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ABSTRACT OF THE DISSERTATION

MULTI-ROBOT COORDINATION AND SCHEDULING FOR DEACTIVATION &

DECOMMISSIONING

by

Sebastián A. Zanlongo

Florida International University, 2018

Miami, Florida

Professor Leonardo Bobadilla, Major Professor

Large quantities of high-level radioactive waste were generated during WWII. This waste

is being stored in facilities such as double-shell tanks in Washington, and the Waste Iso-

lation Pilot Plant in New Mexico. Due to the dangerous nature of radioactive waste, these

facilities must undergo periodic inspections to ensure that leaks are detected quickly. In

this work, we provide a set of methodologies to aid in the monitoring and inspection of

these hazardous facilities. This allows inspection of dangerous regions without a human

operator, and for the inspection of locations where a person would not be physically able

to enter. First, we describe a robot equipped with sensors which uses a modified A∗ path-

planning algorithm to navigate in a complex environment with a tether constraint. This is

then augmented with an adaptive informative path planning approach that uses the assim-

ilated sensor data within a Gaussian Process distribution model. The model’s predictive

outputs are used to adaptively plan the robot’s path, to quickly map and localize areas

from an unknown field of interest. The work was validated in extensive simulation testing

and early hardware tests. Next, we focused on how to assign tasks to a heterogeneous set

of robots. Task assignment is done in a manner which allows for task-robot dependencies,

prioritization of tasks, collision checking, and more realistic travel estimates among other

improvements from the state-of-the-art. Simulation testing of this work shows an increase

in the number of tasks which are completed ahead of a deadline. Finally, we consider the

vii



case where robots are not able to complete planned tasks fully autonomously and require

operator assistance during parts of their planned trajectory. We present a sampling-based

methodology for allocating operator attention across multiple robots, or across different

parts of a more sophisticated robot. This allows few operators to oversee large numbers

of robots, allowing for a more scalable robotic infrastructure. This work was tested in

simulation for both multi-robot deployment, and high degree-of-freedom robots, and was

also tested in multi-robot hardware deployments. The work here can allow robots to carry

out complex tasks, autonomously or with operator assistance. Altogether, these three

components provide a comprehensive approach towards robotic deployment within the

deactivation and decommissioning tasks faced by the Department of Energy.
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1.1 Motivation

Across the world, 31 countries use nuclear energy to handle their energy requirements and

generate waste which has to be stored. Moreover, we are still coping with legacy waste

left over from weapons development programs dating back to the Manhattan Project and

Cold War. The facilities associated with generating and storing this waste have suffered

accidents, whose already critical status is heightened by the nature of the material stored

within. We might immediately think of the 2011 disaster at the Fukushima-Daiichi power

plant. However, there are also structures such as the Hanford facility in Washington state,

which houses high-level liquid radioactive waste inside large double-shell tanks, one of

which has already leaked. The tanks are expected to be decommissioned by 2046 at a

cost of $113.6 billion [han14]. Further, we have the Waste Isolation Pilot Plant (WIPP)

shown in Figure 1.1, which in 2014 suffered a vehicle catching fire and the subsequent

release of radioactive matter into the ventilation system. These structures are also mostly

underground, making inspection difficult and dangerous [DT].

Much of the inspection and handling of radioactive material is still done by humans.

Protective clothing and equipment can reduce the dosage received, but these measures

are still ineffective when dealing with the acute, large doses expected when handling

especially radioactive materials. The Department of Energy provides dose limits as in

Table 1.1.

During the events following the Fukushima disaster, 167 workers received more than

100mSv, at which there is a slightly increased cancer risk. A further six workers received

more than 250mSv, and two workers received upwards of 600mSv [Bru12]. A more

extreme example can be found in the 1986 Chernobyl disaster. Here, people known as the

1
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Figure 1.1: WIPP Facility Overview [nuk]

Dose Limit
(Whole Body) Activity Performed Conditions

50 mSv All
100 mSv Protecting major property Where lower does limit not practicable.

250 mSv
Lifesaving or protection of
large populations Where lower does limit not practicable.

>250 mSv
Lifesaving or protection of
large populations

Only on a voluntary basis to personnel
fully aware of the dangers involved

Table 1.1: Department of Energy radiation dose limits. [par]
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Figure 1.2: Workers known as “biorobots” working on the roof of reactor 3. They would
run, remove a few shovels, and then leave. Workers recall feeling pain in their eyes and a
metallic taste in their mouth due to the high radiation. [nat11]

Chernobyl liquidators were tasked with limiting the immediate and longer-term dangers

from the disaster. Experiences were grim, with some men (later called “biorobots” shown

in Figure 1.2) receiving instructions to throw a shovelful of radioactive dust and run, in

the hopes of limiting their dosage. Several firefighters were exposed to over 180sV (note

this is sieverts, not millisieverts), absorbing fatal doses in just 48 seconds. When they

died two weeks later, they had to be buried in lead coffins welded shut.

Surprisingly, robotic solutions in the nuclear industry have been very limited. These

solutions often take the form of Master-Slave Manipulators such as in Figure 1.3, which

require human operators to use basic tele-operation tools.
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Figure 1.3: Alpha Gamma Hot Cell Facility at Argonne National Laboratory [alp]
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(a) (b)

Figure 1.4: Examples of remote-controlled robots. (a) Mighty Mouse [mig]. (b) Gemini-
Scout [gem].

In the case of autonomous robots, we usually see a single robot with cameras such

as the Mighty Mouse and Gemini-Scout in Figure 1.4, which are often used for disaster

situations to probe an area ahead of human rescuers. Semi and fully autonomous robots

can navigate in locations that are dangerous or inaccessible for humans - such as channels

at the bottom of the tanks or pipes in waste treatment facilities, helping to maintain the

safety of inspectors.

1.2 Mobile Robots

Long the domain of research laboratories and carefully controlled factory settings, robots

have begun to move out into the world. These mobile robots are able to sense, localize,

and navigate their environments. Recent efforts are being undertaken to perform these

5



tasks in more complex environments, and with greater accuracy. Funding and R&D sup-

port is coming from both government and private institutions, such as:

• Government agencies: Department of Energy, Department of Defense, National

Aeronautics and Space Administration, National Science Foundation

• Private industry: Alphabet/Google, iRobot, Rethink Robotics, Kuka, DJI

• Academic institutions: Florida International University, Carnegie Mellon, Texas

A&M, École Polytechnique Fédérale de Lausanne, ETH Zurich

Examples of current robotic applications such as those in Figure 1.5 run the gamut

from the Amazone BoniRob used to check plant phenotypes and perform precision spray-

ing [Ama], to the MQ-9 Reaper UAV used for dynamic targets and intelligence collec-

tion [mq-15a]. Boston Dynamics is well-known for their Atlas humanoid robot’s abil-

ity to not only walk, but also run and jump [atlb]. We also have NASA’s R5/Valkyrie

humanoid robot, which is capable of operating in degraded or damaged environments

[Kis15]. NASA also has the Curiosity rover, equipped with an enormous suite of sensors,

and operating semi-autonomously on Mars [mis]. More down to Earth, there is an early

deployment of Starship Technologies’ delivery robot [Bur18], which uses simpler sensors

to accomplish tasks similar to Curiosity: navigating complex environments. Similarly,

the Knightscope robot [knia] is being used in crowded areas to extend a human security

guards awareness. Florida International University has developed and tested a tethered

pneumatic crawler robot for inspecting pipes in nuclear facility settings, with similar ap-

plications as the work in this dissertation. Finally, there is the surge in competition for

developing a self-driving car, such as Waymo’s forays into this field [waya].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.5: Examples of robots and their applications. (a) Amazone [bon]. (b) MQ-
9 Reaper UAV [mq-15b]. (c) Atlas [atla]. (d) NASA R5/Valkyrie robot [Hal15]. (e)
Curiosity Rover [mar]. (f) Delivery robot [sel]. (g) Knightscope patrolling robot [knib].
(h) FIU Applied Research Center Crawler [cra]. (i) Waymo self-driving car [wayb].
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1.3 Fundamental Challenges for Robotic Tasks in Deactivation &

Decommissioning

Many structures undergoing Deactivation and Decommissioning (D&D) are either too ra-

dioactive or inaccessible for humans to directly inspect. This can lead to deteriorating in-

frastructure, and potentially hazardous situations when no information is available. Semi

and fully autonomous robots can navigate in locations that are inaccessible for humans,

helping to maintain the safety of inspectors.

1.3.1 Modeling

Most everything that is done in robotics can be considered a modeling problem. In this

dissertation, modeling often concerns itself with modeling both robots and their environ-

ment. The environments that robots will be working in are often not designed for remote

inspection, and can be cluttered or very narrow. To simplify this problem, environments

are often represented as a graph structure, where robots travel to and from vertices along

edges. The vertices can represent locations of interest or safe locations for robots to stay

in. When thinking about modeling, we often assume that the object of interest is a phys-

ical object, such as a wall or other obstacle; however, we may also seek to model other

phenomena. As an example, in Chapter 2 we will cover how radiation might be mapped,

and generate a regression model for predicting radiation intensity at unvisited locations.

1.3.2 Navigation

With our map in hand and a specified location to visit, navigation attempts to create a tra-

jectory for the robot that takes it to the goal location - most likely while also minimizing

some value such as total distance traveled, or maximizing another value such as informa-
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tion gain. Navigation entails both path planning to specify an overall movement strategy,

and obstacle avoidance which concerns itself with more local modifications to the robot

path. Path-planning is used throughout this dissertation. In Chapter 2, we include the

addition of information gain when determining which path a robot should take. In Chap-

ter 3, we introduce the issue of obstacle-avoidance when executing a path. In Chapter 4,

paths can be generated for both robots as well as independently operated appendages for

a robot.

1.3.3 Coordination

The use of multi-robot systems is being explored as a way for sampling environments and

transporting material within long-term nuclear waste storage facilities. Using multiple

robots has the benefit of distributing workloads and allowing for faster overall comple-

tion rates and more robust operations. However, this brings with it the new issue of how

to best coordinate the robots so that they avoid collisions with each other, and effectively

distribute work. This is at odds with current robot job allocation and scheduling, which

is often performed in an ad-hoc manner and is complicated by unknown environments.

Moreover, many of these robots are controlled by multiple operators, and clumsy operator

controls have led to making mistakes and robots being damaged [ABB+15]. This was ev-

idence in the case of the Fukushima-Daiichi nuclear power plant, where robots requiring

multiple operators suffered coordination issues and led to several robots being lost.

1.4 Scope and Overall Strategy

To address the shortcomings of existing approaches, the proposed research will address

three questions impeding robotic inspection:

9



1. Thrust 1: Informative path planning in constrained environments - The envi-

ronments that robots have to contend with are difficult to traverse; in the case of

the Hanford tanks, robots must navigate small, 1.5-inch refractory slots at the bot-

tom of the tanks, as well as carry a tether for safety purposes. These constraints

hinder where samples can be taken and makes movement difficult. How do we

sample so that cost is minimized while still reducing model uncertainty? We make

use of Informative Path Planning (IPP) to determine where to sample, and to detect

anomalies.

2. Thrust 2: Robot task allocation in complex environments - D&D structures

may be partially unknown, as buildings can differ from their original blueprints.

Therefore, robots must cope with unknown, possibly dynamic environments. Task

allocation in these environments is further complicated as robots may have different

capabilities, and tasks have various requirements and deadlines. The question then

becomes: how to best allocate tasks among many heterogeneous robots to improve

the task completion rate? We utilize a greedy heuristic approach to rapidly trim the

large search space and arrive at an online solution.

3. Thrust 3: Robot policy generation given operator constraints - Robots often

require operator oversight when executing complex maneuvers. However, assign-

ing operator attention to multiple robots is challenging to scale to large numbers of

robots or robots with the need for multiple operators. How do we effectively allo-

cate operator attention? The core of our strategy is a geometric representation of

the problem, which not only allows for a graphical representation of the problem

but also for the use of motion-planning techniques to quickly arrive at a solution

via sampling.
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These main topics allow us to 1) reduce the search space when looking for areas of

interest, 2) indicate how to dispatch robots in order to complete tasks, and 3) in the event

that a robot cannot perform fully autonomously, coordinate operator attention to assist

robots.

1.5 Organization of the Dissertation

This chapter concludes with an overview of the remainder of the dissertation. Chapters 2,

3, and 4 contain original contributions. Chapter 5 closes with a review of the significant

contributions. The main topics of this dissertation are detailed in the subsequent chapters

as follows:

• Chapter 2 We review some of the difficulties we face when attempting to survey

an area using robots in order to map out a field of interest. The chapter provides a

methodology for mapping out a temperature field in a constrained environment and

evaluates the methodology in a simulated environment. Early physical experiments

are outlined, and potential avenues of future research are provided.

• Chapter 3 Once the task of mapping has been accomplished, robots may need

to perform specific tasks. This chapter described how tasks could be allocated

amongst multiple heterogeneous robots in a manner that increases overall system

performance. The work was tested in various simulated environments with good

results.

• Chapter 4 Finally, we consider situations in which a robot is not able to perform

entirely autonomously, and must instead rely on the assistance of a human teleop-

erator. This chapter provides a solution which allows few operators to oversee a

large number of individual robots or complex robots which would typically require
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multiple operators. The solution was tested in simulation for both simple and high

degree-of-free robots, as well as in hardware experiments.
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2.1 Introduction

During World War II and the Manhattan Project, large amounts of high-level radioac-

tive waste were generated. Some of these wastes are in liquid form and stored in large

double-shell tanks at the Hanford Facility in Washington state. These structures are now

in a surveillance and maintenance phase which requires continuous monitoring to check

for containment failures. Contamination of these and similar structures can result from

leakage, and one tank has been confirmed to have leaked [EGHR].

