
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-22-1994

Fault tolerant Medical Network (MEDNET)
Hamid Ghassemi

Follow this and additional works at: https://digitalcommons.fiu.edu/etd
Part of the Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Ghassemi, Hamid, "Fault tolerant Medical Network (MEDNET)" (1994). FIU Electronic Theses and Dissertations. 3930.
https://digitalcommons.fiu.edu/etd/3930

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3930&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F3930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3930?utm_source=digitalcommons.fiu.edu%2Fetd%2F3930&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

la-mi, Florida

' iFAULT

T

thesis c < ion o the

rye ir4 e.,its or the
rdegrc MASTER OF SCIENCE

z . d z rIN COMPUTEY

by

Hamid sGhasseml

1994

Thesis Committee Approval Sheet

To: Dean GordonR. Hopkins
College of Engineering and Design

This thesis, written by HAMID GHASSEMI, and entitled, FAULT TOLERANT MEDICAL
NETWORK (MEDNET) having been approved in respect to style and intellectual content, is
referred to you for judgement.

We have read this thesis and recommend that it be approved.

Malcolm Heim er

Masoud Milani

Peter Romine

Subbarao V Wunnava, Major Professor

Date of Defense: November 22, 1994

The thesis of Hamid Ghassemi is approved.

Dean Gordon R. Hopkins
College of Engineering and Design

Dr. Richard L. Campbell
Dean of Graduate Studies

Florida International University, 1994

ii

Acknowledgments

I wish to thank my sister, Mehrangiz and my brother, Reza for their support.

I wish to thank the members of my committee: Dr. Heimer, Dr. Milani, and Dr. Romine for

their help and guidance. A special thanks goes to my major professor, Dr. Subbarao Wunnava,

for his wisdom, support and encouragement. I wish to thank all my friends, specially Parvaneh

Mehdian, Minh Ly, Carlos Valdes, Felix Tong, Hiedi Savage, and Isidro Alvarez.

I also need to thank all the members of the ISDN lab, Kishore Gandham, Miguel Rosario,

Daisy Barrera, Bruce Moreland, Dr. Irma Fernandez, Ramana Malneedi, Peter Hoo, whose

help was invaluable to the completion of this project. I also wish to thank to everybody in FIU

Electrical Engineering Department, specially Dr. Jim Story, Mike Urucinitz, Dr. Yen, Pat

Brammer, Marbeth Cochran, and Laura Ruiz. I also like to thank Dr. Armando Barreto,

Habibie and Kent Wilder, Steve Luis, Richard D'susa, Chris Edmon.

I wish to acknowledge Southern Bell and Northern Telecom for their technical and

financial support required to establish the ISDN Laboratory.

111

ABSTRACT OF THE THESIS

FAULT TOLERANT MEDICAL NETWORK (MEDNET)

by

Hamid Ghassemi

Florida International University, 1994

Profssor Wunnava Subbarao, Major Professor

This investigation describes the development of a new fault tolerant Medical Network

(MEDNET) model based on the existing Public Switch Telephone Network (PSTN),

Integrated Services Digital Network (ISDN) and Intemetworking (Internet). This research

includes the original design, development and testing of the required hardware and software

interfaces to provide a complete Medical Network model. MEDNET ties the Doctor, the

Patient, the Hospital, the Medical Lab, and the Pharmacy for near real time and fault tolerant

exchange of medical information. The MEDNET model includes the following modules: 1

Central Database Server, 2. Remote Client Access, and 3. Communication Interface. This

work proves that medical images and data can be exchanged between healthcare providers

which are not geographically adjacent, in a cost effective, timely, and secure manner.

TABLE OF CONTENTS

1.1 CURRENT SYSTEM LIMITATIONS --- 1

1.2 AN ALTERNATIVE SOLUTION --- 4

1.3 E T BENEFITS -- 8

CHAPTER 2 MEDNET SYSTEM REQUIREMENTS ----------------------- w-- - 1-10

2.1, HARDWARE REQUIREMENTS -- 11

2.2 SOFTWARE REQUIREMENTS --- 12

. SECURITY REQUIREMENTS ------ w --__... ___r__-12

2.4 CONFIDENTIALITY REQUIREMENTS-w -- 13

2.5 EASINESS ITS ___r_--------- ___r_-----r-____r_-_-___---_-______-__-_---____--___-__________--_-r__-_----r-13

2.6 COST REQUIREMENTS -- 14

CHAPTER 3 TECHNOLOGIES FOR IMPLEMENTING -------------- ------------ 20

3.1 NETWORK STRUCTURE -- 20

3.2 "I ""''&'STE S I E NEC T(s 7 LAYER MODEL ------------------------------------ 24

3.3 IS C"" TU _____rr--___-___rr________________r-r--r--_-_________-__---________r_-_______--r-__2

3.4 RL. ONCE, POINTS AND FUNCTIONAL GROUPINGS '

CUSTOMER l k V 7JU S EQUIPMENT E) ---------------------------- _-------------- ___r______-------- 32

3.5 IS AN I'T'S RELATIONSHIP WITH THE SI MODEL ------------- ----------r-

. 1 PHYSICAL LAYER r_____________®___-rrr-_r®_-_r_______rr®rr-®___--_rr_-_____r__r___rr_--r-3

3.7 I I INTERNET `T - r_-r-------------r-________-____-____,._--___r_________-__-__-___-____-_r---- 1

tl

4.1 E T A I T C T E--- 2

4.2 THE STANDARD TELEPHONE LINE -- 45

4.3 THE INTERNET CONNECTION --- 46

--- 4 7

FIGURE 4.4 MEDNET connection -- 4

4.4 THE IS CONNECTION -- ----------------------------------47

4.5 E T EVIPLEMENTATION SIB I5 --- 4

5.1 DSTART PROGRAM --- 4

5.2 DOCTOR C 4U --- 57

5.2.1 ADD A RECORD --- 6

51.2 FIND A. RF CORD -- 61,

5.3 DSERVER PROGRAM -- 6

CHAPTER 6 SYSTEM INTEGRATION ---

HARDWARE A SOFTWARE INTERFACES -- 63

6.2 E ME F l 11. TQ J SERVER -- 67

6.3 MEDNET INTEGRATION -- 6

6.4 E ITT CAS STUDY --- 6

CHAPTER 7 CONCLUSIONS AND FUTURE WORK --------------------------------- 71

7.1 CONCLUSIONS -- 71

7. FUTURE -- 74

AFrJL-. :. " '---m-m------------------------

vi

CHAPTER 1 INTRODUCTION

Most medical establishments are independently

computerized, and often these systems have their own local

area network. Due to the cost and complexity of inter-

connectivity, doctor's offices, hospitals, pharmacies and

insurance companies have no true means of networking between

each other. The result is a slow and costly process. The

means of communication is most often via FAX and courier or

mail services, which are timely and costly. On the other

hand, communicating via the telephone has the disadvantage

that it requires immediate attention. Many times these

methods are inaccurate, inefficient and time consuming.

FIGURE 1.1 shows the MEDNET architecture modeled at FIU's

research laboratory.

1.1 CURRENT SYSTEM LIMITATIONS

As mentioned earlier, most doctors, hospitals,

pharmacies, and laboratories are not internetworked.

1

Information transfer is very slow, costly and inefficient.

For example, if a doctor needs to ask a question or opinion

of another doctor, both doctors must be free in order for

this communication to take place. When the doctor's office

wants to send a patient's file to another doctor's office,

usually the file has to be printed from the computer then to

be mailed or faxed. This is very time consuming, since the

speed of the process depends on how busy and how fast the

person can process the request. Human intervention not only

slows down the process, but can result in errors.

DOCTOR FILE
SERVER

CLIENT

SERVER

INTERNET

CLIENT INTERNET CLIENT

SERVER PROVIDER SERVER

PHARMACY ISD LAB

PATIENT

FIGURE 1.1 MEDNET Architecture

Other areas of application are the pharmacies and

medical laboratories. In the particular case of the

pharmacies, most pharmacies are not interconnected and do

not have a centralized patient data base. In general,

pharmacies are not interconnected to the doctor's offices.

3

If a patient goes for a medication refill to any pharmacy

other than the one that he/she originally goes to, the

pharmacy will have to make a phone call to the store that

has the copy of the prescription, and get more information

about the validity of the prescription. This involves extra

time and cost (the cost of the employee time spent in

verifying the prescription). Another problem is the

possibility of forging and/or altering the doctor's

prescriptions. When the doctor hands in the prescriptions to

the patient, the patient has in theory, the opportunity to

alter the prescriptions. Because of that possibility, in the

case that the drug is narcotic, the pharmacist will have to

make a telephone call to the doctor to verify the validity

and dosage of the prescription. The best case scenario is

that the patient will have to take the prescription to the

pharmacy in person, stand in the line for several minutes,

wait for some more time until the medicine is ready, and

wait in another line to pick up the medicine. This process

is lengthy and inefficient.

1. AN ALTERNATIVE SOLUTION

Using a conventional dial-up method to connect all the

doctors to all the pharmacies can partially solve the

4

interconnectivity problem. This solution would require large

number of telephone lines for pharmacies and extra telephone

lines for doctor's offices. The cost involved in providing

the necessary extra telephones lines makes this an

impractical solution.

ISDN can offer the lowest cost and most efficient solution

to the interconnectivity problem. One complete ISDN

(Integrated Services Digital Network) BRI line will provide

voice and data capabilities on two B-channels and one D

channel that can be used to connect to one or more

computers. B-channels work at 64K bps each, and D-channel

works at 16k bps to carry signaling information for the

associated B channels and access the packet network. FIGURE

1.1 shows the Medical Network (MEDNET) architecture.

In the case of medical laboratories, this problem caused

by lack of interconnectivity is even worse. The patient

usually has no access to laboratory records. This problem

is aggravated if the medical lab is out of town, or out of

state. For fast and efficient medical service, the doctor

should have immediate access to the patient's medical record

and medical laboratory record. The current method is that

the doctor's office would have to call the medical lab and

provide all the information to the person in charge at the

lab. The best case scenario is that the lab technician would

search for the patient's lab result in the computer, then

print the result, and read it over the telephone or fax it

5

to the doctor's office. This is an inefficient and time

consuming process, and usually the patient has to make

another visit to the doctors office to discuss the lab

results once the doctor has received this information.

The proposed ISDN based MEDNET will allow the doctor's

office to call the laboratory simply by clicking on a icon

on the screen. The doctor's office hardware requirement is a

subscription to Basic Rate Interface (BRI) service ISDN, and

a computer. Currently, virtually all doctor's offices have

computers and a piece of communication software. The ISDN

line can provide two voice channels (two B-channels) and one

data (Packet D-channel). On the laboratory site, one ISDN

BRI would be enough. Two B-channels can provide access at 64

KBPS, and the D-channel with it's 16 KBPS, will support

signaling and provide access to the packet network. One BRI

in packet mode, so it could allow access up to 128 users at

a time with adaptive data rate. Adaptive data rate means

the connection speed for each user changes as the number of

users that are connected to the system changes. Adaptive

data rate means the connection rate per user drops when the

number of connections increases, and increases when the

number of connections decreases.

Integrated Services Digital Network, ISDN, provides a low

cost link to effectively integrate MEDNET Doctors, Medical

Laboratories, Pharmacies, Hospitals and Insurance companies.

This network will be based on ISDN communication

6

technology. FIGURE 1.2 shows the typical ISDN BRI

architecture.

B

1 BASIC SERVICE Information: voice data

Rate: 192kbps

Composition: B + B + D channels, BASIC
+ synchronization and framing D Signaling-or telemetry, packets

Overhead

Figure 1.2 Typical ISDN BRI architecture (Courtesy STAL92)

FIGURE 1.3 shows the D channel utilized at the doctor's

office to communicate with the other doctors for E-mail

purposes, and also with other medical centers like medical

labs and pharmacies. Medical centers which serve the

database, would use one complete BRI (2B+D) in Packet mode

to accommodate a large number of users connected at the same

time. In this thesis we develop, implement an test the

operating model of MEDNET.

7

I 1{;L772
- ---- DOC OR'S FFIC

/flA _

FIGURE 1.3 Doctor's office communication architecture

1.3 MEDNET BENEFITS

MEDNET will network doctors, pharmacies, hospitals,

insurance companies, laboratories, in short any healthcare

provider. MEDNET provides a higher security for doctors

issuing prescriptions drugs. Through Internetworking of the

doctor and the pharmacy, prescription can not be forged or

modified by patients. The doctor would be able to send

8

medical information and prescriptions immediately in a

secure fashion. Furthermore, the patient would not have to

make two trips to the pharmacy, they would only have to go

to pick up the prescription.

9

CHAPTER 2 MEDNET SYSTEM REQUIREMENTS

In this chapter the system requirements regarding the

following categories are discussed.

1. Hardware: MEDNET hardware requirement can be met with

developing communication technologies like Internet, ISDN,

and other fast growing communication technologies.

2. Software: MEDNET software requirements can be provided

with an appropriate operating system, data base access,

graphics software and communications software.

3. Security: MEDNET security requirements with respect to

access to patient information and maintaining the integrity

of the patient's data are essential.

4. Confidentiality: MEDNET confidentiality requirement of

the patient information for privacy purposes has to be

implemented. Currently there is no existing off-the-shelf

software to meet these requirements.

5. Ease of use: The MEDNET patient/doctor interaction

must be convenient, accurate, and response time must be

quick. Furthermore, system commands must be user

transparent.

10

6. Cost saving: The MEDNET must be a cost savings system

for the doctor, the patient, the insurance companies, the

hospital, the medical labs, and the pharmacies.

7. Expandability: The complete MEDNET system must be

expandable as a medical organization.

2.1 HARDWARE REQUIREMENTS

Although MEDNET is network independent, here at FIU's ISDN

Lab we have implemented MEDNET using the ISDN and Internet

network communication technologies. One reason for this

decision is the availability of these communication

technologies right here at our Lab. This enables us to

realistically test the proposed Medical network. Other

network technologies such as Asynchronous Transmission Mode

(ATM) and frame relay may also be used as these

communication technologies become available.

The concept of the MEDNET system is portable to different

network platforms. The file server computer can be any

system that can run the UNIX operating system. We

implemented the file server with a Sun Sparc 10 with 64

Megabytes Random Access Memory (RAM) and one Gigabyte of

hard drive. NCD X-terminal and PC-compatible computers with

1i

X-terminal software running under windows, interface to

MEDNET.

2.2 SOFTWARE REQUIREMENTS

Any multitasking and multi-user operating system such as

UNIX, or windows NT is well suited for MEDNET model

implementation. We choose to use UNIX operating system for

server computer under NFS networking. We developed the

concept and completed the operating software for the

dynamic data base implantation with GCC, the C++ compiler.

For fast data access, the binary-tree structure with

automatic B-tree balancing algorithm is used. On the remote

site we used the PC computer with X-terminal graphics

software under the Windows operating system, NCD X-terminal

and Sun3/80.

2.3 SECURITY REQUIREMENTS

Due to the nature of the sensitivity of the patient's

information, security is an important part of MEDNET. There

are several levels of security checks. The first security

check is the access password to the UNIX server system. The

12

second security check is the MEDNET password check. The

third security check is the patient's authorization check.

Doctors don't have access to any patient file unless he or

she has the patient's permission code, and no one has

authorization to alter records other than the authorized

medical staff.

2.4 CONFIDENTIALITY REQUIREMENTS

Due to the patient's requirements for privacy of

information, extreme care is taken to guarantee data

confidentiality. This is done by multilevel checks and by

authorization codes. These codes are made dynamic so that

breaking the code becomes almost impossible.

2.5 EASINESS OF USE

The MEDNET is very easy to use. At the server side the

system is fully automatic. In fact the system stays up and

running at all time. At the client or user site, the person

logs-into the server by entering the user name and password.

The system will invoke the client program from the user' s

login file. Once the client program is invoked, the user

will be provided with a user friendly menu to make the

13

proper selections. This is essential since the patients and

medical personal need not to be computer professionals, and

therefore the MEDNET system should be a simple turn key

system.

2.6 COST REQUIREMENTS

Cost is usually one of the most important factors in

promoting and accepting any new system. One interesting

feature of MEDNET is that it's cost saving for patients and

doctors. For example, when a person goes to visit a doctor

for the first time, the diagnosis is not finished in that

first visit. Normally the doctor asks the patient to come

back again for another visit, after the doctor has had the

chance to request and receive the patient's previous

records. This information has to come from the medical

labs or other doctors, who have examined the patient. In

most cases this second visit could be eliminated and saves

the patient and his or her insurance the cost of a second

visit. MEDNET saves cost to medical institutions by reducing

the redundant paper work. For example, if the patient

information is in the doctor's computer, the system can

easily manipulate the data to accommodate insurance forms,

lab work forms, or hospital admission forms. This process

14

of automation and standardization is a key characteristic of

the MEDNET.

