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ABSTRACT OF THE DISSERTATION 

NEW POLYNUCLEAR COPPER-PYRAZOLATE COMPLEXES: TOWARDS THE 

SYNTHESIS OF PHOTO- AND REDOX-ACTIVE METAL ORGANIC FRAMEWORKS 

by  

Kaige Shi  

Florida International University, 2018 

Miami, Florida  

Professor Raphael G Raptis, Major Professor  

The main objectives of this project are the synthesis and redox- or photo-active modification and 

CO2 adsorption studies of metal-organic frameworks (MOFs) based on Cu3-pyrazolate secondary 

building units (SBUs). Trinuclear copper(II) complexes of the formula [Cu3(µ3-O)(µ-4-R-pz)3X3]z 

have been studied extensively due to their redox, magnetic and catalytic properties. In earlier work, 

we have shown that trinuclear copper(II) complexes of the formula [Cu3(µ3-O)(µ-4-R-pz)3X3]z  pz 

= pyrazolato anion; R = H, CH(O), Cl, Br and NO2; X = Cl, NCS, CH3COO, CF3COO and pyridine 

– can be oxidized to the corresponding z+1, formally CuII
2CuIII, species. In this project, fourteen 

(14) new copper-pyrazolate complexes of varying nuclearities (Cu3, Cu6, Cu7 and Cu12), terminal 

ligands (-NO2, py, -N3, -Cl) and bridging ligands (4-Cl-pzH and 4-Ph-pzH) have been synthesized. 

Efforts have been made to prepare MOFs based on the Cu3(µ3-O)-SBUs. While attempting to 

design the most suitable SBU for redox-active MOF construction, it was found that the one-electron 

oxidation of the all-CuII complex [Cu3(µ3-O)(µ-pz)3(NO2)3]2–, [8]2-, was achieved at redox potential 

more cathodic than any other Cu3(µ3-O)-complexes studied in our laboratory. The mixed-valent 

compound, [Cu3(µ3-O)(µ-pz)3(NO2)3]–, [8]-, the easiest accessible CuII
2CuIII species known to date, 

was characterized spectroscopically. Compound [8] and analogous [11] release NO almost 

quantitatively upon the addition of PhSH or acetic acid. The system is catalytic in the presence of 

excess nitrite. 



viii 

 

Before embarking on the study of photo-active MOFs, a simpler model compound – a dimer of 

trimer [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [21], where abp = 4,4’-azopyridine, was 

synthesized and its photochemistry was studied. The absorption spectra recorded before and after 

irradiation indicated a structural change. Two dimensional (2D) and three dimensional (3D) 

materials with {[Cu3(µ3-OH)(µ-4-R-pz)3]2+}n SBUs where R = Ph or Cl , which can potentially 

undergo cis/trans-isomerization, have been prepared during this project. A Phenyl substituent at 4-

position on the  pyrazole ligand  leads to the formation of new class of 2D sheets. Three new 3D 

porous MOFs based on {[Cu3(µ3-OH)(µ-4-Cl-pz)3]2+}n SBUs have interpenetrated- lattice 

structures and are capable of adsorbing CO2 selectively. Compounds FIU-1 and FIU-3 also exhibit 

hysteretic sorption-desorption profiles indicating the flexibility of the MOFs upon adsorption. 

Compound FIU-1 demonstrates the usefulness of a hexanuclear CuII -pyrazolate moiety as an SBU 

for generating 3-fold interpenetrated 3D polymeric network. Complexes FIU-2 and FIU-3 have 

novel 3-fold interpenetrating 3D hexagonal framework structures. Compound FIU-2 crystallizes in 

the monoclinic crystal system with the P21/c space group, whereas FIU-3 crystallizes in triclinic 

space group P1̅. Both structures contain Cu3-SBUs connected by the linkers through the Cu-termini.  
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Chapter 1. Trinuclear copper pyrazolate complexes 

1.1. Introduction 

 

Pyrazoles (Scheme 1) have been studied for over 40 years as common ligands in coordination 

chemistry. Simple 1H-pyrazole (pzH) and its derivatives act as monodentate ligands, usually 

binding a metal in 1 fashion through N2.1 Deprotonated pyrazolate anions (pz-) are expected to 

function as N, N’-bridges, acting as versatile ligands that can coordinate to metal ions in a 

monodentate, chelating (2-pz), or bridging bidentate (µ-pz) fashion. Scheme 2 summarizes the 

various terminal or bridging coordination modes that have been identified for pyrazolates up to 

now.2 In most cases the ligand bridges between two metal ions to form dinuclear, trinuclear, 

tetranuclear or higher-nuclear complexes.3, 4 Their formation occurs by self-assembly or templated 

synthesis of Cu centers and pyrazoles. The pyrazolate anion is an excellent ligand for the 

construction of cyclic trinuclear and higher nuclearity metal complexes, leading to a variety of 

molecular architectures. 

 

Scheme 1. Pyrazole and its C-substituted relatives. Redrawn from Halcrow et al.2 
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Scheme 2. Known coordination modes of Hpz and pz-. Redrawn from Halcrow et al.2 

 

 

In particular, copper atoms in any of its three common oxidation states, Cu(I), Cu(II) and Cu(III), 

can form a rich variety of coordination complexes. Cu(I) prefers ligands having soft donor atoms, 

such as thioethers, aromatic amines, C and P. In addition, because Cu(I) is d10 ion, it has a flexible 

coordination geometry, forming mostly 4-coordinated species adopting a tetrahedral geometry (Td), 

but also 2-coordinate linear (D∞h) and 3-coordinate trigonal planar (D3h) complex- es.5,6 In Cu(II) 

complexes, the coordination number varies from four to six, including 4-coordinate square planar 

(D4h), 5-coordinate square-pyramidal (C4v), or trigonal bipyramidal (D3h) and 6-coordinate 

octahedral (Oh) and distorted octahedral (D4h, Jahn-Teller distortions of its d9 electron configuration) 

geometries.7,8 

 

In the past few decades, copper pyrazolate compounds have been extensively investigated as a 

result of  their structural diversity and their potential applications in catalysis,9 magnetism,10 and 
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luminescence. The structures of the reported copper pyrazolate compounds range from di-,11 to 

tri-,12 tetra,13 penta, hexa,14 hepta,14 and polynuclear,15 and  from chains, to layers,16 and three-

dimensional networks.17 Particularly, numerous trinuclear triangular copper complexes possessing 

a Cu3(µ3-OH) core have been reported and structurally characterized.  

 

1.1.1. Triangular copper pyrazolate complexes 
 

Trinuclear complexes have been synthesized by reacting copper(II) salts with Hpz and water, which 

upon deprotonation give pz- and OH- anions, respectively. In some cases, the deprotonation was 

achieved by adding an exogenous base, such as NaOH,18 Et3N,19 Bu4NOH.20 In recent years, 

Pettinari’s group has developed a procedure for the synthesis of a series of trinuclear compounds 

based on the triangular [Cu3(µ3-OH)(µ-pz)3]2+ moiety with the positive charge neutralized by two 

carboxylates. According to Scheme 3, compounds 1a-j, having the general formula a [Cu3(μ3-

OH)(μ-pz)3(RCOO)2LxLʹy], were obtained by reacting pyrazole (Hpz) with Cu(RCOO)2  in protic 

solvents (H2O, MeOH, alcohols).21 

 

 

Scheme 3. Synthetic method of Cu-pyrazolate complexes. Redrawn from Di Nicola et al. 21 
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The copper pyrazolate triangular complexes contain the distinguishable feature a nine-membered 

Cu3N6 metallacycle. The void at the center of the metallacycle is filled by µ3-ligands. Although µ3-

OH- and µ3-O2- ions are the most common central triply bridging ligands in these compounds,10 

some µ3-Cl,22 µ3-Br,22 and µ3-MeO23 clusters have been described as well. In all trinuclear 

triangular CuII-pyrazolate derivatives the oxygen is placed approximately 0.2-0.6 Å out of the plane 

established by the three Cu ions, while in the [Cu3(µ3-O)] moieties the oxygen lies in that plane. 

Finally, there are one or two more terminal ligands X at each of the Cu(II) atoms (Scheme 4).  

 

Scheme 4. CuII
3-pz triangular complex showing the supporting pzs, μ3-bridging (E), and terminal positions 

(X). 

 

1.1.2. Mixed-valent triangular copper pyrazolate complexes 
 

1.1.2.1 Classification of mixed-valence complexes 

 

Mixed valence compounds, containing an element present in more than one oxidation state, have 

been reviewed and classified earlier by Robin and Day and reviewed by Allen and Hush.24 In mixed 

valence complexes, the focus of the analysis is the extent of delocalization between redox centers, 

which can be varied by changing the solvent or ancillary/bridging ligands. The Robin-Day 

classification of the degree of electronic coupling (Hab) in MV compounds is as follows (Scheme 

5). 

In Class I compounds, the electron is localized on one center, the valences are trapped. There are 

distinct sites with different specific valences in the complex that do not interconvert. Class I 
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compounds have Hab = 0, meaning that there is no electronic coupling at all between the metal 

centers. An IVCT band will not be observed in this case.  

 

Class II compounds are intermediate in character. There is some localization of distinct valences, 

but there is a low activation energy for their interconversion. Class II compounds have moderate 

values of Hab and exhibit intense IVCT bands with Hab ≤  /2. For example, Prussian blue, a 

cyanide-bridged Fe(II)-Fe(III) material of formula Fe4[Fe(CN)6 ]3·14H2O, is one of the first 

recognized Robin-Day class II mixed-valence compounds. 

 

Class III MV compounds are characterized by completely delocalized valence, so that the oxidation 

states of all the metal centers are averaged. One of the earliest known MV complexes to exhibit 

class III behavior is the Creutz-Taube ion. The oxidation states in the [(NH3)5Ru(pz)Ru(NH3)5]5+ 

are best represented as +2.5 and +2.5 instead of as +2 and +3.25, 26 

 

 

Scheme 5. Potential energy surfaces for a two-center mixed-valence system. Robin-Day classification of 

the degree of electronic coupling (Hab) in MV compounds. (a) Class I: fully localized; (b) Class II: weakly 

coupled; (c) Class III: strongly coupled, fully delocalized system. 

 

The magnitude of Hab can be calculated from Equation:  

Hab =
0.0206

𝑟𝑎𝑏
 √𝜀𝑚𝑎𝑥𝑚𝑎𝑥∆1/2
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Where Hab is electronic coupling. εmax is  the molar absorptivity of the IT band at its maximum 

wavenumber (cm-1). Δ1/2 is  the width at half height (cm-1). The rab is  the distance between the 

redox centers involved in the electron transfer.  

Hush derived the following equation applicable to all classes of MV systems: 

Hab = 
µ12max

eR
         Δ1/2

0/cm-1 =√16𝑅𝑇ln(2)max       Γ = 1 -Δ1/2/Δ1/2
0 

Where µ12 is the transition dipole moment of the IVCT band.max is the IVCT band maximum. 

Δ1/2 is experimental bandwidth at half height. Δ1/2
0 is theoretical bandwidth at half height. 

The parameter  calculated by comparing the experimental and theoretical 1/2 values of the IVCT 

band (vide supra) classifies a MV species as class II or II: When 0 <  < 0.5, the MV complex is 

classified as a weakly coupled, Class II system, in completely delocalized Class III species,   0.5, 

and these species also exhibit an IVCT band. For Class I MV complexes there is no  parameter, 

because they have no IVCT band. 

 

Table 1. Classification of Mixed-valence Compounds. 

Class  Condition   

I Hab = 0 Localized  

II 0 <  < 0.5 Weakly coupled  

III   0.5   Delocalized  

 

1.1.2.2. Example of mixed-valence copper pyrazolate complex 

 

The Raptis group has reported a mixed-valent copper pyrazolate trinuclear complex, [Cu3(μ3-O)(μ-

pz)3(O2CPh)3]1-, isolated from the chemical oxidation of a (TBA)2[CuII
3(μ3-Cl)2(μ-pz)3Cl3] with 

AgO2CPh, as shown in Scheme 7. Its crystal structure determination revealed a Cu3(µ3-O) core, 
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formally Cu2
IICuIII, Cu3

7+ species, with terminal benzoates. The most striking feature of [Cu3(μ3-

O)(μ-pz)3(O2CPh)3]1- was its nearly perfect 3-fold symmetry, which suggested a delocalized 

electronic distribution, consistent with  DFT calculations. The Cu-N bond lengths (1.891(5) Å) 

were shorted than in the homovalent all-Cu(II) complex, (PPN)2[Cu3(μ3-O)(μ-pz)3Cl3], (1.953(3) 

Å), in agreement with its higher oxidation state.27 

 

Scheme 6. Schematic representation of [Cu3(μ3-O)(μ-pz)3(O2CPh)3]1-. Redrawn from Raptis et al.27 

 

 

1.1.3. Applications of trinuclear Copper pyrazolate complexes 

 

The impetus for exploration of the chemistry of trinuclear Cu(II)-complexes is provided mainly by 

four fields. First, trinuclear copper(II) complexes are primarily studied for their relevance to 

enzymes, such as multicopper oxidases (e.g., laccase, ascorbate oxidase, ceruloplasmin), 

oxygenases (e.g., tyrosinase, particulate methane monooxygenase, ammoniamonooxygenase) and 

reductases (e.g., nitrite reductase, nitrous oxide reductase).28, 29 Trinuclear Cu(II) complexes have 

been of particular significance for their simulation of the bioactive sites of a number of multicopper 

blue oxidases. 
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Second, it is interesting to note that Cu(II) ions and N1, N2-bridging ligands (pyrazole and its 

derivatives) tend to form a trinuclear triangular Cu(II) cluster with coordinatively-unsaturated metal 

sites, which exhibit interesting magnetic properties.30 Triangular Cu(II)-complexes are important 

models for the study of magnetic exchange-coupling and spin frustration.31, 32  The Raptis group 

has previously shown that pH-dependent exchange of µ3-E [E= O, OH, Cl, Br] ligands on a 

trinuclear copper pyrazolato framework is accompanied by an orderly transition from strong to 

weak antiferromagnetic coupling and finally to ferromagnetic exchange among the three Cu 

centers.18, 33 Ferromagnetically coupled Cu3-complexes are especially important as they are closely 

related to the also ferromagnetically coupled active centers of particulate methane 

monooxygenase.34 

 

Third, some trinuclear Cu(II) triethanolamine derivatives (Scheme 7) are highly active and selective 

catalysts, or catalyst precursors for the peroxidation of cyclohexane, to cyclohexanol and 

cyclohexanone mixture by hydrogen peroxide (H2O2) in acidic medium at room temperature and 

atmospheric pressure.13 

 

Scheme 7. Copper complexes act as catalyst for oxidation of cyclohexane to a cyclohexanol and 

cyclohexane mixture. Redrawn from Kirillov et al.13 

 

Fourth, these trinuclear copper pyrazolate clusters further self-assemble through carboxylate 

bridges, often supported by H-bonds, to form hexanuclear systems, 1-, 2- and 3D CPs, showing 

interesting molecular and supramolecular features in most cases.35–37 The trinuclear [Cu3(µ3-

OH)(µ-pz)3]2+ cluster is quite stable, and can be employed as secondary building block to generate 

coordination frameworks. These trinuclear [Cu3(µ3-OH)(µ-pz)3]2+  can be connected with rigid 
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nitrogen ligands (4’4-bipyridine), or flexibible succinate (Suc) dianions, to form CPs under various 

reaction conditions (solvent, pressure, temperature) and reagents ratios.17,21  

1.2. Background of Trinuclear Copper pyrazolate complexes 

 

Several triangular Cu3- pyrazolates with the general formula [Cu3(μ3-E)(μ-4-R-pz)3X3]n-,18, 22, 27, 35–

38 where E = O, OH, OMe, OEt, (Cl)2 and (Br)2; X = Br, Cl, py, SCN, MeCOO; NCO, NO3; R = H, 

Cl, Br, I, NO2, Me, CHO, COOEt, Ph; n = 1, 2 (Scheme 8), have been synthesized and characterized 

in our group. Our laboratory has worked on the systematic structural and accompanying magnetic 

and electrochemical manipulation of these triangular copper pyrazolate complexes.  

 

The copper pyrazolate complexes with Cu3(μ3-O)-core are redox active and capable of cycling 

between a homovalent CuII
3- state and a mixed-valent CuII

2CuIII- state during an one electron redox 

process. Studying the electrochemical behavior of Cu3(μ3-O)-containing complexes has been a 

primary focus in our laboratory. One-electron oxidation of Cu3-pyrazolates by either 

(NH4)2Ce(NO3)6 (CAN), (PhCOO)2 or H2O2 leads to a mixed-valence species, formally CuII
2CuIII, 

as shown in Scheme 9. The Raptis group has reported the one-electron chemical oxidation of 

[Cu3(µ3-O(µ-pz)3(O2CPh)3].27  
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Scheme 8. Formula of [Cu3(μ3-E)(μ-4-R-pz)3X3]n-. 

 

 

 

Scheme 9. Chemical oxidation of Cu(II)-pyrazolate complex. 

 

1.3.  Hypothesis 

 

Our present work builds on two hypotheses: (i) At constant temperature and pressure, the sorption 

of MOFs can be changed by varying the redox states: because of the different charge on the metal, 

the sorbent and sorbate interaction will be different. We postulate that the gas adsorption capacity 

will change with changing oxidation states. The hypothetical example of Figure 1 shows the 
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difference between the sorption isotherms for a MOF in its two oxidation states (MOFRed and 

MOFOx are reduced and oxidized forms of the given MOF, respectively). The vertical distance 

between the two curves, Δ%, shows the amount of substance that can be adsorbed and released at 

constant temperature and pressure. (ii) Similarly, the gas sorption capacity and/or selectivity will 

be modified by a photochemically- induced structural reorganization of the MOF. 

 

 

Figure 1. Hypothetical gas sorption isotherms for the reduced and oxidized forms of a redox or photo-active 

MOF. 

 

To construct and study the photo- or redox-active MOFs Containing on Cu3-pyrazolato SBU, it is 

necessary to first study the structural and electronic properties of isolated SBUs. On that front, an 

objective of this dissertation is to synthesize and characterize new triangular copper pyrazolate 

complexes with suitable ligands in µ3- and terminal positions and study their chemical and/or 

electrochemical properties to find out if it is possible to (i) oxidize to the mixed-valent, formally 

[CuIIICuII
2] state and (ii) connect the units with photoactive linkers. The second objective is to 
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employ these trinuclear units as SBUs to build stable coordination polymers and analyze their 

potential applications. In our laboratory,  one dimensional (1D) chains, two dimensional (2D)-

sheets, and three dimensional (3D)-MOFs containing [Cu3(µ3-OH)(µ-pz)3]2+ SBUs have  been 

prepared by controlling the stoichiometry and by replacing terminal monodentate ligands (py), with 

bridging bidentate 4,4-bipy.42 We have previously shown that the porous-MOF materials with 

{[Cu3(µ3-OH)(µ-4-R-pz)3]2+}n SBUs where R = H, Cl, or CHO have interpenetrated-lattice 

structures and are capable of adsorbing CO2 selectively.43 The main project of this dissertation is 

the synthesis and modification of photo-/ redox-active metal-organic-frameworks (MOFs) based 

on Cu3-pyrazolate SBUs and study their gas adsorption properties. (i) For photo-active MOFs, abp 

and bpe were used as photo-active linkers and photoswitchable tailor-made spacers. Photochemical 

modification of MOFs will change their pore size and shape, allowing the tuning of their gas 

adsorption properties. (ii) The Cu-pyrazolato SBUs with [Cu3(µ3-O)]- unit will be used to prepare 

redox-active MOFs. Redox modification of a MOF will result in modulation of its affinity for 

sorbate molecules and change its overall sorption capacity. 

1.4. Experimental Section  

 

1.4.1. Materials and methods 
 

4-chloropyrazole (4-Cl-pzH),44 4-Phenyl-pyrazole (4-Ph-pzH),45 [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3]18 

and [PPN]2[Cu3(µ3-O)(µ-pz)3Cl3]18 were synthesized according to the literature procedures. All 

other reagents were commercially available and used without further purification. Solvents were 

purified using standard techniques.46 

 

Elemental analysis. Elemental analyses (C, H, N) were performed at Galbraith Laboratories, Inc., 

Knoxville, Tennessee.  
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Infrared Spectroscopy (IR). The IR spectra from 4000-500 cm-1 were recorded on a Spectrum 

One Perkin-Elmer FT-IR SPECTROPHOTOMETER with ATR mode.  

 

Ultraviolet-Visible spectroscopy (UV-Vis). The UV-Vis Spectral data were recorded on a Varian 

Cary 500 scan instrument equipped with a deuterium background correction lamp.  