Localizing the source of these leaks is difficult due to the structure of the tank: the

tanks are buried approximately 15ft underground, and the bottom of the tank is another

45ft deeper, as illustrated in Figure 2.1 [BG13]. Inspection of the structural integrity of

the tanks can only be accessed via narrow annuli at ground level, further complicating

sensor deployment. Moreover, this only serves to reach the bottom of the tank along its

perimeter. Access to the rest of the tank bottom must be done through a series of narrow

1.5-inch cooling refractory slots located at the bottom of the tank. We might consider

deploying a sensor network throughout the refractory slots, however the sensors may

interfere with the air being circulated through the slots, or the moving air could dislodge

the sensors. Deployment in such a constrained environment faces the issues of how to

transport and attach the sensors, and how to power and communicate with them over

extended periods of time. Existing inspection approaches use a pole-mounted camera;

however, this can only inspect the perimeter of the tank and the outermost segment of the

refractory slots. Furthermore, pole-mounted visual inspection requires the operators to

manually inspect each of the refractory slots [Gir15], leading to a labor-intensive, time-

consuming process.
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Figure 2.1: Tank cutaway showing buried tank and access annulus. [Gun15]
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Figure 2.2: WIPP Facility 2014 accident details. [was]

As a further motivating example, we can look at the Waste Isolation Pilot Plant (WIPP)

Facility. In 2014, an explosion (illustrated in Figure 2.2) from one of the barrels holding

waste led to the entire facility being closed until teams could respond. Inspection of

the area was greatly delayed due to safety concerns and a lack of rapid robotic response

solutions.

There are sampling methods such as [HGG+14] which attempt to perform a spatial

extrapolation given samples at selected discrete locations. Care must be taken when se-

lecting and adopting a sampling approach, as an inappropriate regression model or utility

function may cause problems ranging from non-representative samples to the absence of

an essential but easily-overlooked location. Furthermore, inaccurate estimations of the
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spatial variability can lead to the incorrect modeling of the underlying field and contami-

nation properties.

In this chapter, we present a methodology for automating and improving the inspec-

tion process of these tanks. We propose an Adaptive Informative Path Planning (IPP)

approach that would allow a miniature robotic rover to inspect the tank for locations of

interest efficiently. The IPP algorithm incorporates prior knowledge about the tank struc-

ture, balances exploration and exploitation to initially locate and then refine the location

of locations of interest, and also accounts for the robot’s movement constraints.

The rest of the chapter is organized as follows: In Section 2.2, we review existing ap-

proaches to IPP, including relevant similarities, and the major differences to our domain.

In Section 2.3, we define the environment and problem being tackled, and Section 2.4

describes our approach. Sections 2.5 and 2.6 cover the simulated trials and an analysis of

the results. In Section 2.7 we offer a discussion of the results obtained and conclusions.

2.2 Related Work

IPP has wide applicability, used to localize points of interest in forests, oceans, and dis-

aster areas [CLD13]. As such, it has received much attention, and new solutions con-

tinue to be proposed due to the myriad domain-specific issues which can render existing

approaches insufficient. Traditional localization such as [Mic17] often uses a rastering

(zig-zag) pattern to cover an area to map it. This may take a long time to localize the

source if it is opposite to the starting position. Another solution is to determine which

locations might be most informative a-priori, and then execute a minimum-cost tour of

those locations [HS13].

Adaptive sampling aims to provide better results with less time, by actively adapting

its sampling locations. In this work, we utilize a modified Gaussian Process - Upper Con-
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fidence Bound approach (GP-UCB) [SKKS09] to select sampling locations efficiently.

The goal of this work is to deploy a robotic system for localizing radioactive leaks, and

thus has some similarities to [CCS+16, QSBZ12] where robots are fitted with optical

and radiation sensors to find radiation sources, and [CMS16] which has a strong showing

of aerial vehicles and their associated mapping techniques. The approach in this chap-

ter differs in its unique environment and the resulting constraints such as limited robot

movement.

Unlike some existing IPP approaches which rely purely on the informativeness of pos-

sible sampling locations [GK11], we also incorporate robot dynamics such as movement

and tether constraints that limit the robot’s ability to visit certain locations easily. This

bears some resemblance to work by [MR12, MR14] where a Gaussian Process is used

to model both the phenomenon and the quality of possible paths. With regards to path-

planning, we draw inspiration from existing approaches by Brass et al. [BVX15] which

performs path planning for a tethered robot given polygonal obstacles, and Kim et al.

[KL15] which use a Multi-Heuristic A∗ algorithm to find paths for a tethered robot with a

homotopy invariant augmented graph. In order for the robot to navigate between the ver-

tices in the graph representation of the refractory slots, we use a modified A∗ algorithm

such as the one described in [ZBT17].

2.3 Problem Formulation

The goal of inspecting the tanks is to detect anomalies - in this case, possible leaks. As a

proxy for finding the leak, we use the temperature distribution at the bottom of the tank,

which would be impacted by the presence of a leak. We are looking to create a map of

the temperature distribution at the bottom of the tank - which is represented by an un-

known scalar field f : Rd→R - from samples Y selected from a set of potential sampling
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Figure 2.3: Tank cutaway showing the inner and outer shells, refractory slots, and annulus
at the sides of the tanks. [BG13]

locations V . Given the samples, we seek to find the location with the highest tempera-

ture, corresponding to the most likely source of a leak. We desire to select the sampling

locations which best update the model, but also keep the overall distance traveled as low

as possible while respecting the kinematic constraints of the robot. Complete coverage

would aim to map out the entire tank, and lends itself to an exhaustive approach. This

formulation instead seeks to find the leak more quickly than with a traditional exhaustive

approach.

The approach and simulation in this work were designed for deployment in the Han-

ford facility double-shell tanks. These tanks are composed of an inner tank that holds the

high-level liquid radioactive waste and an outer shell serving as a fail-safe if the inner

tank leaks. Figure 2.3 illustrates a cutaway view of the tank, indicating the inner storage
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vessel, refractory slots, and the gap between the inner and outer tank walls. Here, we will

describe the structure in further detail.

2.3.1 Refractory Slot Structure

Sandwiched between the bottom of the two tanks is a series of air distribution slots seen in

Figure 2.3, also known as refractory slots. These slots serve as an air distribution system

to cool the primary tank and provide an avenue for inspecting the bottom of the inner

tank without actually entering the tank itself. The tanks were built over multiple years

and have slightly varying refractory slot designs. In this work, we focus on the design of

the AY-series tanks, which consists of 1.5-inch-wide slots arrayed radially outwards as in

Figure 2.4(a).

We model the refractory slots as a graph, with the slots represented as edges E, and

the forks as vertices V . The robot cannot execute tight turns (cannot turn at a fork to go

down an adjacent slot). Given this graph structure, we only considered vertices as valid

sampling locations, rather than the continuous plane representing the tank floor. As such,

we introduce additional evenly-spaced vertices along edges such that a minimum desired

sampling resolution is achieved.

The bottom of the tank is formed by multiple steel plates welded together, meaning

that there are weld seams between the various plates. These weld seams run in a North-

South, East-West pattern as in Figure 2.4(b), with occasional overlaps along the refractory

slots indicated by the purple points in Figure 2.4(c). Many of the weld seams had initial

high rejection rates, and have been reworked several times [BG13]. Due to all the rework,

there may be some uncertainty regarding the integrity of the weld seams, making them of

higher interest.
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(a) (b)

(c)

Figure 2.4: (a) Layout of the refractory slots at the bottom of the tanks. (b) View from (a)
with the addition of weld seams. (c) View from (b), with locations where refractory slots
intersect weld seams highlighted.
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2.3.2 Temperature Distribution Modeling

Searching for the leak, we would initially consider searching for the liquid that has leaked

out. However, there are confounding factors such as seepage from other sources, as well

as the desire to avoid having the robot come into contact with the contamination. We

might also mount a radiation sensor to the robot, however, a high-accuracy radiation

sensor would not fit within a refractory slot. Moreover, radiation roughly follows an

inverse-square law, and its measurements drop off quickly, making localization difficult.

Instead, we look towards temperature as a proxy measurement, as these sensors are small

and sensitive to temperature variations. The Gaussian nature of temperature assists in

localizing the leak. The source of the leak corresponds to the peak, and moving further

away from the leak leads to a decaying signal. The model was generated using a 2-

dimensional multivariate normal distribution with a probability density function such as

that in [RW06], with mean vector M, a randomly-generated positive definite covariance

matrix Σ. Further details about the model can be found in Section 2.5.

2.3.3 Regression

Gaussian Processes provide a method for modeling unknown fields non-parametrically.

Here, we aim to efficiently derive a Gaussian Process regression through a process such

as that described in [RW06]. Given a set of N sampling locations, where each location

xi ∈ R2 has a noisy measurement yi ∈ R given by y = f (x)+ ε where f (x) is the ground-

truth and ε ∼N (0,σ2
n ). The predicted mean µ∗ and covariance σ∗ at a specific target

location x∗ ∈ X∗ is given by:

µ(x∗) = K(x∗,X)K−1
X y

σ(x∗) = K(x∗,x∗)−K(x∗,X)K−1
X (X ,x∗)
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where K(X ′,X ′′) is the covariance matrix, X are the sampled observation locations,

and KX = K(X ,X)+σ2
n I.

For the covariance function, our implementation uses a Matérn kernel. The finitely

differentiable Matérn kernel can better model physical processes, and does not assume as

much smoothness as other kernels - such as the infinitely differentiable Squared Expo-

nential kernel - which can yield unrealistically smooth results when modeling a physical

process [Ste12]. The Matérn kernel is described as follows:

k(xi,x j) = σ
2 21−ν

Γ(ν)

(√
2ν

d
ρ

)ν

Kν

(√
2ν

d
ρ

)
(2.1)

Here, xi,x j are two locations and d is the distance between them, which is parameter-

ized by ρ > 0. We control the smoothness of the function via ν > 0. Γ is the gamma func-

tion, and Kν is the modified Bessel function of the second kind [RW06]. We select ν = 1.5

(a once-differentiable function) to avoid having to compute the Bessel function, allowing

for a roughly 10 times faster computation. For optimizing the kernel’s parameters, we use

the Limited-memory BFGS (L-BFGS-B) [BLNZ95] optimization algorithm, which is de-

signed to smooth functions, and has linear memory usage. The first run of L-BFGS-B is

done with the kernel’s initial parameters, and then an additional n times (restarts) using θ

derived from a random log-uniform distribution within the allowed bounds. With experi-

mentation, setting the number of restarts for the optimizer to 10 yielded good regression

performance while reducing runtime.

2.3.4 Robot

In this work, we model the robot as a point robot, capable of moving along edges in the

graph from one vertex to another. To simplify the problem, we assumed a movement

time of 1ft/s, and a sampling time of 10s when measuring the temperature at a location.

The robot has a tether, which was selected to be long enough to allow the robot to access
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any point in the refractory slots, but short enough that the furthest location would require

using all the length of the tether with minimal slack. This tether is required to:

• Power the robot

• Send/receive commands and sensor data

• Allow for removal of the robot in the event of system failure

The tether limits the distance the robot can travel, as well as constrains its movement

(loops and tight turns are not possible). The most noticeable effect of the tether is that

the robot cannot wholly circle the tank, and must instead retract to the insertion point

and then go the other direction when reaching locations on the far side of the tank. An

illustration of this can be seen in Figure 2.5, where the robot must circle back before

exploring the other half of the tank. Moreover, the tether must be dragged by the robot,

which is difficult given the small size of the robot (1.4 x 1.2 x 2 in), and is complicated

by turning around corners where the tether experiences additional friction.

2.3.5 Path Estimation

Given the structure of the refractory slots, a traditional Euclidean distance between points

is not an adequate metric for considering the cost of traveling. Instead, the entire path-

cost must be computed, taking into account the need to backtrack out of individual slots.

We augment Dijkstra’s algorithm [CLRS09] with the constraints that the robot has:

• a limited-length tether

• to travel backward to exit a slot

• to enter and exit via the same slot, before re-entering an adjacent slot (the robot

cannot enter a slot and exit via another due to the space constraint at a fork)

23



Figure 2.5: Time representation of a robot moving through refractory slots using an ex-
haustive approach. Vertical movement corresponds to the robot moving through time.

In Algorithm 1, we show the pseudocode for the modified Dijkstra. The inputs to the

algorithm are the adjacency graph G, start and goal locations, cost of reaching the current

location, the current tether occupancy, and the max length of the tether. In lines 1 – 7,

we initialize a frontier priority queue that contains the vertices to explore in the order

provided by a priority heuristic. The came from dictionary contains the relationships

showing how vertices are connected to each other; cost so far indicates the cost to reach

each explored vertex, and the tethers dictionary shows the cells occupied by the tether to

reach each explored vertex. Each of these is initialized with the starting location of the

robot, the tether occupancy, and the cost to reach the current location. In line 8 and 9,

we pop the frontier for unexplored vertices. Line 10 checks each neighbor of a vertex

that is currently being expanded. In lines 11 – 15, we keep track of the stack of the
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tentative tether, extending or shortening it as the robot moves along. Line 16 considers

the cost of reaching the neighbor given the cost already expended, and the additional

effort of moving to the next neighbor. In line 17, we check to see if the route under

consideration exceeds the maximum tether length. If not, we also check if that neighbor

has not already been explored, or if the route under consideration has a lower movement

cost or tether length than the previously examined route. If these conditions are met,

save the new route in lines 18 – 21. Finally, we check in line 22 to see if the goal has

been reached. If so, we reconstruct the path from the saved neighbors in lines 23 – 24.