The following FIGURES 2.2, 2.3, 2.4, 2.5, and 2.6 show some

of the records which are standardized in MEDNET.

15

patient information

Record number:

First Name: Heidi
Last Name: Smith

social security numiber:012-34-5678
insurance company: Dimah Insurance Co.
policy number: 7583-98234

telephone (day time) : 555-1111
(night time) : 123-6567

emergency contact name: 454-3344
emergency contact tel.: 345-6789

date of birth: 9/4/1968

address: 1234 SW 8 Ave
Miami, Fl, 33175

Additional information:

16

Physician information

Doctor's Name:

license number:

phone (day):
(night)

address:

hospital affiliations:

insurance affiliations:

doctor' s

17

Laboratory Information I

DISPLAY: icri ssn# 012-34-5678

first~~~------ na e ed as a e mt

address: 12345 SW8 Avenu

test:

test result:

Figure 2.4 Laboratory Form

Patient's Name- Heidi Smith

Doctor's Name: Dr Subbarao

Patient's ssn# 012-34-5678

Date: 11/22/94

Medication: Aspirin

Figure 2.5 Pharmacy Form

19

CHAPTER 3 TECHNOLOGIES FOR IMPLEMENTING

SYSTEMS

Networking is the backbone of the MEDNET development.

Networking is a resource sharing system. Two types of

communication technology are being used to implement the

MEDNET system. They are the Integrated Services Digital

Network (ISDN) and the Internet Network.

3.1 NETWORK STRUCTURE

There are many advantages of using a network

architecture. The first advantage of using a network is

that it makes all the programs, data and equipment on the

network available to anyone regardless of physical location

of resource or user. The second advantage is that it

provides higher reliability. For example all critical files

when updated, could be stored on redundant databases for

fault tolerance purposes.

A Network Structure is defined as the means of

communication between two computers. In today's technology,

there are various topologies for information exchange. The

20

two types of communication structure in computer networks

are as follows:

1. Point-to-point channels.

2. Broadcast channels.

Point-to-point channels structure is used for transmitting

messages, in packets, from one Interface Message Processor

(IMP) to another. An important design issue for a point-to-

point subnet is interconnection topology. FIGURE 3.1 shows

the star, ring, tree, complete, intersecting rings, and

irregular topologies.

21

0 a

(b)

(c) (d)

Fig. 3. Some possible topologies for a point-to-point subnet. (a) Star. (b)

(c) Complete. (d) Tree. (courtesy [andr88])

A Broadcast channel structure consists of a single

communication channel that is shared by all the computers on

the network. Messages, in packets, are transmitted by one

computers and received by all other computers. The packets

contain the address of the intended computer. Once a

packet is received, each computer validates the address

field. If the packet is intended for another system, it is

discarded.

Broadcasting allows the possibility of transmitting

packets to all destinations by using a special code in the

address field. Upon receiving a packet with the special

code, it is accepted and processed by every system on the

network. This feature is called multicasting. FIGURE 3.2

shows the communication network using broadcasting through

bus, satellite or radio and ring.

TI--ITT-
Bus

Ring

Satellite or
Radio

FIGURE 3.2

23

3.2 OPEN SYSTEMS INTERCONNECT (OSI) 7 LAYER MODEL

In 1978 the International Organization for Standardization

(ISO) proposed establishing a framework for developing

standards for future interconnection of heterogeneous Open

Systems. "Open systems" refers to computers or systems

which conform to the reference models and the associated

standards to inter-connect [ISO 7498]. FIGURE 3.3

represents the Open Systems Interconnect Model.

The ISO reference model divides the communications

functions hierarchically into seven layers. Each layer

provides service to the next higher layer by using the

services that are provided to them by the previous layer.

Layer seven, the Application layer, serves an application

by providing communication support. The application does

not reside in layer seven even though the communication is

attached to layer seven. In reality, one can divide the

application into a communication part and a non-

communication part. The communication can be defined as an

application entity. The Application Layer derives from the

Presentation layer (layer six) . An example of the

communication component in the MEDNET system is that doctors

can use an electronic mail (e-mail) to communicate with the

Hospital or Pharmacy regarding the patients. As for the

non-communication part, an individual user can access

general software for office use.

24

Layer six, the Presentation layer, is used to deal with

information exchanged between two system so that the

original data can be preserved even though the individual

systems are different. When the two systems try to

establish a connection, they will negotiate on a particular

data transfer format, such as encryption technique,

compression technique, or reformatting. Once a particular

format is agreed upon, both systems will be able to perform

the operation and reconstruct the data back to it original

format.

Layer five, the Session layer, is used to organize and to

synchronize communication between two applications in two

different systems on a network. The Session layer manages

data exchange. In other words, it provides different types

of communication such as full duplex or half duplex. The

Session layer provides each user with a token which

represents authorization for a user to transmit the data.

Also, it provides the session service for users to exchange

limited amount of control information while not within the

activity.

Layer four, the Transport layer provides reliable end-to-

end service between users. The Transport layer can be

classified as follows:

1. Connection Oriented Transport Service (COTS)

2. Connectionless Transport Service (CLTS)

25

In Connection Oriented mode, the two transport service

users are provided with full duplex transmission. On the

other hand, Connectionless Transport Service uses package

switching.

Layer three, the Network layer, is a service that is

provided to the upper layer to exchange information without

the concern about physical and data transmission and

switching technology. The network layer also provides a

global addressing scheme so end systems in different

subnetworks can be addressed.

Layer two, the Data Link layer, is responsible for

reliable and error free data transfer on the data link. It

provides functions such as establishing the link, error

detection, error recovery, and flow control.

Layer one, the Physical layer deals with mechanical and

electrical characteristics of the physical link such as the

connecting media and voltage level of the signal. This layer

is concerned with transmission of raw data and bit streams.

The ISDN structure complies with layers 1 through 3 of

the OSI architecture for Packet Switched Data (PSD)

connections. Other 4 layers are user controlled for ISDN

transmission.

Layer 1 of ISDN is defined for Circuit Switched Data

(CSD) or Circuit Switched Voice (CSV) connections.

Therefore, ISDN is not concerned with layers 4 through 7 of

the OSI model, which are essentially user defined.

26

Layer

Application

Presentation -

Session

Transport

Network

Data link

Physical

Host A

Application protocol

Presentation protocol

Session protocol

Transport protocol

Communication subset boundary

-K ->
Internal subset protocol

atlnkal~ > ___Phcal

Name of unit
exchanged

Application APDU

Presentation PPDU

> Session SPDU

Transport TPDU

-> Ne ork Packet

Dat link Frame

Physical Bit

Host B

L Network layer host IMP protocol

Data link layer host - IMP protocol

Physical layer host - IMP protocol

FIGURE 3.3 Open Systems Interconnect Model

27

Outgoing Protocol Incoming Protocol

Application X

Application

Presentation

Session

Transport

Network

Data Link

Physical

Dta

[All at

PH Data Uni t

Data Unit

TH DataUnit

NH Data Uit

Application Y

Application

Presentation

Session

Transport

Network

Data Link

Physical

LI Dta Uit I T

F BITS

Communication Path
Physical Transmission medium

FIGURE 3.4 OSI Operation (Courtesy [Folt83])

28

Figure 3.4 illustrates the principles of OSI. Basically, if

an application X (AP'X') has a message (AP data) for an

application Y (AP'Y'), the data is transferred first to the

Application layer 7 which appends a header (AH) to the data

and transfers the two (AP data & AH) to the Presentation

layer 6.

The presentation layer appends it's own header (PH)

and transfers down to the Transport layer 5. The process

continues through to the Data layer 2 where the frames

include a header (F, A, C) and a trailer (FCS, F) The

Physical layer 1 then transfers the frames across as a bit

stream to the physical medium to layer 1 of user Y. At this

point, the reverse process occurs, as each layer strips off

the header to pass the information up to the next layer,

until it reaches Application Y (AP'Y') .

3.3 ISDN ARCHITECTURE

The transmission structure for ISDN is built upon

communication channels. The types of channels, as defined by

CCITT, are:

1. Binary (B) channels: Supports full duplex transfers

up to 64 KBPS, the standard user channel rate. This rate

was chosen because it is the most effective for digitized

voice. B channels can be used for digitized voice or data.

29

The B channel can be used to make three kind of connections:

Circuit-switched Voice (CSV), Circuit-switched Data (CSD),

and Packet-switched Data (PSD) . Circuit-Switching is

defined [Stal92] as: "A method of communicating in which a

dedicated communications path is established between two

devices through one or more intermediate switching

nodes .digital data is sent as a continuous stream of bits.

Data rate is guaranteed, and delay is essentially limited to

propagation time". On the other hand, Packet-Switching is

defined [Stal92} as: "A method of transmitting messages

through a communications network, in which long messages are

subdivided into short packets. Each packet is passed from

source to destination through intermediate nodes. At each

node, the entire message is received, stored briefly, and

then passed on to the next node." The user is connected to

a packet network using X.25 protocol. Traditionally,

billing for CSV and CSD have been on basis of connection

time, while PSD is billed on the basis of transaction data

rates.

2. Delta (D) channels: A 16 KBPS which is used for two

purposes. First, the D channel carries the common-channel

signaling information required to establish the circuit-

switched calls on the associated B channels. Second, the D

channel may also provide an access to the packet-switched

network, with a maximum throughput of 9.6 KBPS, the

remaining bandwidth is taken up by the control signaling.

30

The D channel can also be split among up to 6 devices

accessing the packet-switched network. In this

configuration, the bandwidth is dynamically allocated

amongst the active devices.

3. H channel: Used for higher bit rate speeds, HO

supports 384 KBPS, H11 supports 1536 KBPS, H12 supports 1920

KBPS.

The number of channels carried to the subscriber will

depend upon to the type of service the user subscribes to.

At this time, there are two possible types of service to

which a user may subscribe:

1. Basic Rate Interface (BRI) is the most cost effective

and widely deployed with two B channels, and a D channel

operating simultaneously the existing telephone line. The

total bit rate, including the overhead due to framing and

synchronization, is 192 KBPS.

2. Primary Rate Interface (PRI) is appropriate for

larger bandwidth applications. with 23-B channels and an

associated D channel operating at 64 KBPS. The total bit

rate including framing and synchronization is 1.544 MBPS.

This bit rate definition for PRI is valid in the US, Japan

and Canada. In Europe PRI is defined as 30-B channels and

1-D channel, for a total throughput of 2.048 MBPS. For still

larger bandwidth applications in excess of 100 MBPS,

Broadband ISDN (B-ISDN) can be used. FIGURE 3.x represents

the ISDN Architecture.

31

3.4 REFERENCE POINTS AND FUNCTIONAL GROUPINGS FOR

CUSTOMER PREMISES EQUIPMENT (CPE)

FIGURE 3.6 is a generic representation of ISDN reference

points and functional groupings for CPE required for ISDN

user access. The ISDN Reference interface points are as

labeled R, S, T, and U. The Functional groupings are

Network Termination 1 (NT1), Network Termination 2 (NT2),

Terminal Equipment 1 (TEl), and Terminal Equipment 2 (TE2).

various user

equipment
common channe

signaling system

local number 7

ara SDN ISDN

aracentral pacetwitche central

office office

network

circuitswirched

SDN Intelligent network.

SDN phone

Pc Workstation 1

Hayes ISDN
PCTA Card

ISDN
transport of user information

signalling

FIGURE 3.5 ISDN Architecture (Courtesy [Fern94])

32

TE4 NT2NT

TE2 TA

R S

TE1 = Terminal Equipment type 1 TE2 = Terminal Equipment type 2
NT1 = Network terminator 1 NT2 = Network terminator 2
TA = Terminal Adapter
Reference Interface Points: R (Rate), S (System), T (Terminal), U (User)

FIGURE 3.6 ISDN Reference Points and Functional Groupings
(Courtesy [Stal921)

The NTl provides a termination to the two wire

transmission line from the local network. The NT1 uses

synchronous time-division multiplexing to

multiplex/demultiplex the bit streams of multiple channels

together at the physical layer 1. The NT2 performs

switching and concentration functions, supporting layers 1

through 3, for example for a digital PBX.

The User (U) reference interface is the full duplex link

at the subscriber loop. The Terminal (T) reference point

sets the demarcation between the ISDN and the user's

equipment. The System (S) reference point corresponds to

the user ISDN terminal equipment. The Rate (R) reference

point is an interface for non-ISDN compatible equipment. A

Terminal Adapter (TA) is required to connect non-ISDN

compatible equipment (TE2), such as an analog phone or a

33

personal computer to the ISDN. TE1 equipment refers to ISDN

compatible equipment such as an ISDN telephone.

In a typical BRI application the NT2 function is not

required, and therefore the S and T interfaces appear

together as the S/T Bus. The CCITT reference configuration

for BRI is depicted in FIGURE 3.7. As we can see, the

Network Termination 1 (NT1) provides the termination to the

two-wire transmission line from the local network and

connects to a 4 wire S/T bus. This bus can be configured in

point-to-point or multipoint-to-point mode. In point-to-

point, one TE is connected at the end of the S/T bus, which

can be no longer than 1 km. In the multipoint-to-point

configuration, up to eight terminals can be connected in

parallel to the S/T bus, but the bus can't be longer than

200 meters. The rate at the S/T bus is the sum of 2 B + 1 D

+ framing and synchronization for a total of 192 KBPS.

4-wire SIT bus 2-wire to network

x8
(in point to multipoint mode)

TE = terminal equipment
NT = network termination

FIGURE 3.7 BRI Configuration (Courtesy [Grif90])

34

3.5 ISDN AND IT'S RELATIONSHIP WITH THE OSI MODEL

The ISDN structure defines layers 1 through 3 of the OSI

architecture for PSD connections, and layer 1 for CSD or CSV

connections. Therefore, ISDN is not concerned with layers 4

through 7 of the OSI model, which are essentially user

defined.

For circuit switched connections, the establishment of the

circuit is not done over the B channel, but over the D

channel via Common Channel Signaling System No .7 (87).

Once the connection is established, the network appears at

layer 1. FIGURE 3.8 represents the network configuration

and protocols for circuit switched calls. Table 3.1 is the

key for Figures 3.8, 3.9, and 3.10.

SS7 is a four-layer protocol which controls both telephone

voice and digital data connections. The SS7 control

signaling is implemented using a packet-switching

technology. This means that control messages to implement

call management (setup, maintenance, termination) and

network management functions are routed as packets through

the network. In essence, a packet-switched network is

overlaid on a circuit-switched network in order to operate

and control the circuit-switched network [Stal92].

LE D-CTL LE D-CTL

6 6

(NULL) (NULL)

4 & above 4 & above

S Signaling system #7 network ee

(NULL) (NULL)
S3 3

L-

FIGURE 3.8 Network Configuration and Protocols for

Circuit Switching (Courtesy [Stal92])

B = An ISDN B Channel

T = Terminal

SS7 = CCITT Signaling System 7

(Null) = Channel not present

LEVEL = Levels in SS7

D = An ISDN D Channel

D-CTL = D channel controller

STP = Signaling Transfer Point

7,6,5,4,3,2,1 = Layers in ISO

model

LE = Local exchange

TE = Transit exchange PSF = Packet-switching

facility

Horizontal line = Peer-to-peer Vertical line = Layer-to-layer

protocol data flow

Table 3.1 Key to Figure 3.8, 3.9, 3.10

For Packet switched connections, there exist two

possibilities. First is where a B-channel is used to access

a packet switching network. For the region served by

Southern Bell, the packet-switching capability is not

integrated into ISDN but provided by a packet-switched

public data network (PSPDN). In this case, the user

36

requests a circuit-switched connection on a B channel to the

packet network via the D channel. The connection is then

set up using SS7 and the user is notified through the D

channel. The user sets up a virtual circuit using X.25

protocol for call establishment and LAPB (Link Access

Protocol - B channel) to connect to the packet network.

FIGURE 3.9 represents the network configuration and

protocols for packet switched calls using the B channel.

The second possibility is where a D-channel is used to

access a packet switching network. Here the user sets up

the virtual circuit using X.25 for call establishment and

LAPD (Link Access Protocol - D channel) to connect to the

packet network. FIGURE 3.10 represents the network

configuration and protocols for packet switched calls using

the D channel. LAPD is based on the HDLC (High Level Data

Link Control) protocol, except it incorporates a two address

field to differentiate between a call control procedure or a

packet communication, the two possible types of traffic on

the D channel.

