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Episodic disturbances drive nutrient dynamics along
freshwater-to-estuary gradients in a subtropical wetland
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Abstract. Wetlands are biogeochemically active ecosystems where primary production and respiration
interact with physico-chemical conditions to influence nutrient availability across spatio-temporal scales.
The effect of episodic disturbances on water quality dynamics within wetlands is relatively unknown,
especially in large oligotrophic wetlands such as the Everglades. We describe a range of episodic distur-
bance events and their impacts on the spatio-temporal dynamics of surface water total N (TN) and total P
(TP) concentrations in the Everglades as a means to understand their effect and legacies. Water quality
monitoring along the two principal drainages—Taylor Slough (TS) and Shark River Slough (SRS)—has
been ongoing since 2000, spanning myriad disturbances ranging from high-energy storms such as Hurri-
cane Wilma in 2005 to a record cold event in 2010 and large fires. Local events include pulsed rainfall, low
marsh stage, and stage recession and recovery (i.e., droughts and subsequent dry-to-wet transitions).
The deposition of marine-derived sediment from Hurricane Wilma corresponded with a doubling of TP in
SRS mangrove sites (from 0.39 to 0.84 lmol/L) before recovering to pre-disturbance mean after 5–6 yr. A
brief increase in TP within one week of the 2010 cold event was followed by delayed spikes in TN
(>1000 lmol/L) and TN:TP exceeding 5000 after one month. In 2008, a large fire in upper SRS prior to the
wet season caused a lagged TP pulse at downstream locations SRS2, SRS3, and possibly SRS4. TP also var-
ied negatively with depth/stage in marsh sites and positively with salinity in estuarine sites, reflecting
physical concentration or dilution effects. In upper TS, TP varied according to extremes such as high rain-
fall and low stage relative to normal conditions. Although excess P in the Everglades is generally derived
from anthropogenic upland or natural marine sources, episodic disturbance mobilizes internal sources of
nutrients along an Everglades freshwater-to-estuary continuum, affecting water quality from days to years
depending on disturbance type and intensity. The capacity for resilience is high in coastal wetland ecosys-
tems that are exposed to high-energy tropical storms and other episodic events, even in the highly man-
aged Florida Everglades.

Key words: cold spell; disturbance; episodic events; Everglades; fire; high-energy storms; internal loading; mangrove;
marsh; nitrogen; peat soil; phosphorus; Special Feature: High-Energy Storms.
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INTRODUCTION

Wetlands are biogeochemical hotspots that
serve as sites of intense nutrient uptake or trans-
formation (McClain et al. 2003, Lindau et al.
2008). As periodically flooded or saturated envi-
ronments, conditions at the interface of aerobic
and anaerobic boundaries provide distinct gradi-
ents in redox and elemental concentrations that
can influence soil–water column exchanges and
ultimately the availability of ecologically impor-
tant elements such as nitrogen (N) and phospho-
rus (P; see Mitsch and Gosselink 2000 for
overview). Combined with plant productivity
and capacity for high nutrient uptake and seques-
tration, these characteristics of wetlands account
for their frequent use in the treatment of wastew-
ater, stormwater, and agricultural runoff (Mitsch
and Gosselink 2000, Kadlec and Wallace 2009).

The concept of hot moments is also exempli-
fied by wetlands (McClain et al. 2003). Processes
that affect nutrient uptake, release, or transfor-
mation vary seasonally with temperature and
rainfall or runoff (Spieles and Mitsch 2000, Her-
nandez and Mitsch 2007), chronically over time
with presses of land-use change, or episodically
with disturbances such as high-energy storms
that lead to pulses in nutrient input or transfor-
mation (Davis et al. 2004, Shipley et al. 2013,
Palta et al. 2014). The net effect is often observed
as high spatial and temporal variability in water
quality or nutrient fluxes. These effects can be
short-lived and local or the signal can persist
from weeks to years, spanning an entire ecosys-
tem (McClain et al. 2003), and events or combi-
nation of events (e.g., high-energy storms) can
account for a significant portion of net annual
flux of water and materials to the estuary (Davis
et al. 2004).

The concepts summarized by McClain et al.
(2003) and advanced by others (Shipley et al.
2013) motivated our questions about distur-
bance-mediated nutrient dynamics across the
Florida Everglades, a large flowing subtropical
wetland complex. By combining information
about upland and marine end-member contribu-
tions with an understanding of the drivers of
those contributions and the rates of biogeochemi-
cal processing at locations between those end-
members, we can then understand water quality
variability and its biological consequences over

space and time. As an oligotrophic P-limited
ecosystem, the Everglades is vulnerable to P
enrichment from upland agricultural and canal-
derived sources (Noe et al. 2001, Gaiser et al.
2006). Consequences of these nutrient sources on
Everglades habitat are loss of periphyton mats
(Gaiser et al. 2006), chronic enrichment of soil P
(Osborne et al. 2014), and vegetation shifts from
sawgrass (Cladium jamaicense) marsh and wet
prairies to monotypic stands of invasive yet
native cattail (Typha domingensis; Newman et al.
1996, Surratt et al. 2012).
P is rapidly sequestered in the Everglades by

plant, microbial, soil-floc components (Noe et al.
2003), and various biogeochemical processes can
result in the return of nutrients to the water col-
umn with local or downstream transport (Ensign
and Doyle 2006, Leigh et al. 2016). Based on
observations of historic surface water quality
data, sequestered nutrients in Everglades wet-
lands are vulnerable to episodic disturbance
events such as tropical storms and frontal pas-
sages (Sutula et al. 2003, Abtew and Iricanin
2008), seasonal hydrology (Davis et al. 2003,
Sutula et al. 2003), short duration, high-volume
precipitation (Williams et al. 2008), and shallow
water levels (Zapata-Rios et al. 2012). The combi-
nation of peat fire and marsh re-hydration is also
effective at mineralizing and mobilizing nutri-
ents (Wu et al. 2012).
Given the importance of N and P to the Ever-

glades and its coastal waters (Fourqurean et al.
1992, Childers et al. 2006), there is a need to char-
acterize the role of various drivers in affecting
the availability and downstream transport of
these ecologically important elements. Routine
water quality sampling by the Florida Coastal
Everglades Long-Term Ecological Research (FCE
LTER) program provides an important dataset
for understanding sources of limiting nutrients,
particularly from marine-derived surface and
groundwater (Childers et al. 2006, Price et al.
2006). These long-term data have been important
in understanding intra- and inter-annual patterns
in P and N availability (Childers et al. 2006, Koch
et al. 2012), net exchange of nutrients from fresh-
water-to-estuary (Davis et al. 2009), and the
potential impact of flow restoration (Koch et al.
2012, Brice~no et al. 2014, Dessu et al. 2018).
The prevalence of large-scale episodic distur-

