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Abstract—Studying dynamic-functional connectivity (DFC) us-
ing fMRI data of the brain gives much richer information to
neuroscientists than studying the brain as a static entity. Mining
of dynamic connectivity graphs from these brain studies can
be used to classify diseased versus healthy brains. However,
constructing and mining dynamic-functional connectivity graphs
of the brain can be time consuming due to size of fMRI data.
In this paper, we propose a highly scalable GPU-based parallel
algorithm called GPU-DFC for computing dynamic-functional
connectivity of fMRI data both at region and voxel level. Our
algorithm exploits sparsification of correlation matrix and stores
them in CSR format. Further reduction in the correlation
matrix is achieved by parallel decomposition techniques. Our
GPU-DFC algorithm achieves 2 times speed-up for computing
dynamic correlations compared to state-of-the-art GPU-based
techniques and more than 40 times compared to a sequential CPU
version. In terms of storage, our proposed matrix decomposition
technique reduces the size of correlation matrices more than
100 times. Reconstructed values from decomposed matrices show
comparable results as compared to the correlations with original
data. The implemented code is available as GPL license on
GitHub portal of our lab (https://github.com/pcdslab/GPU-DFC).

Index Terms—fMRI, dynamic-functional connectivity, Pear-
son’s correlation, CUDA, GPU

INTRODUCTION

The functional Magnetic Resonance Imaging (fMRI) has
been considered as one of the most important brain imaging
technologies for understanding the spatiotemporal foundation
of the brain. The fMRI technology captures the dynamic
behaviour of the brain by taking a sequence of images from
the brain over time [1]. This data consists of thousands of
small cubic elements called voxels where each voxel contains
thousands of neurons inside it. The data that fMRI technology
provides is the time series of brain voxels which shows their
activity over time [2]. The fMRI data can be studied in both
voxel and region (cluster of nearby voxels) level. Statistical
dependencies among time series of different regions is known
as brain functional connectivity. Two regions are known to
be functionally connected to each other if their corresponding
time series are highly correlated. Pearson’s correlation is the
most common measure for computing functional connectivity

by revealing the linear dependency between time series of
different regions [3]. Pearson’s correlation between two T
dimensional variables x and y is a value between -1 and 1
and is computed using the following equation.

ρxy =

∑T
i=1(xi − x̄)(yi − ȳ)√∑T

i=1(xi − x̄)2
√∑T

i=1(yi − ȳ)2
(1)

An equivalent approach for computing Pearson’s correlation
is to normalize each variable based on the following equation
and then multiplying them to each other:

u =
x− x̄
‖x− x̄‖ 2

(2)

The fMRI functional connectivity has many applications in
brain studies [4]–[10]. One of the well known applications
is constructing brain functional network. In order to construct
such a network each voxel of the brain is considered as a vertex
in graph and is connected to another voxel if there is high
correlation between their time series. Properties of functional
brain networks have revealed many facts about the function
of the brain. Another well known application of functional
connectivity is learning internal patterns and using them as
discriminative features for distinguishing healthy subjects from
patients. In earlier studies, the functional connectivity was
considered to be static but recent studies have shown that it has
a dynamic nature and fluctuates over time which introduced
the concept of dynamic-functional connectivity [11]. One way
to construct the dynamic-functional connectivity of the brain is
by the sliding window framework. In this approach a temporal
window with length w starts from the first element of time
series (t = 0) and covers consecutive time points up to w.
All pairwise correlations between regions of the brain are
computed considering time points in range [0, w]. Next, the
window slides by step size s, covering time points in range
[s, s+w]. This process is continued until the window reaches
the end of the time series. Fig. 1 shows the general overview
of this process.
Assuming that the length of time series is T, the number of



times that window can slide is computed by the following
equation:

k =
T − w
s

+ 1 (3)

Fig. 1: Sliding window framework for generating dynamic-
functional connectivity with window size w and step size s