37

Packet link Packet link

rF PSF PSF PSF T
-CT D471

LE TE LE

7 7
6 6
5 5

2 2

@ 2l32 ®t g

FIGURE 3.9 Network Configuration and Protocols

for Packet Switching Using B Channel (Courtesy: [Stal92])

Packet link Packet link
D-CTL D-CTrL

O; PSF PSFPST

LE LE
TE

77

66

22

FIGURE 3.10 Network Configuration and Protocols

for Packet Switching for D Channel (Courtesy: [Sta192])

3.6 THE ISDN PHYSICAL LAYER

The ISDN BRI S/T reference point specifies digital data

transferred in full duplex mode. Two separate physical

38

circuits are used to achieve full duplex operation, a pair

to transmit and a pair to receive. The line coding scheme

for this interface is the pseudoternary coding scheme. The

pseudoternary coding scheme specifies no signal for a binary

one, and alternating positive or negative pulses for binary

zero (+/- 750 mv). The pseudoternary coding scheme has the

advantage that there is no net dc component, but the

disadvantage that a long string of l's can cause loss of

synchronization. FIGURE 3.11-B depicts the transmission

structure at the U interface. The transmission structure at

the S/T reference point is structured into frames. A frame

is depicted in FIGURE 3.1-A and consists of 48 bits at 192

KBPS, so that each frame has a duration of 250 microseconds.

Each frame of 48 bits is made up of 16 bits from each B

channel, 4 bits from the D channel. The remaining 12 bits

are used to synchronize the receiver on the beginning of the

frame, dc balancing, and to maintain frame alignment, that

is, overcome the limitations of the pseudoternary coding

scheme.

39

NT to TE

48 Bits in 250 microseconds = 192 kbps

D L FL B1_ E DA FaN EDM B1 ED S B2 E D L F L

Bit
Offset

D L FL B1 L D L Fa N L D L B_ L D L B2 L D L F L

0

TE to NT

48 Bits in 250 microseconds = 192 kbps

F = Framing Bit B1 = 81 Channel = 8 Bits
L = DC Balancing Bit B2 = B2 Channel = 8 Bits
D = D Channel A = Activation Bit
E = D Channel Echo Bit S = Reserved
Fa = Auxiliary Framing Bit M = Multiframe Bit
N = Fa' Bit

(A) Signalling at SIT Interface - Pseudoternary AMI

240 Bits in 1.5 milliseconds = 160 kbps
Synchronization User Data Multiframe

Word Overhead

2f12 3+-33-+33++3BB l2 2B lB2Lj 81821 BIB I1B BIB B1B 81821B
Coding 888 121 888 lv 122

101000t000t0110 = 18 bits

B1 B2 D

8 bits 8 bits 2 bits

(B) Signalling at U Interface - 281Q Encoding

FIGURE 3.11 Transmission Frame at (A) -S/T and

(B) -U Interface (Courtesy [Wi1l93])

40

3.7 THE INTERNET NETWORK

The Internet is a worldwide network system which allows

users to communicate with one another. Internetworking is

done in the networking layer of the OSI model. The

networking layer provides the following:

1. Link between networks.

2. The routing and delivery of data between processes on

different networks.

3. An accounting service that keeps track of the use of

the various networks and gateways.

There are two kinds of Internetworking approaches:

Connection-Mode operation or Connectionless-Mode operation.

Connection-Mode operation assumes that each subnetwork

provides a connection-mode form of service, that is, it is

possible to establish a logical network connection between

two Data Terminal Equipment (DTE) attached to the same

subnetwork. Connectionless Mode operation corresponds to

the datagram mechanism of a packet switching network.

41

CHAPTER 4 HARDWARE IMPLEMENTATION OF

THE SYSTEM

4.1 MEDNET ARCHITECTURE

MEDNET is a medical networking system that will allow

medical personnel to access information about patients

regardless of location. The patient or medical personnel

can be physically anywhere there is telephone access. In

order for MEDNET to be implemented, it is required to have

the following:

1. A file server.

2. A client server.

3. A network.

The file server needs to be a multi-user, and a

multitasking system. It is essential to be multi-user

because it is most likely that several remote and local

users would be connected to the system at any time. The file

server acts like a kernel. It's program runs in the

background mode and it keeps track of incoming users. Once a

new user logs in, it requests an attention. The software

invokes a new process to respond to the new user's demand,.

The file server requires a workstation with high

42

performance, fast throughput and fault tolerance, so that

the processing of data will not degrade the performance of

the network.

The client server requires a computer with graphics

capability such as X-Windows, to interact with an X-Server

workstation. The client system must have at least eight

megabytes of Dynamic RAM so that it will be able to execute

the X-Windows program. The computer needs to have a

communication black box such as Northern Telecom (NT) or

American Telegram and Telephone (AT&T) ISDN terminal adapter

to communicate with the file server.

Client Server
Client Server

Client Server

FIGURE 4.1 Multi-user System

43

An alternative would be a modem, which the client may use

to connect to the Internet service provider in order to log

into the file server system. FIGURE 4.2 shows a typical

client server system.

The network system is used to interconnect the file server

and the client server. The connection to the network system

accommodated by one of the following:

1. Standard telephone line

2. Internet connection

3. ISDN connection

Client Server

Ethernet

.I

Terminal Terminal Terminal

Figure 4.2 Client Server

44

4.2 THE STANDARD TELEPHONE LINE

Using the standard telephone line requires a high speed

modem. Users call directly to the terminal server at the

computer center where the file server is located. Once a

physical connection is established, the system will direct

the line to the file server. The terminal server provides

multiple telephone line connections to the main system.

FIGURE 4.3 shows such a telephone connected network.

Terminal
Workstation

Modem Pool Terminal Server

FIGURE 4 .3 Standard phone line connection to the

network

45

4.3 THE INTERNET CONNECTION

The file server computer is connected to the Internet

network with an RJ45 connector so that the users on the same

local network as the server just need to log-in. This user

would connect to the server using a graphic program such as

X-terminal. Remote users, regardless of location, need to

access Telnet to connect to the file server system. Of

course, all of these connections are made automatically and

are, in most part, transparent to the user. The user

connects to the server and logs-in using only a few steps.

Using Internet with Xterminal, a user can Telnet to

different file servers at same time. This enhances the

utilization of the present MEDNET.

When a connection is initiated by a remote site, such as

a hospital, the connection is routed through various network

nodes until it gets to the destination server. FIGURE 4.4

depicts Internet networking, with a workstation file server

and a client Xterminal.

46

File Server

Clien Server

NTERNET

Client Server
Desktop Desktop

Desktop Desktop

Client Server

Workstation Desktop

FIGURE 4.4 MEDNET connection

4.4 THE ISDN CONNECTION

The ISDN network is perhaps the most accommodating part of

the MEDNET developed at FIU Electrical and Computer

Engineering ISDN Lab. The problem with the Internet network

is that the user will have to connect to an Internet service

provider. Connecting to an Internet service provider limits

the user to a maximum transmission rate of 28.8 kbits/sec.

Also the Internet Access through a service provider is

47

expensive. Furthermore, there are federal restrictions on

the use of the Internet for commercial purposes [FIPS1026].

4.5 MEDNET IMPLEMENTATION USING ISDN

To design the medical network architecture, ISDN is the

most reliable and cost effective communication technology

available. In comparison with telephone dial-up and

connecting to an Internet service provider, ISDN provides a

far more reliable and greater communication bandwith. Today

the fastest modem is 28.8 KBPS. ISDN with its end-to-end

digital connectivity, can provide a transmission speed of at

least 64 KBPS on each B channel. Furthermore, this capacity

could be increased by bundling B channels together, that is

2 B channels bundled provide 128 KBPS, 6 B channels bundled

provide 384 KBPS, etc.

The ISDN is a perfect fit into the Medical network, The

speed and reliability of a of digital line far exceeds the

speed of a modem. Medical doctors, for example radiologists,

could be on call simultaneously at several hospitals and

work more efficiently from one centralized location. High

speed ISDN services would be used to transmit this

information.

MEDNET uses ISDN in two modes of operation:

1) Circuit Switched Data mode (CSD)

2) Packet Switched Data mode (PSD)

48

In Circuit Switched Data mode, the system uses the full

transmission capability of the B channel of 64 KBPS. If

higher bandwidth is required, as in the case of

teleconferencing, transferring X-rays or digitized MRI scan

pictures, it is easily possible to achieve higher

transmission bandwidths through bundling of B channels.

FIGURE 4.4 shows how to obtain a transmission bandwidth of

128 KBPS through bundling of two BRI lines [Stal92]. Using

the same technique, several B channels can be bundled

together to obtain higher transmission bandwidths on demand.

s, [BONDING 18Kp

Figure 4.5 Two BRI B-Channels bundled together to provide
128 Kbps

The Circuit Switched Data mode provides a high speed

network connection to the file server. Doctors would have to

configure the ISDN line for 64 KBPS or 128 KBPS at their

site. At the server center, the same configuration has to be

made. An interesting fact, is that at the center, the server

needs to connect only one ISDN card to provide the same

service to more than one ISDN BRI line. FIGURE 4.6 shows the

Circuit Switched Data mode connection for the Medical

networking configuration.

49

Workstation

Internet

Client Client
Server Server

Term nal
Adaptor |a SDN

T User

ISDN Terminal
SWITCH Adaptor

FIGURE 4.6 Circuit Switched Data configuration for the

Medical network

The Packet Switched Data mode of ISDN is a very useful

mode for networking when cost is the main issue rather than

speed of transmission. The ISDN Packet Switch Data mode is

very versatile. The transmission rate can be dynamically

allocated. When a user subscribes to the ISDN service, the

BRI package includes two BINARY (B) channels and a DELTA

(D) channel. Each B channel operates at a rate of 64 KBPS.

The D channel operates at a rate of 16 KBPS. The D channel

carries the signaling information for the associated B

channels and allows access to the packet network. This line

can be used very efficiently by using it to connect the

doctor's workstation to the Medical network in packet mode.

In MEDNET, the file server would have one ISDN card that

connects to two BRI lines. Each BRI line is configured as

50

two packet B and one packet D. The packet B is configured as

eight logical channels with an adaptive transmission rate.

This gives the file server the capability to serve eight

clients at the same time, each at 8 KBPS. If only one user

is starting the data transfer using packet B channel, the

transmission rate is the maximum allowable bandwidth, that

is 64 KBPS. Once more users log-in and start transferring

data across the network, the system automatically adjusts

the transmission bandwidth by dividing the maximum allowable

bandwidth by the number of users. This dynamic bandwidth

allocation can continue until the maximum, allowed channels

are in use. The transmission rate dynamically readjusts when

any MEDNET user is not making any data transfer request.

FIGURE 4.7 shows Packet Switched Data configuration.

The usual transmission architecture of the doctor's office

is as follows. The doctor's office would subscribe to the

ISDN BRI service with two Circuit Switched Voice B, and one

Packet Switched Data D. The circuit switched voice is used

just like usual voice line. The Packet switched Data channel

is used as data line. The doctor's workstation connects to

the packet D line at 9.6 KBPS which is very suitable for

text transfer. With data compression techniques, data

throughput can be much larger that the actual bit rate

transfer of the physical medium.

51

Desktop computer
ainr Server

ISDN packet switch architecture

Backup Server

FIGURE 4.7 The file sever connection to the ISDN packet line

At the pharmacy, the file server has one high speed packet

B connection, such that, more than one doctor's office can

connect and prescribe the medication for their patient. This

set up makes it more convenient than the current system for

the patient, as was described earlier. It also reduces the

possibility of fraudulent alteration and issue of

prescriptions.

At home, the radiologist uses the circuit B line to

connect to the file servers that are shared by MEDNET users,

and also uses the circuit switch data to access the

hospitals and radiology centers. This configuration is as

designed, because the medical lab and pharmacies do not

restrict the access to one user and they use the packet

52

switch network so that many authorized users could use

their service. Since the data transfer is mostly text, the

connecting time will not be long and transfer speed provided

is sufficient. A Circuit Switched connection must be used

for direct connection to the hospital and radiology centers

for receiving X-rays and other medical imaging files. These

imaging files are generally large files, and thus require

the full bandwidth of the B channel.

Doctors could use the Circuit Switch Data service to

connect to other doctors for consulting as a second opinion.

Other specialists that do not require X-ray or medical

imaging transferring facilities, may still have a need to

connect to the file server at the clinic to download patient

information. This configuration would require the use of a

packet B channel to connect and retrieve the patient file

from the server system, which could be done simultaneously

while conversing to the patient over other B channel.

53

CHAPTER 5 SOFTWARE DEVELOPMENT

MEDNET software is written in the C++ language and is

compiled with the GNU g++ compiler. The program consists of

12 modules listed below:

1) dstart.C

2) pstart.C

3) 1start.C

4) pstartb.C

5) dstartb.C

6) 1startb.C

7) pharmacy. C

8) doctor.C

9) lab.C

10) dserver.C

11) lserverC

12) pserver.C

5.1) DSTART PROGRAM

When the doctor logs in to the client server, the program

dstart is invoked by the .loginfile, and spawns a child

54

process to initiate the remote connection to the main file

server by executing the rsh command. The parent process of

the dstart program then monitors the validity of the

connection by pinging the main file server at the remote

site. If a "no response" message is received, the parent

process terminates the child process, invokes the program

MAIN SERVER

Main
Server

Process

BACKUP SERVER

Server
Process:

Unix WorkstationUnix Workstation

Client Server

Sun Sparc 10)

ISDN

END USER
- Doctor
- Patient
- Lab

Pharmac

Client Server

(Sun Sparc 10)

ISDN

END USER
Doctor

- Patient
- Lab
- Pharmac

FIGURE 5.1: Shows the user connection to file server through
client server.

55

called dstartb, and terminates itself. Dstartb spawns a

child process to reinitiate the remote connection, but this

time to the backup file server by executing another rsh

command. The parent process dstartb monitors the validity of

the connection by pinging the backup file server at the

remote. The source listing of the module is included in

Appendix A.

Figure 5.1 shows the user end, main file server, and backup

server connection to Internet. The diagram illustrates how

the user, in this case a doctor or pharmacist, needs to

connect to the client server in order to gain access to the

main file server.

MAIN FILE SERVER

MIN

SERVER NAMED PIPE

PROCESS

FIGURE 5.2: File server running main server program with
named pipe open.

56

5.2 DOCTOR PROGRAM

The doctor program is invoked by the dstart program from the

remote client server. This module is responsible for

displaying the option menu and providing the user interface

to the file server. Once the doctor program is invoked,

it will start the communication with the dserver module

already running at the file server as a background process.

FIGURE 5.2 shows the main file server running the dserver

with the named pipe opened.

Dserver has two named pipes which are opened for

reading, writing, and monitoring the pipe for any newly

invoked clients. The first step for the doctor module to

communicate with the file server is to use it's own process

id to create and open two named pipes by concatenating

letter 'a' and 'b' to the process id. For example, if the

pid of the doctor process is 1234, the letters 'a' and 'b'

are added to create the two named pipes for reading and

writing, and the named pipes become 1234a and 1234b

respectively. The next step for the doctor module is to send

it's process id to dserver module. Once the dserver module

receives the doctor's process id, it spawns a child process

to handle the doctor modules request. The dserver child

process uses the doctor process id to create the name of the

57

two named pipes that are already made by the doctor process

by concatenating the letters 'a' and 'b' to doctor process

MAIN FILE SERVER

MIN

SERVER NAMED PIPE
PROCESS

DOCTOR

PROCESS

(a) shows doctor communicating with main server.

MAIN IL ERE

MIN

SERVER NAMED PIPE

PROCESS

child DOCTOR

server

process PROCESS

(b) doctor communicating with child process.

Figure 5.3: doctor communication with server.

58

id. The next step for the child process is to open the two

named pipes for starting the communication process, Figure

5.3 shows doctor communicating with main server, and

doctor communicating with child process.

Once the child opens the two named pipes, doctor starts

communication.

The doctor module provides the following options to user:

-add a record

-find a record

-print a record

-delete a record

5.2.1 ADD A RECORD

To add a record, the program opens a file at the doctors

display, so the doctor can fill in the proper information

such as patient's personal information and patient's health

related information. When the patient's record properly is

written, the program saves the record as a file with the

social security as the file name, The program also adds the

patient's name with the patient's social security number to

a file called ptrfile. Ptrfile is a file that contains the

list of all patients.

59

5.2.2 FIND A RECORD

To find a record, the doctor program prompts for the name of

the patient from the user and when entered, sends it to

dserver module through the pipe. The dserver module makes a

binary search of the patient list and returns the name of

the file that contains the patient's record. The doctor

module opens the file and displays the patient's record at

the doctors display with the patient picture. At this point,

the doctor will be asked if he/she wishes to open a

prescription file or to close the file and return to the

main menu. If the doctor prescribes a medicine, after

closing the file, the prescription record is appended to the

patient's record.