bances such as high-energy storms and fire in the
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Everglades (Smith et al. 1994, 2015, Davis et al.,
in press) warrant consideration in terms of effects
on nutrient mobilization and transport. Conse-
quently, a synthesis is needed to advance under-
standing of how Everglades water quality is
driven by episodic disturbance events and cli-
matic extremes. We focused on water quality
shifts associated with four discrete events: two
hurricanes, a record cold spell, and a large
upstream wildfire. We also investigated the
response of surface water P to seasonal transi-
tions from a drying marsh to re-hydration as well
as short duration, high-volume precipitation,
and extreme lows in marsh water level (i.e.,
stage) along a spatial cluster of sampling sites.
Our objective was to utilize high frequency,
long-term water chemistry data along freshwa-
ter-to-estuary gradients to test for the impact of
disturbance on water quality change and the
capacity for resilience in the highly managed
coastal Everglades. We anticipated that episodic
disturbance and extreme climatic events would
alter nutrient concentrations relative to long-term

means for each site and that processes such as
rainfall, sediment deposition, and organic matter
mineralization would all be important in driving
concentration change. However, we were uncer-
tain as to the timing, magnitude, duration, and
spatial extent of water quality responses. We
anticipated that certain events might elicit differ-
ential responses of N relative to P in water qual-
ity signals over scales of space and time.
Therefore, a more refined goal of this study is to
understand whether these events have sustained
or far-reaching water quality impacts along the
freshwater-to-estuary axis in the Everglades.

METHODS

Site description
The FCE LTER program was established in

May 2000 and primarily occurs within the
bounds of Everglades National Park (ENP;
Fig. 1), an area of remnant Everglades down-
stream of the water conservation areas. Water
flow is actively managed between these areas,

Fig. 1. Map (left panel) of Everglades National Park (ENP) and water quality sampling sites (open circles)
along Shark River Slough (sites SRS1–6) and Taylor Slough (sites TS1–3, 6 & 7), part of the Florida Coastal Ever-
glades Long-Term Ecological Research (FCE LTER) Program. Sites TS1–TS3, TS6, and TS7 are synonymous with
TS/Ph1–TS/Ph3, TS/Ph6, and TS/Ph7 in the FCE LTER dataset. Map at right provides close-up views of Taylor
Slough including freshwater sites TS1–TS3 and additional ENP sampling stations (TSC, S332, UTS.1, UTS.2, and
TSB) in the expanded view of Upper Taylor Slough. Locations of stage and rainfall gages on maps are indicated
by shaded triangles and black squares, respectively.
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ultimately resulting in a free-flowing condition
once water is introduced into Shark River Slough
(SRS) or Taylor Slough (TS) of ENP. Since its
inception, the FCE LTER program has focused
research efforts on understanding the interaction
between end-member nutrient sources, water
management (including Everglades restoration
efforts), and climate change in affecting ecologi-
cal processes such as primary production and
carbon exchange along the ecotone spanning
from freshwater marshes and sloughs, at the
upstream end, to estuarine mangroves and sea-
grass meadows at the interface of the Gulf of
Mexico. These areas are also influenced by differ-
ences in flow and water delivery between the
wet season (typically lasting from May through
October) and dry season (from November to
April).

A key component of the FCE LTER program is
a water quality monitoring program that tracks
changes in surface water total nitrogen (TN) and
total phosphorus (TP) over time through the two
major flow paths in ENP. SRS is the largest flow
path for freshwater through ENP, receiving sur-
face water inflow primarily from the water con-
servation areas and conveying it southwest
toward the Gulf of Mexico and western Florida

Bay. Sampling sites in SRS are spaced from canal
inputs of freshwater at Tamiami Trail to a man-
grove site near the mouth of Shark River and the
Gulf of Mexico (Fig. 1, Table 1). TS extends from
the L31W canal down to Florida Bay. Direct dis-
charges into upper TS (UTS) ceased in 1999, coin-
cident with modifications in the headwater that
promote surface and subsurface water move-
ment into the slough, which was linked to down-
ward trends in total phosphorus in UTS (Surratt
et al. 2012, Kotun and Renshaw 2014). Presently,
the L31W canal and associated retention ponds
convey water from more northern portions of the
Everglades into the headwater of UTS, and it is
part of a canal network supporting a hydrologic
barrier on the eastern boundary of the Park with
the objective of preventing eastward seepage of
water out of the marsh. These management fea-
tures have also increased hydroperiods in UTS
(Surratt et al. 2012).

Data sources and analyses
Water quality samples were collected at each

site using ISCO auto-samplers containing 24 1-L
bottles. Until December 2006, water at all FCE
LTER sites was sampled by programming auto-
samplers to take composite samples once every

Table 1. List of water quality sampling locations associated with Florida Coastal Everglades Long-Term Ecologi-
cal Research (FCE LTER) and Everglades National Park–Florida International University (ENP, FIU), including
date of sampling initiation and habitat description for each site.

Site Program Sampling initiated Habitat description

SRS1† FCE LTER 1 December 2000 Freshwater marsh
SRS2 FCE LTER 19 November 2000 Freshwater marsh
SRS3 FCE LTER 17 November 2000 Freshwater marsh
SRS4 FCE LTER 31 October 2000 Estuarine mangrove
SRS5 FCE LTER 31 October 2000 Estuarine mangrove
SRS6 FCE LTER 31 October 2000 Estuarine mangrove
TS1† FCE LTER/ENP 10 December 1999 Freshwater marsh
TS2 FCE LTER/ENP 29 July 1999 Freshwater marsh
TS3 FCE LTER/ENP 29 July 2001 Freshwater marsh
TS6 FCE LTER/ENP 28 May 1998 Estuarine mangrove
TS7 FCE LTER/ENP 7 April 1996 Estuarine mangrove
TSC ENP, FIU 3 October 2010 Canal
S332 ENP, FIU 29 March 2003 Tailwater of structure
UTS.1 ENP, FIU 21 July 2011 Freshwater marsh
UTS.2 ENP, FIU 4 July 2011 Freshwater marsh
TSB SFWMD 29 October 1985 Freshwater marsh

Note: SRS, Shark River Slough; TS, Taylor Slough.
Sites TS1–TS3, TS6, and TS7 are synonymous with TS/Ph1–TS/Ph3, TS/Ph6, and TS/Ph7 in the FCE LTER dataset. See relative

locations on map (Fig. 1).
† Sites have been re-positioned due to changes in water management or restoration actions.
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3 d. These samples were a composite of four 250-
mL subsamples drawn every 18 h (a scheme that
captures a dawn, noon, dusk, and midnight sam-
ple in every three-day composite). Beginning in
December 2006, freshwater marsh sites (SRS1,
SRS2, SRS3, TS1, TS2, and TS3) were sub-
sampled at 36-h intervals, with four 250-mL sam-
ples composited into a single 1-L bottle reflecting
6 d of integrated water quality. Estuarine sites
(SRS4, SRS5, SRS6, TS6, and TS7) remain on a 3-
d sampling interval, reflecting the higher degree
of temporal variability at sites with a tidal influ-
ence. TS sites are synonymous with Taylor
Slough–Panhandle (TS/Ph) sites in the FCE LTER
dataset. We did not consider any FCE LTER Pan-
handle sites and hence the use of TS only.

