding the next course of

action. However, this thought is only at its preliminary stage, and a more matured approach needs

to be designed based on this model.

Our work can also lay a solid foundation for developing a policy-based securiy

management paradigm. The overall goal will be to design and develop rules based on different

malicious behavior and threats which will act as a basis for developing policies to secure the

network from external and internal attacks.

Finally in the previous section, we have considered security only at the network layer.

This can be further extended to incorporate multiple levels of security to make our design strong

and robust. We strongly believe that a cross layer approach needs to be taken to design a secure

82

communication infrastructure which incorporates securiy into multiple layers and provide a

seamless communication between the layers to make the network robust and secure.

83

Bibliography

[Abd97] Alfarez Abdul-Rahman & Stephen Hailes, "A Distributed Trust Model", ACM New
Security Paradigm Workshop, 1997.

[Abe01] Karl Aberer, Zoran Despotovic, "Managin Trust in a Peer-2-Peer Information
System in Pr oceeding of the Tenth Internatinal Conference on Information and
Knowledge Managem cnt (CIKM '01), Atlanta, Georgia, USA, November 5-10 2001.

[Alb02] Patrick Albers et. al., "Security in Ad Hoc Networks: a General Intrusion Detection
Architecture Enhancing Trust Based Approaches", Wireless Information Systems,
Ciudad Real, Spain, 2002.

[Bec98] Becker and Wille, "Communication complexity of group key distribution",
Proceedings of the 5th ACM conference on Computer and communications security

San Francisco, California, United States Pages: 1 - 6, 1998, ISBN: 1-58113-007-4.

[Bet94] Thomas Beth, Malte Borcherding, Bitgit Klein, "Valuation of Trust in Open
Networks", Proceedngs of the European Symposium on Resea rch in Computer
Security (ESORICS), 1994, Brighton, UK, pp.3-18, LNCS 875, Springer-Verlag.

[Bla96] Matt Blaze, Joan Feigenbaum, Jack Lacy, "Decentralized Trust Management", in Proc.
IEEE Confer nc on Security and Privacy, Oakland, CA, May 1996.

[Blu83] Manuel Blum, "How to Exchange (Secret) Keys", ACM Transactions on Computer
Systems, vol. 1, no. 2, pp. 175-193, May 1983.

[Buc02a] Sonja Buchegger, Jean-Yves Le Boudec, "The Effect of Rumor Spreading in
Reputation Systems for Mobile Ad-hoc Networks", in Procee digs of WiOpt '03,
Modeling and Optim iation in Mobile Ad Hoc and Wireless Networks, Sophia-
Antipolis, France, March 2003.

[Buc02b] Sonja Buchegger and Jean-Yves Le Boudec, "Performance Analysis of the

CONFIDANT Protocol (Cooperation Of Nodes: Fairness In Dynamic Ad-hoc

Net orks)" in Proceedings of the Third ACM International Symposium on Mobile Ad

Hoc Networking and Computing (MOBIHlOC 02) Switzerland, June 9-11, 2002.

[Buc02c] Sonja Buchegger, Jean-Yves Le Boudec, "Nodes Bearing Grudges: Towards Routing
Security, Fairness, and Robustness in Mobile Ad Hoc Networks" in Proceedings of

the Tenth Euromicro Workshop on Parallel, Distributed, Network-based Processing,

pages 403-410, Canary Islands, Spain, January 2002.

[Bur95] M.V.D. Burmester and Y. Desmedt, "A Secure and Efficient Conference Key
Distribution System", in A.D.Santis, editor, Advances i Cryptology - EUROC`R YPT
'94, volume 950 of Lecture Notes in Computer Science, pp. 275-286, Springer-Verlag,
1995.

[But04] Levente Buttyin and Istvan Vajda, "Towards Provable Security for Ad Hoc Routing
Protocols", in Proceedings of the ACM Wors hop on Security of Ad Hoc and Sensor

Networks (SASN '04), Washington, DC, USA, October 25, 2004.

[But02] Levente Bu tatn and Jean-Pierre lubaux, "Stimulating Cooperation in Self-

Organizing Mobile Ad Hoc Networks", Mobil Networ and Applications(MONET)
Journals of Mobile Networks, 2002.

[CapO3] Srdjan Capkun, Jean-Pierre Hubaux, Levente Buttyan, "Mobility Helps Security in Ad
Hoc Networks", in Proceedings of the Fourth ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc '03), Annapolis, Maryland,
USA, June 1-3.

[Car03] Marco Carbone, Mogens Nielsen, Vladiiro Sassone, "A Formal Model of Trust in

Dynamic Networks", Basic Research in Computer Dscience (BRICS) Report RS-03-4,

2003.

[Das00] Samir R. Das, Charles E. Perkins, Elizabeth M. Royer, Mahesh K. Marina,
"Performance Comparison of Two On-demand Routing Protocols for Ad Hoc
Networks", in Proceed ings of fEEE Infocom, 2000.

[Dav04] Carlton R. Davis, "A Localized Trust Management Scheme for Ad Hoc Networks", in
Proceedings of the 3 'd International Conference on Networking (ICN '04), March
2004.

[DenO2] Hongmei Deng, Wei Li and Dharma P. A awal, "'Routing Security in Wireless Ad
Hoc Networks", IEEE Communications Magazine, vol. 40, issue 10, pp. 70-75,
October 2002.

[Des97] Yvo Desmedt, "Some Recent Research Aspects of Threshold Cryptography"
Proceedings of the First International Workshop on Information Security, pp. 158 -

173, 1997, ISBN: 3-540-64382-6.

[Des87] Y. Desmedt, "Society and group oriented cryptography: a new concept", in Advances

in Cryptology- Crypto'87, pp. 120-127, 1987.

[Dif76] W. Diffie and M.E. Hellman, "New Directions in Cryptography", IEEE Trans. Iform.
Theory, IT-22, (6): pp. 644-654, November 1976.

[Dou02j John R. Douceur, "'The Sybil Attack", in First International Workshop on Peer-to-Peer

Systems (IPTPS'02), March 2002.

[Esc02] Laurent Eschenauer, Virgil D. Gligor and John Baras, "On Trust Establishment in
Mobile Ad Hoc Networks", in Proceedings of the Security Protocols Workshop,
Cambridge, U.K.: Springer-Verlag, April 2002.

[Gam90] D. Gambetta, "Can We Trust Trust?", in Trust, Making and Breaking Cooperative
Relations, basil Blackwell , 1990, pp. 213-237.

85

[Gen96a] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin, "'Robust and
Efficient Sharing of RSA Functions", Crypto '96, 1996.

[Gen96b] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk and Tal Rabin, "Robust
Threshold DSS Signatures", Advances in Cryptology - Eurocrypt '96, Springer-
Verlag, 1996.

[Gho05] Ti rthankar Ghosh , Niki Pissinou, Kia Makki, "Towards Designing a Trusted Routing
Solution in Mobile Ad Hoc Networks", to appear in the ACM Journal "Mobile
Networks and Applications (MONFT)" Special issue on Non-Cooperative Wireless
Networking and Computing, 2005.

[Gho04a] Tirthankar Ghosh, Kia Makki, Niki Pissinou, "An Overview of Security Issues for
Multihop Mobile Ad Hoc Networks", Network Security: Technology Advances,
Strategies, and Change Drivers, pp. 149-160, ISBN: 0-931695-25-3, 2004.

[Gho04b] Tirthankar Ghosh, Niki Pissinou, Kia Makki "Collaborative Trust-based Secure
Routing Against Colluding Malicious Nodes in Multi-hop Ad Hoc Net works" in
Proceedings of the 29' IEEE Annual Conference on Local Computer Networks (LCN),
Nov 16-18, Tampa, USA, 2004.

[Gon90] Li Gong, Roger Needham, Raphael Yahalom, "Reasoning about Belief in
Cryptographic Protocols", in Proceedings of IEEE Symposium on Security and
Privacy, Oakland, California, pp. 234-248, May 1990.

[Gra02] Elizabeth Gray, Jean-Marc Seigneur, Yong Chen, Christian Jensen, "Trust Propagation
in Small World", in Proceedings of First International Confer ence on Trust
Management, 2002.

[GraO0} Tyrone Grandison and Morris Sloman, "A Survey of Trust in Internet Applications",

IEEE Communications Surveys. http://www comsoc.org/pubs/surveys. Fourth Quarter

2000.

[HeO4 Qi He, Dapeng Wu, Pradeep Khosla, "SORI: A Secure and Objective Reputation-
based Incentive Scheme for Ad-hoc Networks", in Proceedings of the IEEE Wireless
Communication and Networking Conference (WCNC), 2004.

[Hie01] Maarit Hietalahti, "Key Establishment in Ad hoc Networks", Technical Report, Lab of
Theoretical Computer Sc ine, Helsinki University of Technology, 2001.

[Hu02a] Yih-Chun Hu, David B. Johnson and Adrian Perrig, "SEAD: Secure Efficient Distance
Vector Routing for Mobile Wireless Ad hoc Networks", In Fourth IEEE Workshop on
Mobile Comnputing Systems and Applications (WMCSA '02), June 2002, pp. 3-13, June
2002.

[HuO2b] Yih-Chun Hu, Adrian Perrig and David B. Johnson, "Ariadne: A Secure On-Demand
Routing Protocol for Ad-hoc Networks" in Proceedings of the 8th annual
international conference on Mobile computing and networking (MobiCom) '02,
September 23-26, 2002, Atlanta, Georgia, USA.

86

[Hub01] Jean-Pierre Hubaux, Levente Bu in, Srdan Capkun, "The Quest for Security in
Mobile Ad Hoc Networks in Proceedings of the Second ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MOBI OC), 2001.

[Joh99] David B. Johnson and David A. Maltz, "The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks", Internet Draft, MANET Working Group, IETF, October,
1999.

[Jos0l] A. Josang, "A Logic for Uncertain Probabilities", International Journal of Uncertainty,
Fuzziness and Knowledge-based Systems, 9(3): 279-311, 2001.

[Jos98] A. Josang, "A Subjective Metric of Authentication", in Proceedings of ESORICS:
European Symposium on Research in Computer Security, LNCS, Springer-Verlag,
1998.

[Jos97] A. Josang, "Prospectives for Modelling Trust in Information Security", in Proceedings
of Australasian Conference on Information Security and Privacy, pp. 2-13, 1997.

[Kag01] Lalana Kagal, Tim Finin and Anupam Joshi, "Moving from Security to Distributed
Trust in Ubiquitous Computing Environments", IEEE Computer, December 2001.

[Kon01] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang, "Providing Robust
and Ubiquitous Security Support for Mobile Ad-Hoc Networks", International
Conference on Network Protocols(ICNP), 2001.

[Kri95] P. Krishna, M. Chatterjee, N. H. Vaidya, D. K. Pradhan, "A Cluster based Approach
for Routing in Ad Hoc Neworks", second USENIX Symposium on Mobile and
Location Independent Computing, April 1995.

[Li04] Xiaoqi Li, Michael R. Lyu, Jiangchuan Liu, "A Trust Model Based Routing Protocol
for Secure Ad Hoc Networks", Proceedings 2004 IEEE Aerospace C'onference, Big
Sky, Montana, U.S.A., March 6-13 2004.

[Liu04] Jinshan Liu, Valerie Issarny, "Enhanced Reputation Mechanism for Mobile Ad Hoc
Networks:, in Proceedings of iTrust 2004, Oxford, UK, March 2004.

[Lou04] Wenjing Lou, Wei Liu, Yuguang Fang, "SPREAD: Enhancing Data Confidentiality in
Mobile Ad Hoc Networks", IEEE Infocom, Hong Kong, March 2004.

[Lou03] Wenjing Lou and Yuguang Fang, "A Survey of Wireless Security in Mobile Ad Hoc
Networks: Challenges and Available Solutions", Ad Hoc Wir eless Networking, X.
Cheng, X. Huang and D. Z. Du (Eds.), pp. 319-364, Kluwer Academic Publishers,
2003.

[Mar00] Sergio Marti, T.J. Giuli, Kevin Lai and Mary Baker, 'Mitigating Routing Misbehavior
in Mobile Ad Hoc Net orks, in Proceedings of the 6 'h Aa I a toal

Conference on Mobile Computing and Networkin (MobiCom), Boston,
Massachusetts, United States, August 06 - 11, 2000.

87

[Mat02] Y. Matsuo, "Clustering Using Small World Structure", in Knowledge based Intelligent
Information and Engineering Systems, Crema, Italy, 2002.

[Mic02] Pietro Michiardi and Refik Molva, "CORE: A Collaborative Reputation Mechanism to
Enforce Node Cooperation in Mobile Ad hoc Networks", in Proceedings of the 6th
IFIP Communications and Multimedia Security Conference, Portorosz, Slovenia, 2002.

[Mil67] Stanley Milgram, "The Small World Problem", Psychology Today, 61, 1967.

[New04] James Newsome, Elaine Shi, Dawn Song, Adrian Perrig, "The Sybil Attack in Sensor
Networks: Analysis & Defenses", in Proceedings of Information Processing in Sensor
Networks (IPSN '04), Berkeley, California, USA, April 26-27, 2004.

[Nga04] Edith C. IL Ngai and Michael R. Lyu, "Trust and Clustering-Based Authentication
Services in Mobile Ad Hoc Networks", Proceedings of the 2 "d International Workshop
on Mobile Distributed Computing (MDC '04), Tokyo, Japan, March 23-26, 2004.

[Pap03] Panagiotis Papadimitratos and Zygmunt J. Haas, "Secure Link State Routing for
Mobile Ad hoc Networks", In Proc. IEEE Workshop on Security and Assurance in
Adhoc Networks, in conjunction with the 2003 International Symposium on
Applications and the Internet, Orlando, FL, January 28, 2003.

[Pap02] Panagiotis Papadimitratos and Zygmunt J. Haas, "Secure Routing for Mobile Ad hoc
Networks", In Proc. SCS Communication Networks and Distributed Systems Modeling
and Simulation Conference(CNDS 2002), San Antonio, TX, January 27-31, 2002.

[Per03] Charles E. Perkins, E. Belding-Royer, S. Das, "RIFC 3561 - Ad hoc On-Demand
Distance Vector (AODV) Routing", July 2003.

[Per0l] Charles E. Perkins, "Ad Hoc Networking", Addison-Wesley, ISBN 0-201-30976-9,
2001.

[Per99] C. Perkins and E. Royer, "Ad hoc On-Demand Distance Vector Routing", In Proc.
IEEE Workshop on Mobile Computing Systems and Applications, 1999.

[Pir04a] Asad Amir Pirzada and Chris McDonald, "Establishing Trust in Pure Ad-hoc
Networks", appeared in 2 7 'h Australian Computer Science Conference, The Univ. of
Otago, Dunedin, New Zealand, 2004.

[Pir04b] Asad Amir Pirzada, itava Datta, Chris McDonald, "Trustworthy Routing with the
AODV Protocol", in Proceedings of the International Conference on Networking and
Communication (INCC 2004), 2004.

[Pir04c] Asad ir Pirzada and Chris McDonald, "Kerberos Assisted Authentication in Mobile
Ad-hoc Networks", in the Proceedings of the 27th Australasian Coipu ter Science
Conference, The University of Otago, Dunedin, New Zealand, 2004.

88

[Pis04] Niki Pissinou, Tirthankar Ghosh, Kia Makki, "Collaborative Trust Based Routing in
Multihop Ad Hoc Networks", in Proceedings of Networking '04: Spri ger Verlag,
Series:Lecture Notes in Computer Science, vol. 3042, pp. 1446 - 1451, Athens,
Greece, May 9-14, 2004

[Riv78] R. Rivest, A. Shamir, and L. Adlernan, "A method for obtaining digital signature
and publickey cryptosystems", Communication of ACM, vol. 21, 1978.

[San02] Kimaya Sanzgiri et al, "A Secure Routing Protocol for Ad hoc Networks", In Proc. of
the l0'h IEEE Intern at onal Conference on Network Protocols (IC NP'0), 2002.

[Sha79] A. Shamir, "How to share a secret", Commun. ACM, 22, pp. 612-613, November
1979.

[Smi97] Bradley R. Smith Shree Murthy, JJ. Garcia-Luna-Aceves "Securing Distance-Vector
Routing Protocols", I Proceedings of Intern et Socie Symposium on Network and
Distributed System Security, San Diego, CA, Feb 1997.

[Son03] Joo-Han Song, Vincent W.S. Wong, Victor C. Leung, Efficient On-Demand
Routin for Mobile Ad Hoc Wireless Access Networks", part ly in IEEE Vehicular
Tecnology Conference, Spring 2003 Jeju, Korea, April 2003 and partly in IEEE
Globecom '03, SanFrancisco, CA, December 2003.

[Sta02] William Stallings, "Cryptography and Network Security: Principles and Practice"
Prentice Hall, 3' Edition, August 2002.

[Sta99} Frank Stajano and Ross Anderson, "The Resurrecting Duckling: Security Issues for Ad

hoc Wireless Networks", in Proceedings of the 7' International Workshop on Security
Protocols, vol 1796 of LNCS, pp. 172-194, Springer Verlag September, 1999.

[SteG0] Michael Steiner, Gene Tsudik, and Michael Waidner, "Key A eement in Dn amic
Peer Groups", IEEE Transactions on Parallel and Distributed Systems, vol. 1, No. 8,

pp. 769-80, Aug 2000.

[Ste96] M. Steiner, G. Tsudik, and M. Waidner, 'Diffie-Hellman key distribution extended to

group communication", in Proceeding of the 3'd ACM Conference on Computer and

Communications Security (CCS), New Delhi, India, pp. 31-37, May 14-16, 1996.

[Szt00] Piotr Sztompka, "Trust: A Sociological Theory", Cambridge University Press,
February 3, 2000.

[TanO4] Sapon Tanachaiwiwat Pinal mar Dave, Rohan Bhindwale, Ahmed Helmy
"Location-centric Isolation of Misbehavior and Trust Routing in Energy-constrained
Sensor Networks", in Proceedings of The Workshop o Energy -Efficiet ireless

Communications and Networks (EWCN 04) in conjunction with IEEE I ter national

Per forman ce, Cotputing, and Cotmu cations Con ference (IPCCC), 2004

[The04] George Theodorakopoulos, John S. Baras, Trust Evaluation in AdHoc Ne torks", in
Proceedings of the ACM Workshop on Wireless Security (WiSe'04), Philadelphia,
Pennsylvania, USA, October 1, 2004.

[Tse03] Yu-Chee Tseng, Jehn-Ruey Jiang, Jih-Hsin Lee, Secure Bootstrapping and Routing in
an Ipv6-Based Ad Hoc Network", Wor hop on Wireless Security and Privacy, 2003
(in conjunction with Int'l Conf. on Parallel Processing, 2003).

[Tsu93] Gene Tsudik and Els Van Herreweghen, "On Simple and Secure Key Distribution", 1t
Conf- Computer & Comm. Security '93-11/93 -VA, USA, 1993.

[Ver01] Raja Rai Singh Verma, Donal O'Mahony and Hitesh Tewari, "NTM - Progressive
Trust Negotiation in Ad Hoc Networks", in Proceedings of the 1s joint IEI/IEE
Sympos'iu n ot Telecommunication Sy 'stems Research, Dublin, November 27, 2001.

[Vir05] Mohit Virendra, et. al., "Quantifying Trust in Mobile Ad-Hoc Networks", in
Proceedings of IEEE International Conference on Integration of Knowledge Intensive
Multiagent Systems (KIMAS), Weltha, MA, April 18-21, 2005.

[Wro02] Konrad Wrona, "Distributed Security: Ad Hoc Networks & Beyond", Ad Hoc
Networks SecurityPampas Workshop, Rhul, September 16-17, 2002.

[YanO2] Hao Yang, Xiaoqiao Meng, Songwu Lu, "Self-Organized Network Layer Security in
Mobile Ad hoc Networks", in Proceedings of the ACM Workshop on Wireless Security
(WiSe '02), Atlanta, Georgia, USA, September 28, 2002.

[YanO3] Zheng Yan, Peng Zhang, Teemupekka Virtanen, "Trust Evaluation Based Security
Solution in Ad Hoc Networks", in Proc. of NordSec 2003, Norway, 2003.

[Yas02] Alec Yasinsac, et. al., "A Family of Protocols for Group Key Generation in Ad Hoc
Networks", International Conference on Communications and Computer Networks

(CCN02), Nov 3-4, 2002.

[Yi03] Seung Yi, Robin Kravets, "Composite Key Management for Ad Hoc Netw orks",

Report No. UIUCDCS-R-2003-2392, UILU-ENG-2003-1 778, 2003.

[Yi02] Seung Yi and Robin Kravets, "Key Management for Heterogeneous Ad hoc Wireless

Networks", Report No. UIUCDCS-R-2002-2290, UILU-ENG-2002-1734, July, 2002.

[Yi01] Seung Yi, Prasad Naldurg and Robin Kravets, "Security-Aware Ad hoc Routing for
Wireless Networks", Report No. UIUCDC S-R-2001-2241, UILU-ENG-2001-1748,
August 2001.

[Zap02] Manuel Guerro Zapata and N. Asokan, "Securing Ad hoc Routing Protocols", in
Proceedings of the ACM Workshop on Wireless Security (WiSe'02), Atlanta, Georgia,
USA, September 28, 2002.

90

[ZenO4] Weilin Zeng, Tatsuya Suda, "Path Based Routing Algorithm for Ad Hoc Networks", in
Proceedings of the 13' Inter national C onference on Comiputer Communication and
Networks (ICCCN 2004), Chicagi, IL, USA, 11-13 October 2004.

[Zen98] Xiang Zeng, Rajive Bagrodia and Mario Gerla, "Glomosim: A Library for Parallel
Simulation of Large-scale Wireless Networks", Proceedings of the 12 th Workshop on
Parallel and Distributed Simulations - PADS '98, Alberta, Canada, May 26-29 1998.

[ZhaO4] Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks: An Information Processing
Approach", Elsevier Science & Technology Book, ISBN: 1558609148, May 2004.

[Zho99] Lidong Zhou and Zygmunt J. Haas, "Securing Ad Hoc Networks", IEEE Network, vol.
13, issue 6, pp. 24-30, November/December 1999.

[ZhuO3] Huafei Zhu, Bao Feng, Robert H. Deng, "Computing of Trust in Distributed
Networks", http://ep rint.iacr.org/, 2003/056.

91

APPENDIX A
Header File of Simulation for Preventing Colluding

Attack

/*
* This modified AODV routing header was written by Tirthankar Ghosh in FIU to make the

protocol secured against colluding attack.

* The modified code was written in May 2004.
*/

/*
* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSim is available
* at no cost to educational users only.
*

* Commercial use of this software requires a separate bcense. No cost,
* evaluation licenses are available for such purposes; please contact
* infoCdscalable-networks.com

*

* By obtaining copies of this and any other files that comprise GloMoSim2.02,
* you, the Licensee, agree to abide by the following conditions and
* understandings with respect to the copyrighted software:

*

* 1.Pe rission to use, copy, and modify this software and its documentation
* for education and non-commercial research purposes only is hereby granted
* to Licensee, provided that the copyright notice, the original author's
* names and unit identification, and this permission notice appear on all
* such copies, and that no charge be made for such copies. Any entity
* desiring permission to use this software for any commercial or

* non-educational research purposes should contact:
*

* Professor Rajive Bagrodia
* University of California, Los Angeles
* Department of Computer Science
* Box 951596
* 3532 Boelter Hall
* Los Angeles, CA 90095-1596
* rajiveacs.ucla.edu
*

* 2.NO REPRESENTATIONS ARE MADE ABOUT THE SU I TABILITY OF THE
SOFTWARE FOR ANY
* PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
*

* 3.Neither the software developers, the Parallel Computing Lab, UCLA, or any

* affiliate of the UC system shall be liable for any damages suffered by

* Licensee from the use of this software.

*/

92

// Use the latest version of Parsec if this line causes a compiler error.