5.3 DSERVER PROGRAM

Dserver module is responsible for maintaining the patient

list in a balanced binary tree data structure for fast data

retrieval. Once the dserver program is invoked, it loads

the patient list into the binary tree and maintains the

balance of the tree. The dserver then creates and opens the

two named pipes for communication with the incoming clients,

and monitors the pipe. When a new client process is invoked,

it will first write it's process id into the named pipe that

has been created by the dserver and then it makes two named

60

pipes using it's process id with letters 'a' and 'b'

concatenated to it.

As soon as the dserver at the other end reads the named

pipe, the dserver spawns a new child server process. The

newly born child process then creates the name of the pipes

that are already created by the client process, and opens

the pipes for inter-process communication. After the

connection is established, the next step is for the child

process to look at the pipe and wait for a request to be

made by the client process. If the client makes a request,

the server process will do a binary search of the patient

list and return to the client the file name that contains

the patient record. The child server process stays alive and

active as long as the client process is alive. Once the

client process is terminated, the child server process also

terminates automatically. Therefore, no zombies will remain

at the file server.

CHAPTER 6 SYSTEM INTEGRATION

6.1 HARDWARE D SOFTWARE INTERFACES

The hardware and software interfaces of the MEDNET system

provide for a secure and user friendly access to patient

data on the Medical Network.

In the FIU Lab, MEDNET is implemented using ISDN and

Internet communication technologies. The concept of the

MEDNET system is portable to different network platforms.

The hardware model consists of a SUN Sparc 10 workstation, a

UNIX base computer with 64 Mg bytes RAM, a one Gigabyte hard

drive, an NCD X-terminal, and PC-compatible computers with

X-terminal software running under the Windows operating

system. The SUN Sparc comes with an Internet interface card

with an RJ45 connector. It also comes with built-in AT&T

ISDN Terminal Adapter (TA) . The Terminal Adapter of the file

server workstation connects to a Network Terminator (NT),

which in turn is connected to the ISDN switch at the Central

Office (CO)

On the other side of the ISDN line the user's system is

connected to an ISDN switch in a similar fashion. Users of

the MEDNET could be served by different Central Office

switches. For example the file server could be connected to

62

a Northern Telecom DMS-100 switch while one user could be

connected to an AT&T 5ESS switch and another user connected

to Siemens EWSD switch. FIGURE 6.2 shows the complete

connection of two users to the server through ISDN.

Figure 6.2 Complete connection of 2 users to the

MEDNET server through ISDN

The operating software was designed for dynamic data base

implementation, and implemented using GCC, the C++ compiler.

For fast data access, the Binary-tree structure with

automatic B-tree balancing algorithm is used. On the remote

63

site the PC computer runs with X-terminal software under

Windows, NCD X-terminal and Sun3/80 .

The development guide graphical user interface is used for

the development of the graphical interface of the MEDNET

system. It supports the development of portable MEDNET

system applications that can run on a variety of hardware

and operating systems. In this particular project, the

system model is tested using a Sun Sparc Station 10 on top

of a X-windows system.

The Network File Server(NFS) networking is used to connect

the file server and the users. Either Standard telephone

line, an Internet connection, or an ISDN connection can be

used to connect to the system.

Using the standard POTS line requires a 14.4 KBPS modem.

Users can call directly to the terminal-server at the

computer center where the file server is located. Once the

connection is established, the system will direct the call

to the file server. The terminal server provides multiple

telephone access to the main system.

The workstation is connected to the Internet network.

Users that desire to log-in need to connect to an Internet

services provider, and Telnet to the system with an X-

terminal graphic program.

When a call is initiated by a remote user from a place

like a hospital, the call is routed through various network

64

nodes until it gets to the destination MEDNET server. FIGURE

6.3 shows the use of Internet to access the file server from

client X-terminal.

ISDN is the best communication technology available to

implement the MEDNET medical network. In comparison with

standard POTS dial-up at the maximum rate of 28.8 KBPS to

interconnect an Internet service provider, ISDN is much

Do tor ,s

- ---a_
Doctor's Pharmcy '
Co lter K C nute

Client
Server

Client

Server Internet

Co ter

Doctor a

Co muter

FIGURE 6.3 Internet to access a file server

65

faster and more reliable. ISDN with it's end to end

digital from the client X-terminal connectivity offers

higher reliability and a speed of transmission of 64 KBPS

per B channel. Medical doctors, like radiologists, could be

on call at than more one hospital, and work more efficiently

from one centralized location using high speed ISDN services

for image transfer. MEDNET uses ISDN in both operations

modes: CSD and PSD. In either mode, the system uses the full

speed of 64 KBPS per channel. Furthermore, B channels could

be bundled together as shown in FIGURE 6.5, to provide

higher transmission bandwidth for medical imaging.

64 Kbps

B2
4 Kbps BONDING 128 Kbps

FIGURE 6.4 Two BRI channels bundled to provide 128

KBPS

6.2 THE MEDNET FILE SERVER

The MEDNET file server has one ISDN external terminal

adapter that interfaces to one B channel. FIGURE 6.6 shows

the file server connection to ISDN.

66

The communication architecture of the doctor's office is

to subscribe to the ISDN BRI service with two CSV B

channels, and one PSD D channel. The CSV channels provide

for voice access, and the data channel provide access to

MEDNET. FIGURE 6.5 shows the communication architecture of

the doctor's office.

User #1

Local
Network

ISDN

Line

ISDN

to L
Intornot

Server

User #2

User #3

FIGURE 6.5 File server connection to ISDN

67

6.3 MEDNET INTEGRATION

The integration of the MEDNET system allows medical

personnel to communicate without the need for voice

communication. In another words, once the user, such as the

doctor, is in the MEDNET system, he/she will be able to call

the pharmacist through the MEDNET system so that the two of

them can converse through the network. Meanwhile,

communicating parties' monitors display a picture of each

another for validation purposes . Although one might presume

this process would be time consuming, with ISDN in place,

the communication delay is negligible to the user.

6.4 MEDNET CASE STUDY

The MEDNET system can be initiated by the patient's call

to the doctor. The doctor enters the name of the calling

patient on the system and instantly the patient's picture

appears on the doctor's monitor. Also, the doctor's picture

appears on the patient's monitor. If for any reason the

doctor needs to call the medical laboratory to obtain a lab

result for the patient, then the doctor's and the patient's

picture display on the laboratory's computer. Also, the

laboratory personnel's picture is displayed on the doctor's

68

monitor. Once the doctor's request has been processed by

the lab personnel, the doctor would disconnect from the

medical lab. The lab personnel's picture is erased from the

doctor's monitor. Once the doctor has received the

patient's lab results and has formulated a diagnosis, then

the doctor calls the pharmacist to provide all the necessary

medication information. While conversing with the

pharmacist, the doctor's and the patient's pictures are

displayed at the pharmacist's terminal. At the same time the

doctor has a picture of the pharmacist on his/her screen.

The idea is that all the medical personnel are able to

access each other's image and medical information (both text

and image) while conversing through the MEDNET system.

69

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

MEDNET is a comprehensive medical networking system which

can interface to standard POTS analog modems, Internet, and

primarily the Integrated Services Digital Network (ISDN).

MEDNET is a network that can interconnect healthcare

providers, such as clinics, hospitals, private and state

medical offices, pharmacies, and insurance companies into a

single system which allows all qualified personnel to access

a patient's data file in near real time. FIGURE 7.1 is a

system diagram of MEDNET.

The MEDNET system is implemented using a UNIX based

system, Sun Spark 10, as a file server. A user can access

the file server through either analog modem,

70

rr

Internet
Provider

ISDN
SITC Patient

FIGURE 7.1 MEDNET System Diagram

Internet or ISDN. In the case of modem access, the user may

obtain access to the file server by dialing a telephone

number to be connected to the terminal server. As for

Internet access, the user can Telnet to the file server from

any machine that has Internet connection capability.

Finally, the user may use an ISDN line to interconnect to

the file server.

Currently, the maximum baud rate of a modem is 28.8 KBPS,

or sometimes in ideal circumstances it can not exceed 32

KBPS. As for Internet, the connection requires an expensive

communications line (Ti) and equipment. Furthermore, if a

71

user doesn't want to invest in a Ti line, he/she would be

restricted to use a modem to access an Internet service

provider. Therefore, the baud rate to co municate between

an individual and the file server would be the same as a

that of a POTS standard modem. In view of the current

technologies, ISDN seems to be the best solutions to

intercommunicate in the MEDNET system

At the present time, ISDN is readily available to the

general public in most areas. Basic Rate Interface(BRI)

provides two B channel and one D channels. Each individual

B channel has a data rate of 64 KBPS. On the other hand,

the D channel has a data rate of 16 KBPS. To obtain a higher

bandwidth for data transfer, the two B channels can be

combined or bundled through the Terminal Adapter.

ISDN is considered to be more effective as compared to

using a POTS analog modem or Internet because it allows

healthcare providers to access MEDNET in near real time in a

cost effective and reliable manner.

72

7.2 FUTURE WORK

The ISDN packet network can be utilized for further

enhancements of MEDNET system. The enhancements can include

the following ideas:

1) Data encryption/decryption.

2) Patient insurance card verification.

3) Patient data file card (Chip Card).

4) Statistical analysis software with multicasting.

5) Fault tolerance.

6) Data Compression.

First, data encryption/decryption can be used in MEDNET to

protect from unauthorized users. There are several ways of

implementing a cryptography system. Currently, the two most

popular algorithms used for data encipherment are the Data

Encryption Standard (DES) secret key algorithm, and the

Rivest-Shamir-Adleman (RSA) and Diffie-Hellman public key

algorithms. The DES algorithm encrypts 64 bits of plain

text using a 64 bit key. The 8th bit of each byte of the

key is used for parity, which reduces it to a 56-bit key.

Then the bits in the plain text are scrambled through a

series of substitutions and permutations. The DES algorithm

has resisted 15 years of cryptographic attack. RSA is the

best known public key cryptosystem. It requires each user

to have a pair of keys: a private key and a public key. The

73

theory behind the RSA algorithm is that the sender will

encrypt a message using the receiver's public key. Upon

receipt of the encrypted message, the receiver will decrypt

the message using his/her own private key. This algorithm

works due to the mathematical nature of the public and

private keys, which are large, at least 508 bits, and must

be able to be factored into prime numbers. Therefore, MEDNET

system can choose either DES, RSA or a Hybrid algorithm

[Fern94] to secure the system. For example, the patient

files could be encrypted so that the staff personnel would

not be able to access patient's medical records.

The second proposed future enhancement of MEDNET is the

use of a patient insurance card which includes insurance

verification information. This information is important to

the MEDNET system for the purpose of authentication.

Basically, the insurance verification information could be a

stored in the card's magnetic stripe. The insurance

information can be stored in three tracks. The most

important data includes the group number, the patient's

social security number, and an identification number so that

all medical offices and pharmacies can verify the patient

insurance policy through the ISDN network. FIGURE 7.2

depicts such Insurance Verification Card.

74

The third proposed future enhancement is the Patient Data

File card (Chip Card). The Chip Card can be used in MEDNET

to simplify the entire system. The patients can have their

past medical records stored in a chip card to save time and

convenience for the medical staff. There are many kinds of

chip cards. The two major types are memory cards and smart

cards. Memory cards can store a limited amount of

INSURANCE

COMPANY

DOCTOR'S OFFICE

CARD

READER --- -

ISDN

NETWORK

HOSPITAL

CARD

READER

Figure 7.2 Insurance Verification Card

75

information and it has little or no security features.

Basically, if an unauthorized user gets hold of a patient's

card, it would be easy for the hacker to obtain all the

stored medical records. On the other hand, a smart card is

expensive but it has more memory and higher security. Most

smart cards in today's technology have data

encryption/decryption built in. To obtain access to a

certain part of the memory, a patient needs to provide the

key to encrypt or to decrypt the data and obtain access.

For example, SGS Thomas manufactures smart cards that need a

key or keys to obtain different levels of access. FIGURE 7.3

shows the use of a Chip Card reader in MEDNET.

cMCIA Card

10 MEDNET

FIGURE 7.3 Chip Card reader with MEDNET

76

The fourth proposed future enhancement is statistical

analysis software with multicasting which is beneficial to

the MEDNET for research purposes. Since the patient's

medical history and current records are in

the file server, it would be possible for some medical

researchers to gain access to only certain fields of the

records so that the privacy of the patient is preserved and

at the same time the medical records are available for

statistical analysis on certain diseases such as

alcoholism, liver cancer, lung cancer, drug addiction, etc.

The fifth proposed future enhancement is Fault Tolerance

techniques which is an important enhancement to Medical

Networking. One technique is by having multiple copies of

the file in a single or multiple file servers in order to

protect the patient data from being damaged or destroyed

through man/machine errors.

The sixth proposed future enhancement is data compression

implemented in the medical network to enhance the system in

speed and storage utilization. Since the processor's speed

is much greater than the transfer rate of the ISDN line, the

communication system can become a bottle neck. In other

words, by compressing the data before transmission not only

the transmission gains speed but reduces the file storage

requirements.

77

LIST OF REFERENCES

[AbrAL93] M. Abrams, D. Gambel, S. Jajodia, H. Podell, nd R. Sandu, Course notes "Re ent
Developments In I orma ion Security, Information Security Institute, George Mason
University, October, 1993.

[AgnAL90] G. Agnew, R. Mullin, S. V nstone, "Common Application Protocols for the CA34C 168 and
their Security Characteristics" Newbridge Microsystems CMOS Products Databook, 1990.

[AgnAL88] G. Agnew, R. Mullin, S. Vanstone, "A secure public key protocol based on discrete
exponentiation", Proceedings of Eurocrypt 88, Springer Verlag.

[BetAL91] Th. Beth, M. Frisch, and G.J. Simmons, "Public-Key Cryptography: Stat of the Art and
Future Directions", EISS Workshop, July, 1991.

[BihSha90] E. Bihiam and A. Shamir. "Differential C 'ryptoanalysis of DESke Cry tosystems", the
Weizmann Institute of Science, Technic Report CS90-16, July 1990.

[Burr91] W. Burr, "Security in ISDN" - NIST publication, March 91

[ComSec] "Computer Security Products Buyers Guide 1993", Computer Security Institute 1993.

[Cl Kuh88] G. J. Claassen and G.J.kuhn, "Secure Communication Procedure for ISDN", COMSG 88
Pretoria, pp. 165-170.

[DagAL94j N. Dagdeviren, J. Newell, L. Spindel, and M. Stefnick "Global Networking with ISDN"
IEEE Communications, vol.32, no.6, pp.26-32, June, 1994.

[Davi8 1] D. Davies, "The Security of Data in Networks", IEEE Computer Society Press, 1981.

[Data93] Data I/O Corporation, 10525 Willows Road N.E, P.O.Box 97046, Redmond, WA 98073-9746:

[DavPri80] D. Davies and W. Price, "The Application of Digital Signatures Based on Public Key
Cprytosystems, Proceedings of the Fifth International Computer communications conference,
pp.525-530, October, 1980.

[Denn82] D. Denning, "Cryptography and Data Security", Addison-Wesley, 1982.

[Denn93] D.Denning, "The Clipper Chip: A Technical Summary", April 19, 1993.

[DifAL89] W. Diffie, B. O'Higgins, and S.Schnider, Secure Communic tions", Telesis pp. 42-50
1989.

[Difle176a] W. Diffie and M. Hellman, "New Directions in cryptography", IEEE Trans. Inform. Theory
vol. 22 , no. 6, pp. 644-654, 1976.

[Dif e176b] W. Diffie and M. Hellman, "A critique of the proposed data encryption standard", CACM,
pp.164-165, March 1976.

78

[DifHel77] W, Diffie and M. Hellman, "Exhaustive Cryptoanalysis of the NBS Data Encryption
Standard", Computer, vol.10, no. 6, pp.74-84, June 1977.

[Difel79I W. D ie and M. Hellman, "Privacy and Authentication: An Introduction to Cryptography",
Proceedings of the IEEE. vol. 67, no. 3, pp 397-427, March, 1979.

[DinKuh93] C. Dinkel and D. Kuhn, "Telecommunications Security Guideline", NIST Technical Report,
April, 1993.

[Durr94] M. Durr, "ISDN Reemerges", LAN Magazine, pp.103-112, January, 1994.

[Dwor91] F. Dworak, "Approaches to detecting and resolving feature interactions", Proceedings of the
IEEE, IEEE Globecom, 1991.

[EhrAL78] W. Ehrsam, S. Matyas, C. Meyer and W Tuchman, "A cpto raphic key management
scheme for implementing the Data Encryption Standard", IBM Systems Journal, vol.17, no. 2,
pp. 106-125, 1978.

[ElGa85a] T. El Gamal, "A Public Key Cryptosystem and a Sgnature Scheme Based on Discrete
Logarithms", IEEE Transactions on Information Theory, vol.IT-31, no.4, pp.469-472, 1985.