A smaller, companion program in UTS tracks
the spatial and temporal variability of water qual-
ity across a cluster of sites from the canal input
source to the Taylor Slough Bridge (TSB) and
includes TSC, S332, UTS.1, and UTS.2 (Fig. 1 and
Table 1). The TSB site is a long running station
with a history of sampling by the South Florida
Water Management District (SFWMD) since the
1980s. Data for this site are stored on DBHYDRO
(https://www.sfwmd.gov/science-data/dbhydro).
Samples for this station are collected by the ENP
staff and analyzed by the SFWMD’s laboratory.
Samples for the remaining stations were collected
and analyzed by the Southeast Environmental
Research Center’s Water Quality Laboratory at
Florida International University as part of agree-
ments with the ENP. All FCE LTER and ENP-FIU
water quality samples are retrieved every 3–
4 weeks and analyzed for concentrations of TP,
TN, and salinity. TP is analyzed with a modified
Solorzano and Sharp (1980) technique. TN is mea-
sured with an ANTEK 7000N elemental analyzer
(Frankovich and Jones 1998), and salinity is mea-
sured with an YSI conductivity meter.

Rainfall and stage data were downloaded from
EDEN (see: https://sofia.usgs.gov/eden/) and
DBHYDRO. We considered stage data from sites
NESRS2 and P33 (see Fig. 1) as a proxy for
marsh stages along the freshwater sites of SRS
and as an indicator of head-driven flow from the
freshwater segment of the SRS transect into the
estuarine segment. For characterization of rain-
fall conditions in UTS, an average of daily rain-
fall at stations S177 and S18C (Fig. 1) was
summed over five days to generate time series.

For the purposes of comparison, we define
“high” rain as any rainfall event that exceeds
10.2 cm (4 inches) within five days. Rainfall
below this was considered to be within the
normal range of conditions. Stage data from
NP-NTS1 (Fig. 1) were used to represent water
levels from across the TS study area. For the pur-
poses of comparison, low stage is less than the
25th percentile of the period of record stage dis-
tribution; anything greater is considered to be
within a normal range of marsh stage.
Between 1926 and 2014, the coastal Ever-

glades experienced 18 hurricane landfalls, 21 yr
with drought, and 15 yr with a severe cold
event (as defined by Boucek and Rehage 2014,
see Davis et al., in press). The discrete events
included were the most extreme or best repre-
sentations of their type. Two hurricanes affected
the Everglades in 2005. Hurricane Wilma struck
the southwest coast of Florida near SRS6 on 24
October 2005 as a Category 3 storm bringing
both storm surge and a load of marine-derived
carbonate sediment (Casta~neda-Moya et al.
2010). Two months prior, on 25 August 2005,
Hurricane Katrina crossed South Florida as a
Category 1 storm. A record cold spell affected
all of south Florida in 2010 from January 2 to 13,
leading to substantial fish mortality in the
marsh and defoliation of many trees, especially
mangroves (Boucek and Rehage 2014, Boucek
et al. 2016, Danielson 2016). Beginning on 14
May 2008, the Mustang Corner fire ignited,
burning nearly 16,000 ha of marsh between
SRS1 and SRS2 before the onset of wet season
rains helped to subdue the fire one month later
(Ruiz et al. 2010). Finally, we have observed a
few distinct instances of the transition from con-
tinual marsh stage recession to re-wetting in the
summer of 2006 and again in the winter of 2015,
the latter following an extended drought.
Concentrations of TN and TP (hereafter [TN]

and [TP]) at each site were depicted using box and
whisker plots. Box and whisker plots were also
used to depict year-to-year change in aggregated
[TP] from all SRS estuarine sites combined. Means
were compared across sites (all sites, [TN] and [TP])
and across years (SRS estuarine sites, [TP]) using
analysis of variance (ANOVA) and Tukey’s honest
significant difference (HSD) to determine signifi-
cant differences among sites and years, respec-
tively. To document and describe event-driven
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changes in [TN] and [TP] in surface water, we
plotted time series of water quality relative to the
aforementioned events and corresponding
hydrologic shifts. We describe deviations in water
quality relative to the long-term means for each
site.

In our evaluation of TS water quality relative
to extremes in rain and stage, we tested the dif-
ference between sampling events when episodic
events occurred versus conditions when neither
of the identified episodic events occurred using
Wilcoxon rank sum test. Tests were applied by
station between three basic environmental condi-
tions under which samples were collected: high
rainfall versus normal rainfall conditions; low
stage versus normal stage conditions. In

addition, we analyzed differences between two-
factor combinations (rainfall 9 stage) at each sta-
tion to understand interactions. We performed
Spearman’s correlation test to quantify associa-
tions between station-specific rainfall or stage
and surface water [TP].

RESULTS

Long-term patterns of [TN] and [TP] along the
SRS transect are inversely related to one another
(Fig. 2). At the freshwater end, [TN] was highest
at SRS2 (averaging 71.3 lmol/L � 57.9 SD) and
[TP] lowest at SRS2 (averaging 0.24 lmol/L �
0.26 SD). At SRS6, [TN] declined significantly to
37.3 lmol/L � 18.1 SD, while [TP] increased to

Fig. 2. Box and whisker plots of surface water total nitrogen (TN) and total phosphorus (TP) concentrations
(in lmol/L) in and along Shark River Slough (SRS; left plots) and Taylor Slough (TS; right plots) transects. Boxes
represent the inter-quartile range (25th and 75th percentiles), whiskers represent deciles (10th and 90th percentiles),
notches depict the 95% confidence interval, and horizontal lines indicate the median. Sites along a transect that share
alphabetic notations are statistically indistinguishable (ANOVA, Tukey’s honest significant difference, P < 0.05).
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1.01 lmol/L � 0.92 SD—more than four times
the long-term mean at SRS2. Along the TS tran-
sect, no inverse correlation exists between [TN]
and [TP], and much less variation characterizes
long-term mean concentrations from the fresh-
water end-member to marine end-member, with
only a slight increase in both [TN] and [TP] noted
at sites TS6 and TS7 relative to the freshwater TS
sites. In fact, TS6 exhibited significantly higher
[TN] and [TP] relative to the freshwater sites
along the TS transect. However, the range of
[TN] and [TP] at TS7 fell in between the ranges
observed at TS3 and TS6 and was not signifi-
cantly different from either (Fig. 2). When con-
sidering each event’s impact on water quality (in
sections below), we used long-term averages for
both SRS and TS sites as reference points.