 

Electrochemistry. Electrochemical measurements were performed in 0.1 M TBAPF6/CH2Cl2 at 

ambient temperature under an Ar atmosphere, using a three-electrode set up (glassy carbon working, 

Pt-wire auxiliary and Ag/AgNO3 reference electrodes) with a BAS Epsilon-EC electrochemical 

analyzer. A platinum electrode was used as a working electrode, a platinum-wire was used as the 

counter electrode, and an Ag/Ag+ (0.01 M AgNO3 in acetonitrile) electrode was used as the 

reference electrode. The CV curves were calibrated using the ferricenium/ferrocene (Fc+/Fc) redox 

couple, accomplished by adding ferrocene to the solution as an internal standard after recording 

voltammogram of the analyte. 

 

Single-Crystal X-ray Diffraction. Single crystals X-ray diffraction data were measured on a 

Bruker D8 QUEST CMOS system equipped with a TRIUMPH curved-crystal monochromator and 

a Mo Kα fine-focus tube or a Bruker APEX II area detector with graphite monochromated Mo Kα 

radiation (λ = 0.71073 Å) at ambient or low temperature. Frames were integrated with the Bruker 

SAINT software package using a narrow-frame algorithm. Absorption effects were corrected using 

the multi-scan method (SADABS). Structures were solved by intrinsic or direct methods with 

ShelXT and refined with ShelXL using full-matrix least-squares minimization Using Olex2. All 

non-hydrogen atoms were refined anisotropically. Hydrogen atoms positions were calculated using 

the riding model. All the hydrogen atoms were fixed by HFIX and placed in ideal positions. The 

potential solvent accessible area or void space was calculated using the PlATON.47  
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Thermogravimetric Analysis (TGA). The TGA analyses were performed using a TA-Q500 

microbalance with helium (high purity, Praxair) as a carrier gas. The samples (∼10 mg) were loaded 

onto a platinum holder, placed inside the TGA unit chamber and heated from 25 to 800 at 5 K per 

minute under a constant helium flow rate of 60 mL min−1. The carrier gas was treated with zeolite 

presorbers to remove any traces of water and impurities prior to entering the TGA chamber. 

 

X-ray powder diffraction (XRD). The patterns of the as-synthesized, activated, and post-CO2-

adsorption samples were obtained using a Rigaku ULTIMA III X-ray diffraction unit. The 

diffractometer is equipped with cross beam optics and a Cu-Kα target operating at 40 kV and 44 

mA. 

1.4.2. Synthesis of trinuclear Cu(II)-pz complexes with new ligands in the capping (µ3) and 

terminal positions 

 

1.4.2.1. Synthesis of (PPN)(C5H10NH2)[Cu3(µ3-OH) (µ-Cl)(µ-4-Ph-Pz)3Cl3] [1]   

 

The 1,2-Di(4-pyridyl)ethylene (bpe) (0.02 mmol, 3.8 mg) in 5 mL of CH2Cl2 was placed in the test 

tube. A 4 mL 1:1 mixture of CH2Cl2:MeOH was layered over the CH2Cl2 layer, CuCl2·2H2O (0.06 

mmol, 10.2 mg), 4-Ph-pzH (0.06 mmol, 8.7 mg), piperidine (0.08 mmol, 8 µL), PPNCl (0.04 mmol, 

22.9 mg) were stirred in 5 mL CH2Cl2 for 2 h, the filtrate (green solution) was layered on the top. 

Well-shaped green crystals appeared gradually on the walls of the tube in two weeks. Yield, 51%. 

Anal. calcd/found for C68H64Cl4Cu3N8OP2: C, 58.32 /58.50; H, 4.61/4.58; N, 8.01/8.03. 
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1.4.2.2. Synthesis of (PPN)[Cu3(μ3-OH) (μ-4-Ph-pz)3Cl3]·CH2Cl2 [2] 

 

A mixture of CuCl2·2H2O (0.12 mmol, 20.5 mg), 4-Ph-pzH (0.12 mmol, 17.3 mg), NaOH (0.16 

mmol, 6.4 mg), PPNCl (0.02 mmol, 11.8 mg) was stirred in CH2Cl2 (15 mL) for 24 h. Diffusion of 

diethyl ether into green solution afforded well-shaped green crystals after filtration. Yield, 72%. 

Anal. calcd/found for C128H108Cl10Cu6N14O2P4: C, 56.39/56.34; H, 4.00/3.99; N, 7.19/7.21. 

 

Method B: (PPN)[Cu3(μ3-OH) (μ-4-Ph-pz)3Cl3]·THF  

A mixture of CuCl2·2H2O (0.5 mmol, 85.2 mg), 4-Ph-pzH (0.5 mmol, 72.1 mg), Et3N (1 mmol, 

139 µL) and PPNCl (0.34 mmol, 195.3 mg) was stirred in 10 mL THF for 12 h at ambient 

temperature. Treatment of the green filtrate with Et2O crushes out the complex. Recrystallization 

from THF/hexane affords crystals suitable for X-ray diffraction. Yield: 80%. 

 

1.4.2.3. Synthesis of (PPN)[Cu3(µ3-OH)(µ-4-Ph-pz)3Cl3]·CH3CN [3] 

 

A similar procedure to synthesize compound [2], using CuCl2·2H2O (0.3 mmol, 51.1 mg), 4-Ph-

pzH (0.3 mmol, 43.3 mg), NaOH (0.6 mmol, 24 mg) and PPNCl (0.2 mmol, 114.8 mg) in CH3CN 

instead of CH2Cl2. Well shaped green-plate crystals suitable for X-ray diffraction were obtained by 

slow evaporation. Yield, 62%. Anal. calcd/found for C65H55Cl3Cu3N8OP2: C, 59.14/58.85; H, 

4.20/4.33; N, 8.49/8.11. 

1.4.2.4. Synthesis of (PPN)[Cu3(µ3-OH)(µ-pz)3(µ1,1-N3)2(N3)] [4]    

       

Method A: 

A solution of NaN3 (0.38 mmol, 24.42 mg) in 5 mL of MeOH was added dropwise to a solution of 

[PPN]2[Cu3(µ3-O)(µ-pz)3Cl3] (0.06 mmol, 100 mg) dissolved in 10 mL MeOH, the mixture was 

stirred overnight at ambient temperature. Upon slow evaporation of filtrate at room temperature for 
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one week, well-shaped crystals suitable for X-ray diffraction were obtained. The crystals were 

isolated, washed three times with MeOH ether and dried in the vacuum. The yield was 40%. Anal. 

calcd/found for C45H41Cu3N16OP2: C, 50.41/50.01; H, 3.76/3.62; N, 20.91/20.48. UV-vis (CH2Cl2, 

cm-1): 24965, 36499, 37367, 38276.  

 

Method B: 

To a 4 mL of CH2Cl2 solution of [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3] (0.06 mmol, 100 mg) was added a 

solution of NaN3 (0.51 mmol, 33.1 mg) in 0.5 mL H2O and 2 mL MeOH. The reaction mixture was 

stirred for 2 h at ambient temperature. After filtration, single crystals were formed by initially 

layering the filtrate with hexanes followed by slow evaporation at the ambient temperature; Yield, 

62%. 

 

1.4.2.5. Synthesis of [Cu3(µ3-OMe)(µ-Cl)(µ-Pz)3(py)2]Cl [5] 

 

Method A: 

A solution of [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3] (0.03 mmol, 50 mg) in 5 mL CH2Cl2 was placed in 

the test tube, a 4 mL 1:1 mixture of CH2Cl2: MeOH was layered over the CH2Cl2 layer, and a third 

layer of pyridine (0.16 mmol, 13 µL) and thiophenol (0.15  mmol, 16 µL) in 5 ml MeOH was 

layered on top. Well-shaped purple-polygonal crystals suitable for X-ray diffraction were grown 

after slow evaporation. Yield: 53%. Anal. Calcd/Found for C20H22Cl2Cu3N8O: C, 36.84/36.23; H, 

3.4/3.42; N, 17.18/17.27. 

Method B: 

To the methanolic solution (4 mL) of pyridine (0.16 mmol, 13 µL) was added a CH2Cl2 (4 mL) 

solution of [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3] (0.03 mmol, 50 mg) with stirring. The mixture was 

stirred for 24 h  at ambient temperature. After keeping the solution in the air for a few days, suitable 
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for X-ray crystal structural determination were formed on slow evaporation of the solvent. The 

crystals were isolated, washed three time with MeOH, Et2O and dried in air. Yield: 70%. 

 

1.4.2.6. Synthesis of [Cu3(µ3-OH)(µ-Cl)(µ-pz)3(py)2Cl](py) [6] 

 

Compound [6] was prepared by the same procedure as described for complex [5] by replacing 

CH2Cl2 with CH3CN and changing the molar ratio to 1:25, instead of 1:5. Upon slow evaporation 

of the filtrate at room temperature over two weeks, dark blue-polygonal crystals suitable for X-ray 

diffraction were obtained; Yield: 48%. Anal. Calc/Found for C24H25Cl2Cu3N9O: C, 39.22/38.84; H, 

3.7/3.44; N, 17.15/17.04. UV-vis (CH2Cl2, cm-1): 16583, 28695.  

 

1.4.2.7. [Cu3(µ3-OH)(µ-4-Cl-pz)3(py)3(ClO4)2](CH2Cl2)[(CH3)2CO)] [7]  

 

Cu(ClO4)2·6H2O (0.1 mmol,37.1 mg), 4-Cl-pzH (0.1mmol, 10.3 mg), NaOH (0.17 mmol, 6.7 mg) 

were added in 6 ml CH2Cl2 and 4ml acetone under stirring for 24h at ambient temperature, the grey 

solid was filtered out under pressure. Suitable crystals for X-ray diffraction was grown from the 

slow evaporation for 4 days. Yield: 40%. 

 

1.4.2.8. Synthesis of (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)] [8], (PPN)3[Cu3(µ3-OH)(µ-

pz)3(η1-NO2)3](OH)(NO3) [9] and (PPN)2[Cu3(µ3-O) (µ-pz)3(η1- NO2)2Cl] [10] 

 

To a 4 mL CH2Cl2 solution of [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3] (0.06 mmol, 100 mg) was added a 

solution of NaNO2 (0.29 mmol, 20.3 mg) in 0.5 mL H2O and 2 mL MeOH. The reaction mixture 

was stirred for 24 h at ambient temperature. After filtration and treatment of the filtrate with 10 mL 

Et2O, purple crystals of [PPN]2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)] [8] were formed by slow 

evaporation at ambient temperature. Yield, 62%. Anal. Calcd/Foud for C81H69N11Cu3O7P4 (%): C, 
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59.44/59.77; H, 4.28/4.23; N, 9.49/9.41. Infrared (cm-1): 1439m, 1377m, as(NO2); 1259s, s(NO2); 

1114s, 1051m, 997w, 872w, (NO2); 722s, 628s. After removing the purple crystals, the blue 

crystals of (PPN)3[Cu3(µ3-OH)(µ-pz)3(η1-NO2)3](OH)(NO3) [9]  were obtained from the light green 

mixture solution a week later. The crystals were filtered off and dried under vacuum. The yield was 

approximately 10%.  IR (cm-1): 1436m, 1349m, 1266w, 1114s, 996m, 1054m, 689s, 721s. 

 

1.4.2.9. Synthesis of [PPN][Cu3(µ3-OH)(µ-4-Ph-pz)3(η1-NO2)3](CH2Cl2)0.5 [11] 

 

Compound [11] was synthesized following the same procedure as that of Compound [8] using 

(PPN)[Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3]·CH2Cl2 instead of [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3]. After 

filtration and treatment of the filtrate with 4 mL hexane instead of Et2O. Well-shaped crystals 

suitable for X-ray diffraction were obtained three days later. The yield was 80%. Anal. Calcd/found 

for C127 H107 Cl2Cu6 N20 -O13 P4: C, 56.31/56.06; H, 3.95/4.02; N, 10.35/10.19.  

1.4.2.10. Synthesis of (PPN)3[Cu3(μ3-O)(μ-4-Me-pz)3(1-NO2)3](NO3) [12] 

 

Compound [12] was prepared by following the same procedure described for [8] by using 

(PPN)3[Cu3- (μ3-O)(μ-4-Me-pz)3Cl3]Cl and NaNO2. UV-vis (CH2Cl2, cm-1): 28584, 36416, 37340, 

38273. 

 

1.4.2.11. Synthesis of (PPN)3[Cu3(µ3-O)(4-Cl-pz)3(η1-NO2)3](NO3) [13] 

 

Compound [13] was synthesized by following the same procedure described for [8] by using 

[(PPN)3 [Cu3(µ3-O)(4-Cl-pz)3Cl3]Cl instead of [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3]. The yield was 70%.  

Anal. Calcd/ found for C119H96Cl3Cu3N13O11P6: C, 59.99/58.85; H, 4.22/4.27; N, 7.78/7.66.  
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1.4.2.12. Synthesis of (PPN)[Cu3(µ3-O)(µ-pz)3(N3)2(η
2-NO2)] [14] 

 

A solution obtained by mixing a MeOH solution (10 mL) of NaN3 (0.31 mmol, 20.3 mg) and 

aqueous solution of NaNO2 (0.28 mmol, 19.1 mg) was added under stirring to a green solution 

containing [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3] (0.06 mmol, 100 mg) in 10 mL CH2Cl2. Color change 

was observed and stirring was continued for 24 h. The blue-green solution obtained was allowed 

to evaporate in the air yielding well-formed brown crystals, which were washed with Et2O and 

dried under vacuum. Yield, 30%. 

1.5. Results and discussion  

 

1.5.1. Crystal structure description of (PPN)(C5H10NH2)[Cu3(µ3-OH)(µ-Cl)(µ-4-Ph-pz)3Cl3)] 

[1] 
 

Compound [1] consists of a nine-membered [Cu-N-N]3 metallacycle where the Cu-atoms are held 

together by pyrazolate bridges as shown in Figure 2. A pyramidal Cu3(µ3-OH) moiety, with Cu-O 

bond lengths ranging from 1.988(1) Å to 2.044(1) Å, forms the core of complex. The Cu-O bond 

distances and the distance of µ3-O from the best-fit plane of the three copper ions (ca. 0.632(5) Å) 

are in the range normally found for these kinds of compounds.36,37,48,49 The three Cu-O-Cu angles 

are between 105.1(2)º-114.7(2)º, and the CuCu intramolecular distances are within 3.231(2) -

3.381(2) Å. The µ-Cl is on the opposite side of the µ3-OH group completing the square-pyramid 

coordination of two Cu atoms. The third Cu atom has distorted square-planar coordination. The 

Cu-(µ-Cl) distances are quite long, 2.787(2) Å and 2.795(2) Å. Another feature of this structure is 

the edge-to-face C-H… π interactions between the µ3-O and the benzene ring of adjacent trimer 

with a distance of 3.23 Å (Figure 3). 
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Figure 2. Molecular structure of [1], PPN and H are omitted for clarity. 

 

 

Figure 3. Edge to face π-π stacking of [1]. Color code: black, C; blue, N; red, O; green, Cl; cyan, Cu; 

purple, phenyl ring centroid. 
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 1.5.2. Crystal structure description of (PPN)[Cu3(μ3-OH) (μ-4-Ph-pz)3Cl3](CH2Cl2)[2] 
 

Complex [2] crystallizes in the monoclinic P21/n space group with the whole molecule and one 

CH2Cl2 interstitial solvent molecule in the asymmetric unit. The trinuclear complex contains a µ3-

OH group unsymmetrically bridging three copper atoms. The Cu-O bond length range from 1.949 

(1) to 2.053(1) Å, CuCu intramoleccular distances are within the 3.300(4)- 3.430(4) Å. The O 

atom is 0.152(4) Å above the the [Cu(pz)]3 plane. while the three terminal chloride ligands are on 

the opposite side of their trans-µ3-OH, as shown in the Figure 4. Two [Cu3(μ3-OH)(μ-4-Ph-pz)3Cl2] 

units are linked via double µ-Cl bridges forming a {Cu6} dimer-of-trimers (Figure 5). The Cu-µ-

Cl bond distances are unsymmetrical, with shorter equatorial and longer axial Cu-Cl bonds ranging 

from 2.261(1) Å to 2.959(3) Å. 

 

1.5.3. Crystal structure description of (PPN)[Cu3(µ3-OH)(µ-4-Ph-pz)3Cl3]·CH3CN [3] 
 

Green blocks of [3] crystallize from the slow evaporation of CH3CN, packing in the triclinic 𝑃1̅ 

space group. In each trinuclear triangular {Cu3(µ3-OH)(µ-4-Ph-pz)3Cl3} unit (Figure 6), the 

distance of capping µ3-O1 from the plane defined by the Cu3 system [0.565(0) Å] as well as the Cu-

O1 distances [Cu1-O1 2.029(2) Å, Cu2-O1 1.995(2) Å, Cu3-O1 2.017(2) Å] fall in the range 

normally found for analogous compound.36-39 The Cu-(µ-Cl) distances range between 2.309-2.876 

Å. The structure of [3] consists of a polymeric, one-dimensional (1D) infinite neutral chains, 

{(PPN)[Cu3(µ3-OH)(µ-4-Ph-pz)3Cl3]·CH3CN}n, parallel to the crystallograp- hic b-axis, wherein 

two bridging chlorine atoms link the adjacent {Cu3(µ3-OH)(µ-4-Ph-pz)3Cl} units (Figure 7). 
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Figure 4. Crystal structure of compounds [2], PPN counterion and interstitial CH2Cl2 are not shown for 

clarity. 

 

 

 

 

Figure 5. Packing diagram of compound [2], perspective view showing the association of the two triangular 

units by a µ-Cl. Phenyl substitution on pyrazole rings and hydrogen atoms are omitted for clarity. 
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Figure 6. Crystal structure of compound [3], PPN counterion and interstitial CH3CN are not shown for 

clarity. 

 

 

 

Figure 7. A review of one-dimensional polymeric chain of the unit in the compound [3]. Phenyl 

substitution on pyrazole rings, hydrogens and PPN are omitted for clarity. 
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Table 2. Selected bond lengths (Å) and angles (º) for compounds [1], [2] and [3]. 

 

 [1] [2] [3] 

Cu3(µ3-O(H)) 1.988(1)-2.044(1) 1.949 (1)-2.053(1) 1.995(2)- 2.029(2) 

Cu…Cu 3.231(2) -3.381(2) 3.268(1)-3.451(1) 3.256(8)-3.433(8) 

Cu-N 1.940(4)-1.948(4) 1.926(7)-1.949(6) 1.919(3)-1.946(3) 

Cu-Cl 2.244(2)-2.266(1) 2.229(3)-2.284(3) 2.271 (10)-2.325(9) 

Cu-O-Cu 105.1(1)-114.7(1) 111.1(3)-120.2(3) 107.16(1)-117.67(1) 

 

 

1.5.4. Crystal structure description of (PPN)[Cu3(µ3-OH)(µ-pz)3(µ1,1-N3)2(N3)] [4] 
 

The azide anion, N3
-, is a commonly employed pseudohalide bridging ligand for the design of 

coordination polymers with tunable physical and magnetic properties.  Its most common 

coordination modes being µ-1,1 (end-on, EO) and µ-1,3 (end-to-end, EE). Orbital complementarity 

predict  that the µ-1,3 coordination mode of azide should lead to antiferromagnetic (AF) coupling, 

whereas the µ-1,1 coordination mode to ferromagnetic coupling. The magnitude of magnetic 

coupling also depends on the detailed coordination geometries, such as the M-Nazide-M angles and 

the dihedral angle between the mean planes M–N–N–N and N–N–N–M’.  

 

Although many different bridging groups and transition metal ions have been employed for the 

construction of such species, the Cu(II)-azide system is one of the most popular. A variety of 

copper-azide complexes with discrete or one-, two-, and three-dimensional polymeric structures 

have been reported, in which the azide ligand adopts various bridging modes (Scheme 10). The 

diversity in the structure of the Cu(II) system is a result of its flexibility in coordination numbers 

(ranging from 4 to 6) and geometry, along with its interesting magnetic properties.47, 48 It is well-

established that symmetric μ-1,3 Cu(II) azide bridges are strongly antiferromagnetic, whereas Cu(II) 
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complexes with double symmetric μ-1,1 azide bridges are strongly ferromagnetic, provided  that 

the Cu-Nazide-Cu angle is smaller than 108.52 Usually asymmetric μ-1,3 azide bridges lead to weak 

antiferromagnetic coupling.53 

 

 

Scheme 10. Different types of bridging modes of azide (N3
-). 