[ElGa85b] T. El Gamal, "A Subexponential-Time Algorithm for Computing Discrete Logarithms over
GF(p)", IEEE Transactions on Information Theory, vol.IT-31, no.4, pp.469-472, 1985.

[Elme94] P. Elmer-Dewitt, "Who should keep the keys'", Time Magazine, pp. 90-91, March, 1994.

[FeiAL75] H. Feistel, W. Notz, and J. Smith, "Some Cryptographic Techniques for Machine-To-
Machine Data Communications", Proceedings of the IEEE, vol. 63, no. 11, pp. 1545-1554,
November 1975.

[FIPSESS] "Public record concerning the proposed Federal Inform ation Processing Standard for an
Escrowed Encryption Standard (ESS)" National Institute of Standards and Technology
(NIST), Department of Commerce, Docket No.930659-3159, RIN 0693-AB 19.

[FIPSP46] "Federal Information Processing Standards Publication 46 - The Data Encryption Standard"
National Bureau of Standards, Government Printing Office, January, 1977,

[FIPS1026] Federal Information Processing Standards Publication 1026 - Telecommunications:
Interoperability and security requirements for use of the Data Encryption Standard in data
communication systems", National Bureau of Standards, Government Printing Office,
Government Printing Office, 1980.

[Folt83] H. Folts, "OSI Workbook", VA:OMNICON 1983.

[Ford92] W. Ford, "Security Techniques for Network Management", NOMS 92, pp. 22.2 1-22.2.17.

[Good92] M. Goodwin, "Guide to Serial Communications", 1992.

[Grif90] J. Griffiths, "ISDN Explained Worldwide Network and Application Technology", John Wiley &
Sons, 1990.

79

[Haye90] Hayes ISDN PC Adapter, ISDN Adapter Card for the IBM PC, XT, At, PS/2 Model 30 or 100%
Compatible, Technical Reference, no. 98-00827 AA K10, 1990.

[Hell80] M. Hellman, "The Mathematics of Public-Key Cryptography", Scientific American, vol. 214,
no. 2, pp. 146-157, August, 1979.

[IEP 157] P1157 Standard for Healthcare Data Interchange-Overview and Framework, IEEE Draft
3/30/93.

[IIW9] "ISDN Security Architecture" Draft, IIW/S/91-A001, Sept. 5, 1991

[Impr84] S. Improta, "Privacy and Authentication in ISDN: the Key Distribution Problem" ISS '84
Florence, pp.7-11, May 1984.

[ISO7498] ISO 7498: "Information processing systems - Open Systems Interconnection - Basic
Reference Model - Part 2: Security Architecture", February 1989.

[IS08372] ISO 8372 "Information Processing-Modes of operation for a 64-bit block cipher algorithm",
1987.

[ISO9798] ISO 9798-2 "Entity authentication using syunetric techniques", July 6, 1990.

[Jack90] K. Jackson, "Secure Information Tr nsfer-PC Enc tion: A Practical Guide", CRC Press, 1990.

[JanMol9l] P. Janson, and R. Molva, "Security in open networks and distributed systems", Computer
Networks and ISDN Systems, vol 22, pp.323-346, 1991,

[John92] P.Johnson, "Security and Security Management - Overview of Concepts, Standards Status and
Some Current Issues", NOMS, pp. 2 2.1.1-22.1.10, 1992.

[Katz77] H. Katzan, "The Standard Data Encryption Algorithm", Petrocelli Books, New York 1977.

[Kimm92] J. Kimmins, "Network Security Management and Administration: Concepts and Issues",
NOMS 92, pp.22 .3.1-22,3.12,

[Klue92] H. Kluepfel, "A systems engineering approch to security baselines for SS7", Bellore
Technical Report TM-STS-020882, 1992,

[Leva94] C. Levay, "Computer Simulation Study on the Impact of Express Lanes on the Current Toll
Plaza System", M.S. Thesis Florida International University, April, 1994,

[Levy94] S. Levy, "The Cypherpunks vs. Uncle Sam", The New York Times Magazine pp.44-60
June,1994.

[Merk78a] R. Merkle Secure Communications Over Insecure Channels Communications of the
ACM, vol. 21, no. 4, pp.294-299, April, 1978.

IMerk78b] R. Merkle and M. Hellman, "Hiding In ormation and Signatures in Trapdoor Knapsacks"
IEEE Trans. on Info. Theory, vol. IT-24, no. 5, pp. 525-530, 1978.

[Merk79] R. Merkle, "Secrecy, Authentication, and Public Key Systems", Ph.D. Thesis, Stanford
University, 1979.

80

[Miku93] D. Mikula, "Secure Group III Facsimile Transmission through ISDN" NIUF ISDN Application
Analysis 050016.0, 1992.

[Mo 92] T. Monk, "Window's Programmer's Guide to Serial Communications", SAMS Publishing,
Indiana, 1992.

NeeAL78] R. Needham and M. Schroeder "Using Encryption for Authentication in Large Networks of
Computers Communications of the ACM, vol.21, no 12. pp .993-999, December, 1978.

[Newb92] Newbridge Microsystems, CMOS Products databook, Calmos product line, Issue 3, Chapter 4
1991.

[NIUF94] North American ISDN Users Forum (NIUF), "A catalog of National ISDN Solutions for
Selected NIUF Applications, Second Edition, Section 3, Feb. 94.

[NRC89] National Research Council, "Growing Vulnerability of the Public Switched Netwvorks"
Nationail Academy Press, 1989.

INSTAC90] National Security Telecommunications Advisory Council, "Report of the Network Security
Task Force", National Security Telecommunications Advisory Council, 1990.

[OHiAL87] B. O'Higgins, W. Diffie, L. Strawczy ski and R. de Hoog, "Encryption and ISDN - A Natural
Fit", IEEE International Switching Symposium 1987, March 15-20, 1987, Phoenix, Arizona,
pp.All 4.1-7.

[OyaAL92] 1. Oyaizu, K.Tanaka, and K. Miyabo "Multipoint Audiogra phics Teleconferencing System
with Privacy Feature", Proceedings of the SPIE Visual Communications and Image Processing
92, Vol. 1818, pp.1489-1501.

[Pere92] P.Perez, "A Simulation of Vehicle Energy Consumption in a Metropolitan Rail Transit S ster"
M.S. Thesis, Florida International University, November, 1992.

[Prit80] J. Pritchard, "Data Encryption", NCC Publications, Manchester 1980.

[RivAL78] R. L. Rivest, A. Shamir, and L. Adlem an, "A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems", Communications of the ACM, vol 21, no 2, pp.120-126, February
1978.

[RSAL92] RSA Laboratories "RS F: A Cryptographic Tool kit for Privacy-Enhanced Mail, Library
Reference Manual", March 1, 1992.

[ShaAL78] A. Shamir, R. Rivest, and L. Adleman, "Mental Poker", MIT Laboratory for Computer
Science, Report TM-125, pp. 1-7, November, 1978.

[Sher] J.R. Sherwood, "Data Security in Packet Switched Networks", pp.375-379

[Sta188] W. Stallings, "Data and Computer Communications", Macmillan Publishing Company, Nev
York, 1988.

[Sta192] W. Stallings, "ISDN and Broadband ISDN", Ma millan Publishing Company, New York, 1992.

81

[Subb93] W. Subbarao, "ISDN..What is it? Where are we? Where are we going?", North American ISDN
Users Forum (NIUF), February, 1994.

[SubWil94] W. Subbarao and M. Williams, "ISDN based Retail Network Development", Annual Review
of Communications, April, 94.

[Tanz94] K. Tanzillo, "Gaining ISDN privacy with data enciyption", Communications News, pp.5 4 ,
August, 94,

[Tuch79] W. Tuchm , "Hellman Presents No Shortcut Solutions to the DES", IEEE Spectrum, vol. 16,
no. 7, pp. 40-41, July, 1979.

[VoyKen83] V. Voydock and S. Kent, "Security Mechanisms in High-Level Network Protocols",
Computing Surveys, vol 15, no. 2, pp.135-171, June, 1983,

[Wild94] S. Wildstrom, "Data Privacy: A Win for Business", BusinessWeek, pp.11, August, 1994.

[Wil193] M. Williams, "Development of a Retail Network using ISDN", M.S, Thesis, Florida
International University, December, 1993.

82

APPENDIX 'A'

83

LIST.C

84

// LIST.h
//

#ifndef LIST
#define LIST

template <class keyType, class elemType>
class Node {
public:
keyType key;
elemTy e elem;
int height;
Node<keyType, elemType> *left, *right;
Node(keyType k, elemType e, Node<keyType, elemType> *l=NULL, Node<keyType, elernType> *r= NULL);

template <class keyType, class elemType>
class List {
private:
it height(Node<keyType, elemType> *T);
int max(int, int);
Node<keyTypeelemType> *attach(Node<keyType, elemTyp > *L, Node<keyType, elemType> *R);
Node<keyType, elemTy e> *s rotate left(Node<keyType, elemType> *T):
Node<keyType, elemType> *srotate right(Node<keyTyp elemType> *T),
Node<keyType, elemType> *d rotate left(Node<keyType. elemType> *T),
Node<keyTy pe, elemType> *d rotate right(Node<keyType, elemType> *T):

protected:
Node<keyType, elcmType> *tree;

public:
List(): tree(NULL) }
Node<keyType, elemType> *insert(keyType, elemType, Node<keyType, lemType> *);
Node<keyT ype, elemType> *remove(keyType, Node<keyType, elemType> *);
elemType find(keyType k, Node<keyType, elemType> *p);
Node<keyType, elemType> *findptr(keyType k, Node<keyType, elemType> *p)

void print(Node< keyType, elemType> *);
void printtree(Node< keyType, elemType> *,int);

~List();

#endif

86

// L.C
//
#include <iostream.h>
#include "List.h"

//---
// private stuff
//----------------------

template <class keyType, class elemType>
int List<keType, elemType>::height(Node<keyType,elemType> *T){

if (T==NULL)
return(O);

else return T->height;

};5
//--------------------------------------

template <class keyType, class elemType>
int List<keyType, elemType>::max(int x, int y)
{

if (x>y)
return(x);

else
return(y);

I;
//-------------------------------------

template <class keyType, class elemType>
Node<keyType, elemType> *List<keType, elemType>::srotateleft(Node<keyType elemType> *T)

Node<keyType, elemType> *tmp;
tmp = T->left;

T->left = tmp->right;

tmp->right = T;

T->height = x(height(T->left), height(T->right)) + 1;
tmp->height = max(height(tmp->left), T->height) + 1;

return tmp;

};
//------------------------ -----------

template <class keyTy e, class elemType>
Node<keyType, elemType> *List<keyType, elemTye>::s_rotate right(Node<keyType, elemType> *T)
{

Node<keyTye, elemType> *tmp
tmp = T->right;

T->right = tmp->left;
tmp->left = T;

T->height = max(height(T- left) height(T->right)) + 1;
tmp->height = max(height(tmp->right), T->height) + 1;

return tmp;

// ---- ------------------- s ---- _-

template <class keyType, class elernType>
Node<keyType, elemType> *List<keyTpe, elemTpe>::d_rotate_lft(Node<keyType, elemnType> *T)
{

T->left s_rotate right(T->left);
return(s rotate left(T));

//------------------------------------ -

template <class keyType, class elenType>
Node<keyType, elemType> *List<keyType, elemTy pe>: :drotateright(Node<keyType, elemType> *T)
{

T->right = s-rotate left(T->right);
return(srotateright(T));

11 --------------------.. ,....,..,,.----,...e-- a-----. -------.-----

// attach(left,right)
//---------------------

template <class keyType, class elemType>
Node<keyType, elemType> *List<keyType, elemType>: :ttach(Node<keyType, elemType> *L
Node<keyType, elemType> *R)

if (R NULL)
{

R->eft = attach(L,R->left);

if (height(R->left) - height(R->right) == 2)

if (R->key < R->left->key)
R = s-rotate left(R);

else
R = d_rotateleft(R);

}
else

R->height = max(height(R->left), height(R->right)) + ;

else return(L);

return(R);

// -------- - -- --- .- --- ---- - ---- --- -

// inse (ke Type)
//----.------------------------------ -

template <class keyType, class elemType>
Node<key ypeelemType> *List<keyType, elemType>::insert(keyType k elemType s, Node<keyType,
elemType> *p) {

if (p == NULL)
p = new Node<keyType, elemType>(k s);

else if (p->key == k)
cout«"in List:insert: the key "«p->key<<already exist\n":

else if (k < p->key)

p->left=insert(k, s , p->left);
if (height(p->left) - height(p->right) == 2)

{
if (k < p->left->key)

p = srotateleft(p);
else

p = d_rotate_left(p);

}
else

p->height = max(height(p->left), height(p->right)) + 1;

}
else

{
p->right=insert(k, s , p->right);
if (height(p->right) - height(p->left) == 2)
{

if (k > p->right->key)
p = s_rotateright(p);

else
p = drotateright(p);

}
else
p->height =max(height(p->left) height(p->right)) + 1;

return (p);

/-------------------------

// find(keyType)
//---------------------------------------

template <class keyType, class elemType>
elemType List<keyType, elemType>: :find (keyT e k, Node<keyType, elemT e> *p) {

if(p== NULL)
return((elemType) 0);

if (p->key == k)
return(p->elem);

if (p>key > k)
return(find(k, p->left));

else
return(find(k, p->right));

)z
// ---------------------------------------
/ findptr(keyType)
//---------------------------------------

template <class keyType, class elemType>
Node<keType, elemType> *List<keyType, elemType>: :findptr(keyType k, Node<keyType, elemType> *p){

if (p== NULL)
return(N L);

if (p->key == k)
return(p);

if (p->key > k)
return(findptr(k, p>left))

else

89

return(findptr(k, p->right));
};
// - - - - - - - - - - - - -- - - - - - - - - - - - ----- - -

I rerov e(keyType)

template <class keType, class elemType>
Node<keyType, elemType> *List<keyType, elemType>::remove(keyType k, Node<keyType, elemType> *p) {

Node<keyType, elemType> *tmp, *tmpl, *tmpr;

if (p != NULL)
{

if (p->key > k)
p->left = remove(k, p->eft);

else if (p->key< k)
p->right = remove(k, p->right);

else

p->right = attach(p->left, p->right);

tmpr = p->right;
delete p;
return(tmpr);

};

if (height(p->left) - height(p->right) == 2)
{ if (height(p->left->left) < height(p->left->right))

p = srotateleft(p);
else

p = d_rotateleft(p);

}

else
{ if (height(p->right) height(p->Ieft) = 2)

{ if (height(p->right->right) > height(p->right->left))
p = s_rotateright(p);

else
p d_rotateright(p);

}
else
p->height = max(height(p->left), height(p->right)) + 1;

}

return (p);

};

// -List()
//------------------ ------------------

template <class keyType, class elemType>
List<keyType elemType>::~List() {

Node<ke Type,elemType> *tmp=tree *currnt;
}

/--------------------
// List::print()
//---------------------------------------

90

template <class keyType, class elemType>
void List< keyType, elemType>::print(Node<keyType, elerType> *p) {

if (p != NULL){
print(p->left);
cout« p->key«" "«p->elem« end;
print(p->right);

}

//---

// List::print tree()
//---

template <class keyType, class elemType>
void List< keyType, elemType>::printtree(Node< keyType, elemType> *p, int i){

if (p != NULL){
printtree(p->right,i+5);
for(int j=0; j<i; j++)

cout<"
cout«p->key «endl;
printtree(p->lefti+5);

//--------------- --------------------------

// Node::Node(keyType, elemType)
// ------------------------ ------------

template <class keyType, class elemType>
Node<keyType, elemType>::Node(keyType k, elem Type s, Node *1NU L Node *r= NULL){

key =k;
elem = s;
left =1;
right = r;

height = 1;
I

91

doctor.C

92

// doctor.C
//

// DOCTOR MODULE

#include <signalh>
#include <string.h>
#include <String.h>
#include <fstream.h>
#include <stdio.h>
#include <fcntLh>
#include "itoa~h"
#define ESC 27

char doctors_ name80];
char doctorsdisplay[80];
char *server;

void patien(void);
void lab(void);
void pharmacy(void);

struct rec {
char name[30];
char Iname[30];

char ssn[12];
char addr[40];
char docname[30];
char test_type[20];
char res[80];

};

char *datafile = "datafile";
char *ptrfile = "ptrfile";

void close up exit();

nt catchint(int signum)
{

cout«<"\n************************\n"

cout<<"signal --- "«signum;
cout«<"\n1*****************************\n""

close up_exitO;
return(0);

};

class Client{
private:

char choice[5];
int pdrrp; //pdr: first pip to read the server, rp main pip to work with the server
int pdww; //pdr first pip to write to server, wp main pip to work with the server
char *rdpip, *wrpip;
int tmpr,tmp;