* Name: aodv.h
*

* Implemented by SJ Lee (sjlee@cs.ucla.edu)

1*/

NOTE: The parameter values followed the AODV Internet Draft
(draft-ietf-manet-aody-03.txt) and NS2 code by Samir R. Das
Read the NOTE of aodv.pc for more details

*/

#ifndef AODV H
#define _AODV_H_

#include "ip h"
#include "main.h"
#include "nwcommon.h"

#define ACTIVE ROUTETO

#define NODETRAVERSALTIMI

#define NETDIAMETER

#define RREPWAITTIME

#define BAD_LINKLIFETIME

#define BCAST_ID_SAVE

#define REVROUTELIFE

#define MYROUTETO

#define RREQRETRIES

#define TTLSTART

#define TTLINCREMENT

#define TTL_THRES OLD

#define AODV_INFINITY

#define BROADCASTJITTER

#define Public

10 * SECOND

40 * MILLISECOND

35

3 * NODETRAVERSALTIME * NET DIAMETER / 2

* RREPWAIT_TIME

30 * SECOND

RREPWAIT_TIME

2 * ACTIVEROUTETO

2

1

2

7

255

10 * MILLISECOND

17 /* added */

93

#define Private 593 /* added */

#denne n 2623 /* added*/

/* added */#define message

/* Packet Types */

typedef unsigned char AODV-PacketType;

#define AODV_RREQ 0
#define AODV_RREP 1
#define AODV_RERR 2
#define AODV RWARN 3 /* added */

typedef struct

{
AODV_PacketType pktType;
int bcastld;
NODEADDR destAddr;
int destSeq;
NODE_ADDR srcAddr;
int srcSeq;
NODE_ADDR lastAddr;

RREQ packet */
int hopCount;
int trustlevel;
long int MAC;

} AODV_ QPacket;

/* address of the node from which next node receives a

/* parameter added */

/* parameter added */

/* -. :--------- . ---- new structure for RWARN packet-----------___--__--

*/
typedef struct

{
AODV_PacketType pktType;
NODEADDR srcAddr;
int bcastId;
int srcSeq;
NODE_ADDR malciousIP
//int trust level:

long int MAC;
NODE_ADDR rwar sourceI

clocktype lifetime;

94

} AODV_RWARN_Packet;

/* -*,

tyedef stuct

AODV_PacketType pktType;
NODEADDR srcAddr;
NODE_ADDR destAddr;
int destSeq;
int hopCount;
int trustlevel;
NODE_ADDR next hop;
NODE_ADDR lastAddr;

RREP packet */
cloc e lifetime;

} AODVRREP_Packet

/* parameter added /
/* parameter added */

/* address of the node from which next node receives a

typedef struct

{
NODE ADDR destinationAddress
int destinationSequenceNumber;

} AODV_AddressSequenceNumberPairType;

#define AODV_MAX_RERR_DESTINATIONS 250

typedef struct

{
AODVPacketType pktType; // 1 byte
unsigned char filling[2];
unsigned char destinationCount;
AODV_AddressSequenceNumberPairType

destinationPairArray[AODV_MAX_RERR_DESTINATI IONS];
} AODV_RERRPacket;

static //inline//
int AODVRERR_PacketSize(const AODV_RERRPacket* rerrPacket) {

return
(sizeof(rerrPacket->pktType) +

sizeof(rerrPacket-'filhing) +
sizeof(rerrPacket->destinationCount) +
(rerrPacket->destinationCount *
sizeof(AODV_AddressSequenceNur berPair fype))):

}

typedf struct RTE

95

{
NODE ADDR destAddr;
int destSeq;
int hopCount;
int trust level
int lastHopCount;
NODE_ADDR nextHop;
clockte lifetime;
BOOL activated;
BOOL source;
struct RTE *next;

} AODV_RT_Node;

typedef struct

{
AODV RT Node *head;
int size;

AODV_RT;

typedef struct NTE

NODE ADDR destAddr;
struct NTE *next;

} AODVNT_Node;

typedef struct

{
AODVNTNode *head;
mt size;

} AODVNT;

typedef struct RSE

{
NODE ADDR srcAddr;
int bcastld;
int hopCount;
int trustlevel;
struct RSE *next;

} AODV_RST_Node;

/* parameter added *,

/* parameter added */

/* parameter added */

typedef struct

AODV_RST Node *front;
AODV RSTNode *rear;
int size;

} AODVRST;

typedef struct FIFO

NODEADDR destAddr;
cloc e tirestamp;
Message *msg;
s ct FIFO *next;

} AODV_BUFFERNode;

typedef struct

{
AODVBUFFER Node *head;
int size;

AODV_ BUFFER;

typedef struct SE
{

NODEADDR destAddr;
int ttl;
int times;
struct SE *next;

} AODVSENT_Node;

typedef struct

{
AODV SENT Node *head;
int size;

} AODV_SENT;

/--------------------- new structure added

// edef s uct

//{
// NODEADDR node;
// int trustlevel;
//} AODV_TrustTable[20];

// ------------- ---------- -----

typedef struct

{
int nu equestSent;
int nu eplySent;
int numWarningSent;

int numWarnin 2Sent;

int numRerrSent;
int numRerrR sent;

int numDataSent:
int numDataTxed;
int nu ataReceived;

int nu rnops;
int numRoutes;
int numPacketsDropped;

/* new statistic added */
/* new statistic added */

/* Data Sent as the source of the route */

/* Data Received as the destination of the route */

97

int nu rokenLinks;
int nu rokenLinkRetries;
long int encr_message; /* new statistic added to display

encrypted message */
long int decr_message; /* new statistic added to display

decrypted message */
} AODV_Stats;

typedef struct glomo_networkaodvstr

{
AODV RT routeTable;
AODV_NT nbrTable;
AODV_RST seenTable;
AODVBUFFER buffer;
AODV_SENT sent;
AODVStats stats;
int seqNumber;
int bcastld;
GlomoRoutingAody;

void RoutingAodvlnit(
GlomoNode *node,
GlomoRoutingAodv **aodvPtr,
const GlomoNodelnput *nodeInput);

void RoutingAodvFinalize(GlomoNode *node);

void RoutingAodvHandleData(GlomoNode *node, Message *msg, NODEADDR destAddr);

void RoutingAodvflandleRequest(GlomoNode *node, Message *msg, int ttl);

void RoutingAodvHandleReply(
GlomoNode *node, Message *msg, NODE ADDR srcAddr, NODE_ADDR destAddr)

void RoutingAodvHandleWarning(GlomoNode *node, Messag *msg, NODEADDR srcAddr,
NODEADDR destAddr, int trustlevel, long int MAC);
/* new function added */

void RoutingAodvlnitRouteTable(AODVRT *routeTable);

void RoutingAodvlnitNbrTable(AODV_NT *nbrTable);

void RoutingAodvlnitSeenTable(AODVRST *seenTable);

void RoutingAodvInitBuffer(AODV BUFFER *buffer);

void RoutingAodvlnitSent(AODV_SENT *sent);

void RoutingAodvlnitStats(GlomoNode *node);

98

void RoutingAodv itSeq(GlomoNode *node);
void RoutingAodv itBcastld(GlomoNode *node);

NODE_ADDR RoutingAodvGetNextHop(NODEADDR destAddr, AODVRT *routeTable);

int RoutingAodvGetBeastld(GlomoNode *node);

int RoutingAodvGetSeq(NODEADDR destAddr, AODV_RT *routeTable);

int RoutingAodvGetMySeq(GlomoNode *node);

int RoutingAodvGetopCount(NODE ADDR destAddr, AODV_RT *routeTable);

int RoutingAodvGetLastHopCount(N-ODE_ADDR destAddr, AODV_RT *routeTable);

int RoutingAodvGetTtl(NODE_ADDR destAddr, AODV_SENT *sent);

int RoutingAodvGetTimes(NODE_ADDR destAddr, AODV_SENT *sent);

clot e RoutingAodvGetLifetime(NODE_ADDR destAddr, AODV_RT *routeTable);

Message *
RoutingAodvGetBufferedPacket(NODE_ADDR destAddr, AODV_BUFFER *buffer);

BOOL RoutingAodvCheckRouteExist(NODE_ADDR destAddr, AODV_RT *routeTable);

BOOL RoutingAodvCheckNbrExist(NODE_ADDR destAddr, AODV_NT *nbrTable);

BOOL RoutingAodvLookupSeenTable(NODE_ADDR srcAddr,
int beastId,
AODV_RST *seenTable);

/* - ----------- ne function ----- ------- ----- *
//BOOL RoutingAodvLookupSeenTableWARN(int srcSeq,
/ int beastld,
// AODVRST *seenTable_WARN);
/* - - - - - - -- - - - - - - - */

//void RoutingAodvLookupSeenTable1(GlomoNode *node,Message *msg, /*
parameter added */
// NODEADDR srcAddr,NODEADDR lastAddr,int beastld,int hopCount,
// int trust-levelAODV_RST *seen Table, AODV_NT *nbrTable);

void RoutingAodvLookupSeenTable 1(GlomoNode *nodeMessage *msg, /*
parameter added */

NODE_ADDR srcAddr,NODE_ADDR lastAddr,int beastld,int hopCount,
int trustlevel,long int MAC,AODV _RST *seenTable);

99

BOOL RoutingAodvLookupBuffer(NODE ADDR destAddr, AODVBUFFER *buffer);
BOOL RoutingAodvCheckSent(NODE ADDR destAddr, AODV _SENT *sent):

void RoutingAodvliandleProtocolPacket(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr,
NODE_ADDR destAddr, int ttl, int trust_level long it MAC);

void RoutingAodvHandleProtocolEvent(GlomoNode *node, Message *msg);

void RoutingAodvRouterFunction(
GlomoNode *node,
Message *msg,
NODE ADDR destAddr,
BOOL *packetWasRouted);

void RoutingAodvPacketDropNotificationHandler(
GloroNode *node, const Message* msg, const NODE ADDR nextHopAddress);

void RoutingAodvSetTimer(
GlomoNode *node, long eventType, NODEADDR destAddr, clocktype delay);

void RoutingAodvlnitiateRREQ(GlomoNode *node, NODE ADDR destAddr);

void RoutingAodvRetryRREQ(GloroNode *node, NODE_ADDR destAddr);

void RoutingAodvTransmitData(GlomoNode *node, Message *msg, NODE ADDR destAddr);

void RoutingAodvRelayRREQ(GlonoNode *node, Message *msg, int ttl);

void RoutingAodvlnitiateRREP(GlomoNode *node, Message *msg);

void RoutingAodvlnitiateRREPbyN(GlomoNode *node, Message *msg);

void RoutingAodvRelayRREP(GlomoNode *node, Message *msg, NODEADDR destAddr);

void RoutingAodvRelayWarning(); /* new function added */

void RoutingAodvRelayWaringl(); /* new function added */

//void initTrustTable() /* new function added */

#endif /* AODV H */

100

APPENDIX B
Sample Code of Simulation for Preventing Colluding

Attack
/*
* This modified AODV routing protocol was written by Tirthankar Ghosh in FIU to make the

protocol secured against colluding attack.

* The modified code was written in May 2004.

*/

* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSim is available
* at no cost to educational users only.
*

* Commercial use of this software requires a separate li ense. No cost,
* evaluation licenses are available for such purposes; please contact

info@scalable-networks.c om
*

* By obtaining copies of this and any other files that comprise GloMoSim2.02,
* you, the Licensee, agree to abide by the following conditions and
* understandings with respect to the copyrighted software:
*

* 1.Permission to use, copy, and modify this software and its documentation
* for education and non-commercial research purposes only is hereby granted

* to Licensee, provided that the copyright notice, the oniinal author's

* names and unit identification, and this permission notice appear on all

* such copies, and that no charge be made for such copies. Any entity

* desiring permission to use this software for any commercial or

* non-educational research purposes should contact:
*

* Professor Rajive Bagrodia
* University of Califomia, Los Angeles
* Department of Computer Science
* Box 951596
* 3532 Boelter Hall
* Los Angeles, CA 90095-1596
* rajive -cs.ucla.edu
*

* 2.NO REPRESENTATIONS ARE MADE ABOUT THE SUITABiLTY OF THE
SOFTWARE FOR ANY
* PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
*

* 3,Neither the software developers, the Parallel Computing Lab, UCLA, or any

* affiliate of the UC system shall be liable for any damages suffered by

* Licensee from the use of this software.
*/

101

// Use the latest version of Parsec if this line causes a compiler error.

* Name: aodv.pc
*

* Implemented by SJ Lee (sjlee@cs~ucla.edu)
*/

/*
NOTE: -:Followed the specification of AODV Internet Draft

(draft-ietf-manet-aodv-03.txt)
- This implements only unicast funetionality of AODV.

Assumes the MAC protocol sends a signal to the routing protocol

when it detects link breaks. MAC protocols such as IEEE 802.11

and MACAW has this functionality. In IEEE 802.11 when no CTS

is received after RTS, and no ACK is received after retransmissions

of unicasted packet, it sends the signal to the routing protocol

- If users want to use MAC protocols other than IEEE 802.11, they

must implement schemes to detect link breaks. A way to do this is,

for example, using HELLO packets, as specified in AODV documents.

- No Precursors (Implemented other mechanism so that the protocol can
still function the same as when precursors are used)

- Unsolicited RREPs are broadcasted and forwarded only if the node
is part of the broken route and not the source of that route

- If more than one route uses the broken link, send RREP multiple times
(this should be fixed based on new specification by C. Perkins,
E. Royer, and S. Das)

- Rev route of RREQ overwrites the one in the route table

- May need slight modifications when draft-ietf-manet-aodv-04.txt
comes out

*/

#include <stdlib.h>
#include <stdio.h>
#include <string~h>
#include <assert.h>
#include <math.h>

#include "api.h"
#include "structmsg.h"
#include "fileio.h"
#include "message.h"
#include "network.h"

#include "aodv.h"
#include "ip.h"
#include "nwipsh"
#include "nwcommon.h"
#include "application.h"
#include "transport.h"
#include "java guih"

102

#define max(a,b) a > b? a : b

/*
* RoutingAodvReplaceInsertRouteTable

* Insert/Update an entry into the route table
*/

static void
RoutingAodvReplace nsertRouteTable(

NODEADDR destAddr,
int destSeq,
int hopCount,

/* ------------------------------ parameter added */

int trust level,
NODE_ADDR next-hop,

/* --------------------------------- */
NODEADDR nextHop,
clocktype lifetime,
BOOL activated,
BOOL source,
AODV_RT* routeTable)

{
AODV_RT_Node* theNode = NULL;
AODV_RTNode* current;
AODV_RT_Node* previous;

// Find Insertion point.

previous = NULL;
current = routeTable->head;
while ((current != NULL) && (current->destAddr < destAddr)) {

previous current;
current = current->next;

}//while//

if ((current == NULL) (current->destAddr != destA ddr)) {
++(routeTable->size);

theNode = (AODVRTNode *)checked_pc_malloc(sizeof(AODVRT Node));
theNode->lifetime = lifetime;
theNode->activated = activated;

theNode->source = source;
theNode->destAddr = destAddr;

if (previous == NULL) {
theNode->next = routeTable->head;
routeTable->head = theNode;

} else {
theNode->next = previous->next;
previous->next = theNode;

}//if//

else {
assert(current->destAddr == destAd dr);

current->lifetime = max(lifetime, current->lifetime);
if (!current->aetivated) {

current->activated = activated;
}//if//

if (!current->source) {
current->source = source;

}//if//

theNode = current;
}//if//

theNode->destSeq destSeq;
theNode->hopCount hopCount;

/* - - ------- - parameter added */

theNode->trustlevel = trustlevel;
//theNode->next hop = next hop;

theNode->lastHopCount = hopCount;
theNode->next op = nextiop;

} /* RoutingAodvReplacen sertRouteTable */

static
void Routin AodvlnsertNbrTable(NODE_ADDR destAddr, AODV_NT* nbrTable)
{

AODVNTNode* current;
AODVNT_Node* previous;

AODV NT Node* newNode =

(AODV_NT Node *)checkedpcmalloc(sizeof(AODVN Node));

newNode->destAddr = destAddr;
ne wNode->next =NULL;

++(nbrTable->size);

// Find Insertion point. Insert after all address matches.

104

previous = NULL;
current = nbrTable->head;
while ((current != NULL) && (current->destAddr <= destAddr)) {

previous = current;
current = current->next;

}//while//

if (previous = NULL) {
newNode->next = nbrTable->head;
nbrTable->head = newNode;

else {
newNode->next = previous->next;
previous->next = newNode;

}//if//

} /* RoutingAodvlnsertNbrTable */

/*
* RoutingAodvlnsertSeenTable
*

* Insert an entry into the seen table
*/

static void
RoutingAodvlnsertSeenTable(

GlomoNode *node,
NODE ADDR srcAddr,
int bcastld,
int hopCount, /* parameter added */

int trust level, /* parameter added */

AODV_RST *seenTable)

{
if (seenTable->size == 0)
{

seenTable->rear = (AODV_RSTNode *) pc malloc(sizeof(AODVRSTNode));
assert(seenTable->rear != NULL);
seenTable->front seenTable->rear;

}
else

{
seenTable->rear->next = (AODV RST_Node *)

pcmalloc(sizeof(AODV_RST Node));
assert(seenTable->rear->next != NULL);
seenTable->rear = seenTable->rear->next;

seenTable->rear->srcAddr = srcAddr;
seenTable->rear->bcastld = bcastld;

105

seenTable->rear->hopCount = hopCount; /* parameter addd */

seenTable->rear->trust level =trust level: /* parameter added */

seenTable->rear->next = NULL;

++(seenTable->size);

RoutingAodvSetTimer(
node, MSG_NETWORK_FlushTables, ANY_DEST, (clocktyp)BCAST_ID SAVE);

} /* RoutingAodv sertSeenTable */

/*
* RoutingAodvlnsertBuffer
*

* Insert a packet into the buffer if no route is available
*/

static
void RoutingAodvlnsertBuffer(

Message* msg,
NODEADDR destAddr,
AODV_BUFFER* buffer)

{
AODV_BUFFERNode* current;
AODV_BUFFERNode* previous;

AODV BUFFER Node* newNode
(AODV_BUFFER_Node *)checked c_malloc(sizeof(AODV_BUFFERNode));

newNode->destAddr = destAddr;
newNode->msg = msg;
newNode->timestamp simclocko;

newNode->next = NULL;

++(buffer->size);

// Find Insertion point. Insert after all address matches,

previous = NULL;
current = buffer->head;
while ((current != NULL) && (current->destAddr <= destAddr))

previous = current;

current = current->next;
}//while//

if (previous== NULL) {
newNode->next = buffer->head;

buffer->head = newNode;

106

} else {
newNode->next = previous->next;
previous->next = newNode;

}//if//

} /* RoutingAodvnsertBuffer *1

/*
* RoutingAodvlnsertSent

* Insert an entry into the sent table if RREQ is sent
*/
static void
RoutingAodvlnsertSent(

NODEADDR destAddr,
int ttl,
AODV_SENT *sent)

AODVSENT_Node* current;
AODV_SENTNode* previous;

AODV SENTNode* newNode
(AODVSENT Node *)checkedpc_malloc(sizeof(AODV_SENT Node));

newNode->destAddr = destAddr;
newNode->ttl = ttl;
newNode->times 0;
newNode->next = NULL;

(sent->size)++;

// Find Insertion point. Insert after all address matches.

previous = NULL;
current = sent-=ahead:

while ((current != NULL) && (current->destAddr <= destAddr)) {
previous = current;

current = current->next;
}//while//

if (previous == NULL)
newNode->next = sent->head;

sent->head = newNode;

else {
newNode->next = previous->next;
previous->next = newNode;

}//if//

107

/* RoutingAodvInsertSent */

* RoutingAodvDeleteRouteTable

* Remove an entry from the route table
*/

void RoutingAodvDeleteRouteTable(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT_Node *toFree;
AODV_RT_Node *current;

if (routeTable->size ==0 | routeTable->head == NULL)

{
return;

}
else if (routeTable->head->destAddr= destAddr)

{
if (routeTable->head->lifetime <= simclock())

{
toFree = routeTable->head;
routeTable->head = toFree->next;
pc free(toFree);
--(routeTable->size);

}
}
else

for (current = routeTable->head;
current->next != NULL && current->next->destAddr < destAddr;
current = current->next)

{
}

if (current->next !=NULL && current->next->destAddr == destAddr &&
current->next->lifetime <= simclock())

{
toFree = current->next;

current->next = toFree->next;
pcfree(toFree);
--(routeTable->size);

}

} /* RoutingAodvDeleteRouteTable */

/*
* RoutingAodvDeleteNbrTable
*

* Remove an entry from the neighbor table

108

void RoutingAodvDeleteNbrTable(NODE _ADDR destAddr, AODV NT *nbrTable)

{
AODV_NT_Node *toFree;
AODVNTNode *current;

if (nbrTable->size =0)

{
return;

}
else if (nbrTable->head->destAddr == destAddr)

{
toFree = nbrTable->head;
nbrTable->head = toFree->next;
pc_free(toFree);
--(nbrTable->size);

}
else

{
for (current = nbrTable->head;

((current->next = NULL) && (current->next->destAddr < destAddr));
current = current->next)

{
}

if (current->next != NULL && current->next->destAddr == destAddr)

{
toFree = current->next;
current->next = toFree->next;

pcfree(toFree);
--(nbrTable->size);

}
}

1* RoutingAodvDeleteNbrTable */

/*

* RoutingAodvDeleteSeenTable
*

* Remove an entry from the seen table
*/

void RoutingAodvDeleteSeenTable(AODV_RST *seenTable)

{
AODV_RST_Node *toFree;

toFree = seenTable->front;

seenTable->front = toFree->next;
pc_free(toFree);
--(seenTable->size);

109

if (seenTable->size == 0)
{

seenTable->rear = NULL;

I

/* RoutingAodvDeleteSeenTable */

/*

* RoutingAodvDeleteBuffer
*

* Remove a packet from the buffer; Return TRUE if deleted
*/

BOOL RoutingAodvDeleteBuffer(NODEADDR destAddr, AODV_BUFFER *buffer)

{
AODV BUFFER Node *toFree;
AODV BUFFER Node *current;
BOOL deleted;

if (buffer->size == 0)

{
deleted = FALSE;

}
else if (buffer->head->destAddr = destAddr)

{
toFree = buffer->head;
buffer->head = toFree->next;
pcfree(toFree);
--(buffer->size);
deleted = TRUE;

}
else

{
for (current = buffer->head

current->next != NULL && current->next->destAddr < destAddr;
current = current->next)

{

if (current->next != NULL && current->next->destAddr = estAddr)

{
toFree = current->next;
current->next = toFree->next;

pc free(toFree):
--(buf er->size)
deleted R= RUE:

else

deleted = FALSE;

110

}
}

return (deleted);

} /* RoutingAodvDeleteBuffer */

/*
* RoutingAodvDeleteSent
*

* Remove an entry frorn the sent table
*/

void RoutingAodvDeleteSent(NODEADDR destAddr, AODV SENT *sent)

{
AODVSENT_Node *toFree;
AODVSENTNode *current;

if (sent->size == 0)

return;

}
else if (sent->head->destAddr == destAddr)

{
toFree sent->head;
sent->head = toFree->next;
pc free(toFree);
--(sent->size);

I
else

for (current sent->head;
current->next != NULL && urrent->next->destAddr < destAddr;
current = current->next)

{

if (current->next != NULL && current->next->destAddr == destAddr)

{
toFree = current->next;
current->next toFree->next;
pcfree(toFree);
--(sent->size);

}

} /* RoutingAodv eleteSent *

111

* RoutingAodvUpdateLifetime

* Update the lif time field of the destination entry in the route table
*/

void RoutingAodvUpdateL ifetime(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV RTNode *current;

for (current = routeTable->head;
current NULL && current->destAddr <= destAddr;
current = current->next)

{

if (current->destAddr == destAddr)

{
current->lifetime = simelock() + ACTIVEROUTETO;
return;

}
}

} /* RoutingAodvUpdateLifetire */

/*
* RoutingAodvlncreaseSeq
*

* Increase the sequence number
*/

void RoutingAodvIncrease Seq(GlomoNode *node)

GloroNetworkIp* ipLayer = (GlomoNetworklp *) node->networkDatanetworkVar

GolomoRoutingAodv* aodv (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->seqNumber++;

} /* RoutingAodvlncreaseSeq */

/*
* RoutingAodvlncreaseTtl
*

* Increase the TTL value

void RoutingAodvIncreaseTtl(NODE_ADDR destAddr, AODVSENT sent)

{
AODV SENT Node *current;

for (current = sent->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr = destAddr)

112

current->ttl += TTL INCREMENT;

if (current->ttl > TTL_THRESHOLD)

{
current->ttl = NET DIAMETER;

retun;

}
}

/* RoutingAodvIncreaseTtl */

/*
* RoutingAodvUpdateTtl
*

* Update the ttl value

void RoutingAodvUpdateTtl(NODE_ADDR destAddr, int ttl, AODV SENT *sent)

{
AODV SENT Node *current;

for (current = sent->head;

current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
current->ttl = ttl;

return;

/* RoutingAodvUpdateTtl */

/*

* RoutingAodvIncrease Times
*

* Increase the number of times RREQ sent in TTL = NET DIAMETER
*/

void RoutingAodvlncreaseTimes(NODE_ADDR destAddr, AODV_SENT *sent)

AODV SENTNode *current;

for (current = sent->head

current != NULL && current->destAddr< = destAddr;

current = current->next)

113

{
if (current->destAddr == destAddr)

{
current->times++;
return;

}

} /* RoutingAodvlncreaseTimes */

1*
* RoutingAodvActivateRoute
*

* Activate a route in the route table

void RoutingAodvActivateRoute(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODVRT_Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
current->activated = TRUE;
current->lifetirne = simeloc k() + ACTIVEROUTE_TO;
return;

}}

} /* RoutingAodvActivateRoute */

/** RoutingAodvlnactivateRo.utes ndGetDestinations

* activate routes that use the broken link
Returns the destAddr and whether the node must relay the RREP

/

void RoutingAodvlnactivateRoutesAndGetDestinations(
GlomoNode* node,
AODVRT* routeTable,
NODEADDR nextHop,
AODV _AddressSequenceNumberPairType destinationPairs[],
int maxNumberDestinationPairs,
int* numberDestinations)

AODV RT Node *current;

114

int nu mests = ;

for (current = routeTable->head;

current != NULL;
current = current->next)

{
if ((current->nextHop == nextHop) && (current->activated == TRUF))

{
current->activated = FALSE;

current->hopCount = AODV_INFINITY;
current->lifetime = simelock() + BAD_L _LIFEIME;
current->destSeq++;