 

The complex crystallizes in a monoclinic P21/c space group with the whole molecule in the 

asymmetric unit. The triangular unit consists of three copper ions, bridged by pyrazolato anions 

and a bridging µ3-hydroxyl ligand. Three terminal sites are occupied by azide ligands. A 

perspective view of the trinuclear Cu(II) unit is shown in Figure 8. The Cu–OH distances are 

1.979(2), 2.009(1), 2.024(2) Å. The capping µ3-OH is located 0.335(2) Å from the plane containing 

the three copper centers. Cu1 ion is bonded to two nitrogen atoms originating from two different 

pyrazole ligands (Cu1–N1 1.944(4), Cu1–N12 1.937(4) Å), one nitrogen atom from N3
- anion 

(Cu2–µ1,1-N13 = 1.985(4) Å) and one central µ3-OH to form a 4-coordinated square planar 

geometry. The Cu2 ion is coordinated to two µ1,1-N atoms from N3
- and two nitrogens from pyrazole 

ligands and one oxygen from central µ3-OH, forming a slightly distorted square pyramid geometry. 

The Cu–N bond distance in the axial position (Cu2–µ1,1-N13i 2.340（4）Å) is also significantly 
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longer than the bond length in the equatorial plane (ranging from 1.942(5) - 2.003(5) Å). The Cu3 

is also in a square pyramidal geometry. The only difference is the presence of an additional azide 

ligand coordinated through N3 in an axial position with a longer Cu-N bond distance (Cu3–µ1,1-N3 

2.422(5) Å), and another N atom from terminal azide ligand (monodentate µ-1) with Cu3–N8 

distance of 1.972(6) Å.  

 

As shown in Figure 9, the neighboring trinuclear Cu(II) units are connected by two µ1,1-N3 ligand 

generating an one-dimensional chain structure with Cu…Cu distances of 3.385(2)-3.469(3) Å and 

Cu–Nazide–Cu bridging angles of 105.72-114.91°. Azide ions are quasi linear with N–N–N angles 

in the narrow 176.8(5) - 178.1(5)° range, exhibiting unsymmetrical N–N bond lengths, with bonds 

involving the donor atom, N3–N4 = 1.190(6) Å, significantly longer than N4–N5 = 1.129(6) Å.54 

 

1.5.5. Crystal structure description of [Cu3(µ3-OMe)(µ-Cl)(µ-pz)3(py)2]Cl [5]  
 

Complex [5] consists of a nine-membered [Cu-N-N]3 metallacycle where the Cu-atoms are 

coordinated to two pyridines and two chlorines (Figure 10). The center of the metallacycle 

accommodates a pyramidal µ3-OCH3 group bridging unsymmetrically the three Cu-atoms. The Cu-

OCH3 bond lengths range from 2.100(1) Å to 2.043(1) Å. Cu-O-Cu angles from 102.69(6)º to 

103.76(6)º. The O-atom is 0.880(1) Å out of the Cu3-plane. The CuCu intramolecular distances 

are within the 3.185(3) - 3.253(3) Å. 
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Figure 8. Crystal structure of compound [4], hydrogens and PPN are omitted for clarity. 

        

 

Figure 9. Packing diagram of structure [4] view from b axis. 
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Figure 10. Crystal structure of compound [5], H atoms are omitted for clarity. 

        

 

Figure 11. Crystal structure of compound [6], H atoms are omitted for clarity. 
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Table 3. Selected interatomic distances (Å) and angles (º) for [5] and [6]. 

 

       [5]              [6] 

Cu–(µ3-O) 2.100 (1) -2.043(1)   1.968(2)-2.004(4) 

Cu–Npz 1.937(2)-1.961(2) 1.939(2)-1.961(2) 

Cu–Npy 2.025(2)-2.036(2) 2.026(2) 

Cu–Cl 2.282(7) 2.3355(1) 

Cu-µ-Cl  2.653(6)-2.680(6)     2.673(1) 

CuCu 3.185 (3) - 3.253(3) 3.110 (2)-3.316(1) 

Cu–O–Cu:   102.67(6)-103.76(6) 101.79(1)-113.17(8) 

 

 

1.5.6. Crystal structure description of [Cu3(µ3-OH)(µ-Cl)(µ-pz)3(py)2Cl]·py [6] 
 

Complex [6] crystallizes in orthorhombic Pnma space group.  The terminal sites are occupied by 

two pyridines and one terminal chloride ligand (Figure 11). The Cu-Npz and Cu-Npy bond lengths 

are 1.939(2)-1.961(2) Å and 2.026(2) Å, respectively. The center of this metallacycle 

accommodates a triply bridging hydroxide. The O-atom is 0.671(2) out of the Cu3-plane. Cu-O-Cu 

angle and Cu-O distances are within 101.79(1)º-113.17(8)º and 1.968(2)-2.004(4) Å,  respectively. 

One additional chloride cap unsymmetrically the trimer on one side at distance of 2.336(1) Å from 

the Cu3 plane, completing the distorted square pyramidal coordination geometry. The (µ2-Cl)-Cu 

distance is 2.673(1) Å. CuCu distances vary between 3.110(2) and 3.316(1) Å. Complex [6] 

contains one non-coordinating pyridine molecule to form a H-bond to hydroxyl, O-H  N= 2.706 

Å, ∠O-HN = 171.94o.  
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1.5.7. Crystal structure description of Cu3(µ3-OH)(µ-4-Cl-pz)3(py)3(ClO4)2]·(CH2Cl 

2 )·((CH3)2(CO) [7] 

 
Complex [7] contains a μ3-OH group bridging unsymmetrically three copper atoms, the average 

Cu–OH bond length is 2.000(1) Å and the O-atom is 0.465(3) Å above the [Cu(pz)]3
-plane (Figure 

11). Three terminal py ligands are on the opposite side of the Cu3-plane than their trans-μ3-OH, 

with their planes orthogonal to the Cu3-plane. The Cu···Cu distances and the Cu–N bond lengths, 

are within 3.336(1) - 3.339(2) Å and 1.952(1) - 1.960(1) Å, respectively. One Cu ion exhibits an 

octahedral coordination geometry with two nitrogen atoms from 4-Cl-pzH, one nitrogen from 

pyridine ligand and a capping ligand µ3-OH forming the basal plane, while two oxygen atoms from 

two triflate anions are coordinated in the apical positions. The basal Cu-N (1.952 (9)-2.022(1) Å) 

and Cu-O (1.998(1) Å) distances are slightly shorter than the basal Cu-OCF3SO3 one, while the long 

apical Cu-OCF3SO3 distance (2.628(1) Å) is a manifestation of the typical Jahn-Teller elongation, 

indicative also of a very weak axial coordination. The two remaining copper atoms are in square-

pyramidal N3O2 -coordination environments with a weak interaction involving one triflate anion 

and one acetone, if the long Cu···O interactions of 2.367(1) in Cu···OC(CH3)2 are taken into 

account (Figure 13). 
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Figure 12. Crystal structure of Cu3(µ3-OH)(µ-4-Cl-pz)3(py)3(ClO4)2] [7], showing the atom-labeling 

scheme, triflate anions were omitted for clarity. 

 

 

Figure 13. Crystal structure of Cu3(µ3-OH)(µ-4-Cl-pz)3(py)3(ClO4)2] [7], showing the Cu3···(µ3-CF3SO3) 

interaction and interaction with a coordinating acetone molecule. 
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1.5.8. Crystal structure description of (PPN)2[Cu3(µ3-O)(µ-pz)3(η
1-NO2)2(η

2-NO2)] [8], 

(PPN)3[Cu3 (µ3-OH)(µ-pz)3(η1-NO2)3](OH)(NO3) [9] and (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2 

Cl] [10] 

 

Compound [8] was obtained from a metathetical reaction of the chloro-terminated complex 

[Cu3(µ3-O)(µ-pz)3Cl3]2– with excess  NaNO2 in CH2Cl2 and was recrystallized from CH2Cl2/Et2O 

at ambient temperature, resulting in blue-green X-ray quality crystals of [PPN]2[Cu3(µ3-O)(µ-

pz)3(NO2)3] [8] with monoclinic, P21/c space group. It consists of a nine-membered [Cu-N-N]3 

metallacycle where the Cu-atoms are held together by trans pyrazolato bridges, accommodating an 

almost planar Cu3(µ3-O) core (Figure 14). Complex [8] contains two η1-O and one η2-O,O nitrite 

ligands, with a C2 axis going through the nitrogen of the η2-NO2 ligand, Cu- and µ3-O-atoms. The 

Cu-O distances involving the η2-nitrite, 2.349(3) Å, are intermediate to those of the bonded 

(2.015(2) Å) and non-bonded (2.653(4) Å) Cu-O distances to the η1-O nitrite.  

 

 

Figure 14. Crystal structure of compound [8], hydrogen atoms and PPN+ are omitted for clarity. Color 

codes: black, C; blue, N; red, O; cyan, Cu. 
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In the infrared spectrum of compound [8], the asymmetric nitrite stretches, as(NO2), are identified 

with strong bands at 1439 cm–1 and 1377 cm–1, whereas the symmetric O-N-O stretch, sym(NO2), 

is assigned to a band at 1259 cm–1. The assignments agree with those reported for other nitrito 

complexes in the literature.55,56 15N-labeling studies of an 2-NO2 complex have revealed that the 

IR-active O-N-O bending vibration of nitrite, (NO2), occurred at 877 cm–1.56 A similar weak band 

is observed at 872 cm–1 for [8]. It is worth noting that the differences between 1- and 2- binding 

modes do not have significant manifestation in their vibrational spectrum. 

 

The asymmetric unit of compound [9] consists of one third of the Cu3-trimer, one [PPN] cation and 

one third of a distant nitrate anion. A C3-axis, perpendicular to the Cu3-plane, goes through the 3-

O, generating an equilateral Cu3-triangle, with three η1-O nitrite ligands coordinated to the Cu-

centers at a Cu-O bond length of 1.954(2) Å (Table 5). The source of the nitrate counter ion is 

presumed to be nitrite, which is known to oxidize to nitrate, even under mild conditions.57 

 

In the IR spectrum of compound [9], the asymmetric nitrite stretches occur at 1437, 1379 and 1267 

cm–1. The assignments agree with those reported for other nitrito complexes in the literature.55,56 

Similar weak bands are observed at and 877 cm–1 for [9]. 

 

Complex [10] crystallizes in the monoclinic space group P2/c. The terminal sites are occupied by 

two -ONO and one terminal chloride ligand (Figure 16). The Cu…Cu intramolecular distances 

are within the 3.263(6)-3.264(9) Å range. Table 4 lists the important bond lengths and angles for 

[8], [9], [10] and [11].  

 



34 

 

 

 

Figure 15. Crystal structure of [9], hydrogen atoms and PPN are omitted for clarity. Color codes: black, C; 

blue, N; red, O; cyan, Cu. 

 

 

 

Figure 16. Crystal structure of [10], hydrogen atoms and PPN are omitted for clarity. Color codes: black, C; 

blue, N; red, O; cyan, Cu. 
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Table 4. Selected interatomic distances (Å) and angles (º) of compound [8], [9], [10] and [11]. 

 

 [8] [9] [10] [11] 

Cu…Cu 3.248 (1)-3.261(2) 3.338(1) 3.263(6)-3.264 (9) 3.355(7)-3.403(7) 

Cu–(µ3-

O/OH) 

1.874(2)- 1.880(1) 1.954(2) 1.881(2)-1.889(4) 1.982(3)-2.005(4) 

Cu–N 1.947(2)-1.959(2) 1.942(5) 1.945(4)-1.963(3) 1.925(3)-1.942(3) 

Cu–O(NO) 2.015(2)-2.653(4) 2.156(5) 2.035(3) 2.028(4)-2.140(4) 

Cu–O–Cu 119.85(5)-

120.30(1) 

117.33(1) 119.85(1)-

120.29(2) 

114.53(2)-

117.89(2) 

Cu–Cl   2.362(4)  

 

1.5.9. Crystal structure description of (PPN)[Cu3(μ3-OH)(μ-4-Ph-pz)3(NO2)3].0.5(CH2Cl2) [11] 
 

Compound [11] crystallizes in the triclinic 𝑃1̅  space group with a whole molecule in the 

asymmetric unit. Three nitrite ligands are η1-O-coordinated to Cu-centers with Cu-OONO bondining 

distances of 2.028(4), 2.062(4) and 2.140(4) Å and non-bonded Cu…O distances of 2.488(5), 

2.475(4) and 2.548(6) Å. Of the three nitrito ligands, one is syn to the µ3-OH group while the other 

two are anti. The µ3-OH groups from adjacent Cu3-units form strong H-bonds with the bound O of 

the nitrito ligand (O(H)…O: 2.771(7) Å) (Figure 18).  
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Figure 17. Crystal structure for [11], PPN and H atoms have been omitted for clarity. Color codes: black, 

C; blue, N; red, O; cyan, Cu. 

 

 

 

Figure 18. H-bonded dimeric structure of [11]. Phenyl substitution on pyrazole rings, H atoms and PPN 

counterions are omitted for clarity. Color codes: blue, N; red, O; cyan, Cu. 
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1.5.10. Crystal structure description of (PPN)3[Cu3(μ3-O)(μ-4-Me-pz)3(1-NO2)3](NO3) [12]  

and (PPN)3[Cu3(μ3-O)(μ-4-Cl-pz)3(1-NO2)3](NO3)[13] 

 

Compounds [12] and [13] crystallize in the trigonal R3 space group, and the asymmetric unit 

consists of a third of the Cu3-trimer and one [PPN] along with a distant nitrate anion. Since nitrite 

to nitrate oxidation is known to occur even under mild conditions, it is hardly surprising that a 

nitrate is found in the minor product of the reaction. All the terminal sites in [12] and [13] are 

occupied with η1-O nitrite ions (Figure 19 and 20). All the Cu ions are tetra-coordinated, displaying 

a square-planar geometry. Table 6 lists important bond lengths and angles for [12] and [13], 

respectively. 

 

 

 

Figure 19. Crystal structure of [12], hydrogen atoms and PPN are omitted for clarity. Color codes: black, C; 

blue, N; red, O; cyan, Cu. 
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Figure 20. Crystal structure of [13], hydrogen atoms and PPN are omitted for clarity. Color codes: black, C; 

blue, N; red, O; green, Cl; cyan, Cu. 

 

Table 5. Selected bond lengths (Å) and angles (deg) for [12] and [13]. 

Bond [12] [13] 

Cu- (µ3-O) 1.960(2) 1.919(2) 

Cu-O(NO) 2.075(5) 2.164(8) 

Cu-N 1.936(6) 1.957(6) 

Cu…Cu 3.341(1) 3.306(3) 

Cu-O-Cu 116.99 (3) 119.02(3) 

 

1.5.11. Crystal structure description of [PPN][Cu3(µ3-O)(µ-pz)3(N3)2(η2-NO2)] [14]  

 

The compound [14] was prepared by treating [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3] with stoichiometric 

(1:5:5) amount of NaNO2 and NaN3. Single-crystal X-ray diffraction analysis reveals that 

compound [14] crystallizes in the monoclinic space group P21/n. There are two crystallographically 

independent Cu2+ ions (Cu1 and one-half Cu2) with a two-fold axis bisecting the molecule, 
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generating a trinuclear unit.  The azide bridges the Cu atoms in an asymmetrical end-on fashion. 

The Cu1 ion is four-coordinated with µ-O1, two nitrogens (N1, N7) from pyrazole rings and one 

nitrogen(N2) from end-on azide to form a distorted square planar. The average bond length of Cu-

N (1.909 Å) is slightly shorter than those associated with Cu2 (1.944 Å). While Cu2 coordinates 

with µ-O1, two nitrogens (N6, N6A) from pyrazole rings and two Oxygen atoms (O2, O2A) from 

η2-NO2 to form trigonal bipyramidal geometry. The average bond lengths of Cu2-Npz and Cu2-O1 

are 1.944 and 1.863 Å, respectively.  

 

Azide ions are quasi linear with the N-N-N being 178.6(2)º and exhibit unsymmetric N-N bond 

lengths, with bonds involving the donor atoms, N(2)-N(3) = 1.151(2) Å being relatively longer than 

N(3)-N(4) = 1.112(7) Å (Figure 21).  

 

 

Figure 21. Crystal structure of [14], H atoms and PPN are omitted for clarity. Color codes: black, C; blue, 

N; red, O; cyan, Cu. 
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1.6. Redox activity of [Cu3(µ3-O)]-pyrazolate complexes 

 

Cu(II)-pz complexes with Cu3(µ3-O) are redox active, as has been shown by the reversible one-

electron wave in the cyclic voltammogram. The chemical oxidation of all CuII complexes by either 

(NH4)2Ce(NO3)6 (CAN) or benzoyl peroxide provides the one-electron oxidized mixed valent (MV) 

complex, formally-CuIIICu2
II  in bulk. The analysis of the Intervalence Charge Transfer (IVCT) 

band in the NIR-region of the absorption spectra gives information regarding the extent of electron 

localization/delocalization and classification under the Robin-Day formulation. 

  

When the MV [Cu3(µ3-O)]-complex is unstable, it can be generated in situ by the addition of a base, 

as shown in Scheme 11. Compounds (PPN)[Cu3(μ3-OH) (μ-4-Ph-pz)3Cl3](CH2Cl2) [2], [PPN] [Cu3 

(µ3-OH)(µ-pz)3(N3)3] [4], [Cu3 (µ3-OH)(µ2-Cl)(µ-pz)3(py)2Cl]·py [6] are deprotonated to form the 

Cu3(µ3-O) core by adding base and counterion, the IVCT bands are recorded by UV-vis-NIR 

spectroscopy during the chemical oxidation of these copper pyrazolates complexes.  

 

 

Scheme 11. Chemical oxidation of Cu3(µ3-O)-containing complexes. 

 

1.6.1. UV-vis-NIR spectroscopy of trinuclear Cu(II)-pz complexes 
 

1.6.1.1. UV-vis-NIR spectroscopy of [Cu3(μ3-O) (μ-4-Ph-pz)3Cl3]- [2]- 

 

 Compound [2] has μ3-OH group, which is redox inert. The oxidized [Cu3(μ3-O)(μ-4-Ph-pz)3Cl3]-  

[2] - was obtained by stoichiometric addition of NaOH and (NH4)2Ce(NO3)6 (CAN) in CH2Cl2 

(Scheme 11). The UV absorption of [2] - exhibited a new weak band at 9433 cm-1 which can be 
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attributed to an IVCT transition, characteristic of mixed-valent compounds (Figure 22). All 

crystallization efforts have failed, so far, to yield X-ray quality crystals of the oxidized products. 

 

 

Figure 22. The red trace represents the spectrum of oxidized [Cu3(µ3-O)(μ-4-Ph-pz)3Cl3]- [2]-. 
 

1.6.1.2. UV-vis-NIR spectroscopy of [Cu3(µ3-O)(µ-pz)3(N3)3]- [4]- 

 

By a similar procedure to the one described in Scheme 11, the green solution of [PPN][Cu3(µ3-

OH)(µ-pz)3(N3)3] [4] turned reddish-brown upon stoichiometric addition (one equivalent) of NaOH 

and benzoyl peroxide. Repetitive UV-Vis-NIR scans were run to determine the stability of mixed-

valence complex over a period of 2 h. The reddish color disappeared gradually while the green 

color was reestablished. Chemical oxidation of the homovalent precursor of [Cu3(µ3-O)(µ-

pz)3(N3)3]2-, [4]2- by a Ce (IV) reagent produces [4]-  which is unstable, reacting readily with 

moisture or solvent. Formation of [4]-  has been demonstrated by the appearance of the IVCT band 

in the NIR region at 8630 cm-1 (Figure 23). Analysis of the band by the Hush method results in a 

parameter  = 0.52, classifying [4]-  as a Robin-Day type-III, strongly delocalized system. 
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Figure 23. In situ UV-vis-NIR spectra recorded during the oxidation of [4]2- in CH2Cl2 at room 

temperature. The black trace and red trace represent the spectra of [4]2- and the oxidized species [4]-, 

respectively.   

 

 

Figure 24.  In situ UV-vis-NIR spectra recorded during the oxidation of [Cu3(µ3-O)(µ-Cl)(µ-pz)3(py)2Cl]+ 

[6]+ in CH2Cl2 at room temperature. The black trace and red trace represent the spectra of [Cu3(µ3-O)(µ2-

Cl)(µ-pz)3(py)2Cl] [6] and the oxidized species, respectively. 
 

 

Following the procedure as shown in Scheme 11, [Cu3(µ3-OH)(µ-Cl)(µ-pz)3(py)2Cl](py) [6] was 

deprotonated by adding NaOH and TBAPF6 in 10 mL CH2Cl2 under stirring. Chemical oxidation 
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by benzoyl peroxide or CAN results in formation of the formally CuII
2CuIII-compound, 

accompanied by visible color change from dark blue to light blue with the appearance of new 

absorption band at 9510 cm–1 in the NIR (Figure 24), which is assigned to an IVCT band, 

characteristic of mixed-valent species. 