Otherwise, no valid path exists, and we return None in lines 25 – 26. The solution here

only takes the robot between two locations, start and goal. To plan a path through all the

desired sample locations, the planning process is repeated in a sequential manner where

the goal location of the previous search is assigned as the start location for the next search

until all the sample locations have been visited. The corresponding cost and the tether

occupancy of the robot are also updated along the searching iterations. Figure 2.6(c,d)

shows the movement of a robot throughout the slot network, with the z-axis representing

the order of sampling sequence.

2.4 Gaussian Process Modeling and Sampling Location Selection

Building on Section 2.3, we accept as input a graph G = (V,E) representation of the

refractory slots, and discretize the graph to the desired resolution by inserting additional

vertices along the edges as needed. This process allows us to approximate the continuous

sampling space using a more straightforward discrete representation. The vertices also

encode the angles between each other, to prevent the robot from attempting tight turns

which would cause the tether to become stuck.
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Algorithm 1 Tethered A*
1: Input: (G,xinit ,c,xgoal,T,Tmax)
2: frontier← PriorityQueue
3: came from← Dictionary
4: tethers← Dictionary
5: frontier.put(xinit , 0)
6: came from[xinit]← c
7: tethers[xinit]← tether
8: while frontier6= /0 do
9: current← frontier.pop

10: for neighbor ∈ g[current] do
11: Ttent ← tethers[current]
12: if neighbor == previous position then
13: Ttent .pop
14: else
15: Ttent .append(current)
16: cnew← cost so far[current] + cmove
17: if (|Ttent | ≤ Tmax) and ((neighbor /∈ cost so far) or (cnew ≤

cost so far[neighbor]) or (|Ttent | ≤ |tethers[neighbor]|))) then
18: cost so far[neighbor]← cnew
19: frontier.put(neighbor, cnew)
20: came from[neighbor]← current
21: tethers[neighbor]← Ttent

22: if xgoal ∈ came from then
23: path← reconstruct path(came from, xinit , xgoal)
24: return path
25: else
26: return None
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These restrictive constraints permit the solution to be used in similar environments

such as the tanks at the Savannah River National Laboratory [LLC17], or the Waste Iso-

lation Processing Plant (WIPP), which also has a channel-like structure. Our ideas can

also be applied to more traditional open environments. If a graph structure is not ini-

tially available, a Voronoi decomposition or cell decomposition [LaV06] may be used to

generate a graph.

2.4.1 Sampling Site Selection

Our approach consists of a modified Upper Confidence Bound algorithm: Given the cur-

rent state of a Gaussian Process Regression, we use the predictive output mean µ∗ (Ex-

ploitation) and variance σ∗ (Exploration) at the candidate sampling locations S , which

is initially equivalent to V . Weld seam bias w serves to increase the expected utility of

prospective sampling locations that lie on top of a weld seam, given the expected higher

failure rate of weld seams due to their high initial rejection rate.

The exploitation and exploration values are normalized at each step t ∈ T , with regards

to the highest-valued predicted output in the set S. The weld seam value is set to a constant

w = 1. These elements are then respectively weighted by λ , where λ ∈ [0,1]3 to yield:

utility = λ • [µ∗,σ∗,w], where locations with a higher value are deemed more desirable.

We will now cover each of the parameters in detail, and how they affect the model’s

behavior:

Exploration vs. Exploitation

Here, we discuss the most critical component of the modified UCB algorithm: the trade-

off between exploration and exploitation.
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(a) (b)

(c) (d)

Figure 2.6: (a) Isometric view of an example Gaussian-Process-like temperature distribu-
tion - with the center being the leak source - overlaid on refractory slots. (b) Overhead
view of (a). (c) Example time representation of a robot moving through refractory slots,
where the vertical z-axis is time. (d) Time representation of a robot moving through
refractory slots using an exhaustive approach.

Start by constructing a distribution that describes the Gaussian Process we are looking

to reconstruct. Adding more observations, the distribution improves, and the uncertainty
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Algorithm 2 Bayesian Optimization
1: Input: Possible sampling locations V , Utility function S, Update Rate r, Number of

samples to take n
2: V ′←V
3: for t ∈ [1,n] do
4: Evaluate S(v) over V ′

5: x← argmax S(v)
6: Sample(x)
7: V ′←V ′\x
8: if t%r == 0 then
9: U pdateGP(x)

(variance) diminishes near sampled locations allowing us to determine which locations

need to be further explored. The UCB algorithm shown in Algorithm 2 is a modification

from [MR12, SKKS12], and selects a new sampling location based on the weighted mean

and variance. A higher mean biases to rapid localization and a higher variance to total cov-

erage. This process is done by finding the maximum of the UCB utility function, which

serves as a computationally simpler proxy for the task of regression [SLA12, BCDF10].

We can also incorporate knowledge about the tank dimensions into the regression. The

bounds of the kernel length scale are allowed to range between [1e−5,80], corresponding

to just over the maximum diameter of the tank, and we set the initial estimate for the

length scale to be 40, the midpoint. We must also set α , which is the value added to the

diagonal of the kernel matrix when fitting the model. Small values correspond to less

noise, whereas high values indicate greater noise, equivalent to using an additional White

Kernel. Here, we set α = 0.2, which roughly correlates to the ±2◦C error margin of the

temperature sensor model.

Weld-Seam Bias

The previous section assumes that the only way to gather information is via new samples.

However, we would expect that the weld seams are more prone to failure than the steel
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plates themselves. With this in mind, we can bias our search to prioritize weld seams

that intersect our available sampling locations (Figure 2.4(c)) by adding the weighted

parameter w to the utility function. For vertices that lie on a weld seam x ∈Vweld , we add

the weighted w to the utility; otherwise, the value is 0.

Continuous Area

The above work assumes a discretized environment composed of a graph. For complete-

ness, we may also adapt this work to function in a continuous environment where robots

are not as tightly constrained. In this event, minor modifications are needed: rather than

evaluating the utility of the vertices in a graph, we must find a way to accomplish this

efficiently over an infinite number of points.

Algorithm 3 Continuous Area Bayesian Optimization
1: Input: Number of warm-up locations m, number of optimization locations l, Utility

function S, Update Rate, Number of samples to take n
2: V ← m random samples from the parameter space
3: V ′← l random samples from the parameter space
4: for t ∈ [1,n] do
5: Evaluate S(v) over V
6: v,x← argmax S(v)
7: for v ∈V ′ do
8: v′,x′←L-BFGS-B(−S(V ′))
9: if v′ > v then

10: x← x′

11: Sample(x)
12: if t%r == 0 then
13: U pdateGP(x)

The algorithm is shown in 3 and described here. Begin by taking a random sampling of

points V from the parameter space defined by the bounds of the environment, where m =

|V | is the number of random samples to take, and evaluate the utility function over those

points. Next, we sample the parameter space more thoroughly over l = |V ′| points. For

these points, we use the Bounded Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
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algorithm (L-BFGS-B) to find the minimum of minus the utility function. The L-BFGS-

B optimization algorithm was selected as it reduced the amount of memory needed, and

extends traditional L-BFGS to allow for bound constraints on the variables, reducing the

time needed to run. Still, the time needed to evaluate the optimization function is non-

negligible, and often l << m. The minimum of all the points is then selected as the next

location at which to sample.

2.5 Simulation

We performed a series of 200 independent trials, each consisting of a randomly generated

hot-spot representing a leak. The hot-spots exhibit a distribution that can be described by

a Gaussian Process, and the peak of each hot-spot lies within the bounds of the tank, as

in 2.6(a, b). 100 of these trials had the hot-spot centered on a randomly-selected location

along a weld seam, to reflect the higher failure rate associated with weld seams compared

to the plates themselves. The other 100 trials had the hot-spot generated at a random

location within the bounds of the tank. A visualization of this can be found in Figure 2.7.

Without loss of generality, the hot-spot peak intensity (the mean) was set to 100, while

the covariance along the x,y axes was randomly selected from the range [4.5,18]. This

range was selected as 4.5 is approximately the maximum distance between two refractory

slots - and therefore the minimum size the hot-spot must have so that at least one refrac-

tory slot intersects it. The upper value of 18 corresponds to 4 times 4.5 and was used to

provide a varying range of spread. The resulting hot-spot was then used to evaluate the

various weighting schemes.

While executing a trajectory such as in Figure 2.6(c), the robot would sample if it

visited a previously un-sampled location, and remove that location from the candidate

pool of future sampling locations S. The regression was fitted at every 3rd new sample.
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(a) (b)

Figure 2.7: Example visualization of distributions. (a) Distributions centered on a random
location coinciding with a weld-seam. (b) Distributions placed randomly throughout the
tank. On average 3ft away from the nearest weld seam.

This process continued until all vertices in the graph had been visited and sampled. Apart

from Informative Path-Planning, an exhaustive approach was executed against the same

distributions to establish a baseline. The exhaustive approach used the trajectory shown

in Figure 2.6(d) where x,y are the planar coordinates, and z is a representation of time.

2.6 Analysis

Testing of the efficacy of the different weighting schemes was done by comparing their

Root Mean Square Error (RMSE) for the predicted value at locations throughout the tank,

defined as: RMSE =
√

1
n ∑

n
i=1(Yi− Ŷi)2 where Y is the vector of ground-truth values, and

Ŷ is the vector of n predictions.

The resulting non-negative loss-value is a measure of accuracy indicating the differ-

ence between the predicted values and the ground truth, where a value of 0 is the best

score, and larger values correspond to a worse-performing model. A visual example can

be found in 2.8(a), where the ground truth is shown overlaid on the prediction. The RMSE
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(a) (b)

Figure 2.8: (a) Comparison of ground truth and predicted. (b) Radiation map from GPR
given hardware data.
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can be thought of like the difference between the two surfaces. We will also refer to “local

RMSE”, defined as the RMSE for a region surrounding the distributions’ center, with a

diameter of 1σ , the spread given by the covariance of the distribution. This is done to

more clearly illustrate the performance of the regression for the point of interest, rather

than the entire area.

2.6.1 Illustrative Examples

In this section, we will outline the weighting schemes that best illustrate how different

strategies can affect the performance of the approach described above.

Randomly-Located Leaks

We begin by focusing on a model tank where the leak is generated at a random location.

In Figure 2.9, we find a comparison of the average performance among the different

weighting schemes across the 100 trials. The y-axis indicates the average local RMSE

score every time the regression was updated, and the x-axis shows the average time-step

at which the regression was updated across all trials. The models initially begin at an

RMSE of approximately 31.

The traditional exhaustive approach (such as the one in [Mic17]) performs as ex-

pected, with a steady decrease in the local RMSE. A strictly Exploration-based approach

of λ = (0,1,0) will naturally perform poorly, as this will make the robot alternate between

each side of the tank to visit the most extensive remaining unexplored region. Switching

over to a purely Exploitation-based approach of λ = (1,0,0), we find remarkably better

performance than either the exploration or exhaustive methods as the robot quickly con-

verges on the location with the highest temperature. Attempting to combine exploration
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Figure 2.9: RMSE performance of various weighting schemes given leaks created in
random locations throughout the tank. The y-axis corresponds to the RMSE, and the
x-axis indicates the average time at which the corresponding score was achieved.
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and exploitation as λ = (1,1,0) results in the robot occasionally moving to distant parts

of the tank which have high uncertainties.

Weld-Seam-Biased Leaks

We now turn our attention to the trials where the leaks were created over weld-seams.

The accompanying results can be found in Figures 2.10, 2.11. The baseline using the

exhaustive approach closely resembles that of the previous trials with a randomly-located

distribution, beginning at an RMSE of ∼ 31, and eventually decreasing to ∼ 5. However,

we are primarily concerned with how quickly we can localize the leak. If we consider

the threshold to be a 50% reduction in the local RMSE (to be conservative, let’s say an

RMSE of 15), then an exhaustive approach reaches this threshold at time 6,147. Using

the previous-best weighting scheme of [1,0,0], we reach a > 50% reduction of the local

RMSE by time 3,257, or almost half the time of the exhaustive method. Taking into ac-

count our prior knowledge about weld-seams having a higher failure rate, we compare this

with λ = (1,0,1). Incorporating prior knowledge provides a slight advantage, shaving off

21% of the exploitation approach to a time of 2,584, or almost 42% of the exhaustive ap-

proach. Incorporating the exploration weight (λ = (1,1,1)) again shows the same issue

as before, giving slightly worse results.

2.6.2 Path-Planning Considerations

A common theme throughout the results shown above is the harsh implicit penalty for

moving. In a continuous plane or other obstacle-free environment such as in [CMS16], a

robot can quickly move from one location to the next. In the case of the refractory slot

structure, moving between locations - even nearby locations - requires the robot to exit

the refractory slot, circle the tank, and then enter a different slot, leading to considerable
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Figure 2.10: RMSE performance of various weighting schemes given leaks biased to
weld-seams. The y-axis corresponds to the RMSE, and the x-axis indicates the average
time at which the corresponding score was achieved.
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movement costs. Motion capabilities are further constrained by the tether forbidding any

turns within the forked refractory slots. Thus, any exploration is heavily penalized, as

seen in strategies favoring σ .

Readers may notice that the exhaustive approaches have a slight plateau in the middle

of their runs. This result is due to the structure of the exhaustive approach path, which

must explore one half of the tank, and then circle back before exploring the other half due

to the robot’s tether constraint. During the circling back of the robot, the regression will

be unaffected as those locations have already been sampled.

2.6.3 Leak Behavior and Effects on Weighting Performance

The trials shown here were all simulated with a single distribution (representing a single

leak). In the event of two or more simultaneous leaks, we expect that slightly favoring

Exploration (σ ) might yield better performance as it would help in avoiding the robot

becoming stuck on a local maximum. In the future, we plan to examine how the model

performs given multiple unknown distributions.