High-energy storms
Hurricane Katrina crossed over South Florida

from east to west on 25 August 2005, producing
a 3-d rainfall total of 23.7 cm in ENP. The result-
ing effect on water quality at most FCE LTER
sites was minimal, aside from increased runoff
into the mangrove ecotone that lowered salinity
at TS6 from 19 ppt to 0 ppt, [TN] from 37.8 to
18 lmol/L, and [TP] from 0.19 to 0.09 lmol/L
between August 25 and October 3. A similar
effect was observed at TS7, where salinity
declined 26 ppt over the same timeframe, and
[TN] and [TP] declined from 42.6 to 20.2 lmol/L
and 0.22 to 0.18 lmol/L, respectively.

Hurricane Wilma, a considerably stronger
storm that approached from the southwest, was
associated with a significant and sustained
increase in surface water [TP] at SRS estuarine
mangrove sites (SRS4, SRS5, and SRS6; Cas-
ta~neda-Moya et al. 2010, Davis et al., in press).
Based on combined data from sites SRS4–SRS6,
mean annual [TP] increased significantly from
2005 to 2006, more than doubling from
0.39 lmol/L in 2005 to 0.84 lmol/L in 2007 and
subsequently declined to an approximate pre-
disturbance mean of 0.44 lmol/L in 2011 (Fig. 3).

Cold event
The 2010 cold event, lasting from January 2 to

13 and having daily low air temperatures <5.4°C
and a low water temperature of 6.2°C (Boucek
and Rehage 2014), affected water quality at all
sites in SRS, with a sharp increase in [TP]

immediately following the event (Fig. 4). At
SRS1, SRS2, and SRS3, [TP] increased a mini-
mum of threefold (with highs ranging from 0.39
to 1.16 lmol/L) as the event subsided and
remained high until January 25. This occurred as
[TN] declined at all sites (Fig. 4). This period was
followed by a rapid decline in [TP] to pre-distur-
bance levels at all sites and a concomitant five- to
sixfold increase in [TN] to the highest concentra-
tions recorded at FCE LTER sites (ranging from
1006 to 1326 lmol/L; Fig. 4). TN:TP, which is
typically just over 100 at these freshwater sites,
increased to more than 5000 at SRS1, SRS2, and
SRS3. [TN] remained high until March 3, 49 d
after the cold event subsided. For [TP] and [TN],
the most rapid and dramatic increases or
decreases were at SRS1, the most upstream site.
Despite the strong marine influence at the man-

grove sites, a similar trend was noted at sites
SRS4, SRS5, and SRS6. However, [TN] increased
15–35% at all sites, whereas [TP] remained low
(between 0.13 and 0.61 lmol/L TP), resulting in
TN:TP highs of 692 at SRS4 (January 8), 328 at
SRS5 (January 10) and 259 at SRS6 (January 10).

Fig. 3. Box and whisker plots of total phosphorus
(TP) concentrations of all combined Shark River
Slough (SRS) mangrove sites from 2001 to 2015. Boxes
represent the inter-quartile range (25th and 75th per-
centiles), whiskers represent deciles (10th and 90th
percentiles), notches depict the 95% confidence inter-
val, and horizontal lines indicate the median. Sites
along a transect that share alphabetic notations are sta-
tistically indistinguishable (ANOVA, Tukey’s honest
significant difference, P < 0.05). Hurricane Wilma
made landfall on 24 October 2005.
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Similar to the freshwater sites, [TP] increased and
[TN] decreased at all estuarine SRS sites as the
cold event was waning or immediately after it
subsided (Fig. 4). During this period, [TP]
increased from <1 lmol/L at SRS6 to more than
3 lmol/L by January 20, from an average of about
0.5 to 1.81 lmol/L at SRS5, and from <0.2 to
0.79 lmol/L at SRS4—all reflecting the general
decline in surface water [TP] with distance from
the marine end-member. [TN] dropped during the
ensuing two + weeks as [TP] increased (Fig. 4).
Beginning February 6, [TN] increased sharply at
sites SRS4–SRS6 and generally decreased through
the remainder of the month (Fig. 4).

The region-wide influence of the cold event
was evident at TS sites, although the pattern was

somewhat different from that observed at SRS
(Fig. 5). At all TS sites, [TN] was either decreas-
ing or low and stable immediately following and
for almost one month after the cold event.
Beyond that period, [TN] increased more than
twofold at all TS sites by February 20 (TS1, TS2,
and TS3) and February 21 (TS6 and TS7), remain-
ing high for at least the next month. [TP] at TS2
and TS3 also exhibited dramatic increases on
February 20 and remained high for the next
2 + weeks. At TS6 and TS7, [TP] increased more
than threefold in the days immediately following
the cold event and declined by the end of Jan-
uary, only showing an increase again in mid-
March, nearly two months following the cold
event (Fig. 5).

Fig. 4. Concentrations of total nitrogen (TN, top plots) and total phosphorus (TP, bottom plots) at freshwater
(left plots) and estuarine mangrove (right plots) sites along Shark River Slough during an historic cold event last-
ing from 2 January to 13 January 2010. The cold period is identified by the dashed box on the left of each panel.
This period was followed by a period of declining TN and increasing TP (light gray bar) and a lagged, more
extended period of increasing TN and declining TP (dark gray bar).
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Mustang corner fire
Despite a high frequency of fire inside ENP

(mean = 28.3 per yr for period 1948 to 2010), many
fires are small and do not occur in the deeper
sloughs that represent the primary flow paths
(Smith et al. 2015). The Mustang Corner fire burned
in northeast SRS from 14 May to 14 June 2008. By
the end of May 2008, marsh stages in SRS reached
the lowest level for the year. Water sampling at
SRS3 was suspended on April 22 due to low marsh
stages; however, SRS2 still remained sufficiently
wet for sample collection (Fig. 6). Marsh stage
began increasing by early June with the onset of

wet season rains. At this time, [TP] at SRS2
increased from a pre-fire low of 0.18 to 0.78–
0.82 lmol/L as stages were increasing, and peaking
with stage at 1.65 lmol/L (nearly seven times
greater than the long-term average for the site of
0.24 lmol/L TP) on June 19, five days after the fire
was extinguished. Nearly one month later on July
18, [TP] at SRS3 (approximately 11.3 km down-
stream of the SRS2 site) peaked at 0.94 lmol/L from
a low of 0.45 lmol/L, and then returned to a near-
mean [TP] for this site of 0.4 lmol/L by August 9.
As stages continued to increase with advancement
of the wet season, [TP] increased at SRS4 (12.9 km

Fig. 5. Concentrations of total nitrogen (TN, top plots) and total phosphorus (TP, bottom plots) at freshwater
(left plots) and estuarine mangrove (right plots) sites along Taylor Slough during an historic cold event lasting
from 2 January to 13 January 2010. The cold period is identified by the dashed box on the left of each plot. This
period was followed by a period of relatively low and stable TN and TP (light gray bar) and a lagged period of
increased TN and TP (dark gray bar).
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downstream of the SRS3 site) from 0.54 to
0.94 lmol/L on August 6, although this was not as
high relative to its long-term mean (0.6 lmol/L TP)
as the signals identified at the other sites (Fig. 6).