 

1.6.1.3. UV-vis-NIR of [Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)] [8]2- and [8]- 

 

Chemical oxidation by a stoichiometric amount of benzoyl peroxide in CH2Cl2 results in formation 

of the formally CuII
2CuIII-compound, [8]-, accompanied by visible color change from greenish blue 

to reddish brown with the appearance of new absorption bands at 20000 cm–1 in the visible and 

9191 cm–1 in the near-IR part of the electronic spectrum (Figure 26). The latter is assigned to an 

IVCT band, characteristic of mixed-valent species. Analysis of this band by the Hush method 

results in a parameter  = 0.63, classifying [8]- and a Robin-Day type-III, strongly delocalized 

system.24, 25 In ambient temperature solution, [8]- decomposes within minutes to a mixture 

containing an CuII trinuclear complex and nitrate anions. 

 

 

Figure 25. The color change of Chemical oxidation of Compound [8] with benzoyl peroxide. 
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Figure 26. UV-vis-NIR spectra of [8] (black) and [8]- (red). Inset: IVCT band. 

 

1.6.2. Electrochemistry 

 

Compound [8] undergoes electrochemically a reversible one-electron oxidation at E1/2 = –0.133 V 

(vs. Fc+/Fc) to yield a mixed-valence compound, [Cu3
7+] (Figure 27). We have previously described 

the solution characterization of a series of [Cu3(µ3-O)(µ-4-R-pz)3X3]z complexes and shown that 

substitution at the bridging pyrazole 4-position (R) and at the terminal ligand positions (X) 

influence the redox potential, revealing a trend that follows the order of electron 

withdrawing/releasing properties of the substituents.15i Compound [8] has the lowest oxidation 

potential (Table 6), an expected result given the position of the O-bound nitrite higher in the 

spectrochemical series.  
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Figure 27. Cyclic voltammograms of [8] in CH2Cl2 with 0.1 M Bu4NPF6 as the electrolyte. Values on the 

figure are reported vs. Fc+/Fc. Red trace is without the ferrocene standard. 

 

 

Table 6. E1/2 values of the [Cu3
6+/Cu3

7+] couple with various R and X vs. Fc/Fc+. (*only EPA values are 

given, as they have irreversible oxidations). 

 

R X E1/2 (V, vs. Fc+/Fc) Ref 

H NO2 -0.133 This work 

H Cl -0.013 27 

H CF3CO2 +0.131 27 

Cl Cl +0.142 40 

Br Cl +0.142 40 

H NCS +0.253 (Epa)* 40 

CHO Cl +0.280 40 

H py +0.400 40 

NO2 Cl +0.449 40 

H CH3CO2 +0.476 (Epa)* 40 
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1.6.3. NO release from trinuclear copper-pyrazolate complexes 
 

1.6.3.1. Detection of NO generated from (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)] [8] and 

thiophenol in varying stoichiometry 

 

A solution of (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)] in CH2Cl2 (9.24 mmol, 15 mg) was 

prepared in a small vial. This vial was placed inside a larger vial containing a solution of CoTPP 

(9.24 mmol, 6.2 mg) in 2 mL CH2Cl2 and was capped with a septum. A solution of PhSH (27.72 

mmol, 2.88 µL) in 2 mL CH2Cl2 was injected to the solution of (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-

NO2)2(η2-NO2)] via a syringe. The UV-vis spectrum of the CoTPP solution was recorded at 2 h and 

spectra changes were observed due to NO binding to CoTPP (Figure 28). The trinuclear copper 

nitrite complex is essential for NO generation.  

 

 

Figure 28. UV-Vis detection of NO(g) formation in the experiment with varying stoichiometry. CoTPP was 

equimolar to (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)] [8]. 
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1.6.3.2. Detection of NO generated from (PPN)[Cu3(µ3-OH)(µ-4-Ph-pz)3(η
1-ONO)3] [11] and 

thiophenol  

A similar procedure was followed for the detection of NO generated from (PPN)[Cu3(µ3-OH)(µ-4-

Ph-pz)3(η1-ONO)3] [11] and thiophenol in varying stoichiometry. As shown in Figure 29, The UV-

vis spectra of the resultant CoTPP solutions were monitored over a period of 2 h and spectra 

changes were observed because of NO binding to CoTPP.   

 

1.6.3.3. Detection of NO generated from (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)] [8] or 

(PPN)[Cu3(µ3-OH)(µ-4-Ph-pz)3(η1-ONO)3][11] and six equiv. acetic acid. 

 
NO was detected by UV-vis analysis of Co(TPP) when 6 equiv. acetic acid was added to [8] or [11] 

in CH2Cl2 (Figure 30).  

 

Figure 29. UV-Vis detection of NO(g) formation in the experiment with different stoichiometries. The 

CoTPP was equimolar to (PPN)[Cu3(µ3-OH)(µ-4-Ph-pz)3(η1-ONO)3] [11] 
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Figure 30. Absorption spectra in CH2Cl2 for CoTTP (red), CoTPP(NO) formed by the mixture of [8] and 

HAc (black) and CoTPP(NO) from [11] (green) and HAc. 

 

1.7. Conclusion  
 

To identify the suitable SBU for the construction of MOF, 14 new triangular Copper pyrazolate 

complexes with suitable ligands in µ3- and terminal positions have been successfully synthesized 

and characterized in this project. Various pyrazole substitutions and terminal ligands were tried, 

simple pyrazole (pzH), 4-Cl-pzH, 4-Me-pzH and 4-Ph-pzH were used for preparing trinuclear 

copper-pyrazolate complexes. 

 

By employing 4-Ph-pzH, (PPN)[Cu3(μ3-OH) (μ-4-Ph-pz)3Cl3](CH2Cl2) [2] and (PPN)[Cu3(µ3-

OH)(µ-4-Ph-pz)3Cl3]·CH3CN [3] were prepared. These two trimers differ by the interstitial solvent 

content (CH2Cl2 for [2] Vs CH3CN for [3] and intermolecular interactions. The structure of [2] is 

observed as a Cu6 unit, in which two [Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3] units are linked via double µ-Cl 

bridges, while [3] is a polymeric, 1D infinite neutral chain with CH3CN.  
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Simple pyazole was used to prepare complexes with -NO2, -N3 and py-terminal ligands. The 

complexes were obtained by simple metathesis reactions of [PPN]2[Cu3(µ3-Cl)2(µ-pz)3Cl3] and Na 

salts (NaN3 and NaNO2) or pyridine.  

 

We show here that the one-electron oxidation of the all-CuII complex [Cu3(µ3-O)(µ-pz)3(NO2)3]2–, 

[8]2-, is achieved at an even more cathodic redox potential, allowing the in the in situ spectroscopic-

characterization of the mixed-valent complex, [Cu3(µ3-O)(µ-pz)3(NO2)3]–, [8]-, the easiest 

accessible CuII
2CuIII species known to date. The structural characterization of [8]2- revealed a new 

coordination mode of the nitrite to a CuII-center. 

 

Compounds (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)][8] and (PPN)[Cu3(μ3-OH)(μ-4-Ph-pz)3 

(NO2)3].0.5 (CH2Cl2) [11] release NO almost quantitatively upon the addition of PhSH or acetic 

acid. The system has been established to be catalytic in the presence of excess nitrite. The 

complexes have been characterized by a string of spectroscopic and electrochemical techniques.  

 

Compound (PPN)[Cu3(µ3-OH)(µ-pz)3(µ1,1-N3)2(N3)][4] forms an one dimensional (1D)-chain, as 

the neighboring trinuclear Cu(II) units are connected by two µ1,1-N3 ligand.  As in the case of py-

terminal ligands studied previously, the redox-active Cu3(µ-O) core can only form in solution by 

adding excess base, by analyzing of IVCT band, classifying [4]- can be classified as a Robin-Day 

type-III, strongly delocalized system. 

 

Except 4-Ph-pz, all Cu3 complexes with 4-R substitution have been able to form [Cu3(µ3-O)] 

compounds in the solid state when the terminal ligand is Cl/Br. Compounds (PPN)[Cu3(μ3-OH)(μ-

4-Ph-pz)3Cl3](CH2Cl2) [2], (PPN)[Cu3(µ3-OH)(µ-pz)3(µ1,1-N3)2(N3) [4], [Cu3(μ3-OH) (μ2-Cl)(μ-

pz)3(py)2Cl]·py [6] were deprotonated in solution to form the Cu3(μ3-O) core by adding a base and 
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a counterion. Oxidation of these compounds was also achieved in solution; the formation of the 

oxidized compound was indicated by the formation of the IVCT bands at 9433 cm-1, 8630 cm-1, 

and 9510 cm-1 for [2], [4] and [6] respectively, during the chemical oxidation of these copper 

pyrazolate complexes either by CAN or (PhCO)2O2.  

 

These are the first examples of a polynuclear NO release system up to now. Both complexes [8] 

and [11] release NO almost quantitatively upon the addition of PhSH or acetic acid. The system 

has been established to be catalytic in the presence of excess nitrite. The complexes have been 

characterized by a string of spectroscopic and electrochemical techniques.  
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Chapter 2. Polynuclear Copper-pyrazolate complexes 

 

Multinuclear transition metal ion complexes often have interesting properties, such as magnetic, 

electrochemical, and catalytic functions. The N-donor ligands have coordination plasticity and 

large affinity for transition metals, and their employment has provided structures of various 

nuclearities and dimensionalities, which have been shown to be of interest in catalysis, bio-

inorganic chemistry and molecular magnetism. 

2.1. Hexanuclear Copper-pyrazolate complexes 

 

There have been several reports concerning multinuclear Cu(II) complexes supported by pyrazolato 

(pz_) bridging ligands. In this context, we have investigated a family of redox-active Cu6-pyrazolato 

complexes with trigonal prismatic shapes,39,58 including one with a µ6-F central ligand.59 In 

connection with our earlier work, [{Cu3(µ3-OCH3)(µ-C3H2N2Cl)3}2(µ-C3H2N2Cl)3(µ6-Cl)] [15] has 

been prepared recently; it contains an encapsulated µ6-Cl ligand at the center of the hexanuclear 

complex. 

 

2.1.1. Synthesis of [{Cu3(µ3-OCH3)(µ-C3H2N2Cl)3}2(µ-C3H2N2Cl)3(µ6-Cl)] [15] 

 
The complex was formed in an one-pot reaction when CuCl2·2H2O (0.06 mmol, 10.2 mg), 4-Cl-

pzH (0.09 mmol, 8.9 mg) and triethylamine (0.08 mmol, 11.3 ml) were stirred in 10 ml CH2Cl2 for 

24 h at ambient temperature. The green solution was transferred to a test tube after filtration. A 4 

ml 1:1 mixture of CH2Cl2 : MeOH (v/v) was layered over the CH2Cl2 layer, 1,2-di(4-pyridy-

l)ethylene (bpe) (0.01mmol, 1.9 mg) in 4 mL MeOH was added as the third layer on top of the 

lower two. Suitable crystals for X-ray diffraction were obtained one week later. Yield: 29%. 

Analysis calculated/found for C29H24Cl10Cu6N18O2: C, 25.15/25.22; H, 1.75/1.76; N, 18.22/18.17. 
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2.1.2. Results and Discussion  
 

The crystal structure of this compound (Figure 31) consists of two trinuclear [Cu3(µ3-OMe)(µ-4-

Cl-pz)3]2+ (OMe is a methoxide, 4-Cl-pz = 4-chloropyrazolato ligand) units bridged by three µ-4-

Cl-pz_ ligands; the complete molecule adopts .2. point group symmetry. The six CuII ions form a 

trigonal prismatic array and a chloride ion is located at the center of the cage, coordinating to the 

two {Cu}3 units in a µ6 mode. All six Cu(II) atoms are five-coordinate with distorted square 

pyramidal N3OCl coordination sets with the Cl atom occupying the apical position. Each Cu3 

triangle is capped by an OMe group with the O atom 0.847 (1) Å above the Cu3-plane, a somewhat 

smaller deviation from the Cu3 plane than the one found in the previously reported structure of 

[{Cu3(µ3-OMe)(µ-pz)3}2(µ-pz)3(µ6-Cl)], where µ3-bridging methoxy groups are located ca 1.0 Å 

above this plane.60 The distance between two Cu3 planes is 3.3858 (2) Å. The six Cu—O bond 

lengths range from 2.033 (2)–2.044 (2) Å, while the Cu–O–Cu angles are in the 102.70 (1)–

105.62(1) range. The Cu…Cu distances within each triangle, 3.180 (9)–3.253 (9) Å, are slightly 

shorter than those between the triangles, 3.356 (2)–3.401 (2) Å. The µ6-Cl ligand is located close 

to the center of the trigonal prism defined by the six Cu atoms and non-equidistant from the three 

pairs of CuII ions. The longest Cu—Cl distance of 2.622 (1) Å (Cu2) is longer than the sum of the 

ionic radii (2.38 Å), indicating that the two [Cu3(µ3-OMe)(µ-4-Cl-pz)3]2+ units are not templated 

by the encapsulated chloride. The other two Cu—Cl bond lengths are 2.424 (2) (Cu1) and 2.4859 

(1) Å. 

 

Differences in structural parameters between the four known {Cu6-pyrazolato} complexes with 

trigonal prismatic shape are compiled in Table 7. The inter-trimer and intratrimer Cu…Cu distances 

are shorter in the title compound than those in the [Cu6Cl] compound reported earlier with 4-Hpz 

as a ligand,60 indicating the effect of electron-withdrawing Cl-substitution of the pyrazolato ligands. 

The Cu—N distances of the pyrazolato ligands connecting the two trimers are longer compared to 
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those in {Cu6-µ6-F}59 or {Cu6-µ6-Cl}.60 However, the Cu—N distances are similar to those in the 

empty Cu6-pyrazolato cage.39 

 

 

 

Figure 31.The molecular structure of [15], showing the atom-labeling scheme. H atoms are not shown for 

clarity. Displacement ellipsoids are drawn at the 40% probability level. Non-labeled atoms are related to 

the labeled atoms by the symmetry operation (-x, y, -z). Color codes: black, C; light blue, N; red, O; green, 

Cl; dark blue, Cu. 

 

 

In the trigonal prismatic molecules, the six pyrazolato ligands of the eclipsed {Cu3-pyrazolato} 

trimers exhibit weak π–π stacking interactions, with centroid-to-centroid distances of 3.848 (6) and 

3.606 (6) Å. These distances are comparable to the ones found in the Cu6-pyrazolato complex with 

no encapsulated anion, where the pyrazolato ring centroids are 3.741 (6), 3.700 (6) and 3.680 (6) 

Å apart. While conventional hydrogen bonds are absent in the structure, there are three weak 

intermolecular C-H…Cl interactions observed in the crystal structure (Figure 32 and Table 8). 
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Individual {Cu6-µ6-Cl} molecules are stacked in rods parallel to [110] that, in turn, are arranged in 

a pseudohexagonal packing (Figure 33). 

 

Table 7. Comparison of Selected Structural Parameters (Å) in Compound [15]. 

 

 

 

{Cu6}, PPNa {Cu6Cl}b {Cu6Cl}c {Cu6F}d 

Cu…Cu 

(inter-

trimer) 

2.975(3), 2.999,  

3.028 (3) 

3.356(1)–3.401 (1) 3.621 (1), 3.675 

(1) 

3.281(2), 3.335 

(2), 3.289 (2) 

Cu…Cu  

(intra-

trimer) 

3.206(4)–3.279 

(5) 

3.180 (9)–3.253 (9) 3.209 (1), 3.233 

(1) 

3.234(2)–3.289 

(2) 

Cu…X  2.424(2), 2.4858 

(14),  

2.6221 (13) (X = Cl) 

2.604 (1), 2.623 

(2) (X = Cl) 

2.383(5)–2.605 

(5) (X = F) 

Cu-(µ3-OR) 1.883(1)–1.894 

(5) 

2.003 (2)–2.044 (2) 2.083(4), 

2.085(6) (R = 

Me) 

2.048(3)–2.096 

(5) (R = H) 

Cu—N 

(inter-

trimer) 

2.003(7)–2.056 

(6) 

2.003 (3)–2.004 (3) 1.990(5)–1.992 

(7) 

2.018(6)–2.047 

(6) 

Cu—N 

(intra-

trimer) 

1.934(7)–1.964 

(7) 

1.923 (3)–1.954 (3) 1.931(5)–1.941 

(5) 

1.942(5)–1.979 

(6) 

 

Notes: (a) ref 39; (b) This work; (c) ref 61; (d) ref 59 
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Figure 32. Crystal packing diagram of [15] viewed along [001], showing hydrogen bonds as blue dashed 

lines. 

 

 

 
 

Figure 33. Crystal packing diagram of [15] viewed along [110], highlighting the pseudo-hexagonal rod 

packing of {Cu6} molecules. 
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Table 8. Hydrogen Bond Geometry of [15] (Å, °) 

 

 

D – H…A D – H H…A D…A D–H…A 

C1–H1…Cl4i 0.93 2.75 3.586(4) 149 

C6–H6…Cl3ii 0.93 2.81 3.466(4) 129 

C15–H15A…Cl3iii 0.96 2.82 3.651(4) 146 

 

Symmetry codes: (ii) x−1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, z; (iv) −x+1/2, −y+1/2, z+1/2. 

 

2.2. Heptanuclear Copper-pyrazolate complexes  

 

2.2.1. Synthesis  
 

 

2.2.1.1. Synthesis of [{Cu3(µ3-OH)(µ-4-Ph-pz)3(4-Ph-pzH)(Cl)2}2][Cu(CH3CNHpz)2 (µ-Cl2)] 

[16] and [PPN]2 [{Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3}2{CuCl2(4-Ph-pzH)2}] [17]    

CuCl2·2H2O (0.6 mmol, 102.3mg), 4-Ph-pzH (0.9 mmol, 129.8 mg), NaOH (0.13 mmol, 52 mg), 

PPNCl (0.1 mmol, 57.4 mg) were added to 15 mL CH3CN under stirring, the reaction mixture was 

stirred overnight, a small amount of a grey solid was filtered off and the solvent volume was 

reduced to 4 mL under reduced pressure. Suitable crystals for X-ray diffraction were grown by 

slow evaporation. Yield: 25%. Minor product is [PPN]2[{Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3}2{CuCl2(4-

Ph-pzH)2}] [17]. 

 

2.2.1.2. Synthesis of [PPN]2[{Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3}2{Cu(μ-Cl)2(4-Ph-pz 

H)4}]·(CH3CN)2 [18] 

 CuCl2·2H2O (0.15 mmol, 25.6 mg), 4-Ph-pzH (0.2 mmol, 28.8 mg), NaOH (0.25 mmol, 10 mg), 

PPNCl (0.025 mmol, 14.4 mg) were added to 15 mL CH3CN under stirring, the reaction mixture 

was stirred overnight, a small amount of a grey solid was filtered off and the solvent volume was 
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reduced to 4 mL under reduced pressure. Suitable crystals for X-ray diffraction were grown by 

slow evaporation. Yield: 72%. 

 

2.2.2. Description of crystal structure  

 

2.2.2.1. Crystal structure description of [{Cu3(µ3-OH)(µ-4-Ph-pz)3(4-Ph-pzH)(Cl)2}2] 

[Cu(CH3CN Hpz)2(µ-Cl2)] [16] 

 

The Cu4 atom is coordinated by two nitrogens from pyrazoles, two nitrogens from acetone and two 

µ2-Cl atoms, forming a slightly distorted octahedron coordination geometry as a result of the John-

Teller effect. The Cu- µ-Cl distance is 2.911(2) Å, Cu1 and Cu2 atoms are in square-planar 

geometries, Cu3 are in square –pyramidal N3ClO-coordination environments. Cu···Cu distances 

within triangular units are 3.243(1)-3.442(1) Å. The Cu4 weakly interacts with a chloride atom of 

the central of Cu(CH3CNHpz)2Cl2 unit. Therefore, the coordination of the central mononuclear 

octahedral Cu(CH3CNHpz)2Cl2 unit, in which a copper atom is occupying the inversion center of 

the heptanuclear assembly joining together two trinuclear units. The coordination environment of 

Cu(4) is completed by two chloride ions, axially bond through weak Cu-Cl interactions, generating 

octahedral trans-CuN4O2 units (Figure 34). 
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Figure 34. Molecular structure of [16] showing its polymeric character in different angles. H atoms and 

PPN counterions are omitted for clarity. Color codes: black, C; blue, N; red, O; green, Cl; cyan, Cu. 