2.6.4 Performance

As was previously shown in Section 2.6.1, we find better performance using an appropri-

ate weighting scheme such as λ = (1,0,1) than an exhaustive approach. Of interest is not

just the overall reduction in the average time needed to localize the point of interest, but

also the dispersion. In Figure 2.11 we show the whisker plot for various schemes when

operating in a weld-seam-biased tank. Of particular importance is the high variability of

the exhaustive approach, and the lower variability of the UCB techniques, showing more

consistent times for localizing the leak.
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Figure 2.11: Times to reduce the local RMSE to 50% of the original value. Results shown
are with regards to weld-seam biased leak locations.
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2.6.5 Hardware Experiments

Preliminary experiments were run on a Turtlebot Waffle, equipped with an LDS LIDAR

and CZT Spectrometer. We were able to use the robot to randomly visit locations and

gather data based on a point-source placed within the environment. The data was then

used to form a regression as in Figure 2.8(b). These early experiments performed well,

with the point source being localized with just a few samples. In the future, we would like

to continue these experiments using the online IPP approach. It is expected that given the

performance using a random approach, the IPP approach will fare much better.

2.7 Conclusion

In this chapter, we illustrated a methodology for localizing potential leaks at the Han-

ford Facility high-level waste tank farm. Whereas current efforts only utilize a visual in-

spection with a pole-mounted camera for inspecting the periphery of the refractory slots

[Gir15], our approach allows for robotic inspection of the bottom of the tank. We provide

simulation results and an analysis of the results indicating that the solution is feasible.

While much of the existing literature for IPP assumes a relatively open environment,

this work describes a path-planning approach that can work in constrained environments

where a robot can only sample a small portion of the total area. Moreover, the path-

planning algorithm shown here [ZBT17] allows for the robot to be constrained in its

movements by its turning radius and tether, unlike previous works such as [GK11] where

those kinematic constraints are not considered. The IPP approach also incorporates prior

knowledge of the environment, rather than having to start from no knowledge as several

of the related works in Section 2.2 assume, and incorporating a travel penalty if desired.

Compared to the existing approaches used at the Hanford facility with a manual probe,

this solution permits inspection of the entire length of the refractory slots, and reduces the
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Figure 2.12: Prototype mini-rover for inspection of refractory slots.

time needed to localize a leak compared to the traditional rastering exhaustive approach

such as in [Mic17]. The reduced time allows for better responses in both periodic in-

spections and emergency responses. This work can also be used when surveying other

types of structures and buildings, allowing for effective remote characterization, assisting

operators to make better decisions about what areas need decontamination.

We have also developed the robotic mini-rover with a video camera shown in Figure

2.12, and performed preliminary testing in mock-up refractory slots [DAMT17, DMA+18].

We are now working to integrate temperature and other sensors. Future directions for this
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work include deployment within the actual working tanks, and applying these techniques

to a radiation signal rather than temperature.
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3.1 Introduction

Allocating tasks to robots is a challenging problem. Robots may be spread out over an

area, with tasks coming in from multiple locations. An example of this is sampling in

hazardous environments. Robots must travel to the sample locations, and then either

ferry the samples to a drop-off location or execute experiments using onboard equipment.

The components of the solution include:

1. Converting the environment into a Voronoi decomposition that yields a “roadmap”

G with the best clearance from known obstacles as in Figure 3.1, followed by path-

planning.

2. Collision checking, which permits robots to react to previously unknown obstacles

and other robots Xobs, where the robot seeks a goal location shifted r steps after the

obstacle.

3. Scheduling, consisting of an estimation of how including the task T i would impact

other tasks and a greedy heuristic which quickly prunes the large decision space

into a manageable set by iteratively prioritizing and eliminating tasks according to

a set of operator-defined criteria.
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Figure 3.1: Example roadmap around buildings

3.2 Related Work

Traditional ferrying approaches aim to solve the problem of transporting messages or

items from one location to another [ZAZ04]. The solution described here improves upon

that of computational ferrying by [MAZ+15], where traditional ferrying/muling [ST08,

GK07] is augmented by allowing for computation. There are also connections with real-
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time scheduling where different jobs with deadlines must be scheduled as they come in

[LL73, SAÅ+04, But11], where wait time must also take into account the physical dis-

tance between tasks, and multi-robot planning that assigns paths to robots [Par08, LaV06].

In Monfared et al. [MAZ+15], a set of robots are coordinated in order to satisfy the

requests of multiple users scattered throughout an environment. This allows users to of-

fload computation for mobile devices onto mobile cloudlets, providing greater processing

and storage capabilities, as well as reduced power consumption. In order to allow for

efficient usage of the ferries, the visit schedules must be carefully designed [ZAZ05].

The trajectories followed by robots in [MAZ+15] are direct lines between the pickup and

delivery locations. In a realistic environment, there are obstacles and varying terrain in

between locations. These obstacles affect vehicle trajectories and the travel time from one

location to the next. All of these factors complicate scheduling estimates, and cannot be

ignored if we are to have effective planning and scheduling strategies. With this in mind,

we add obstacles and path planning to the original problem formulation. These additions

enable for more robust performance in contested or dynamic environments. Operators

gain the critical ability to view planned trajectories for vehicles, as well as more realistic

travel time estimates [UGL+14]. Moreover, we also incorporate the ability to schedule

given different priorities for tasks, and the requirement for specific hardware or software

capabilities provided by different robots.

The rest of this chapter is organized as follows. In Section 3.3, we look at the system

architecture and physical state space where path planning will take place. Section 3.4 will

cover the methods used for allocating tasks to each robot and scheduling the robot visit

orders. It will also examine the methods for generating and selecting trajectories between

locations. Section 3.5 presents our results. Finally, Section 3.6 includes conclusions and

suggestions for future work.
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3.3 Preliminaries

3.3.1 Notation

We assume a 2-dimensional, partially known world W = R2. Here, partially known

means that we have both known Oknown and unknown obstacles Ounknown, which compose

the set of polygonal obstacles O = Oknown
⋃

Ounknown, such that O ⊂W .

Users in the workspace will generate or receive Tasks T . There are n tasks, where

each task is a tuple T i with pickup and delivery locations T i
LP,T

i
LD (which can be the

same location), job length T i
L , a start time T i

S , and a deadline by which the task must be

delivered T i
D ≥ T i

S +T i
L . Tasks may also have additional features which can be used to

weigh them when designing a schedule. An example feature used here is priority T i
P ∈N,

where completing a higher-priority task is preferred at the cost of missing the deadlines

of lower-priority tasks. When scheduling, we augment the tasks with additional features:

expected pickup and delivery times T i
T P,T

i
T D, and status indicators for whether the task

has been picked up or delivered T i
PU ,T

i
DL. Multiple tasks can be announced in groups

T i
G while the system is running.

In the environment are also located robots. Robots are capable of carrying out the

tasks offloaded to them. Execution of the tasks can take place regardless of whether the

robot is adjacent to a pickup/delivery location or is moving. There are m robots A j ∈A ,

each a tuple

A j = (p,vo,A ,q).

Each robot has a number of processors p ≥ 1 and visit order vo, representing the order

in which tasks are scheduled to be picked up and delivered, such as [1p,2p,2d,1d], which

would correspond to picking up task 1, followed by task 2, then delivering task 2 followed

by task 1. A j is the polygonal representation of the robot at location q. Robots are
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capable of long-range, but low-bandwidth communications to exchange simple location

and planning data with the controller, as illustrated in the system architecture overview

in Figure 3.2. They can also sense their environment in order to detect both known and

unknown obstacles, and are capable of limited path-planning.

Figure 3.2: Example roadmap around buildings

A j
q is the location occupied by robot A j in configuration q ∈ C j. The obstacle state

space Xobs consists of robot-robot collisions:

C jl
obs =

{
q ∈ C |A j(q j)

⋂
A l(ql) 6= /0

}
, (3.1)

and robot-obstacle collisions are:

q j
obs =

{
q ∈ C |A j(q j)

⋂
O 6= /0

}
. (3.2)

The union of these equations yields the complete obstacle region:

Cobs =

(
m⋃

j=1

C j
obs

)⋃ ⋃
jl, j 6=l

C jl
obs

 . (3.3)

The obstacle-free region is defined as C f ree = C \Cobs.

The controller is capable of receiving user requests and robot status updates (location

and task progress). The controller must then determine a schedule and trajectory for each
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robot such that tasks are picked up, executed, and delivered, in a way that best satisfies

the specified criteria (such as priorities, number of tasks completed, etc.). Given known

obstacles and terrain, the trajectories will be precomputed to allow for more accurate

schedule estimation. If a robot encounters an unknown obstacle, it may also report the

location to the controller, which will incorporate it into its map.

3.3.2 Problem Definition

Problem 1 - Task Estimation: Given a set of tasks T , Obstacles O , and robots A ,

determine when each task will be picked up and delivered.

Problem 2 - Task Allocation and Scheduling: Given a set of tasks T , robots A , and the

ability to estimate when tasks will be picked up and delivered, allocate the tasks to robots

and design a policy for each robot such that we attempt to meet as many task deadlines

as possible.

Problem 3 - Path Planning and Unknown Obstacle Avoidance: Each robot begins

in an initial state q j
I ∈ C j

f ree, and ends in a goal q j
G ⊂ C j

f ree. Given an unbounded time

T = [0,∞), we calculate a state trajectory h where the initial state is h(0) = qI and the

final state is h(t) ∈ qG that takes the robot through C j
f ree such that we avoid both known

and unknown obstacles.

3.3.3 Complexity

In our first item of interest, we want to understand the computational complexity of the

problem. In order to do that, we use the technique of restriction [GJ79]. We want to show

that the Computational Ferrying Problem contains a known NP-hard problem as a special

case (chosen to be the Partition Problem) [GJ79]. The Partition Problem decides whether
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a set of positive integers S can be split into two subsets S1 ⊂ S and S2 ⊂ S, such that the

sum of numbers in each set is equal ∑s∈S1 s = ∑s∈S2 s.

We restrict our problem of computational ferrying and set the pickup and delivery

locations to be the same

T i
LP = T i

LD∀T i ∈ T,

where all tasks are made available at t = 0, and all deadlines are ignored T i
D = ∞. More-

over, we assume that A consists of only two robots A 1,A 2, where their locations are

also identical to the tasks A 1
x = A 2

x = T 1
LP. Each robot is also set to have a single proces-

sor A 1
p = A 2

p = 1.

Through this restriction, we remove all effects of traveling and arrive at the Partition

Problem, where the positive integers are the task lengths T i
L, which we desire to partition

between both robots. Since the Partition Problem is NP-Hard, Computational Ferrying

must also be NP-Hard.

To further motivate the issue of complexity, we point out that the problem of traveling

between the various pickup and delivery locations can also be restricted to the Traveling

Salesman Problem, though such a proof is trivial and not presented here for the sake of

brevity.

3.4 Methods

Here, we describe the methods for solving the problem of allocating tasks to robots and

designing trajectories. The accompanying flowchart in Figure 3.3 shows the relationships

between the various components, and how we progress from start to finish.
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Figure 3.3: Workflow
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3.4.1 Task Estimation

Initially, we are provided with a set of robots A , Tasks T , and Obstacles O . While

estimating when a task will be picked up or delivered, we are mainly concerned with the:

task execution time, distance to travel, and task execution schedule. Execution time is

provided by the user when a task is generated, and the schedule will be determined in part

by this task length, as well as the distance a robot must travel. How then, can we estimate

travel times?

Roadmap Construction

The controller accepts a set of known obstacles Oknown and performs a Voronoi decom-

position to obtain a graph G of edges. This graph will be used as a “roadmap” for path

planning later on. A Voronoi decomposition was chosen as it 1) reduces the search space

(as opposed to path-planning in the entire workspace), and 2) provides maximum clear-

ance from known obstacles.

The controller begins by receiving a set of known obstacles Oknown and creating a

Voronoi decomposition. This graph, or roadmap, represents a set of safe paths which are

equidistant from known obstacles. An example urban environment is shown in Figure 3.1.

We augment the roadmap by adding task pickup and delivery locations, and the location

of each robot, connecting them to the roadmap. Using a roadmap allows for faster path

planning as we can now constrict our search to this graph, rather than an entire continuous

environment. A roadmap could also allow operators to determine where to place assets

that can ensure the safety of essential paths. If an area is deemed unsafe, operators can

eliminate edges passing through that area.

With the roadmap now available to use for fast searching, we proceed to the next

requirement: estimating trajectory times.
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Tentative Paths

To generate a tentative path for a robot in Algorithm 4, we iterate over its visit order A j
vo.

A graph search is performed in the roadmap between each pair of locations, concatenated

to form a complete tentative path h through the known obstacle state space of q j
obs. The

length of the path (and subsequently, how long this takes to traverse) is also calculated as

this is one of the factors used in the scheduling process.

Algorithm 4 Robot Tentative Path
Input: A j

Output: Tentative path representing robot trajectory

1: tentativePath← []

2: prevLoc←A j
x

3: nextLoc← Null
4: scheduled← []

5: for T i ∈A j
vo do

6: if T i
PU == true then

7: nextLoc←T i
LD

8: else
9: nextLoc←T i

LP
10: scheduled[i]← true
11: τ ← GraphSearch(prevLoc,nextLoc)
12: tentativePath.append(τ)
13: prevLoc← nextLoc

return tentativePath

With the elements in place, we can now move forward with the components to begin

allocating tasks to robots, and scheduling their execution.