One challenge for computing pairwise correlation coeffi-
cients is its overall running time specially for voxel-based
studies since there are thousands of voxels in a typical fMRI
data. Many studies have targeted this problem and came
up with parallel computing strategies in order to reduce
the running time [12]–[16]. In case of dynamic-functional
connectivity this problem is scaled since multiple correlation
matrices are generated based on parameters w and s. Most of
proposed parallel computing techniques are designed for the
purpose of computing static functional connectivity. To the
best of our knowledge there is only one GPU-based technique
proposed by [17] but it only focuses on computing dynamic-
functional connectivity among regions of the brain and does
not offer any solution for handling large voxel-based corre-
lation matrices. Besides the time consuming nature, massive
space requirement is another concern about DFC analysis in
voxel level. Considering N voxels in fMRI data, pairwise
correlations has O(N2) space complexity. Let’s assume an
example of fMRI data containing N = 30k voxels with
length 150 which is a common size in fMRI study. Based
on symmetric property of Pearson’s correlation, computing
N(N − 1)

2
correlations covering strictly upper triangle part

instead of whole correlation matrix (N2) suffices which for
this example needs 1.67 GB of memory. Now considering the
window-based approach with window size w = 80 and step
size s = 1, as given in equation 3, 71 sets of correlation
coefficients need to be computed which needs 118.5 GB
memory to store all correlations which is much larger than
available memory in mid-sized labs.
Previously, we proposed a GPU-based technique called Fast-

GPU-PCC [12] for computing pairwise Pearson’s correlations
considering the whole time series. This algorithm computes
the strictly upper triangle part of the correlation matrix. Con-
sidering the time and space consuming issues of dynamic func-
tional connectivity, in this paper we propose GPU-DFC which
is an extension of Fast-GPU-PCC for computing dynamic-
functional connectivity.

A. GPU architecture and CUDA programming model

Graphics Processing Units (GPUs) play an important role
in general-purpose scientific computing in different fields by
accelerating time consuming part of the code [18]. A GPU
consists of an array of streaming multiprocessors (SMs) each
containing several cores. Hundreds of threads run on each core
simultneously based on Single Instruction Multiple Threads
(SIMT) strategy. NVIDIA provides a GPU programming
interface called CUDA which allows programmers to use
CUDA-enabled GPUs to perform general purpose computing
tasks [19]. GPU threads perform the instructions provided to
them by a kernel function. A group containing 32 consecutive
threads is called a warp. Threads inside the same warp perform
the same instruction at the same time. In programming per-
spective, maximum of 1024 threads are organized into groups
called blocks which can be organized into one or two dimen-
sion grids. GPU contains different types of memory such as
Global memory, Shared memory, Texture memory and Local
memory. Data transferred from CPU to GPU resides in Global
memory and is accessible by all threads. Shared memory is
on-chip memory which is accessible by all threads in the same
block and is faster than Global memory. Using Shared memory
is beneficial when threads inside the block need to access the
data multiple times. Transferring data between CPU and GPU
is a slow process because of low bandwidth between CPU and
GPU memory and overheads associated to each transfer which
can deteriorate overall performance. Hence, it is important to
reduce the data transfers between CPU and GPU as much
as possible. Another important point for designing a GPU
based technique is ensuring coalesced global memory accesses
which happens when threads inside a warp access to adjacent
memory locations.
Efficient CUDA libraries such as cuBLAS [20], cuS-
PARSE [21] and cuSOLVER [22] for performing different
matrix operation and factorization are provided by NVIDIA.
In this study we exploited some functions from these libraries.

Contributions of the paper: The major contributions of
this paper are as follows:

1) We propose a GPU-based technique for computing dy-
namic functional connectivity of fMRI data which is an
essential tool for dynamic connectomics.

2) In order to mitigate the memory requirements for storing
large correlation matrices, we propose a sparsification
strategy that reduces the number of correlations by
removing weak values.

3) We propose another strategy based on matrix decom-
position for decomposing each correlation matrix into



small matrices which significantly reduces the space
needed for storing each correlation matrix.

Organization of the paper: This paper is organized as
follows: In section 1 we briefly review the Fast-GPU-PCC
technique and how we expand it to compute dynamic func-
tional connectivity. In section 2 we describe the sparsification
technique for reducing the size of correlation matrices. In
section 3 we describe our second strategy for reducing the
space requirement by using matrix decomposition. Section 4
describes the overall framework of GPU-DFC. In section 5
we discuss the experiments and results and section 6 includes
conclusion and future work of this study.

