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ABSTRACT OF THE THESIS

CHARACTERIZING FRACTURE DISTRIBUTION IN LAYERED ROCKS USING

GEOGRAPHIC INFORMATION SYSTEM-BASED TECHNIQUES

by

Kajari Ghosh

Florida International University, 2003

Miami, Florida

Professor Michael R. Gross, Major Professor

Fractures are discrete planar features that are heterogeneously distributed

throughout the earth's upper crust. Methods commonly used to quantify fracture

populations typically yield singular values/indexes for the attribute of interest. These

values are useful in characterizing the bulk properties of a fracture population, but are

unable to address the inherent spatial heterogeneities of the fracture network.

This study explores techniques to map fractures and capture the spatial

heterogeneity of fracture networks within a Geographic Information System (GIS). The

study was performed on exposures of the intensely fractured Monterey Formation in

Santa Barbara, California. Results of the GIS-based spatial analysis provide a framework

to (a) quantify the dependence of fracture style on lithology, (b) compare and contrast

geometric properties of fracture populations hosted in alternate stratigraphic units,

(c) evaluate fracture intensity as a function of proximity to large faults, and (d) quantify

geometric properties of fracture networks that impact fluid flow.
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CHAPTER 1

INTRODUCTION

1.1. Background

Fractures are among the most common structures in the earth's upper crust, where

brittle deformation predominates as a result of relatively low temperatures and pressures

(Engelder, 1993). The general term "fracture" describes any planar discontinuity (joint,

fault or vein) of deformational origin. Fractures are divided into two main groups based

on their sense of motion: joints are extensional, opening-mode (node I) fractures with

displacement perpendicular to the fracture plane, whereas faults (modes II and III)

display evidence of significant shear displacement (Pollard and Aydin, 1988). Fractures

form by the release of elastic strain energy in response to an applied force (Lawn, 1993).

Thus, fractures and their associated structures may serve as indicators of tectonic stress

and strain (Angelier, 1994; Gross and Engelder, 1995). The style (i.e., faulting versus

jointing), extent of development (e.g., density, dimensions) and orientation of fractures

depend on a number of factors including stress magnitude, stress field orientation, rock

fabric, lithology and mechanical properties of the rock. As a consequence of these

temporally and spatially varying factors, the distribution of fractures in rock is highly

heterogeneous.

In layered sedimentary rocks, fractures are often confined to discrete stratigraphic

intervals referred to as "mechanical layers" or "mechanical units" (Narr and Suppe, 1991;

Gross et al., 1995). A mechanical unit is defined by the common structural style - in this

case brittle fractures - that characterizes deformation within that interval of rock. Thus, a
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mechanical unit may consist of several stratigraphic beds that share the same population

of fractures. Most mechanical layer boundaries are bedding contacts, especially contacts

separating beds of contrasting lithologies (Underwood et al. 2003). Fractures confined to

one mechanical layer are termed "single layer" or "bed-confined" fractures, whereas

fractures that traverse multiple mechanical layers are referred to as "multi-layer" or

"throughgoing" fractures (Fig.la) (Bahat, 1988; Becker and Gross, 1996). The heights

(cross sectional trace lengths) of bed-confined fractures are often constrained by the

mechanical unit thickness. In fact, many field studies report a linear correlation between

joint spacing and bed thickness, such that thinner beds have more closely-spaced joints

than thicker beds (Price 1966; Narr and Suppe, 1991; Gross, 1993; Bai and Pollard,

2000). In addition to bed thickness, joint spacing depends upon lithology and strain

magnitude, the latter often being related to structural position such as proximity to

fracture zones and relation to fold geometry (Becker and Gross, 1996; Hennings et al.,

2000).

Differences in mechanical properties may lead to the development of different

fracture styles in adjacent lithologies (Fig.lb). For example, regional extension of the

Monterey Formation of California since the middle Miocene led to the coeval

development of joints in competent lithologies (cherts, porcellanites, dolostones) and

faults in less competent mudstones (Gross, 1995). Wilkins (1999) observed a similar

relationship in clastic rocks of the Glen Canyon Sandstone, Utah, where joints

predominate in sandstone beds and small faults are restricted to shale horizons. The

dependence of fracture style on lithology, referred to as "fracture partitioning", has

important implications for fluid flow through fractured bedrock. Faults and joints differ
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in terms of their roughness, kinematics, aperture, mineralization and gouge/breccia

thickness, all important parameters that control the hydraulic conductivity of a fracture

(Smith and Schwartz; 1984, Long and Witherspoon, 1985; Brown, 1987; Priest, 1993;

Odling, 1995). Thus, mechanical units of different fracture types will likely display

markedly different behavior in terms of fluid flow properties.

Many techniques have been developed to characterize rock masses by quantifying

fracture attributes such as spacing (and its inverse, fracture density), length, aperture,

connectivity and fractal dimension (Priest and Hudson, 1976; LaPointe and Hudson,

1985; Narr and Suppe, 1991; Gillespie et al., 1993; Wu and Pollard, 1995; Renshaw,

1997; Mauldon et al., 2001; La Pointe, 2002; Peacock et al., 2003). Regardless of the

approach, results are typically quantified in terms of a bulk value (1-D, 2-D or 3-D) for

the region of interest (e.g. median fracture spacing and its standard deviation) or

alternatively as histograms of a specific fracture attribute (e.g., length, aperture or

spacing). However, these methods are unable to characterize the spatial variability of the

fracture networks within the region of analysis, an issue of extreme importance due to the

aforementioned heterogeneous nature of fracture populations. We illustrate this point

with the fracture trace map of Gillespie et al. (2001) shown in Figure 1c, One

dimensional scanlines (e.g., Priest and Hudson, 1976; Narr and Suppe, 1991) or two-

dimensional surveys (Wu and Pollard, 1995; Mauldon et al., 2001) designed to measure

fracture density yield only bulk values for the entire area. For example the Priest and

Hudson (1976) 1-D scanline method applied to a traverse along X-X' (Fig. 1c) yields a

median fracture spacing of 1.15, whereas the Wu and Pollard (1995) 2-D method



Fig. 1 (a) Schematic diagram illustrating hierarchy of joints in layered rocks.
(b) Schematic diagram illustrating the concept of fracture partitioning, whereby
joints and faults are confined to different lithologies. (c) Map from
Gillespie et al., 2001. The fracture zone is indicated by black arrows.
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characterizes the fracture spacing for the entire rectangular area as 0.71. These bulk

values do not address spatial heterogeneity within the map area, such as fracture

clustering, anticlustering, or the preferred alignment of fractures within a linear zone

(Fig. ic).

The heterogeneity inherent in fracture populations can be addressed by using

Geographic Information Systems (GIS), a spatial analysis software that provides a broad

range of functionality to handle a variety of spatial data types (Bonham-Carter, 1994). As

defined by Star and Estes (1990), a GIS is "an information system that is designed to

work with data referenced by spatial or geographic coordinates. In other words, a GIS is

both a database system with specific capabilities for spatially-referenced data, as well as a

set of operations for working with the data". Advantages of a GIS most relevant to the

earth sciences are its capability to (1) perform spatial analyses on large datasets and (2)

generate maps based on these analyses (Paulus, 2000). Thus, GIS is ideally suited for the

analysis of discontinuous features such as fractures, and may provide the means to

quantify important structural trends in fractured rock masses.

1.2. Objectives

The overall goals of my research are to quantify the spatial distribution of

fractures using GIS, and to explore GIS-based methods that could lead to a better

understanding of fracture distribution in layered rocks. Specific objectives are to:

i. Explore and develop GIS-based techniques applicable to the analysis of two-

dimensional fracture maps.
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ii. Evaluate the spatial heterogeneity of fracture systems in terms of fracture

intensity, fractal dimension and fault displacement gradients.

iii. Establish the parametric differences between joint and fault populations hosted in

alternate layers of the same rock formation.

iv. Investigate effects of mechanical stratigraphy on the spatial distribution of

fractures in layered rocks.

v. Evaluate the relationship between fracture intensity and proximity to large faults.

vi. Evaluate geometric properties of fracture networks that impact fluid flow, such as

fracture connectivity and percolation clusters.

1.3. Significance of the study

Fracture distribution directly affects the hydrologic and mechanical properties of

rock. Fractures may serve as conduits for fluid flow or may act as barriers to flow. For

example an interconnected network of opening-mode fractures can transform an

otherwise impermeable rock into a viable aquifer or economic hydrocarbon reservoir.

Fractures also play a major role in landscape evolution. Thus, a good understanding of

fracture geometry, distribution and fracture mechanism is critical for groundwater

modeling and evaluating rock mass stability.

This study develops appropriate techniques to quantify the spatial distribution of

fractures. It also explores the geologic factors that control these spatial variations, such as

stratigraphic layering and structural position. The permeability of a fractured rock mass is

controlled by the extent to which the individual fractures are linked to form a continuous

fracture network through the rock. Thus, the connectivity of a fracture system

6



determines the effective permeability of the rock mass, which in turn is dependent on the

fracture geometry and distribution. The analytical techniques developed in this study may

provide insight on the two dimensional connectivity of fracture networks.