Task Timing (Algorithm 5, Line 7)

In order to calculate the schedule, we will need to estimate the pickup, start, and delivery

times of the tasks based on: robot location, task pickup/delivery locations, task job length,

robot processor schedule, robot visit order, and estimated travel distance. For tasks of
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Algorithm 5 Task Group Scheduling Algorithm
Input: T , A
Output: A ′

1: T ′← Sort T by ascending deadlines
2: for T i ∈ T ′ do
3: orderings← []
4: for A j ∈A do
5: pList← placementGeneration(A j,T i)
6: for p ∈ pList do
7: timedPermIn f o← taskTiming(A j, p)
8: orderings.append(timedPermIn f o)
9: Sort orderings by user conditions

10: Assign tasks to robots based on orderings[0]
11: return A ′

unknown length, we disregard the execution time, only focusing on the time needed to

travel between locations, which is handled by the Task Timing algorithm.

A j’s tasks are distributed across A j
p , each one sequentially assigned to the processor

with the shortest queue. Using the robot’s visit order, a graph search on the roadmap

finds the shortest path between following points, returning an estimated distance to be

traversed. This is sufficient when picking up a task, as travel time is the only factor.

When delivering tasks, we also incorporate the remaining task processing time: the max

is taken between the estimated travel time and the remaining task computation time and

used as the final delivery time. When completed, this returns the tuple:

pIn f o = (FT,MD,T M),

where FT is the finish time of the last task in the visit order, MD is the number of dead-

lines expected to be missed, and T M are the tasks which will miss their deadlines.
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3.4.2 Task Allocation and Scheduling

The goal of this section is to arrive at a set of task allocations to the available robots,

and a schedule for each robot such that we can maximize the number of tasks that meet

their deadlines, while simultaneously adhering to the constraints imposed by available

resources, distances, and computing time.

In order to handle the task-length, we consider two cases:

• The task length is known or can be approximated given historical data

• The task length is unknown

Placement Generation (Algorithm 5, Line 5)

This algorithm is used by Task Scheduling to generate all valid placements of a visit

order given an existing visit order A j
vo and a new task T i. The task is inserted twice

(representing pickup and delivery) in every valid location of the visit order. Each of

these placements is stored in a list pList. In the case of a task with an unknown length, we

ensure that the task is placed behind all tasks of higher priority, and ahead of tasks of lower

priority. Within tasks of the same priority, tasks with an unknown computation length will

be executed last, favoring the completion of a known set of tasks over the completion of

a single unknown task that might overwhelm the others. Once all placements have been

generated in time complexity O(n2), pList is returned.

As an example: we are given an existing visit order of [T 1
LP,T

2
LP,T

2
LD,T

1
LD], indicating

a pickup of task 1, followed by a pickup of task 2, and then the delivery of tasks 2 and 1.

We now wish to generate valid orderings of pickup and delivery locations for new task 3,

without perturbing the existing task orderings.
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T 3
LP T 3

LD T 1
LP T 2

LP T 2
LD T 1

LD
T 3

LP T 1
LP T 3

LD T 2
LP T 2

LD T 1
LD

T 3
LP T 1

LP T 2
LP T 3

LD T 2
LD T 1

LD
... ... ... ... ... ...
T 1

LP T 2
LP T 2

LD T 3
LP T 1

LD T 3
LD

T 1
LP T 2

LP T 2
LD T 1

LD T 3
LP T 3

LD

Table 3.1: Example Placements showing the visit order for when Tasks are picked up and
then delivered.

Task Group Scheduling (Algorithm 5)

The controller first sorts the tasks in T ′ by their deadlines (line 1). Next, iterate over each

task in the sorted T ′, and every robot in A ′ that is capable of executing the task (that has

the specified, specialized hardware capabilities to handle the task), generating placements

(line 5) of the visit order with the new task in every valid location of A j’s visit order. In

line 9, the Task Timing Algorithm estimates each task’s pickup, delivery, and start times.

This process is repeated for all A j ∈A ′ giving a time complexity of O(mn3). Once all

orderings and times have been calculated, the solution is then replaced by the placement

order which fulfills the highest number of requirements in descending order(priorities,

deadlines, etc.). The new greedy solution is then used in the next iteration over T ′.

During execution in a dynamic environment, many things can happen. Unknown

obstacles can appear, or robots can be taken offline. In these cases, we must replan.

3.4.3 Path Planning and Obstacle Avoidance

Using the Task Allocation algorithm 5, we generate the different task placements and es-

timate the timings in order to evaluate the solutions. Finally, we select the best trajectories

for the robots that allow them to visit the tasks.
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3.4.4 Update

Here, we describe the process of checking for new incoming tasks and robots, removing

completed tasks and robots and updating the status of tasks.

Merge

Upon receiving a group of robots, A , and a list of tasks T ′, the merge algorithm com-

bines existing tasks that have not been picked up by a robot with the incoming list of

tasks. The tasks that have already been picked up by a robot are not altered.

Trimming

Given a generated base solution, the trimming algorithm tracks each robot’s processor

schedule, and each task’s processing time, and determines if the task’s deadline is missed

or met. If the robot, A j, is at the current task’s pickup location, picked up is set to true

T i
PU = true. If a task has completed processing and A j is at its delivery location, then

T i
DL = true.

Third, in conjunction with Task Scheduling, we also check for new tasks and for

robots being added or removed to ensure that all information is up-to-date. When a new

group of tasks is available, we handle new or removed tasks and robots. The result is then

sent to Task Group Scheduling which outputs the new A representing robots and their

assigned tasks and paths.

Daemon

If a robot has completed a task with a previously-unknown execution length, we execute

Update. If the remaining schedule for the robot’s task queue has been shifted back by the

task’s execution length, we treat the remaining tasks as a set of new incoming tasks, al-
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lowing them to be “re-shuffled” among the robot’s as needed to maximize the completion

rate.

3.4.5 Path Planning

In order for the robots to carry out their tasks, they must be able to navigate their environ-

ment to visit pickup and delivery locations. Navigation is broken into two components. In

the first, the controller is responsible for designing a tentative path that can avoid known

obstacles. This can also allow operators to designate known “safe lanes” which are ex-

pected to be obstacle-free. Complementing this is a dynamic path planning component

which resides on each robot. By combining this with a sensor payload, robots can navi-

gate around dynamic or unknown obstacles.

Adding Tasks and robots

As new tasks are made available, the controller adds the pickup and delivery locations of

each task to the roadmap. Since the roadmap travels around every known obstacle, a line

connecting the roadmap to the task will avoid known obstacles as well. The same process

is repeated to add robots.

Hybrid Paths and Path Splicing

The paths designed above have the benefit of being relatively simple to design and search.

However, they fail to take into account the changing environment that we are faced with.

Moreover, it is often not possible for the controller to deal with the issue of dynamic

path planning as it can suffer from intermittent connections and the large workload of

designing and maintaining multiple dynamic trajectories. This can result in a single point

of failure.

57



To cope with this problem, we must allow robots to respond to new obstacles. When

a previously unknown obstacle o ∈ Ounknown is found, the robot re-plans its trajectory

around it using an A* search [ZC09, Fan07] through q j
obs. The robot selects a tentative

goal qG, which is located r steps after the start of the obstacle. r depends on the environ-

ment, and should be larger than most obstacles (in order to navigate around them), but

small enough that it does not delay the responsiveness of the search. Next, a new trajec-

tory is calculated through C j
f ree. If it is not possible for the robot to reach qG because

of additional obstacles in Ounknown, then we re-plan the trajectory a further r steps ahead.

This method is also applied to robot-robot collisions qi j
obs, creating a path h through q j

obs.

To summarize and illustrate the workflow, Figure 3.3 provides a flowchart showing

how the various components interact.

3.5 Experimental Results

In this section, we discuss the changes and additions made to the existing work, as well

as our preliminary results.

3.5.1 Software Simulation

We utilized a custom simulator to have better control over the robot’s functioning, per-

mitting fine-grained control over:

• Customized path-planning

• Unknown obstacle avoidance

• Processor/task scheduling and prioritization

The simulations were carried out using between 1 and 8 robots, 1 to 4 processors,

and either 0 known and 0 unknown obstacles, or 8 known and 0 unknown obstacles, or
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0 known and 8 unknown obstacles. There were 40 tasks present in the workspace, 10-

each of 4 different priorities. An example of a generic environment is shown in Figure

3.5. Building off of the previous example of the WIPP facility, we also present a sample

scenario in Figure 3.4
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Figure 3.4: WIPP Facility simulation example
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Figure 3.5: Simulation Example

3.5.2 Effects of Obstacles on robot Movement and Performance

As shown in Figure 3.6, the presence of unknown obstacles in the environment causes

robots to travel further than with known obstacles, as path planning cannot be optimized.

An interesting phenomenon is that the first few known obstacles decrease the steps taken.

This is due to the resulting more complex roadmap providing more alternative routes.

Future work will explore how the distribution and size of these known obstacles affect the

efficacy of the roadmap.
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Figure 3.6: Visibility of Obstacles vs Average Distance Traveled and Deadlines Met

Turning our attention towards deadlines met, we see a mirroring of the effects on robot

travel distances. With the roadmap generated for an environment containing no known

or unknown obstacles, we see an average decline of 2.28 deadlines met compared to an

environment with known obstacles. Likewise, when comparing the environment with 8

known obstacles vs 8 unknown obstacles, there is another decline with an average of 3.22

deadlines less being met.

For cases with more than one robot, we find that having an environment with known

obstacles consistently performs better than all cases, again because of the more complex

roadmap. The presence of unknown obstacles results in much worse performance, as

expected.
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3.5.3 Effects of Number of robots and Processors on Deadlines

Figure 3.7 shows that increasing the number of processors across the robots has a negli-

gible effect. However, this is likely a result of our simulation’s parameters, where tasks

generally had a short run time. This results in the bottleneck being that of physical dis-

tance between locations, rather than the duration of tasks or the number of tasks being

processed. It is expected that in the case of closely clustered tasks with longer run times,

we could achieve better results with fewer robots so long as they were equipped with

more processors. This could be utilized in order to allow mission planners to better allo-

cate resources with regards to processing capabilities vs number of overall units. We plan

to further analyze the effects of distance vs. runtime in future works.

Figure 3.7: Average Deadlines Met vs Number of Processors

3.5.4 Effects of Removing Tasks on on Deadlines and Steps

We have done experiments to evaluate the effect of removing or not tasks. As illustrated in

Figure 3.8 the more available robots, the higher the average deadlines met. Interestingly,
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there seems to be no effect of removing tasks, and the number of deadlines met. In

contrast, as shown in Figure 3.9, removing tasks has an effect on the average steps taken.

However, as the number of robots increase, this effect is reduced. Further investigations

may be required to understand these effects fully.
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Figure 3.8: Effects of Removing Tasks on Deadlines

Figure 3.9: Effects of Removing Tasks on Steps
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3.6 Conclusions and Future Work

In this chapter, we have extended and formulated a problem to schedule, plan, and de-

ploy robots that can physically move to visit different locations in order to perform tasks

and ferry samples or data. We have improved in several different aspects of the state-of-

the-art [ZWBS16]. In prior related work [MAZ+15], robots are only able to move in a

straight line between task locations and did not explicitly incorporated obstacles. Given

the complex and dynamic nature of the environment where this problem takes place, we

cannot make this assumption and robots must be able to navigate around obstacles and

other vehicles or robots. We model robots as autonomous vehicles operating within an

environment populated with polygonal robots and obstacles. We have implemented path

planning algorithms which can find reliable a priori estimation of distances between loca-

tions to obtain more accurate scheduling times. This is further augmented by the creation

of safe “roadmaps” formed by the decomposition of the environment, which allows for

safer operation and easier management by operators. The roadmap approach [BG08] and

path planning algorithms proposed allow more flexibility in carrying out tasks.

We introduced several prioritization schemes that allow operators to assign prioritiza-

tion weights to tasks, a feature which has been outlined as an avenue for development in

[MAZ+15]. This allows for greater flexibility when defining tasks. For instance, certain

tasks may be given priority over others, such that high-priority tasks are executed at the

cost of lower-priority tasks. In this chapter, our algorithms are implemented and tested in

a computer simulation to understand the effect of completion time due to obstacles, the

number of robots, and number of processors. Moreover, we allow for tasks and robots

are heterogeneous, rather than the homogeneous assumption made in many of the works

from Section 3.2. As an example, consider a robot that might have hardware capabilities

not available in other robots or may have relevant data stored that is not replicated on
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other robots. This requires the scheduling algorithm to allocate the robot to whichever

tasks need those specific capabilities. The suggested future works outlined in [MAZ+15]

calls for the ability to remove and add robots at runtime. This capability has been added

to our work. Any time a new robot is added or removed, its location is updated on the

roadmap, and a rescheduling takes place. This allows for a more resilient system that can

automatically tolerate robot failures.

c©2018 IJNGC. Reprinted, with permission, from [Planning, Scheduling, and Deploying

for Computational Ferrying].
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4.1 Introduction

Thus far, we have covered how to use robots to map radiation, and how to allocate tasks

to robots. However, what happens if a robot is incapable of executing a task on its

own? There remain many problems that are not currently feasible with a completely

autonomous robot. Tasks such as manipulation of irregular objects, or robots operating

in hazardous environments are still difficult to automate and require some human-in-the-

loop in order to oversee their operation. Here, we must design policies for not only the

robots but for their operators as well.

Multi-robot systems are making a significant impact in key societal areas. From

oceanic exploration to border surveillance, from robotic warehousing to precision agricul-

ture, and from automated construction to environmental monitoring, collaborating groups

of robots will play a central role in the coming years. In some of these scenarios, how-

ever, due to technical, ethical, or regulatory issues, one or more humans should monitor or

help the robot during the execution of its tasks in certain critical parts. These critical seg-

ments of the robot trajectory can be for example kinematically or dynamically complex

maneuvers, locations nearby obstacles, or regions where sensing is poor.