I. COMPUTING DYNAMIC FUNCTIONAL CONNECTIVITY
BASED ON FAST-GPU-PCC ALGORITHM

In Fast-GPU-PCC algorithm, the first step is to normalize
time series of all voxels as given in equation 2. This process
is performed on CPU, then the normalized time series are
transferred to the GPU. We assume U denotes the matrix
containing the normalized time series. Therefore, multiplying
U to its transpose UT will generate correlation matrix S. The
upper triangle part of matrix S is then extracted and stored in
row major order in array C using algorithm 1.
In this algorithm, one GPU thread is assigned to one cell of

Algorithm 1 Kernel function for extracting ordered upper
triangle part of the correlation matrix

Input: n× n correlation matrix S
Output: Ordered correlation array C of size n(n− 1)/2

1: idx = blockDim.x ∗ blockIdx.x+ threadIdx.x
2: i = idx/n
3: j = idx%n
4: if i < j and i < n and j < n then
5: k1 = i× n− i× (i+ 1)

2
+ j − i

6: k2 = j × n+ i
7: C[k1 − 1] = S[k2]
8: end if

correlation matrix, if this cell is located in strictly upper trian-
gle part, its value is copied to specific location in correlation
array C. Sometimes the size of correlation matrix is larger than
the available GPU memory. In such cases the algorithm divides
the time series matrix to smaller blocks, computes a chunk
of correlation matrix, extract the elements in upper triangle,
transfer them back to CPU and starts another chunk.
For computing dynamic functional connectivity, these steps
should be repeated each time the window slides over the time
series. So instead of normalizing all time series in CPU and
transfer them to GPU for each slide, in the proposed approach
we transfer the original time series to GPU in the beginning
and normalize the section of time series in the window using
the algorithm 2.

In this algorithm each GPU block contains 32 threads
and is responsible for normalizing one time series. By using

Algorithm 2 Kernel function for normalizing part of time
series in window w

Input: An n× t matrix U of time series data, Windows
length w, start position st (starting position of window)
Output: Normalized matrix U ′

1: slide = dwindow_size/32e
2: start = blockIdx.x ∗ t+ st
3: Copy time series (starting at st) of window w to shared

memory sh
4: for i = 0 to slide do
5: psum+ = sh[threadIdx.x+ (i× 32)]
6: end for
7: sum = adding up local_sum of threads in a group using

shuffle warp reduce technique
8: if threadIdx.x = 0 then
9: sh[windowsize] = sum/w

10: end if
11: avg = 0
12: for i = 0 to slide do
13: index = threadIdx.x+ (i× 32)
14: if index < w then
15: avg = avg + (sh[index]− sh[windowsize])2

16: sh[index]− = sh[windowsize]
17: end if
18: end for
19: sum = adding up avg values
20: if threadIdx.x = 0 then
21: sh[windowsize] = sqrt(sum)
22: end if
23: idx = blockIdx.x ∗ w
24: for i = 1 to slide do
25: index = threadIdx.x+ (i× 32)
26: if index < w then
27: U ′[idx+ (index)] = sh[index]/sh[w]
28: end if
29: end for

32 threads or a warp, global memory coalescing is ensured
since threads access to consecutive memory locations. Also,
computing summation of all elements inside the window can
be easily done by using shuffle warp reduce technique without
needing extra memory for storing temporary values. In the
beginning of the algorithm, threads of each block find the
starting position of the window and copy its corresponding
elements into shared memory (line 2 and 3). In line 4 to 10, the
average of windowed time series is computed by threads and
is stored in shared memory. Threads compute the numerator
and denominator of equation 2 by subtracting average value
from each time point and computing the L2 norm (line 12 to
end).
After this algorithm completes, the preprocessed values are
stored in matrix U ′ in GPU global memory. The next step
is multiplying matrix U ′ to its transpose which results the
correlation matrix S. The upper triangle of this matrix can be



extracted using algorithm 1.

II. SPARSIFICATION METHOD FOR REDUCING THE SIZE OF
CORRELATION MATRICES

In case of voxel-based analysis or in scenarios in which
many regions of interest are considered, usually the size of
correlation matrices are very large and even after extracting
upper triangle part they consume a lot of memory. On the
other hand transferring large correlation matrices from GPU
to CPU would be time consuming considering slow PCIe
cable connecting CPU memory to GPU memory. One way
to reduce the memory requirement is making the correlation
matrices sparse by replacing correlations below a threshold
to zero and only keeping nonzero values using a sparse data
structure like Compressed Sparse Row (CSR) format. The
idea of sparsifying fMRI correlation matrix has been used
by Zhao et al [16] for reducing size of one correlation matrix
in static functional connectivity analysis. CSR format uses
three arrays for storing nonzero values, their column and
row indices. Since correlation matrix is symmetric, we only
save nonzero elements in upper triangle by zeroing out all
elements in lower triangle and diagonal using a sparsification
kernel which is shown in algorithm 3 (Same result can be
achieved by zeroing out elements in upper triangle instead of
lower triangle). In this algorithm each GPU thread checks one