7



CHAPTER 2

GEOLOGIC SETTING AND OUTCROP DESCRIPTION

2.1. Regional overview

The field area for this study is located in the Santa Barbara basin of central coastal

California, which is part of the Western Transverse Ranges, a crustal block situated west

of the San Andreas Fault (Fig. 2.1).

2.1.1. Tectonic setting

In early Cenozoic time the California borderland was a convergent margin, as the

Farallon plate subducted beneath the North American plate (Atwater, 1989). During the

middle Cenozoic, the Pacific plate collided with the North American plate initiating the

San Andreas Transform Fault system. The Santa Barbara basin is one of a series of

extensional basins that developed along the California borderland at the beginning of the

Miocene (Howell et al., 1980; Clark et al., 1994). Paleomagnetic data suggests that the

Santa Barbara basin has undergone 90° of clockwise rotation since the early Miocene

(Crouch, 1979; Luyendyk et al., 1980; Hornafius, 1985). The tectonic stress regime along

the California borderland switched from transtension in the Miocene to transpression in

the early Pliocene (Yerkes, 1985; Clark et.al., 1991; Nicholson et al., 1992), most likely

the consequence of changes in the relative plate motion between the Pacific and North

American plates at 8-6 Ma ( gus and Gordon, 2001).
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2.1.2. Structural style

Two main phases of deformation are recorded in the Western Transverse Ranges

since the early Miocene, reflecting the evolution in tectonic stress regimes. Miocene

extension is manifested by large offshore normal faults (McCulloch, 1989) and mesoscale

normal faults and veins (Gross, 1995). The Pliocene-recent phase of NNE-SSW

contraction resulted in the development of the Western Transverse Ranges fold and thrust

belt (Namson and Davis, 1990; Shaw and Suppe, 1994), characterized by a series of E-W

and ESE-WNW trending fold axes and thrust faults throughout the Santa Barbara basin

(Reed and Hollister, 1936; Dibblee, 1982). The NNE-SSW oriented maximum horizontal

stress (SHMAx) persists throughout the region as manifested by in situ stress

measurements (Zoback et al., 1987) and earthquake focal plane solutions (Yerkes, 1985).

2.1.3. Monterey Formation

The Monterey Formation was deposited during the middle to late Miocene in a

series of deep anoxic basins along the continental margin of California (Issacs, 1980;

Ingle, 1981; Pisciotto and Garrisson, 1981; Barron, 1986; McKinnon, 1989; Behl, 1999).

The Monterey Formation is lithologically complex and regionally variable, consisting of

siliceous rocks of biogenic origin (diatomites, porcellanites, cherts), carbonates

(limestones and dolomites) and organic-rich shales. Isaacs (1983) subdivided the

Monterey Formation into five members, listed here in ascending order: the lower

calcareous-siliceous member, the organic phosphatic marl member, the transitional marl-

siliceous member, the upper calcareous-siliceous member and the clayey siliceous

10



member (Fig. 2.2a). Stratigraphic thicknesses of the Monterey Formation range from

400 m along the Santa Barbara coastline to 1100 m along Santa Maria coastline.

Despite its relatively young age the Monterey Formation is intensively deformed,

due in large part to its deposition and subsequent burial adjacent to an active plate

boundary. Many early extensional structures in the Monterey Formation were reactivated

and/or inverted during the later phase of regional contraction (McIntosh et al., 1991;

Gutierrez-Alonso and Gross, 1997). The style of structural deformation within the

Monterey Formation reflects the overall thin-skinned tectonics of the larger fold-thrust

belt, and is characterized by fault-related folds at many scales (Namson and Davis, 1990;

Gutierrez-Alonso and Gross, 1997). Thin clay-rich layers served as detachment horizons,

resulting in disharmonic folding within the formation. Although fracturing took place

throughout its history, the most intense brittle deformation in the Monterey Formation

occurred in response to Pliocene-recent shortening. The NNE-SSW shortening resulted

in extension parallel to the regional fold axes. In the Monterey Formation this along-

strike extension was accommodated by the development of joints, veins and normal faults

(Belfield et al., 1983; Narr and Suppe, 1991; Gross and Engelder, 1995).

2.2. Monterey Formation exposures at Arroyo Burro

2.2.1. General overview

At Arroyo Burro Beach Park within the city of Santa Barbara, a 91 meter thick

stratigraphic section of the Monterey Formation is repeatedly exposed over a distance of

2 kilometers (Figs. 2.2b 2.3); (Homafius, 1994). The repetition of the section is due to

tectonic folding and faulting. At Arroyo Burro structural shortening is accommodated by

11
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Figure 2.3 Location of Arroyo Burro section plotted on a portion of the
geologic map of Santa Barbara quadrangle (USGS, 2001).
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multi-layer flexural slip folding (Gross et al., 1997b). The folds trend NW-SE with sub-

horizontal axes, reflecting NE-SW directed regional shortening. Among the large

structures observed at Arroyo Burro are throughgoing tar-filled breccia zones and

dolomite-cemented fault zones that traverse the entire cliff face (Belfield et al., 1993;

Homafius, 1994; Eichhubl and Boles, 1998). Bed-confined fractures are abundant within

exposures of the organic phosphatic marl member, and fall into two main groups:

(1) opening-mode joints and veins in dolostone and siliceous beds, and (2) small normal

faults in phosphatic-rich mudstone beds (Gross and Engelder, 1995; Sibson, 1996).

These two different types of fractures -joints and faults - formed in adjacent beds in

response to the same applied boundary conditions, namely strike-parallel extension.

Consequently, both the joints and faults strike NE-SW, perpendicular to the regional and

local fold axes (Gross et al., 1997b).

The area selected for this study is highly fractured resulting in a mechanical

stratigraphy consisting of jointed beds, faulted beds and unfractured beds. The variation

of brittle failure in alternate beds of the Monterey Formation provides a unique

opportunity to compare parametric differences between the two fracture types (i.e., joints

versus faults). In addition faults at multiple scales (bed confined faults and throughgoing

faults) are exposed throughout the outcrop. Due to high quality exposure, intensity of

brittle deformation and multiple scales of fractures, Arroyo Burro is an ideal place to

investigate the effects of lithology and structural position on fracture development.

Two outcrops of the organic phosphatic marl member exposed at Arroyo Burro

were selected for detailed analysis. Section 1 is located approximately 1 km east of the

entrance to the park on the NE limb of a small anticline (Fig. 2.4). Section 2 is

14



s -

i

a

HT

ti

u

,

`f "

J t
,i

}

f n

i -

r i r

t

I
1

.1

r

,ten

i

CIS

bb

4J

bD

i

C!)

C3

Q

Q

._ Q

CIA

0

Q

C.

®p

C

U

Q

l Y

Z

15



approximately 170 meters to the SE of Section 1 within the hinge zone of the adjacent

anticline. Thin beds and abundant small fractures provide robust datasets for evaluating

effects of mechanical stratigraphy on fracture distribution, and permit the selection of

relatively small regions for detailed analysis.

Photographs of both sections were taken at different scales using a Pentax ZX-10

camera equipped with a 35-80 mm lens. Grids of (x,y) control points were measured in

the field and transferred onto the photobase to enable rectification in the laboratory (Fig.

2.5). Control points are required to remove distortion from the photographs and their

corresponding fracture maps sketched onto mylar overlays. An arbitrary origin control

point (Point #1 in Fig. 2.5) is set approximately at the center of the frame and the (x,y)

coordinates for all other points are noted with respect to the origin. The (x,y) coordinates

for the subsequent control points are determined by measuring the horizontal and vertical

distance between the previous control point and the new control point with a straight edge

calibrated wooden bar. The horizontality or the verticality of the wooden bar is ensured

using a bubble. Control points are distributed across the area selected for analysis,

especially along the edges and at the corners. Due to the small areas selected for analysis

and the vertical outcrop faces, the control points could be established with considerable

accuracy and no correction was done for out-of-plane distortion.

Structural (fault and joint traces) and stratigraphic (bedding contacts, marker

horizons) features were mapped directly onto mylar overlays attached to the photographs.

Sketching was performed in the field on high-resolution color enlargements of the

photographs (Fig. 2.6) to ensure the careful identification of each fracture and its precise

positioning on the sketch. Overall sketches of each exposure were drawn in order to

16



Fig. 2.5 Photograph of outcrop with "control points". Control point #1 is
chosen as the arbitrary origin of the coordinate system and point #2 and #3
are aligned vertically with respect to #1.

Fig. 2.6 Field sketch drawn on mylar overlay of photograph in Figure 2.5.
Control points are also transferred to the field sketch.
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provide geologic context for the smaller areas selected for quantitative spatial analysis.

Field data measured at each section include orientations of bedding, stratigraphic sections

(lithology, bed thickness), and the orientations of faults and joints.