Most tele-operated systems assume at least one human operator per robot. In more

complex scenarios, such as humanoids or mobile manipulator tele-operation, more than

a human may be required for each subsystem (e.g. manipulation, locomotion, head posi-

tioning). Another dramatic example is control rooms in Unmanned Aerial Vehicles mis-

sions where several operators are needed for the operation of a single drone. Although we

will not be able to completely remove this portion of a task that can not be automated, we

can efficiently allocate human attention in this portions. As an application of our ideas,
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we envision scenarios where a single operator can coordinate the tasks of a group of au-

tomated construction machinery or several agricultural pieces of equipment. Effectively

combining human and robot capabilities [SWWB11] has provided significant benefits in

industrial applications [WNS12, HSH02] and more general methodologies are needed.

One of the motivating applications which will also serve as a study case to test our

ideas is robot-assisted search and rescue. In traditional mobile robot search and rescue

operations using unmanned vehicles, the ratio of operators to robots is commonly 2 to

1 [Mur04]. More recently, motivated by disasters such as the Fukushima nuclear plant

there has been a need for robots with larger degrees of freedom that can operate in en-

vironments designed for humans. Concretely, lessons learned analyzing human-robot

interfaces used by different teams in the Defense Advanced Research Projects Agency

(DARPA) Robotics Challenge (DRC) [YNO+15], gave two crucial reasons motivating

our ideas to reduce the number of operators: 1) fewer operators reduces confusion and

coordination overhead, and 2) the amount of human errors (one of the primary sources of

problems in the DRC [ABB+15]) is reduced.

In most situations, an operator is only required in specific parts of a robot’s operation.

Knowing this, we can schedule these operator interactions so that a single operator can

perform multiple tasks. The contributions of this work are: extending our preliminary

ideas from [ZRAB17, ZAL+18] in the following directions: First, we analyze the com-

plexity of this problem. Second, we present a sampling-based approach that allows us

to design policies for a large number of tele-operators instead of a complete algorithm

that only works for a small set of operators. Third, we allow re-planning of the robot’s

task alongside the operator. Finally, we present results of both simulated and physical

experiments using mobile robots and a humanoid.

Our work deals with the problem of planning for robots using a small set of operators

that can help the robot when needed. As a convention, we will use the term “robot”
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throughout this chapter; however, our work is done in the robots’ configuration space and

is agnostic to the type of robot. It can not only model multiple robots but also a single

robot with multiple degrees of freedom such as a humanoid robot. To the best of our

knowledge, our contribution is one of the few that attempts to formalize the problem of

operator scheduling using a geometric approach.

The rest of the chapter is organized as follows: Section 4.2 discusses relevant related

literature. Section 4.3 describes the preliminaries and formulates the problems of interest.

Section 4.4 describes algorithms to solve the formulated problems in the previous section.

In Section 4.5, we present an extension of the solution in Section 4.4 which can also re-

plan robot trajectories. Section 4.6 presents both software and hardware experimental

results, and a case study is provided in Section 4.7. Conclusions and future directions are

presented in Section 4.8.

4.2 Related Work

Our work tries to address the scarcity of techniques for planning multi-robot missions

that can assist in outlining mission requirements and robot policies. There are relevant

approaches such as Crandall et al. [CCDPdJ11] which investigates the effects of allocat-

ing operator attention to robots, and [CM07, MS12, RFI+15] which investigate additional

methods of distributing operators across robots and the effects this has. We also find work

on tele-operation using 1 : 1 operator: robot paradigms [YH12, GS07] for more critical

operations. These works reflect the growing need for systems that facilitate operator over-

sight of multi-robot systems [SWWB11], and the insight that utilizing operators alongside

partially autonomous robots yields systems that are less brittle and more effective than ei-

ther one working alone [Hug08].
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Particularly relevant to our research ideas is the work by Trautman [Tra12, TMMK15]

where the expected behaviors of humans in an environment are incorporated into the

planning phase of robots, allowing them to perform more elaborate plans than with-

out this prediction. This argument also extends into more industrial settings, where it

is often repeated, scheduled interaction between robots and operators [WNS12]. Our

work also relates to motion planning approaches that generate joint plans for humans and

robots[RBM+18, RCB+15, RCBM14].

This chapter builds upon [ZRAB17, ZAL+18], to perform multi-robot planning [Par08,

PJGH15]. We also find complementary goals in Hauser [Hau13] where a robot attempts

to move from one location in its environment to another by calculating which obstacles

can be minimally displaced to generate a possible trajectory. In our work, we will simi-

larly generate a coordination space, where operator “collision obstacles” must be avoided,

and seek to find the minimal displacement needed to avoid them. In work by LaValle and

Hutchinson [LH96, LH98], as well as by Wang et al. [WZG+14], the complexity of

coordinating both many robots and operators is handled by separating the planning and

scheduling aspects into two separate steps. This division dramatically assists in devising

a feasible solution and is echoed here as well.

4.3 Preliminaries

We start with a set of m of bodies, which can be kinematic chains or mobile robots,

A = {A 1, · · · ,A m}. Each robot A i ∈A has a configuration space C i representing the

set of all possible transformations, where the set of valid configurations is called the free

space C i
f ree. Robots also have initial qi

I ∈C i
f ree and goal qi

G ∈C i
f ree configurations, where

the trajectory λ i : [0, t i
f ]→C i

f ree takes the robot from λ i(0) - corresponding to qi
I - through
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C i
f ree to the final configuration λ i(t i

f ) - corresponding to qi
G, where t i

f is the total runtime

for A i to execute λ i given a dedicated operator.

When executing λ i, A i may enter critical configurations C i
att ⊂ C i

f ree during which

it will require one of the p operator’s supervision. A conflict occurs when more than p

robots require supervision at the same time. Given a range of time T = [0, t f ] where the

mission is executing, we will attempt to minimize t f = max(t1
f , . . . , t

m
f ) when all robots

have finished, while also providing operator attention when required.

Problem 1: Scheduling for Multiple Operators: Given the number of operators p,

a set of robots A - each with their trajectories λ i, and a set of critical configurations

C i
att - determine a policy π i : T → C i

f ree for each robot such that 1) all robots are only in

critical configurations when an operator can supervise them, 2) the number of operators

requested at any time does not exceed p, and 3) attempt to reduce the total runtime of the

mission t f .

Building on this problem, we can add the following condition: Is it possible to yield a

shorter mission runtime by generating alternative trajectories for bodies such that they do

not require supervision at the same time as other robots in the first place, thus avoiding

operator attention “collisions” altogether? This question leads us to a concrete extension

of Problem 1:

Problem 2: Scheduling with Re-Planning: Instead of a pre-determined trajectory,

we use a sequence of waypoints τ i = [τ i
1, . . . ,τ

i
o] - where each waypoint is a specific con-

figuration the robot must achieve, and the application-specific function plan(Ai,τ i, tden)

yields a trajectory that visits τ i while avoiding C i
att during operator-denied times tden - an

example of which can be found in Section 4.6.

Given p operators, a set of robots A each with a sequence of sub-goals τ i, and a set of

critical configurations C i
att . Determine a trajectory λ i and policy π i : T → C i

f ree for each

robot satisfying the waypoints such that 1) robots are in critical configurations only when
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an operator can supervise them, 2) the number of operators requested at any time is less

than or equal to p, and 3) an effort is made to minimize the ending time of the mission t f .

4.4 Scheduling Operator Attention

In this section, we will propose solutions to the problems defined in Section 4.3.

4.4.1 Scheduling for Multiple Operators

In [ZAL+18], we describe the operator scheduling problem and present a novel geometric

approach for the solution. There were several issues with the provided approach, mainly

the computational complexity of creating the entire set of obstacles with the coordination

space. To motivate this, we provide a short sketch proving the complexity of this problem.

We prove this by reduction [GJ79]. We start with the Multiprocessor Scheduling prob-

lem, which consists of a set of J jobs, each job ji has a corresponding length li. Provided

p processors, we must schedule this set of jobs so that they 1) do not overlap, and 2)

execute in the minimum amount of time. Given our operator scheduling problem, assume

that all possible configurations for the robot will require operator attention, meaning that

the entire execution of λ i will need an operator. The runtime of this plan is t i
f , and is anal-

ogous to the length of a job in the original Multiprocessor Scheduling problem. These

jobs are scheduled and allocated to p operators, which would be the processors in the

original formulation. This problem then reduces to the Multiprocessor Scheduling prob-

lem where we schedule j jobs across p processors and indicates that the problem we are

trying to solve is at minimum NP-hard.
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A sampling-based solution

Knowing that the problem is NP-hard we ask: how can we effectively arrive at a solution

using a heuristic approach?

We start by creating a Coordination Space x = [0, t̃1
f ]×·· ·× [0, ˜tm

f ] (following a pro-

cedure similar to [LaV06]) representing all possible configurations of the robots along

their trajectories. Each of the m axes corresponds to the normalized execution time t̃ i
f of

robot A i, given by t̃ i
f =

t i
f

max(t1
f , . . . , t

m
f )

, with the position along the axis corresponding to

progress along the trajectory. Let xobs be the set of invalid configurations where the num-

ber of robots requesting supervision exceeds p, and x f ree = x\xobs be the set of all valid

configurations where the number of requests does not exceed p. At xinit = (0, ...,0)∈ x f ree

all robots are in their initial configurations, and at xgoal = (t̃1
f , ...,

˜tm
f ) ∈ x f ree all robots are

in their final configuration.

We define auxiliary functions, borrowing the notation from [KF11]: d(x1,x2) is the

Euclidean distance between two points, and c(·) is the cost of a path corresponding to the

sum of the pairwise Euclidean lengths of the pairwise linear points within it.

The above formulation serves to create a coordination space where the position along

axes represents robot configurations and invalid configurations where multiple robots re-

quest obstacles represent an operator. This process allows us to convert the coordina-

tion problem into a path-planning problem. We must find a path h : [0,1]→ x f ree from

h(0) = xinit to h(1) = xgoal . Following h will then give us an implicit representation of

time where the positions of each robot along their trajectory, such that each robot will

move from its initial state to goal state, with at most p robots requiring operator atten-

tion. We performed this calculation by mapping h to the trajectory λ i corresponding to

a particular robot. Define σ : h→ [0, t i
f ], which indicates the position of the robot along

its trajectory λ i at the corresponding point of path h through x f ree. We then perform the
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composition φ : λ ◦σ , which yields φ : h→C f ree, mapping from the path h to C f ree. This

allows us to determine the configuration of a robot at any point q in h via φ(q) = λ (σ(q)).

We can now obtain the series of configurations x̃ for each robot that will guarantee that at

most p robots require operator attention at any given time, and reduces the total run-time

of the mission.

Our original solution required generating the entire set of obstacles within the coor-

dination space. Here, we instead use a lazy approach which only checks sampled lo-

cations. This is combined with a modified version of the Bidirectional RRT ∗ originally

described in [KF10, KF11, JP], and shown in Algorithm 7 for reference. Define graphs

Ga = (Va = {xa
init},E = /0) ∈ x f ree, Gb = (Vb = {xb

init},E = /0) ∈ x f ree, where xa
init = xinit

and xb
init = xgoal . The objective will be to derive an obstacle-free path h : [0,1]→ x f ree

such that h(0) = xinit ,h(1) = xgoal . Given a user-defined function that can estimate when

robots will enter a critical section S ← CriticalSegments(A) we can check if a point

x ∈ x is obstacle-free as in Algorithm 6, where for the point being evaluated, we iterate

over each robot’s critical segments (lines 3, 4) and check if the corresponding axis of x

lies within the segment (line 5). If the number of collisions is greater than the number of

operators (line 7), then the location is not obstacle-free. With some abuse of notation, we

also use this to refer to checking if an edge is obstacle-free by sampling along the edge

and checking if the samples are all within x f ree.

The modified BidirectionalRRT ∗ is presented in Algorithm 7 In lines 1, 2, we ini-

tialize the final path as currently being none, and the corresponding cost to be infinite.

Subsequently, we perform the following procedure over N samples: Beginning with Ga

- the graph starting at the origin - in lines 4, 5 we draw a randomly-selected point from

x f ree. Checking if the point lies within x f ree is done using Algorithm 6, and select the

nearest point in the graph (we use an r-tree to accomplish this efficiently). In line 6, cre-

ate a point xnew that is closer to xrand than xnearest . Then in lines 7-9, select the r points in
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Algorithm 6 CollisionCheck
Input: Point x; Number of operators p; robots A
Output: True if obstacle-free, False otherwise

1: ncolls← 0
2: for i ∈ [1,m] do
3: q← λ i(xi)
4: if q ∈ C i

att then
5: ncolls← ncolls +1
6: if ncolls ≥ p then
7: return False
8: return True

Ga that are nearest to xnew and sort them in order of increasing distance from xnew, where

the sorted list Ls consists of tuples of the form (x′,c′,σ ′), where x′ ∈ Xnear, σ ′ is an edge

from x′ to xnew, and c′ is the cost of that path, and select the closest one with an obstacle-

free path to xnew as in [QA15]. If there is a valid “best parent” - defined as the vertex with

the lowest combined cost-to-come and cost-to-go - we insert it into the graph and rewire

as in [QA15] (lines 10-13). We then attempt to connect both trees. In lines 14-17, we

select the nearest vertex in the opposite graph Gb and attempt to draw a straight path from

the newly-added vertex xnew ∈ Ga to Gb, if possible. We then check if the resulting path is

better than our current best-path σbest and update σbest if necessary.