Algorithm 3 Sparsifying dense correlation matrix to sparse
matrix
Input: n× n correlation matrix S and threshold z
Output: Sparse correlation matrix S with non-zero values in
uppr triangle

1: idx = blockDim.x ∗ blockIdx.x+ threadIdx.x
2: i = idx/n
3: j = idx%n
4: if (i > j||S[idx] < z) and i < n and j < n then
5: S[idx] = 0
6: end if

cell of correlation matrix at a time. If this cell is located in
upper triangle and its value is above the threshold, it does not
change it otherwise sets its value to zero. After this step, the
sparse correlation matrix is stored in CSR format. Eliminating
weak correlations and only keeping strong correlations above
a predefined threshold is a common practice in brain network
construction [23], [24].

III. REDUCING THE SIZE OF DENSE CORRELATION MATRIX
USING APPROXIMATE LOW RANK MATRIX DECOMPOSITION

Although making correlation matrix sparse by removing
correlations below a threshold and storing it in CSR for-
mat reduces the memory requirement of correlation matrix
significantly, it causes loosing some information about the
brain connectivities. Specially negative connections which can
be useful for understanding functional connectivity structure
of brain disorders. In order to keep those information while
reducing the size of dense correlation matrices, we exploit

a matrix decomposition strategy. Matrix decomposition or
matrix factorization techniques like Singular Value Decom-
position (SVD) are well known techniques for dimensionality
reduction and compression [25], [26]. For example, truncated
SVD provides low rank approximation of a matrix by only
keeping its largest singular values and corresponding singular
vectors which helps reducing the size of the matrix. Matrix
decomposition techniques can be time consuming applying on
large scale problems. HALKO et al [27] proposed a framework
for constructing randomized algorithms to perform different
matrix decomposition tasks. Based on their framework, low-
rank approximation of a given m× n matrix A is proceeded
in two steps. In the first step, an approximation to the range
of A is computed by obtaining matrix Q such that:

A ≈ QQ>A (4)

The goal is to compute matrix Q with m rows and l or-
thonormal columns such that l < n. In second step, matrix
Q is used for computing matrix factorization like SVD. In
this study we only utilize the first step and decompose the
correlation matrix into matrices Q and B (Q>A). Since Q
and B contain l column/rows and l < n, the total size needed
for storing matrices B and Q would be l(m + n) instead of
mn. To compute matrix Q, first the range of matrix A is
approximately spanned by performing y = A×σ in which σ is
an n× l Gaussian random matrix. Finally an m× l matrix Q is
computed by taking QR decomposition of matrix y (y = QR).
The following pseudocode shows the steps that we perform
to factorize each correlation matrix to matrices Q and B.
By using this approach each correlation matrix A can be

Algorithm 4 Reducing required space in dynamic-functional
connectivity by performing matrix decomposition

Input: n× n correlation matrix S and integer l
Output: n× l matrix Q and l × n matrix B

1: Generate n× l Gaussian random matrix σ
2: y = S × σ
3: Q,R = QR(y)
4: B = Q> × S
5: retrun B and Q

decomposed into two matrices B and Q with smaller sizes.
As we will see in the next section, choosing value of l smaller
than T (length of time series) provides good approximation of
correlation matrix with very small error. Also reconstructing
correlation matrix from Q and R which is simply Q×B, takes
shorter time than computing correlation matrix from scratch
since Q and R are smaller than time series matrix and there
is no need to normalize them before matrix multiplication.

IV. OVERAL FRAMEWORK OF GPU-DFC

Considering all proposed methods in last sections, the over-
all framework of GPU-DFC is shown in algorithm 5. Based
on this algorithm, by sliding the window over time series,
values inside the window are normalized using algorithm



Fig. 2: Sliding window framework for generating dynamic-functional connectivity and strategies for reducing the size of
correlation matrices. In step 1 the window slides over the time series. In step 2, the algorithm normalizes the time series values
inside the window using algorithm 2. Step 3 performs the matrix multiplication to compute correlation matrix. In step 4 the
memory reduction technique is applied (either sparsification or matrix decomposition). In section 5 the correlation values are
transferred to CPU.