2.2.2. Section 1

Section 1 is found within the SE portion of the cross section presented in Gross et

al. (1997b) (Fig. 2.7). Gross et al. (1997) divided the section into 19 mechanical units,

capped at the top by a clay layer that served as a structural detachment during flexural-

slip folding. The strike section reveals throughgoing normal faults cutting across

multiple beds (Fig. 2.7). Within this section, alternating beds of organic-rich mudstone

and siliceous porcellanites contain bed-confined normal faults and joints, respectively.

The overall sketch for Section 1 encompasses mechanical units 7 through 17 of Gross et

al. (1997b), whereas the subregion selected for detailed analysis, a rectangular area 240

cm x 155 cm, includes units 7 through 15 (Fig. 2.8). Mechanical stratigraphy within the

subregion was further divided into finer mechanical units for this study (Fig. 2.9). Bed

thicknesses for porcellanites range from 6 to 15 cm, whereas mudstone bed thicknesses

range from 9 to 40 cm.

Three main types of fractures were observed in Section 1:

1. Joints mostly confined to porcellanite units.

2. Small normal faults confined to organic-rich mudstone units.

3. Large throughgoing normal faults that traverse multiple mechanical units.

(See Fig. 2.8 and the list of 16 large faults in Table 2.1).
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Figure 2.9 Mechanical stratigraphy for Section 1. Joints are mostly confined to
porcellanite units and small faults are confined to mudstone units.

Throughgoing normal faults cut through the entire section. Mechanical unit
numbers correspond to that of Gross et. al. (1997b).
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The large and small normal faults appear as similarly oriented conjugate pairs.

Mean orientations (listed as strike direction / dip amount / dip direction) for the two sets

of large faults are 222°/71°NW and 025°/69°SE (Fig. 2.10 a). Mean orientations for the

conjugate pair of small normal faults are 221°/63°NW and 019°/75°SE (Fig. 2.10 b). The

joints are subvertical and share the same NNE-SSW strike as the normal faults, with a

mean orientation of 226°/71°NW (Fig. 2.10 c). Bedding dips are shallow, with a mean

orientation of 335°/16°NE (Fig. 2.10 d).

Table 2.1. Orientations of throughgoing normal faults of Section 1.

Fault ID Strike Dip amount Dip direction

1 212 72 NW
2 18 82 E
3 195 85 W
4 39 60 SE
5 220 70 NW
6 222 60 NW
7 230 62 NW
8 230 75 NW
9 237 72 NW
10 24 70 SE
11 210 72 NW
12 224 84 NW
13 222 80 NW
14 22 65 SE
15 237 65 NW
16 230 70 NW
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2.2.3 Section 2

The lithologic composition of Section 2 is primarily mudstone (calcareous,

phosphatic and siliceous) with only one porcellanite unit near the base of the section

(Figs. 2.11 and 2.12). The mechanical stratigraphy at Section 2 consists of nine main

units, labeled alphabetically in order to avoid confusion with the numbered units at

Section 1 (Fig. 2.12). Bed thicknesses vary widely, ranging from 6 to 95 cm. The three

main types of fractures observed at Section 1 are also found here. However, unlike the

distributed large normal faults in Section 1, throughgoing normal faults in Section 2 are

concentrated in the central region of the outcrop. Collectively these faults represent a

deformation zone that accommodates ~1.25 meters of vertical separation between the

downthrown NW block and the upthrown SE block (Fig. 2.11). The rectangular area

(404 cm x 377 cm) selected for detailed spatial analysis encompasses the fault zone and

its surroundings (Fig. 2.11).

Mean orientations for the conjugate through-going normal faults are 223°/66°NW

and 029°/74°SE (Fig. 2.13 a, Table 2.2). Mean orientation for the conjugate small faults

are 221 °/74°NW and 029°/71 °SE (Fig. 2.13 b). Joints measured at Section 2 have a mean

orientation of 228°/72°NW (Fig. 2.13 c). Faulted joints are found locally in unit D. They

are restricted to the hangingwall block of the fault zone, and have a mean orientation of

226°/74°NW (Figs. 2.11, 2.13 d). Bedding at Section 2 dips shallowly to the south, with

a mean orientation of 103°/21°S (Fig. 2.13 e).
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Figure 2.12 Mechanical stratigraphy for Section 2. Joints are mostly confined to
porcellanite unit and siliceous mudstone unit. Small faults are confined to
mudstone units, while throughgoing normal faults cut through the entire section.
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Table 2.2. Orientations of throughgoing normal faults of Section 2.

Fault IDStrike Dip amount Dip direction

1 30 75 SE
2 230 70 NW
3 232 74 NW
4 221 69 NW
5 221 63 NW
6 28 76 SE
7 221 61 NW
8 232 63 NW
9 214 73 NW
10 212 56 NW
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CHAPTER 3

METHODS OF SPATIAL ANALYSIS

3.1. GIS and remote sensing packages used

Spatial analyses were performed using the ESRI software, Arc View 3.2* and Arc

GIS 8.1 (including Arc tools, Arc editor and Arc Info). ERDAS imagine 8.6* was used

for image rectification. Specifically, three capabilities of GIS have proved extremely

useful in evaluating fracture networks. One is the ability to generate maps comprised of

numerous cells, with each cell having an assigned or calculated value of a fracture

attribute. These maps constitute models that quantify the spatial distribution of an

attribute, such as fracture intensity. Thus, regions of high fracture intensity (as well as

low fracture intensity) can be identified and further analyzed. Overlay analysis, the

comparison of different maps generated over the same region, is a second powerful tool

of GIS well suited for fracture analysis. In this manner different factors that may

influence fracture development can be compared, providing a quantitative method to

establish possible correlations between fracture intensity and proximity to fault zones, for

example. Lastly, the capabilities of c View extensions to identify fracture intersection

and termination points have proved to be remarkably helpful in evaluating the structural

connectivity of the fracture systems.

29



3.2. Transfer of field data to digital format

The first step in the spatial analysis process is to transfer photographs and fracture

sketches into digital format to produce a base map within the GIS. This is accomplished

by taking careful field measurements and then applying image analysis to these data with

remote sensing software. Once the photographs and sketches are rectified, they are

imported into the GIS for spatial analysis.

Upon returning to the laboratory the photographs and fracture sketches are

scanned and uploaded into ERDAS imagine version 8.6. The scanned images are then

rectified by referencing the coordinates of the control points set at the outcrop (Fig. 2.5).

Rectification refers to the process used to remove distortion and to calibrate photographic

units to real-world distances (ERDAS, 2001). The software builds a transformation

equation that relates the control point coordinates to the coordinates of the scanned

image, and then applies that equation to the entire raster image. In this study a second

order polynomial transformation is applied to the whole image. Initially a first order

polynomial transformation was considered, which yielded an average RMS error of 1.9,

with a maximum error of 4.2 at control point number 5 (Table 3.1). Then I excluded the

control point number 5, which reduced the average RMS error to 1.6 and the maximum

error of 3.8 at control point number 7. Next to improve the results of RMS error a second

order polynomial transformation was performed that reduced the average RMS error to

0.4, with a maximum RMS error of 0.9 at control point number 6 (Table 3.2). The

"nearest neighbor" resampling method is used during rectification. The rectified image is

then imported into the GIS software. Distances between control points and dimensions of
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structural features measured in the field are compared to the same features measured

directly in the GIS in order to verify the accuracy of rectification.

The distortion-free sketches (Fig. 2.6) are digitized in the GIS software in order to

generate a base map for spatial analysis. The digitization was done off the field sketch to

make certain that the digitized sketch bears one-to-one correspondence with the structural

interpretation made in the field. Digitizing off the field sketch rather than the photograph

ensures the proper detection of each fracture.

Table 3.1 Table showing Root Mean Square (RMS) error for the first order polynomial
transformation of Section 1 outcrop photograph.

Control point RMS Error

1 0.263
2 0.434
3 0.828
4 0.916
6 2.603
7 3.845
8 2.879
9 1.276
10 1.556

Table 3.2 Table showing Root Mean Square (RMS) error for the second order polynomial
transformation of Section 1 outcrop photograph.

Control point RMS Error

1 0.084
2 0.064
3 0.72
4 0.675
6 0.893
7 0.775
8 0.152
9 0.222
10 0.426
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The rectified fracture sketches are displayed on the computer monitor, and linear

features such as joints, faults and bedding contacts are traced using a mouse (Fig. 3.1).

The output is a digital data set that is spatially referenced to the source document (i.e., the

rectified sketch and photograph). Different geologic features (e.g., joints, faults and

bedding) are classified into separate data categories, so that they can be analyzed both

individually and in combination with other features.

Two main types of spatial analyses were performed based on data structure

format, vector analyses and raster analyses. Vector data consist of points, lines, arcs and

polygons that represent objects defined by sets of vertices. A raster data structure is a

series of rows and columns that form a regular grid pattern. Each cell within this matrix

is identified by its coordinate position and an attribute (or a calculated value). The

following sections describe the specific methods used to analyze the fractures within the

GIS.