RoutingAodvSetTimer(
node, MSG_NET WORK_CheckRouteTimeout, current>destAddr,
(clocktype)BAD_LINK_LIFE T IME);

if (!current->source) {
destinationPairs[nu ests].destinationAddress =

current->destAddr;
destinationPairs[nu mests] .destinationSequenceNumber

current->destSeq;
nunDests++;

}//if//

} //if//
}/for//

*numberDestnations = numDests;

} /* RoutingAodv activateRoute */

/*
* RoutingAodvMarkRouteBroken

*

* Mark the route with destAddr broken; returns TRUE if relay is required
*/

BOOL RoutingAodvMarkRouteBroken(GlornoNode *node,
NODE_ADDR destAddr,
AODV_RT *routeTable)

{
AODV RT Node *current;
BOOL relay = FALSE;

for (current = routeTable->head;
current !=NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr && current->activated == TRUE)

115

current->activated = FALSE;
current->hopCount = AODV_INFNITY;
current->lifetime = simclock() + BAD_LINK_LIFETIME;
current->destSeq++;

RoutingAodvSetTirner(
node, MSG_NETWORK_CheckRouteTimeout, current->destAddr,
(clocktype)BADLINK_LIFETIME);

if (current->source == FALSE)

{
relay = TRUE;

}

return (relay);

}
}

return (relay);

} /* RoutingAodvMarkRouteBroken *1/

* RoutingAodvpdateSeq
*

* Update the sequence number of a certain destination
*/

void RoutingAodvUpdateSeq(NODE ADDR destAddr, int seq, AODV RT *routeTable)

AODV RT Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
current->destSeq =seq;
return;

}
}

/* RoutingAodvlpdateSeq */

116

static //inline//
void SendRouteErrorPacket(

GlomoNode* node,
const AODV_RERR_Packet* rerrPacket)

{
Message* newMsg = GLOMO MsgAlloc(node, 0, 0, 0);
int packetSize = AODV_ RERR_PacketSize(rerrPacket);

assert(rerrPacket->pktType == (unsigned short)AODV_RERR);
assert(rerrPacket->destinationCount >= I);

GLOMOMsgPacketAlloc(node, nevMsg, packetSize);
memcpy(GLOMOMsgReturnPacket(newMsg), rerrPacket, packetSize);
NetworklpSendRawGlomoMessage(

node newMsg, ANY_DEST, CONTROL, IPPROTOAODV, 1);
}

/*
* RoutingAodvInit
*

* Initialization function for AODV protocol
*/

void RoutingAodvlnit(
GlomoNode *node,
GlomoRoutingAody * *aodvPtr,
const GlomoNode put *nodelnput)

{
GlomoRoutingAodv *aodv

(GlomoRoutingAodv *)checked _pcmalloc (sizeof(GlomoRoutingAodv));

(*aodvPtr)= aodv;

if (aodv == NULL)

{
fprintf(stderr, "AODV: Cannot alloc memory for AODV struct!\n");
assert (FALSE);

}

RoutingAodvlnitStats(node);
RoutingAodvlnitRouteTable(&aodv->routeTable);
RoutingAodvnitNbrTable(&aodv->nbrTable);
RoutingAodv itSeenTable(&aodv->seenTable);
RoutingAodvInitBuffer(&aod->buffer);
RoutingAodvInitSent(&aodv->sent);
RoutingAodvlnitSeq(node);
RoutingAodvitBEastld(node);

117

NetworklpSetPacketDropNotificationFunction(
node, &RoutingAodvPacketDropNotificationHandler);

NetworkdpSetRouterFunction(node, &RoutingAodvRouterF unction);

} /* RoutingAodv nit */

/*
* RoutingAodvFinalize

*

* Called at the end of the simulation to collect the results
*/

void RoutingAodv~inalize(GlomoNode *node)

{
GlomoNe orkIp *ipLayer = (GlomoNetworkIp *)node->networkDatanetworkVar;
GlomoRoutingAodv *aodv = (GlomoRoutingAodv *)ipLayer->routingProtocol;
FILE *statOut;
float avgHopCnt;
char buf[GLOMO _MAX_STRING_LNGTI];

sprintf(buf, "Number of Route Requests Txe =%d",
aodv->stats.nu equestSent);

GLOMOPrintStat(node, "RoutingAodv", but);

sprintf(buf, "Number of Replies Txed = %d"
aodv->stats.nu eplySent);

GLOMO_PrintStat(node, "RoutingAodv", buf);

/* --- -- ---------- -- ----- -new statistic *
sprintf(buf, "Number of Warnings Txed = %d",

aodv->stats.numWarningSent);
GLOMOPrintStat(node, "RoutingAodv", buf);

/*
sprintf(buf, "Encrypted message = %d",

aodv->stats.encr_message);
GLOMOPrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Decrypted message =%d",
aodv->stats.decrmessage);

GLOMO_PrintStat(node, "RoutingAodv", but);

sprintf(buf, "Number of 2nd Warnings Txed =%d"

aodv->stats numWarnmg2Sent):
GLOMO PrintStat(node, "RoutingAodv", but);

/* */

sprintf(buf, "Number of Route Errors (KERR) Txed = %d",
aodv->stats.numRerrSent);

GLOMO_PrintStat(node, "RoutingAodv", buf);

118

sprintf(buf, "Number of Route Errors (RERR) Re-sent = %d",
aodv->stats.nun errResent);

GLOMO_PrintStat(node, "RoutingAodv", but);

sprintf(buf, "Number of CTRL Packets Tx ed =%d",
aodv->stats.numRequestSent + aodv->stats~numReplySent + aodv-

>stats.numWarningSent);
GLOMO_ PrintStat(node, "RoutingAodv", but);

sprintf(buf, "Number of Routes Selected = %d", aodv->stats.nurRoutes);
GLOMO_PrintStat(node, "RoutingAodv", buf);
sprintf(buf, "Number of Hop Counts = %d", aody->stats.nu ops);
GL OMO_PrintStat(node, "RoutingAodv", but)

sprintf(buf, "Number of Data Txed = %d",
aodxy->stats~numDataTxed);

GLOMO_PrintStat(node, "RoutingAodv", but);

sprintf(buf. "Number of Data Packets Originated =%d",
aodv->stats numDataS ent);

GLOMO PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Data Packets Received %d",
aodv->stats numDataReceived);

GLOMO PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Packets Dropped or Left waiting for Route =%d",
(aodv->stats.numPacketsDropped + aodv->buffer.size));

GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Broken Links = %d", aodv->stats.numBrokenLinks);
GLOMO_PrintStat(node, "RoutingAodv", but);
sprintf(buf, "Number of Broken Link Retries = %d", aody->stats.numBrokenLinkRetries);
GLOMO_PrintStat(node, "RoutingAody", but);

} /* RoutingAodvFinalize */

/*
* RoutingAodvHandleData
*

* Processing procedure when data is received
*/

void RoutingAodvHandleData(GlomoNode *node, Message *msg, NODE_ADDR destAddr)

{
GlomoNetvorkip* ipLayer = (GlomoNetvorklp *) node->networkDataenetworkV ar

GlomoRoutlngAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol:

IpHeaderType *ipHeader = (IpHeaderype *)GLOMOMsgReturPacket(msg)

NODEADDR sourceAddress = ipHeader->ip src

119

assert(sourceAddress != node->nodeAddr);

/* the node is the destination of the route */
if (destAddr == node->nodeAddr)

{
aody->stats.nunDataReceived++;

RoutingAodvUpdateLifetime(sourceAddress, &aodv->routeTable);

RoutingAodvSetTimer(node, MSGNETWORK_CheckRouteTimeout,
sourceAddress, (clocktype)ACTIVEROUTE _T);

}
else if (destAddr != ANY_DEST)
{

// The node is an intermediate node of the route.
// Relay the packet to the next hop of the route

if (RoutingAodvCheckRouteExist(d stAddr, &aodv->routeTable)) {
RoutingAodvTransmitData(node, msg, destAddr);

} else {
// Broken Route. Drop Packet, send RERR again to make them stop
// sending more.
AODV_RERR_Packet newRerrPacket;
newRerrPacket.pktType = AODV_RERR;
newRerrPacket.destinationCount = 1;

newRerrPacket.destinationPairArray[0] destinationAddress = destAddr;
newRerrPacket.destinationPairArray[0].destinationSequenceNurber

= Routing.AodvGetSeq(destAddr, &aodv->routeTable);

SendRouteErrorPacket(node, &newRerrPacket);
aodv->stats.numRerrResent++;

aody->stats.numPacketsDropped++;
GLOMO_MsgFree(node,msg);

}//if//

}//if//

/* RoutingAodvHandleData */

/*
* RoutingAodvHandleRequest
*

* Processing procedure when RREQ is received
*/

void RoutingAodvHandleRequest(GlomoNode *node, M ssage *msg, int ttl)

GlomoNetworklp* ipi ayer = (GlomoNetworkip * node ,networkData.networkVar;

GlomoRoutingAOdv* aodv = (GlomoRoutingAodv *) ipL ayer->rouingProtocol:

120

AODVRREQ_Packet *rreqPkt = (AODV_RREQPacket
*)GLOMMsgReturnPacket(msg);

/* Process only if the packet is not a duplicate */
if (!RoutingAodvLookupSeenTable(

rreqPkt->srcAddr, rreqPkt->bcastd, &aod->seenTable))
{

RoutingAodvlnsertSeenTable(
node, rreqPkt->srcAddr, rreqPkt->bcastId, rreqPkt->hopCount, rreqPkt->trustlevel,

&aodv->seenTable); /* added parameter */

/* Update the neighbor table if the upstream is new /
if (!RoutingAodvCheckNbrExist(rreqPkt->lastAddr, &aodv->nbrTable))

{
RoutingAodvnsertNbrTable(rreqPkt->lastAddr, &aodv->nbrTable)
RoutingAodvncreaseSeq(node);

}

/* The node is the destination of the route /
if (node->nodeAddr == rreqPkt->destAddr)

{
RoutingAodvReplacelnsertRouteTable(

rreqPkt->srcAddr, rreqPkt->srcSeq, rreqPkt->hopCount, rreqPkt-> ustlevel, /*

added parameter */
rreqPkt->lastAddr, rreqPkt->lastAddr, simclock() + ACTIVEROUTE_TO, TRUE,

TRUE,
&aody->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)ACTIVE_ROUTE TO);

/* Send a Route Reply */
RoutingAodv nitiateRREP(node, msg);

} /* if dest */

else

/* No route to destination is known */
/ -- ---- not reqd

*/

// if (!RoutingAodvCheckRouteExist(rreqPkt->destAddr,
// &aodv->routeTable))

// {

/* --- -- --notreqd
*/

121

RoutingAodvReplacelnsert RouteTale(
rreqPkt->srcAddr, rreqPkt->srcSeg, rreqPkt->hopCount, rreqPkt->trust_level, /*

added parameter */
rreqPkt->1astAddr, rreqPkt->lastAddr, simclock() + REVROUTE LIFE, FALSE,
FALSE, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG NETWORK_CheckRouteTimeout rreqPkt->srcAddr,
(clock e)REV_ROUTE_LIFE);

if (ttl > 0)
{

/* Relay the packet only if TTL is not zero
RoutingAodvRelayRREQ(node, msg, ttl);

}/* ifttl > 0*/

else

GLOMOMsgFree(node, msg);

}
/H /* if no route */

/* Knows a route to the destination */
/* -------- not reqd
*/

// else
// {
// /* However, the own route is not a fresh one
// if (RoutingAodvGetSeq(rreqPkt->destAddr, &aodv->routeTable)<
// rreqPkt->destSeq)

// {
// RoutingAodvReplacelnsertRouteTable(
// rreqPkt->srcAddr, ieqPkt->srcSeq, rreqPkt->hopCount,
// rreqPkt->lastAddr, simclock() + REVROUTELIFE,
/ FALSE, FALSE,
// &aodv->routeTable);

// RoutingAodvSetTimer(
// node, MSG_NETWORKCheckRoute limieout, rreqPkt->srcAddr,

// (clocktype)REV_ROUTE LIFE);

// if (ttl > 0)
// {
// /* Relay the packet only ifTTL is not zero
// RoutingAodvRelay Q(node, msg, ttl);

// }/* if ttl >0*/
// else

// {
// (LOMO _MsgFree(node, sg);

122

//
// /* if seq no is not fresh */

// /* has a fresh route to the destination */

// else

// {
// RoutingAodvReplacensertRouteTable(
/ rreqPkt-->srcAddr, rreqPkt->srcSeq, rr qPkt->hopCount,
// rreqPkt->lastAddr, simclock() + ACTIVE_ROUTETO,

TRUE, FALSE,
// &aodv->routeTable);

/1 RoutingAodvSetTi er(
// node, MSGNETWORK _CheckRouteTim out, rreqPkt->srcAddr,
// (clot pe)ACTIVE_ROUTE_TO);

// /* Send a Route Reply */
// RoutingAodvlnitiateRREPbylN(node, msg);

// } /* else */

// }/* else */

/* -- - ---- ----------- ----------------------- --- -_ ---- ®____--_--_not reqd

*/
} /* else (not dest) */

} /* if new pkt */

else // packet is duplicate

{
// GLOMO_MsgFree(node, msg);

RoutingAodvLookupSeenTable I (nodemsgrreqPkt->srcAddrrreqPkt->lastAddrrreqPkt-
>bcastld,rreqPkt->hopCountrreqPkt->trust level,rreqPkt->MAC,&aodv->seenTable);

}
} /* RoutingAodvHandleRequest */

/* - -------- added code for
checking trust level */
void RoutingAodvLtookupSeenTablel(GlomoNode *nodeMessage *msg,NODE_ADDR
srcAddrNODE_ ADDR lastAddr,int bcastId,int hopCount,int trustlevel,long int
MACAODV_RST *seenTable)

{
AODV_RST_Node *current;
int countI;
struct Struct2 /* defining the structure for trust table */

{
NODE_ADDR node;
int trust level;

123

}AODV_TrustTable[50];

AODV_TrustTable[0].node = 0;
AODVTrust_Table[0].trust_level= 5;
for(countl=; countl<50; countl++)

{
AODV_TrustTable[countl].node = AODVTrust_'able[countl-1].node + 1;
AODVTrust_Table[countI].trustlevel = AODV_Trust_Table[countlI-1].trustlevel;

[

for (current = seenTable->front; current != NULL; current = current->next)

{
if (current->srcAddr==srcAddr && current->bcastId==bcastld)

{
if (current->hopCount==hopCount -1)
{

for(count1=0;countl <50;countl++)
{

if (AODTVTrust_Table[count1].node == node->nodeAddr)

if(stlevel - current->trust_ level !=
AODV TrustTable[count1].trustlevel)

RoutingAodvRelayWarning(node,MAC lastAddrsrcAddr);

}
else

{
GLOMO_MsgFree(node, msg);

}

}/* RoutingA odvLookuap eenTablel */
/ --- added code for

checking trst level */

*RoutingAodlv"andle eply

*Processing procedure when RE is received

*/

void R outingAodvHandle , eply(

124

GlomoNode *node, Message *msg, NODE_ADDR srcAddr, NODE_ADDR destAddr)

{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar
GlornoRoutingAodv* aodv = (GlomoRoutingAody *) ipLayer->routingProtocol;
Message *newMsg;
AODV _RREP_ Packet *rrepPkt = (AODV_RREP Packet *)GLOMO_Ms R turnPacket(msg);
BOOL relay;
clock ype lifetime;

/* clocktype must be copied to access the field of that type */
memmove(&lifetime, &rrepPkt->lifetime, sizeof(cloc e));

/* Source of the route */

if (rrepPkt->srcAddr == node->nodeAddr)

{
/* The packet is the first reply received */
if (!RoutingAodvCheckRouteExist(rrepPkt->destAddr,

&aodv->routeTable))

{
RoutingAodvReplacelnsertRouteTable(

rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trust_level,
rrepPkt->next_hop, /* added parameter */

srcAddr, simclock()+ lifetime, TRUE,
TRUE, &aodv->routeTable);

aodv->stats.numRoutes++;
aodv->statsanumHops += rrepPkt->hopCount;

RoutingAodvDeleteSent(rrepPkt->destAddr, &aodv->sent);

/* Send any buffered packets to the destination */
while (RoutingAodvLookpBuffer(

rrepPkt->destAddr, &aodv->buffer))

{
newMsg = RoutingAodvGetBufferedPacket(

rrepPkt->destAddr, &aodv->buffer);

RoutingAodvTransmitData(node, newMsg, rre pPkt->destAddr);

aodv->statsnu ataSent++;

RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aody->buffer);

} /* while */
/* if no route */

/* The packet contains a better route compared to the one already
known */

125

else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable) <
rrepPkt->destSeq) 11
((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)
== rrepPkt->destSeq) &&
(RoutingAodvGetHopCount(rrepPkt->destAddr,

&aodv->routeTable) >
rrepPkt->hopCount)))

{
RoutingAodvReplacelnsertRouteTable(

rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trust_level,

rrepPkt->next_hop, /* added parameter */
srcAddr, simclock() + lifetime, TRUE,
TRUE, &aodv->routeTable);

/* Send any buffered packet to the destination */
while (RoutingAodvLookupBuffer(

rrepPkt->destAddr, &aodv->buffer))

newMsg = RoutingAodvGetBufferedPacket(
rrepPkt->destAddr, &aodv->buffer);

RoutingAodvTransmitData(node, newMsg, rrepPkt->destAddr);

aodv->stats.numDataSent++;

RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aodv->buffer);

} /* while */
} /* else if */

GLOMO_MsgFree(node, msg);
/* if source

/* Intermediate node of the route */

else

/* the packet is the first reply received */
if (!RoutingAodvCheckRouteExist(

rrepPkt->destAddr, &aodv->routeTable))

{
RoutingAodvReplacelnsertRouteTable(

rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trust 1evel

rrepPkt->next_hop, /* added parameter */

srcAddr, simelockO + lifetime, TRUE, FALSE,
&aodv->routeTable);

RoutingAodvSetTimer(
node MSG_NETWORK_CheckRouteTimeout, rrepPkt->destAddr,
(clock e)lifetime);

126

RoutingAodvActivateRoute(rrepPkt->srcAddr, &aodv->route fable);

RoutingAodvSetTimer(
node, MSGNETWORKCheckRouteTimeout, rrepPkt->srcAddr,
(clocktype)ACTIVE_ROU TE TO);

/* Forward the packet to the upstream of the route */
RoutingAodvRelayRREP(node, msg, destAddr);

} /* if new route */

/* the packet carries a better route compared to the one already

known */
else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aody->routeTable) <

rrepPkt->destSeq) 11
((RoutingAodvGetSeq(rrepPkt->destAddr, &aody->routeTable)
== rrepPkt->destSeq) &&
(RoutingAodvGetHopCount(rrepPkt->destAddr,

&aodv->routeTable) >
rrepPkt->hopCount)))

{
RoutingAodvReplacelnsertRouteTable(

rrepPkt->destAddr, rrepPkt->destSeq, rrepPkt->hopCount, rrepPkt->trustlevel,
rrepPkt->nexthop, /* added parameter */

srcAddr, simclock() + lifetime, TRUE,
FALSE, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->destAddr,
(clocktype)lifetime);

RoutingAodvActivateRoute(rrepPkt->srcAddr, &aodv->routeTable);

RoutingAodvSetTirer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->srcAddr,
(clocktype)ACTIVE_ROUTE_TO);

/* Forward the packet to the upstream of the route */
RoutingAodvRelayRREP(node, msg, destAddr);

} /* else if newer route or shorter route */

else

{
GLOMOMsgFree(node, msg);

/* RoutingAodvHandleReply */

127

// RoutingAodvHandleRouteError
//

// Processing procedure when RERiR is received
//

void RoutingAodvHandleRouteError(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr)

{
GlomoNetworklp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV_RERR_Packet* rerrPkt

(AODV_RERRPacket*)GL(OMO MsgReturnPacket(msg);
AODV_RERR_Packet newRerrPacket;
int I;

newRerrPacketapktType = (unsigned short)AODV RERR

newRerrPacketmdestinationCount = 0;

for(I = 0; I < rerrPkt->destinationCount; I++) {
// Mark the route inactive in the route table; Must not remove it

// right away since the last hop count known is needed for future use
// Remove destination from packet if it doesn't need to be forwarded

// further.

NODE ADDR destination =
rerrPkt->destinationPair ay[I].destinationAddress;

int sequenceNum=
rerrPkt->destinationPair ay[I].destinationSequenceNurnber;

BOOL mustRelay
RoutingAodvMarkRouteBroken(

node,
destination,
&aodv->routeTable);

RoutingAodvUpdateSeq(destination,
sequenceNum,
&aodv->routeTable);

Network pDeleteOutboundPacketsToANode(
node, srcAddr, destination, FALSE);

if (mustRelay)
newRerrPacket destinationPairArray[newRerrPaket. destinationE ount]=

rerrPkt->destinationPair ay[I];
newRerrPacket.destinationCount++;

}//if//

128

}//while//

if (newRerrPacket.destinationCount > 0) {
SendRouteErrorPacket(node &newRerrPacket);
aodv->statsanu errSent++;

}//if//

GLOMOMsgFree(node, msg);
}//RoutingAodvHandleRouteError//

/* ----- ----------- new function to handle warning message-----

-- */
//
// RoutingAodvHandleWaring

/
// Processing procedure when RWARN is received
/1

void RoutingAodviandleWaring(
GlomoNode *node, Message *msg NODE ADDR srcAddr, NODE_ADDR destAddr, int

trustlevel, long int MAC)

GloroNetworklp* ipLayer = (GlomoNetworklp *) node->network Dataanet workVar;

GlomoRoutingAodv* aodv= (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV RWARN Packet* rwarnPkt=

(AODV_RWARN_Packet*)GI.OMOMsgRetu acket(msg);
AODVRWARNPacket newRwarnPacket;
int countbinary, countdecrypt, s2,y2,d2 ;

int temparray[16];
MAC =2093;
trustlevel = 5;

//aodv->statsaencrm ressage = MAC; /to show the received MAC

/* Process only if the packet is not a duplicate */
if (!RoutingAodvLookupSeenTable(

rwarnPkt->srcAddr, rwarPkt->bcastld, &aodv->seenTable))

{
/ implement the function here

/* -- - - - decrypting M AC- - - - - - - -- - - --_______®_________- - *

s2 Public;
for (countbinary - 0 countbinary <= 15; countbinary ++)

{
y2 = s2/2

temparray[countbinary] = s2 % 2;
s2 =y2;

129

d2 = 1;
for (countdecrypt = 15; countdecrypt >= 0; countdecrypt -)

{
d2 (d2*d2) %o n;
if (temp array[countdecrypt]== 1)

{
d2 =(d2*MAC)O% n;

}
}
aodv->stats.decr message = d2; /* to display decrypted message */

1/ RoutingAodvRelayWarningl(node);
/* - - - - - - - - - - - - - - - - - - */

if (d2 == trust_level)

{
// concludes that the ac cusing node is malicious
RoutingAodvRelayWarning_1 (node);

else /concludes that the accused node i mali ious

{
GLOMO_MsgFree(node, msg);

else // packet is duplicate

GLOMO_Msg ree(node, msg);

}

}//RoutingAodvHandleWarning//

/* - - - - ---------------- *1

/*
* RoutingAodvInitRouteTable
*

* Initialize the route table

void RoutingAodv nitRouteTable(AODV_RT *route Table)

{
routeTable->head = NULL;
routeTable->size = 0;

} /* RoutingAodvlnitRouteTable */

/*
* RoutingAodvInitNbrTable
*

130

* Initialize the neighbor table
*/

void RoutingAodvnitNbrTable(AODV_NT *nbrTable)
{

nbrTable>head = NULLI
nbrTable->size = 0;

} /* RoutingAodvnitNbrTable */

/*
* RoutingAodvlnitSeenfable

* Initialize the seen table
*/

void RoutingAodvlnitS enTable(AODV RST *seenTable)

{
seenTable->front = NULL;
seenTable->rear = NULL;
seenTabl->size =

} /* RoutingAodvInitSeenTable */

/*
* RoutingAodvlnitBuffer
*

* Initialize the buffer
*/

void RoutingAodvlnitBuffer(AODV BUFFER *buffer)

{
buffer->head = NULL;
buffer->size = 0;

} /* RoutingAodvlnitBuffer */

1*

* RoutingAodvInitSent
*

* Initialize the sent table
*/

void RoutingAodvlnitSent(AODVSENT *sent)

{
sent->head = NULI;
sent->size =0;

} 1* RoutingAodvlnitBuffer */

/*
* RoutingAodvnitStats
*

131

itiati all the tat variables

void c utin c dvlnitStats(l l c de na de

.

lc c ® _t vc rk ilayer = (Crl c 1 et rkl * nude- net vrsrl ata .1eta rc _ ' °;

C l ' utin . c dv* ac dv = C 1o utinAc dv `) iLa °- rc u° r `c c 1;

ac dv-=statsenu eue t << ® it = ;

aodv->statsnu eplySei t = { ,

acv->stats.nu Ta inSent

ac dv- stats.nun +Ta iz 2Sent = Cl

ac dv- sta ,..nu ?.errent = t ;

ac dv- - .nu errl sent = ;

adj. - >i; .nu ataSent = C 4

a d i- ats.nu a a ' ed = ;

a.+ dv-% tat .nun ataR ivd = 0

ac dv- stats.nu sautes = ;

acadv->stats.nu has = 0,

ac dv->stats.n rcal °r .,inl s

ac dv->statnu rcakenLin tris = f

/* I2 autin dvlnitStats C

/*

* outin cadvlnitSeq

Initialise the sequen ;e nurr her

void 12c t:in cadv nitSec {C lca c elcade n ade

l t ca iZ ayer = (CTlt rn®etw z°l Ip d -= r tyvc r.L)at.et vc rka ,

(lc u autin '°.cadv acadv = (CTI ca 2 utin cadv ipLa rer->rc utin 'r atcael;

a adv- sequ ber = fl

1 l .c ut n cadvInltSe /

/

cautingc dv ni4 ; ... 1

nitiali e the broadcast i

*/

void outin .odvlnit castld(lcan oode 'node}

{

Clca oettivo klp illaer = lox cal Tet vor p *) node =° r'°Iataan or 'ar;

{ Flo ocautin ov* aodv = (lo ci outin . adv * ipl. a rerFa routin rotocol;

ac dv-= std = C};

132

' outin lodv itc std `!