 

2.2.2.2. Crystal structure description of [PPN]2[{Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3}2{CuCl2(4-Ph-

pzH)2}] [17]   

 

The molecular structure of [17] consists of two trinuclear units of [Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3]- 

weakly “bridged” by the copper atom of a Cu(μ-Cl)2(4-Ph-pzH)2 fragment, which sits on the 

crystallographic center of symmetry (Figure 35). The copper center (Cu4) of this neutral moiety 

possess a N2Cl2 square-planar coordination sphere. Two pyrazole ligands trans-coordinated at a 

CuII-N distance of 2.007(3) Å and two chlorides trans-coordinated at a CuII-Cl distance of 2.338(2) 

Å.  The Cu3- (µ2-Cl4) distance is 2.964(2) Å, the broad range in Cu-Cl distance because of  the 

hydrogen bond [μ3-O…Cl] of 3.163(4) Å.  In the triangular unit, Cu1 and Cu2 atoms adopt square-

planar geometries with four-coordination mode, Cu3 atom exhibits square–pyramidal N2Cl2O-

coordination environments, two nitrogens, belonging to two 4-phenyl-pyrazoles, one capping μ3-O 

ligand and one terminal chloride define the equatorial plane of the square pyramid, while the 

bridging chloride atom occupies the apical position with Cu…Cl = 2.964(3) Å. 
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2.2.2.3. Crystal structure description of [PPN]2[{Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3}2{Cu(μ-Cl)2(4-

Ph-pzH)4}](CH3CN)2 [18] 

 

The crystal structure of [18] (Figure 36) is formed by repeating heptanuclear units consisting of 

two trinuclear [Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3]– and one neutral mononuclear trans-[CuCl2(4-Ph-

pzH)4] complex, the latter located on a crystallographic inversion center. In the solid state, the 

trinuclear and mononuclear components are connected via long Cu–Cl interaction, as follows: The 

two trinuclear anions, containing 4-coordinate, distorted square planar Cu-centers and a pyramidal 

µ3-OH (the O-atom is 0.478(1) Å away from the Cu3-plane), have their Cu3-planes approximately 

parallel to each other and are connected, via two long Cu(1)-Cl(2) contacts of 3.021(2) Å, into a 

{Cu3}2 assembly; the µ-Cl atoms occupy one equatorial and one axial position with a Cu(1)-Cl(2)-

Cu(2) angle of 101.05(4)º. Then, the 6-coordinate mononuclear centers act as bridges between 

{Cu3}2 units, with a Cl…Cu distance of 2.744(2) Å, thus generating 1D chains running parallel to 

the crystallographic a-axis. The PPN counter ions and the interstitial MeCN solvent molecules 

occupy positions of no chemical significance separating the polymeric chain. The heptanuclear 

species are further connected by intermolecular by two long µ3-OH···Cl(1) H-bonds (O···Cl 

3.145(2) Å). The trans-[CuCl2(4-Ph-pzH)4] complex shows a pronounced Jahn-Teller effect with 

long Cu-Cl bonds of 2.792(1) Å, but shorter than the corresponding bonds of 2.817– 2.839 Å 

reported for other trans-[CuCl2(pz*H)4] complexes (pz*H = pzH, 3-tBu-pzH and 3-Ph-pzH).62–65 

Considering all the long Cu–Cl contacts, the heptanuclear repeat unit of complex [18] contains one 

4-coordinate, four 5-coordinate and one 6-coordinate Cu-centers. Table 10 summarizes selected 

interatomic distances and angles for [18]. 
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Figure 35. Crystal structure of [17]. Substitutions at 4 position on the pyrazole ring, PPN counterion and H 

atoms on [17] are omitted for clarity. 

 

 

 

Figure 36. Molecular structure of [18] showing its polymeric character. Color coding: Cu, blue; O, red; N, 

light blue, C, gray and Cl, green. Hydrogen atoms are omitted for clarity. 
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Table 9. Selected Interatomic distances and angles for [18]. 
 

 

 Distances, Å  Angles, ° 

Cu···Cu (inter-trimer) 3.244(1), 3.417(1), 3.451(1) Cu-O-Cu 108.4(1)–118.3(1) 

Cu–N (trimer) 1.948(3) –1.957(3) Cu1-Cl1-Cu2 101.05(4) 

Cu–Cl (trimer) 2.251(2) – 2.307(1) Cu1-Cl4-Cu4 141.7(4) 

Cu4–Cl4 2.791(2)   

Cu1-Cl4 2.744(2)   

Cu-(µ3-OH) 1.993(2) -  2.013(2)   

 

2.3. Conclusion 

 

In this part, Cu6-pyrazolato with trigonal prismatic shapes, including an an encapsulated µ6-Cl 

central ligand was successfully synthesized. We have prepared two Cu7-systems consisting of three 

weakly-interacting through Cl-bridging atoms -- two trinuclear Cu3-pyrazolato metallacycles and 

a mononuclear Cu-pyrazole unit. The molecular structure of [17] consists of two trinuclear units of 

[Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3]- weakly “bridged” by the copper atom of a Cu(μ-Cl)2(4-Ph-pzH)2 

fragment, which sits on the crystallographic center of symmetry. While the crystal structure of [18] 

is formed by repeating heptanuclear units consisting of two trinuclear [Cu3(μ3-OH)(μ-4-Ph-

pz)3Cl3]– and one neutral mononuclear trans-[CuCl2(4-Ph-pzH)4] complex, the latter located on a 

crystallographic inversion center.  
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Chapter 3.  Metal-Organic Frameworks based on Copper-Pyrazolato Complexes 

3.1. Introduction 
 

3.1.1. Definition of MOFs  

 

 
 Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs), are 

compounds consisting of metal ions or metal clusters coordinated to predefined polydentate organic 

linkers to form three-dimensional extended structures. Metal organic frameworks have attracted 

significant attention in recent years not only because of their intriguing structural architectures and 

topologies, but also for their novel properties.66,67 The adjustable pore size, high void volume, large 

surface area, ultrahigh porosity,  and tunable functionality make MOFs useful materials for CO2 

capture,68,69 gas separation and strorage,70 catalysis,9 magnetism,71 ion exchange,72 and drug 

delivery applications.73 

 

The structure, function and porosity of a MOF can be modified by using a suitable geometry of the 

subunits of MOF, called Secondary Building Units (SBU), that are either organic or metal-

containing. Reticular synthesis, as it was first described by Yaghi et al., is the use of predesigned 

combination of SBUs and linkers to obtain desired framework structures.66 For example, using a 

tetrahedral SBU and a linear linker can be used to prepare diamondoid (dia) framework structures.  

These clusters used as SBUs can be of any shape such as triangles, squares, tetrahedral or octahedral 

(Figure 37), which can be linked to form periodic structures.74 Secondary Building Units are 

essential to the design of directionality for the construction of MOFs and to the achievement of 

robust frameworks.  
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Figure 37. Examples of SBUs from carboxylate MOFs. C, black, O, red: N, green. Modified from Yaghi et 

al.1 

 

With the availability of various linkers and SBUs, controlling various parameters one can target a 

specific MOF with desired functionality. Parameters that can influence property and function are 

described below.  

 

3.1.2.  Important parameters for rational design of MOFs 

 

Variation of process (T, P, time) and compositional parameters (pH, solvent, molar ratio of 

reactants, ligands substituents, concentration, counterions), listed in Scheme 12, allows some 

control over the synthesis of MOFs.  
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Scheme 12. Various parameters controlling the formation of MOFs. 

 

 3.1.2.1. Effect of pH 

 

The pH of a reaction mixture has a remarkable influence in the assembly of supramolecular 

architectures. It not only affects its charge, but also the ligand coordination ability and the metal-

to-ligand ratio. The influence of pH a MOF synthesis has been investigated by many research 

groups.75–77 Wu and co-workers proposed that high pH leads to higher dimensionality in their 

systems. Hydrothermal reaction of copper(II), benzoic acid and 4’4-bipyrdine (bpy) at different pH 

conditions (Figure 38) yielded the 0D  [Cu(H2O)(PhCOO)2(bpy)2](PhCOOH)2·(bpy) complex  at 

pH = 5.5, the 1D chain {[Cu3(H2O)4 (PhCOO)6 (bpy)4.5].(bpy)(H2O)5} at pH = 7, and the 2D layer 

structure [Cu3(OH)2(H2O)2 (PhCOO)4(bpy)2] at pH = 8. The role of pH in determining the above 

structures is attributed to its control on the extent of deprotonation of the organic acid.78 
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Figure 38. Systematic illustration of the assemble tendency of three Cu(II)-compounds under different pH 

values. Modified from zZheng et al.14 

 

3.1.2.2. Effect of temperature  

 

Temperature is also key parameter for the preparation of MOFs. Hydrothermal synthesis of MOFs 

is an effective approach in comparison with conventional and non-conventional synthetic methods. 

Thermodynamic reasoning argues against the formation of polymeric products at increasing 

temperature. However, the experimental evidence from several hydrothermal syntheses is that high 

temperature favors the construction of high dimensional MOFs.79,80 This is because the reactants 

dissolve better under hydrothermal conditions (a closed system at temperature above 100 ºC and 

pressures above 1 atm).   

 

3.1.2.3. Effect of solvent 

 

Reaction solvents can regulate the formation of different coordination environments. Some solvents 

may become incorporated in the as-synthesized MOF, either as space-fillers in the lattice voids,  or 

as coordinated entities to the metal ions.81 As shown in Figure 39, Banerjee et al. synthesized two 

structurally different fluorinated MOFs, [Cu2(hfbba)2(3-mepy)2] (DMF)2(3-mepy)] (F-MOF-4) and 
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[Cu2(hfbba)2(3-mepy)2] (Cu-F-MOF-4B) hfbba = 4, 4’-(hexafluoroisopropylidine)bis(benzoic 

acid), 3-mepy = (3-mepy-3-methyl pyridine) using DMF and DEF solvents, respectively, under the 

same reaction conditions,  underlining that different solvents caused divergent MOF architecture: 

F-MOF-4 exhibits formation non-interdigitated square shaped pores and Cu-F-MOF-4B shows the 

formation of square-shaped pores with interdigitated layered structure. Depending their structural 

variety, gas adsorption is also different in these two MOFs.82 

 

 

Figure 39. Formation of two isomeric frameworks. Figure modified from Pachfale et al.18 

 

3.1.2.4. Coordination geometry of metal ions 

 

Metal ions act as nodes in MOF structures and therefore play a central role in the synthesis of MOFs. 

Typical metal coordination geometries are shown in Scheme 13. 
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Scheme 13. Typical coordination geometries of transitional metal ions. 

 

3.1.3.  Porosity in MOFs  

 

One of the most interesting properties of MOFs is their permanent porosity. MOFs can have high 

surface area and large pore volumes. The surface areas of permanently porous MOFs range from 

100 m2/g to greater than 7000 m2/g and pore sizes range from a microporous (< 2 nm) to a 

mesoporous (2 – 50 nm) scale. The pore size and shape of MOFs can be easily modified by 

changing the nature of the organic linker or the connectivity of the inorganic moiety. As a result of  

the extraordinary property, MOFs can be used in adsorption (both in gas and liquid phases). It is 

essential to understand the applicability of porous MOF composites through adsorption phenomena. 

 

A common strategy to increase porosity in MOFs consists of targeting a framework topology and 

elongating the linkers to generate additional pore space. This approach has shown suceess in a 

number of MOF systems. The expansion of organic linkers provides the possibility of preparing 

MOFs with new functionalities. The classical way to incorporate functional groups into MOF is 

the modification of the organic ligands with specific substituents before synthesizing the MOF 

(direct synthesis). Yaghi’s research group has illustrated strategies to incorporate diverse 
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functionalities into MOFs. The first example of MOFs was the IRMOF series (IR stands for 

isoreticular, meaning it is a series of MOFs with the same topology), where the MOFs were 

modified with the incorporation of various organic functional groups, such as -NH2, -Br, -C2H4, -

C4H4, -OC3H7, -OC5H11, and their pore size was expanded with long molecular struts like biphenyl, 

pyrene and terphenyl without changing the topology.83  As shown in Figure 40, a family of stable 

porous materials incorporating octaconnected linkers (ranging from ranging from 19 to 30 Å in 

dimension) and Cu(II) cation has been reported. The pores of these MOFs can be altered 

systematically by elongation of the ligands allowing a strategy of selective pore extension along 

one dimension. These materials show remarkable gas adsorption properties with high working 

capacities for CH4 (0.24 g g−1 , 163 cm3 cm−3 at 298 K, 5–65 bar) for the most porous system.84  

 

 

Figure 40. Chemical structures for the octacarboxylate linkers H8L0 to H8L5 used for the synthesis of 

MFM-180 to MFM-185, representation of the cage assembly in MFM-180, MFM-181, MFM-182, MFM-

183, MFM-184 (* predicted structure) and MFM-185, and corresponding BET surface areas. Figure 

reproduced from Moreau et al.84 
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3.1.4. Separation of CO2 from gas mixtures 

 

 

 

 

Figure 41. This graph shows carbon dioxide concentrations in the atmosphere as measured at the Mauna 

Loa observatory in Hawaii. Figure reproduced from Tom Yulsman.85 

 

In recent year, carbon dioxide (CO2) emission has become a major concern as the amount of the 

emitted gas significantly increase annually (Figure 41).85 Consequently, this phenomenon 

contributes to global warming. Many options for CO2 separation has been proposed. The main types 

of technology for CO2 capture from flue gases are the following: absorption, adsorption, membrane 

separation and cryogenic distillation, etc (Figure 42). 

 

The adsorptive separation process involves both adsorption and desorption. Physical adsorption is 

a process in which molecules (adsorbates) are bound on the surface of a highly porous solid 

(adsorbent). The desorption is the reverse process of adsorption, during which a bound molecule is 

released from the adsorbent. The operation of physical absorption is based on Henry’s law. Carbon 

dioxide is absorbed under a high pressure and a low temperature, and desorbed at reduced pressure 

and increase temperature. Once captured, the CO2 is then released by changing the adsorption 
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conditions.  Pressure Swing Adsorption (PSA) is one of the most common regeneration techniques. 

Desorption is performed by reducing the total pressure in the adsorption column, since the 

adsorption capacity decreases with pressure. In the Temperature Swing Adsorption (TSA) process, 

the regeneration is carried out by heating the adsorbent material, reducing its adsorption capacity. 

The problems associated with the methods are in the thermal energy requirement (for TSA) and 

bed pressurization (for PSA). In the TSA technique has low thermal conductivity of the adsorbent 

bed, which causes difficulty in desorbing impurities and regenerating the adsorbent. TSA presents 

drawbacks, as heating and cooling the adsorbent are time consuming tasks (long time of desorption 

cycles).   

 

Figure 42. The technology option for CO2 separation. Redrawn from Olajire et al.21 

 

Departing from traditional temperature- and pressure -triggers to control adsorption and desorption, 

a process that can increase the temperature of the adsorbent very fast is Electric Swing Adsorption, 

where a low voltage electric current is employed to heat the adsorbent by the direct Joule effect. 

ESA is an attractive area and has been tested on MOFs or zeolites. A MOF that has either ligand- 

or metal-based redox activity can undergo various redox processes. In this case, which can 

generation of different redox states via ex situ oxidation and reduction of the materials. A further 
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issue relates to how redox activity might be exploited for industrial-scale gas separations processes 

(e.g., CO2 separation from flue gas). 

 

3.1.5. Classification of adsorption isotherms 

 

When a gas comes into contact with a solid surface, molecules of the gas will adsorb to the surface 

in quantities that are a function of their partial pressure in a bulk.  The measurement of the amount 

of gas adsorbed over a range of partial pressures at a single temperature results in a graph known 

as an adsorption isotherm. The IUPAC classification of adsorption isotherms is illustrated in Figure 

43. The six types of isotherm are characteristic of adsorbents that are microporous (type I), 

nonporous or microporous (type II, III and VI) or mesoporous (types IV and V). These isotherms 

can have different shapes depending on the type of adsorbent, the type of adsorbate and 

intermolecular interaction between the gas and the surface. Type I isotherms characterize 

microporous adsorbents having relatively small external surfaces. Type II and III describe 

adsorption on microporous adsorbents with strong and weak adsorbate-adsorbent interactions, 

respectively. Type IV and V represent adsorption isotherms with hysteresis, and characterize 

mesoporous adsorbents, which arises from capillary condensation in mesopores. And type VI has 

steps, the isotherm represents stepwise multilayer adsorption on a uniform non-porous surface.   

 

The adsorption hysteresis in Figure 44 (IV and V) are classified and it is widely accepted that there 

is a correlation between the shape of the hysteresis loop and the texture (e.g., pore size distribution, 

pore geometry, and connectivity) of a mesoporous material. Type H1 is often associated with 

porous materials consisting of well-defined cylindrical-like pore channels or agglomerates of 

approximately uniform spheres. Porous adsorbents, such as inorganic oxide gels and porous glasses, 

tend to give H2 kind of hysteresis and their pore size and shape are not well-defined. Type H3 loops 
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result from aggregates of plate-like particles giving rise to slit-shaped pores. Type H4 is also 

associated with narrow slit-like pores, but the Type I character is indicative of micro-porosity. The 

dashed curves in the hysteresis loops reflect low-pressure hysteresis, which may be associated with 

the change in volume of the adsorbent.  

 

 

Figure 43. The IUPAC classification of adsorption isotherms showing both the adsorption and desorption 

pathways. Note the hysteresis in types IV and V. Figure reproduced from Alothman et al.22 

 

 

Figure 44. Four types of hysteresis loops identified by IUPAC. Figure reproduced from Althoman et al.22 
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3.1.6. CO2 gas adsorption in MOFs 

 

Several methods have been investigated for the disposal of carbon dioxide, such as carbon capture 

and sequestration(CCS) technologies.86,87 Along with those traditional methods, the use of MOFs 

for the removal of CO2 by adsorption is considered to be the most promising future cost-effective 

and efficient technology for the selective CO2 removal.88 In other words, MOFs have been 

considered as an ideal platform for the development of next-generation CO2 capture materials. An 

appropriate CO2 capture adsorbent should satisfy (i) low- cost raw materials, (ii) fast kinetics, (iii) 

low heat capacity, (iv) high CO2 adsorption capacity and high CO2 selectivity. Metal organic 

frameworks have attracted significant interest in the recent years due to their remarkable high 

surface area, controllable pore structures and tunable pore surface properties, which can easily be 

tuned by changing either the metallic clusters or the organic ligands.  

 

Considerable techniques have been developed to enhance the capacity and selectivity for CO2 

adsorption. To make a MOF suitable for selective CO2, the first requirement is to have pores with 

dimensions comparable to the kinetic diameter of CO2. Because CO2 has a quadruple moment, 

MOFs functionalized with -NH2,89 NO2,90  -CONH-,91 -OH-,92 -CN-,93 -SO3H,94 or pyridine 95 show 

enhanced CO2 adsorption. The grafting of functional groups with a high affinity for CO2 onto the 

surfaces of porous materials through ligand modification, or coordination to unsaturated metal 

centers have been employed as strategies to enhance the capacity and selectivity for CO2 adsorption. 

For example, because of  the presence of pyridine nitrogen, the CO2 uptake of bio-MOF-11 is 264 

mg g-1 at 1 bar and 273 K,89 compared to the lower adsorption capacities of traditional materials, 

such as Norbit RB2 (110 mg g-1) and zeolite 13-X (207 mg g-1), at similar conditions.96 

 

Second, designing frameworks containing open metal sites to enhance the capacity of CO2 

adsorption. Carbon dioxide adsorption has been investigated in large-pore sorbents [Cr3F- 
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(H2O)2O(bdc)]3 (MIL-100) and [Cr3F(H2O)2O(bdc)]3 (MIL-101), which exhibit higher capacities 

for CO2 at relatively high pressure at 300 K, due to the presence of coordinatively unsaturated Cr3+ 

sites acting as CO2 traps (i.e., O=C=O…Cr3+).97 The influence of the metal center on the capacity 

and selectivity of CO2 adsorption has been studied in the microporous metal-organic framework 

[Ni2(dhtp)] (H4dhtp = 2,5-dihydroxyterephthalic acid). As shown in Figure 45, this framework is 

characterized by a honeycomb structure with large micropores of 11-12 Å diameter, and a high 

concentration of open metal sites. These sites play a major role in the adsorption of CO2. It shows 

distinct end-on CO2 coordination to coordinatively unsaturated nickel sites giving rise to high CO2 

adsorption capacity at sub-atmospheric pressures and ambient temperatures (Figure 46). Infrared 

studies confirmed an end-on coordination mode for CO2, with the increased ionic character of 

Mg2+–O interaction.98 

 

 

Figure 45. Crystal structure of [Ni2(dhtp)] with adsorbed CO2 at the metal atom. Packing showing the end-

on coordination of the CO2 molecules. Figure reproduced from Dietzel et al.35 
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Figure 46. Crystal structure of [Ni2(dhtp)] with adsorbed CO2 at the metal atom. Local environment of the 

adsorbed CO2 molecule. Figure reproduced from Dietzel et al.35 

 

3.1.7. Statement of problem 

 

MOFs have been considered to be the most promising future cost-effective and efficient technology 

for the selective CO2 adsorption.99,100  Several methods have been investigated for the disposal of 

carbon dioxide, such as carbon capture and sequestration (CCS) technologies.87 A variety of these 

candidate materials with permanent porosity have been successfully synthesized. However, their 

regeneration cost is still high, due to the use of temperature swing adsorption (TSA), 

pressure/vacuum cycle or some combination of these processes. Departing from traditional 

temperature- and pressure-triggered regeneration techniques on MOFs, and designing reversible 

redox- or photo-active MOFs that will vary their structural and porous features is challenging. On 

the other hand, it will reduce the cost and energy required for regeneration by applying voltage or 

UV irradiation.  
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Recently, substantial  progress has also been made in the field of porous MOFs by using excellent 

pyridyl N,N’-donor spacer ligands.101 The exo-bidentate pyridyl derivates, 1,2-di(4-pyridy 

l)ethylene (bpe) and 4,4’-azopyridine (abp) possess several peculiar characteristics when employed 

in the construction of porous frameworks: (i) abp and bpe can be used as photoswitchable tailor-

made spacers, good candidates for coordination polymers with photo-dimerization reactions.102 (ii) 

Abp containing the -N=N- (azo) functional group play an important role in selective adsorption, 

due to the ability of the polar azo group to act as Lewis basic sites to interact with CO2 moleclules 

effectively.90,103 (iii) Introduction of  stimuli-responsive functional groups in a pyridyl N,N’-donor 

linker can also play a crucial role in altering the porosity of the resulting MOFs.104 (iv) As a 

conjugated bipyridine ligand, bpe can act as an electron acceptor through alkylation.105 (v) 4’4-

azopyrdine was found to be reducible in situ to a flexible ligand 1,2-bis(4-pyridyl)hydrazine.106,107 

In this project, we will concentrate on two synthetic goals: the introduction of MOF components 

that will allow the reversible photochemical or electrochemical modification of structure and 

sorption properties of MOFs. 