3.3. Vector based analysis

Fractures and stratigraphic units are stored in the GIS database in vector data

format. Fracture traces and stratigraphic contacts are represented by arcs, stratigraphic

layers by polygons and fracture terminations are represented by points. The following

analyses were performed on these vector data:

3.3.1. Fracture length

Fracture length is measured in Arc View as traces exposed on the outcrop surface.

In Arc View, after digitizing the fracture maps, the length of all the features are updated
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automatically by using the "xtools" extension available with the Arc View GIS package.

Fracture length is a parameter that characterizes fracture size.

3.3.2. Fracture Spacing

Fracture spacing is calculated using the GIS software in a manner similar to the

methods employed in field. the field, traverses are taken perpendicular to the average

orientation of the fracture set, and the distance between two consecutive joints

intersecting the line of traverse is defined as the fracture spacing. In the GIS software,

scanlines are drawn approximately perpendicular to the fracture traces (Fig. 3.2). The

scanline is split at the intersection of the fracture traces, thus the length of each segrent

of the split-scanline represents the fracture spacing for the adjacent pair of fractures. This

is an automated process done by the "point and line" extension downloaded from ESRI

website. The length of the split segment is updated using "xtools" extension to get the

fracture spacing measurements between adjacent pairs of fractures. The software enables

the precise positioning of the scanlines with respect to the upper and lower boundaries of

the bed. Where beds are displaced by throughgoing faults the scanlines are shifted to

maintain the same stratigraphic position within the bed. In order to ensure representative

fracture spacing, three equally spaced scanlines are measured in each bed (Fig. 3.3).

The spacing data derived from each scanline is output as tabular data and

exported to Microsoft Excel. The population statistics (maximum, minimum, mean,

median, standard deviation, sum and coefficient of variation) of spacing data from

scanlines in each bed are calculated in Excel.
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Fracture spacing is an important parameter that characterizes the distribution of

joints and faults along a line. It is a standard method used to quantify fracture (one-

dimensional) distribution. The spacing statistics provide important information regarding

fracture clustering.

3.3.3. Fractal Dimension

The term "Fractal" was coined by Benoit Mandelbrot (1982) to describe objects

that were too irregular to be described by Euclidean geometry. Fractal geometry is a

branch of mathematics that can identify and quantify how the geometry of patterns

repeats from one size to another (Barton, 1995). As opposed to classical geometry that

deals with objects of integer dimension, fractal geometry describes non-integer

dimensions. For example in three dimensional space the topological dimension of a

straight line is 1 and a flat plane is 2, whereas the fractal dimension of a curved line is

between 1 and 2, and that of an irregular plane is between 2 and 3. The fractal dimension

D of an object can be defined by the relationship (Mandelbrot, 1967; Voss, 1988):

N=1/rD

Or,

D = log N/ log (1/r)

where r is the linear scaling and N is the resulting increase in size.

The fractal dimension of an object varies between its Euclidean dimension and its

Euclidean dimension plus one. Thus the fractal dimension of fractures, represented by

lines, varies between 1 and 2. The fractal dimension of a fracture distribution is an

indicator of homogeneity, complexity and connectivity of fracture network.
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The fractal dimension for a 2D fracture network may be calculated using the box

counting method (Fig. 3.4) (Mandelbrot, 1983; Feder, 1988). In this method, a grid of

cells (or box) is laid over the fracture map and the numbers of cells (N) intersecting one

or more fractures are counted. This procedure is repeated for a large number of cell sizes

(r). The N and 1/r values are plotted on log-log axes and the slope of the best fit line gives

the fractal dimension for the fracture network. To obtain a more rigorous result, small

increments between the cell sizes are used (Pruess, 1995).

Using the Arc View "Edit tools" extension, several grids of various cell sizes (r)

are drawn to cover all of the fractures in the study area. The cell sizes are chosen

according to the fracture size and the dimensions of the study area. The smallest cell size

is greater than the length of the smallest fracture, whereas the largest cell size is less than

the size for which all the cells are intersected by the fractures. The cells intersecting with

one or more fractures are highlighted (Fig. 3.5) by setting a logical query in Arc View

and the number of cells (N) intersected by fractures for each grid size is noted from the

attribute table of the grid. Then N versus 1/r is plotted on a logarithmic scale. The slope

of the best fit line through the data points gave the fractal dimension of the respective

fracture distribution.

3.3.4. Fracture Connectivity

In a fracture network, a group of linked fractures is own as a "cluster" (Stauffer,

1985), a term borrowed from the concepts of percolation theory (Chelidze, 1986;

Bebbington et al., 1990; Berkowitz and Balberg, 1993; Berkowitz, 1995; and Gueguen, et

al., 1997). The cluster size of any fracture network is defined as the proportion of the
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total fracture trace length in the study area belonging to the largest cluster (Odling, 1997).

Thus:

Cluster size = EFracture trace length in the largest cluster (cluster length).
lFracture trace length in the study area

Fractures in the percolating cluster, which are devoid of any dead-end fracture

segments (Fig. 3.6), constitute the "fracture backbone" (Priest, 1993) that connects the

opposite sides of the study area (Fig. 3.7).

GIS software can identify clusters and the backbone within fracture networks. In

the first step, the intersection nodes of fractures are converted to points using the Arc

View "point and line" function, then the fractures that contain an intersection node are

separated from the network by making a logical query. These fractures constitute the

fracture clusters (Fig. 3.8). Next, the termination points of the fractures belonging to the

clusters are converted to points. In the following step, termination points within fracture

clusters are selected by making a logical query and these fracture segments are deleted to

generate a fracture cluster without any dead-end fracture segments. Finally, any fracture

cluster that intersects the two opposite sides of the study area is identified. This is the

backbone of the fracture network that establishes a continuous pathway for fluid flow.

The permeability of a fracture backbone depends on the connectivity of the fracture

network. Thus it is very important to identify the backbone of the fracture system because

it facilitates flow through the fracture network.
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Fig. 3.1 Digitized sketch of rectified fracture map shown in Figure 2.5 and
Figure 2.6.

(a)
Scanline,

t
Mechanical
unit

Fracture

(b)

Spacing measurements

Fig. 3.2 Schematic diagram illustrating the scanline method of measuring
fracture spacing. (a) Placement of scanline (b) Cutting of scanline at intersection
points. (c) Calculation of spacing values along scanline.
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Fig. 3.3 Example of joint spacing scanline in a porcellanite bed. Three
equally spaced, parallel scanlines are measured in each bed. Scanline
numbers correspond to that of Table 4.1 and 4.2.

0

Log (1/r)

Fig. 3.4 Illustration of method used for calculating fractal dimension
(Barton, 1995). N = Number of cells or boxes intersected by fractures,
r = cell or box size.
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Fig. 3.5 Grid of 5 cm cell size overlaid on the fracture map to determine
the fractal dimension of joints.
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0 4

Fig. 3.6 Example of a fracture network with dead-end fracture segments and
fracture segments belonging to the backbone (Priest, 1993).
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Fig. 3.7 Fracture backbone generated from the fracture network of Figure 3.8.
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3.4. Raster based analysis

Vector data is converted to raster format to further analyze the heterogeneity of the

fracture distribution and generate maps of fracture attributes. In raster data format, maps

of fracture properties are generated, where calculated values of fracture attributes are

assigned to each cell in a gridded map area. Regions of anomalous values of fracture

attributes can be easily identified when the fracture properties are compiled in contour

maps. The raster analyses performed on the data are as follows:

3.4.1. Buffer Analysis

In buffer analysis a two-dimensional map of 'distance between fractures' is

generated using the "Find Distance" function of the Arc View spatial analyst tools. The

"find distance" utility in Arc View creates a distance contour for a feature. The output is

a continuous surface representing the distance (proximity) to the nearest target feature

(Fig. 3.9). Euclidean distance to the closest feature is calculated between each of the

output cells that do not contain a feature (ESRI, 1996). The cell containing a feature is

assigned a zero distance value. Each classified zone of proximity is converted to a

polygon (vector output) (Fig. 3.10). This analysis is used to study the variation of a

fracture property as a function of proximity to the large faults.

3.4.2. Fracture intensity

Fracture distribution in two-dimensional space is quantified by several methods.

Renshaw (1997) defined spatial density of fractures as the summation of the half-length

square of all the fractures divided by the study area containing the fractures. Mauldon et.
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Fig. 3.9 Distance buffer map of large faults.
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Fig. 3.10 Distance buffer polygons corresponding to the map of Fig. 3.9.
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al. (2001) used the term fracture trace intensity and fracture trace density to characterize

different aspects of fracture distributions. Fracture density is defined as the mean number

of trace centers per unit area (1/length 2) and fracture intensity is defined as the mean total

trace length of fractures per unit area (1/length). Thus fracture trace intensity is a

parameter that characterizes both fracture density and size (Dershowitz and Herda, 1992;

Mauldon and Dershowitz, 2000; Rohrbaugh et al., 2002). In this study the spatial

distribution of fracture traces is quantified by evaluating fracture intensity using the

"linedensity" grid function in Arc Info (ESRI, 1997). The function calculates the fracture

intensity as the sum of all fracture lengths within a specified search radius divided by the

circular area (Fig. 3.11):

Fracture intensity = ,_ Fracture length within a circular search area
2R2

where R is the radius of the circular area. The units of fracture intensity are 1/(length).