/

outin odvC: et1 Te t op

` Loo up the routing table to obt ia nest hod to the ' , r n

i 1C outin odvC etl Iext o C _A de t ddr, AC) _ ` ` routTable

1 IZ ° erode currentq

's r (current = ou T e-= d;

current - L urrcnt->det ddr - destddr;

current =current-= ne t

ilk (current- destddr == dest ddr Viz. urrnt-%actx , ', d =_ T .LT)

re .i (current-= nc :Jp ,

} 1 outin t odvC ete o `1

/*

12.outing odvetl castl

{ htains the broadcast fort auton packet

*1

int outin odvC etl c ° d(1o 11ol ode *ode}

Colo oZ etdvorklp i .,a er X10 ol c v 3 `.d °) nodc= ne worlt ata.ne orkVar;

yC= lo a yoR#-.c utin. .odv' ov (C Io o t util .odv *} i : .yer routn 'rotool;

1n 4. i.r d.4 49

bcast = aodv- bcastld

aodv->bcastId++;

rata (bcast ;

/ outinP odvt castld /

* 1Zoutn S:odvC et eci

:' ; , , ' , ~ = .rode

int ,., _ odvC et e } _ ® dcst drg A r ' route"lale

AODV_R _Node *current;

for (current = routeTable->head;
current != NULL && current->desAddr <= destAddr;

current = curr ent->next)

{
if (current->destAddr == destAddr)
{

return(current->destSeq);

}
}

return (-1);

} 1* RoutingAodvGetSeq */

/*
*RoutingAodvGetMySeq

*

* Obtains the node's seq number
*/

int RoutingAodvGetMySeq(GlomoNode *node)

{
GlonoNetworkIp* ipL yer = (GlomoNetworkIp *) node->networkDatanetworkVar;
GlomoRoutingAodv* aodv = (GlonoRoutingAody *) ipLayer->routingProtocol;

return (aody->seqNumber);

} /* RoutingAodvGetMySeq */

/*
* RoutingAodvGetflopCount
*

* Obtains the hop count to the destination node

int RoutingAodv etHopCount(NODE_ ADDR destAddr, AODV RTF *routeTable)

{
AODV_RT_Node *current;

for (current = routeTable->head;
current =NULL && current->destAddr <= dstAddr;
current = current->next)

if (current->destAddr == destAddr)

return(current->hopCount);

134

return (-1);

} /* Rou tingAodvGetHopCount */

/*

* RoutingAodvGetLastflopCount

*/ * btains the last hop count onto the destinatio~n node

int RoutingAodvGetLast-opCount(NODE_ADDR destAddr, AODV RT *routeTable)
{

AODV_RT_Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;

urrent =current->next)
{

if (current->destAddr == destAddr)

return(current->lastHopCount);

}

return (-1);

} /* RoutingAodvGetLastHopCount */

/*

* RoutingAodvGetTtl
*

* Obtains the ttl value for the outgoing Q
*/

int RoutingAodvGetTtl(NODE_ADDR destAddr, AODVSENT *sent)

{
AODV_SENT Node *current;

for (current =sent->head;
current != NULL && current->destAddr < destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

return(current->ttl)

return (TTLSTART);

}/* RoutingAodvGetTtl */

/*

* RoutingAodvGetTimes
*

* Obtains the number of times the RREQ was sent in TTL = NE _DIAMETER
*/

int RoutingAodvGetTimes(NODE_ADDR destAddr, AODV_SENT *sent)

{
AODVSENT Node *current;

for (curent sent->head;
current != NULL && current->destAddr <2 destAddr;
current = current->next)

{
if (current->destAddr = = destAddr)
{

return(current->tires);

return (0);

} /* RoutingAodvGetTimes *1

/*
* RoutingAodvGetLifetime
*

* Obtains the lifetire value of an entry in the route table
*/

clocktype RoutingAodvGetLifetine(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODV_RT_Node *current;

for (current = routeJable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
return(current->lifetime);

}
}

return (0);
} /* RoutingAodvGetLifetire */

1*

* RoutingAodvGetBufferedPacket
*

* Extract the packet that was buffered

136

SS `

c ratn c dv - ..z `f rdl' c;t{I C)F_ d st ddrp ' LTF`I2 * `fr

A ZTF' ' IoT rrnt;

®r (current = b ff r- b d,

current != I.., .., : _ _ a - destA.ddr = dest ddr;

current =current->ne t

if c .zrrent- dest ddr == dest ddr)

i

°etu (current->rns;

i

assert{F) b rt) rt L I.,L

/ 2. utin c dvt et f rda ket' /

I

` c utin cadv 'hec ute ist

etu s ° "i .LT if any route t+ thy: : n tic n is . ° _._

C C)I., ,.c ntin c d b I2 at ist (I 1 I)L) det .ddr 1 C} I_1Z`I: ' ra atrI` ble}

Ate 1 "T c de current;

i r ute 'able- si e == 0

re tu '.AL);

` r urrnt = r utc"I' 1+ =, , d;

current !- LTL current- estA.r = dct.Adr

current = current@ n .t)

i current- dest r == dst ddr :

(current- bc p "c unt. ?- . II T '}

(current->Ifeti si c1c c1 {} ,

current- ctiv ted == 'T ZLT

rata (LTA);

}

/* utin. c dvhec c ut ist

1'

* RoutingAodvCheckNbrExist

* Returns TRUE if the node is already a neighbor
*/

BOOL RoutingAodvCheckNbrExist(NODE ADDR destAddr, AODV_NT *nbrTable)

{
AODV NT Node *current;

if (nbrTable->size ==0)

{
return (FALSE);

}

for (current = nbrTable->head
current != NULL && current->destAddr <= destAddr;
current =current->next)

{
if (current->destAddr == destAddr)

{
return(TRUE);

}
}

return (FALSE);

}1* RoutingAodvCheckNbrExist */

/*
* RoutingAodvLookupSeenTable

* Returns TRUE if the broadcast packet is processed before
*/

BOOL RoutingAodvLookupSeenTable(NODEADDR srcAddr,
int beastld,

AODV_RST *seenTable)
{

AODV RSTNode *current;

if (seenTable->size ==0)

return (FALSE);
}

for (current = seenTable->front
current != NUJLL;
current =current->next)

{
if (current->srcAddr srcAddr && current->bcastd bcastld)

138

r . , T12I;TF);

}

Stu F`. L S

} 1' 2ota nAovoo pSenTal i

r
outingod Look ap uf r

Stu s T' I1 i any pakt bu t° r d to the d tination

C CI o odv ,ooup uffr(I TC T _ d t ddr, C: I ' 1 uffcr

i uf `er- siz ==

#`or ourrnt = buff -- hada

ant != I I JI_, rrnt dest. ddr := d st ddr;

urro t = et ent-= r t)

{

i urrnt d st ddr = = dest ddr

r tut n{Z' LTA;

'

}

f OLItt1l CdV .,# Lap It ,e'r .1

`

2.out n .od `h kSnt

l hay begin nt4 rat r[`12 :T i ` nt

1

C 3 , outinAod heckS nt(C L T dt ddr t3I ' T_ ` " ant}

AC? SI T`T I Tod *urr nt,

i ` snt- i == }

{
return (FALSE);

}

for (current = sent->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
return(TRUE);

}
}

return (FALSF);

} /* RoutingAodvCheckSent */

/*
* RoutingAodv HandleProtocolPacket
*

* Called when the packet is received from MAC

void RoutingAodviandleProtocolPacket(
GlomoNode *node, Message *rnsg, NODE_ADDR srcAddr,
NODE_ADDR destAddr, int ttl, int trustlevel, ion it MAC)

{
AODV_PacketType *aodvlleader = (AODV _Packet I ype*)GLOMO_MsgReturnPacket(msg);

switch (*aodvHeader)

{
case AODVRREQ:

{.
RoutingAodvHandleRequest(node, msg, ttl);

break;
} /* RREQ */

case AODV RREP:

{
RoutingAodv andleReply(node, msg srcAddr, destAddr);

break;

} /* RREP */
case AODV_RERR:

assert(destAddr ==ANYDEST);

140

RoutingAodvlandleRouteError(node msg srcAddr);

break;
} /* RERR *1

/*------ - - -- ---- - new code for warning handling ----- - - ---- - --

case AODV RWARN:

{
//GlomoNetworklp* ipLayer = (GlomoNe orklp *) node->networkData.networkVar;
//GloroRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

//aodv->statsaencr message = MAC; /* to display the MAC */

RoutingAodvHandleWarning(node, msg, srcAddr, destAddr, trust_ level, MAC);

break;
} /* RWAiRN */

default:
assert(FALSE); abort();
break;

S/* switch */
/* RoutingAodvliandleProtocolPacket */

/*

* RoutingAodvHandleProtocolhvent
*

* Handles all the protocol events
*1

void RoutingAodvHandleProtocolEvent(GlomoNode *node, Message *msg)
{

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv (GlomoRoutingAodv *) ipLayer->routingProtocol;

switch (msg->eventType) {

1* Remove an entry from the RREQ Seen Table */

case MSG_NETWORK_FlushTables: {
RoutingAodvDeleteSeen`Table(&aodv->seenTable);
GLOMOMsgFree(node, nsg)
break;

/* Remove the route that has not been used for awhile /

case MSG_NETWORK_CheckRouteT imeout:
NODE_ADDR *destAddr = (NODE_ADDR *)GLOMO MsgReturnInfo(msg);

141

u in . c dvT t T .c ut *dstt °4 c v-:>rc u ' i ;

hrak

/ 'hk if i5 re i d after s ndn '(*/

case SC Tl T " _hec 1i dP {

I TC T T . d st ddr = TC) ° ClT C)_ vs tuz-r Info s ,

/ outs has nc t been btaind /

if c utinc dvh ut xst{*dstAddr, :aodv- rc ut `ai)

{

i ` I2cautin dvC et`Ti s d stAddr, ac d- sen `T)

{

/ I2 try ith ncr as TTI *I

c tinr c dvTT t °yI C (nc d , *dst .ddr);

/* if under t:h retry lil nit /

l * c vr the li it l

ls

{

whip { t utn .dvI cao .zu fer(d stddr; ;adv = l 9 : ?

i

ssa ` essa 'e 1 te

.c utin . advC tufredac t{

dest dr, ac dv- uff r ;

autinAs dvl l t u °f °(*d st :ddr, ac dv->u#'fr

{ I,(C _ sgF`r nad ssaTcrl elet);

c dv = stats.nu ac tsl rc d ;

l* ls /

/* if n rcaute C

C L{ l IC3_Ie sF` {nc d, s ;

break;

}

df lt

rintf tdrr, ' cauti c dv'a LT .k t ,%c d! Tl''=

s > v ntType ;

abort()

} / sith

1 utin: . d anl re tc ®l nt /

142

1

* 1 .o tin.P º ,- uterFunetion

` ete one the roUt2n c`1et1()n to ' { " the 1Ven data paCl et

y ` ® aeket s Doted variable to ' i no further handlir ; of

this ° cl et is necessary

void outn odv outerFunction(

Flo o1 Tode mode,

essae

I l L)IZ dst ddr,

paeketas outed

Colo ciet vo °klp ? ° _- ((lomol Tet vor p * node® net vor ata.netor arq

Colo ol outin. od , = (C lo o c utint .odv payer-=routin'rotoeol;

peaderType * e ° _ r = (Ip dr" " 'p) ® pa kt

/ control pael ets `i

i (ipfleader- lp. - : ('C t C V}

retu ;

if (dest dr ==- d-= nc d . ddr}

pael tas c uted = F.AL E

else

{

packetasR.oute - . i l

/* rote ediate node ° ' , - cif the rca zte *l

if zp seder->ipsrc !=nod= .. 1 ode ,ddr

c utinAodv andl 's T a(nod, sg, destA.dr)

'

/' sours has route to the destination /

else if l .outin odv "e oute i t des :ddr, ac dv- r ut"pable)

outin odv' 'rans itl ata{node, ,LY. d st ddr ;

odv-%stats.nurr IaataSent - -;

/ ' ' , : - jute to the destination and `{ I as neat , a s{_ nt *I

, e , ' : . _ dv ,ook . p u 'fe -{dest .ddr, aodv > ,u

outin ovlnsert offer(s, dest .ddr, aodv u .; : ,

1

c utin c dvlniti te C nude, dest. lddr ;

l "here is nc rsaute but his lre been sent */

else

c utin c dv serf uI"eJ-(z - t, clest .dr, : c dv- l u er

}

! utin c vl utrFuneti n /

1

autingc dv cl1 : ,-` t s ndlr

I . ts t the si al sent by the A prt rec l ter Link ilure

1

vt id T :a tin Qdvl'aeketl r pl Tc tilie tion ndler(

f. lc l de *n de, ec nst essa e s, cc nst IC}L)_ ,.I IZ. ne t I p ddress)

Clc ol et vc rklp* ipl ayer = 1c c I Te rkIp j node- net vc r t .net vork r9

C lon ca c uting ,odv odv = C_11 c utin adv) ipl yer- rc utinPrc toce l

Ip eaderZ'ype* ipleader

t ?I)F_ I I destdr,

int nu berl2 autell. estinatic ns

ip eider = Ip e derType C IC _ s etu ekes };

{.

retu

//if//

dt ddr - pI-I er = p st,

if next p ddress == I F, I"

a adv®: st ts.nu rt kenLin striae++

rata.

} /IiI%/

Tet c rklp eleteC)utc dI'ekets`["c

node, nest c pA.ddress, ,P _L) S `, FAII

c dv- sttsenu rc knLinks++

outi eºdv elate. rTale ne t c Addressq c dv- nr ' hl

1

Z utind In r ;(nc d

dc {

' E k t n vl a k t;

n rrp t.kt ' = E

utzn cadv ativ t uts dC t1 t c ns

ncad ,

c dv ° ut T bl ,

next c p ddr ss,

new er p ket.dtin tic n r y

t nLl E' °ITt Stlnc` ICIn ;

nwF errl ket.d tintic n "c unt - ; t ;.b r 2c uteL stinati n ;

if n v rr 'acet.dstintic nc ur t 0)

nd .c ut ErrrP kt(d , c' .r w . rrP cl t ;

c dv st ts.nu rrS nt-E-+;

1

} while un b rF c ut T e tinat ns == JI 1!1_REZ ES I'II `T t 1S ;

}Ol c utin adv clay r tatus [a ld? ° -f/

/*

' Z utln c dv tTi

aet tim °s fir °c tc c l a r tr>

veld Rc utinc dvti e °(

C: l ot d ' nnd , lcan vnt`Typ; C E; ds Addr, l c e y)

i
ssa netiv s;

l Tt L E L *infc ;

new sg = CiI1(_ s llc c(nc d,

C TrT. C C) °C3I. .(JI

vnt`T'yp);

CSI., C _ Inc lc cnc d ; new Is ec { [E

nI`e = C E_) C I.dC) (_ ' ':u nfc (n v 9

nfc = dstAdr

CII (C s nd ncad, n gig, dl y);

} ' : utin c dv t I`i /

145

`

c utin d itiate

Initiate saute equest paelcet when n mute tc destination is kn n

;

void outi od Initiate {lc cam®de `node, I }I)_ destddr

Flo ol Tet` or p ` ip1=.,aver {C lo oI T;, ar' Ip) node-=net ork ata.net or ar

Flo ol outin cadv aodv- (t lo 0 ou nAodv } ipl yr- r utinrc tc a1;

essae nePl s;

.C I T_ E I aeket rregl kt,

char pktl'tr

int pkti e = sizeo(' I acl et)

int ttl;

new s = -I,1VIC? s lloc{node, C I _IVI ` t ,I , 0,

S . C Fro I Ietor 4

CII.(J _ s I ael et. lloc{node, new s p1 tize)

pktptr = har } CIL s etu I' , _, ; . `, ; ;

rregPkt = {AC I 1 C _I'acl et *) pktl t ;

rregPkt- p tt 'ype = t I V_ ?;

rz°egI'kt- beastld = outin ovt tcastId(noe)

rregl'kt-= de tddr - stl4d °,

rregPl t->destSeq = outincad retSeq dest ddr; acav- rc ut "1°b1e);

rrgl'lct- sre .ddr =node- nodeddr,

rregl'kt->src;Seq l outn odvClet Seq n d)

rregl'l t- lastAddr =nude- node ddr;

rregkt- hopC:`ount = l;

rregl'l t- tr°ustlevel= Q 1 added parameter /

rregkt- A = }; /* added pare star ' /

if (outingcadv 'ee.Sentdest ddr, a adv- ezlt

t l =12c uting .c dvC et "tl destdr a dv- sent

Rc utin c dvlnereaseT'tldestddr, ac v->sent

else

i

ttl -- I .outin , odvetl.,ast Qpc untdestddr, :aod ->route T ble}

if t1== -1

tt 1= ° ` SZ ';

T r : : ovlxa,:: ent est ddr tt1A c dv- =sent)

1

autinAavlnrseZ°tl(destAddr adv- sent

1 e r' ;end. vC: lad else(

Wade, sus A S f g `C)Z' C) rl"C _AC)I: tt1 ;

adv->tts.nu equ S nt

atinAadvInsertSeenZ` 1e(

Wade, Wade- naeAddr rreq 'kt- e stld °rq 'kt- hapaunt, rr°et->trust level,

adv-seenZ`ble) 1 added p r meter /

autinAadvet '' _-_-jade, I I_1 ` 'C h c eplied destAddr

elae e ttl _I AL, rI'I °)

, /* autinAadvraitite `/

1

autin ;Aadv 2etr E

* Send.. again after nat any

vaid autingAadvl etry (la Made na , I CC; AI destAddr)

Ala ciet varp il ,ayer = (CslamaNetvvar:T *) z ae- netlvar atanet vc rkar;

Gla autingAadv aadv - 1an al autingAadv ipLayr-= rautin Prata al;

_ :essage neval sg;

At L _ _P'acket rregPkt

ehar pkttr;

int pktSi e = i ea{AC}V_ _ r

int ttl;

ne v sg = Cx C) C) llaenade; C C) It J I IAC" I: A

St A `_ 'ra I` et vorlc)

CiI 4 sgP'aelCetAllae{Wade, newl sg °'ti a ° ;

pktPtr = char *) C .C l IC _ º turnPaeket{ne vl ls),

rregkt = (AC3L)_ l Pac et) pktPtr;

rregkt- pktZ ̀ ype = A _ :R

rre 'Ict-= bcat d = .autinAad: et est d(nadl

rreq 't- dtAddr = destAddr

rregkt- destSeq =12autingadvCaetSeq(destAddr; c4iadv- ratZ'ab1e;

regkt- srcAdr = Wade- °nadeAddra

rregl kt-= rceq = F autin ;Aad rC et ySegnade

rreq 't-= latAddr = nade-= nadeAddr

°regl'l t- ap "aunt - l ;

rregt- trustlevel = / added para _ ' _ :'-;,

rregF'kt- A = Q; / added para... star

tt1= o tin odvCxetTtl(d st.Addr, aodv->sent}

Tet or pSendl2a vC lo o essae

node, new s, S. _ S T, C)I IT C)L,; II'C "I'(_ .C L, ttl};

ootin .odvlnereas 'tl(d st ddr ;odv-=ant};

aodv- statsonu ustnt -a--;

ontint odvlnsrte nTa1

nods, nods->noe dr, °regkt-= beastld, rrepkt->opo n, rree pt- tr st lv 1,

aodv- seen` ale} f added pare star '

Zoutinodvln r s ` ' s stAddr, c odv-sent}p

'

outix AodvtTin r{node, ' VC 'hee lied4 destddr,

} / ` I o tanr odv 'etry { `1

I'

Zo atin odv 'rans itL ? ta

* F`o and the data packet to the next hop

f

void 2ontin odv 'ransnzitL at{C lon ol od mode, s s, I I stAddr}

`

Colo ot vorkIp ipLayer = loci Itworklp *} n.ode- networkL ata.nctworkar,

C lon o otztin odv* aodv = (C lo o .outin ; lodv } ipl yer >routingl'rotocol

I CC: T: _ I . next Iop;

C I C I C:t_ sSetLayer s, C LC; (_ I , ' }}

C LC)1VI ?_ sgetE °ent{mss, C I A rol T t vork}

nxtop = outinAodvetextIop(dest, ddr, iaod r-: rotc ` l le}

assert{ne t -Iop != T};

I etworklpenacket Io ac ,ayr(noc e, s 1~' . , `pp; ' , a : p)4

aodv->statswn ataZ': d -

o tinA.odvLTpdateLifeti e{dest dd °; aodv- ro teTale}

.o tir odvet i er(nodeq C _ Z tJ _ eckl outeTin eout,

destAdclr, clocktype} `r 'I '_ .[.T " _''C };

/ o ' -Aodv°prans it eta l

l

`

` outin r' odV

p'o Ord (®ro dc .st} the RTtF

C

void Routingod clay (C lo il odc nodc c sac , ttl}

ct tr actl . a,_ . tbc cturc for st t blc '

1 C) _ L I nods,

lnt tru tlcvcl;

I° C.) rA L rccd # °c odc;

ddcd p r mctcr */

int count, ontln ry, oun nc t, slll / `

pars ctcr /

int tcp_ rra:Y[/ d

pars .star /

Colo oct vorklp laycr = (C lorrtc t : _> F } nodc-=n t ur t .ncte t r I .r

CTlornootinl odv odv = (Cilo oRout r..° dv *} ip .,ayr-= rc utinrc t o1

cssgc `nc sg;

C _R +t p c ct ' c ldRrcq

At L RR. Ef _ 'ackct *nc Rreg9

char *pkttr

int pktSi = i cof(. ,.1 R -0(_F'a:cct},

clocktypc delay;

// Trust Tablc t 'able / added pars ctcr

f

dcd

dcd

*/

/I void inat`T stTabl{}

/C

C 1J '_TrustTablc[Q]enodc = ;

1C) _T stTalc[C].trutlcvcl

for {count==1; count; count+a--}

AC T st Table[cou z]:r de - t TustTalo t-1]:nodc -1;

. CJI _Tru t Talc count]wtrust level = C. II) ` st Tblc[count-

1] stru _lcvcl

1/; //end o fiznctican intT stT`ble

old cq = C _RR (_acct *} CaLC C _ sRctu ackct(rns}

nc s = C I.C C) sgAlloc nodc, C I C C _f., ? ,

_Fro I Tct aork}s

Ie..C? C. 1 'cct lloc{node, nc s, pl tSlzc}

pktPtr = (char *) GLOMOMsgReturnPacket(newMsg);
newRreq =(AODV_RREQPacket *) pktPtr;

recd_from_node = oldRreq->lastAddr; *
added parameter */

newRreg->pktType = oldRreq>pktType;
newRreq->bcastld = oldRreq->bcastd;
newRreq->destAddr = oldRreq->destAddr
newRreq->destSeq = oldRreq->destSeq;
newRreq->srcAddr = oldRreq->srcAddr
n wRreq->srcSeq = oldRreq->srcSq;
newRreq->lastAddr = node>nodeAddr;
newRreq->hopCount = oldRreq->hopC ount + 1;

1* - - - - - - - - - - - - - --_- - - - - - - - - - - -added code */

for (count=0 count<5,; count++)

{
if(AODV_Trust _Table[count].node == reed_from node)

newRreq->trust_level oldRreq->trustlevel + AODV rustTable[count].t st_level;

}

1* --- --- - --- ne code for computing MAC - - -- - - - - - - - - - - *

s1 = Private;
for (countbinary = 0; countbinary <= 15; countbinary ++)
{
y1 =s1/2;
temp_ array[countbinary] = s1 o2;

s1 =yl;

dl1;
for (countencrypt = 15; countencrypt >= 0; countencrypt --)
{
d1= (d1*dl)%on;
if (temparray[countencrypt] == 1)

dl = (dl*message)% 0 n;

t

newRr q->MAC = d1;
/1 aody->stats.en r_messag = dl /* to display encrypted message */

150

defy = peerand(node->seed} * ' SrT` JI`1"T' R

1' etor pnd a vvC 1o. o e sae lith slay{

node noc s, A _ `C3N £' C)I ., PP `I C IIV, ttl, delay}

aodv- tats.nun egne tent -a-;

C3 ,C _ sgp`ree{node, s}a

/* outin ovl elay (1

/

I outin -lodvnitiate

ti ; 3 ation o the route sends ' in reaction to C

void I outin odvnitiate a{C lo node ` odes essa e xns}

{

(lo ol etorkl ` pLayer = (C lo ol° etor p ' }node- netwc °kT ata.netor lar9

Colo ooutinAod aodv = 6 loznooutng -lode }ipLayer->ro tin ;I'rotoeol;

IVles age *ne v ;

Act m 't _P'acket rregPl t

. T P' acket *rrepPkt;

char *pl tPt r;

int ktSize = si eof(I '_ PPael et}

int seq;

rregPl t = C I:3V 'aket } CiI , _ s Il etu I'aeket }

nell I = (I; _ s Alloc node, L { _ IA_.,, IPT ., Qg

S_ tI t ' Pro Ike orl };

!t I.,C) C _ sPaetAlloe{node, neIO s, pktSi e};

pktPtr = har } C C t slZetu Paeket ne v s};

rrepkt = C) _ P Paeket ' } pktPtr;

rrepktB=p trl'ype = (L)V_ ;

rrepkt °src dr = r req t->sre lddr;

rrPkt->destAddr -= node- node. lddr;

seq = I outin lodvC et rq node}

if (seq = rregP ->detSeq}

i

rrep t- destSq = seq

else

rrepPkt-= de toq = rregPkt->st q;

outin odvlnerea eegne de}g

151.

rrep 'kt- hapC`aunt = l;

rrep ->trust level = rregl't- trust_ eve1;

rrepPl t-next hap - ;

rreppt- latAddr = nade- nadeAddr9

rrepPkt- lifeti e = (cla) _ LT°p 'T(;

r p r eter added /

l ` pararraeter added /

i' para... star added `f

Tit arklpSend a vla a es eTa ael ayer

Hyde, new s, rregFkt- last ddr, C T ` .. C)I,; (C . . } , 1,

F' TIT_ rI" r .C', rreq 'kt latddr)

aadv- tatsu elySent++;

CILC { _ ree(nade,

} * R. tin c d =In t te E '

/

l autin ac e Ito py

An rote edit node that knaves the route to the destinatian sends the

*/

/fvad tauting advnitiat Pby (l c ae made, Message ' s

/0

// C Ian aetwarklp ip ,ayer {la al etwarkp)riade- netwar atane arka;

O/ Cola al2autin c dv* aadv = (la aRautln ,adv ` ipl ayer- rautin, 'rataeal;

// ssae one Mss

/1 'aeet *rregi kt;

// T T _Paekt rrepPkt;

// ehar pktptr,

11 int pktSie = si ea(C}I V_ '_eket ;

// int seq;

// new s = .C r sgAllc { de CIL C. _ '_ , 'IZ; ,

S(' bra et vark ;

I/ LC) t _ sac ket lla(nade, new s, pktSize)

/1

1/

pkttr = Behar) ' .,(J _ s atu Packet{new:.... s);

rrepl'kt = A L _I'acket } pktptr

// rreq 'kt - (_ 'ac'P t) C (s etu ack t s.