 

3.1.8. Redox and photochemical modification on MOFs 

 

3.1.8.1. Photo-active modification of CO2 adsorption on MOFs 

 

Metal organic frameworks (MOFs) can be designed, synthesized and functionalized to include 

photo-switchable linkers, such as azobenzene, diarylethene, spyropyran, etc. Typical chromophores 

as functional groups can undergo photochemical reactions (cis-trans isomerization or cycloaddition) 

upon UV irradiation or heating.108 The rationale of this strategy is that MOFs containing photo-

responsive components will be able to change the pore shape or size by a photo-chemical reaction. 

A MOF designated as PCN-123 (PCN stands for porous coordination network) has been 

synthesized from 2-(phenyldiazenyl)terephthalate and Zn(NO3)2·6H2O in (N,N-diethylformamide 



77 

 

(DEF) via a solvothermal reaction. The functional group (the acid form of ligand) undergoes trans- 

to-cis conformational change by irradiation with visible light, as shown in Figure 47. Carbon 

dioxide adsorption has been measured to study the effect of the trans-cis isomerization of the ligand. 

Upon UV irradiation, the total uptake of CO2 decreased as consequence of the change of 

conformation of azobenzene groups inside the pores of the MOF (Figure 49). This demonstrates  

that the selectivity and regeneration efficiency of the sorbent can be modulated by an external  

stimulus.109 

 

 

Figure 47. Reversible trans-cis isomerization of the ligand of PCN-123. Redrawn from Park et al.39 

     

 

Figure 48. Schematic illustration showing suggested CO2 uptake in showing in MOF-5, PCN-123 trans, and 

PCN-123 cis. Figure reproduced from Park et al.39 
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3.1.8.2. Redox-active modification of CO2 adsorption on MOF 

 

Metal organic frameworks (MOFs)  are also able to alter their framework charge by redox reactions. 

Redox modification of a MOF will result in modulation of its affinity for sorbate molecules and 

change its overall sorption capacity. The enhancement in selective gas adsorption can also be 

achieved by chemical reduction of MOFs by incorporating a flexible redox-active ligand or metal. 

A new microporous framework, [Zn(NDC)(DPMBI)] (Figure 50), (where NDC = 2,7-naphthalene 

dicarboxylate and DPMBI = N, N’-di-(4-pyridylmethyl)-1,2,4,5-(benzenetetracarboxydiimide) 

reacts with a single-electron reductant, sodium naphthalenide (NaNp), to form monoradical anion 

of the pyromellitic diimide ligand in the framework [Zn(NDC)(DPMB-I)]·Nax (where x represents 

the Na+/Zn2+ molar ratio of 0.109, 0.233, 0.367 and 0.378 from ICP-AES, Table 10). As shown in 

Figure 51, the CO2 uptake in the reduced materials relative to the neutral framework is enhanced 

up to a Na+/Zn2+ molar ratio of 0.367; however, beyond this concentration the surface area and CO2 

uptake decreases because of  pore obstruction.110 

Figure 49. CO2 adsorption isotherms of PCN-123, reversible conformational change at 295 K. Figure reproduced from 

Park et al.39 
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Figure 50. The extended crystal structure of a single Zn(NDC)(DPMBI) framework viewed down the b axis 

where hydrogen atoms. Figure reproduced from leong et al.40 

 

 

 

Figure 51. CO2 and N2 adsorption isotherms for Zn(NDC)(DPMBI) and its reduced species at 298 K. 

Figure reproduced from leong et al.40 
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Table 10. BET surface areas measured at 77 K and CO2 adsorption data at 298 K and 1 atm for 

[Zn(NDC)(DPMBI)] and its reduced species. 

 

Molar ratio Na+/Zn2+ BET surface area (m2g-1) CO2 uptake (mmol g-1) 

0.378 345.2±0.1 1.42 

0.367 653±3 2.74 

0.233 539.9±0.6 2.37 

0.109 546.2±0.2 1.97 

- 608.2±0.7 2.23 

 

3.2. Synthesis and characterization of network of trimers containing triangular copper 

pyrazolate SBUs. 

3.2.1. Synthesis  
 

3.2.1.1 Synthesis of [Cu6(μ3-OMe)2(μ4-Cl)(μ-4-Ph-pz)8Cl]2[bpe]{Cu6-bpe-Cu6} [19] 

 

CuCl2·2H2O (0.12 mmol, 20.5 mg), 4-Ph-pzH (0.12 mmol, 17.3 mg), NaOH (0.16 mmol, 6.4 mg) 

were stirred in 5mL CH2Cl2 for 2 hours at ambient temperature. The green solution was transferred 

to a test tube after filtration. A 4 mL 1:1 mixture of CH2Cl2: MeOH was layered over the CH2Cl2 

layer, and a third layer of 1,2-di(4-pyridyl)ethylene (bpe) (0.02 mmol, 3.8 mg) in 5mL of MeOH 

was layered on top. Green crystals suitable for X-ray diffraction appeared gradually on the tube 

wall over two weeks.  

 

3.2.1.2. Synthesis of [Cu6(μ3-OMe)2(μ4-Cl)(μ-4-Ph-pz)8Cl]2[abp]{Cu6-abp-Cu6} [20] 

 

A procedure similar to that used for [19] was followed but using piperidine (0.16 mmol, 16 µL) 

and abp instead of NaOH and abp, respectively.  
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3.2.2. Results and discussion  

 

Complex [19] and [20] crystalize in triclinic p-1 space group. Both compounds are first examples 

of two trigonal prismatic Cu6-units connected by a linker. The trigonal hexanuclear centers 

themselves are unique in a sense that they have two “clipping” pyrazolato ligands. The X-ray crystal 

structure of [19] consists of two [Cu6(μ3-OMe)2(μ4-Cl)(μ-4-Ph-pz)8Cl] units bridged by a bpe 

ligand (Figure 52). Each trinuclear unit accommodates a μ3-OMe as the capping ligand and it sits 

0.845(3)-0.725(3) Å above the Cu3-plane, the two µ3-O atoms are 5.828(5) Å apart. The inter-trimer 

Cu···Cu distances are 3.554(9), 3.555(9) and 5.845(1) Å, while the intra-trimer Cu···Cu are in the 

range of 3.191(7) to 3.384(8) Å. The Cu-Nbpe and Cu-Npz bond lengths are 2.032(4), 1.915(4)-

1.991(4) Å respectively. In each trinuclear unit, two copper atoms are in a square pyramidal N3OCl 

coordination environment if taking into account the interactions with Cl at 2.591(1)-2.680(2) Å, 

while the third copper is in N2ClO distorted square planar coordination sphere (Figure 53).  

 

 

Figure 52. Crystal structure of [{Cu6(µ3-OMe)2(µ4-Cl)(µ-4-Ph-pz)8Cl}2(bpe)] [19]. H atoms were omitted 

for clarity. 
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Figure 53. Crystal structure of [{Cu6(µ3-OMe)2(µ4-Cl)(µ-4-Ph-pz)8Cl}2(bpe)] [19] from different angles. 

 

An isostructural dimer [Cu6(μ3-OMe)2(μ4-Cl)(μ-4-Ph-pz)8Cl]2[abp]{Cu6-abp-Cu6} [20] was 

prepared using abp as the linker instead of bpe in a similar procedure. In these two complexes, we 

will focus on studying their photochemical reactivity and spectroscopic properties to facilitate 

analyzing similar features in their polymeric, 3D-MOF analogues. 

 

3.3. Synthesis and characterization of dimers-of-trimers of copper-pyrazolate complexes  

 

The simple dimer-of-trimer complex is synthesized as model of the photochemical reaction with 

UV light, 4,4’-azopyridine (abp) is used as photo-responsive linker that can undergo photo-

chemical reactions to switch their conformation upon UV irradiation.  

 

3.3.1. Synthesis of [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [21] 

 

4,4-azobis(pyridine) (0.017 mmol, 3.1 mg) in 4mL CH2Cl2 was placed in the test tube, then a 4 mL 

1:1 mixture of CH2Cl2 and acetone was layering as the blank solvent. Then Cu(ClO4)2·6H2O (0.1 

mmol, 37.1 mg), 4-Cl-pzH (0.1 mmol, 10.3 mg), NaOH (0.17 mmol, 6.7 mg), py (0.07 mmol, 5.4 

µL) were stirred in 4 mL acetone for 24 h. The bright blue solution after filtration was added as 
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third layer on top of the lower two after filtration. Blue crystals were gradually obtained on the 

walls of the tube in the one week. 

 

3.3.2. Crystal structure description of [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [21] 

 

Complex [21] crystalizes in orthorhombic Fddd space group. As shown in Figure 54, it is a dimer–

of– trimers containing two [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2+ units bridged by 4,4-azobis(pyridine) 

(abp), each triangular unit has two pyridines at terminal sites. Two triflate anion (for charge balance 

per Cu3 unit) are coordinated on the opposite external faces of trimers. The distance of capping µ3-

O from the plane defined by the Cu3 system [0.46(5) Å] as well as Cu-O1 bod distances [Cu1-O1 

1.989(5) Å, Cu2-O1 2.000(5) Å, Cu3-O11.989(5) Å] fall in the range normally found for analogous 

compounds. Similar compound [{Cu3(μ3-OH)(μ-pz)3 (py)2}2 (μ-4,4’-bpy)](CF3SO3)4 have been 

reported in the literature.16 

 

 
 

 
Figure 54. Structure of [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [21], H atoms  and ClO4 ions are 

omitted for clarity. 
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3.3.3. Preliminary results of photo-chemical reaction of dimer–of –trimers.  

 

 

 
Figure 55.  UV irradiation of [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [21]  at 254 nm in CH3CN. 

 

 

 

Figure 56. UV irradiation of [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [21]  at 365 nm in CH3CN. 
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To identify how the MOFs respond to UV-irradiation, model compounds were first chosen, which 

was then followed by the irradiation of MOFs. The model compound was irradiated at two 

wavelengths (254 and 365 nm) for 10 minutes and the change in the absorption spectra indicates a 

structural change (Figure 55 and 56). We are attempting to structurally characterize irradiation 

products.  

3.4.  Synthesis of 1D chain based on the trinuclear [Cu3(µ3-OH)(µ-pz)3]- moiety  

 

3.4.1. Experiment 

 

3.4.1.1. Synthesis of {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl(tmpy)(CH3CN)]}n [22] and {[Cu3(µ3-

OH)(µ-Cl)(µ-pz)3Cl]2(tmpy)2](CH3CN)2}n [23] 

 

 [PPN]2[Cu3(µ3-O)(µ-pz)3Cl3] (0.013 mmol, 20 mg) and 4,4′-Trimethylenedipyridine (tmpy, 

0.006 mmol, 1.2 mg) were added to 10 mL CH3CN under stirring. The reaction mixture was 

filtered after 24 h and slow evaporation of the filtrate in air yielded well-formed light blue 

stable crystals of [22], suitable for a single crystal X-ray diffraction (SC-XRD) 

determination. After removal of the crystals of [22], the mother liquor was allowed to further 

concentrate by evaporation, finally yielding a second crop of dark blue crystals of [23]. The 

crystals of [23] quickly turned into powder upon loss of solvent by standing in the air. The 

SC-XRD determination of [23] was carried out at low temperature (200 K) with a crystal 

covered in mineral oil. Yield: 60%. Elemental analysis calcd (%) for C28H32Cl2Cu3N10O2: 

C, 38.10; H, 3.78; N, 16.17. Found: C, 37.19; H, 3.81; N, 15.75. 

 

 

 



86 

 

3.4.1.2. Synthesis of {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl(tmpy)](CH3CN)}n [24] 

 

Complex [24] was synthesized in a similar way as described for [22], by changing the molar 

ratio to 2:1.5, instead of 2:1. Yield: 40%. Elemental analysis calcd (%) for C44H48Cl4 

Cu6N16O2: C, 39.11; H, 3.58; N, 16.60. Found: C, 38.74; H, 3.67; N, 16.56. 

 

3.4.2. Results and discussion 

 

Synthesis of complexes [22]– [24]: Compound [22] and [23] were obtained with molar ratio 

of tmpy to [PPN]2[Cu3(µ3-O)(µ-pz)3Cl3] of 1:2 in CH3CN. When the molar ratio was 

changed to 1.5:2 compound [24] was synthesized under identical conditions. All three 

compounds were crystallized from the mother liquor and have the same chemical formula 

but different 3D structures.   

 

The organic ligands (linkers) can exhibit different conformations to produce diverse 

structures.111,112 Among the N-donor bridging ligands, 4,4’-trimethylenedipyridine (tmpy) has been 

used as a flexible N-donor ligand for the construction of several coordination polymers with various 

network topologies and structure motifs.113,114 The flexible nature of the -(CH2)3- spacer allows it 

to rotate freely and adopt TT, TG, GG, or GG’ conformations (T = trans and G = gauche) with 

respect to the relative orientations of CH2 groups, that display quite different N-to-N distances 

(Scheme 14).115 Obviously, this kind of conformational freedom allows supramolecular isomerism, 

including different supramolecular arrays,116 interpenetrated117 and helical118 structures.  

 



87 

 

 

Scheme 14.  Representation of the conformational isomers of the tmpy ligand. 

 

3.4.2.1 crystal structure description of {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl(tmpy)(CH3CN)]}n [22] 

 

Compound [22] crystallizes in the orthorhombic Pnma space group. The asymmetric unit 

consists of one-half formula unit, the other half generated by a mirror plane bisecting the 

trinuclear motif perpendicularly to the Cu3-plane. As shown in Figure 57, Cu2 ion connect 

two Cu1 ions (Cu1, Cu1i) through µ-OH bridge to form the trinuclear Cu3 cluster in [22]. 

The distance between µ3-OH and Cu2+ [Cu1-O1 1.975(4), Cu2-O1 1.966(6) Å] are in the 

range commonly found in [Cu3(μ3-OH)] compounds reported in the literature.14,22,49,119 The 

capping oxygen is 0.53(6) Å out of [Cu3(pz)3] plane, a value comparable to those found in 

the analogous derivatives. Three Cu ions form an isoscleles triangle [Cu1…Cu2 3.387 (1), 

Cu1…Cu1i   3.094 (1) Å. In each trinuclear unit, the two symmetry equivalent Cu ions 

exhibit a square pyramidal coordination geometry with µ3-OH, pyrazolate nitrogens [Cu1-

N1 1.962(5), Cu1-N4 1.978(5) Å], and tmpy nitrogen [Cu1-N3 2.013(5) Å] in the equatorial 

positions, while the coordinated µ-Cl [Cu1-Cl1 2.635(2) Å] occupies the axial sites. Cu2 

adopts distorted square planar coordination geometry with µ3-OH, two nitrogens from 

pyrazolate ligands [Cu2-N2 1.954(6), Cu2-N2i 1.954(6) Å]. This Cu2 atom bears a Cl ligand 
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[Cu2-Cl2 2.267(3) Å] end-capping the polymer and preventing further polymerization to an 

additional dimension.  

 

Compound [22] is a 1D chain based on trinuclear Cu3 clusters running along the 

crystallographic a axis bridged by tmpy ligands (Figure 58). The tmpy ligand in the TT 

conformation presents an N…N distance of 9.520 Å with Cu…Cu separation of 12.682 Å 

and Cu-tmpy-Cu angle is 119.42°. The tmpy spacers link adjacent trinuclear [Cu3(µ3-

OH)(µ-Cl)(µ-pz)3Cl] SBUs generating a zigzag, parallel, 1D coordination polymer, which 

are shown in Figure 58. On dimensional parallel chains of [22] do not interact with each 

other (Figure 59). Two similar structures of {[Cu3(μ3-OH)(μ-pz)3(py)(μ-4,4’-bpy)] (CF3- 

SO3)2 ·0.5H2O}n
42 and [Cu3(μ3-OMe)(μ-pz)3(Me(CH2)4COO)2(μ-4,4’-bpy)] have been 

reported by  employing 4’4-bipyridine as organic linker instead of  tmpy ligand. Other 

studies of coordination polymers constructed by the interaction of metal cations with the 

flexible tmpy have been reported.120 Among these previously known coordination polymers, 

zigzag chains similar to those that have been found in [Ag(bpp)](ClO4), [Ag(bpp)](PF6)121 

and  [Cu2(maa)4(tmpy)] (Hmaa = 2-methylacrylic acid).122 In the former two polymers the 

tmpy ligands display a TT conformation and have large N-to-N separations of 9.57 and 9.70 

Å, respectively. The third polymer is the only one to have the tmpy ligand in TG 

conformation with N-to-N distance of 8.979 Å. 
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Figure 57. Coordination environment of CuII in complex [22] with partial atom labeling. H atoms 

have been omitted for clarity. Color codes: black, C; blue, N; red, O; green, Cl; cyan, Cu. 
 

 

Figure 58. The zigzag {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl(tmp)]}n chain in complex [22]. Color codes: black, C; 

blue, N; red, O; green, Cl; cyan, Cu. 

 

 

 

Figure 59. Side view of stacking of layers in [22], hydrogen atoms are omitted for clarity. Color codes: 

black, C; blue, N; red, O; green, Cl; cyan, Cu. 
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3.4.2.2 Crystal structure description of {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl]2(tmpy)2](CH3CN)2}n 

[23] 

 

Compound [23] crystallizes in the monoclinic space group P21/n, where the asymmetric unit 

consists of trinuclear unit [Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl], one tmpy ligand and two 

acetonitrile molecules. In each trinuclear triangular [Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl] 

fragments, the distance of capping µ3-O1 from the plane defined by the Cu3 centre is 0.63(3) 

Å,  slightly more pyramidal than compound [22] as well as Cu-O bond distances [Cu1-O1 

1.985(3), Cu2-O1 2.005(3), Cu3-O1 2.029(3) Å] fall in the range normally found for 

analogous compounds.49,56–58 These are considerably longer than [22]. Copper distances 

vary between 3.191(9) and 3.378(1) Å (Cu1-Cu2 3.378(1), Cu2-Cu3 3.191(9), Cu1-Cu3 

3.320(1) Å). The Cu1 adopts a square planar coordination geometry determined besides µ-

Cl1and µ3-O1, by N1 and N6 pyrazolate nitrogens [Cu1-Cl1 2.273(15), Cu1-N11.958(4), 

Cu1-N6 1.936(4) Å]. The Cu2 coordinates with µ3-O, two nitrogen atoms from pyrazolate 

rings (N2, N3), and one nitrogen atom N8 from tmp ligand [Cu2-N2 1.957(4), Cu2-N3 

1.955(4) Cu2-N8 2.017(5) Å], the weak Cu2…Cl1 bond (2.894 (2) Å) is at axial site, which 

make the coordination geometry around Cu2 close to a distorted square-pyramid. The 

coordination environment of Cu3 is similar to Cu2. The weak Cu3…Cl2 (2.577(1) Å) bond 

is shorter than the Cl1 atom associated with Cu2.  