Algorithm 5 Computing dynamic funcional connectivity
based on GPU-DFC

Input: n× t fMRI data consisting of n voxels with time
series of length t, Window size w and step size s
Output: (t− w)/s+ 1 correlation matrices

1: num = (t− w)/s+ 1
2: Copy fMRI data from CPU to GPU
3: if Enough GPU memory then
4: for i = 0 to num do
5: U ← Preprocess data inside window i by

algorithm 2
6: corr = U × UT

7: Extract upper triangle using algorithm 1
8: end for
9: Transfer all correlations to CPU

10: else
11: for i = 0 to num do
12: U ← Preprocess data inside window i by

algorithm 2
13: corr = U × UT

14: if Approach 1 then
15: Us ← Sparsify correlation matrix using

algorithm 3
16: A,IA,JA← CSR(Us)
17: else
18: Q,B ← Apply algorithm 4 on corr
19: end if
20: Transfer the results (Q,B) or (A,IA,JA) to CPU
21: end for
22: end if

2. If memory requirement for storing all correlations is not
an issue, all correlation matrices can be computed in GPU
and transfer to CPU at the end. Otherwise, either matrix
decomposition or sparsification techniques can be utilized.
The choice of selecting these techniques depends on the
application for which correlations are computed. If the goal is
working with high correlation values (above a threshold), then
negative and weak correlations are not needed and therefore,
the sparsification methods can be chosen. On the other hand
if the information of all pairwise correlations are needed, then
the matrix decomposition technique can be used instead. This
process is shown in Fig. 2.

V. EXPERIMENTS AND RESULTS

In this section we evaluate the performance of the proposed
frameworks and compare it with two other baselines. The
first baseline is sequential version of computing dynamic-
functional connectivity on CPU. The second algorithm is
GPU-PCC which is a GPU-based technique we previously
proposed for computing pairwise Pearson’s correlation [28].
This algorithm was designed to compute one correlation
matrix considering the whole time series. In order to make
it work for dynamic correlation computation, we repeated this

algorithm inside a loop such that in each iteration pairwise
correlations over one window is computed.
All the experiments of this section are performed on a Linux
server with Ubuntu Operating System version 14.04. This
server includes two Intel Xeon E5 2620 processors with clock
speed 2.4 GHz, 48 GBs RAM and NVIDIA Tesla K40c
Graphic Processing Unit. This GPU contains 15 Streaming
Multiprocessors each consists of 192 CUDA cores and 11520
MBytes global memory. CUDA version 8, g++ version 4.4.8
are utilized for performing experiments. Optimization level -
O2 was used for compiling codes that run on CPU.

A. Experiment 1: Computing DFC on region based data

In the first experiment we evaluated the performance of
computing dynamic-functional connectivity on regions of the
brain. Since the number of regions in region based analysis are
usually small, memory requirement is not a concern. We per-
formed this experiment on synthetic fMRI data by generating
random floating-point numbers in range -6 to 6 as intensity of
each voxel. Since the goal of this experiment is only measuring
the running time of the algorithm and intensity values are
usually represented by floating-point numbers, almost the same
running time can be obtained by using random floating-point
numbers compared to real data. We tested different region
numbers (500, 1000, 2000, 3000, 5000) each having a time
series of length 200 and considered different window sizes
(50, 100, 150). Table I compares the running time of different
approaches. As can be observed from the table, by increasing
number of regions, the proposed method performs faster that
other techniques. By increasing the length of window, the
number of correlation matrices that needs to be computed is
decreased so the running time of all techniques are reduced.

B. Sparsification technique

In this experiment we applied the proposed method on
real voxel-based fMRI data. The fMRI data that we used
is part of preprocessed samples provided by ADHD-200
initiative [29]. It contains 30697 voxels with time series of
length 257. Pairwise correlations of this dataset need 1.75
GB memory (only correlations in strictly upper triangle),
considering window size of length 150 and step size 1, 108
correlation matrices need to be stored which requires 189 GB
of memory. This is much more than available memory in our
system and many other modern computers, so we applied
the sparsification strategy to reduce the size of correlation
matrices. Table II shows the running time of applying the
algorithm on real data based on different thresholds and
window sizes. Other baselines that are stated in experiment
1 (CPU-version and GPU-PCC) don’t use any method for
reducing the size of correlation matrices so we didn’t include
them in this experiment. Based on the result, increasing the
value of the threshold, correlation matrices become sparser and
fewer elements are stored in CSR format. This can be observed
from table II such that higher thresholds have shorter running
times for all values of w.