Stage and freshwater flow recovery
In the dry season of 2006, an uninterrupted

decline in marsh stage at freshwater SRS sites per-
sisted from March 24 to May 16, when early wet
season rains increased stage by 22 cm (0.72 feet) in
two days (Fig. 7). As marsh stage receded, [TP]
substantially increased from near the long-term
means of these freshwater sites (0.2–0.4 lmol/L
TP) to highs of 1.59 lmol/L (SRS1), 1.51 lmol/L
(SRS2), and 1.87 lmol/L (SRS3). Matching the
inflection points in stage decline, noticeable
increases in [TP] corresponded to NESRS2 stages
around 1.49 m (4.9 feet) relative to North America
Vertical Datum of 1988 (NAVD88) and again at
1.37 m (or 4.5 feet NAVD88). Upon stage reversal,
[TP] decreased to 0.26 lmol/L (SRS1), 0.43 lmol/L
(SRS2), and to 0.59 lmol/L (SRS3; Fig. 7).

Following a drought that persisted over the
Everglades from mid-2014 through the summer

of 2015, El Ni~no-driven rainfall in late 2015
brought substantial freshwater flows through
both SRS and TS. In the TS mangrove ecotone,
where salinity levels can become hypersaline
during drought years, the effect of El Ni~no rains
was most pronounced, lowering salinity at TS6
from >45 ppt in mid-August 2015 to <1 ppt by
the end of the 2015 (Fig. 8). TP data at TS6
tracked fluctuations in salinity during this same
period, regularly exceeding the long-term mean
for the site (0.37 lmol/L) and peaking twice at
0.62 lmol/L. [TP] dipped below the long-term
mean for the site during freshets associated with
rainfall and more P-depleted runoff from
upstream freshwater marsh (Fig. 8).

Extreme rainfall and stage in upper Taylor Slough
[TP] at four sites in upper TS differed between

periods of high rainfall and normal rainfall
(P < 0.1 or 0.05, respectively; Wilcoxon rank
sums test; Table 2). Of these, TSC, TS1, and TSB
had lower [TP] coincident with high rainfall rela-
tive to normal rainfall conditions, whereas S332
exhibited higher [TP] during high rainfall

Fig. 6. Plot showing marsh stage at the P33 gage (line; relative to North America Vertical Datum of 1988 or
NAVD88) and total phosphorus concentrations at SRS2, SRS3, and SRS4 from May to August 2008. The Mustang
Corner fire, which burned approximately 16,000 ha in northeast Shark River Slough over a one-month period
(light gray rectangle with fire icon), occurred when water levels were at their lowest. Arrows indicate down-
stream total phosphorus (TP) signal.
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periods (Table 2). Also, sites UTS.1, UTS.2, and
TSB had higher [TP] at low stage conditions rela-
tive to normal stage conditions (P < 0.05; Wil-
coxon rank sums test; Table 2).

We found significant differences in [TP] at each
upper TS site when considering the combined
effects of rainfall and stage. Representing the
source of managed inflow, the normal rainfall/nor-
mal stage scenario at TSC had higher [TP] than
the high rainfall/normal stage or normal rainfall/
low stage scenarios (Table 3). Immediately
downstream at the S332 site (i.e., canal tailwater),
a similar normal rain/high stage difference was
observed relative to normal rain/low stage; how-
ever, this site typically had higher [TP] under most
scenarios involving high rainfall (especially dur-
ing low stage periods). Further downstream in the
marsh area and throughout the rest of upper TS,
lower [TP] was associated with normal stage and
often in combination with high rainfall (Table 3).
Conversely, higher [TP] generally occurred during
periods of low stage, independent of rainfall inten-
sity (Table 3). However, data from UTS.1, UTS.2,
TS2, and even S332 indicate that the extreme com-
bination of high rainfall and low stage corre-
sponds with the highest [TP] in the water column.

DISCUSSION

Temporal and spatial phenomena that lead to
biogeochemical hotspots and hot moments are

Fig. 8. Plot showing the correlation between salinity
(gray shaded area) and total phosphorus (TP) concen-
trations of surface water (black circles) at Taylor
Slough (TS6) during the transition from the 2014–2015
drought to El Ni~no-driven rains of late 2015. Long-
term mean [TP] at this site is indicated by dashed line.

Fig. 7. Plot showing the correspondence of total phosphorus (TP) concentrations at Shark River Slough (SRS)
freshwater sites (symbols) with marsh stage (line) as exemplified by data from the NESRS2 gage (relative
to NAVD88) throughout the late dry season and into the beginning of the wet season of 2006. The shaded area
represents the range of long-term mean [TP] at these three sites.
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strongly influenced by disturbance events and
site-specific differences in nutrient availability.
Along freshwater-to-estuary gradients, we illus-
trate how the timing, location, type, and magni-
tude of disturbance events interact to affect
pulses of N and P in oligotrophic Everglades
wetlands. Everglades freshwater marshes can be

seasonal sources of TN (Sutula et al. 2003, Child-
ers et al. 2006), whereas upstream canal inputs
and the Gulf of Mexico are considered anthro-
pogenic and natural sources of TP, respectively
(Childers et al. 2006). Biogeochemical hot
moments occur as temporal and spatial lags from
the origin of episodic disturbance as mediated by

Table 2. Significant differences in total phosphorus (TP) concentrations (lmol/L) along Taylor Slough during
extremes in rainfall (HR, high rainfall) or stage (LS, low stage) versus normal rainfall (NR) or normal stage
(NS) conditions, respectively.