At this point in the algorithm, we may have a valid path σbest through x f ree. We then

perform RandomContraction as in [QA15] to attempt reducing the length of σbest . The

user may assign a probability pearly, corresponding to the likelihood of checking for an

early-exit solution; this is to balance between the run-time of B-RRT ∗ and to yield a better

path. We evaluate this in lines 20-23, returning a valid solution if one exists. Otherwise,

we swap Ga and Gb and continue until all N samples have been drawn and return σbest .

We then proceed by mapping h to the sequence of configurations x̃i that correspond to

robot A i. Movement parallel to an axis corresponds to that robot moving at full speed,

76



Algorithm 7 B-RRT ∗

Input: Coordination Space x, Operators p; Critical Segments S ; Samples N, Probability
of early exit pearly ∈ [0,1]
Output: Obstacle-free path σbest through x

σbest ← /0
cbest ← ∞

for i ∈ [0,N] do
xrand ← SampleFree
xnearest ← Nearest(xrand,Ga)
xnew← Extend(xnearest ,xrand)
Xnear← Near(xnew,Ga,r)
Ls← Sort(xnew,Xnear)
xmin← BestParent(Ls)
if xmin 6= /0 then

Ga← Insert(xnew,xmin,Ga)
Ga← Rewire(xnew,Ls,E)

xconn← Nearest(xnew,Gb)
σnew←Connect(xnew,xconn,Gb)
if σnew 6= /0 and c(σnew)< c(σbest) then

σbest ← σnew

RandomContraction(σbest)
u∼U([0,1])
if σbest 6= /0 and u≤ pearly then

return σbest

SwapTrees(Ga,Gb)

return σbest
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perpendicular segments indicate the robot is paused, and diagonal segments to velocity-

tuning depending on the slope.

4.5 Scheduling with Re-Planning

The previous solution provides us with a coordination space and corresponding path that

yields a velocity-tuning approach preventing operator collisions. We now look for a so-

lution that yields a shorter mission runtime by also altering the robot trajectories. This

solution is found by comparing the current path through the coordination space h and

the desired shortest-path path hdes which would be a straight line. Given the example in

Figure 4.1(a, b), where we see the robots and environment, and the resulting coordina-

tion space, we indicate an “ideal” path as in Figure 4.1(c). When searching for a path

through the coordination space, we may find a point x ∈ X such that hdes(x)
⋂

xobs 6= /0,

representing an obstacle. In the example shown in Figure 4.1(c), this is indicated by the

blue region, meaning that the ideal path is not valid as it intersects the obstacle. In these

situations, the solution is to either plan around the obstacle, corresponding to tuning the

velocity of the robots involved - as in the solution for Problem 1 - or creating alternative

plans for the robots. In the latter case, the number of operators requested during the orig-

inal set of times corresponding to the obstacle can now be fulfilled, potentially reducing

the overall mission runtime if the resulting plans are shorter than the wait times.
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(a) (b)

(c)

Figure 4.1: Example Environment and resulting Coordination Space. (a) A planar en-
vironment with dangerous regions requiring operator supervision to traverse shown in
blue, and robot trajectories in yellow. (b) The 2-dimensional Coordination Space result-
ing from (a). Each axis corresponds to the positions of robots along with their trajectories.
The red line indicates an attention-conflict-free path through the coordination space. (c)
Coordination space from (b), with the desired (optimal) policy shown as the red line.

A critical side-effect to keep in mind is that by modifying the trajectories of robots

when avoiding any collisions caused by conflicting operator attention requests, we are

also potentially changing later parts of their trajectory. This change will lead to a differ-

ent coordination space, and the possibility of shifting, creating or removing subsequent

obstacles. As an illustrative example, Figure 4.2(a) shows two robots, which enter re-

gions requiring supervision at the same time, and produce the coordination space in Fig-
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ure 4.2(b). The vertical segment of the path h shown in red corresponds to the collision

being resolved by pausing robot 1 until robot 2 has finished its operator request before

continuing. This scenario could also be solved by re-planning robot 2 so that it avoids

operator requests during the original times. However, the robot 1 will then require more

time to travel around the dangerous region, causing it to encounter its second critical sec-

tion at a later time - precisely when robot 1 is entering its second request as well (Figure

4.2(c)) - creating another conflict that must be solved.
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(a) (b)

(c)

Figure 4.2: Example Environment, resulting Coordination Space, and Shifting Conflict
Regions. (a) Robots in their environment and their expected trajectories; (b) Original
Coordination Space resulting from (a); (c) Final Coordination Space after re-planning
around the first attention obstacle.

To handle the complexity of the problem, we use a heuristic approach shown in Al-

gorithm 8. Start by constructing a coordination space xcurr = [0, t̃1
f ]× ·· · × [0, ˜tm

f ] and

path hcurr through x f ree from xinit = (0, . . . ,0) to xcurr goal = (t̃1
f , . . . ,

˜tm
f ) using B-RRT∗ as

in Solution 1. This setup yields our initial solution via velocity-tuning. Then create an

ideal path hopt , given by a straight line that assumes no robots require supervision (line
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Algorithm 8 Scheduler
Input: A , robots to plan
Output: h, path through x used to derive policy

xinit ← (0, . . . ,0);xgoal ← (t̃1
f ,

˜tm
f )

xcurr← [t̃1
f , . . . ,

˜tm
f ];hcurr← B-RRT∗(xcurr,xinit ,xgoal, p,Catt)

xdes← [0, t̃1
f , . . . ,

˜tm
f ];hdes← line(xinit ,xgoal);Cdesatt ← /0

o← FirstObstacle(hdes,Catt)
while o 6= /0 do

Ainv← Sort(oAinv)
Amin←Ainv[0 : |oAinv|− p]
Aalt ← (A \Amin)
plan(A i, t i

den)∀A
i ∈Amin

Aalt ←Aalt
⋃

Amin

xaltgoal ← (t̃1
f , . . . ,

˜tm
f )∀A i ∈Aalt

if d(xinit ,xaltgoal)≤ c(hcurr) then
xalt ← [0, t̃1

f ]×·· ·× [0, ˜tm
f ];halt ← B-RRT∗(xalt ,xinit ,xgoal, p,Catt)

if c(halt ≤ c(hcurr) then
xgoal ← xaltgoal
hcurr← halt
xcurr← xalt
xdes← xalt
A ← (A \Amin)

⋃
Aat

else
Cdesatt ← Cdesatt

⋃
oCatt

else
Cdesatt ← Cdesatt

⋃
oCatt

hdes← B-RRT∗(xdes,xinit ,xgoal, p,Catt)
o← FirstObstacle(hdes,Catt)

return hdes
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3). Next, we verify if the optimal solution is valid by checking for collisions between hdes

and obstacles in the coordination space and return the first obstacle encountered - if any

in line 4. FirstObstacle returns the robots involved in the “collision” oAinv , along with the

corresponding configurations oCatt and times that each robot has in conflict otden . If the

ideal path is invalid (line 5), we can resolve this in two ways:

1. Alter the involved robots policies (as in the previous solution).

2. Re-plan the involved robots trajectories to eliminate the obstacle.

We now describe how to re-plan the robot’s trajectories. Given the robots involved

in the collision, oAinv , we sort them in order of ascending length of execution time and

select the shortest |oAinv | − p - the minimum number of robots to re-plan to remove the

attention collision (lines 6, 7). This procedure is performed on the robots with the shortest

current plans so that possible extensions to their plans due to re-planning should have a

minimal effect on the overall length of the mission. Then generate alternative trajectories

for the robots, provided operator-denied times otden , and create an alternative goal location

xaltgoal to account for any shifts in the ending times of the robot plans (lines 8 - 11).

If the distance between xinit and the alternative xaltgoal is longer than the current so-

lution, then velocity-tuning will yield a better solution, and we incorporate the obstacle

into the “desired” set of obstacles (lines 12, 22). Otherwise, we test if the alternative,

re-planned solution is better (lines 13, 14). If it is, then update the robots with their re-

planned trajectories, and replace the current coordination space and goal to account for

any changes in execution times (lines 15 - 17); else we incorporate the obstacle into the

“desired” set of obstacles as before (line 19).

We repeat this process of generating desired solutions (line 24) and testing them until

the desired path hdes no longer intersects any obstacles, at which point we return the final

hdes that will have no operator conflicts.
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4.6 Simulation

In this section, we cover the design and of both simulated and physical experiments, and

the results obtained.

4.6.1 Software Simulation for Scheduling with Re-Planning

Here we describe our simulation and provide an example plan algorithm that re-plans a

robot’s trajectory around unsafe areas in the environment - which would require operator

supervision - given operator-denied times.

The simulated environment consisted of a discretized 2-dimensional grid-world where

robots can only move either horizontally or vertically. The environment also contains

hazardous regions (shown in blue) which require operator supervision to traverse, corre-

sponding to configurations in Catt .

Example Re-plan Algorithm: The plan algorithm used in this example attempts to

find the shortest path between xi
init and xi

f inal within the robot’s environment, which can be

easily attained via the A∗ algorithm [BHH59, Mat02]. However, this path may intersect

with regions requiring supervision. First, denote the starting time of the mission as Ti = 0.

Given times when an operator will not be available for the robot, tden, we modify A∗ as

follows: Augment A∗’s nodes with an additional time parameter. When visiting a node,

update its neighbor’s time attributes to time+ travel time where time is the current time,

and travel time is the time required to move from the current node to the neighbor. If the

neighbor physically resides within Catt and the neighbors time is inside t i
den, then we treat

it as an obstacle. This modification of A∗ provides paths that circumvent obstacles during

operator-denied times, with an example shown in Figure 4.3.
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(a) (b)

(c) (d)

Figure 4.3: Example Simulation Environment. Example simulation. The robots are num-
bered 1, 2, 3 from top to bottom. (a) Robot 3 stops while Robot 2 passes through its
dangerous region. (b) Robot 3 has re-planned its trajectory and is going around the dan-
gerous area, allowing Robot 2 to be supervised. (c) Robot 1 stops to allow Robot 3 enter
its dangerous area with supervision. (d) All robots continue to their final goal locations.

In Figure 4.3, we show a simulated example given an environment with three robots.

The blue areas in the environment are dangerous, and require operator supervision to

prevent an accident. The example was designed to show several operator attention “col-

lision” scenarios. As the robots move from left to right, the following operator requests

might arise:

• A 1 requiring an operator

• A 1 and A 2 require an operator at the same time
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• A 1,A 2,A 3 require an operator at the same time

• A 3 requiring an operator while A 1 and A 2 leave their critical regions

• A 2 requiring an operator

• A 1 and A 2 require an operator at the same time

The resulting coordination space is shown in Figure 4.4, where (a, b) is only velocity-

tuning, and (c, d) is with re-planning the robot trajectories, which yields a slightly shorter

mission ending time than strictly velocity-tuning.
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(a) (b)

(c) (d)

Figure 4.4: Example Simulation Coordination Space resulting from the example shown
in Figure 4.3. (a) Original Coordination Space resulting from the environment and robots
in Figure 4.3; (b) Side view of (a); (c) Final Coordination Space after replanning; (d) Side
view of (c).
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Figure 4.5: Example Random Environment. Example of a randomly-generated environ-
ment and trajectories intersecting critical regions.

For further validation, simulations were run using 2-dimensional environment popu-

lated with a set of randomly-sized, randomly-placed dangerous regions, and robots placed

in randomized obstacle-free starting and goal locations along with a corresponding path

between them as shown in Figure 4.5. Across each iteration of the simulations, environ-

ments and the starting and goal positions for the robots were randomly generated. In each

generated environment, trials were run using 2, 4, or 8 robots, moving at 1 cell/second.

These trials were then solved using the solutions for Problem 1 (Scheduling) and Problem

2 (Scheduling with Re-Planning), with 1, 2, 4, or 8 operators. The results can be found in

Table 4.1.
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Robots Operators Average Savings
2 1 1.126
2 2 0
2 4 0
2 8 0
4 1 1.937
4 2 3.402
4 4 0
4 8 0
8 1 NA
8 2 0.218
8 4 5.284
8 8 0

Table 4.1: Average time savings via re-planning vs velocity-tuning

There is an increase in average time saved when dealing with larger numbers of robots,

as re-scheduling can simultaneously resolve multiple robots at once. We purposefully ran

the simulations with equal numbers of robots and operators to ensure that there would

be no time saved - as there would be no obstacles generated in the first place - and this

performed as expected. All tests with 2 and 4 robots completed successfully. In trials

with 8 robots and single operator, a solution was not found with the RRT ∗ parameters

that were used. Given 2 operators, ∼ 30% completed, and ∼ 60% for 4 operators. This

result was due to the low sample count used when running Attention RRT ∗, and the large

steer length, which prevented it from exploring paths in narrow gaps between obstacles.

The tuning of the sample count, steer length and rewire count lie outside the scope of this

work, but is nonetheless an stimulating problem we expect to incorporate in future work.
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4.6.2 Hardware Experiment for Scheduling with Re-Planning

Here, we further illustrate the problem and solution via a hardware example. This ex-

ample consisted of a single operator that had to be allocated across three line-following

robots in a discrete grid environment.

The robots use a deterministic finite state machine to keep track of the position and

orientation, and a transition function given by a second transition-state machine that en-

sures the robots inter-state path does not deviate from a grid line.

(a) (b)

(c) (d)

Figure 4.6: Hardware Experiment Example. (a) Simulated Environment; (b) Coordina-
tion Space resulting from (a); (c) Analogous hardware simulation at t = 1; (d) Hardware
simulation at t = 5.