// rrp ® p? tType = , C3I _

/ rrepl `-- 4: y ddr = rregl kt- sre. ddr;

// rrepF kt-f . st. .ddr = rregPkt->destAddr

// rreppkt- destSeq = autin advC tSegrrec l t- e t r, . _` r->ratrT' 1 ,

1

// rrp 1 t->lifi = I u ing d C I i

1/ rrl' Ct dst. .dr, . c d4>r u `T'bl - sinllc k ;

// rrpkt- l c p "unt = 12s utin c d e pc unt

// rrpkt- dstt ddr, c =r u e ' bl + l;

// rklSnd a.wC la n o ss ' a Layr(

/I nc g new s, rr "kt->l stt ddr, ` ,, TI' C T'C) C I J"9 1,

ff ALTLrI`_ ' .. r _ , rr F - 1st.Addr ;

// dv-= stats.nun p1ySn ++;

l/ t LC> CCU sp'r {nods, s

// /* ouingAod Initiat Ply /

/ ___.. _. __ a________ . ____ _ _®®____ ®__s_______ _®__®_______ ._ _ _ _ _ _ ________ ______________no

rqd */

I2outngAo 1 . .=y'

* Fo and the .ET' p .c t

/

void outinA.odvR ay F'C71o c I Tod nod , ss ; sg;1 T(_ I)I I2 d st ddr

CT1ool e or p ipL y r = (C loznoT or p nods- n tor r t .. ne arkar;

Flo o 2outin od * od = to o t n odv * iLay r- routin 'ro oco g

l 'I ss ne s;

C I _ 'F° F k t gold ep

her *pttr

I TC3I _ I R nx -Iop;

lo kty lifefii e

int pktize = sizof C 1 _ 'ace };

old ep {A I :P k) I., _1VTsg turnT'c `° __: ;

e atir l °ti , fold ep = i#ti , s of cloc)

n wMs = CCU 1VIsgAllo (node, I_, t " L. ' ,1 ., ,

1 I fro I Te o °,

CAL C sI cet loc node, new s, pktiz),

pktr = { h r CI,((s to 'cke(nev s}

new °ep = {. C1L _ p het pkttr;

ne ' <--° _= t' 'yp = cold. p T ;

ne,, l :. , ddr = o1dl xep- sre , dr

1 rt .m des .ddr = old rep s1 . t ddr4

ne e->desteq =old ep->dest ;

1

Hsw - s. - sapeaunt =saki.. spa>heap unt - l ;

new ' -a-Must level = saki sp-mot stlsvsl

new ep- HSxtl eap = said sp- l st dd

nsw-sp- l st ddr = Heeds->neads ddr,

nswT rspm lifstirne = li etrns;

/ pa1 9 .. r ddsd /

l p .. . , .° ddsd *I

if sstddr == _I '

{

l stwearltT snd C l ea sss s{

Heads, Hsw s, _I ,ST, C} T'T' t 3L, C `TC)_.A(. `, l ;

else

next sap = c utr g lc dvC et1` ext c p{s. 1d ep s e .dr, ; c dv rc te l le4

I` etTc rklpS ndlZ .vuCll mcalvl i : v º el.,yer(

Heads, new s, next gyp, C r t2 L,, IP C3TC9_ lC L3, l ;

CIL C _ sFrss{Heads, NHS);

} / eautln csdv .sla l ' 1

---- /

* eautn .eadvslay a H

r aads st. the warnin r r, °: s ;e

veaid F eautinAodv sslay a in(Clea d Ios ne ds, lcan int . `, I(JI : C.. . ']. atl ddr§

I src ddr)

Colo east sarklp pT. e °

C,1sa eautin . ,eadv . adv

Cllca t l et z° p ') Heads- nstweaz°k at ,nstwc rk r;

C lc to eauting c dv } ipl ysr-= e utin 'roteacsal;

Ca skst a Mkt;

slag
; ttr;

_

// int tt

l

n v s = I.aC) t s llc nc de, ,C (C _Z, -.

SC; '_rrraT' etcrr;

C LC t _ a ,ke . llc (nc d , new s, pti);

plct 'tr - {her F J_ s uI' ,kt :._ fi :);

r va lit = (C_)Z _ 2 '' I : ` pktl r

anl 'kt-> akt`I"yp = ACS ;

Mkt- std == .c utin dvC t stld(nt d >

r v -= rScl = I2c utin dv t yS nc e w

r va l t- li i us = last ddr;

/1ra `l t-> st lvl = trust l vl;

a kt-> a n sc rc P = nc d - n de ldr;

Flit->sr ddr = r ddr

/lac dv- s a sn °_ es = a Pkt-> / t di pla die SAC" */

l T c rk laSendR av rC l n3c ::

nQd , ne v s` - $' SST CC 1' "I` C , IPIZC)TC) 1 `, r Plat->

ac dv- s at ,nu a ingnt --+-;

} f * u ing dv slay ar ain /

1f -__--_-__ , _.. . .______.._ _-__ _-_®_ _r__,,-® ®_-®__-_®_ _______________________®__-__®-®_-- func ic n added

I t utin .c dvRe y Na in l

E roadcast the ova in sae

vcad k;.c u in odv . l yWa in l C l o1 c d n de

Coln l t vt rkT* } La r = ((1 n c :; b< nc d-= net v r : a.n rk ar

C l rnc cautin 1c dv* dv = C l c autr ,Ac dv *} il ay r re utinT'rcat cc l

aodv-= s ats.nun a in2Snt +;

/* Z LCtinAcav Jaya in_1 */

APPENDIX C
Header File of Simulation for Trust Modeling

/*
*Edited and Modified By Tirthankar Ghosh and Ahmad Farhat

* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSin is available
* at no cost to educational users only.
*

* Commercial use of this softvare requires a separate license. No cost,
* evaluation licenses are vailable for such purposes: please contact

* infoscalable-networks.com
*

* By obtaining copies of this and any other files that comprise GloMoSi .02,
* you, the Licensee, agree to abide by the following conditions and
* understandings with respect to the copyrihted software:
*

* 1 .Permission to use, copy, and modify this software and its documentation
* for education and non-commercial research purposes only is hereby granted
* to Licensee, provided that the copyright notice, the original author's
* names and unit identification, and this permission notice appear on all

* such copies, and that no charge be made for such copies. Any entity
* desiring permission to use this softw are for any commercial or

* non-educational research purposes should contact:
*

* Professor Rajive Bagrodia
* University of California, Los Angeles
* Department of Computer Science
* Box 951596
* 3532 Boelter Hall
* Los Angeles, CA 90095-1596
* rajive cs.ucla.edu
*

* 2.NO REPRESENTFATIONS ARE MADE ABOUT THE SUITABILITY OF THE
SOFTWARE FOR ANY
* PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY
*

3 3.Neither the software developers the Parallel Computing Lab, UCLA, or any
* affiliate of the UC system shall be liable for any damages suffered by
* Licensee from the use of this software.
*/

// Use the latest version of Parsec if this line causes a opiler error.
/*
* Name: aody.h
*

* Implenented by SJ Lee (sjlee@cs.ucla.edu)
*1

156

, `

(` ' ' a ° ter =aus 1c the A(` _._ t I

dr -it dv-03 ot t) ': 2 c c y it . s

d the I C} ' o o .p f til

i a lu ~ip "

#ir lud " i ht

d n I' E ' 'T'

de zn P AI ' "TI SE

efi T SA.V

#dfin TTI. T S CC}I,

#fi AC: I) l IrI' ?

fine 3 Z T ' .T 'TTY:

1

° ILI., `C3

3 * I t I)F 'I I L, Z' 'vI I I Z' LIf E 'E . / 2

Q * SECS

P' 1 `

2

1

7

10 .;I s

df ux si c ° A(T. ack tT p

fi AC3I _ 1

5

#deine . ?I r' °' '. 2

ede ° trct

. '_acl et` 'ype p tT' e?

t bcastd

T _ dest. .dr;

int dente

.t .T) rcddr

irlt rSeq;

1 CC :D 1a t dr

int apC ant,

fl aat car f Levelg/
=

C I _ I I2 cs raf cºdeb/ : = f

1 C L _ Packet,

t ,. ,,y ef s ct

t TPa _ " , s 'ype kt`Type;

I TC R rcAddr,

NCB Ev 9F dest ddr

ir t destSec ;

int hc pC ' urit

clc cktype li etime

: edef s ct

i t destirlatior Se u. ce ber;

} L9V_ -1ddr ss q enc I urnberP rType

#efine X1.0 ' 1 'I STT I1 `T i` t" ?5

t of st ct

{

AC3 _P ket` 'ype kt'T'ype; // 1 byte

unsir ed char f 11i [2];

un ined char destir atic n ;nt;

1_ lddresseg ce brl °` ` e

de ti ati r Pair ay I _ . ' :'. I'IC]

, Ca _ _Packt;

st tie /linlix e/1

ir t .P {J _Pack ze cc nst . C _ P _ acket* rerrPack }

1ST

'tlt

i {rr p "bit->filli } --

sizo `rr ° ' 1 t®=de tinatio 'ount} -

° rrpt- e ti tio l 'o t

siof(t t . dd °essSqu ncel b xpir`1 yp }}};

typd tr u t T

I t) . I) d stA.ddx;

int d tq;

int hopC'o t

int stlKopC"o .n °.

I C I AL I) ; , ̀ . -; =t gip;

Ioektyp 1if tirr ;,y ;

C)4 L, a tv td

struct °T'E r xt;

} Ate R`T I 1od

typed st t

C I V R.`T` de' e d;

int e;

ed s et T

Z) destAddr;

struct I' `T' xt

} }L V TI ode;

edet: str act

112t SIe;

} Ate V `T

ee ° t S

a

m t dr;

int e tq

trt et . ext®

ix t opount,

I , stddr;

159

f trot

S I' I c d 'frC nt,

C `I' e r r9

ir t i ,

. Z

f nfidenc° °Tab1 t.r t 't tre : f

F

{

(_ : 7 zzd dd -;

flat f vl;/ ' /

flat c nf ati a;/ C: l

float C) T

strut net

f st ct

i

A(' "F ' cad ' fT°t)23t;

AC I ' ' 'T I Ic d rar;

t 7 ,

d f s t

.

I I I . nc d ddr

int Ti (fZaeaviz

s ct I T ZE *nt

A C _ " `_Nod

° " r a t

C)I) I 1Z I d front;

. } I I 1 °T' I d rar

ir t si

} (`,

f t

; dstddr

clc _ ti sta p;

str +_ t 'IF n xt,

160

. 1C)I _ M . _T de,

edef strut

A ' T . Node °: n n

rat sire;

def struct

. dst dd -;

i t ttl;

street . - ne t;

ACS _ l° TI c de4

typede struct

{

int size;

} ACS _S I* 'f;

eef st et

i t nu u . t

int nur eply ;nt

i t nu I2errSerit

ir t 11u I2.v4 S l t, / rte stet = = =

ir t riu errl2esent

int nu taent, / ate eut s the. sc uree f the route /

int rlun tied;

int u ta Z.eeei Fed; 1* L } t eceived s the destinati r f the route 1

int u ops;

nt nu cut _° ,

int nu r ped

int uu rc Ynl: it s _ ; ,

int a u rc enl iz retries;

. I VStts4

edef s et lc net r rk: vstr

. C L ' able;/ C.. r lider ee `I'sle `

C I `T r v ale l* `** *' * '' 1 leihb ur c v ; ' le* `

tJI 3 .T ra uteTable;

I r br 'able

1L " seer `able;

I3L:rF'F buffer;.

C. I 3 F 1° T srlt

I ° tats scats

161

int s qu b r4

ink b s Id

, CSI c u in ;c dv

void utin dvnit(

6 1 I° d n d ,

c n z utin a dv + dvPtr,

c nst C1® c c put *nc d Input;

vcaid e uting vin (: Ic I 1c d nc d)q

void c utin t dv andl t(Csl c I cade n d , s ge s, I° C ,_ I d s .Addr);

vcsid autin c d nd1 cqust 1c c 2 ad *n de, s * s nt 1;

v id c u in cadv ndle ply(

C 1 god *nc d, see ` ;7~ Nth _. sr ,ddr, C) _ d s Addr;

void c utin t dvlit ou `Tb1e JII: _ Z' ru eT b1e};

void s u ng odvlnit r`Ta 1 .A ' T nrT l)§

void c u nA dv ni S nrl' b1 1C L "_S T` ` nrI'bl ;

void uti Ac dv nit c nf" ' 1 C) _C'F" ' nn "b1;

vcaid Rou in cadv se °tbr vT1e{I 1I3 I) d stddr ,t ' r v T'ab1 ,

float R utin c dvc u l en(1 TC rg tddr C I _1Z rR nv' abl);

v aid c uti odvlnit rIR. v 'bie .C I ' Nk T * r vTi

vai I c utinAc dvlnitl3uffr.A.I ' _ 3LTF 2. ufer ;

void utin A advlni Sn {. C 5 ,1' ' sr t)>

void c utin.t c dvnit s(lc c i' c d nQd

void I .,,,e dvni S q+ alc l n I I *r d ;

void c u in c dv i c; td(C ic c c `nd ;

1 CC) I c utin vCsctl ext c p(1 IC)L ;, st: ddr, . . `I' * -c i ' b

int Zc u in.Ac dvC t stld(1t cac d nd);

int .c utin c vCTc Sq(C ;_A L) d r .ddr V rut`' i

162

int autinAadvC t yS (Ia a Tad nad);

int ai., -: Aadvt apC aunt(T tC) F"_A destAdr9 AC 7 '_ I` raut "I' l ,

int I2aLZtinAadvC tl.., st ap "aunt I E_ stAdr, A{ Z' *rautT ble)

it autanAadvC tT"t1(I' EA dastAddr, AC)I _SE I' s nt

int autingAadvCa tTi7 a s(1 t T E_ A I dstAddr A{ '_S ` ' ' snt)

cloy autinAadvC tl ifti (T)EAI L I dstAddr, ACS _ #raut T l ;

ss

autinAa.v aet uI°fr dl'a ':-s `;1 TC I7E AI T I2 dstAddr ACS I F'E uhf erg;

c C I:J IZautinAadvhckRautxist(CI: E_ : c' ddr, A(T) I` *rautZ`le);

(I., autinAadvhk rE ist1L EAI I I2 d stAddr, AC) I` TT nr 'al }4

C I.> autinAddvLaaupScn"T'ab1C ia al ade nad9

E A srcAddr

int bcastIint hap aunt, i added p r tr f

ICC L)E_ R. stAdd r,

AC L)V R.S'I' *seenT bla,

AE L ' ` `T eanl'Tab1e

L Il autin; Aadv c putC. "an 'T'l {C laalNade nod ,Nt L)I ;__A t l stAddr; rat

I 'I , lnt rI' ',At I _ ` I' canfTable),

C. C)I.. I2autingAadvUpd teanfT ble NI E AI I address a t can tiat a t

an# Leve1 C. I EAT. I I2 eanf TadeA6 L _ `I°`T ean T'ab1e ;

vaid I autin advlnsart 'anfTabl Cilat aad *nad NC) E AI L)I .1 stAddrAC I t SE`T'

*ean ab Ie);

* anftab e fur ian

C)C L I .autinAadv aaup ufifer(NC)L E_ L) destAddr, AfJL _I TEF' *buffer}

C)C)I., c utin Aadv 'eekent I EAI I destAddr, AC)I `I` *sent);

vaid ItautinAadv andleratacall'acket(

{ 1 n aade made, essae s, 1CC3T E_. I sreAd

E I destAddr, ant tt1

vaid I .aut _ dv andlel'ratacalEvent{CIIa made made, ssae s ,

vaid °° aAadvl .auterEunetian{

I

]o ol loe .ode,

Nlesse s 4

(destA.dr

C C T, ' a p t Ts oted ,

void o ti ®dvT eketT rol Iotiticticar? r :. r

Flo oNoe ' ode, eo st essae s, eons_ C9 _ e.t c _ >

void o ztir odvSet er{

Cxio dl Ioe odelor ever tT pe~ T1_.A 1Z dest ddr, eloet e del ;

void o ti od Ir iti te {C 1o ol ode node I(_AI7 dest ddr

void outinr odvetry C {Ci1ca o de *noe, t L) _ LET dest ddr),

void TZoutng odv'Tr r s it t{io oode ``T- , ij T ; , - . * s, I TT T T estAddr);

void FZotatingAodv ol yT 2EC {Ciloc l Iod r od, sse * s, i t ttl ;

void Roczti odvT iti tel . T'{lo node Triode, essa ' s);

void oi tiriA.odvlnititeTt b {t lo ood mode, essae msg;

void T o tiril .ov el y P{C1oi iolOTode rioe ssge s,1 T T~_ T dest dd);

#et dif ` L) I-T `/

14

APPENDIX D
Sample Code of Simulation for Trust Modeling

/*

*Edited and Modified By Tirthankar Ghosh and Ahmad Farhat

* GloMoSim is COPYRIGHTED software. Release 2.02 of GloMoSim is available
* at no cost to educational users only.
*

* Cormercial use of this sof are requires a separate license. No cost,
* evaluation licenses are available for such purposes; please contact
* info@scalable-networks.com
*

* By obtaining copies of this and any other files that comprise GloMoSim2.02
* you, the Licensee, agree to abide by the following conditions and
* understandings with respect to the copyrighted software:
*

* 1.Permission to use, copy, and modify this software and its documentation

* for education and non-commercial research purposes only is hereby granted

* to Licensee, provided that the copyright notice the oniinal author's

* names and unit identification, and this permission notice appear on all

* such copies, and that no charge be made for such copies. Any entity

* desiring permission to use this software for any commercial or

* non-educational research purposes should contact:
*

* Professor Rajive Bagrodia
* University of California, Los Angeles
* Depar ent of Computer Science

* Box 951596
* 3532 Boelter Hall
* Los Angeles, CA 90095-1596
* rajive cs.ucla.edu
*

* 2.NO REPRESENTATIONS ARE MADL ABOUT THE SUITABILITY OF THE

SOFTWARE FOR ANY
* PURPOSE. IT IS PRO VIDED "AS IS" WITHOU JT EXPRESS OR IMPLIED WARRANTY
*

* 3. Neither the software developers, the Parallel Computing Lab, U CLA, or any

* affiliate of the UC system shall be liable for any damages suffered by

* Licensee from the use of this software.
*/

// Use the latest version of Parsec if this line causes a compiler error.
/*
* Name: aodv.pc
*

* Implerented by SJ Lee (sjlee cs ucla.edu)
*1

165

/*

NOTE: - Followed the specification of AODV Internet Draft
(draft-ietf-manet-aodv-03.txt)

- This implements only unicast functionality of AODV.
- Assumes the MAC protocol sends a signal to the routing protocol

when it detects link breaks. MAC protocols such as IEEE 802.11
and MACAW has this functionality. In IEEE 802.11, when no CTS

is received after RTS, and no ACK is received after retransmissions
of unicasted packet, it sends the signal to the routing protocol

- If users want to use MAC protocols other than IEEE 802.11, they

must implement schemes to detect link breaks. A way to do this is,

for example, using IELI O packets, as specified in AOD documents.