Site ID Scenario 1 TP GM (IQ range) Scenario 2 TP GM (IQ range) Scenario comparison Significance

TSC HR = 0.25 (0.16–0.35) NR = 0.29 (0.16–0.34) HR < NR **
S332 HR = 0.30 (0.19–0.48) NR = 0.27 (0.19–0.38) HR > NR **
TS1 HR = 0.20 (0.13–0.29) NR = 0.24 (0.16–0.35) HR < NR **
TSB HR = 0.12 (0.10–0.16) NR = 0.14 (0.10–0.19) HR < NR *
UTS.1 NS = 0.26 (0.20–0.34) LS = 0.41 (0.25–0.50) NS < LS **
UTS.2 NS = 0.26 (0.19–0.34) LS = 0.32 (0.20–0.45) NS < LS **
TSB NS = 0.11 (0.10–0.13) LS = 0.19 (0.13–0.29) NS < LS **

Notes: See definitions in text. Geometric means are presented with inter-quartile (IQ) ranges for each distribution in
parentheses. Significant differences were determined using Wilcoxon rank sums test (�0.10 ≥ P > 0.05; ��P ≤ 0.05).

Table 3. Taylor Slough sites exhibiting significant differences in total phosphorus (TP) concentrations (lmol/L)
across combined scenarios of rainfall (NR, normal rainfall; HR, high rainfall) and stage (LS, low stage; NS,
normal stage) as defined in text.

Site ID Scenario 1 TP GM (IQ range) Scenario 2 TP GM (IQ range) Scenario comparison Significance

TSC NR/NS = 0.31 (0.18–0.45) HR/NS = 0.25 (0.16–0.32) NR/NS > HR/NS **
TSC NR/NS = 0.31 (0.18–0.45) NR/LS = 0.25 (0.16–0.37) NR/NS > NR/LS **
S332 NR/NS = 0.29 (0.22–0.35) NR/LS = 0.23 (0.17–0.30) NR/NS > NR/LS **
S332 NR/NS = 0.29 (0.22–0.35) HR/LS = 0.50 (0.35–0.69) NR/NS < HR/LS **
S332 HR/NS = 0.28 (0.18–0.40) NR/LS = 0.23 (0.17–0.30) HR/NS > NR/LS **
S332 HR/NS = 0.28 (0.18–0.40) HR/LS = 0.50 (0.35–0.69) HR/NS < HR/LS **
S332 NR/LS = 0.23 (0.17–0.30) HR/LS = 0.50 (0.35–0.69) NR/LS < HR/LS **
TS1 NR/NS = 0.25 (0.18–0.36) HR/NS = 0.19 (0.13–0.27) NR/NS > HR/NS **
TS1 NR/NS = 0.25 (0.18–0.36) HR/LS = 0.20 (0.14–0.33) NR/NS > HR/LS **
TS1 HR/NS = 0.19 (0.13–0.27) NR/LS = 0.24 (0.17–0.32) HR/NS < NR/LS **
UTS.1 NR/NS = 0.26 (0.19–0.35) NR/LS = 0.40 (0.23–0.49) NR/NS < NR/LS **
UTS.1 NR/NS = 0.26 (0.19–0.35) HR/LS = 0.45 (0.34–0.54) NR/NS < HR/LS **
UTS.1 HR/NS = 0.26 (0.20–0.33) NR/LS = 0.40 (0.23–0.49) HR/NS < NR/LS **
UTS.1 HR/NS = 0.26 (0.20–0.33) HR/LS = 0.45 (0.34–0.54) HR/NS < HR/LS **
UTS.1 NR/LS = 0.40 (0.23–0.49) HR/LS = 0.45 (0.34–0.54) NR/LS < HR/LS *
UTS.2 NR/NS = 0.29 (0.20–0.39) HR/NS = 0.24 (0.18–0.30) NR/NS > HR/NS **
UTS.2 NR/NS = 0.29 (0.20–0.39) HR/LS = 0.35 (0.27–0.46) NR/NS < HR/LS **
UTS.2 HR/NS = 0.24 (0.18–0.30) HR/LS = 0.35 (0.27–0.46) HR/NS < HR/LS **
UTS.2 NR/LS = 0.31 (0.18–0.42) HR/LS = 0.35 (0.27–0.46) NR/LS < HR/LS **
TS2 NR/LS = 0.16 (0.11–0.22) HR/LS = 0.20 (0.15–0.28) NR/LS < HR/LS **
TSB NR/NS = 0.12 (0.09–0.13) NR/LS = 0.20 (0.16–0.30) NR/NS < NR/LS **
TSB NR/NS = 0.12 (0.09–0.13) HR/LS = 0.17 (0.10–0.28) NR/NS < HR/LS *
TSB HR/NS = 0.11 (0.10–0.13) NR/LS = 0.20 (0.16–0.30) HR/NS < NR/LS **
TSB HR/NS = 0.11 (0.10–0.13) HR/LS = 0.17 (0.10–0.28) HR/NS < HR/LS **

Notes: Geometric means for each scenario combination are presented with inter-quartile (IQ) ranges for each distribution in
parentheses. Significant differences were determined using Wilcoxon rank sums test (�0.10 ≥ P > 0.05; ��P ≤ 0.05).
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these marine versus freshwater forcings. Further-
more, compartmentalization in the Everglades
has influenced the degree of connectivity and
drivers affecting water quality across this man-
aged landscape (Childers et al. 2006, Dessu et al.
2018).

That the disparity in [TP] between freshwater
and estuarine mangrove sites along SRS is grow-
ing with increasing concentrations at the marine
end is noteworthy. Anthropogenic sources are
often the driver of elevated TP concentrations in
the Everglades (Surratt et al. 2012, Osborne et al.
2014). Although SRS1 [TP] was more elevated
relative to downstream freshwater sites, high
[TP] at this site is linked to gate closure or low
flow events, suggesting an internal source of TP
at SRS1 (Childers et al. 2006). Incorporating 13
additional years of water quality data at these
sites relative to that analyzed by Childers et al.
(2006) indicates that the marine influence on [TP]
is increasing in the SRS estuarine mangrove sites,
while the central tendency of [TP] in the freshwa-
ter sites (especially at SRS2 and SRS3) has
remained relatively constant. In particular, where
Childers et al. (2006) noted median [TP]
<0.25 lmol/L at SRS4, <0.35 lmol/L at SRS5, and
<0.45 lmol/L at SRS6, median values of [TP] are
near or above 0.5 lmol/L at these three sites.
Interestingly, median [TP] at TS6 and TS7 has
remained approximately the same over this per-
iod of time, perhaps reflecting the influence of
Florida Bay in attenuating naturally higher Gulf
of Mexico-sourced TP (Childers et al. 2006).