The "linedensity" function requires a user input of cell size, search radius and a

choice of simple or kernel smoothing. The cell size is assigned depending on the scale of

the map. The cell size affects the resolution of the output map; the smaller the cell size

the higher the resolution. Use of a very small cell size will occupy an unreasonable

amount of storage space without any additional accuracy to the map, and a very large cell

size results in loss of information. Selecting the search radius for fracture intensity is a

very sensitive issue, as a large search radius yields a very general pattern and a very small

search radius fail to include a reasonable number of features within the search area and

returns a large number of cells with "0" or "no data" values. The search radius (R) for this

study is selected through the following equation:

43



R= (A/n)/ 2

where A is the area of study and n is number of fractures occupying the study area.

Finally, the fracture intensity grid is generated by using the kernel smoothing option of

interpolation. Output of the linedensity function is a grid theme with each cell assigned

the calculated fracture intensity value (Figs. 3.12, 3.13, 3.14).

The fracture intensity map thus produced has been studied as a whole and also in

classified segments. The summary statistics of fracture intensity values for the whole map

are output in tabular format. The statistics along different beds are extracted using the

'summarize zones' utility of the spatial analyst functions in Arc View. The function

computes the statistics from the cells (mean, sum, maximum, minimum and range) that

fall within a cartographic zone defined by polygons (Fig. 3.15). This function is used to

compare the fracture intensity statistics in different lithologic units as well as variations

of fracture intensity as a function of proximity to the large faults.

3.4.3. Map overlay analysis

Using the Arc Info 'linedensity' routine, joint intensity and fault intensity maps are

generated for the study area. A minimum threshold value is determined for the map and

any cell values that are below the threshold are assigned a 'no data' value, so that they are

not considered in any further steps of the analysis. Then the joint intensity map and the

fault intensity are overlaid on one another to generate a third map. In the new map, the

cell values are reclassified, such that the map is classified into 4 discrete values

representing 4 classes:

a) Cells with joint intensities greater than the threshold value.
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b) Cells with fault intensities greater than the threshold value.

c) Cells with both joint and fault intensities greater than the threshold value.

d) Cells with both joint and fault intensities less than the threshold value.

For rock columns exhibiting fracture partitioning, the new map will show a larger

area occupied by classes 'a' and 'b' compared to 'c'. The result is expressed as

percentage of total area covered by each of the four cell types.

3.4.4. Dip separation map offaults

Fault displacement magnitude is derivable when a linear feature (e.g. a bedding

trace) intersecting the fault surface is displaced by the fault. On the rectified outcrop

image, the fault-layer intersection (cut-off line) is identified on either side of the fault

trace and a line is drawn to connect the corresponding intersections. The length of this

line represents the magnitude of fault separation along the fault trace. Then the

displacement magnitude is assigned to the midpoints of each displacement vector (Fig.

3.16). The midpoints of the displacement vectors are interpolated by 'inverse distance

weighted' method based on the magnitude, to approximate the displacement values for

places where the piercing points could not be identified. The output is a map classified by

displacement magnitudes.
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Fig. 3.11 Schematic diagram demonstrating Arc Info "linedensity" routine. The
2D fracture intensity for each cell is calculated as the sum total of all fracture
lengths within a prescribed search area.
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Fig. 3.12 An example of a joint intensity map generated with the "linedensity"
function.
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Cell size = 0.5 cm; Search radius = 14 cm
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Fig. 3.13 An example of a small fault intensity map generated with the "linedensity"
function.
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Fig. 3.14 An example of a fracture intensity (joints and small faults together) map
generated with the "linedensity" function.
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CHAPTER 4

SPATIAL ANALYSIS OF FRACTURED OUTCROPS:

RESULTS AND MAPS

The methods of spatial analysis described in the previous chapter were applied to

the two sections at Arroyo Burro beach. The maps and results of the outcrops are

presented in the following sections.

4.1. Section 1 Spatial Analysis

4.1.1. Length characteristics of bed confined fractures

The length pattem of the joints and small faults are very distinct. The mean small

fault length is 15.74 cm and the mean joint length is 5.82 cm. The small fault length also

shows a wide range of variability from 0.91 cm to 45.14 cm, as opposed to joint lengths

that range from 0.6 cm to 35.35 cm. The results are presented as frequency histograms

(Fig. 4.1).

4.1.2. Spacing characteristics of bed confined fractures

Fracture spacing measured along three scanlines in each bed is presented in

Tables 4.1 and 4.2. The scanline numbers are in ascending order from bottom to top of

the bed boundary (Fig. 3.5). The spacing distribution yielded by the central scanline in

each bed is plotted as frequency histograms (Figs. 4.2, 4.3). The average joint spacing is

2.02 cm and the median spacing is 1.7cm, which indicates that the spacing distribution is
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Fig. 4.1 Frequency histograms of (a) joint length and (b) small fault length
measured at Section 1.
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Table 4.1. Table showing joint spacing statistics along 3 scanlines within porcellanite
units of Section 1.

Layr Saline# Fracture Spacing
Mean Median

8 1 2.208 1.736
8 2 2.335 2.034
8 3 2.499 2.124

Average Statistics 2.347 1.965
9 1 2.296 1.628
9 2 2.121 1.681
9 3 2.368 1.939

Average Statistics 2.262 1.749
11 1 1.951 1.626
11 2 2.022 1.806
11 3 2.198 1.810

Average Statistics 2.057 1.747
13 1 1.638 1.391
13 2 1.659 1.486
13 3 1.671 1.565

Average Statistics 1.656 1.481
15 1 2.065 2.131
15 2 1.875 1.868
15 3 2.045 2.158

Average Statistics 1.995 2.052

Statistics
St.Dev.

1.673
1.549
1.690
1.637
1.660
1.563
1.483
1.569
1.197
1.167
1.526
1.297
0.843
0.797
0.797
0.812
1.096
1.003
0.958
1.019

Cv Total # of data

0.758 59
0.663 54
0.676 47
0.699 160
0.723 62
0.737 72
0.626 55
0.695 189
0.614 61
0.578 65
0.694 66
0.628 192
0.515 90
0.480 91
0.477 93
0.491 274
0.531 42
0.535 47
0.469 39
0.511 128

positively skewed. The fault spacing distribution is also positively skewed with a mean

fault spacing of 5.08 cm, and median spacing of 3.76cm.

From the spacing statistics, the coefficient of variation is calculated, which is

expressed as the ratio of standard deviation to mean. The coefficient of variation is

calculated for each scanline in a bed, the average of which yielded the Cv for each bed.

The average from all the jointed units and faulted units is considered as a representative

value of coefficient of variation for joints and faults respectively. Joints yielded a Cv of

0.6 and small faults yielded a Cv of 0.9.
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The fracture spacing measured in this study is the apparent spacing. Since the

angle between the average fracture orientation and the trend of the scanlines is very small

(50 for joints and 12° for small faults), the cosine correction required to get the true

spacing is minimal (0.996 for joints and 0.978 for small faults).

Table 4.2. Table showing small fault spacing statistics along 3 scanlines within mudstone
units of Section 1.

Layer # Scanline# Fracture Spacing Statistics
Mean Median St.Dev. Cv Total of data

7 2 4.952 4.824 3.248 0.656 21
7 3 4.461 3.636 3.127 0.701 18

Average Statistics 4.706 4.230 3.187 0.678 39
10 1 4.421 4.904 4.511 1.021 17
10 2 5.832 5.303 5.185 0.889 19
10 3 4.336 2.810 4.505 1.039 31

Average Statistics 4.863 4.339 4.734 0.983 67
12 1 3.218 2.674 3.366 1.046 22
12 2 3.563 3.045 3.399 0.954 19
12 3 3.803 3.111 3.670 0.965 17

Average Statistics 3.528 2.943 3.478 0.988 58
14 1 7.835 5.618 6.762 0.863 20
14 2 5.162 3.487 5.208 1.009 26
14 3 7.329 4.886 7.051 0.962 19

Average Statistics 6.775 4.664 6.340 0.945 65

4.1.3 Fracture intensity results

The joint intensity statistics extracted from the matrix of cells in the grid, yielded

a mean value of 0.14/cm for (Figs. 4.4, 4.5) with a range of intensity varying from 0 -

1.2/cm. The average joint intensity, for porcellanite units is 0.35/cm as opposed to

0.03/cm in the mudstone units. On the other hand, the small fault intensity yielded a bulk

value of 0.08/cm for the whole area (Fig. 4.6). The fault intensity ranges from 0 to a
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maximum of 0.6/cm. The average fault intensity in the mudstone units is 0.12/cm and in

the porcellanite units is 0.05/cm. The joint intensity distribution in the porcellanite units

and the small fault intensity distribution in the mudstone units are presented as frequency

histograms (Fig. 4.7).