-No Precursors (Implemented other mechanism so that the protocol can

still function the same as when precursors are used)

- Unsolicited RREPs are broadcasted and forwarded only if the node

is part of the broken route and not the source of that route

- If more than one route uses the broken link, send RREP multiple times
(this should be fixed based on new specification by C. Perkins,
E. Royer and S. Das)

- Rev route of RREQ overvrites the one in the route table

- May need slight modifications when draft-ietf-manet-aodv-04.txt

comes out

*/

//#include <iostream.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <math.h>

#include "api.h"
#include "structmsg.h"
#include "fileioh"
#include "messageh'"
#include "network.h"
#include "aodv.h"
#include 'ip.h"
#include "nwipoh"
#include "nwcommon.h"

#include "application.h"
#include "transport.h"

#include "javagui.h"

#define max(a,b) a > b ? a : b

* **********lobal variables************ * ****** ************* ****************

int requestl oForward =0; /*holds number of requests when RREQ is initiated*/

166

int time_of leaving = ;/*used in insertNbr vTable function*/
1* ******* ****global variables*** ***

* RoutingAodvReplacelnsertRouteTable

* rsert/U.pdate an entry into the route table

static void
RoutingAodvReplaceInsertRouteTable(

NODE_ADDR destAddr,
int destSeq,
int hopCount,
NODE_ADDR nextHop,
clock tye lifetime,
BOOL activated,
BOOL source,
AODV_RT* routeTable)

{
AODV_RT_Node* theNode = NULL;
AODVRT_Node* current;
AODV_lRT_Node* previous;

// Find Insertion point.

previous = NULL;
current = routeTable->head;
while ((current != NULL) && (current->destAddr < destAddr)) {

previous = current;
current =current->next;

}//while//

if ((current == NULL) R (current->destAddr != destAddr)) {
++(routeTable->size);

theNode = (AODV_RLT Node *)checked~pcn alloc(sizeof(AODV_RT Node));

theNode->lifetire = lifetime;
theNode->activated =activated;
theNode->source = source;

theNode->destAddr = destAddr;

if (previous == NULL) {
theNode->next = routeTable->head;
routeTable->head = theNode;

els {
theN ode->next =previous->next;
previous->next = theNode;

167

}//if//

} else {
assert(current->destAddr == destAddr);

current->lifetime = max(lifetime, current->lifetime);
if (!current->activated) {

current->activated =activated;

}//it!!

if (!current->source) {
current->source = source;

}//if//

theNode =current;
}//if//

theNode->destSeq = dest;eq;
theNode->hopCount = hopCount;
theNode->lastHopCount = hopCount;

theNode->nextHop = nextHop;

}//RoutingAodvReplaceInsertRouteTable//

static
void RoutingAodvhnserNbrTable(NOD LADDR destAddr, AODV_NT *nbrTable)

{
AODV NT Node* current;
AODV_NT_Node* previous;

AODVNT Node* newNode
(AODV_NTNode *)checkedpc_malloc(sizeof(AODVNINode));

newNode->destAddr = destAddr;
newNode->next = NULL;

++(nbrTable->size)

// Find Insertion point Insert after all address matches.

previous = NULL;

current = nbrTable->head;

while ((current ! NULL) && (current->destAddr = destAddr)) {
previous = current;

current =current->next;

}//while//

168

nel de-next = nr'I"able-=eadq

nbr`Tale-bead = ne rl d;

, else

nevvl d®>next = previ s-next;

revlc us-next = ne c de;

/ifll

} / tin dv nsrl r 'able `/

/

` ntin csdvlnserteen' ` l

assert an entry into the 6 .'-, b1

statie void

outing c d Insert er "T° ble(

lc ®I Te node,

1 TC)I E_ t sre.P ddr,

int beastld,

int hop c unt, /' added p , ,:

I TC I CDR Iast ddrp

ACS SST seen I"able

(seenrT`able-=size ==)

seen' 'ale->rear = ACS ° I T de l e llc e szecal`(IIZT c de

assert seen` 'able-rear ! JLI. ;

seenTable--1rnt = seenTable =gear,

else

seenT ble->rearm=next = (C) 12S T 1` c de *)pc. allc c(sizc (12 c de))

ssrt(seen`Table®%rear-next != Z.,I, ;

seen'Table->rear = seen'Tble6 rear-=next;

seen' able-=rear- sre Addr = sre lddr

seenTal-gear->beastTd = bcastI

seenable-° rear-=next = I` LTl:,;

++ seenZ"alesize};

® tin t d et°T'r erg

nc de _ET(1 1 b`Ti, A (e " ,`T_ 4

/ ` c ut nA d lnse teen` 'ale *I

l

* RoutingAodvlnsertBuffer

* Insert a packet into the buffer if no route is available

static
void RoutingAodvlnsertBuffer(

Message* msg,
NODE_XDDR destAddr,
AODV_BUF FER* buffer)

{
AODV_ BUFFER Node* current;
AODVBU FERNode* previous;

AODV_BUFFER_Node* newNode =

(AODV_BUFFER_Node *)checked pcmalloc(sizcof(AODVBUF FER_Node));

newNode->destAddr = destAddr;
newNode->msg = msg;

newNode->timestap = simelock);
newNode->next =NULL;

++(buffer->size);

// Find Insertion point. Insert after all address matches.

previous = NULL
current =buffer->head;
while ((current != NULL) && (current->destAddr <= destAddr)) {

previous = current;

current =current->next;
}//while//

if (previous == NULL) {
newNode->next = buffer->head
buffer->head = newNode;

} else {
newNode->next =previous->next;
previous->next = newNode;

}//if//
} /* RoutingAodvnsertBuffer */

* RoutingAod InsertSent
*

* Insert an entry into the sent table if RREQ is sent

170

st tie veld

tin.A c dvlnsertent

NCB I3 dest ddr,

int
ttl

_

C) 1T sent

i

SI TT I Tede eurrent;

AC> _Sh ` I de revit .is

L) hI TT fi c de ne ,r Ic de

{A.t PS I`_I Qde `}checked c_ {si eaf AC '_S I " I c de))

newl Tc de- dest ddr -= dest .ddr

new t ade- ttl = ttl

newl Tade-= ti = ;

nwl' cad = n t = ,Lg

sent- si)+ ,

// °ind nse °tc n paint, I s " ter ill address tehes.

larevius = T.,I.,;

e rrent =sent->hed,

while ((current != I L; I.f) :lrrent- est ddr = destddr))

previous = currentW

current -- eurrent->ne .t,

//while//

1 re ldJt1 .-. n ..

new Nc de--next =sex- - _ :sd5

sent->he d = newl Tc de;

else {

newNcad-- a previous- nxt

previous-one 4 = ne v de;

}/lull

, / outinAodvlnsertnt /

f*

` outin odvl c lte outeThle

e ove n entry fro. the mute table

l

void outinAodv elete " . , _ °TvbleI C h l dest rq . T ' " c te ' le

I _ " ode `tCDF`ree,

FZ I` ode current9

l

if (° aut `b1- si == ' r utc 'b1-> zd == I 1I.TLL)

rtu a

is i ` rc ut T' bl- h ad-= d st ddt° == d st ddr

of r ut ° bl - h d- lifeti. - '_ :)

i

rc utTabl -%h ad - tc Fr t,

ls

fir urr t = rc u T b1 4-: _ :: - a

cu -rnt- r xt != LL, r . cl -r t-= t-_ Adr d st ddrq

urrnt u r nt r t)

}

if (current-next ,I_, u r tb n xt-= dest. ddr == dst. ldd ° c4 .

current-next- lifeti = si clcac())

tcº 'ree =current-%ne; .t;

c ,, 0.t3 Free);

_- rc ut ah 1e >s ize s

, / R uting d elete aute l 1

c utig c dv lt° }_ ° °'I' b

ove an entry trc the t ibcar table

c id outn, .cad elate rT ie(C I , I destAddr, { V nbr able

ACCT IC'I' cede ta F`ree;

AC) ` ' l Tc de 'current,

i nbr ' le- si e == 0

i
rata ;

else. i n T'b- d® d stAdr == dst :ddr

1.72

tors = nbr ` b->1 d;

nb °`' ' bl-= d = tors->n xt;

_' _,._o r

-_ nb-- ' b sie

else

for z °ent = nbrrT'i->b d;

{ a.2z-r nt- n xt != L uz nt->n t->d st.f ddr dc t ddr));

wont - nt-= n x)

{

}

if rront- noxt - L. c arr nt- n xt®= d tddr === d t dr

4V1 3Mb+ " 0,tl rr.+Akt®'"'"gn;A+. 44

} 1 Ro tinAodv _ , b i

l o tinodv I t TI

* R ova n entry from the sn table

void outin ovT l tenTab1 (A.(R.`1

C T S'T I Todo `tor ;

for = aeon fable- frozlt

seenTale->front = tol ree-next;

pefire(tol ree}q

-a senT ble-size}

if senble-size =-

seen l"ale-rear = ,L,

} o tin od eleteen bl , 1

/

z a_- d J elate zffer

173

* Rernove a packet fror the buffer; Return TRUE if deleted
*/

BOOL RoutingAodvDeleteBuffer(NOD _ADDR destAddr, AODV_BU ER *buffer)

{
AODV_BUFFER_Node *toFree;
AODV_BUFFER Node *current;
BOOL deleted;

if (buffer->size == 0)

{
deleted = FALSE;

}
else if (buffer->head®>destAddr = destAddr)

{
toFree = buffer->head;
buffer->head = toFree->next;
pe free(toFree)
-(buffer->size);
deleted = TRUE:

}
else

{
for (current = buffer->head;

current->next != NULL && current->next->destAddr < destAddr;
current = current->next)

{

if (current->next != NULL && current->next->destAddr destAddr)

{
toFree =current->next;
current->next = toFree®->next;

pcfree(toFree);
--(buffer->size);
deleted = TRUE;

}
else

{
deleted = FALSE;

}
}

return (deleted);

} /* RoutingAodvDeleteBuffer */

* RoutingAodvDeleteSent
*

174

* Remove an entry fror the sent table
*/

void RoutingAodvDeleteSent(NODE AIDDR destAddr, AODVSENT *sent)

{
AODV SENT_Node *toFree;
AODV_SENT_Node *current;

if (sent->size =0)
{

return;

else if (sent->head->destAddr == destAddr)

{
toFree = sent->head;

sent->head = toFree->next;

pcfree(toFree);

--(sent->sie);

else

{
for (current = sent->head;

current->next != NULL && current->next->destAddr < destAddr;

current =current->next)

{

if (current->next != NULL && current->next->destAddr destAddr)

toFree =current-next;

current->next = toFree->next;

pcfree(toFree);
_-sent->size);

}
}

} /* RoutingAodvDeleteSent */

/*
* RoutingAodvUpdateLifetime
*

* Update the lifetime field of the destination entry in the route table

void RoutingAodvUpdateLifetime(NODEADDR destAddr, AODV_RT *routeTable)

AODV _RT_Node *current;

for (current = routeTable-head

current != NULL. && current->destAddr <= destAddr

175

l: rr11t -~ irrnt-%n 't

i (urr nt-= d stAdr == dt r

rr nt- lif t - sirr lc c k{ - °T'4' ,_I .t3 TZ' _Z`C 4

rt

c tin v T tI.T" tt /

[. . tin c 3 i__ a. e =1

n r the q n n°_

-void R autinA.ov , * 1a c c c ' ncs

{

C l a aI' et r rp* il.J y r = { -1can cil Tt rk.Ip *) nc - .,F.t . r rkL tan t vc rk r

C lc dT c uti c dv' a dv - C. i c T sutin dv *) I., °r- rc tin rest c 1;

aod - sgl uxnb r +;

} / tin c d Tnr e *1

l `

' -:: the " `T"Lw v 1ue

v®id T aztinA a Incr s "tl(`I C)T _ 1I)T e tct r, C T : ;1 1TI` * nt

{

, I 1rT` I Td c rr nt;

fc r (arrnt = sent>hdg

rrent != LL urr nt d t dr = dest ddr4

current = current->n t)

if (current-= destAddr == det ddr)

current- ttl += `T'E`L, '12T ,I I T `;

if current- ttl TT __`T' S _ T }

current- tt1= " ."I`E

_..
. g 4

2 .9

} /* RoutingAodvlncrease tl */

* RoutingAodvUpdateTtl

* Update the ttl value
*/

void RoutingAodvUpdateTtl(NOD _ADDR destAddr, int tt, AODV_ SENT *sent)

{
AODV_SENT_Node *current;

for (current = sent->head;
current = NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
current->ttl = tt;
retun;

}
}

} /* RoutingAodvlpdateTtl */

* RoutingAodvIncreaseTimes
*

* Increase the number of times RREQ sent in TTL = NET_DI METER
*/

void RoutingAodvIncreaseTimes(NODE ADDR destAddr, AODV_SENT *sent)

{
AODV_SENT_Node *current;

for (current = sent->head;
current != NULL && current->destAddr = destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

current->times++;
returvn

} /* RoutingAOdvlfncreaseTirnes *1

177

* RoutingAodvActivateRoute

* Activate a route in the route table
*/

void RoutingAodvActivateRoute(NODE_ADDR destAddr, AODV _RIT *routeTable)

AODV RT Node *current;

for (curent = routeTable->head;
current !=NULL && current->destAddr <= destAddr;
current = cuTent->next)

{
if (current->destAddr == destAddr)

{
curren t>activated = TRUE;
current->lifetime = simclock() + ACT IVEROUTE_TO;
return;

}

} /* RoutingAodvActivateRoute */

/*
* RoutingAodvInactivateRoutes ndGetDestinations
*

* Inactivate routes that use the broken link
* Returns the destAddr and whether the node must relay the RREP
*/

void RoutingAodvlnactivateRoutes dGetDestinations(
GlonoNode* node,
AODV_RT* routeTable,
NODE_ ADDR next iop
AODV _AddressSequenceNumberPairType destinationPairs[],
int maxNumberDestinationPairs,
int* numberDestinations)

{
AODV RT Node *current;

int numDests -0;

for (current =routeTable->head;
current != NULL;
current =current->next)

{
if ((current->nextHop == nxtHop) && (current->activated == TRUE))

{
current->activated = FALSE;
current->hopCount = AODV_ ITY;

178

current->lifetime = sinclock() + BAD_LINK_LIT ME
current->destSeq++;

RoutingAodvSetTimer(
node, MSGNETWORK _CheckRouteTimeout, current->destAd

(clocktye)BAD L INK .LFE B HME):

if (!current->source) {
destinationPairs[numDests].destinationAddress

current->destAddr;
destinationPairs[nu sts).destinationSequenceNumber =

current->destSeq;
numDests++;

}//if//

}//if/

} //for/

*numberDestinations = numDests;

} /* RoutingAodvlnactivateRoute */

/*
* RoutingAodvMarkRouteBroken
*

Mark the route with destAddr broken: returns TRUE if relay is required

*/
BOOL RoutingAodvMarkRouteBroken(GlomoNode *node,

NODEI_ADDR destAddr,
AODVRT *routeTable)

{
AODVRTNode *current;
BOOL relay = FALSE;

for (current = routeTable->head;
current != NULL && current->destAddr = destAddr
current = current->next)

{
if (current->destAddr == destAddr && current->activated == TRUE)

current->activated = FALSE;

current->hopCount = AODVINFINTY

current->lifetime = simclock()+ BAD_ INK_ IF ITIME;

current->destSeq++;

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, current>dest ddr,
(clock e)BAD LINK_LIFETIM);

179

if (current->source == FALSE)

{
relay = TRUE;

return (relay);

}

return (relay);

} /* RoutingAodvMarkRouteBroken */

/*
* RoutingAodvUpdateSeq
*

* Update the sequence number of a cerain destination
*1

void RoutingAodvLpdateSeq(NODE ADDR destAddr, int seq, AODVRT *routeTable)

{
AODV_RT_Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;

current = current->next)

{
if (current->destAddr == destAddr)

{
current->destSeq= seq;
return;

}

1* RoutingAodvUpdateSeq *1

static //inline//
void SendRouteErrorPacket(

GlomoNode* node,
const AODV_RERR_Packet* rerPacket)

{
Message* newMsg = GL OMO Msg Alloc(node. 0, 0, 0);

int packetSize = AODV RERR PacketSize(rerrPacket)

assertgrerrPacket->pktType == (unsigned short)AODVRERR);

assert(rerrPacket>detinatonCount >= !);

GLOMO_MsgPacketAlloc(node, newMsg, packetSize);

erncpy(GLOMOMsgRetu acket(newMsg), rerriacket, pac etSiz);

180

het r pend a vC lrr c T $ sage(

node, neT g, _ ;.; 'C7l i° a, I T C: I"_ }V, 1),

` c utng dvnt

Initial zatic n uneti an foz prc tc e1

v aid auting dvlnit

C31ca s I c de nee,

Cilc ss c uting.A.c dv a Pt °

eonst 1c n dl cadenput nc delnut)

{

Clo t c uting adv ac dv

C 1© ca c uting .c dv ° e14 = . ' e 11c e sizecaf(CTI R.c ut ing c dv));

(*ac dvPtr = ac dv,

if acadv -- aL,}

{

fpritf{stderr, °' :C I a ; e k11 c ca ° fc r . Jt struet?1r " ;

assxt (` 5)4

1p nt °(«' t T in t"

l c uting c dvlnit tat (n e) a

outingc vln tl oute` ab1e: c dv- r ateTal 7

F .c utingodvnitbr°T'able c' ac dv-= r rTable)

uting dvniteenTable c ac dv = e n° 'a1 F

autin odvlnit`c nfT'able c :a dv = «. 3? `' able) **' * * tiali e c n de ee

table
1

c utingodvlnt uer ac dv->buer ,

c utznA odviter t(&:.ac dv@ sent};

autingA dv iteq(nde);

I outingAcda .eastT n de ;

1' et vc °k petl'ae e rc l T ti icati uneti r (

node, 1 utingcºdvPal et opcatiieatian andler)

//p °intf «' C l b4 r auter unetit n");

etwc r poet csuterunctican(nc de, l c uting dv uter ur ctic n)4

/Jpz nt '(" C) rc uter `untic n");

} 1 cautingc dvlnit */

c ut ng c dvFin lie

a11ed ' ,d cif the i . " _ " tc c leet the r lt

void t ngl crv: , 'y e 1 aT ®de ncad

1

t cz c et v rklp pL yer = C l s c I et vr a * za adea>zzet vc r s] t .rlet zcr `r

C l cz ca18t n czv czdv = C 1c z z utizz d i yer-rc ut nI r t ae ;

F I ,E ® hut;

cat v_ Y xzt,

s arintf(buf, "Nu ber cute equests ed = l d",

audv- st ts.nuz zl2ec ue stSez t

rL C _I'rintSt t(nc de, '"Rczut zz , dv", buff

sprit `(bu °, "emu ber of e ies Txed = " d"

dv® st ts, u plyent ,

I. C _Prir t tt ncade, " 2c uti : d " buf};

sprtf(buf; "u ber cif cute z-z°c rs (2 1 Tx = °/ ,d",

aod - st s.nu err ent,

(,C C _Print t t(z czd, "Rc utizz.Aczdv", bud;

x rte stet a : :

s tf(uf, "emu ber of I . ute zz s '. ' Tied = 'lnd",

c d ->st tszzu v erzt);

t LC)I C _ 'rintStat(n ade, "12 utin dv", b

spri t buf, "1 Turrzber caf jute Errors { e-seat = "loci°',

dv®>st ts.z u err esezzt ;

C LC) rttat nde, " utin odv", buff;

sprintf(buf, I d ber f " - ' _: I` ed = "lod, a

a d - st ts.nurzz equest e., - a dv- st ts.nta plyent)

CzL, J f _rintStat(nc de, "12c utin c d r'°, buff;

s rintf(buf, " Tu .. ber f l c utes effected %d", d ®= st ts.nu c utes)

.,C Iv1_ 'r zztStat(nc de, "Rutin dv", bufj4

sprrltf(uf, "I Tu ber f Icz unts = olod", v->st ts.nu c ps ,

CI C _rinttat ntade, " outin.P c d ", bud,

sriz tf ut; "I 1u ber oaf t 'xed - %d",

CAL C rintSt t(n de, "F c u dv", buf),

srintf buf, "I Tuzxler cif ate . t C r irz t d = °l d",

c dv- = t ts.nuz t Segz)

E C)_ 'r ` t nc de, " c utin .c d r", buff;

sprintf buf; `'i` ; Lrr ber off' I t P' e ets ;.eeei ved = °l d°'s

c dv st ts.riu t eceived q

C) C _ 'rntStt{zz de, "R: autirzc dv", ut

l

sprintf(buf, "Number of Packets Dropped or Left waiting for Route = %d",
(aody->statsenu acketsDropped + aodv>buffer.size));

GLOMO_PrintStat(node, "RoutingAodv", buf);

sprintf(buf, "Number of Broken Links = %d" aody->stats.nu rokenLinks);
GLOMO_PrintStat(node, "RoutingAody", buf);
sprintf(buf, "Number of Broken Link Retries = %d", aod->stats.numBrokenLinkRetries);
G LOMO_PrintStat(node, "RoutingAody", buf);

/* RoutingAodvFinalize */

1*
* RoutingAodvHandleData
*

* Processing procedure when data is receivred
*/

void RoutingAodvHandleData(GlonoNode *node, Message *msg, NODE_ ADDR destAddr)

{
GlomoNetworklp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAody *) ipLayer->routingProtocol;

IpHeaderType *iplleader =(IpHeaderType *)GLOMO_MsgieturnPa ket(msg);
NODE_ ADDR sourceAddress = ipHeader->ipsrc;

assert(sourceAddress !=node->nodeAddr);

/* the node is the destination of the route */

if (destAddr == node>nodeAddr)
{

aody->stats.numDataReceived++;

RoutingAodvUpdateLifetime(sourceAddress, &aodv->route Iable)

RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
sourceAddress, (clocktype)ACTIVEROUTE TO);

}
else if (destAddr != ANY _DEST)

// The node is an intermediate node of the route.

// Relay the packet to the next hop of the route

if (RoutingAodvCheckRouteExist(destAddr, &aody->routeTable)) {
RoutingAodvTransmitData(node, msg, destAddr);

else {
// Broken Route. Drop Packet, send RERR again to make them stop
// sending more.
AODV _RERR_Packet newRerrPacket;
newRerrPacket.pktType = AODV_RERR;
newRerrPacket.destinationCount = 1

nen RerrPacket.destinationPairArray] destmnationAddre. = destAdd:

ne RerrPacket.destinationPairArray]. destmnationSequeneeNumber

= RoutingAodvGetSeq(destAddr, &aodv->routeTable):

SendRouteErrorPacket(node, &newRerrPacket);
aodv>stats.numRerrResent++;

aodv->statsonumPacketsDropped+;
GLOMO_MsgFree(node,msg);

}/if//

} /* RoutingAodvflandleData */

1*
* RoutingAodvHandleRequest
*

* Processing procedure when RREQ is r ceived
*/

void RoutingAodvllandleRequest(GlomoNode *node, Messae *msg, int ttl)

{
GlomoNetworklp* ipLayer = (GlomoNetworkip *) node->networkData.netvorkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

AODVRREQ_Packet *rreqPkt (AODV_RREQ Packet

*)GLOMOMsgReturnPacket{msg);

float meanVal=.0;/********added mean value to comapare against threshold*********/
/*******computed from the NbrRrnvTable**************/

float threshold time_leaving = L15;/** *added threshold******/

//malicious node
if (node->nodeAddr == 5)

{
GLOMO MsgFree(nodemsg)

}
else /Inode is not malicious

{
/***************************Check if false accusation********************

if (rreqPkt->conf_Node==node->nodeAddr)

if(rreqPkt->conf_Level == 0)

{
/here broadcast warning

aodv->stats.numRwarSent++;

184

= : =*** `* C;heek of false aeea tic n' + : = ' /

outing c dvZnsert nfl'able(z de;x r gPkt = 1 t drc dv- anfT l)

l rc eess nl if the packet is n®t d' ° ` /

if ! atingAc dv ,c c kapeenable(

nc derregkt->src dr, nregPkt->eastId, rret kt- hc ant

rregkt->lastddr, iac v- n I' bl av- c; nt 'I` bi)) / .dd d ' I

{

uting c dvlns rt n` e{

node, rregkt->srcddr rrekt- beatId,rrgF kt- pc untrrq 'kt-?1 sc dr

'z acadv- seenTable ;

/ ` ` `* `' ' " ' ` ` `*' * `* ` * dded LJpdate ' nfTable faneti n

eall
xj

®utin advLTpd;i .:° rnfT ble

rregkt->last .ddr, req 'l. t- eonf ati ,rregkt- ec nf Level rre'kt-

>ec nf I de,

zac dv®= ec nfTable);

/' ' ' " ' ` ` ` `* ' " " ` ` #' *Added LTpdate z1 ' 'ale fanc tin l ` ' 1

1 Update the neighbor table if the apstrea i n4.. . /

it !I c ating, lodvhee r ist rregPkt->lastddr, ac d ->nb °° ° ble})

oating c dvnsert r `ablerregPkt- lat ddr, ;:ac dv-: nbr 'able;

uting , dv sert r v 'alerregF kt->lastddr, . dv-> r vrfable)

/*added funs caul

eanal=l csutingl e dvca pate... ern(rregPkt-= la t. .ddradva T° ., ;- °: l le) F

/added fans eall' * * `* " `/

if (rnean Tal threshc ld ti _leaving)

llhere rc adeast ova ig

a adv-%statna wrnent +

}

atingAc dv -:: e. 1(h ad

}

/ ` The de is the des -, ,n ;n cif the route

if (node--ncade .dr =- rregkt- dest ,r

c ating. . dv eplaeelnsertFt ,`_ ` ,le

rreq 'kt= sret .dr, rregktW> re q, regPkt- h® ` t;

rregkt- last ddr, i crack() - -- 'PI" , C}L FT' T" ?; T LTA, T 1r1,

Z ac dv- resate `able) 4

1

utir A.c dvSetT'i °

ride, SCE I° ET C: _l- - `c ute` i ecru' _ ' re dd ,

e1 e) ' ' _ Li TE_);

/ ` Send a IZc ute Reply /

®uti c dv itiate 1 nQd, s R

1 if dept `1

else

{

l l c rcaute tc c'M t: °ti a i r c vri

il°{ utirl A d ` . ;e c utE ist(rr t- dst ddr,

u:ac dv-- rc uteTabi)

utirx adv plaeeln ert ute `a sle{

rreq 't- rc .ddr, rr gkt-= r S q, rrgkt-= hc a au t,

rrgF kt-= Ia t ,ddr, i cic c C() E LT`TF'_L, F I.,E,

F` :L.SER ac dv- r°c ute 'al;

node, SCE IIE` ' :I ,laee r a ute i ec t, rr gp'kt->s °eAdr,

i:f (ttl })

/ .elay the packet rll i `TTI: is nc t er°o *1

c utirlt t d rRelay E{r cade, n1s , ttl ,

,;

C LC (s ree(n de,);

/ route 1

news a mute tc the destrratic n

else

/ sa vever, the kr mute i cat a . l

if c utin .c dv et eq(rreq 'kt- destt dc °- °.c dv-°- _, F i abler

rr°eq 'kt®>destSeq

ut Ac dv eplaee ertRc utaie

rregk t- srAd ' r egpkt-> rcSeq, °regl kt->hc p 'c urrt

-z-eq 'kt-= la t A .' -, -i e1ae1 } + T E [.3`TEL, E,

° .,E, F° 1I.,5

Z:a dv->rc ute ahle);

Rc utirz -1 dvSet 'i er

node, MS_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,
(clocktype)REVROUTE_LIFE);

if (ttl> 0)
{
/* Relay the packet only if TTL is not zero */
RoutingAodvRelayRREQ(node, msg, ttl);

}/* if ttl > 0 */

else

{
GLOMOMsgFree(node, msg);

}
} /* if seq no is not fresh */

/* has a fresh route to the destination */

else

{
RoutingAodvReplacelnsertRouteTable(

rreqPkt->srcAddr, rreqPkt->srcSeq, rreqPkt->hopCount,
rreqPkt->lastAddr, sirnclock() + ACTIVE_ROW E_TO,
TRUE, FALSE,
&aody ->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rreqPkt->srcAddr,

(clocktye)ACTFIVEROUTE_TO);

/* Send a Route Reply */
RoutingAodvtnitiateRREPbyN(node, msg);

} /* else */

/* else */
} /* else (not dest) */
} /* if new pkt */

else // duplicate packet

{
RoutingAodvLookupSeenTable(
node,rreqPkt->srcAddr, rreqPkt->bcastld, rreqPkt->hopCount,
rreqPkt->lastAddr,&aody->seenTable,&aody->confTable);
/*************************** added function call

*** ** * ** ******** ** ***** ****

//GLOMOMsgFree(node, msg);