High-energy storms
Rainfall and runoff from Hurricane Katrina

had nearly a 1-month dilution effect on water
quality at TS mangrove sites, which are less
tidally influenced than SRS mangrove sites. By
comparison, the multiyear legacy of Hurricane
Wilma on [TP] at SRS mangrove sites was pri-
marily associated with Wilma’s 3–5 m storm
surge and corresponding deposition of nearly
10 cm of marine-derived carbonate sediment
(Krauss et al. 2009, Smith et al. 2009, Casta~neda-
Moya et al. 2010). Since the TP content of this
sediment was on average 1.6 times higher than
that in native mangrove soils, soil TP enrichment
ranged from 20% to 54% in the SRS mangrove
sites (Casta~neda-Moya et al. 2010). Over time,
this deposited layer was flushed by tides, yet

some of the sediment and TP was retained, con-
tributing to soil elevation at SRS6 (Whelan et al.
2009). Released TP from this sediment was
apparent over a period of 5–6 yr, attenuating to
pre-storm levels around 2011. The more recent
and gradual increase in [TP] at these mangrove
sites may be attributable to sea level rise and
more of a landward encroachment of marine-
derived P into this oligotrophic, P-limited envi-
ronment (Dessu et al. 2018).
We did not see the same effect of Hurricane

Wilma in TS sites, as the Florida Bay-derived
mud deposited in this area was much lower in
TP content than that derived from the Florida
Shelf and deposited at SRS6 (Casta~neda-Moya
et al. 2010). In 1999, Hurricane Irene had a simi-
lar southwest approach toward the coastal Ever-
glades, depositing a layer of carbonate sediment
near TS7 and resulting in a sharp increase in sol-
uble reactive P and [TN] but little change in [TP]
(Davis et al. 2004). As one of the strongest storms
to affect South Florida over the past century,
Hurricane Andrew brought a substantial storm
surge and high winds on 24 August 1992 as it
passed over ENP from east to west—a path
similar to that of Hurricane Katrina. In the weeks
following this Category 5 storm, neither TP nor
ammonia changed significantly in Everglades
marsh sites (Roman et al. 1994).

Cold event
The historic cold event of early 2010 had a

region-wide effect on vegetation and faunal mor-
tality in the coastal Everglades. At all SRS sites, a
near-term rise in [TP] occurred immediately fol-
lowing the cold event and a delayed increase in
[TN], the former likely related to contributions
from rapidly senesced litter and the latter likely
attributable to faunal (i.e., fish) mortality and
decay. At the TS freshwater sites, no immediate
response occurred with respect to [TP], but the
mangrove sites (TS6 and TS7) exhibited a similar
near-term rise indicating a potential mangrove
litter-derived source of P. The longer term
increases in surface water [TN] and [TP] possibly
reflect a source from faunal decay; however, this
was not directly quantified.
The cold event produced substantial mangrove

mortality and canopy defoliation at SRS man-
grove sites (Danielson 2016). Mangrove litterfall
rates were 2.7 (SRS4), 2.1 (SRS5), and 3.2 (SRS6)
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times higher immediately following the cold
event with recovery to pre-disturbance levels
shortly thereafter (Danielson 2016). Litter pro-
duction is not measured at the freshwater sites;
however, significant browning and defoliation
characterized Chrysobalanus icaco that occupy
many of the tree islands in upper SRS (S. Davis,
personal observation). Pulses in leaf litterfall can
represent a rapid source of nutrients and labile
carbon that can be leached, mineralized, taken
up by plants, retained in the soil, or exported to
adjacent coastal waters (Tanner et al. 1991, Davis
et al. 2006, Lugo 2008). Such inputs following a
disturbance are associated with the magnitude of
litterfall and timing of the event (Michener et al.
1997), and carbon and nutrient pools could be
two to five times higher relative to the average
annual litterfall input (Frangi and Lugo 1991).
Terrestrial studies have reported increased C, N,
and P concentrations on the forest floor after hur-
ricanes. Litterfall from Hurricane Hugo (1989)
had 1.3–3.4 times more N and two to five times
more P than did the mean annual litterfall in a
coastal pine forest in South Carolina and a sub-
tropical montane forest of Puerto Rico (Blood
et al. 1991, Frangi and Lugo 1991, Lodge et al.
1991). In addition, the total mass of fine litterfall
resulting from Hurricane Hugo was 1.2 to 2.0
times higher than mean annual litterfall input in
tabonuco and elfin montane forests in the
Luquillo Forest of Puerto Rico (Lodge et al.
1991). Litterfall pulses also contributed to
increased soil ammonium pools several months
later in tabonuco forests, five times higher than
reference plots (Steudler et al. 1991). Our find-
ings suggest a similar effect of disturbance on lit-
terfall dynamics and nutrient availability.

Fish mortality and decomposition also repre-
sents an important source of nutrients. N and P
comprise about 15% and 3–5% of fish biomass,
respectively. N-rich protein structures in fish
decompose at a more rapid rate, with nearly
100% of N being released from fish carcasses
within 30 d of death. In contrast, only 40% of P is
mobilized 100 d after death, in the absence of
scavenging (Johnston et al. 2004). In the Ever-
glades, fish mortality can represent an input of
43 lg P/m2 to the total P budget (Stevenson and
Childers 2004).

As a result of the 2010 cold event, there was an
almost complete loss of tropical fish species,

which represent 29% of total freshwater fish abun-
dance in SRS. Tropical non-native fishes, includ-
ing Mayan cichlids, blue and spotted tilapia, and
peacock eels, which represented 10% of total fish
abundance, declined by 95–100% (Boucek and
Rehage 2014, Rehage et al. 2016). Similarly, a
dominant estuarine large-bodied piscivore, com-
mon snook, decreased by over 90% (Stevens et al.
2016). Lastly, tropical native euryhaline species
(i.e., striped mojarra, tidewater mojarra, and
striped mullet) decreased by at least 90% follow-
ing the event, and tidewater mojarras seemed
most affected (Boucek and Rehage 2014). Given
these observed mortalities, the TN increase we
observed within 30 d following the event sug-
gests a contribution from decomposing fish.
Weber and Brown (2013) demonstrated that
pulsed fish mortality resulted in a non-linear,
three- to fivefold increase in N availability 2–
3 weeks following disturbance. By comparison,
we observed a five- to sixfold spike in [TN] and
increasing TN:TP at upstream SRS sites approxi-
mately 2–3 weeks after the 2010 cold event.