TABLE I: Running time (seconds) of applying different techniques on region based data

50 100 150

Region num
method CPU GPU-PCC GPU-DFC CPU GPU-PCC GPU-DFC CPU GPU-PCC GPU-DFC

500 3.1 0.29 0.34 4.07 0.26 0.31 3.049 0.21 0.25
1000 12.8 0.70 0.54 16.3 0.58 0.47 12.21 0.39 0.28
2000 51.43 2.29 1.44 65.31 1.36 1.09 48.88 1.07 0.36
3000 115.06 4.97 2.9 147.06 3.85 1.6 110 2.19 0.68
5000 319.79 13.78 7.8 408.24 10.35 2.9 305.59 5.85 2.04

TABLE II: Running time (seconds) of different window size
(w) and threshold values (θ)

θ
W 50 100 150

0.3 148 86.33 53.561
0.5 81.56 53.19 40.54
0.7 63.46 51.76 38.92

l 64 (T/4) 85 (T/3) 128 (T/2) 257 (T)
MAE 0.002 1.3e-07 5.8e-08 3.77e-08

compression-ratio 239 180 119 59

TABLE III: Mean absolute error and compression ratio based
on different ranks l

C. Matrix decomposition based technique

In order to evaluate the effectiveness of matrix decompo-
sition for reducing the memory requirements of correlation
matrices, we applied the matrix decomposition strategy on real
voxel-based fMRI data. In the first experiment we applied the
algorithm 4 on real fMRI data we used in the last experiment
and constructed the correlation matrix considering the whole
time series. Different ranks l are tested for low rank matrix
decomposition. After applying this algorithm matrices Q and
B are stored instead of the original correlation matrix. Com-
pression ratio of storing Q and R instead of whole correlation
matrix can be computed using the following equation:

CR =
n× n

2× n× l
=

n

2× l
(5)

In this equation, numerator (n × n) represents the size of
original matrix and denominator (2 × n × l) represents the
space needed for storing matrix Q (n × l) and B (l × n).
By performing low rank decomposition some amount of data
might be lost. In order to see how low rank decomposition
can change the values of correlations, we reconstructed the
correlation matrix by multiplying matrices Q and B to each
other and computed mean absolute error (MAE) of the re-
constructed correlations. Table III shows MAE and CR values
based on different ranks l. In another experiment we used the
actual and reconstructed correlations as features for classify-
ing subjects suffering from Autism spectrum disorder from
healthy subjects. We used NYU dataset provided by ABIDE
initiative [30]. This dataset contains preprocessed fMRI data
provided by ABIDE initiative. The data that we used from
this dataset contains 75 Autism and 98 healthy subjects. Each

fMRI data is divided into 200 regions generated using spatially
constrained spectral clustering algorithm. Length of each time
series (T ) is equal to 175. We used the upper triangle part of
the 200×200 pairwise correlation matrix of each subject as its
features and used Multi-layer Perceptron for classification. In
order to see how losing the data after matrix decomposition
affects the result of classification, we compared the results
of using actual correlations versus using reconstructed cor-
relations (computed by multiplying decomposed matrices Q
and B). For matrix decomposition, we set l=58 (T/(3)). The
mean absolute error of reconstructed correlations is equal to
0.003. We repeated 5-fold Cross-Validation approach 10 times
and computed the average accuracy, specificity and sensitivity.
Based on the results shown in table IV, reconstructed correla-

Accuracy Sensitivity Specificity
Actual Corrs 61.9 51.7 69.7

Reconstructed corrs 61.5 52.1 68.5

TABLE IV: Accuracy, sensitivity and specificity of MLP
classification with actual and reconstructed correlations

tions got almost the similar result as actual correlations which
shows that by applying matrix decomposition to correlation
matrices important information about functional structure of
the data is preserved.
In the final experiment we measured the running time of
computing dynamic-functional connectivity and applying the
matrix decomposition technique to correlation matrices using
real data we used in subsection B. Table V shows the running
time using window size equal to 150 and different ranks l.
Based on the results, by increasing rank l, the running time

l 50 75 100
Running time 125.8 137.16 142.2

TABLE V: Running time (seconds) of computing dynamic
functional connectivity with w = 150 and using matrix
decomposition strategy based on different ranks l.