93

char key[20];
char recname[20]
char element[20];

public:
Client();
int add();
void addnewrecord();
int delet();
int find(;
int Display options();
void print();
void wh teverO;
void quit();
~Client();

};
//---------------------------------

Client::Client()

{
int pid;
char tempbuf[40];
char *new ip;
server = new char[8];

tempbu 0]='\0';
if ((pdw open("pip1 ", WRONLY)) <0){

cout«"\n\n debug2.. error opening the pipl \n\n"
exit(1);

};
pid=getpid();
newpip=itoa(pid);
rdpip=itoa(pid);
wrpip=itoa(pid)
strcat(rdpip,"a");
strcat(wrpip"b");
//xx, x xxx xxxxxxxxxxxxxxxx x xxxxx x

if(mnod(rdpip,010666,0)<0){
cout<«"\nmknod "« rdpip«"\n";

if(mknod(wrpip,010666,0)<0){
cout« "\mkod "«wrpip« \n";

}1;
write(pdwnepip, 8);

if ((tmp = open(wrpipO _RDONLYIO NDELAY))<0){
cout<"\nopenning "« rdpip \n\n";
exit(1);

if ((w = open(rpip,O_ ONLYlONDELAY))<0){
cout«"\n\nopening the "< wip«" \n\n";
exit(1);

if ((rp = open(rdpip,0_RDONLYO NDELAY))<0){
cout<<"\n\n openning "«rdpip«"< \n\n";

94

exit(1);

//xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

};
//----------- --- -

Client:: Client()
{

close(pdr);
close(tmp);
close(rp);
close(wp);

};
//--------a--®------ _®----------------

int Client::add(

cout«"please enter the record name: " ;
cin >> recname;
write(vp, choice, 5):
write(wp,recname,20);
return 0;

};
//f-----------------------------------_-

int Client::delet()
{

cout«"please enter the record n ae:
cin » recname;
write(wp,choice, 5);
write(wrecname,20);
return 0;

};
//----®-------------------------- ---

int Client: :find()
{

char answr;
char elem 20J:
char recname 801:
char patient 80];
char appendrec[80];
char patientdisplay[80];
char pdisplay[2| [50]:
char doctorname 80]
char doctordisplay 80]
char ddisplayt2l[50]:
String key I:
String key2:
String key3
char displaypic]80
char displayrecl801:
char *k:
struct rec *r;
long offset position;
int i ;
i=0;

95

n=0
r=new rec;

cout«"\nenter patient's name:

cin >> reename;

strcpy(patient, recname);

writew choice,5);
write(p,recname,20);
while (read(,elem,20) <0)

;
strcpy(recnameelem);
strcat(recname,".r")
ifstream inFile (recname,ios::in);
inFile >> pdisplay[O];
inFile >> pdisplay[1];
inFile.close();

cout« "patient display is "<< pdisplay[1]«<" (y/n):";
cin>>answr;
if (answ r='n')

{
cout«"please enter the patient's display name: ";
cin >pdisplay[1];

// at patient display

strcpy (patientdisplay "xw -display ");
strcat(patientdisplay, pdisplay[l]);
strcat(patientdisplay, ":0.0 ");
strcat(patientdisplay,"-name DR")
strcat(ptient displaydoctorsname);
streat(patientdisplay," ");
strcat(patientdisplaydoctorsname)
strcat(patientdisplay,".gif&)
system(patientdisplay);

// at doctors display picture of patient

strcpy(doctordisplay,"xv -display ")
strcat(doctordisplay,doctorsdisplay);
streat(doctordisplay,":0.0 ");

strcat(doctordisplay, "-name ");
strcat(doctordisplaypatient);
strcat(doctordisplay,"

strcat(doctordisplay,elem)
strcat(doctordisplay,".gif);
strcat(doctordisplay,"& ");
system(doctordisplay);

96

// at doctors display file of the patient

strcpy(displayrec,"emacs -display ")
strcat(displayrec ,doctorsdisplay);
strcat(displayrec ,":0.0 ")
strcat(displayrec,elem);
strcat(displayrec," rec");
strcat(displayrec,"& ");
cout«"\n++++\n"«displayrec«"\n+++++++\n";
system(displayrec);
cout«K"\nprescription form (y/n):
cin >> answr;
if (answr==y')

{
strcpy(displayrec,"emacs -display
strcat(displayrec ,doctors_display);

strcat(displayrec ":0.0 "
strcat(displayrecelem);
strcat(displayrec,".phar");

cout<<"\n++++\n"«displayrec«"\n+++++ \n"
system(displayrec);

// display prescription at patient display
strcpy(displayrec,"xv -display ")

strcat(displayrec ,pdisplay[1]);
strcat(displayrec ,":0,0 "
strcat(displayrcelem);
strcat(displayrec,".phar& ")
cout«"\n++++++\n"«displayrec«"\n++++++++\n";

// display prescription at phamacy display
strcpy(appendrcc,"cat ");
strcat(appendrec,elem);
strcat(appendrec,".phar");
strcat(appendrec," >> ");

strcat(appendrec,elem);
strcat(appendrec,".rec ");
system(appendrec);

cout<<"send to pharmacy printer(y/n)?";
cin»answr;
if (answr==y')
{ strcpy(appendrec,"lpr -Pisdn ");

strcat(appendrec,elem);
strcat(appendrec,".phar&");
system(appendrec);

}
return 0;

};

void Client: :printO{
write(wp,choice,5);

97

void Client::whatever(){
cout«"\n\n WHAT EVER \n";

};

void Client::quit(){
cout<«"\n\n bye ..- \n\n";
write(wp,choice, 5);

// 1 l+---- ---- - - ---- -- -m-- - -- ------

int Client :Display_options(){

cout«"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
cout<"\n WELCOME TO MEDNE \n";
cout«""---------------\n\n";

cout«<"\n++++++++++++++++++++++++++++++ \n";

cout< l) add a new record \n";
cout«"2) find a record \n";
cout«"3) quit \n";
co~ut«<"\n++++++++++++++++++++++++++++++.\n";

cout«"\n please enter your choice: ";
cin >> choice;
return (atoi(choice));

}
//----------------------------------

void close upexit()
{

int serverpid;
cout<<"cln "«getpid()«" is killed"< endl;
cout«"\n== == finished====\n";

serve id=atoi(server);
cout<" server pid = "«serverpid <end;
kill(serve pid ,SIGTERM);

exit(0);

}

void Client: :add_newrecord()

struct rec *r;
char ans[30],record[30],filename[30];
long position;
r-new rec;
char append[80];

FILE *dfp, *pfp; //dfp is data file ptr; pfp is ptr file ptr

while(l)

{
do{

cout «"Add a new record(yes/no): "; cin» ans;
if((strcmp(ans,"NO")) ==0 j (strcmp(ans,"no"))==0 \

98

(strcmp(ans,"YES"))==0 I (strcmp(ans,"yes "))==0)
brea;

else cout<"\n\n\aAnswer enter yes or no\a\n\n";
}while(1);
if((strcmp(ans,"NO")) ==0[(strcmp(ans,"no")) ==0)

break;
cout«<"Soc Sec. No. : cin >> r->ssn;
cout«K"Last Name--: cin >> r->lna me;
filename[0]='\0';
strcat(filename, "cp templatefile ")
strcat(filename,r->ssn);
strcat(filename,". rec")
system(filename);
filename[0]='\0';

strcat(filename,"cp templatephar ")
strcat(filenamer->ssn);
strcat(filename,".phar");
system(filename);
record[0]='\0';

strcpy(record,"emacs -display ");
strcat(record,doctorsdisplay);
strcat(record,":0.0 ");
strcat(record,r->ssn);
strcat(record,". rec");
strcat(record, "& ");
cout<< "record = "«record«endl;
system(record);

pfp=fopen(ptrfile, "a+");
fprintf(pfp,"%s %s\n",r->lnamer->ssn);
fclose(pfp);

write(vp,choice,5);
write(wp,r->lname ,20);
write(wp,r->ssn,20);

)

---------|--------------- --------- ----

int mainmenu()

{
int select;
system("cls");
cout<"main menu\n\n\n';
cout<<" 1) patient records\n"
cout«"2) pharmacy\n"
cout«"3) medical lab\n";
cout«"4) quit\n";
cout<"-- ------\n"
cout«"please make your selection: ";

do {
cin>> select

99

if (select !=t && select !=2 && select !=3 && select !=4)
cout<<"\n\ainvalid selection\n"«"please make your selection again:

} while(select !=1 && select !=2 && select !=3 && select !=4) ;

return select;

}

void patientO
{

Client cln;
int choice;
while(1)

choice = cln.Display options()
switch(choice)

{
case 1: cln add new_record();

break;
case 2: cln.find()

break;
case 3: return;
case 4: cln.print()

break;
case 5: cln.delet();

break;
default: break;

}
}

}

main()
{

char answr;
signal(SIGINT, catchint);
signal(SIGHUP, catchint);
signal(SIGBUS, catchint);
signal(SIGTERM, catchint);
system("cls");
cout«"\n WELCOME TO MEDNET\n";
cout<<"- - - ---------___®___\n\n";

cout <<"please enter doctors name:
cin>>doctors_name;
cout«"\nPlease enter doctors display name:
cin> doctorsdisplay;
patient();

100

phar.C

phar.C
//
// PHARMACY MODULE

#include <signal h>
#include <string h>
#include <String h>
#include <fstream h>
#include <stdio.h>
#include <fentl.h>
#include "itoa. h"
#define ESC 27

char pharmname[80]
char phar-display[80];

char *server;

void patien(void);
void lab(void);
void pharmacy(void);

struct rec {
char name[30];
char lname[30];

char ssn[12];
char addr[40];
char docname[30];
char test_type[20];
char res[80];

char *datafile = "datafile";
char *ptrile = "ph rptrfile";

void close _up exit(;

int catchint(int signum)

{

system("cls");
cout<<"bye\n";
close_up_exit();
exit(0);

};

class Chenti

priate
char choice[5];
it pdr //pdr: first pip to read the server, main pip to work with the server
it pdw //pdr first ip to write to server, w main pip to work with the server
char *rdpip, *wr ip;

102

int tmpr,tmp;
char key[20];
char recname[20] ;
char element[20]

public:
Client();
int add();
void add-newrecord(;
int delet();
int findO;
int Displayoptions()
void print(;
void whatever();
void quit(;
~ClientO;

};

//---------------------------------

Client: Client()

{
int pid;
char tempb uf40];
char *newpip;
server = new char[8];

tempbuf[0]='\0';
if ((pdw = open("ppip1" ,O WRONLY)) <0){

cout«<"\n--------\n";

exit(1);

pid-=getpid();
newpip=itoa(pid);
rdpip=itoa(pid);
wrpip=itoa(pid);
strcat(rdpip, "a");
strcat(wrpip,"b");
/xxxxx xxxxxxxxxxxxxxxxxx xxxxxxxxxxxxx

if(mknod(rdpip,0 10666,0)<0){
cout«<"\n ------ \n".;

};
if(mknod(w ip,010666,0)<0){

V.cout«<"\n®-----_ \n";

write(pdwnew ip,8);

if ((tmp = open(w rpip, RDONLYO_NDELAY))<0){
cout«<"\n -------- \n";
exit(1);

};
if ((wp = open(rpip 0 _ ONLYO NDELAY))<0){

cout<<e\n ROLI----- -\n";
exit(1);

};

if ((r = open(rdpip,ORDONLl_NDELAY))<0){

103

cout«<"\n_®-----_-\n";

exit(1);

//xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxx

};

Client: :Client()
{

close(pdr);
close(tmp);
close(rp);
close(wp);

int Client: :add(

{
cout«"please enter the record name:
cin >> recname;
write(wp,choice,5);
write(wp,recna me,20);
return 0;

};
//
int Client :deletO

{
cout«"please enter the record name:"
cin » reename;
write(wpchoice,5);
wri te(,reename,20)
return 0;

// ------- ----------- --------

int Client::find()

{
char answr;
char elem[20]:
char recname[80]
char patient|80];
char docname80]
char Doctorname 2][801
char patientdisplay[80]

char docdisplay[801
char pdisplayl2l[501
char doctorname[801;

char doctordisplay[80:

char labdisplay80]:
char ddisplay2][50]:
String key l.
String key2:
String key3

char disp aypic X801
char displayrec 801

104

char *k;
struct rec *r;
long offset, position;
int i,n;

i=0
n=0;

r=new rec;

cout«"\nenter the patient's name:

cin >> recname;
strcpy(patientrecname);

write p,choice,5);
write(wp,recname,20);
while (read(,elem ,20) <0)

strcpy(recname,elem);
strcat(recname,".phar");
ifstream i ile (reenamejios::in);

inFileeclose();

cout«"please enter the doctors 's name:
cin» docname ;
cout<«"please enter the doctor's display name:
cin >>ddisplay[1];

// at doctors display picture

strcpy(docdisplay,"xy -display ");
strcat(docdisplay, ddisplay [1])
strcat(docdisplay, ":0.0 ")
strcat(docdisplay,"-name Phar_");
strcat(docdisplayphar_name);
strcat(docdisplay," ")
strcat(docdisplay,phar_ name);
strcat(docdisplay,".gif& ")
cout<<"docdisplay = "«docdisplay«endl;
system(docdisplay);

// at pharmacy display patient picture

strcpy(labdisplay,"xv -display ")
strcat(labdisplay,phardisplay);
strcat(labdisplay,":0.m ");

strcat(labdisplay paent).

strcat(labdispla" ").

str eat(labdisplayelem;
strc at(labdisplay"gif)

105

strcat(labdisplay,"& ");
cout<<"\nlabdisplay"<labdisplay <<"\n";
system(labdisplay);

// at pharmacy display doctors picture

strcpy(labdisplay,"xv -display ");
strcat(labdisplay.phar display);
strcat(labdisplay,":0 0 ")

strcat(labdisplay,"-name DR_")
strcat(labdisplay,docname)
strcat(labdisplay," ");

strcat(labdisplay, docname);
strcat(labdisplay,".gif");
strcat(labdisplay,"&);
cout<<"\nlabdisplay"«labdisplay «"\n";
system(labdisplay);

// display the record

strcpy(displayrec,"xv -display ")
strcat(displayrec ,phardisplay);
strcat(displayrec ,":0.0 ")
strcat(displa yrecelem);
strcat(displayrec,".phar");
strcat(displayrec,"& ");
cout<<\n++++++\n"«displayrec«"\n+++++++\n";
system(displayrec);

return 0;

//--------------------- ---------
void Client: :pintO{

write(wp,choice,5);

};
//--------------------- ------

void Client: :whatever(){
cout<<"\n\n WHAT EVER. \n"

};
// -------------------------- --

void Client::quit(){
cout<"\n\n bye ... \n\n";
write(,choice,5)

I4
//--------------------- ---------

int Client::Display_options(){

cout<<"\n'n\n\\n\n\nn\n\n\n\n\n\n\n\n"
cout«"\n WELCOME TO MEDNET\n";
cout«<"------------\n\n" ;

106

cout«<"\n++++++++++++++++++++++++++++++I-4-4-----}-º-F-P.--.\n";

cout«"1) add a new record \n";
cout<"2) find a record \n";
cout< "3) quit \n";
cout«"\n++++++++++++++++++++++++++++++.\n";

cout<"\n please enter your choice:
cin >> choice;
return (atoi(choice));

}

void close-up exit()

{
int serve id;
cout«"cin "«getpidO«" is killed"« endl;
cout«"\n==== finished====\n";

serverpid=atoi(server);
cout«"server pid = "<serverpid«endl;
kill(serve idSIGTERM);

exit(0);

}

void Client::add_new record)

{
struct rec *r;
char ans[30],record[30], filename[30];
long position;
r=new rec;
char append[80];

FILE *dfp, *pfp; //dfp is data file ptr; pfp is ptr file ptr.

while(I)

{
do{

cout «"Add a new record(yes/no): "; cin>> ans
if((strcmp(ans,"NO")) ==0 I (strcmp(ans,"no")) ==0 \

(strcnp(ans,"YES"))==0 (strcmp(ans,"y es"))==0)
bre k;

else cout«"\n\n\ nswer enter yes or no\a\n\n";
}while(1);
if((strcmp(ans,"NO")) ==0 I (strcmp(ans,"no")) ==0)

break;
cout<<"Soc Sec. No. : " cin >> r->ssn;
cout«"Last Name-: "; cn >» r->lname;
record[0I='\0';

pf=fopen(ptrfile,"a+");
fprintf(pfp "%s %s\n",r->lname,r-'>ssn)
fclose(pfp);

write(wp,choice,5
write(wp,r->lname,20);

107

write(wyp,r->ssn,20);

int mainmenu()

{
int select;
system("cls");
cout<"main menu\n\n\n";
cout« "1) patient records\n";
cout«"2) pharmacy\n";
cout< "3) medical lab\n";
cout«"4) quit\n"
cout«-- - -\n";
cout«"please make your selection:
cn» select
return select;