}//end else node is malicious

187

} /' «-! d aiel2equest ' 1

/

' c utinAd ndle eply

I'rc essin prc eedure . i . : I' is reeeved

void c utinAcadvl3 ndlelteply(

Cllc c 1 T de n ade, ess e n _ I sreAdr,1 C p: I destAddr)

C 1c c l e ar Ip* ipL er = ((i c I et r Ip) n de >netc r .I t.netti r I r

C1c c IZ :ztingAc v cadv = (CIl c utinAodv) ipl.d r-= rc tin F rc tc c I;

ess e anew s9

AC: _ I' c et *rrepkt = (AtJI III I? eket)CIZ,) C. s et I' ket(sg);

(JC)L relay,

elc ek e lifetizne

/ elc e ust be ec pid ts cees Ih t.;; ld f that /

en1 cave(lifeti , rrepPkt- lifeti , i :ec f(lsac)}

/ Soiree Qf the rcaute */

if (rrep t-°-sreAdd == c de@= rtc deAddr}

t

/* p eket is the first reply reeeived /

if (,I .outinAodvhee oute ist(rrepl't- stAs r,

c odv->routeT ble))

t

I .outinAodv el; c Ins rtlZoute' ble(

rrepkt- destA - rrepl'kt- destSecl rrpl't®>hopc unt,

srcAddr, si cloe') + lifet e, TI2 T,

rI"IZITI , aodv -= rc uteT le ;

aodv-=st tsanu outer++;

odv®= st ts.nu ops += rrel'kt hopount,

outinAodvl eletSent(rrepPk t-= destAdrg cadv->sen ;

/° Send any buffered. p elcets to the deaf ,; /

while (outinAod TLoo puffer(

rrepl t-=destAddr, a dv-= buft er

ne s = outinAod C et uferedl'ae .et(

rreplct- destAddr c dv = bi f fer

outinAodv'I'rns it at(noe, ne, '` r kt_= d tAddr}

d ® sttson I t Sent++

RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aod ->buffer);

} /* while */

/* if no route */

/* The packet contains a better route compared to the one already

own */
else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)

rrepPkt->destSeq) H
((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)
== rrepPkt->destSeq) &&
(RoutingAodvGetHopCount(rrepPkt->destAddr,

&aody->routeTable) >

rrepPkt->hopCount)))

RoutingAodvReplacelnsertRouteTable(
rrepPkt-destAddr, rrepPkt->destSeq, rrepPkt->hopCount,
srcAddr, simelock() + lifetime, TRUL,
TRUE, &aodv->routeTable);

/* Send any buffered packet to the destination */

while (RoutingAodvLookupBuffer(
rrepPkt->destAddr, &aodv->buffer))

{
newMsg = RoutingAodvGetBufferedPacket(

rrepPkt->destAddr, &aodv->buffer);

RoutingAodvTransmitData(node, ne Msg, rrepPkt->destAddr);

aodv->stats.numDataSent++;

RoutingAodvDeleteBuffer(rrepPkt>destAddr, &aodv->buffer);

/* while */
} /* else if */
GLOMO_Msglree(node, msg);

} /* if source */

/* Intermediate node of the route */
else

{
/* the packet is the first reply received */
if (!RoutingAodvCheckRouteExist(

rrepPkt-->destAddr, &aodv->route`able))

{
RoutingAodvReplacelnsertRouteTable(

rrepPkt->destAddr, repPkt->destSe, rrepPkt->hopCount,
srcAddr, sinclock() + lifetime, TRUE, FALSE,
&aodv->routeTable);

189

RoutingAodvSetTimer(
node, MSG_NETIWORKCheckRouteTimeout, rrepPkt->destAddr,
(clocktype)lifetime);

RoutingAodvActivateRoute rrepPkt->srcAddr, &aody->routeTable);

RoutingAodvSetTimer(
node, MSG_NETWORK_CheckRouteTimeout, rrepPkt->srcAddr,
(clocktye)ACTIVE_ROUTETO);

/* Forward the packet to the upstream of the route */
RoutingAodvRelayRREP(node, sg, destAddr);

} /* if new route */

/* the packet carries a better route compared to the one already
known */

else if ((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable) <

rrepPkt->destSeq)||
((RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable)
== rrepPkt->destSeg) &&
(RoutingAodv etHopCount(rrepPkt->destAddr,

&aodv->routeTable) >

rrepPkt->hopCount)))

{
RoutimgAodvReplaceInsertRouteTable(

rrepPkt->destAddr, rrepPkt->destSeg, rrepPkt->hopCount,
srcAddr, simclock() + lifetime, TRUE,

FALSE &aodv-routeTable);

RoutingAodvSetTimer(
node, MSG NETWORK Che kRouteTimeout, rrepPkt->destAddr
(clc e)hfetine):

RoutingAodvActivateRoute(rrepPkt->srcAddr, &aodv->routeTable);

RoutingAodvSetTimer(
node, MSG NETWORK CheckRouteTimeout, rrepPkt->srcAddr,
(clocktye)ACTIVE_ROUTE_TO);

/* Forward the packet to the upstream of the route */

RoutingAodvRelayRREP(node, msg, destAddr);

/* else if newer route or shorter route */

else

GLOMOMsg~ree(node, msg);
}//iff/

} //if//

190

} /* RoutingAodvHandleReply *1

//

// RoutingAodvHandleRouteLrror
//
// Processing procedure when RERR is received
//

void RoutingAodvHandleRo uteError(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr)

GlomoNetworklp* ipLayer = (GlornoNetworklp *) node->networkD ata.networkVar;
GlomoRoutingAodv* aodv (GlomoRoutingAodv *) ipLayer->routingProtocol;
AODV_RERR_Packet* rerrPkt =

(AODV_RERR_Packet*)GLOMO _MsgReturnPacket(msg);
AODV_RERR_Packet newR errPacket;
int I;

newRerrPacketpktType = (unsigned short)AODVRERR;
newRerrPacket.destinationCount=0;

for(I = 0; I < rerrPkt->destinationCount; I+) {
// Mark the route inactive in the route table; Must not remove it
// right away since the last hop count known is needed for future use

1/ Remove destination from packet if it doesn't need to be forwarded

1/ further.

NODE_ADDR destination =
rerrPkt->destinationPair ay[I].destinationAddress;

int sequenceNum
rerrPkt->destinationPairA ray[I] .destinationSequenceNumber;

BOOL mustRelay =

RoutingAodvMarkRouteBroken(
node,
destination,
&aodv->routeTable);

RoutingAodvUpdateSeq(destination,
sequenceNum,
&aodv->routeTable);

NetworklpDeleteOutboundPacketsToANode(
node, srcAddr, destination, FALS);

if (mustRelay) {
newRerrPacketodestinationPair ray[newRerrPacket.destinationCount]=

rerrPkt->destinationPairArray[I]

191

n wRerrPacket.destinationCount++;

}//while//

if (newRerrPacket~destinationCount > 0) {
SendRoute~rrorPacket(node, &newRerrPacket);

aodv->stats.numRerrSent++;

}/1/if//

GLOMOMsgree(node, msg);
}//RoutingAodvHandleRoute.rror//

/*
* RoutingAodvlnitR outeTable
*

* Initialize the route table
*1

void RoutingAodv itRouteTable(AODVRFT *routeTable)

{
routeTable->head = NULL;
routeTable->size = 0;

} /* RoutingAodvlnitRouteTable */

/*
* RoutingAodvInitNbrTable
*

* Initialize the neighbor table
*/

void RoutingAodvlnitNbrTable(AODVN *nbrTable)

{
nbrTable->head = NULL;
nbrTable->size = 0;

} /* RoutingAodvlnitNbrTable */

/*
* RoutingAodvlnitSeenTable
*

* Initialize the seen table
*/

void RoutingAodvlnitSeenTable(AODVRST * seenTable)

seenTable->front = NULL;
seenTable->rear = NULL;
seenTable->size = 0;

/* RoutingAodvlnitSeenfTable */

192

`

I2c utira c d it `c nfI' ble

Iitia.li e the ec r fideee table

c id c inc dvIr nl T 1 A ? T_ 'I rI" c nfT'bl

/lpritf"e r l'I'able bets initi lid here'°);

c car fl" ble- frr rit = JI I.,;

ec r flry ble-=rear - I.,L

ec n able size=,

} / c utig c dcT itc xaf I'able /

J*

I2 auti , c vlnt r. vz' bi

Initialise the r eihbc ur re c table

mid c utinr' c dvlnit rI v I'al (C9 _ II `I: * r `I abl}

rR v °ale->fr ar t = . IL,;

rI v'Tale-rear = LI:,

Nbr v 'ale_ size = tI;

/*IZQUtin Init rI v abl*1

/'

utin .c d Int uffer

I itiali e the buffer

c id c ut i, ; tifer(A.(L I..TI ', ' '` buffer)

buffer ead = NIm3II

buffer->si e = ,

/ I c utl cad Inituffr /

IZc utin r c vInitent

Initialise the sent table

rc id utin c d Init°" r ' _I1I 1T se lt)

ser t = hed = II.,

sent si e - (

/* RoutingAodvlnitSent *,

/*
* RoutingAodvlnitStats

/ itialize all th stat variables

void RoutingAodv itStats(GlomoNode *node)
{

GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlornoRoutingAodv *) ipLayer->routingProtocol;

aodv-stats.nurnRequestSent = 0;
aodv->stats num eplySent 0;
aodv->stats.nu merrSent = 0;
aody->stats.nu mwarnSent 0;
aodv>stats~numRerrResent = 0;
aodv->stats.numDataSent = ;
aodv->stats.nu ataTxed = 0
aodv->stats~nu ataReceived = 0;
aodv->stats.numRoutes = 0;
aodv->stats.nunHops =
aodv->stats.num acketsDropped 0;
aodv->stats.numBrokenLinks = 0;
aodv->stats.numBrokenLinkRetries = 0;

} /* RoutingAodvlnitStats */

/*

* RoutingAodvlnitSeq
*

* Initialize the sequene number
*/

void RoutingAodvlnitSeq(GlornoNode *node)
{

GlomoNetworkIp* ipLayer = (GlomoNetwx orkip *) node->ne workData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

aodv->seqNumber = 0;

} /* RoutingAodvlnitSeq */

/*
* RoutingAodvlnitBeastId
*

* Initialize the broadcast id
*/

void RoutingAodvlnitBcastld(GlomoNode *nod)
{

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node> networkData.networkVar;

194

GlornoRoutingAodv* aodv = (GlormoRoutingAodv *) ipLayer->routingProtocol

aody->bcastld 0;

} /* RoutingAodvlnitBcastld */

/*

* RutingAodvCetext op

* Looks up the routing table to obtain next hop to the destinaton
*/

NODE ADDR RoutingAodvGetNextHop(NODE_ADDR destAddr, AODV_RT *routeTable)

{
AODVRT Node *current;

for (current = routeTable->head;
current != NULL && cur ent->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr && current->activated == TRUE)

{
return(current->nextHop);

}

return (ANY _DEST);

} /* RoutingAodv etNextHop */

/*

* RoutingAodvGetBcastld
*

* Obtains the broadcast ID for the outgoing packet
*/

int RoutingAodvGetB astld(GlomoNode *node)

{
GlomoNetworkp* ipLayer (GlomoNetworkip *) node- netnorkData networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutngAodv *) ipLayer->routingProtocol
int beast;

beast = aodv>bcastId;
aodv->bcastld++;

return (bcast);

} /* RoutingAodvGetBcastld */

/*
* RoutingAodvGetSeq
*

195

bt ,_., sequence n bey the des r ; ,,a node

int I txng c vC ete TC) A. Z. det ddr, .C T) re .zte` °le

`T' 1 Tc de *current;

fir uz°rent = c te'I' ble-= e

ei° ent ?- I.,I.1 . eurrent-= estdd ° - dest. ddrq

eurrent =current--next

if eurrent® destddr == dest ddr)

retu (e rrent_>desteq}

,

rtu (

` tJtatzngf t)dV:.vt..' "`qeq `l

`

uting od C et q

t tazns the nude's seq number

int R utingodvetN yeq C lc c c e *n e}

1u c I ettar ipL yer = (C 1n c et c rl ') node-%net cºr t .net e r r;

6 1 a t I . auting t d a adv - {lc c utingc d F * iLa er- rc utingrc tc c lq

rata {ac dv- segl umer);

/ R.outngl c vC et eq °/

c uting. t d rC. et c p ant

bt ins the hc daunt tca the destination node

nt Rcstngod C et pc nt(I` T 3 _ . str ddr; A:(I T ." " rc zte`T" ! d }

} r ' 2 iode eurrent,

`or eurrent = routeZ"al-ahead;

eurrent != LI, current- dest dr = destl ddr?

current == eurrent->next)

it' (i 3 ,dst dr == dest ddr)

rata current- ho+ ount;

1

}

return (-1);

} /* RoutingAodvGetfopCount */

/*

* RoutingAodvGetLast lopCount

/ Obtains telast hop count kow to th d stination node

int RoutingAodvGetLastHopCount(NODE ADDR destAddr, AODV_RT *routeTable)
{

AODV_RT_Node *current;

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
return(current>lastHopCount);

return (-1);

} /* RoutingAodvGetLastiopCount */

1*
* RoutingAodvGetTtl

/ Obtains the ttl value for the out oingRE

int RoutingAodvGet tl(NODE_ADDR destAddr, AODV_SENT *sent)
{

AODV SENTF_Node *current;

for (current =sent->head
current != NUIL && current->destAddr <= destAddr;
current =current->next)

if (current->destAddr== destAddr)

{
return(current->tt)

}} e 6d r t1 A.® Ll

197

return (TTL_ START);

} /* RoutingAodvGetTtl */

* RoutingAodvGetTimes

* Obtains the nu mber of times the RREQ was sent in IL = NE DIAMETER
*/

nt RoutingAodvGetTimes(NODEADDR destAddr, AODV SENT *sent)
{

AODV SENT_Node *current;

for (current =sent->head;
current !=22 NULL && current->destAddr <= destAddr
current = current->next)

{
if (current->destAddr == destAddr)

ret (current->times);

}
}

return (0);

}/* RoutingAodvGet limes */

* RoutingAodvGetLifetire

* Obtains the lifetime value of an entry in the route table
*/

cleckt e RoutingAodvGetLifetime(NODE_ADDR destAddr, AODVRT *routeTable)
{

AODV_RT_Node *current;

for (current = routeTable->head;
current !=NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{

return(current->lifetime);

}

return (0);

} /* RoutingAodvGetLifetime */

198

/*`

* RoutingAodvGetBufferedPacket

* xtract the packet that was buffered

Message *
RoutingAodvGetBufferedPacket(NODEADDR destAddr, AODV_BUFFER *buffer)

{
AODV_BUFFER_Node *current;

for (current = buffer->head;
current != NULL && current->destAddr <= destAddr;
cuirrent =current->next)

{
if (current->destAddr== destAddr)

{
return(current->rnsg)

}
}
assert(FALSE); abort(); return NULL;

} /* RoutingAodvGetBufferedPacket */

/*
* RoutingAodvCheckRouteFxist

* Returns TRUE if any route to the destination is known
*/

BOOL RoutingAodvCheckRouteFxist(NODE_ADDR destAddr, AODVRT *routeTable)

{
AODVRT_Node *current;

if (routeTab1e->size == 0)

return (FALSE);

for (current = routeTable->head;
current != NULL && current->destAddr <= destAddr;
current =current->next)

{
if ((current->destAddr == destAddr) &&

(current->hopCount != AODV INJFNITY) &&
(current-lifetime> si nlock()) &&

(current->activated -- TRUE))

I
return(TRUE);

199

return (FALSE);

} /* RoutingAodvCheckRoutexist */

* RoutingAodvCheckNbrExist

* Returns TRUE if the node is already a neighbor
*/

BOOL RoutingAodvCheckNbrExist(NODE ADDR destAddr, AODV _NT *nbrFable)

{
AODVNT Node *current;

if (nbrTable->size == 0)

{
return (FALSE);

}

for (current = nbrTable->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
return(TRUJE);

}

return (FALSE);
} /* RoutingAodvCheckNbrExist */

1*
* ORIGINAL Routin AodvLookupSeenTable

* Returns TRUE if the broadcast packet is processed before
*/

/*

BOOL RoutingAodvLookupSeenTable(NODEADDR srcAddr,
nt beastId,
AODV_RST *seenTable)

{
AODV RST Node *current;

if (seenTable->size == 0)

ret (FALSE);
}

for (current 2= seenTable->front;

200

current ?= I,;

cu rcnt = current®>ncxt)

if urrcnta src .ddr == srct dr c cnt- -bcastd =- castd

rctu °T 1 ;

}

rctu: {F S)

} 1

* ditcd IZoutinod f.,ookupScenTale

ctu s 'T 'RLT if the broadcast packet is prt c . t: before

,.

t Iioutinodv ookupSecn `ab ct lo ol dc *nodc,

E T srcddr,

int bcastld int bopC;ount, / pare to added *l

I C I E T kZ..lastt ddr

.AC: I T *sccnTablc,

r C ' F " conffbc)

CTIo ol Tc orklp'' aycr = C I oT Tct vorkl ` rc dc->ntor ta:nctork' ar

Flo 0 outzng od aodv = (C o oouting odv playcr® routingl rc tc col;

1 ClI) 'T' I Iodc curr nt;

int halo ardcd=;

.

rata 1 .)

for currcr t = scnTalc-front; current = I I TI_,I_, current = currcr t= -r ,. _

r

if currnt >src ddr =-= src ddr cur -_ ,,_= bcast `--=- bc std

if currcnt- op 'ount == opC ount 1)

hasF'orardd - ' r ardcd - 1;l total # packs r.: */

1

}

retllr "1

}

}

outinod C:'o put 'onf""I"a1 (nod,last ddr,i as °oz-ardedrust`I'oo °rd, .aodv

- or t'I'able;

/ outin Aod °o puteCon# 'able

/I nodelast ddrhasl~o arded,r u sto 'o rard,.ao r- onfI`al ;

return {AI.' ;

} 1 I .outin odvLookupeen Fable `/

T

outin ov(, J puteonfTable

I:.Tpdates tl e eonfide ce table #or the r di nods

identied b tl "' . ".ddr'°

,

C C)L outinl- od Con puteonfl'ale (lc o de nodeC _. I I21ast14ddr, int

I L , int R 'Ii,

t I _C"F ' ' contTl ̀ ale)

}

Calo oT Tetor p player = Crlo o 1 torl Ip node- netor ±< netor ar

C11orr ol2outinod aod = Cllo olZoutin odv *} iplayer- routir rotocol;

. .C ' ' ' Node eurrent;

/lcurrent >node ddr=2;

float eonf atio = F' l ` g

goat conf level = eonf Le el + eo f I .atio;

i conf'T'ale-=size
==)

m_

}

rata LE}

// liefous node ls ly aceusn

i mode->node ddr =--)

}

for eu ant= eonf 'ab e front; e rrer t != I<,I., eurrnt=eurrent ` .. , .)

}

aI" eurrent-= node ddr =- Iasto° '

}

eurrent- onf atio=m®

nrrnt->cc nf I.;ev =,O;

s

/ 12c utinl c d Ti sr canf I'bl r a ,s . dd , Z dv ffa)

®nf I'able-err->nc dedd -- -1st.Addr;

i
1

{

/fflc t cQnf .atic - I- ` ' / I2'TF

I/f1 c nf Level = c nf vet s f tic ;

f { =s`C =ec n f able- frc n ; eurrent ! LL, c ent=current- ne x ;`

if(current nodeAddr == latl ddr)

ent->conf l tic = conf l .atica,

current->cQnf Level=c nf Level;

else

/. c in c vlns °t `c fT bl(nodsl stAdrac dv- conf ' bl };

ct nfl'ab1 r -- >nc d A ddr-lastddr;

nfT b1 ->r r-= c nfI atic =cc nf_ tic

on ' 'a e-= ° °- cc nf L, 1=c nf Ievl;

_..

t

rata { `l J

}1' tn c dv ° xnputeonf 'aleI

void at1z dvInsert nfI' l l rn l Ic d nodeI I. _ I L .lstAddr, I __CF' '

nfTable)

if (confT' le->size -= j

e nff ble -rear = (.T '_ 'F'T' I 1c de *) pc nlllc c sizec f(t l T c ;

ssert(c anfT ble->re r = LLB;

cc nfT' le- fresnt c nfT'ble-?rear;

a

else

e l' 'able-gear- r ext = (C3 _F` I c d * l _ 11c {s f . _ '"T'_I 1c d > g

. t(e nf'Tal le- r r-= nc xt != I TLTI L};

afTahle-rear = e ra ' 'ale-gear- e t;

eQr f T'able-gear- nc eddr = last.Addr

e nfT`able-=rear-: st f ati = 1,0;

c nfT'1-= r r- c nfE = 140;

e nfTal le->rear-=GER. = 1.0;

c r 'I" i -= -e r-"next = L,

- -{e+ n able- si e)

}

/

lac utinod TLTpdtec nf' "1

1..Tdates the nc de s C EIZ using the ecanidence ratio anfd l:. ; '

l

t L outin ;c dvpdate 'c nfl`ale(I 1 E_ 1ast ddr, lc at c n at c , flcaat ec r fl..eve1,

1 TC)1 E c nfcade, t L _C"F` '* c nfT'ale}

t L) l AFT I' cade *current

flat to C)E _I u=0.0;

flat tempC)E _ en=0.0;

if (c nfT`able-size =- (

retu. F.t .,SE}

for curreia ;° : jf` 'aL le-> rrUnt current !- CSLL,; -. db º: 'eurrent e t

if(eurrent-%nc decldr == cc nf Tc de

tc C9E _I u = eurrcnt->e nf Level ec nfL.eve c ,` ti ;

to pE ®T en =current- cc nl` bevel * ec .,evel;

eurrent- E - to C EI Tu /t . pC}E _ en;

else

c nf "ahle-gear- n d ° Addr=lastddr

ccan# I'al le-gear- c .` , e`= =cc n atic

ec nf `al le-gear- ec nf Level=can °

204

}

return (TRUE);

//loop t the confTable to get the pointer to the wanted address

I/calculate the new OER
//if the loop ended and no match was found in the table

//insert values at the end of the table

}/*RoutingAodvUpdate ,onfTable*/

/*
* RoutingAodvnsert NbrRmvTable
*/

void RoutingAodvlnsertNbr nwTable(NODE_ADDR destAddr, AODV_NR1T *Nbr vTable)

/*
AODV NRT Node* current;
AODV_NRT_Node* previous;

AODVNRT Node* newNode (AODV_NRT_Node
*)checkedpc malloc(sizeof(AODVNRTNode));

newNode->nodeAddr = destAddr;
newNode->TimeOtLeaving= timeof leaving + 2;
newNode->next = NULL; */

if (Nbr vTable->size = 0)

{
Nbr vTab1e->rear = (AODV NRT_Node *) pc nalloc(sizeof(AODV_NRT Node));

assert rRrnvTable->rear != NULL);
Nbr vTable->front = NbrRmvTable->rear;

}
else

{
NbrRmvTable->rear->next = (AODV_NRT Node

*)pc malloc(sizeof(AODV_NRT_Node));
assert (NbrRmvTable->rear->next != NULL);

NbrRmvTable->rear = NbrRmvTable->rear->next;

NbrRmviable->rear->nodeAddr = destAddr;

Nbr vTable->rear->TineOtLeaving = time of leavin + 2;
NbrRrvmTable->rear->ne xt = NULL;

++(NbrRmvTable->size);

205

}/ c atin.l d scrt r vTahlc /

c tin, c d `c laic can

alc latcs the can fir the nc dcs° cxit and ntranc int:c , ,_ - a'

l

float 2c tinAc d c m tc ca TC _ tartddr, C I)V__. `' °ahle

l ` ' aid ` urrcnt4

1/ rT * rI v 'al;

int t ={

int ti =;

int cliff=,

int cc aznt-l

float can-e0

fc rc ant = " . -` h] rer, . . r nt != Tf.;L +:.p rr n - :, . ,, ,.

ifcurrcnt->nc dc 1dd ° == taet. ddr)

.

ti = cur nt- `Tin cfl, avin

cliff = diff+ {ti c - tc)

c cant++a

tc p = ti e

can =Jiff/cc t;

//hc °c cc nlarc can with cshc ld

llif less incr asc a ink statsti

}i'* utin.t c dvC"ca n tc canal

/

* c tin vL, c k l nffcr

I .ctu s T L.T if any acl ct is hffcr to the d .. ton

t , c tig c vl.,e c l n izffer t _.A dcst ddr, .T7 i' 1 t7 " h fr)

A.C _ 3 7F ' 1 3c d urrnt;

if h ` -sic ==

r ti F ,i ;

206

for (current =buffer->head;
current !=NULL && current->destAddr <= destAddr;

current = current->next)

{
if (current->destAddr == destAddr)

{
return(TRUE);

}
}

return (FALSE);

} /* RoutingAodvLookupBuffer */

/*
* RoutingAodvCheckSent

* Check if RREQ has been sent; return TRUE if sent
*1

BOOL RoutingAodvCheckSent(NODE_ADDR destAddr, AODV _SENT *sent)

{
AODV_SENT_Node *current;

if (sent->size = 0)

{
return (FALSE);

}

for (current = sent->head;
current != NULL && current->destAddr destAddr;
current = current->next)