4.1.4. Fractal dimension

Fractal dimension, D, for the joints and small faults, occurring in porcellanite and

mudstone beds respectively, were calculated using the box counting method. The analysis

was carried out over 1.3 orders of magnitude for both populations with box sizes ranging

from 1 cm to 20 cm. The fractal dimension calculated for the joint network yielded a

value of 1.48 (with a correlation coefficient of 0.99) (Fig. 4.8a), and that for small faults

is 1.27 (with a correlation coefficient of 0.99) (Fig. 4.8b).

4.1.5 Fracture connectivity

Fracture connectivity is quantified as the sum of all fracture trace lengths in the

largest cluster divided by the sum of all fracture trace lengths in the study area. The joint

population yields a cluster size of 0.14, (cluster length of 613.4cm) (Fig. 4.9a) and the

small faults yield a value of 0.09, (cluster length of 212cm) (Fig. 4.9b).

To further analyze the conductive property of the entire fracture network a cluster

map is built with the joints and the small faults together (Fig. 4.10a). The resulting cluster

size is 0.24. Next, the fracture cluster is generated from the through-going faults, it

yielded a value of 0.8. The throughgoing faults returned one big network of connected

fractures that connected the opposite sides of the study area thus forming a fracture
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Fig. 4.7 Fracture intensity histograms of (a) joints in porcellanites
(b) small faults in mudstones of Section 1.
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Fig. 4.8 Fractal dimension plots for (a) joints in porcellanite (b) small faults in
mudstone of Section 1 N = Number of cells intersected by a fracture,
r = cell size.
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backbone (backbone length of 1271.3cm) (Fig. 4.10b). To analyze the effect of small

fractures in a network, a fracture backbone is generated with all the fractures (joints,

small faults and through-going faults) (Fig. 4.11). The resulting network yielded a cluster

size of 0.7 (backbone length of 5672.9cm). Inclusion of small fractures in the backbone

of big faults increased the backbone length by 77.6%. In the backbone composed of all

the fractures, 25.4% is composed of the big faults and 74.6% by small fractures.

To emphasize the role of small fractures in enhancing the connectivity of the

network a buffer analysis was performed on the two backbones (i.e. the backbone

consisting of only the throughgoing large faults, and the backbone incorporating all the

fractures). Buffer sizes of 1 through 5cm were drawn around the backbones to compare

the area of rock within a prescribed distance to two backbones (Figs. 4.12 - 4.16). The

result is presented as a percent of total rock area in proximity to the backbone. The results

show that the backbone composed of all the fractures dramatically increase the percent

area within the buffer (Table 4.3). For example, the area within one centimeter of the

combined fracture backbone (40.6%) is ~3.5 times greater than the area of a backbone

made up only of big faults (11.6%).

Table 4.3 Table showing results of buffer analysis on Section 1 backbones.

Bi faults All fractures
Buffer size Area covered Percentage area Area covered Percentoa area

(CM) (s q. CM) (%) (s q. CM) (%)

1 2928 11.6 10269 40.6
2 5108 20.2 14577 57.6
3 7369 29.1 17711 70.0
4 9315 36.8 19784 78.2

11374 45.0 21543 85.2
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(a)

0 1 H mN a

0 100 cm /v Joints & Small Faults

(b)

n 10 0 cm N Throughgoing Faults

Fig. 4.10 Fracture cluster maps for Section1 for (a) joints and small faults

together, fractures belonging to the largest cluster is indicated by red color, and
(b) throughgoing faults.
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Fig. 4.12 One cm buffer zones mapped around Section 1 backbones
for (a) throughgoing faults only, and (b) all fractures.



Fig. 4.13 Two cm buffer zones mapped around Section 1 backbones
for (a) throughgoing faults only, and (b) all fractures.
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Fig. 4.14 Three cm buffer zones mapped around Section 1 backbones
for (a) throughgoing faults only, and (b) all fractures.
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Fig. 4.15 Four cm buffer zones mapped around Section 1 backbones
for (a) throughgoing faults only, and (b) all fractures.
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Fig. 4.16 Five cm buffer zones mapped around Section 1 backbones
for (a) throughgoing faults only, and (b) all fractures.
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4.1.6. Dip separation nap offaults of Section ]

A displacement gradient map was generated from the displacement data measured

on the small faults and throu going normal faults of Section 1 (Fig. 4.17). The

gradient is generated by the interpolation of measurements recorded at 304 points. The

result shows an average displacement of 2.6 cm. The displacement ranges from as low as

0.18 cm to as high as 18.1 cm. The lowest displacement is measured on a small fault of

length 24 cm and the highest displacement is measured on a throughgoing fault of length

1.35 m.

4.2. Section 2 Spatial Analysis

4.2.1. Fracture intensity in different lithologic units.

In all the analysis for this section the joints and small faults in the study area are

grouped together as bed-confined fractures. The fracture intensity map shows

concentration of high values within the fault zone and in the porcellanite units (Fig. 4.18).

The average fracture intensity value for the whole area is 0.09/cm, with values ranging

from 0 - 0.6/cm.

The fracture intensity statistics extracted from the mudstone and porcellanite units

exhibit distinct differences. The average intensity in the porcellanite units is 0.27/cm,

which is three times the average intensity value in the mudstone units (0.09/cm). The

fracture intensity distribution in the mudstone and porcellanite units is represented in the

form of frequency histograms. In mudstones, the intensity statistics show that the mean

intensity is considerably greater than the median, representing a skewed distribution

(skewness 1.5) (Fig. 4.19a). On the other hand, in the porcellanite unit the mean is
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approximately equal to the median representing a normal distribution (Fig. 4.19b). The

statistics of intensity values are presented in Table 4.4.

Table 4.4 Table showing fracture intensity statistics in different lithologic units of
Section 2.

Statistics
Rock Name Mean Median St. Dev. Variance Skewness

Porcellanite 0.266 0.270 0.115 0.013 0.049
Mudstone 0.089 0.070 0.078 0.006 1.560

4.2.2. Fracture intensity as a function ofproximity to large faults.

Visual inspection of the fracture intensity map of Section 2 reveals that the cells with

hi intensity values tend to occur close to the big faults (4.17b). To support the visual

interpretation, a buffer analysis was performed on the big faults. In this process, a buffer

grid is generated for the big faults that covers the area analysis, and from the grid, buffer

zones are generated (Fig. 3.12). Three buffer zone intervals of 10cm, 15cm and 20cm

were used in this study. The fracture intensity statistics for each of the buffer zones is

extracted and plotted against the distance from the big fault (Fig. 4.20). In all the plots,

the trend of scatter shows a decrease in fracture intensity with increasing distance from

the big faults. A curve is fitted through the data points to determine the function that best

represents the data. This helps to define the spatial variability of fracture distribution and

can be used as a model for the prediction of fracture envelope dimensions around

subsurface faults. An exponential curve is fit through the scatter, with correlation
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coefficient of 0.95 - 0.97. The data is also represented in the form of frequency

histograms (Fig. 4.21).
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Fig. 4.17 (a) Fault map of Section 1 with points indicating location of
displacement measurements. (b) Dip separation map of faults of Section 1

generated by interpolation of displacement measurements recorded at 304 points.
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Fig. 4.19 Fracture intensity histograms for Section 2 (a) small faults in
mudstones and (b) joints in porcellanites.
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Fig. 4.20 Plots of average fracture intensity as a function of distance from nearest

big fault in Section 2. Buffer sizes are (a) 10 cm (b) 15 cm (c) 20 cm. See text for
more details.
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Fig. 4.21 Histogram frequency plots of average fracture intensity as a function of
distance from nearest big fault in Section 2. Buffer sizes are (a) 10 cm (b) 15 cm
(c) 20 cm.
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CHAPTER 5

DISCUSSION AND SUMMARY

5.1. Comparison of joints and small faults in alternate layers of Section 1

The joints and small faults in alternate layers of porcellanite and mudstone units

share similar trends and belong to the same population of fractures measured by Gross

and Engelder (1995) and Gross et al. (1997b) at Arroyo Burro. These two different types

of fractures formed coevally in response to NE-SW directed tectonic shortening. Despite

their common tectonic origin, the two populations exhibit significant parametric

differences, as discussed in the following sections.

5.1.1. Fracture length and spacing distribution

The average small fault length is approximately three times that of the mean joint

length. Small fault lengths show a much wider range of variability than joint lengths (Fig.

4.1).

Fracture spacing is a parameter that provides a quantitative description of fracture

trace distribution along a line (or scanline). The average spacing of small faults in

mudstone units is more than two times the average joint spacing in porcellanite units. A

common distribution of fracture spacing in layered rock is log-normal (Huang and

Angelier, 1989). The frequency histograms developed in this study, of both joint and

small fault spacings also conform to a log normal distribution, except for bed number 15

(jointed porcellanite unit) where the distribution is normal (Figs. 4.2, 4.3). Summary
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statistics calculated for joint and fault spacing measurements from the centrally

positioned scanlines are presented in Table 5.1.