}

void patient()

{
Client cln;
int choice;
while(l)

{
choice = cln.Displ yoptions()
switch(choice)
{

case 1: cln.add_new record();
break;

case 2: cln.find();
break;

case 3: return;
case 4: cln.print();

break;
default: break

}
}

}

{
char answr:
signal(SIGINT, catchint):
signal(SIG , catchint)

sign (SIGBUS, catchint)
signal(SITERM, catchint):

system("cls")

cout<"\n WELCOME TO MEDNET PHARMACY \n"
cout<"----ae- -- --- is\n\n" ,
cout«<"please enter pharmacist's name: ;

108

cin»phar name;
cot<"\nPlease enter pharm acys display name:
cii>> phardisplay;
patiento;

}

109

lab.C

110

// lab. C
//
// LAB MODULE

#include <signallh>
#include <string.h>
#include <String.h>
#include <fstream.h>
#include <stdioh>
#include <fcntl.h>
#include "itoa.h"
#define ESC 27

char labtechname[80];
char labtechdisplay[80];

char *server;

void patien(void);
void lab(void);
void pharmacy(void);

struct rec {
char name[30];
char Iname[30];

char ssn[12];
char addr[40];
char docname[30];
char esttype[20];
char res[80];

} ;

char *datafile = "datafile"
char *ptrfile = "labptrfle"

void close upexitO

int catchint(int signum)

{
cot<<"\n**********************\"
//cout<"signal --- "<signum;

system("cls");
cout«"bye\n":
close_upexit();
exit(0);

class Client{
private:

char choice[5]
int pdr, rp //pdr: first pip to read the server, rp main pip to work with the server
int pdw ,p; //pdr first pip to write to server, wp main pip to work with the server

111

char *rdpip, *wrpip;
it tmprtmp;
char key[20];
char recname[20:
char element[20];

public:
Client(;
int add();
void add new record();
int delet();
int find();
int Display options();
void printO
void whatever();
void quit();
~Client();

Client::ClientO

{
int pid;
char tempbuf[40];
char *nexpip;
server = new char[8];

tempb 0]='\0';
if ((pdv = open("lpipl",OWRONLY)) <0){

cout«"\n\n debug2-error opening the pip1 \n\n";
exit(1);

pid=getpid()
newpip=itoa(pid):
rdpip=itoa(pid):
wrpip=itoa(pid);
strcat(rdpip,"a");
strcat(wrpip,"b");

if(mknod(rdpip. 10666,0)<0)
cout<<"\nerror mknod "« rdpip<"\n";

};
if(nod(wrpip,010666,0)<0){

cout«"\nerror nod "<<w rpip< \";

write(pdwne ip,8);

if ((tmp = open(w ipORDONLYO NDELAY))<0)
cout«"\n\ rror openning "<<rdpip<" \n'n"
exit(1);

if ((wp = open(w ip, 0 ONLYO_ NDELAY))<0){
cout«"\n\n error opening the "«wpip<" \n\n";
exit();

112

if ((rp = open(rdpip,O RDONLYIONDELAY))<0){
cout«"\n\nError openning "«rdpip<" \n\n";.
exit(l);

};

// ------------------------------- -

Client::~Client()

{
close(pdr);
close(tmp);
close(rp);
close(wp);

};
//-------------------------- --- ---

nt Client: :add()

{
cout<<"please enter the record name:
cin >> recname;
write(w ,choice,5);
write(,recname,20)
return 0;

}

// ----------------------- - -----

int Client::delet()

{
cout«"please enter the record name:
cin » recname;
write(,choice,5);
write(,recna me,20);
return 0;

};
//------- ----- ®-----------------

int Client: :find()

char answr;
char elem[20];
char recname[80];
char patient 801
char docname 801
char patientdisplay[801
char docdisplay[801;
char pdisplay [2][50];
char doctornaine[8 01;
char doctordisplay[80];
char labdisplay 801;
char ddisplay[2][50]
String key1;t
String key2;
String key3;
char displaypic[80]
char displayrec[80];

113

char *k;
struct rec *r;
long offsetposition
int i,n;
i=0;
n=0;
r=new rec;

cout«K"\nenter patient's name:

cin >> recname;
strcpy(patient, recname);

write(wp,choice,5);
write(,recname,20);
while (read(,elem,20) <0)

strcpy(recname,elem);
strcat(recname,".lab");
ifstream inFile (recnamejos:in);
inFile >> ddisplay[0];
inFile >> ddisplay1]
inFile~close();

cout«"please enter the doctor's name: ";
cin >> docname;

cout<<"please enter the doctor's display name:
c >>ddisplay[1];

strcpy(docdisplay,"xv -display ");
strcat(docdisplay, ddisplay[1])
strcat(docdisplay, ":0.0 ");
strcat(docdisplay,"-name Labtech_");
strcat(docdisplay,labtech_ name);
strcat(docdisplay," ");
strcat(docdisplaylabtech name);
strcat(docdisplay,"gif& ");
cout<"docdisplay = "<docdisplayKrendl;

system(docdisplay);

// at lab display patient picture

strcpy(labdisplay,"xv -display ");

strcat(labdisplay,labtech display);
strcat(labdisplay,":0.0 ");

strcat(labdisplay,"-name ");

strcat(labdisplay,patient);
strcat(labdisplay,"

strcat(labdisplayeler)
strcat(labdisplay,"gif")
strcat(labdisplay,& ")

114

cout<<"\nlabdisplay"<labdisplay <<"\n";
system(labdisplay);

// at lab display doctors picture

strcpy(labdisplay,"xv -display ");
strcat(labdisplay,labtech display);
strcat(labdisplay,":0,0 ");

strcat(labdisplay,-name DR_");
strcat(labdisplay,docname);
strcat(labdisplay," ");

strcat(labdisplay,docname);
strcat(labdisplay, ".gif");
strcat(labdisplay,"& ");
cout<<"\nlabdisplay"«labdisplay «"\n";
system(labdisplay);

/ display the record

strcpy(displayrec,"emacs -display ")
strcat(displayrec ,labtechdisplay);
strcat(displayrec ,":0.0 ")
strcat(displayrec,elem);
streat(disphyrec, "lab");
strcat(displayrec,"& ");
cout<<"\n++++++\n"«displayrec«' n++++++++\n"
system(displayrec);

strcpy(displayrec,"xw -display "):
strcat(displayrec,ddisplayl]);
strcat(displayrec .":0.0 "):
strcat(displayrec,elem):
strcat(displayrec,".lab");
strcat(displayrec,"& ")
coutC<"\n++++++\n"<<displayrec«"\n++++++\n";
system(displayrec):

strcpy(displayrec,"cat ")

strcat(displayrecelem),
strcat(displayrec, " lab"),
streat(displayrec." »a")
strcat(displayrec, elem);
strcat(displayrec, " rec"),
system (displavrec)

return 0;
ren0//------- ------------

void Client::printO{
write(w,choice,5);

115

};// - - - - - - -- - - - - - - -- - - - - - -------
void Client: :whatever(){

cout«<"\n\n WHAT EVER \n";

// --- -

void Client::quit(){
cout<<"\n\n bye \nn";
write(wp,choice,5);

I

// ---- - ---- - -- - -- - -- -- ----- --

int Client:: Display_options(){

cout«\\n\n\fn\n\n\n\n\n\n\n\n\n\n\n\n"

cout<"\n WELCOME TO MEDNET\n";
cout«<"'----------------\n\n,";

cout<<"\n++++++++++++++++++++++++++++++ \n"';
cout<"1) add a new record \n"
cout<"2) find a record \n";
cout«"3) quit \n";
cout«<"\n++++++++++++++++++++++++++++++ \n";

cout«"\n please enter your choice:
cin >> choice;
return (atoi(choice));

}
//-----------------------------------

void close_up_exit()

{
int serverpid
cout«"cln "<<getpid()<" is killed"« endl;
cout<<"\n==== finished====\n";

serverpid=atoi(server);
cout<<"server pid = "«serve rpid«endl
kill(serve idSIGTERM);

exit(0);

void Client::addnew_record)

{
struct rec *r;
char ans[30, record[30],filename[30];
long position;
rvnew rec;
char append[80];

FILE *dfp, *pfp; //dfp is data file ptr; pfp is ptr file ptr

while(l)
{

do{
cout «"Add a new record(yes/no): "; cin>> ans:

116

if((strcmp(ans,"NO")) ==0 | (strcmp(ans,"no")) == I \

(strcmp(ans,"YES))==o I (strcmp(ans,"yes))==0)
break;

else cout«"\n\n\aAnswer enter yes or no\a\n\n";
}while(1);
if((strcmp(ans, "NO")) == (strcmp(ans, "no")) ==O)

break;
cout<<"Soc Sec. No. cin >> r->ssn;
cout<"Last Name--: "; ci >> r->lname;
filename[]='\O';
strcat(filename, "cp templatelab ");
strcat(filename,r->ssn);
strcat(filename,".lab");
system(filename);
record[0]='\0';

strcpy(record,"emacs -display ")
strcat(record,labtech display);
strcat(record,":.O);
strcat(record,r->ssn);
strcat(record,". lab");
strcat(record,"& ");
cout« "record = "<record <endl;
system(record);

pf= fopen(ptrfile, "a+");
fprintf(pfp,"%s %s\n",r->lname,r->ssn);
fclose(pfp);

write(wpchoice,5);
write(w pr->lname.20):
write(w ,r->ssn,20);

}

//---------------------
int mainmenu()
{

int select;
system("cls");
cout«"main menu\n\n\n";
cout«" 1) patient records\n";
cout«"2) pharmacy\n";
cout<<"3) medical lab\n"
cout<<"4) qi i \n"
cout«"1 ----------------\n W
cout«"please make your selection: "
cin> select
return select;

}

void patient()

117

Client cln;
int choice;
while(1)
{

choice = cln.Displayoptions();
switch(choice)

{
case 1: clnaddnewrecord();

break;
case 2: cln.find();

break;
case 3: return
case 4: clnprint(;

break;
default: break;

}
}

mainO

{

/char doctors _name[80];

//char doctors _display[80];

char answr;
signal(SIGINT, catchint);
signal(SIGHUP, catchint);
signal(SIGBUS, catchint)
signal(SIGTERM, catchint);
systen("cls");
cout«"\n WELL COME TO MEDNET\n";
cout«<"-_-_------_----nn";

cout«"please enter lab tech. name:;
cin»lab ech_name;
cout<"\nPlease enter lab display name:
cin>> labtech_display;
patiento

}

118

dserver.C

119

// dserver.C

#include <stdio h>
#include <string.h>
#include<signal.h>
#include <String.h>
#include <fstream.h>
#include <fcntl.h>
#include "LC"
#include "itoa. h"
#define msgsize 80
struct rec {

char name [30];
char lname[30];
char ssn[12];
char addr[40];
char docname[30];
char test type[20];
char res[80];

int pdr;
int pdw;
int rp;
int wp;
int pid[2];
char inbuf msgsize];

120

II pserver.C

#include <stdio.h>
#include <string.h>
#include<signal h>
#include <Stringlh>
#include <fstream h>
#include <fcntl.h>
#include "L.C"
#include "itoa.h"
#define msgsize 80
struct rec {

char name [30]
char lname[30];
char ssn[12];
char addr[40];
char docname[30];
char testtype[20];
char res[80];

int pdr;
int pdw;
int rp;

int wp;

int pid[2];
char inb msgsize];
char *datale = "Idatafile";
char *ptrfile = "pharptrfile";
char *server;

char clnpid[80],rdpip[8 0],wrpip[80];
int tmp;
void close upexit();

/** ** ** ** ** ***********************

int catchint(int signum)
{ int clnpid;

cout«<"\n****************************\n";

cout<"signal -- "«signum;
cot«"\n***************************\n";.

closeup_exit()

exit(0);

template class keyType, class elemType>

class Dict: p ublic List kyType, elemType>{
private:

char *fname;
public:

Dict(){};

121

Dict(char *);
int add(keyType k, elemType);
elemType find(keyType k);
void delet(keyType);
void prntO;
void lookup(){};
void find(){};

void operator[(){};
~Dict(){

//------------------

// Dict(filename)
//------a---------------

template <class keyType, class elemType>
Dict<keyType, elem Fype>: :Dict(char *ptrfile)
{

keyType key ;
elemType elem;

ifstream iile (pt ile ,ios::in);
cout<"ptrfile="«ptrfile<endl;
while(!i ile.eofO){

inFile >> key;
i ile >> elem;
add(key,elern);

}
inFile.close(;

// add(keyeler)
//-----------------------

template <class keyType, class elemType>
int Dict< keyType. elemType>: :add(k yType k keyType e){

tree = insert(k,e,tree);
return 1;

};

//display picture
//------------------- ---

void disply(char elem [)
{

int n=0;
char display[80;
char *k;
struct rec *r;

122

long offs t-position;
r=new rec;
FILE *dfp, *pfp; /dfp is data file ptr; pfp is ptr file ptr.

offset = atoi(elem);
if(offset == 0)

cout«"\n\n----\a\a record not found\n\n";
else{

dfp=fopen(dat ile,"rb");
fseek(,offset,0);
fread((char *) r, sizeof(struct rec),1 ,dfp);
fclose(d);
strcpy(display,"xv ");
strcat(display,r->name);
strcat(display," &");
cout«<"\n++++++ \n"«<display«-< "\n++++++++ \n";
system(display);

//------------------

// find(key)
//----------------------

template <class keyT e, class elemType>
elemType Dict<keyT ,pe, elemT pe>: :find(keyType k){

char *element = List<keyType, elemType>::find(k tree);
cout<<"\n before if........... .. \n";
if (element != 0){

cout«"the element of key "«k<" is "«element«endl;

//display(element);

return element;
}

else{
cout«"key "<« k <" does not exist \n";
return ("notfound");

};

};

// delet(key)
//----------- -------

template <class keyTy e, class eleinType>
void Dict<keyType, lemType>::delet(keyT ype key){

cout<<"removing "«key <endl;

remove(keytree);

//--------------------

// print(
//----------------------

template <class keyType class elemTye>
void Dict<keyTye, elemT pe>::prnt(){

123

cout«"----------------------\n";Wl
cout«"\nprinting the sorted List\n\n";

print(tree);
cout<<"---------------------\n";

printtree(tree,45);
cout«<"-------------------\n"; W'

/*** ****************** ******** ***** ***********

//- -- - --- -

tenplate <class keyType, class elemType>
int console(Dict<keyTy e, elem Type> *Djint pd){

int select;
char choice[5];
char key[20];
char elem[20];
char *element;
int quit=0;
if((read(rp,choice ,5))>0)
{ cout«choice<" ----__ \

select = atoi(choice);
sleep(l);
switch(select)

{
case : read(rp,key,20)

read(rp,elem,20);
D->add(key,elem) /add

inbuf0]='to\0';
sprintf(inbuf "%s %s n",keyelem);

write(pid[1],inbuf, msgsize);
break;

case 2 : read(rp,key,20);
element=(char *) D->find(key) I/find
write(,element, 20);

break;

case 4 cout<"parent is printing\n"; /print
D->prnt();

break;

case 5 : read(rp ,key,20);
D->delet(key); //delete

inbu 0]='\0';
sprintf(inbuf,"%s" key);

write(pid 1],inbuf,msgsize);
break;

case 6: quit = 1;

default: break;
}

124

}
return quit;

};

void set upewip(char *npip, char *rdpip, char *wrpip)

int tmp;
iut quit=0;
char *pid;

cout«"\ndebug2---the new pipe is: "«new ip«"\n";
strcpy(rdpipnewpip);
strcpy(wrpip, newpip);
strcat(wrpip, "a");
strcat(rdpip,"b");
if ((= open(wrpipO_WRONLY)) <0){

cout«<"\n-_-----\- n";

exit(l);

};

if ((rp = open(rdpipORDONLY) 0){
cout«"\n\ 1--- -- \n";
exit(1);

pid= itoa(getpid));
cout«"pid "«pid<endl;
cout«"wrpip is: "<wrpip«endl;
cout<"rdpip is : "«rdpip«endl;

}

void close up _exit()

{
close(tmp);
close(pdw);
close(rp);
close(wp);
unlink(rdpip);
uulink(wrpip);
cout<<"server "«getpid()«" is killed"« endl;
cout<<"\n==== finished===\n"
kill(atoi(clnpid),SIGTE);
exit(0);

}

main(){

it quit0;

in INTsignal();
Dict<String,String> D(ptrfile);

char command5];
char rec[60

125

char nane[60];
char ptr[60];

int cmd;
int pd;

signal(SIGINT, catchint);
signal(SIGHUP catchint);
signal(SIGBUS, catchint);
signal(SIGTERM, catchint);

ifm nod("ppip1",010666,0)<0){
cout«"\nnknod pip1 \n";

if(mknod("ppip2",010666,0)<0){
cout«"\ni nod pip2 \n";