The hardware experiment in Figure 4.6 has an equivalent simulated environment

shown in Figure 4.6(a). The robots have initial trajectories shown in yellow, which pass

through dangerous areas of the environment (blue) requiring operator supervision. The

physical implementation represents the dangerous areas using red/yellow squares, in the
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same locations as in the virtual simulation. The resulting coordination space in Figure

4.6(b), provides a set of policies enabling the robots to execute their trajectories while

ensuring that the operator is not split among multiple robots at the same time. The robots

then executed their corresponding policies, moving and pausing when appropriate, with at

most one robot entering a dangerous region at a time. Additional experiments and videos

can be found at:

http://users.cis.fiu.edu/∼jabobadi/oa/

The hardware experiments that were run and shown in the above link show successful

runs using the above procedures to design trajectories and policies for three different

robots under the supervision of a single operator. The mission ended in the shortest time

possible, and the operator did not receive multiple concurrent requests.

4.7 Study Case: Humanoid Robots

In this section, an application of the proposed method to NASA’s humanoid robot Valkyrie

[RSH+15] as shown Figure 4.7, is presented. Humanoid robots are high degree of free-

dom complex systems that have been proposed for diverse applications including nuclear-

decommissioning tasks [LLP17], disaster response assistance [DDD+15], and vehicles of

space exploration [RSH+15]. For many of these tasks, it is desirable to have a human-in-

the-loop controller to ensure critical and hazardous sub-tasks are completed. The super-

vised autonomy frameworks to make humanoid robots applicable in performing complex

tasks require a practical design for a shared operator control interface which remains

an open question. As seen during the DRC, completion of complex tasks in simulated

environments with humanoids requires large teams of operators and shared control is

indispensable [DDD+15]. Indeed even a simple manipulation task requires coherent op-

erator collaboration or inter-operator communication problems can have detrimental ef-
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fects [ABB+15]. Thus it is preferable to enforce a 1:1 ratio between humanoids and

operator [YNO+15].

4.7.1 Methodology

We propose partitioning the humanoid robot into two serial kinematic chains, the left and

right arm, which are denoted as A l and A r respectively. The desired task is modeled

as a typical pick and place operation where the robots must visit designated picking and

placing zones defined by the bounding boxes Xi=1...n. For example, A r picks an object

from X1 and places it in X2. Next, A l collects the object from X2 and places it in a

final location X3. The picking and placing actions are executed by the end effectors of

the right and left arms whose positions are respectively given by pr and pl . When an end

effector (robot’s hand) is within a bounding box Xi=1...n, it requires operator attention,

i.e., the action is considered sensitive and require operator supervision. Thus Xi=1...n

constitute configuration space constraints that must be transformed into critical regions in

the coordination space. Thus, the constraints are represented in the configuration space

such that for all times, λ l(t)
⋂

λ r(t) = /0, where λ l(t),λ r(t) are inside a bounding box.

Additionally, the re-planning algorithm is modified as follows: Given a set of way-

points τ and operator-denied times tden, plan will re-plan sections of λ that reside within

X during times tden if possible. If re-planning is not possible, or if there are critical

waypoints that should not be altered (such as waypoints denoting pick and place actions)

the waypoints and relevant sections of λ will be untouched and returned to the scheduler

as-is.
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Figure 4.7: (Left) NASA’s humanoid robot Valkyrie. (Middle, Right) Experimental setup
showing coordination space obstacles and kinematic chains that are treated as independent
robots.

4.7.2 Results

The simulation experiments are executed using the dynamic simulator Gazebo. An initial

set of waypoints are defined for A l and A r. These waypoints consist of a set of Cartesian

positions and velocities for the kinematic chains such that λ r and λ l satisfy the pick

and place task constraints. The initial waypoints are passed to the scheduling algorithm

which generates a new set of waypoints that - when separated by a monotonic time step

- satisfy both the configuration and coordination space constraints. A cubic interpolation

of the waypoints is used to generate a continuous trajectory for execution on the robot.

A comparison between the executions before and after the scheduling algorithm is shown

in Figure 4.10 and Figure 4.13. The coordination space of these trajectories is shown in

Figure 4.14.
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Figure 4.8: Initial trajectory with three attention zones

Figure 4.9: Rescheduled and re-planned trajectory with three attention zones

Figure 4.10: Pick and place task with three attention obstacles. The planning reference
frame is located at the wrist of the respective arms and is highlight by a red square. Left:
Both plans start in a valid position. Middle: Both plans approach the bounding in the
same manner, but in the rescheduled case, the right arm execution is slowed down to
ensure that before entering the bounding box the left hand has already left the attention
zone (Right).

Figure 4.11: Initial trajectory with two attention zones

Figure 4.12: Rescheduled and re-planned trajectory with two attention zones

Figure 4.13: Pick and place task with two attention obstacles. The planning reference
frame is located at the wrist of the respective arms and is highlight by a red square. Left:
Both plans start in a valid position. Middle: The initial trajectory immediately violates
attention constraints while the rescheduled trajectory slows the left arm to prevent entry
into the area. Right: The right arm is slightly withdrawn (re-planning) to ensure target
frame is outside the bounding box before the left has to enter.
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(a) (b)

(c) (d)

Figure 4.14: Purple areas represent times when both palms will be in a critical zone
while the red line is the scheduled times to reach a point for each palm. (a) Trajectory of
Figure 4.8. (b) Trajectory of Figure 4.11. (c) Trajectory of Figure 4.9. (d) Trajectory of
Figure 4.12.

The two original trajectories are shown in Figures 4.14(a) and 4.14(b) have conflicts

in critical areas as illustrated by the line passing through purple areas. The reduced pur-

ple areas in Figures 4.14(c) and 4.14(d) demonstrate the re-planning of waypoints, and

the altered slope of the line through space indicates a change in time through the way-

points. Both trajectories use a combination of re-planning and rescheduling to generate a

collision-free path through the coordination space.
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4.8 Conclusion

In this chapter, we provide a novel geometric approach for converting robot trajectories

and supervision requests into a set of policies for the robots that permits operators to over-

see critical sections of robot plans without being over-allocated [ZRAB17]. The provided

solution is also capable of determining when re-planning robots would yield a better so-

lution than velocity-tuning [ZAL+18].

The geometric representation and sampling-based approach has been received with

much interest by the community. The visual representation is intuitive easily understood

by operators. The solution is also unlike much of the related works in Section 4.2 as it can

be applied to a generic set of “bodies”, permitting this solution to be used for multiple

robots, robots with a high degree of complexity, or a combination of both. Moreover,

operators can easily specify safety bounds within the scheduling process by artificially

“inflating” obstacles within the coordination space. As an example, operators require

time to switch their attention from one robot to another. This time can be represented by

extending obstacles in the coordination space towards the origin, and was tested with the

Valkyrie robot described previously. Similarly, a robot’s path may have some element of

uncertainty, especially when outside of a factory setting. In this case, we can “inflate” the

obstacles within the coordination space, which would provide a more cautious solution.

The ability to schedule and tune the various robots, combined with an intuitive method

for setting safety “buffers” allows for more robust operator control, avoiding issues such

as those in [YNO+15].

In the future, searching through the coordination space might be modified to use a

receding horizon approach to allow for more rapidly changing robot plans if presented

with a dynamic environment. We would like to include the stability constraints and inter-

dependence between kinematic chains when working with humanoid robots.
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In this chapter, we briefly summarize the contents of this dissertation. We used robots

in several resource-constrained scenarios. The various approaches described in this dis-

sertation allow for the robots to carry out Deactivation & Decommissioning tasks such as

surveying and mapping, ferrying and computing, and interacting effectively with opera-

tors. These solutions were verified using both simulated and physical robots.

5.1 Summary of the Dissertation

Effective mapping of fields of interest in complex environments requires careful selection

of sampling locations to avoid extended operating times. Traditional approaches often uti-

lize a rastering approach, which provides complete coverage of an area, at the expense of a

significant operating time. Moreover, unlike several other types of informative path plan-

ning, we are also able to incorporate prior knowledge when selecting locations to visit.

Here, we provided an adaptive informative path planning methodology which can quickly

localize locations of interest. The path-planning component also allows for a robot with

restrictive kinematic constraints given by a tether, and obeys the effects on turning and

navigation that this imposes. The approach was tested extensively in simulations, and

preliminary hardware experiments also support its efficacy.

Following the mapping of an area, we then focused on how to efficiently use mul-

tiple heterogeneous robots to accomplish different tasks within an environment. This

work builds upon the existing literature by allowing for the prioritization of certain tasks,

permitting for heterogeneous robots and tasks as opposed to homogeneous sets, and the

inclusion of environments with both known and unknown obstacles. The provided set of

algorithms was shown to improve upon current solutions, allowing for a higher comple-

tion rate of tasks.
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Finally, we consider situations where tasks cannot be fully automated. In these cases,

a human operator must assist the robot in completing its tasks. While traditional 1 : 1

ratios of operators to robots have been used with good results, this is no longer capable

of scaling given the rising number of robots being used simultaneously, and with high

degree-of-freedom robots which can require multiple operators. Existing work on these

problems is often difficult for operators to understand, and can have issues scaling when

there are large numbers of robots. To alleviate these issues, we provide a sampling-

based methodology which can scale to many robots, even when there are relatively few

operators. This work also has the benefit of functioning with both discrete robots, and

robots with multiple operator requirements, or a combination of both. The solution was

tested in both of these scenarios, using simulated and hardware experiments.

In this work, we have developed strategies for tackling several of the problems faced

in the process of robotic deactivation and decommissioning. The strategies were based

on current state-of-the-art and extended this work. The significant contributions have all

been tested and met with approval from peer-reviewed venues. The advances in this work

will enable more effective monitoring of legacy structures, and protect operators from

having to enter dangerous environments.

98



BIBLIOGRAPHY

[ABB+15] Christopher G Atkeson, Benzun P Wisely Babu, Nandan Banerjee, Dmitry
Berenson, Christoper P Bove, Xiongyi Cui, Mathew DeDonato, Ruixi-
ang Du, Siyuan Feng, Perry Franklin, et al. No falls, no resets: Reliable
humanoid behavior in the darpa robotics challenge. In IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), pages 623–630.
IEEE, 2015.

[alp] Alpha-gamma hot cell facility image. https://www1.anl.gov/
images/ARRA_AGHCF-200.JPG.

[Ama] Amazone. Bonirob agriculture robot. http://info.amazone.de/
DisplayInfo.aspx?id=29417.

[atla] Atlas robot. https://www.bostondynamics.com/sites/
default/files/styles/max_1300x1300/public/2017-
05/MPM_4381-2.jpg.

[atlb] Atlas robot image. https://www.bostondynamics.com/atlas.

[BCDF10] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on
bayesian optimization of expensive cost functions, with application to ac-
tive user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[BG08] Priyadarshi Bhattacharya and Marina L Gavrilova. Roadmap-based path
planning-using the voronoi diagram for a clearance-based shortest path.
Robotics & Automation Magazine, IEEE, 15(2):58–66, 2008.

[BG13] Travis J Barnes and Jason R Gunter. 241-ay-101 tank construction extent
of condition review for tank integrity. https://digital.library.
unt.edu/ark:/67531/metadc834350/, 2013.

[BHH59] J. Beardwood, J.H. Halton, and J.M. Hammersley. The shortest path
through many points. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 55, pages 299–327. Cambridge Univ Press,
1959.

[BLNZ95] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited
memory algorithm for bound constrained optimization. SIAM Journal on
Scientific Computing, 16(5):1190–1208, 1995.

99



[bon] Bonirob robot image. http://info.amazone.de/DisplayInfo.
aspx?id=29417.

[Bru12] Geoff Brumfiel. Fukushima’s doses tallied. https://www.nature.
com/news/fukushima-s-doses-tallied-1.10686, May
2012.

[Bur18] Matt Burgess. These tiny autonomous robots are ready to deliver lunch to
your office. https://www.wired.co.uk/article/starship-
technologies-robots-deliveries-intuit-compass-
test, Apr 2018.

[But11] Giorgio C Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications, volume 24. Springer Science &
Business Media, 2011.

[BVX15] Peter Brass, Ivo Vigan, and Ning Xu. Shortest path planning for a tethered
robot. Computational Geometry, 48(9):732–742, 2015.

[CCDPdJ11] J.W. Crandall, M.L. Cummings, M. Della Penna, and Paul M.A. de Jong.
Computing the effects of operator attention allocation in human control of
multiple robots. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 41(3):385–397, 2011.

[CCS+16] Carina Cai, Bryan Carter, Mihir Srivastava, Joseph Tsung, John Vahedi-
Faridi, and Caroline Wiley. Designing a radiation sensing uav system. In
Systems and Information Engineering Design Symposium (SIEDS), 2016
IEEE, pages 165–169. IEEE, 2016.

[CLD13] Nannan Cao, Kian Hsiang Low, and John M Dolan. Multi-robot informa-
tive path planning for active sensing of environmental phenomena: A tale
of two algorithms. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, pages 7–14. International
Foundation for Autonomous Agents and Multiagent Systems, 2013.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[CM07] M.L. Cummings and P.J. Mitchell. Operator scheduling strategies in su-
pervisory control of multiple uavs. Aerospace Science and Technology,
11(4):339–348, 2007.

100



[CMS16] D Connor, PG Martin, and TB Scott. Airborne radiation mapping: overview
and application of current and future aerial systems. International Journal
of Remote Sensing, 37(24):5953–5987, 2016.

[cra] Pneumatic crawler image. https://arc.fiu.edu/robotics-
technology/pneumatic-pipe-crawler/.

[DAMT17] M. DiBono, A. Abrahao, D. McDaniel, and Y. T. Tan. Development and
testing of robotic inspection tools for the hanford high-level waste double
shell tanks. In WM Symposia, 2017.

[DDD+15] Mathew DeDonato, Velin Dimitrov, Ruixiang Du, Ryan Giovacchini, Kevin
Knoedler, Xianchao Long, Felipe Polido, Michael A Gennert, Taşkın Padır,
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