 

As shown in Figure 60, compound [23] self-assembles forming hexanuclear cluster 

generated by two trinuclear moieties doubly bridged by Cl atoms, [Cu1-Cl1 2.273(2) Å, 

Cu2-Cl1 2.894(2) Å]. The crystal structure determination evidences that two Cu3 planes of 

[23] are parallel to each other. This hexanuclear arrangement is very similar to the one found 

in the [{Cu3(µ3-OH)(µ-pz)3(Cl)(Hpz)3}2(µ-Cl)2]·H2O in which  [Cu3(µ3-OH)(µ-pz)3Cl 
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(Hpz)2]+ units are connected to each other through two symmetric chloride bridges [Cu-Cl 

2.709(5) Å].123 All the flexible tmpy ligands in [23] adopt a symmetrical TT conformation 

with average N…N separation of 9.487(6) Å and the corresponding distances between the 

neighboring two Cu atoms bonded to the same tmpy is 12.577Å, which also conforms to 

the requirements of this conformation. The Cu-tmpy-Cu angle is 121.88° which is larger 

than in [22]. 

 

 

 

Figure 60. Arbitrary view of the crystal packing of [23] showing the hexanclear SBUs constructed by weak 

Cu…Cl interactions. Hydrogen atoms are not shown for clarity. 

 

 

 

 

Figure 61. The 2D framework constructed by hexanuclear secondary building blocks of [23], H 

atoms and solvent molecules are omitted for clarity. 
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Finally, crystal packing diagrams show that the adjacent wave-like Cu3-tmpy 1D chain 

extends into a 2D framework via weak Cu-Cl bond. The asymmetric µ-Cl bridge gives rise 

to a Cu…Cu separation distance of 3.970 (3) Å [Cu2-Cl1 2.894(2), Cu1-Cl1 2.273(2) Å, 

Cu1-Cl1-Cu2 99.69°]. These hexanuclear clusters act as 4-connecting nodes to construct 

2D framework, which is shown in Figure 61. 

 

3.4.2.3 Crystal structure description of {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl(tmpy)](CH3CN)}n 

 

Compound [24] crystallizes in the monoclinic C2/c space group and features a 2-fold 

interpenetrating 2D framework. It has a similar asymmetric unit as that described in [23], 

except that there is one acetonitrile molecule instead of two in [23]. The Cu1 is coordinated 

by two pyrazolate nitrogens aotms [Cu1-N1 1.959(2), Cu1-N6 1.950(2) Å], one nitrogen 

atom pertaining to the tmpy linker [Cu1-N8 2.023(2) Å], capping ligand µ3-OH occupying 

the equatorial plane [Cu1-O1 2.014(2) Å], Cl1 and Cl2 weakly coordinated to Cu1 with the 

bond length of 2.861 and 2.876 Å form as distorted octahedral geometry. The Cu2 a 

distorted square planar coordination sphere. Cu2 is coordinated by µ-Cl1 [2.278(8) Å], µ3-

O1 [Cu2-O1 1.981(2) Å], pyrazolate nitrogens N2 and N3 [Cu2-N2 1.941(2), Cu2-N3 

1.929(2) Å].  The Cu3 shows a distorted square pyramidal coordination geometry with Cl2 

atom in axial position [Cu3-Cl2 2.569(8) Å] and µ3-OH, pyrazolate N4 and N5 and the tmp 

nitrogen N7 lying in the square plane [Cu3-N4, 1.967(2), Cu3-N5 1.962(2), Cu3-N7 2.012 

(2) Å]. Only in compound [24], all the tmpy ligands in TG124 conformation present a N-to-

N distance of 9.083 Å. 

 

The supramolecular assembly of [24] is also very similar to that found in [23]. The SBU of 

[24] can be better described as a hexanuclear complex formed by two trinuclear moieties 
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joined through two monodentate asymmetrically bridging Cl ions (Figure 62). In 

comparison with compound [23], The µ-Cl bridges give rise to a shorter Cu…Cu separation 

distance of 3.833 (1) Å [ Cu1-Cl1 2.861 (6) Å, Cu2-Cl1 2.278(8) Å, Cu1-Cl1-Cu2 95.79°].  

Each hexanuclear Cu6 cluster is linked to four further Cu6 clusters through four tmby ligands 

to form 2D double-interpenetrated structure (Figure 63). Small channels, running along the 

a axis, are occupied by disordered acetonitrile molecules, (solvent accessible voids 

constitute up to 2.4% of cell volume, larger than in compound [23] (0.3%)). Weak C-H…π 

interactions are found between the carbon atom of acetonitrile and centroid of pyrazolate 

ring. The distance in the edge-to-face π-π stacking is 3.611(2) Å, as shown in Table 11. 

 

 

Figure 62. View of the 2D coordination network of [24]. All hydrogen atoms are omitted for clarity. 

Table 11. X-H…Cg interactions (Distances and Angles) found in compound [24]. 

 

X-H…Cg D (H…Cg) D (X…Cg) X-H…Cg 

C(24)-H(24B)…Cg(8) 2.72 Å 3.61(2) Å 151° 

O(1)-H(1)…Cg(6) 2.59 Å 3.426(2) Å 140 
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Figure 63. Two identical interpenetrating 2D undulating sheets of [24] shown in blue and red color. All 

hydrogen atoms are omitted for clarity. 

 

Table 12. The conformation of the tmpy linker in complexes [22]-[24]. 

 

No. Formula  Structure  Conformation of    

the tmpy linker  

N-to-

N/Å 

[22] {[Cu3(µ3-OH)(µ-Cl)(µpz)3Cl(tmpy) 

(CH3CN)]}n 

 1D Zigzag chain TT 9.520 

[23] {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl]2 

(tmpy)2](CH3CN)2}n 

2D TT 9.488 

[24] {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl 

(tmpy)](CH3CN)}n   

2D 

Interpenetrated  

TG 9.083 

 

 

3.4.3. Investigation the flexibility of Cu-MOFs under high pressure 

 

While structural, electronic, spectroscopic and thermodynamic properties of coordination polymers 

(CPs) and MOFs are studied rather routinely, their mechanical properties, such as resistance to high 

pressure and temperature are seldomly studied.125 The structural flexibility and versatility of CPs 

make them ideal candidates to study the effects of external forces such as pressure.126, 127 These 

materials exhibit a variety of behaviors under applied high pressure. The most commonly observed 

response in MOFs (e.g., zeolitic imidazolate frameworks, ZIFs) is pressure-induced 

amorphization.128 For example, Kitagawa et al. have studied the effect of pressure on proton 

conductivity and discovered that conductivity decreases 1000-fold upon 3-7 GPa.129  Haines, J. et 

al., studied the phase transition of siliceous zeolite TON from the Cmc21 to a Pbn21 structure near 
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0.6 GPA. Some CPs demonstrated unique mechanical effect known as negative linear 

compressibility (NLC), which has potential applications, such as sensor systems in high pressure 

environments. Cheeetham et al. have reported a 3D hybrid zinc formate framework with a high 

degree of mechanical anisotropy and NLC along its c-axis.130  Suslick et al. have reported the 

mechanochemical bond breaking accompanied amorphization under high pressure using EXAFS 

and IR spectroscopy.131  

 

In the present study, the flexibility of a 1D chain Cu-pyrazolate have been investigated under high 

pressure. The material is elastic up to 3.0 GPa and is amorphized irreversibly at 4.2 GPa, as 

indicated by variable pressure PXRD (Figure 64). 

 

 

Figure 64. 2 vs pressure for {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl(tmpy)(CH3CN)]}n [22]. 
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Figure 65. High pressure powder X-ray diffraction for {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl (tmpy)(CH3CN)]}n 

[22]. 
 

3.5. Synthesis of 2D coordination polymers based on trinuclear copper pyrazolate complexes 

 

3.5.1. Experiment  

 

3.5.1.1. Synthesis of {[Cu3(µ3-OH)(µ-4-Ph-pz)3 (abp)1.5][(CF3SO3)2] }n [25]       

A 5 mL solution of 4,4-azobis(pyridine) (0.1 mmol, 18.4 mg) dissolved in CH2Cl2 was put on the 

test tube, then 4 mL CH2Cl2/CH3CN (1:1, V/V) as blank solvent were layered on the top. The 

reaction of Cu(CF3SO3)2 (0.1 mmol, 36.2 mg), 4-Ph-pzH (0.1 mmol, 14.4 mg) with NaOH (0.4 

mmol, 16 mg) in 8 mL CH3CN solvent lead to a green mixture after stirring 12h and filtration, the 

final mixture were successively layered on the top of blank solvent carefully. Crystals were 

obtained after several days at room temperature. These crystals of [25] in a 57% after filtration, 

washed with CH2Cl2 and CH3CN, ether and dried in air. Anal. Calcd/Foud for C44H33Cu3F6N12O7S2 

(%): C, 42.98/42.87; H, 2.95/3.06; N, 13.67/13.66.  
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3.5.1.2. Synthesis of {[Cu3(µ3-OH)(µ-4-Ph-pz)3(CH3CN)(abp)1.5][(µ-4-Ph-pz)(µ-Cl)Cu(py) 

(abp)0.5](CF3SO3)2}n [26] 

A 4mL of abp (0.01 mmol, 1.8 g) in the CH2Cl2 was placed in the test tube. 1:1 mixture of CH2Cl2: 

CH3CN was layered over the CH2Cl2 layer. Cu(CF3SO3)2 (0.06 mmol, 21.7 mg), 4-Ph-pzH (0.06 

mmol, 8.7 mg), NaOH (0.18 mmol, 7.2 mg) and pyridine (0.04 mmol, 3.2 µL) were stirred in 4 mL 

CH3CN at room temperature for an hour and then after filtration, the solution was layered on top.  

 

3.5.1.3. Synthesis of {Cu6(µ3-OH)(µ-pz)7(µ-Cl)Cl2(bpe)2}n [27] 

 CuCl2·2H2O (0.12 mmol, 20.4 mg), PzH (0.12 mmol, 8.4 mg), NaOH (0.24 mmol, 9.6 mg) and 

PPNCl (0.08 mmol, 47.4 mg) were stirred in 10 mL CH2Cl2 for 6h at ambient temperature. The 

green solution was transferred to a test tube after filtration. A 4 mL 1:1 mixture of CH2Cl2: CH3CN 

was layered over the CH2Cl2 layer, bpe (0.12 mmol, 22.6 mg) in 4 mL CH3CN was added as the 

third layer on top of the lower two. Suitable crystals for X-ray diffraction were obtained one month 

later. Yield: 29%. 

3.5.2. Result and discussion 

 

3.5.2.1 Two dimensional (2D) sheet based on trinuclear Copper pyrazolate clusters {[Cu3(µ3-

OH)(µ-4-Ph-pz)3 (abp)1.5][(CF3SO3)2 ]}n [25]  

Complex [25] crystallize in the triclinic space group P1̅, and contains a trinuclear Cu3 cluster as an 

SBU, as shown in Figure 66. The asymmetric unit consists of [Cu3(µ3-OH)(µ-4-Ph-pz)3(4,4-

abp)1.5]2+ and two triflate anions providing charge balance. The central µ3-OH capping ligand shows 

a 0.469 (2) Å out-of-plane displacement above the mean plane of the [Cu(4-Ph-pz)]3 core. Two 

triflate anions per Cu3 unit are positioned one above and one below the Cu3 plane. A distinct feature 

of the SBU in [25] is the two coordination environments around the three Cu atoms: Two copper 
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atoms of [Cu3(µ3-OH)(µ-4-Ph-pz)3]2+ unit adopt square-pyramidal geometry with N3O2 

coordination environments, if the long Cu…O interactions of 2.483(1) - 2.666(1) Å are taken into 

account. The third one possesses a square-planar geometry with (N3O) coordination environment. 

This tricopper cluster [Cu3(µ3-OH)(µ-4-Ph-pz)3]2- SBU acts as a three-connected node (Figure 67), 

while 4,4-bis(pyridine) ligands provide the bridging among the SBUs to form a two dimensional 

sheet. Extended structure analyses revealed a novel two-dimensional network supported by 

intermolecular hydrogen bonds, in addition to the π–π stacking interactions (Figure 68). 

 

 

 

Figure 66. Asymmetric unit of compound [25], hydrogen atoms and triflate anions are omitted for clarity. 

Color code: black, C; blue, N; red, O; cyan, Cu. 
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Figure 67. One net of [25] showing the SBU acting as 3-connecting node. 

 

 

 
 

Figure 68. Side view of the 2D structure in [25]. 

 

 

3.5.2.1.1. Redox activity of [25]  

 

A 2D material, {[Cu3(µ3-OH)(µ-4-Ph-pz)3(4,4-abp)1.5][(CF3SO3)2]}n [25], was studied with regard 

to its redox activity, as follows: A thin film of [25] was deposited and used in lieu of a cathode in 

Li-battery, which was then cycled between -0.1 and +0.9 V, showing full reversibility (Figure 69).  
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Figure 69. Galvanostatic charge/discharge cycling of [25] at current density of 0.1 A g-1. 

 

3.5.2.2. 2D sheet based on tetranuclear Cu4 clusters {[Cu3(µ3-OH)(µ-4-Ph-pz)3 (CH3CN) 

(abp)1.5][(µ-4-Ph-pz)(µ-Cl)Cu(py)(abp)0.5](CF3SO3)2}n [26] 

 

Single-crystal X-ray diffraction analysis shows that compound [26] is 2D coordination polymer 

and crystallizes in the triclinic space group P1̅. Four crystallographically independent Cu2+ ions are 

bridged by four deprotonated 4-Ph-pz ligands and µ3-OH to form a tetranuclear Cu4 cluster. The 

asymmetric unit contains four Cu(II) ions, the local coordination geometry around Cu(II) ions is 

depicted in Figure 70, showing that all copper atoms are five-coordinate with square-pyramidal 

geometries. The Cu1 is coordinated by three nitrogen atoms from three 4-phenyl pyrazoles, the 

bridging µ3-OH oxygen and one µ-Cl atom. The weak Cu1-Cl bond (2.771(4) Å) is at axial site, 

which make the coordination geometry aroud Cu1 close to a distorted square-pyramid. The Cu3 

atom is coordinated to two nitrogens from two 4-phenyl-pyrazoles, one nitrogen of the abp linker, 

and the bridging µ3-OH oxygen, the axial site is occupied by a triflate oxygen with weak Cu3…O 

bond (2.780 (4) Å). The average bond lengths of Cu3-O and Cu3-Npz- are 2.011 and 1.967 Å, 

slightly longer than these of Cu2-O and Cu2-Npz- (2.009 and 1.951 Å). Compared with Cu3, Cu2 
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coordinated to acetone, instead of oxygen from triflate anion. The Cu4 is coordinated to one 

pyridine nitrogen atom, one µ-Cl atom, one abp nitrogen atom, and one pyrazole nitrogen atom. 

The distances of Cu1…Cu2, Cu1…Cu3, Cu2…Cu3, Cu1…Cu4 are 3.290(6), 3.274(9), 3.375(0) 

and 3.642(6) Å, respectively. The tetranuclear Cu4 clusters are connected by four abp linkers to 

form 2D sheet (Figure 72). 

 

 

 

Figure 70. The coordination environment of tetranuclear Cu4 cluster in [26] with partial atom labeling 

scheme. Uncoordinated triflate anions and hydrogen atoms are omitted for clarity. Color code: black, C; 

blue, N; red, O; yellow, F; green, Cl; orange, S; cyan, Cu. 
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Figure 71. The SBU of compound [26] acts as 4-connected node. 

 

 

 

Figure 72. Packing diagram of compound [26] exhibits a two-dimensional sheet. 
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3.5.2.3. 2D structure based on hexanuclear Cu6 clusters {Cu6(µ3-OH)(µ-pz)7(µ-Cl)Cl2(bpe)2}n 

[27] 

Compound [27] crystallizes in the orthorhombic Cmca space group with [Cu3(µ3-OH)(µ-

pz)3.5Cl2(bpe)] in the asymmetric unit, as shown in Figure 73. Two Cu(II) atoms are five-

coordinated by three nitrogens of three pz, one Cl atom and hydroxyl oxygen. The third copper 

atom of the trinuclear unit adopts a square planar geometry. The Cu-O bonds have distances in the 

range of 1.987(3)-2.024(4) Å, the Cu-O-Cu bond angles are in the range of 107.30(9)-114.21(1)º.  

The SBU (Figure 74) of the molecular structure can be better described as a hexanuclear unit 

formed by two trinuclear triangular Cu3(µ3-OH)(µ-pz)3 moieties bridged by Cl atom. The Cu-Cl 

bond lengths are 2.694(2) Å (Cu3-Cl1) and 2.569(1) Å (Cu1-Cl2). The SBU acts as 6-connected 

node bridged by four linkers and two Cl atoms to construct the MOF (Figure 76). Two linkers 

between two Cu6 SBU are perpendicular each other instead of parallel to each other (Figure 75). 

 

 

Figure 73. The asymmetric unit of [27].  
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Figure 74. The hexanuclear copper second building unit (SBU) in [27]. Color code: black, C; blue, N; red, 

O; green, Cl; cyan, Cu. 
 

 

 
 

 

 

Figure 75. The 2D constructed by hexanuclear secondary building blocks of [27] along a axis. 



105 

 

 

3.6. Synthesis of 3D MOFs based on Cu3 SBU 

 

We have succeeded in the synthesis of a series of 1D, 2D, 3D-MOFs based on [Cu3]-SBU by 

replacing terminal monodentate ligands, such as py with bridging bidentate ones such as 4,4-bipy, 

4,4-azo- bispyridine (abp) and 1,2-di(4-pyridyl)ethylene (bpe).16,17 Herein as a part of our ongoing 

investigation synthesizing MOFs with nitrogen donor ligands, 4-Cl-pzH, 4,4-azobispyridine and 

1,2-di(4-pyridyl) ethylene were used to synthesize coordination polymer with a triangular Cu3(µ3-

OH)-SBU. Three copper(II) complexes, namely, {[Cu3(µ3-OH)(µ-4-Cl-pz)3(bpe)3] [CF3SO3]2}n 

[FIU-1], {[Cu3(µ3-OH) (µ-4-Cl-pz)3 (abp)2][CF3SO3]2}n [FIU-2] and {[Cu3(µ3-OH)(µ-4-Cl-

pz)3(abp)2.5][CF3SO3]2}n [FIU-3] were synthesized and characterized by X-ray single crystal 

diffraction analysis. The structure was further identified by elemental analysis and IR, the phase 

purity was confirmed by Powder X-ray Diffraction (PXRD), and thermal stability was analyzed by 

thermogravimetric analyses (TGA). The permanent porosity and CH4, CO2, N2 uptake properties 

of FIU-1, FIU-2, FIU-3 were analyzed by gas adsorption studies. 

 

Figure 76. View of 2D framework constructed by two weak Cu…Cl bonds in [27] along b axis. 
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3.6.1. Experimental section  

 

3.6.1.1. Synthesis of {[Cu3(µ3-OH)(µ-4-Cl-pz)3 (bpe)3] [CF3SO3]2}n  [FIU-1] 

A 5 mL solution of 1,2-di(4-pyridyl)ethylene (bpe) in CH2Cl2 was placed in test tube. A 4 mL 1:1 

mixture of CH2Cl2: CH3CN was layered over the CH2Cl2 layer, Cu(CF3SO3)2 (0.1 mmol, 36.2 mg), 

4-Cl-pzH (0.1 mmol, 10.3 mg) and NaOH (0.2 mmol, 8 mg) in 5 mL of CH3CN was stirred at 

ambient temperature until the solution turned the teal, then transferred to the test tube after filtration 

and layered on top. The cyan-tetragonal prism crystals were formed on the walls of the test tube at 

the interface of the layers two days later. Yield ~ 51%. Phase purity was confirmed by comparing 

the PXRD patterns of as-synthesized sample and a simulated one from the single crystal X-ray data. 

Elem. Anal. Calcd/Foud for C47H43Cu3F6S2Cl3N12O9 (%): C, 40.52/40.54; H, 2.97/3.06; N, 

12.07/12.04. IR: 3048w, 1610s, 1557w, 1506w, 1431m, 1277w, 1222s,1161s, 998s, 1023s, 970s, 

828s,636s, 636s.  

 

3.6.1.2. Synthesis of {[Cu3(µ3-OH)(µ-4-Cl-pz)3(abp)2][CF3SO3]2}n [FIU-2] 

Compound MOF-2 was synthesized following the same procedure as that of MOF-1 using 4,4’-

azopyridine (0.1 mmol, 18.8 mg) in the place of 1,2-di(4-pyridyl)ethylene. Brown crystal of FIU-

2 were isolated in 45% yield. Elem. Anal. calcd, found for FIU-2 (%）C, 30.50/ 29.26; H, 2.00/ 

2.00; N,15.57/15.70. 