}
if ((tmp = open("ppip2"

if((pdw =opcn("i p2" ,0

cout«<"\n----------\n1";

exit(1);

if ((pdr opn 1"ppip,0

cout«"\n-------2\n";

exit(1);

RDONLYIONDELAY))<o){

_WRONLYIO_NDELAY))<0){

RDONLY))<0){

while(1)

if((read(pdr,clnpid,5))>0)
if((pd-forkO)==0) //child
{ cout<"new server "«getpid()<<" created"< endl;

set up_newpip(clnpid, rdpip,wrpip);
while(!quit)

quit = console(&D ,rp)
close_upexit();

}
else if(pd <0)

cout<< "error forking ac ne child \n";
else if(pd>0)

cout«"parent-An";

126

pserver.C

127

128

// pserver.C

#include <stdio.h>
#includ <string.h>
#include<signal.h>
#include <String.h>
#include <fstream, h>
#include <fcntl h>
#include "L C"
#include "itoa.h"
#define msgsize 80
struct rec {

char na me[30];
char name[30];

char ssn[12];
char addr[40];
char docname[30];
char test-type[20];
char res[80];

int pdr;
int pdw;
int rp;

int wp;

int pid[2];
char inb msgsize]

char *datafile = "ldatafile";
char *ptrfile = "pharptrfile";
char *server;

char cinpid[80],rdpip[80],w ip[80];
It tmp;

void close upexit(;

int catchint(int signum-)
{ int clnpid;

cout<<"signal -- «<signum;

close up_exit()

exit(0);

template <class keyType class elemType>

class Dict: public List<keyType, elemType>{
private:

char *fname;
public:

Dict({}

129

Dict(char *);
int add(keyType k, elemType);
elemType find(keyType k);
void delet(keyType);
void prnt();
void lookup(){
void find(){};

void operator[](){};
~Dict(){};

};

// Dict(filename)
// -------------------

template <class keyTy e, class elemType>
Dict<keyType, ele Type>::Dict(char *ptrfile)
{

keyType key ;
elemType elem ;

ifstream inFile (ptfileios::in);
cout<"ptrfile= "«ptrfile« endl;
while(!i ile.eof(){

inFile >> key;
inile >> elem
add(keyelem);

I
i ile.close()

};

/---
// add(keyelem)

template <cass keyType class elemType>
int Dic <keyType. elemType> ::add(keyType k. key17ype e){

tree = insert(k,e,tree)
return 1;

};

/display picture
//-----------------------

void disply(char elem[])
{

int ni=0;
char display[80];
char *k;
struct rec *r;

130

ong offsetposition;
r=new rec;
FILE *dfp, *pfp; //dfp is data file ptr; pfp is ptr file ptr.

offset atoi(elem);
if(offset == 0)

coit<"\n\n----\a\a record not found\n\n"
else

dfp=fopen(datafile,"rb");
fseek(p,offset,0);
fread((char *) r, sizeof(struct rec),1,);
fclose();
strcpy(display,"xv ")
strcat(display,r->name);
strcat(display," &");
cout«"\n++++++\n"<<display«"\n±++±++ \n";
system(display);

}
};

//----------------------
// find(key)
//-----------------------

template <class keyType, class elemType>
elemType Dict keyType, elemType>: :find(keyType k){

char *element = List<keyType, elemType>::find(ktree);
cout«"\n before if-.......-\n";
if (element != 0){

cout<"the element of key "«k«" is "«element<<endl;

//display(element);

return element;

else{
co «"key "< k «" does not exist \n";
return ("notfound");

// delct(key)
//-----------

template <class keyType, class lemType>
void Dict<keyType, elemType>: :delet(keyType key){

cont<<"removing "«key«endl;
remove(key,tree);

};
//---------------------

// printO
//----------------------

template <class keyType, class elemType>
void Dict<keyType, elemType>::prnt(){

131

cout«<"----------------------
\n"°;

cout<<"\nprinting the sorted List\n\n";
print(tree);

printtree(tree,45);
cout«" ----------------------- \n",

//i***********************************

// -----------------------------

template <class keyType, class elemType>
int console(Dict<keyType, elemType> *D,int pd){

int select;
char choice[5];
char key[20];
char elem [20;
char *element
int quit =0;
if((read(rp,choice,5))>0)
{ cout«choice«" --- \n"

select = atoi(choice);
sleep(1);
switch(select)

{
case 1: read(rpkey,20);

read(rp ,elem ,20);
D->add(keyele m) //add

inbf 0]='\0';
sprint f(inbuf, ""s %s\n",key, elem);

write(pid[linbufmsgsize),
break;

case 2 : read(,key,20);
element=(char *) D->fid(key); /find
write(p,element,20);

break;

case 4 : cout«"parent is printing\n"; /print
D->prnt();

break;

case 5 : read(rpkey,20);
D->delet(key) /delete

inbuf[0]='\0'
sprintf(inbuf "%s",key):

write(pid[iiinbufmsgsize);
break;

case 6: quit = 1;

default: break;

}

132

return quit;
};

void set upnew ip(char *ne ip , char *rdpip, char *wrpip)
{

int tmp;
int quit=;
char *pid;

cout<<"\ndebug2--the new pipe is: "«new ip<«"\n";
strcpy(rdpip ,newpip);
strcpy(wrpipne ip);
strcat(wrpip ,"a");
strcat(rdpip, b");
if ((= open(wrpip,0 _ ONLY)) <0){

exit(1);

if ((rp = open(rdpip,0 RDONLY))<0){
cout«"\n\n---- -- I \n";
exit(1);

pid= itoa(getpid());
cout<«"pid "<pid«endl;
cout«"wrpip is: "«wrpip«endl;
cout<"rdpip is : "<rdpip«endl;

}

//------------------------
void close up exit()

{
close(tmp);
close(pdw);
close(rp);
close();
unlink(rdpip);
unlink(wrpip);
cout«"server "«getpid«" is killed"< endl;
cout«"\n==== finished====\n";
kill(atoi(cinpid),SIG FERM);
exit(0);

}

main({

int quit0;

int INT signal();
Dic <StringString> D(ptrfile);

char command[5];
char rec[60;

133

char name[60];
char ptr[60];

int cmd;
int pd;

signa(SIGINT, catchint);
signal(SIGH , catchint);
signal(SIGBUS, catchint);
signal(SIGTER, catchint);

if(mknod("ppip1",010666,0)<0){
cout<"\nmknod pip I \n";

if(nod("ppip2",010666,0)<0){
cont«"\nmknod pip2 \n";

if ((t p = open("ppip2",ORDONLYONDELAY))<0){
cout«<"\n------------

\n";xt()exit(1);

if ((pdw = open("ppip2",_WRONLYIo_NDELAY))<0){
Cout«<"\n-------a----\n";.

exit(1);

if ((pdr = open("ppipl",0_RDONLY))<0){
cout«<"\n---------2\n"

exit(1);
};

while(1)

{
if((rcad(pdr,clnpid,5))>0)

if((pd=fork())==0) /child
{ cout«"new server "«getpid()«" created"< endl;

set up_newpip(clnpid, rdpipwrpip);
while(!quit)

quit = console(&D,rp);
close_upexit();

}
else if(pd <0)

cout<< "error forking a new child \n"
else if(pd>0)

cout«"parent....\n";

134

lserver.C

135

// Iserver.C

#include <stdio.h>
#include <string.h>
#include<signal.h>
#include <String.h>
#include <fstream.h>
#include <fcntl.h>
#include "L.C"
#include "itoa.h"
#define msgsize 80
struct rec {

char name[30];
char Iname[30];
char ssn[12];
char addr[40];
char docname[30];
char testet e[20]
char res[80];

int pdr;
int pdw

int rNp;
ilt wp;
int pid(21;
char inbu [msgsize]
char *data ile +"1data ie
char *pt rile = "labpt fle;
char *server;

char clnpid 80],rdpip[80] ,w rpip[80];
in tmp;
void close up exitO;

int catchint(int signum)
{ int cInpid;

cout«"\n**** ************************\n";

cout<<"signal --- "«signum;

cout«<"\n*****#*********************\n";

close upexitO;
return(0);

template <class keyType, class elemType>

class Dict: public List<keyType, elemType>{
private:

char *fnamc;
public:

Dict({}

136

Dict(char *);
int add(keyType k, elemType);
elemType find(keyType k);
void delet(keyType);
void prnt();
void lookup(){ };
void find(){ };

void operator[(){;
void &operator[](){};

~ict(){}I;

};

/ Dict(fiename)

template <class keyType, class elemType>
Dict<keyTy e, elemType>::Dict(char *pt ile)
{

keyType key;
elemType elem;

ifstream i ile (ptrfileios::in);
cout<"ptrile="<<ptrfilc« ndl
while(!i ile.eof()){

inile >> key;
inFile >> elem;
add(keyelem);

}
inFile-closeO;

//
// add(key elem)
// - - - - - -
template <class keyType, class elemType>
int Dict<keyType, elem Type>: :add(keyType k, keyType e){

tree = insert(k,e,tree);
return 1;

};

//display picture

void disply(char elem[])

int n=0;
clar dispIay[80];
char *k;

137

struct rec *r;
long offsetposition;
r~new rec;
FILE *dfp *pfp; //dfp is data file ptr; p is ptr file ptr.

offset = atoi(elem);
if(offset == 0)

cout«"\n\n-----\a\a record not found\n\n";
else{

dfp=fopen(dat file,"rb");
fseek(poffset,0);
fread((char *) r, sizeof(struct rec)1,);
fclose(d);
strcpy(display,"xv ");
strcat(display,r->name);
strcat(display," &");
cot«"\n++++++\n"«display«"\n++++++++\n";

system(display)
}

// --------
// find(key)
//-------------------
template <class keyType class elemTy e>
elemT e Dict<keyType elemType>: find(keyType k){

char *element = List<keyType, elemType>:;find(ktree);
cout<"\n before if ..-...... \n";
if (element != O){

cout<"the element of key "«k«" is "«element«endl;

//disply(element);

return element;

else{
cout«"key "<< k <<" does not exist \n"
return ("notfound")

}

// delet(key)
//--------------- -------

templa e <class keyType, class elemType>
void Dict<key Type, elemType>::delet(keyType key){

cout<<"removing"<<key <endl;
remove(key,tree);

};
//-----------------

// printO
// ------------
templ te <class keyType, class elemType>

138

void Dict keyType lcnType>::prntO){

cout«<" ------------------- \n";W
cout<"\nprinting the sorted List\n\n";

print(tree);

printtree(tree,45);
cout<« "------------- \n"

template <class keyType, class elenType>
it console(Dict<keyType, elemType> *D,int pd){

it select;
char choice[5];
char key[20];
char elem[20];
char *element ;
int quit=0;
if((read(rphoice ,5))>0)
{ cout«choice« ________ _ \n"

select = atoi(choice);
sleep(1);
switch(select)

{
case 1 : read(rp ,key 20);

read(rp,elem,2 0);
D->add(key,elem); /add

inbuf[0]=\0';
sprintf(inbuf,"%s %s\n",key,elem);

write(pid 1],inbufmsgsize);
break;

case 2 : read(,key,20)
element=(char *) D->find(key); //find
write(wp, element ,20);

break;

case 4 : cout<"parent is printing\n" //print
D->prnt();

break;

case 5 : read(rp,key,20);
D->delet(key); I/delete

inbuf 0]='\0';
sprintf(inbf ,"%s",key);

write(pid[1],inbuf msgsize);
break;

case 6 quit = 1;

default: break;

139

}

return quit;
};
//--------------------

void set up_new'pip(char *newip , char *rdpip, char *wrpip)

int tmp;
int quit=;
char *pid;

cout«"\ndebug2---the new pipe is: "<newpip«"\n",
strcpy(rdpipnew ip);
strcpy(wrpipnewxpip);
strcat(wrpip, "a");
strcat(rdpip "b);
if ((= open(wrpip,0 _WRONLY)) <0){

cout«"\n ------ \n";
exit(1);

};

if ((rp = open(rdpip, _RDONLY))<O){
cout«"\n\nError opening the "<rdpip«" \n";
exit(I);

};
pid= itoa(getpid());

cout«K"pid "<pid<endl;
cout«"wrpip is: "«wrpip«end ;
cout<"rdpip is: "<rdpip«endl;

}

//-----------

void closeupexit()
{

close(tmp);
close(pdw);
close(rp);
close();
unlink(rdpip);
unlink(wrpip);
cout«server "«getpid()«"' is killed"k end1;
cout<<"\n==== finished====\n";
kill(atoi(clnpid),SIGTERM);
exit(0);

}

main(){

int quit=0;

mt INT signal)
Dict<String-String> D(ptrfile);

char commrand[5];

140

char rec[60];
char name[60];
char ptr[60];

int cmd;
int pd;

signal(SIGINT, catchint);
signal(SIGHUP, catchint);
signal(SIGBUS, catchint);
signa(SIGTERM, catchint);

if(mknod("1pip1",010666,0)<0){
cout<<"\n mknod pip1 \n";

};
if(mknod("lpip2",010666,0)<0){

cout«""\n rnknod pip2 \n"
};

if ((tmp = open("lpip2", RDONLYONDELAY))<0){
cout<<"\n-----_--n";-

exit(1);

if ((pdw = open("lpip2 "O_WRONLYONDELAY))<0){
cout«"\n\n ------- \nin";
exit(1);

};

if ((pdr = open("lpipl",0_RDONLY))<0){
cout«"\n\nError openning pipl \n\n";
exit(1);

};

while(1)

{

if((read(pdrcnpid,$))>0)
if((pd=forkO)==0) /child
{ cout<<"new server "<getpid()<" created"«< endl;

stup_ne ip(clnpid, rdpip,wrpip);
while(!quit)

quit = console(&D ,rp);
closeupexit();

}
else if(pd <0)

cout« "crror forking a new child \n"
else if(pd>0)

cout<<"parent An";

141

dstart.C

142

#include <stdio h>
#include stringh>
#iclude <signal 1>
#include <Stringh>
#include <fstream h>
#include fntlh>

void closeup_exit();

int catchint(int signum)
{/s ystem("cls");
exit(0);

//************************** ******* ** * ** *

void main)

{
int pid;
int i;
char st[100][100];
char str[80],strnl[80],strn2[80];
signal(SIGINT, catchint);
signal(SIGHUP, catchint);
signal(SIGBUS, catchint);
signal(SIGUSR1, catchint);
signal(SIGTERM, catchint);
signal(SIGQUIT, catchint);
signal(SIGKILL, catchint);
system("cls");
cout«<"\n connecting to main server \n\n"
pid=fork();

if (pid== -1)
cout<< " something wrong\n"

if (pid>0){ // parent
while(1)

system("ping a on>tpf");
ifstream inFile ("tpf",ios::in)
i ile >> str ;
inFile >> strn1
inFile >> strn2 ;
inFile.close(;
//coutK tr«strn1« .strn2«<endl;
if ((strcmp(strno"))0) {

kill(pid,SIGUSR1);

exec1("dstartb ",startb",(char *)0);

}

if (pid 0) // child
{ //cout«"at child pid-= "«getpid()«\n"

143

systm("rsh isdn doct or cheetah:0.0");

}

144

dstartb.C

145

#include <stdio.h>
#incl de <string.h>
#include<signal.h>
#include <String.h>
#include <fstream.h>
#include <fentl.h>
void close up exitO

int catchint(int signum)
{

exit(0);

}

void main()

{
int pid;

int i;

char st[100][100]
char str[80],strnl[80], strn2[80];
signal(SIGINT, catchint);
signal(SIGHUIP, catchint);
signal(SIGBUS, catchint);
signal(SIGUSRI, catchint);
signal(SIGTERM, catchint);
signal(SIGQUIT, ctchint)
signal(SIGKILL, ctchint)
system("cls")
cout«"\nconnecting to backup server
pid-fork();

if (pid== -1)
cout< something wrong\n";

if (pid>0){ // parent
while(1){

system("ping isdn>tpf")
ifstream inFile ("tpf" ios::in);
inFile >> str ;
inFile >> strnl
inFile >> strn2;
inFile.close(
//cout<<str«strn «strn 2<ndl;
if ((strcmp(strno"))==0) {

kil (pid,SIGUSR I);
execl("dstart","dstart",(char *)0)

}

if (pid ==0) // child
{ //cout«"at child pid= K«getpid()«\n"

system(rsh isdn doctor chetah:00");

146

	Florida International University
	FIU Digital Commons
	11-22-1994

	Fault tolerant Medical Network (MEDNET)
	Hamid Ghassemi
	Recommended Citation

	tmp.1554498865.pdf.BGQv2