Mustang corner fire
The Mustang Corner fire burned a large area

of vegetation and soil in northeast SRS, where
soils are calcitic marls <15 cm thick, underlain by
limestone of the highly porous Miami oolite for-
mation (Randazzo and Jones 1997). These soils
are relatively low in organic C, ranging between
2.3% and 21.0%, with soil TP values ranging
between 100 and 358 lg/g (Sah et al., 2007). Fol-
lowing fire, soil nutrient levels can increase (Wu
et al. 2012, Liao et al. 2013) or decrease over time
through volatilization and subsequent leaching
or export of ash particles by fire updrafts and
wind (Qian et al. 2009, Hogue and Inglett 2012).
In low-P calcareous wetlands, soil N and P avail-
ability may increase immediately after fire (Liao
et al. 2013). However, other studies have shown
that up to 99% of C and N can be lost through
volatilization, while P is retained in high concen-
trations (Baird et al. 1999, Hogue and Inglett
2012). This mineralized P can contribute to the
soil pool or be mobilized as bioavailable P
(Galang et al. 2010), affecting wetland water
quality (Bitner et al. 2001, Battle and Golladay
2003, Tian et al. 2010, Xu et al. 2011).
In Everglades peat marshes, surface water [TP]

can increase dramatically in burned areas, and
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the SRS2 peak of 1.65 lmol/L TP following the
Mustang Corner fire is similar to the mean of
1.68 lmol/L TP observed by Wu et al. (2012).
With the onset of the 2008 wet season and initia-
tion of flow, TP at SRS2 was likely carried to
SRS3, approximately 12.3 km downstream. Using
a one-month travel time for the signal between
SRS sites, this would amount to mean current
velocities in the slough of about 0.44 cm/s, which
is within the range of velocities reported for SRS
(Leonard et al. 2006). The appearance of the TP
signal at SRS4 was over a shorter duration (20 d)
but may reflect increased velocities down-slough.

Stage and freshwater flow recovery
The inverse relationship between [TP] and

stage reflects a physical concentration of ele-
ments in the water column with dry-down and
dilution through rainfall and stage increase.
However, we cannot discount the potential con-
tribution of prey concentration and foraging
fauna in affecting surface water [TP] as marsh
stage recedes (Kushlan 1976). Complete marsh
dry-down or reduced hydroperiod can accelerate
peat soil oxidation, leading to mineralization of
soil TP and flux from the soil to the water column
upon re-hydration (Dunne et al. 2010, Zak et al.
2010). In the mangrove ecotone, such as site TS6,
where [TP] often shows a positive correlation
with salinity in the dry season (Childers et al.
2006, Koch et al. 2012), physical concentration
plus the contribution of P-rich groundwater dis-
charge (as described by Price et al. 2006) may
explain the increasing [TP] we observed in the
transition from a dry to a wet period. This has
implications for P inputs to a P-limited Florida
Bay that may be mitigated to some extent
through restoration of freshwater flow (Koch
et al. 2012, Brice~no et al. 2014). Moreover, recent
studies have focused on saltwater-induced peat
collapse at the top of the mangrove ecotone
(Chambers et al. 2014), suggesting that this pro-
cess may contribute to a chronic source of P to
the water column, particularly as sea level rise
advances saltwater intrusion further inland into
brackish and oligohaline peatlands.

Extreme rainfall and stage in upper Taylor Slough
Extreme high rainfall and low stage yielded

important insights to the interaction of climatic
and physical forcings on [TP] in upper TS. [TP]

was generally suppressed under high rainfall con-
ditions in the canal and the upper TS marsh sites,
likely due to dilution effects. Periods of high rain-
fall often correspond to lower temperatures that
also relate to [TP] reductions in surface waters of
wetlands (Kadlec and Reddy 2001). An exception
to this pattern was the S332 (i.e., tailwater) site
that exhibited higher [TP] during high rainfall
and presumably when more water was flowing
into the slough from the adjacent canal and
agricultural area. However, it is difficult to differ-
entiate the effects of a canal source from re-
suspension of TP given that managed discharge
enters a previously dry marsh. In general, [TP] in
upper TS was elevated in low stages, reflecting a
concentration of elements during dry-down, and
dilution when low stages return to normal. Smith
and McCormick (1999) illustrated a long-term
inverse relationship between surface water [TP]
and water depth in Everglades marsh. The sup-
pression of surface water [TP] is also associated
with long-term rainfall patterns in Everglades
marsh (Childers et al. 2006). In upper TS, down-
stream of L31W, where a water control structure
historically discharged directly into the slough, a
soil P gradient has grown from the discharge
source to more than 6 km downstream (Osborne
et al. 2014). A corresponding gradient in surface
water [TP] exists. Since May 2012, average
annual flow-weighted mean [TP] in UTS was
0.16 lmol/L and ranged from 0.14 to 0.18 lmol/L
(Mo et al. 2015, 2017). At about 2.75 km down-
stream of the L31W, five-year average geometric
mean [TP] was 0.11 lmol/L and ranged from 0.09
to 0.13 lmol/L (Julian 2017). Along this zone, con-
version of desirable emergent vegetation to Typha
domingensis is indicative of P enrichment (Surratt
et al. 2012) and representative of a P hotspot that
is vulnerable to re-suspension under low stage
and high rainfall conditions or mineralization
with soil dry-down and oxidation.

CONCLUSIONS

Large ecosystems such as the Everglades inte-
grate episodic disturbance events and impacts
across the landscape, resulting in differential
responses that are often context-dependent.
Hydrologic connectivity from freshwater wet-
lands to the estuary should be balanced by bio-
logical fragmentation so as to manage for
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disturbance events that lead to unintended nega-
tive impacts (Jackson and Pringle 2010, Rahel
2013). Shifts in the direction, magnitude, and
characteristics of ecological state changes (e.g.,
water quality) are difficult to predict, requiring
monitoring and adaptive management during
and after disturbances. In the case of this study,
the magnitude and duration of water quality
change reflected characteristics of disturbance
events that were of varying severity and spatial
scale.

A long-range goal is to forecast changes in
nutrient concentration with episodic events.
Given the importance of nutrients (especially P)
in affecting marsh habitat quality and function-
ing in the Everglades as well as the legal frame-
work for ensuring protection of resources, tools
to understand the interactions between end-
member sources (Dessu et al. 2018) as well as the
internal loading of nutrients brought about by
episodic disturbances are needed. These interac-
tions are influenced to some extent by climate
but also by water management. Although rela-
tionships and patterns in water quality do not
necessarily suggest cause-and-effect, it is clear
that episodic disturbances are linked to temporal
changes in TN and TP. To fully understand the
magnitude, duration, and scale of disturbance
effects, a more refined and targeted approach to
water quality sampling is needed during or
immediately following a pulsed or episodic
event, perhaps including higher frequency sam-
pling for inorganic nutrients (e.g., ammonium,
soluble reactive P). Moreover, controlled experi-
ments in the field or in mesocosms will enhance
our understanding of source contributions (e.g.,
fish versus litter) and rates of change, as they
pertain to disturbance effects on water quality.
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