increases slightly. Overall, the results indicate the scalability
and efficiency of using matrix decomposition technique for
reducing the size of correlation matrices.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a GPU-based framework called
GPU-DFC for computing dynamic-functional connectivity of



fMRI data in both region and voxel levels. Since the number of
voxels in fMRI data can be huge and results in large correlation
matrices, we proposed two techniques to reduce the memory
requirements of correlation matrices. The first approach is
based on sparsifying correlation matrices and storing them in
CSR format and the other one is based on decomposing each
correlation matrix into smaller matrices. GPU-DFC achieved
around 2 times speed up for computing dynamic correlations
comparing to another GPU-based technique which is used
for computing static correlation matrix and more than 40
times comparing to sequential CPU version. Our proposed
matrix decomposition technique reduces the size of correlation
matrices more than 100 times. Reconstructed values from
decomposed matrices show small mean absolute error and
using them in real applications like classification show almost
the same result as using actual correlations.
For the future direction of this study we will focus on design-
ing GPU-based pipelines for large scale dynamic-functional
connectivity based applications like classification and graph
mining techniques.
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[17] D. Akgün, Ü. Sakoğlu, J. Esquivel, B. Adinoff, and M. Mete, “Gpu
accelerated dynamic functional connectivity analysis for functional mri
data,” Computerized Medical Imaging and Graphics, vol. 43, pp. 53–63,
2015.

[18] M. G. Awan, T. Eslami, and F. Saeed, “Gpu-daemon: Gpu algorithm
design, data management & optimization template for array based big
omics data,” Computers in biology and medicine, vol. 101, pp. 163–173,
2018.

[19] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[20] NVIDIA, “cublas,” http://docs.nvidia.com/cuda/cublas/index.html#
#axzz4VJn7wpRs, Mar. 2017.

[21] ——, “cusparse,” https://docs.nvidia.com/cuda/cusparse/index.html, Oct.
2018.

[22] ——, “cusolver,” https://docs.nvidia.com/cuda/cusolver/index.html, Nov.
2018.

[23] C. Bordier, C. Nicolini, and A. Bifone, “Graph analysis and modularity
of brain functional connectivity networks: searching for the optimal
threshold,” Frontiers in neuroscience, vol. 11, p. 441, 2017.

[24] T. Uehara, T. Yamasaki, T. Okamoto, T. Koike, S. Kan, S. Miyauchi, J.-
i. Kira, and S. Tobimatsu, “Efficiency of a “small-world” brain network
depends on consciousness level: a resting-state fmri study,” Cerebral
Cortex, vol. 24, no. 6, pp. 1529–1539, 2013.

[25] L. Cao, “Singular value decomposition applied to digital image process-
ing,” Division of Computing Studies, Arizona State University Polytech-
nic Campus, Mesa, Arizona State University polytechnic Campus, pp.
1–15, 2006.

[26] J.-J. Wei, C.-J. Chang, N.-K. Chou, and G.-J. Jan, “Ecg data compression
using truncated singular value decomposition,” IEEE Transactions on
Information Technology in Biomedicine, vol. 5, no. 4, pp. 290–299, 2001.

[27] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions,” SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[28] T. Eslami, M. G. Awan, and F. Saeed, “Gpu-pcc: A gpu based technique
to compute pairwise pearson’s correlation coefficients for big fmri
data,” in Proceedings of the 8th ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics. ACM,
2017, pp. 723–728.

[29] P. Bellec, C. Chu, F. Chouinard-Decorte, Y. Benhajali, D. S. Margulies,
and R. C. Craddock, “The neuro bureau adhd-200 preprocessed reposi-
tory,” Neuroimage, vol. 144, pp. 275–286, 2017.

[30] C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab,
B. S. Khundrakpam, J. D. Lewis, Q. Li, M. Milham et al., “The
neuro bureau preprocessing initiative: open sharing of preprocessed
neuroimaging data and derivatives,” Neuroinformatics, 2013.


	Florida International University
	FIU Digital Commons
	2-2019

	GPU-DFC: A GPU-based parallel algorithm for computing dynamic-functional connectivity of big fMRI data
	Taban Eslami
	Fahad Saeed
	Recommended Citation


	tmp.1553269970.pdf.J5WlS