{
if (current->destAddr == destAddr)

{
return(TRUE);

return (FALSE):

} 1* RoutingAodvCheckSent *1

/*
* RoutingAodvllandleProtocolPacket
*

* Called when the packet is received from MAC
*/

void RoutingAodvHandleProtocolPacket(
GlornoNode *node, Message *rsg, NODEADDR srcAddr,

207

C _ dost. dd - int tt1

P' c t`I' p ' odv. d r - '_p k t C .C) CC: s p t(n q

s itch odv d r)

I .outin.Aodv a " c i:: °cd, s ttl ;

- k;

/* ECG *l

{

Rc uting dv - and I ply nc , mss, rt r d stAdd °);

bra;

1 Z) I 2;

ssrt(d stdr == _ `T)

outinl odv I ndl outrror(r od s? rc ddr

br;

' `

d f ult.

ssort '1 LE}; abort);

bred

} / with /

} 1* 12outin odv ndlorotocolPackt *1

1*

outin .odv andl 'roto olFvot

andles all to protocol e ;z ;__ -

void outin odvl ndlcl rotoecil vnt(1o I d nc d , sa ' s)

lornol Te orkTp ipLay r - C lon ol Te orl Ip no-= n t vor t .not vor rq

Colo c I2outin Aov* odv = ((loz o outin ;Aodv) ipl a r- routin 'rotocol,

vitl (s- vont '3'p

1 ` e ova n ntr f°rc ' the ern 'T"blc l

SCE I T`TC _Flush£T'abls; {

outin ov I t n ' 1 odv- s a' " 1)

l re k;

? c e the rote that his nc t heer wised #c r xhile /

SCE `T` TC C 'ec c te'T`i e ts

TC}Z7 _ DTI destAddr = (NCB _A `) s ,, :, -f { s 4

at tir Ac dv elate c te'Tble{*destAdd ° ; dvA>r ute ' le);

CSI., sg 'ree(nc de, s)

break;

/ cheek i I F' is reeei ed after sendir /

ease SCI `T C _ 'hee pliedd {

C _ I *destAddr = IT)IIL)I , . 6 _ !IsI2et Inf)

/* 12aute has r c t been bt in °d 1

if (ll2c tingAvdv heekl c l :. :ist(des `rF", fi c d ->r ut rl` b1))

i ° .o tiz A®d CatTi s{ `stAdd, c dv = s t `I`IFS)

/' e vth inereased T'I,, !

t uti Ac d l etr}jI .I {r c de, *destAddr)

} /* if under the ret °y limit ' /

giver the li it 0

else

hi1e (I . utigA+ d I c ku uffr° destAddr acad ® ffer)}

essae* essae ' I elete

Zc utix gAc dvClet ufferedPaeket

*destAddr, c .aov- buffe ;

Rc utir ;Ac dvl elte 3 fe °(*destAdr; a d -= b i .:);

CGLC IO Is Free(n ade, essage`T elete)b

c d - stats.numPaeketsl rc Isped+ -;

} / else */

} / if c r aute *!

t IC) C s Fre{r c de, s 4

real;

default:

fprir tt'stderr,'Pl c uutir Acadve Tnkt e la9\ri'Rq

2.09

msg->eventType);
abort(;

} /* switch */

} /* RoutingAodvHandleProtocolEvent *1

/*

* RoutingAodvRouterFunction

* Determine the routing action to take for a the given data packet
* set the PacketWasRouted variable to TRUE if no further handling of

* this packet by IP is necessary
*/

void RoutingAodvRouterFunction(
GlonoNode *node,
Message *msg,
NODE_ADDR destAddr,
BOOL *packetWasRouted)

{
GlomoNetworklp* ipLayer = (GlomoNetworklp *) node->networkDataonetworkVar;
GlomnoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
IpieaderType *ipleader (= IpHeaderfype *) rsg->packet;

//printf("router function TOP");
/* Control packets */
if (ipHeader->ipp == IPPROTO_AODV)

{
return;

}

if (destAddr =node->nodeAddr)

{
*packetWasRouted = FALSE;

else
{

*packet WasRouted -TRUE;

/* intermediate node or destination of the route */
if (ipfeader->ip_src != node->nodeAddr)

RoutingAodvHandleData(node, msg destAddr);

/* source has a route to the destination */
else if (RoutingAodvCheckRouteExist(destAddr &aodv->routeTable))

210

RoutingAodvTransmitData(node, msg, destAddr);
aody->stats.numDataSent++;

}

/* There is no route to the destination and RREQ has not been sent */

else if (!RoutingAodvLookupBuffer(destAddr, &aody->buffer))

RoutingAodvnsertBuffer(msg, destAddr, &aody->buffer);
RoutingAodvlnitiateRREQ(node, destAddr);

/* There is no route but RREQ has already been sent */

else

{
RoutingAodvInsertBuffer(rnsg, destAddr, &aody->buffer);

} /* RoutingAodvRouterFunction */

/*
* RoutingAodvMacLayerStatusHandler

* Reacts to the signal sent by the MAC protocol after link failure
*/

void RoutingAodvPacketDropNotificationHandler(
GlomoNode *node, const Message* msg, const NODEADDR nextHopAddress)

{
GlonoNetworklp* ipl ayer = (GlomoNetworklIp *) node->networkData.networkVar;
GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;

IpHeaderType* ipieader;
NODE_ADDR destAddr;
int numberRouteDestinations;

ipHeader = (IpHeaderType *) GLOMO MsgRetur"nPacket(msg);

if (ipHeader->ip == IPPROTO_AODV)

{
return;

}//if//

destAddr = ipHeader->ip dst;

if (nextllopAddress == ANY_DES T) {
aody->stats.numBrokenLinkRetries++
retum;

} //if/

211

NetworkdpDeleteOutboundPacketsToANode(
node, nextHopAddress, ANY_DEST FALSE);

aodv>stats.numBrokenLinks++;

RoutingAodvDeleteNbrTable(nextfopAddress &aody->nbrTable);
RoutingAodvlncrease Seq(node);

do {
AODV_RERR_Packet newRerrPacket;
newRerrPacket.pktType = AODVRERR;

RoutingAodI activateRoutesAndGetDestinations(
node,
&aodv->routeTable,
nextHopAddress,
newRerrPacket.destinationPairArray,
AODV_MAX_RERR_DESTINATIONS,
&numberRouteDestinations);

newRerrPacket.destinationCount = numberRouteDestinations;

if (newRerrPacket.destinationCount > 0) {
SendRouteErrorPacket(node, &newRerrPacket);
aodv->stats.nu errSent++;

} //if//

} while (numberRouteDestinations == AODVMAX _RERR_DESTINATIONS);
}//RoutingAodvMaclayerStatusHandler//

/*
*

RoutingAodvSetTimer

* Set timers for protocol events
*/

void RoutingAodvSetTimer(
GlomoNode *node, long eventType, NODE_ADDR destAddr, clocktype delay)

{
Message *newMsg;
NODE_ADDR *info;

newMsg GI OMO_MsgAlloc(node,
GLOMONETWORK_LAYER,
ROUTING PROTOCOL AODV,
eventType);

GLOMO_MsgInfoAlloc(node, newMsg, sizeof(NODEADDR));
info = (NODE_ADDR *) GLOMOMsgReturn nfo(newMsg);
*info = destAddr;

212

I_,C C)_ s, Send{Wade, new s, delay=

c a tin advet' 'i er /

1

ate' : > ° dvlnitiate (

Initiate ante eq est pae et when na rants to destinatian is l t awn
f

vaid antin advlnitiate (laxnal ,d ads, TI _T) destAddr

CTIa al Ie ar p i}al.,ayr = (C la al Te arl I * nadea netark ata.net arlcVar

Ala al2antin Aadv aadv = (la aT antin adv } ipI aver- rantinI'rataeal;

essa e 'anew sg;

t CC '_ I acket rreglt;

char *ktl'tr,

int ktie . si af ,CJ . _c t;

int ttl;

newl /Is C I: ̀ _ .llac(nade Iaf " ; ' , 0,

SCE I '_l °ra l Tetwarl);

CIIft C _ sI'ael et.A.llae nade, new s =')

pktl'tr = (ehar) CIL, 1IC)_s ':etn I aelcet(new s)

rreq] t = A, _aket) plPtr;

I autingt .advlnsert °anfl`able(Wade;rrregl'kt- d t drav® eanf'T'ble

rrekt- pktype - C) C :.

rrgl'kt->eastTd = antin ad; Cl. t 9eastld(nade

rrel'k t® dest 4ddr = destddr;

rregF't- dest5q = a E 1 advC -eteq destddr aadv->ra .itTabl

rregPkt->sreddr = nadti =- a adeAddr,

rregPkt->sreeq - antinAadvCTell lySeq(nade)

rregl l t4>lastddr Wade- nadeddr

rregl'kt->apannt - 1

rregkt->ean I .atia = IiT-mean I atia;

rregl'1 t® ean I evel - 1= 'I'- ean `. Zevel;

rrl'kt- can# made = C"l ' '- nade drq

if { a-° -,Y. dv ;hecl nt{destA.ddrg ac dv-sent))

`

ttl = antin advt et'I`tl(dest ,ddr9 Zaadv->snt

antin advlnereaseTtl(dest ddr, t .aadv->sent)4

else

1

tt1= o tin odvCatL st oount(dest .dd -, odv-= , , ,zrl° e),

if (tt1== -1)

{

r

outin.Aod T :W rt ' nt{dst l.dd °, tt1 : - : -sent);

outinc dvln r s`Tt (stAddr, c4 c v- s nt}

? T : ;. car . Send uJ1o o ss

° ode, n v s, 1 1 '_ °I', (1 ' .I:.;, I 12C 'T') , tt1);

r aest`ToForw rd - ;

odv->statsnun R.e estSent+ -;

outin .odvlnsertSen` l

node, nods®= ne d dr, r' ° r ? ' `-=stdrreq 'kt = o 'c nt,rre 'kt-

la st ddr, odv- sen e;

c utingAodv tTi n nc de, I t _ i ' _ `he epli d, dst dr;

(cloektype2 ttl C>I) _`T" E S I:J `T)

I* 2.outing o rlnita te ' I

`

outint odv 2etry Z. .

5en .in `te ° not receiving n r

C

vc d ut ng 1 adv ° : y RL:t (1c mc Nod nc de, (L d st. ddr)

X10 o1 Tet vorkI s' iLyer = C lo oRTetworkTp } node- nt vor at: et vorkar;

Colo c o .tirzg odv* aodv = l c Roi tng odv) ilyer->ro tingP"rotoeo ;

I ess ge ne v sg;

C} _ _ eket rregkt

C)_C ;F° Lode '"Tw

ear *pktPtr,_

int pkt ize = sizeof(AC T9V ;_ cket ,

int tt1;

new sg = C I.aC)IVIC sgAaloe{node; L,(1- I..;1 ,

L _ sg '-_t .1loe node, neev sg, kti

224

kttr = { ° I C C9_s Stu kt n)

rrgl kt = C) _ _F' ckt t r4

° qF'k - h , Id = autin adv t c s Id nad);

x°r gP - d t. ddz° = d t ,ddr;

rr gkt- d tSq = Zautin ; avC t q d . ddr, adv-=raut ")

° q Pk -= srdd = nad ->nad dd 9

rr gl t- s ° q = autn advC t y Sq nad);

r 'l t- ltddr = nad->nad dr;

qI't- apt aunt = 1

r eq l t- can T atia = T-= anf tia

° gFk t- anf ,ev I = F -= c;an I v ,

rr °° q t-man _ade = C;FTA- nader;

tt1= aut n adv(T l(dest ddr, 'zadv-= snt)

Ike arkIpn wC$la a ssg{

nad , new s, r _T) ` , `CC)I " ' ZC I 'TC) C a ttil)

Ratingad -_ _ `I`t1 d str d , adv- snt};

aav > tat .nu ques ent+ --;

IZc utin . advTnsrt n` 1(

nad , nad - nad, ddr, rrgF kt-' ,: , °c 'kt- hap`au it, ragl #-

1 s Addr aadv- enTi)

autin adv n ras`T'ines{detz°, av- nt ,

autin advS tZ"i r{nad , C7 1' TCJI _ plied, d st. dd,

elaktype 2 tl I CC CL 'It L _`T ,);

` au inl ad etry /

1 `

.au inr advTa° ns i t

F`az-w rd the dt p elcet to the r t hap

vaid .atinf adv ns itl (C la Tc de nae, essae n s, I T(I des dd

i

Ala aT etwa l p' ip ,ayer ((lan al` e warl p *) Wade->net a °l T ta mne wart' ;

Ala Rautin adv* adv - (C lanla autin adv) ip ,a e -->rau inra aal;

I IC F . ncxtop;

LC) _ sctl;vcnt(s SCE _F`ro t vork)

next op - I outin odv ictl Tcxt op(dcst .ddr, cadv-= rt ut"T b1)

asscrt ncxt o = A. _ ESA");

I4 et vti Se , : °< ' tTo l aycr node s E `I1 , T` ° , ASE, nxtl op);

odv- . ;s.nu t Txed+ ;

cautin ®dvLTdat ,iftin d st.Addr, djT ° ut` "abl};

.outin ,odvSet 'i cr(nodc, S_ TC _ 'eckl a t 'i coat,

dcstdrq clocktypc) ' 'T "E I LT`T'E_`T'C)9

/ 1Zoutin odvTrans it ata. ' /

/

outin odvlZcl yl . ECG

o Ord {e-broadcast) the

void I o tinAodv clay IZE C 1oralc I T dc de, me ,_ s, int tt1

{

Flo ohlet orkIp ` ipLa yer = {C lo ol e ork p node-=net o °k atane L :R ' '° Tb -

lomol outingl odv' aodv A (C lo oRouting.Aodv ' } ipL, yer- routingProtoc ,";

essa c *ne v s;

At, _ TtEC Packet mold eq;

C I T_ Z.12.EQ 1'acket `nc vl .req,

char `pktl °;

int pktSi e = sizof{C. I V IZ (' ct);

clock delay;

old cq = (1t L)_ t _ackct) C L{ Ms et z ' ' ;n: ,

ne v Is - C LC) sgAllocnode, C IC _ ._L., E ,

SCIi 'ro c ork}

C I.,C. sackct.A llo(nodc, new s, ktSi e

"-. , = (char C I. (_ s ctu ackct{ncr s)9
n t °cq = (AC} _ EC _ackct) lakttr;

n v cq- kt'T e =old.. cq- pktT"ypc

nc v cq-== bastd -old cq- bcastld,

nc v cq->dcst ddr =old. cq- dcst. ddr;

too rcq-= dcstScq = oldF .req->dcstScq

nc °cq® src ddr -old q- src 1ddr

216

n v q-> r q = cold q >srcSq;

new q-= l st l.ddr = n d ->ncadddr;

n v q- hc pc unt = ld q-= hesp 'c unt -E-- 1;

dl = p _ rand(nt d- s d I3 C} . '_JI ' '

I T u gr pS nlt Ica . ss i t ley(

nc n s, ;S ' I~, II'I' .TC _t- t ', tl, ey 9

rqust ' Ord

C IaC) C _ gFr (nc de, s),

} r I ing.Ac dv 1

I2.outinc dvlni iteRl EP

stinati n c f`th rc t+ I in r tc r c

void c utin 1 dvlnitit I' t c Qc de nc d, essag s,)

C Iorz c twrkIp ipZ.,yr = (C 1 o1V rlcTp ')node = F : m r . .- b v rkVar

C IonlolZoutingodv odv = C Ion ol2outinodv ')ipl., -= routin I'--, ,ool;

e s e ne : ,: r.

ear *pkttrr,

int pktSzze = sizof(1t I d'_ I'_I' cl et}4

int seq;

rregPl = (AI . F°_P l et { s etu eta sg)

ne v s = { L;C$ (_ s1 11c c nc , CTL,(1 I(_ L.t 'I g 0,

_ ffiF °o I 1e orl a

C L,(_ gaeketlloe node, ne v , p1 tSize);

p1 t t r= eh r) I C) _ sg etu I elCet; , ° ;,)

rrepPl t = . C I V I .I .. I P cket * pk I'tr

rrepl - ISI 'ype =1 C I _ p

rreppk - sr ddr = rr l'k- -= r ddr;

rrpl t =>d s .Addr = n 4>nc de ddr;

se =1Zouin, .odvet eq node ;

iI` seq = rregPkt- d tSeq)

rrepl -mod _ ' 4g sod

x,17

else

rrepPk t->desteq = rregPkt->destSeq;

orainovlncreaseq(node)g

rrpPkt- opC`o nt = 1

rr pPkt-> feti e = lo) _ LT` ` _ T' ;

I JorkI a ndT a vC lomol ssa "o 1 Z y r(

node, neiv s rregkt- iast ddr, CC i ` t I , APP " "C}_ I T 1,

L P `ALTZ,`I'_ T , , rrePkt- las Addr}

aodv->sta s. eplyent- -- -;

aL O_ sgFree(node, nls);

} /* F o tin odvlrzi iate . P */

/

' Routin odvlnitia y

' rote ediate node t °: prs the roe e to the des ina ion sends the P

void Ro tingl odvni iate ,Pby (Ci1o oode *node essae n s

{

lorrroe orklp' ipI:,ayer = (C lo oet vork p node® ne ork ata.ne rorkVar;

Caio c outinodv aodv = C lorr o outinAodv)ipl a} er- routinProtocol

`_ ' e anew s

t T)_ '(_Packe rregPkt;

C) _ PPacket ' rrepPkt,

char *pkttr;

ink pktize = sizeofC T _ _P k#);

ink seq;

new s = (,C C _ _s 1loc nod, C I ,{ M ` , '"I2,

l IC _ _Pro _t vork
_ _

t r s`a° ' llonode new s, pktSize

ak P r = char } ,CJ C _ : _=et Packet(ne v s ;

rrepPk = (C3 PP ;,'e ' pktPtr;

rregPkt = t I _RR.FC _Paeke C C C _ s ctu Packc)

rrepPk pkt pe - (aL P;

-repP -=src ,ddr = rregPk - src ddr4

rrepPkt->dest. ddr = rregPkt- dest. ddr

rrepPkt->dest eq _ ou in ;A.odvC eteq rregPk ® dcstddz° aodv- ro t eT'abl ;

rrepPk - lifeti = .outin odvCaetl.,ifeti e

21

rregkt->dest .ddr, aodv® ro teTable) - si eioe {)

rxe kt->hoo znt = I o .ttir Aodv iet oont

rreq t- dest ddr, aodv- routeTable 1,

I T , , , _ SSe X10 0 ° "ToIVIa I ayer(

erode, new s , rrec F l t-= last dr t 1'I`1 I , TP' , ,

IJ F ..TL` L T"T .F't , rreq kt-- ; ,_dr);

aodv- stats. ne l Sent- - ;

t { ;reenode s ;

/ otztiri Aodvnitiate Pby /

/*

I2otztin odv elay '

` and the P packet

void h.outin odv elay ,'(C o oode mode; esae __° , T _ I . ; dr}

{

Colo ol et`vorklp* il er = (C lo o1 Te orkp } mode-tenet or atanetworkar;

C io olZoutinodv aodv = (1orx o .o tin.Aodv) ipLa er->routin ; 'rotocol;

ssae *new s,

C)I: _ "p;PI'aeet `c ld -ep;

.t I _ _Packet new ep;

char p t '' rfi

I T(J _ T nest _ op;

c oek e li 'ti e;

int pktSi e = si cof(3I } T I I _P:. ' ,;

old. ep = (_I . _Packet (aI CC _ seta Packet{ .)s

e ov(c4ilifeti e, .alc e = ieti e, izecaf(cioel t p}9

new g = C L, } { g lo{node, C .. ,{ l !IC _1lll ° A 'P; ; ,

C _ '_Fro e or);

GC 1VI sPaekt lloe nod; ne > pti e};

pktPtr = Behar *) C _ - ' .: Packet{new

new ep = .L _ PPPa -t * pktPtr

new ep pkt"Type = oid Zrep->pkt' I" e;

new ep--re .ddr =old ep-= sre ddr

near ep_ ,d,_ _ Cdr =old e-= destr dr>

new ep- q =old ep- de tSeg9

new .r -: c a "o nt = oId ep-shot ' ;

it det dr - = SST)

i
m ` Tc r I a nd C lc s (

n d , n s, _ 'T C i ' 2C , ' CCU"I'C _ 1 , 1 '

1

r ,_ , = c uting . dv(it c (c Ic ' _ : sr . d, c d - c ut 'a.b1 4

if n x r ESA'}

_

l 1et °kISnd (: 1 ca ss 'T' a I.,yr

n ad, nti : s ext - rpa 'C)T C }I.,, C rI`C _(3T 1,

c d ® tats.nu alySent- ;

} / autin I lay '

VITA

TIRTHANKAR GHOSH

Place of birth

Education

Kolkata, India

08/2002 -Present

01/2001 - 7/2002

07/1990 -06/1994

Doctoral Candidate, Electrical Engineering, Florida International
University, Miami, Florida
Dissertation: Secure Routing and Trust Modeling in Multihop Infrastructure-
less Networks

Master of Science, Computer Engineering, Florida International
University, Miami, Florida
Thesis: Design of a Fast and Resource-effici en t Fault Management System
in Optical Networks

Bachelor of Engineering, Electrical Engineering, Jadavpur University,
India

Work Experience

Telecommunications & Information Technology Institute, Florida International University,
Miami, FL, USA (January 2001- present)
Position: Research Assistant
Job Functions and Projects:
• Implementation and maintenance of a wireless ad-hoc netork testbed with IBM ThinkPads

running NIST_AODV routing protocol on top of Red Hat Linux 9.
. Setting up simulation testbed for running wireless infras cted and ad-hoc networks with

Glomosim simulator having Parsec compiler running on top of Red Hat Linux.
. Developing secure solutions in infras cture-less wireless networks with large-scale

simulation and extending the results to ca out implementation with real-time traffic on the
ad-hoc ne tork testbed.

• Developing policy-based st computational models based on the security vulnerabilities in
an ad-hoc wireless ne tork.

• Installation and maintenance of IBM xSeries and pSeries servers in the research labs.
* Implementation of Security algorithms - Implemented RSA and DES to evaluate their

performance on laptops running Windows for ca ing out research with the ad-hoc network
testbed.

• Design and implementation of Protocol Conversion software - Designed and irplemented a
protocol conversion sof are at the Data Link layer with C on Windows platform.

a Desi and implementation of an IPv4 to IPv6 conversion software at the Network layer -
implemented with C on Windows platform.

CESC Ltd. Kolkata, India (September 1994 - December 2000)
Position: Executive, Materials Management Division

Job Funct and Projects:

221

• System design for a company-wide ERP implementation with Oracle Purchasing, Oracle
Financial and Oracle Inventory packages.

• Design, analysis and fine-tuning of the inventory rnanagement system.
• Inventory modeling for the Budge Budge Generating Station.
0 Implementation of ISO 9002 in the Materials Management division.
* Design and generation of MIS reports for inventory and consurnption analysis for the

Materials Management division.

Project Summarics
* ISO 9002 was irnplemented in the Material Management division integrating four generating

stations, ten distribution centers and fifteen warehouses with stringent quality control
measures and documentation.

• Enterprise Resource Planning (FRP) was being planned to be implemented with Oracle
Purchasing, Oracle Financial and Oracle Inventory packages. System design was carried out
to integrate the packages and with customized needs and requirements.

* The inventory management system was designed for Budge Budge Generating Station with
approximately 5000 items to cater to two units of 250 MW each.

Publications

Journal and Book Chapters

1. "Towards Designing a Trusted Routing Solution in Mobile Ad Hoc Networks"a to appear
in the ACM Journal "Mobile Networks and Applications (MONET)" Special issue on
Non-Cooperative Wireless Networking and Computing, 2005.

2. "An Overview of Security Issues for Multihop Mobile Ad Hoc Networks" IEC
Publications; Network Security: Technology Advances, St ategies, and Change Drivers,
ISBN: 0-931695-25-3, 2004.

Technical Conferences

1. "Collaborative Trust-based Secure Routing Against Colluding Malicious Nodes in Multi-
hop Ad Hoc Networks", in Proceedings of the 29" IEEE Annual Conference on Local
Computer Networks (LCN), Nov 16-18 Tampa, USA, 2004.

2. "Collaborative Trust-based Secure Routing in Multihop Ad Hoc Networks' in
Proceedings of The Third IFIP-TC6 Networking Conference (Networking '04): Springer
Verlag, Series: Lecture Notes in Computer Science, Vol. 3042, pp. 1446 - 1451, Athens,
Greece, May 9-14, 2004 (co-authored with Pissinou, N. and Makki, K.).

3. "Study of Ne'twork Perforrnance in a Simulated Network for Optimized Node Degree and
Network Cost", Intemnet Computing'03, Las Vegas, USA, June 2003 (co-authored with
Makki, S., Pissinou, N. and Deshpande, A.).

4. "Econoric Modeling and Analysis of the Evolution Path in Current and Projected IP-
Backbone Networks", Optical Fiber Con rence, March 23®28, Atlanta, Georgia, 2003
(co-authored with Wang, J., Pissinou, N. and Makki, K).

222

	Florida International University
	FIU Digital Commons
	6-2-2005

	Secure routing and trust computation in multihop infrastructureless networks
	Tirthankar Ghosh
	Recommended Citation

	tmp.1555619333.pdf.GHJFK