Table 5.1. Summary table of fracture spacing statistics for jointed and faulted units at
Section 1.

Rock type Porcellanite Mudstone
Fracture type Joints Faults

Mean (cm) 2 4
Median (cm) 1.7 4.0

St. Dev. 1.2 4.4
Skewness 1.7 2.3
Kurtosis 4.0 7.2

N 329 85

The coefficient of variation (Cv) is calculated from the fracture spacing statistics.

It is a parameter used to quantify the degree of clustering of fractures along a line (Cox

and Lewis, 1966; and Gillespie et al., 1999). The coefficient of variation shows the

variation of a variable around its mean. It is a scale independent means of comparing two

different populations. The value of the coefficient of variation ranges from zero to

infinity. A fracture spacing distribution with a standard deviation of zero corresponds to a

population of equally spaced fractures, where the coefficient of variation is zero. On the

other hand, where the standard deviation is equal to the mean, the coefficient of variation

is 1, indicating that the spacing is random. Gillespie et al. (1999), proposed an index for

comparing fracture clustering based on the coefficient of variation. A clustered set of

fractures has Cv > 1, while anti-clustered (more regularly spaced) fractures have Cv < 1.

The results (Table 5.2, 5.3) show that the spacing distribution for both joints and faults

fall within the range of the anti-clustered classification, but the coefficient of variation for
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small faults is 50% greater than that for joints. Thus the joints at Arroyo Burro are more

regularly spaced than the small faults.

The statistical significance of the results are determined by comparing the results

of this study with the confidence limits for the coefficient of variation calculated by

Gillespie (2003) (Fig. 5.1). According to Gillespie (2003), if the coefficient of variation

of the sample is greater than the value of the 9 5 th percentile then the sample is

significantly more clustered than a random sample. On the other hand, if the coefficient

of variation is less than the value of the 5 th percentile then the sample is significantly

more anticlustered than a random sample. The coefficient of variation of joints

(calculated from 807 samples) is less than the value of the 5 th percentile indicating that

the joint population is significantly anticlustered, whereas the coefficient of variation of

small faults (= 0.9 calculated from 191 samples) is more likely to be within the zone of

random distribution.

Table 5.2. Summary values for the coefficient of variation calculated from scanlines in
porcellanite units.

Layer # C Total # of dta

8 0.699 160
9 0.695 189
11 0.628 192
13 0.491 274
15 0.511 128

Average 0.605 943
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1 Significantly clustered

0
9 1.4

1

0.4 Significantly anticlustered
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N

Fig. 5.1 Confidence intervals for the coefficient of variation for different
number of fractures, N, calculated from the 5th and 95th percentiles of a Monte

Carlo simulation. Samples falling outside the confidence intervals are clustered

or anticlustered at the 95% confidence interval (Gillespie, 2003).
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Table 5.3 Summary values for the coefficient of variation calculated from small fault
scanlines in mudstone units.

Layer # Cv Total # of data

7 0.678 39
10 0.983 67
12 0.988 58
14 0.945 65

Average 0.899 229

5.1.2. Fracture intensity

Fracture intensity is a two-dimensional approach of quantifying fracture spacing,

proposed by Gross et al., (2000). The fracture intensity maps exhibit a wider range of

variability for joints (0 - 1.2/cm) as compared to small faults (0 - 0.06/cm). The statistics

extracted from the cells of the fracture intensity maps (Figs. 4.4, 4.5) reveal that the

average joint intensity (0.14/cm) for the whole area is approximately 75% greater than

the average small fault intensity (0.08/cm). The joint and the small fault intensities are

extracted for the individual units (Table 5.4, 5.5), showing that the average joint intensity

in porcellanite units is 60% greater than the overall bulk joint intensity for the entire

study area. Similarly, the average small fault intensity in the mudstone unit is 3300

greater than the bulk small fault intensity derived for the whole area.
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Table 5.4. Joint intensity statistics in porcellanite units.

Laver # Mean Range St.Dev.
(cm) (cm (cm

8 0.335 1.067 0.210
9 0.376 1.148 0.250
11 0.425 1.044 0.213
13 0.398 1.000 0.217
15 0.213 1.003 0.192

Avera e 0.349 1.052 016

Table 5.5. Small fault intensity statistics in mudstone units.

Layer Mean Rane St.Dev.
(cm) (cm) (cm)

7 0.102 0.427 0.080
10 0.126 0.528 0.104
12 0.076 0.302 0.081
14 0.111 0.431 0.091

Average 0.104 0.422 0.089

The visual inspection of the intensity maps reveals that the areas of high joint

intensity and the areas of high small fault intensity are mostly exclusive of each other.

The areas of high joint intensity follow linear trends that are approximately parallel to the

porcellanite units and the areas of high fault intensity are parallel to the mudstone units.

Map overlay analysis is performed with the joint intensity and small fault intensity maps

(Fig. 5.2), using the technique explained in Chapter 3. The joint intensity map is

superimposed on the small fault intensity map, and a third map is generated (Fig. 5.3) that

is classified in the following order:

a) Cells with joint intensity values greater than 0.1/cm

b) Cells with fault intensity values greater than 0.1/cm
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c) Cells with both joint and fault intensity values greater than 0.1/cm

d) Cells with both joint and fault intensity values less than 0.1/cm.

The area occupied by different classes of cells is expressed as a percentage of

total area (Fig. 5.4a). The results show that 39% of the total area is covered by class "a"

(high joint intensity cells) and 34% is covered by class "b" (high small fault intensity

cells) as opposed to only 6% covered by class "c" (high joint or small fault intensity). The

results are presented in the form of a histogram (Fig. 5.4b). The results show very clearly

the effects of mechanical stratigraphy on fracture style, whereby faults and joints develop

coevally in adjacent lithologies. The stratigraphic control on fracture development is

manifested by only 6% overlap of fracture types in the section. These encouraging results

suggest that GIS can provide a rigorous quantitative means to evaluate fracture

partitioning in layered rocks.

5.1.3. Fractal dimension

Fractal dimension (D) is an indicator of degree of complexity or homogeneity.

The value of D for a 2-dimensional fracture network varies between 1 and 2. The fractal

dimension of 2 indicates a perfectly homogeneous distribution (Babadagli, 2001). Thus D

value less than 2 for both joints and faults suggest that the distribution of both the

populations are heterogeneous. The fractal dimensions calculated from the small faults

and joints exhibit an 18% difference in D values, which is higher than the 6% difference

required to indicate a significant dissimilarity in distribution (Barton et al., 1991; Ehlen,

1999). The lower D value for faults indicates that faults are more irregularly spaced than

joints. A low fractal dimension is also indicative of increased clustering (Velde, 1990;
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(a)

Coverage Area

(cm 2)

Percentage

Area of Analysis 27141

Region of small fault intensity >0.1 9310 34

Region of joint intensity >0.1 10524 39

Region of overlap of small fault and joint 1643 6

Region of low fracture intensity (<0.1) 7307 27

(b)
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Fig. 5.4 (a) Table showing percent of total area covered by each fracture type.
(b) Histogram from the above table, color codes correspond to the map of
Figure 5.1.
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Manning, 1994; Belfield, 1998). Thus, a low fractal dimension for small faults (as

compared to joints) conforms with the results obtained from the coefficient of variation.

Fractal dimension is also an indicator of the connectivity of a fracture pattern,

with a higher fractal dimension corresponding to increased connectivity (Barton, 1995).

This suggests that the joint population with a fractal dimension of 1.48 is capable of

forming a more connected network than the population of small faults (D=1.27).

5.1.4. Fracture connectivity

The ability of a fracture system to transmit fluids depends on the fracture network

connectivity. The cluster size is a parameter that indicates the degree of connectivity of a

fracture network; the higher the cluster size, the higher will be the connectivity. The

results derived from this study show that joints have higher cluster sizes than small faults,

indicating that the joint network is more connected than the network of small faults.

5.2. Implications for fluid flow through fracture networks

In fractured rocks with low matrix permeability, fluid flow is regulated by

intersecting networks of conducting fractures. Thus identifying and characterizing

interconnected fracture networks has been the focus of many previous studies. Attempts

have been made to quantify the connectedness of fracture networks using concepts of

percolation theory. Percolation is a term coined to describe the property of a system of

conductors, which emerges at the onset of macroscopic connectivity within the system

(Berkowitz, 1995). A simple percolation model is composed of sites on a regular

Euclidean space that may be occupied with a probability p or unoccupied with a
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probability (1-p) (Bebbington et al. 1990) (Fig.5.5). In a 2 dimensional fracture network,

the sites are represented by fracture-intersection-points. For any finite lattice system,

there is a critical value ofp, above which the bonds extend to connect the opposite faces

of the lattice. This critical value ofp is called the percolation threshold. In terms of

fracture networks the percolation threshold signifies a value above which the fracture

cluster will be large enough to form a backbone.

Barton (1995) suggested that fracture systems with higher fractal dimensions (D)

are likely to be more connected. Further he suggested the percolation threshold of a

fracture system is reached with fractal dimensions greater than 1.35. This indicates that

the joint system (D = 1.48) in the present study should be able to form a backbone. But

the analyses show that the joints are not capable of forming a backbone by themselves.

This is probably due to the fact that the box counting method of calculating fractal

dimension does not account for the fracture orientation, which is an important parameter

that affects connectivity (Zhang and Sanderson, 1995). In this study the joints are

dominantly oriented in one direction, which makes the network pattern less connected

even with a high fractal dimension.

Odling (1997) suggested a threshold value of cluster size = 0.5, above which the

fracture cluster will be percolating. In other words, a fracture network with a cluster size

higher than 0.5 is capable of forming a fracture backbone that can establish a continuous

pathway for fluid flow. The results from the present study show that only the large fault

cluster (cluster size =0.8) and the cluster composed of all the fractures (cluster size =

0.7), yielded a cluster size greater than the threshold and the clusters span to connect the
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opposite ends of the study area. The cluster size values indicate that the cluster composed

of all fractures is smaller than that of the big-fault cluster, though the visual inspection of

the map clearly shows that the inclusion of small fractures increases the size of the

backbone considerably (Fig. 4.11). Thus the cluster size, though a good indicator of

backbone existence, does not reflect the actual size of the backbone. The backbone size is

well represented by the summation of fracture lengths that belong to the backbone.

Previous workers have proposed that interlinked shear and extension fractures

can form a continuous network that serves as a conduit for fluid flow (Fig. 5.6a) (Hill,

1977; Sibson, 1996). Sibson (1996), suggested that small faults and joints in alternate

layers of the Monterey Formation at Arroyo Burro form a fault-fracture mesh that can

enhance the structural permeability of the rock mass (Fig. 5.6b). However, the cluster

size of 0.24 derived from the combined network ofjoints and small faults reported in this

study (Fig. 5.7a and 5.7b) does not conform to a connected fracture network. The cluster

size of the combined joint-small fault network is higher in comparison to cluster sizes for

the two populations measured separately, but lower than the threshold value of 0.5

required to ensure a continuous network. The bed-confined fractures in alternate layers of

the rock column are occasionally interconnected to form a cluster, but more commonly

the clusters terminate at the bed boundaries (Fig. 5.8a). On the other hand, the large faults

that traverse through multiple mechanical units, act as a bridge between isolated clusters

of small fractures and help to form a percolating cluster connecting the opposite ends of

the study area (Fig. 5.8b). Thus it is evident from the results that the fracture connectivity

is sensitive to the abundance of large throughgoing faults in the study area.
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Fig. 5.6 (a) Schematic diagram illustrating mesh model of interlinked shear and
extensional fractures (Hill, 1977). (b) Schematic diagram illustrating fault
fracture mesh in alternate layers of competent and incompetent strata. The arrow
indicates direction of fluid flow (Sibson 1996).
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Fig. 5.7 (a) Bed confined fracture map of Section 1 (b) Fracture cluster maps

for Section 1 for joints and small faults together, fractures belonging to the
largest cluster is indicated by red color.

93



N __ _

V'A N
<A ~ N~ Mechanical

Unit

N>) <A <A > <A N Iv <A

N> A N> <L><

-Throughgoing faults
Small faults
Joints

N>,A,

Fig. 5.8 (a) Fracture map composed of throughgoing faults and bed-confined

fractures. (b) Fracture backbone generated from the fracture map of Figure 5.8 a.
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Buffer analysis performed on the fracture backbone provides a framework for

comparing the contribution of the two backbones in enhancing fluid flow (Figs. 4.12-

4.16). The buffer zone is used as a proxy for the percent area of the rock matrix in close

hydrologic contact with the fracture network. The buffered zone can be viewed as the

rock matrix that can be drained by the fracture system. The size of the buffered zone can

either reflect the permeability of the matrix (a larger buffer zone for greater matrix

permeability) or alternatively the magnitude of gradient between the fracture system and

the rock matrix (a larger buffer zone for a higher gradient). Regardless of the buffer sizes

used in this study, the inclusion of small fractures in the backbone increases the drainage

area considerably (Table 4.3). Thus it can be inferred from these analyses that, while

large faults are required to establish the backbone of a fracture network in layered rocks,

the small fractures considerably increase the structural permeability of the rock.

5.3. Dip separation map

The displacement gradient map shows that the magnitude of fault displacement is

distributed heterogeneously over the study area (Fig. 4.17). Although the results are

contingent on the number of data points available within a region, it reflects nicely that

the cells with high displacement magnitudes are clustered along some of the larger faults.

From visual inspection of the map it is apparent that the areas of low displacement values

are mostly distributed along the small faults. Further analysis is required to support the

visual inspection. Also more study is required to select the method of interpolation that is

suitable for analyzing this kind of dataset.

95



5.4. Fracture intensity as a function of proximity to large faults

The effect of structural position on fracture distribution has been addressed by

many previous workers to predict the control of folds (Narr, 1991; Lisle, 1994;

Masaferro, et al., 2003) and faults (Becker and Gross 1996; Gross et al., 1997a; Peacock,

2001) on the distribution of mesoscale fractures. Peacock (2001) studied joint intensity as

a function of proximity to faults, to predict the temporal relation between the two fracture

types. Becker and Gross (1996) examined the control of large throughgoing fractures on

the development of small bed confined fractures, by comparing the fracture distribution

within the fault zone, with the fracture distribution away from the fault zone. Gross et al.

(1997a) established a relation between fault slip variation and joint intensity and

suggested a model for local stain variation around fault zones.

In Section 2 the spatial relation between small fracture intensity is studied as a

function of proximity to large throughgoing faults located in the central region of the

study area. The analysis shows that the intensity of small fractures in the immediate

vicinity of large faults is higher and decreases with increasing distance away from

throughgoing faults. The plots of fracture intensity versus proximity to large faults reveal

a negative exponential relation between the small fracture intensity and distance from big

faults (Fig. 4.20).

As evident from Table 4.4, the fracture intensity is considerably higher in the

porcellanite units than in the mudstone units, so it is possible that the concentration of

high values of fracture intensity within the fault zone is due to the porcellanite units

exposed adjacent to the big faults. To factor out the influence of lithology on fracture

intensity the buffer analysis was repeated excluding the fracture intensity values in the
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porcellanite units. The results from the analyses show a consistent decrease in fracture

intensity with distance away from the big faults, although the correlation is not as strong

(Figs. 5.9, 5.10). Thus it is evident from the results that the variation in fracture intensity

correlates directly with proximity to the throughgoing faults.

The bed-confined fractures and the large faults in this section display similar

trends, which indicates that all the fractures were formed in the same deformation phase.

The spatial relation between small fractures and the large faults, may reflect the fact that

all the fractures originated as small bed confined fractures. Clusters of small fractures

may subsequently have coalesced into the larger faults.



Fig. 5.9 Plots of average fracture intensity in the mudstone units (excluding porcellanite

units) as a function of distance from nearest big fault in Section 2. Buffer sizes are

(a) 10 cm (b) 15 cm (c) 20 cm.
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Fig. 5.10 Histogram frequency plots of average fracture intensity in mudstone units
(excluding porcellanite units) as a function of distance from nearest big fault in
Section 2. Buffer sizes are (a) 10 cm (b) 15 cm (c) 20 cm.
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5.5. Summary

1. Fracture populations in alternate layers of the Monterey Formation exhibit

significant differences that have been analyzed using GIS-based techniques.

These differences are: fracture length characteristics, one dimensional fracture

spacing, clustering of fractures along a line, fracture intensity, fractal dimension

and fracture connectivity. It is evident from the results that GIS is an ideal tool to

quantify the parametric differences between two or more fracture populations.

2. The fracture intensity maps generated for Section 1 demonstrate very strongly the

effects of mechanical stratigraphy on fracture development. High joint intensities

are concentrated in porcellanite units and high fault intensities are concentrated in

mudstone units, with only minimal overlap of the two fracture types. Results

show that GIS analysis can quantify the spatial heterogeneity of fracture systems

with respect to lithostratigraphy.

3. The control of structural position on fracture development is demonstrated by the

fracture intensity maps generated for Section 2, where the intensity of small

fractures is analyzed as a function of proximity to large throughgoing faults. The

results show high fracture intensity values in the immediate vicinity of the large

throughoing faults that decrease systematically away from the fault zone.

4. The geometric properties of fracture populations were characterized to analyze the

conductive nature of the fracture network, which has important implications for

fluid flow and contaminant transport. GIS can identify fracture clusters and

fracture backbones, important parameters that control the connectivity of fracture

networks. The results show that the connectivity of a fracture network is sensitive
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to the abundance of large fractures in the study area as the large fractures increase

the chances for a continuous pathway across the study area. On the other hand,

small fractures dramatically increase the area of rock in contact with the fracture

network, allowing for greater communication between the rock matrix and the

fracture network.
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