 

3.6.1.3. Synthesis of {[Cu3(µ3-OH)(µ-4-Cl-pz)3(abp)2.5][CF3SO3]2}n [FIU-3] 

The complex was synthesized by the same method used for preparation of FIU-2. The molar ratio 

is 6:6:24:6 instead of 6:6:12:6 of MOF-2.  
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3.6.2. Results and Discussion 

 

3.6.2.1. Crystal structure description of {[Cu3(µ3-OH)(µ-4-Cl-pz)3 (bpe)3][CF3SO3]2}n [FIU-1] 

Compound FIU-1 crystallizes in the monoclinic space group, C2/c The asymmetric unit consists 

of [Cu3(µ3-OH)(µ-4-Cl-pz)3(bpe)3][CF3SO3]2 , the characteristic triangular trinuclear core was  

formed when the μ3-OH group unsymmetrically bridged three copper atoms with Cu−OH distances 

of 1.996(4), 1.994(4), and 1.980(4)Å. The hydroxyl O-atom shows a 0.410(4) Å out-of-plane 

displacement above the mean plane of the [Cu(pz)]3 core, while the Cu-Npz bond distances are in 

the range of 1.953(6)-1.977(7) Å. All those values are in the ranges normally found in analogous 

compounds.30-43 The Cu-Cu intramolecular distances are 3.350(4), 3.384(3), 3.346(3) Å. All copper 

atoms are in square-pyramidal N3O2/N4O-coordination environment. There are two triflate 

counterions per Cu3 unit, one of them weakly coordinated with Cu atom through O atom (Figure 

77). The CuO distances are 2.601(2), 2.735(3) Å. The second triflate anion is crystallographically 

disordered; this anion are removed from structure refinement using the SQUEEZE routine.  

 

The compound self-assembles forming a hexanuclear cluster (Cu6 core) as SBU generated by two 

trinuclear [Cu3(µ3-OH)(µ-4-Cl-pz)3]2-  moieties, triply  bridged by three bpe organic linkers through 

N atoms (Figure 78). These hexanuclear clusters act as 6-connecting nodes to construct the 3D 

framework, as shown in Figure 79. This structure consists of 3-fold interpenetrated nets (Figure 

81). Pettinari, et al. have demonstrated the usefulness of a hexanuclear Cu(II) -pyrazolate moiety 

as an SBU for generating 3D polymeric network in a recent study.44 The structure of FIU-1 is 

porous with 7237.24 Å3 of solvent accessible void per unit cell (unit cell volume: 16015.33 Å3) 

representing 45.2% of the unit cell volume. This MOF has interstitial solvent molecules that were 

removed using the SQUEEZE protocol available with PLATON. The solvent content of FIU-1 was 

determined from a combination TGA and elemental analysis. 
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Figure 77. Asymmetric unit of FIU-1, and coordination environment of  the Cu(II) ions in FIU-1. Color 

code: black, C; blue, N; red, O; yellow, F; green, Cl; orange, S; cyan, Cu. 
 

 

Figure 78. Hexanuclear cluster (SBU) of FIU-1. Color code: black, C; blue, N; red, O; yellow, F; green, Cl; 

orange, S; cyan, Cu. 
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Figure 79. SBU acts a 6-connecting code in FIU-1. Color code: black, C; blue, N; red, O; yellow, F; green, 

Cl; orange, S; cyan, Cu. 

 
 

 

Figure 80. One of the three nets of FIU-1. 
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Figure 81. 3-fold interpenetrating 3D architecture of FIU-1, viewed along the crystallographic c-axis. Each 

color represent one net. 

 

3.6.2.2. Crystal structure description of {[Cu3(µ3-OH)(µ-4-Cl-pz)3(abp)2][CF3SO3]2}n [FIU-2] 

Compound FIU-2 crystallizes in the monoclinic crystal system with the P21/c space group. The 

asymmetric unit [Cu3(µ3-OH)(µ-4-Cl-pz)3(abp)2]2+ can be viewed as an SBU generating the 

polymeric network of FIU-2 (Figure 82). Actually, the double positive charge of each trinuclear 

cluster is neutralized by two triflate anions. In each trinuclear fragment, the Cu3N6 ring is almost 

planar, the non-bonding Cu…Cu distances , the µ3-OH-Cu bond distances as well as the distances 

between the capping oxygen and plane defined by Cu3 ions (ca. 0.534(4)Å, 0.527(4), 0.530(4), 

respectively) are in the ranges normally found in this kind of compounds.30-43 Two Cu(II) ions adopt 

distorted square pyramidal N4O/N3O2 coordination environments with µ3-OH, two nitrogen atoms 

from two pyrazole ligands, and two N atoms from linkers (or one N atom from linker, one O atom 

from triflate anion). The third Cu(II) ion is in an elongated octahedral geometry (Figure 83). The 

triangular [Cu3(µ3-OH)] hydroxo-clusters can serve as self-associating building units. Each 

triangular subunit is connected to four surrounding linkers through N from 4,4-azobis(pyridine), all 
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the [Cu3(µ3-OH)(µ-4-Cl-pz)3]2- clusters act as 4-fold-connected node (Figure 85). As shown in 

Figure 84, 3-fold interpenetrating MOF-1 (86) also show the hexagonal channel.  

 

Figure 82. The asymmetric unit of compound FIU-2, H atoms and trifilates anions are omitted for clarity. 

Color code: black, C; blue, N; red, O; green, Cl; cyan, Cu. 

  

 

Figure 83. Coordination environment around the Cu(II) ions in the compound FIU-2. Color code: black, C; 

blue, N; red, O; yellow, F; green, Cl; orange, S; cyan, Cu. 
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Figure 84. One of the nets showing hexagonal channels in compound FIU-2. 

 

 

Figure 85. Four-fold connecting node of compound FIU-2. 
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Figure 86.  Schematic view of the threefold-interpenetrating net of compound FIU-2. 

 

 

Figure 87. One of nets highlighting (in blue) the chair configuration of compound FIU-2. 
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3.6.2.3. Crystal structure description of {[Cu3(µ3-OH)(µ-4-Cl-pz)3(abp)2.5][CF3SO3]2}n [FIU-

3] 

Compound FIU-3 crystallizes in triclinic space group P 1̅  with three Cu3(µ3-OH)(µ-4-Cl-

pz)3(abp)2.5 repeating units, The capping μ3-OH group are located 0.465(0) Å, 0.423(2) Å, 0.512(1) 

Å above the Cu3 plane. Copper atoms exhibit five and four coordination with N4O (N3O2) and N3O 

donor set, and adopt square pyramidal and distorted square planar geometries, respectively. The 

CuCu distances within the trinuclear units vary between 3.293(4) Å and 3.422(3) Å, similar to 

those of FIU-2, 3.330(4)-3.348(2) Å. The crystal structure is characterized by a polymeric 3D 

architecture with 42.5% solvent–accessible void (4743.79 Å3).  

 

In compound FIU-3, each trinuclear SBU further links five neighboring SBUs through abp spacers 

in three dimensions to generate 3-fold interpenetration framework with large hexagonal channels 

(Figure 89 and 90). In compound FIU-2, each SBU links four neighboring SBUs through the same 

linkers (Figure 85).  
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Figure 88. Asymmetric unit of   compound FIU-3.  Triflates and hydrogen atoms are omitted for clarity. 

 

 

Figure 89. One of the net in three-fold interpenetrated of FIU-3, showing the hexagonal channels. 
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Figure 90. Three interpenetrated nets in compound FIU-3, each color depicting an individual net. 

3.6.3. Preliminary results of photo-chemical reaction of FIU-1 solution precursor.  

 

 

Figure 91. UV irradiation of FIU-1 at 365 nm in DMSO. 

 



117 

 

Compound FIU-1 was irradiated at 365 nm for 1 h in DMSO solution, the absorption spectra 

recorded before and after irradiation indicate a structural change (Figure 91). The structural 

characterization of the irradiation product(s) is currently in progress.  

 

3.6.4. Thermal Stability of FIU-1  

 

To examine the thermal stabilities of the complex FIU-1, thermogravimetric (TG) analyses were 

carried out (Figure 92). TGA data revealed a weight loss of 3% from the room temperature to 

100 °C for FIU-1, corresponding to the loss of two interstitial water molecules, in agreement with 

elemental analysis.  

 

Figure 92. TGA diagram of FIU-1 (blue trace) and its first derivative (red trace). 

3.6.5. Gas Adsorption Studies of  complexes FIU-1, FIU-2 and FIU-3 

 

On the basis of TGA analysis, activation at 423 K was performed to evacuate guest molecules from 

the material prior to adsorption measurement; the framework of compound FIU-1 remains intact 

under this treatment. Gas adsorption experiments were conducted at 298 K to evaluate its 
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permanent porosity. Gas sorption studies performed on the material revealed a small uptake of N2, 

CH4, and a comparatively larger uptake of CO2 at 298 K, which is likely due to the different kinetic 

diameter for the three gases (CO2, 3.3 Å; N2, 3.64 Å; CH4, 3.8 Å).  

 

 

Figure 93. Pure component equilibrium adsorption/desorption isotherm of FIU-1 at 298K. 

            

 

Figure 94. CH4/N2 sorption isotherms for FIU-1. 
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The gas adsorption isotherms of compound FIU-1 in the 0-7 atm range are depicted in Figure 93. 

Prior to adsorption, the materials were degassed at temperature as high as 423K. Figure 93 shows 

the result for the CO2, CH4 and N2 equilibrium adsorption-desorption at 298 K. This MOF is 

selective for CO2 over CH4 or N2; there is little adsorption of CH4 or N2 up to 7 atm. The adsorption 

capacity of CO2 increased at increasing pressure up to 6.5 atm. The gas adsorption profile exhibit 

type III adsorption isotherms, indicating weak interaction between adsorbate and adsorbent. The 

desorption trace is different from adsorption, leading to hysteretic adsorption /desorption profile of 

the isotherm. 0.361 mmol/g of CO2 (16.7% of total CO2 adsorbed) remain sorbed, even after the 

pressure returns to 0.01 atm. 

 

Figure 95 . CH4/CO2/N2 sorption isotherms for FIU-2. 
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Figure 97. CH4/N2 sorption isotherms of compound FIU-3. 

 

Compared with isotherms for the same sorbates on compound FIU-1, complex FIU-3 has the larger 

CO2 adsorption capacity, due to surface area and pore volume differences (Figure 96). Adsorption 

isotherms for CO2 display approximately type III isotherms with hysteresis. CO2 sorption capacity 

Figure 96. Pure component equilibrium adsorption/desorption isotherms of compound FIU-3 at 298K. 
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reaches a maximum of 2.77 mmol/g at 6.4 atm, comparatively, the CH4 uptake is only 0.36 mmol/g, 

and the N2 uptake is 0.19 mmol/g at same pressure (CO2 uptake values as high as 2.77 mmol/g at 

6.4 atm). Interesting, the isotherms for CO2, H4, N2 exhibit significant desorption hysteresis. Upon 

desorption, complex FIU-3 retained approximately 17.7%, 18.9% and 16% respectively of its 

sorbed CO2, CH4 and N2 at the same desorption pressure (approximate 0.22 atm), while MOF-3 is 

also selective for CO2 over CH4 or N2, as expected, there was little adsorption of CH4 and N2, even 

at pressure as high as 7 atm. Compared with N2, complex FIU-3 has higher selectivity for CH4, the 

maximum CH4 uptake is 0.39 mmol/g at 6.8 atm, while the maximum N2 uptake is only 0.25 

mmol/g at 5 atm. It also exhibits higher selectivities for CH4 over N2. 

 

Table 13. Summary of 3-fold interpenetrated 3D CuII-MOFs. 

 

Name  Stoichi

ometry 

Crystal system 

/Space group   

Node 

structure  

Pore 

volume  

CO2 adsorption 

capacity/pressure  

Remarks 

FIU-1 1:1:2:1 Monoclinic, 

C2/c 

6- connecting  45.2% 2.16 mmol/g 

6.5atm 

3D, 

 

3-fold 

interpene

- 

trated 

 

FIU-2 1:1:2:1 Monoclinic, 

P2/c 

4- connecting  46.7% 2.1 mmol/g 

6.5 atm 

FIU-3 1:1:4:1 Triclinic, P1̅ 5- connecting  42.5% 2.77 mmol/g 

6.5atm 



122 

 

3.7. Conclusions 

 

To prepare MOFs, the best method is to use a copper salt with a non-coordinating anion, pyrazole 

and and base in order to first synthesize the SBUs. The linker must be layered over the solution 

containing the SBU afterwards, to facilitate slow reaction and crystallization. Metathesis reactions 

with linker and Cl-terminal trinuclear Cu-pyrazolate complex were not successful, as they tended 

to form precipitates or 1D chains (tmpy linker). 

 

Before embarking on the study of photo-active MOFs, we intended to study the chemistry and 

optimize the conditions using a simpler fragment, a dimer of trimers connected by photo-active 

linkers. [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [10] , where abp = 4,4’-azopyridine, was 

synthesized as a model of the photochemical reaction with UV irradiation. The bidentate abp ligand 

is used as photo-responsive linker that can undergo a conformational change upon UV irradiation. 

Indeed, the absorption spectra recorded before and after irradiation indicated a structural change. 

We are in the process of isolating and identifying the structure of the product. 2D and 3D materials 

with {[Cu3(µ3-OH)(µ-4-R-pz)3]2+}n SBUs where R = Ph or Cl , which can potentially undergo 

cis/trans-isomerization, have been prepared during this project.  

 

Polymorphic 1D chains were obtained from a one-pot reaction using [PPN]2[Cu3(µ3-O)(µ-pz)3Cl3]  

and tmpy linker andthe flexibility of Cu-pyrazolate based on 1D chains have been investigated 

under high pressure. The material is elastic up to 3.0 GPa and is amorphized irreversibly at 4.2 GPa, 

as indicated by variable pressure PXRD. 

 

Analogous reactions by employing 4-Ph-pz ligands, instead of pz, or 4-Cl-pz, have resulted in two 

2D-structures, {[Cu3(µ3-OH)(µ-4-Ph-pz)3(abp)1.5][(CF3SO3)2]}n [12], {[Cu3(µ3-OH)(µ-4-Ph-pz)3 

(CH3CN) (abp)1.5][(µ-4-Ph-pz)(µ-Cl)Cu(py)(abp)0.5](CF3SO3)2}n [13]. The 2D network propagates 
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in a similar way through Cu-termini, but the bulky phenyl rings on the pyrazolate ligands prevent 

the formation of 3D networks, but π-π interactions have been observed between the 2D sheets.  

 

To prepare porous compounds FIU-1, FIU-2 and FIU-3, a two-stage synthetic procedure was 

followed; Cu(CF3SO3)2, 4-Cl-pzH and NaOH were mixed to prepare the SBU, dilute solutions of 

the photo-active linkers (abp or bpe) were layered over the solution of SBU. Crystals of the MOFs 

were obtained in a few days to weeks.  

 

We have previously shown that the porous-MOF materials with {[Cu3(µ3-OH)(µ-4-R-pz)3]2+}n 

SBUs, where R = H, Cl, or CHO, have interpenetrated-lattice structures and are capable of 

adsorbing CO2 selectively.17 In this project,  we have been prepared three new MOFs with photo-

responsive linkers and 4-Cl-pzH. Stoichiometry has been varied and a different 

synthetic/crystallization method has been used to prepare new materials. Three new metal-organic-

frameworks (MOFs) of Cu(II) ion, {[Cu3(µ3-OH)(µ-4-Cl-pz)3 (bpe)3][CF3SO3]2}n [FIU-1], 

{[Cu3(µ3-OH)(µ-4-Cl-pz)3(abp)2][CF3SO3]2}n [FIU-2], {[Cu3(µ3-OH)(µ-4-Cl-pz)3(abp)2.5][CF3-

SO3]2}n [FIU-3] have been successfully synthesized using mixed ligand systems and characterized 

by single X-ray analysis. Compound FIU-1 demonstrated the usefulness of a hexanuclear CuII -

pyrazolate moiety as an SBU for generating 3-fold interpenetrated 3D polymeric network. 

Structural analyses revealed that both FIU-2 and FIU-3 have novel 3-fold interpenetrating 3D 

hexagonal framework structures. Compound FIU-2 crystallizes in the monoclinic crystal system 

with the P21/c space group, whereas FIU-3 crystallizes in triclinic space group P1̅. Both structures 

contain Cu3-SBUs connected by the linkers through the Cu-termini. Complexes FIU-2 and FIU-3 

illustrate the influence of pH; the only difference between the syntheses is the amount of NaOH 

added 3 eq. in FIU-2 and 2 eq. in FIU-3 on MOF formation. 
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The gas adsorption properties of the three MOFs have been determined experimentally in the 0-7 

atm pressure range. All MOFs sorb CO2 selectively over N2, CH4. Like the previous MOFs studied 

in our lab, complexes FIU-1 and FIU-3 also exhibit hysteretic sorption-desorption profiles 

indicating the flexibility of the MOFs upon adsorption. Complex FIU-1 shows slight selectivity 

toward N2 over CH4. Compound FIU-2 has the largest CO2 adsorption capacity (Table 13) among 

the MOFs studied in our group.  

 

In summary, we have made substantial strides in the project: (i) Identified that nitrite coordination 

lowers the oxidation potential of the SBU significantly; (ii) Prepared key SBUs with varying 

terminal and pyrazole substitutions that modify structural and electronic properties;  (iii) 

Photochemical modification on a dimer-of-trimers to establish working conditions for the MOFs; 

(iv) Prepared, characterized and analyzed sorption properties of three new MOFs that show 

selectivity towards CO2 over N2 or CH4; (v) 4-Ph-pz substitution leads to the formation of new 

class of 2D sheets based on Cu-pyrazolato SBUs.  

 

3.8. Future work 

In this dissertation, MOFs have been prepared by connecting triangular Cu3(μ3-OH)-SBUs through 

nitrogen donor photo-active organic linkers, 1,2-di(4-pyridyl)ethylene (bpe) and 4,4’-azo-bis(4-

pyridine) (abp). The future work is  photochemical modification of MOFs (FIU-1, FIU-2 and FIU-

3) in the solid phase, then determine the gas adsorption after UV-irradiation.  But there is no redox 

activity in these MOFs owing to the redox-inert Cu3(μ3-OH) units, while the planar [Cu3(μ3-O)]4+ 

species can be reversibly oxidized to their mixed-valence counterparts, formally CuII
2CuIII. MOFs 

using Cu3 - and Cu6 -SBUs are expected to maintain their 3D structure upon their redox-

modification. We have been approved NO2 coordination lower the oxidation potential of copper 

pyrazolate complexes (SBUs).  It is necessary to choose Cu-NO2 complex as SBU to build redox-



125 

 

active MOF. SBUs with suitable pyrazoles (4-CHO-pzH) will be prepared and then condensation 

with stoichiometric amount of diamine linkers led to MOFs (Scheme 15). The final goals of redox-

active MOFs include: (i) redox modification of MOF; (ii) the redox functionality of the new MOFs 

will be studied in solution and/or in the sold phase; (iii)determination of the gas-sorption properties 

of MOFs before and after modification. 

 

 

Scheme 15. General scheme for the reaction between SBU and aralkyl amine to form Cu3-pyrazolate 

MOFs.  
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Appendices 

Table A.1. Crystallographic data and structure refinement for (PPN)(C5H10NH2)[Cu3(µ3-OH) (µ-

Cl)(µ-4-Ph-Pz)3Cl3] [1], (PPN)[Cu3(μ3-OH)(μ-4-Ph-pz)3Cl3]·CH2Cl2 [2] and (PPN)[Cu3(µ3-OH) 

(µ-4-Ph-pz)3 Cl3]· CH3CN [3]. 

 

Compound [1] [2] [3] 

Chemical formula C68H64Cl4Cu3N8OP2 C31.5H26.5Cl1.5Cu1.5N3.5O1.5P C65H55Cl3Cu3N8O

P2 

FW 1403.63 657.60 1323.08 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system Triclinic  Monoclinic Triclinic 

space group P-1 P21/n P-1 

a (Å) 13.5479 (10) 14.581(2) 11.7975 (9) 

b (Å) 15.6793 (11) 18.441(3) 16.2486 (12) 

c (Å) 17.3297 (12) 24.324(4) 17.3874 (13) 

α (º) 74.957 (2) 90 109.8070(10) 

β (º) 69.425 (2) 105.250(4) 98.6350 (10) 

 (º) 79.368 (2) 90 95.0280 (10) 

V (Å3) 3310.5 (4) 6310.1(16) 3065.7 (4) 

Z 2 8 2 

Dc, g cm-3 1.408 1.384 1.433 

µ (Mo Kα) mm-1 1.213 1.229 1.263 

F (000) 1442.0 2688.0 1354.0 

Crystal size, mm 0.39 × 0.23 × 0.15 0.20 × 0.08 × 0.05 0.15 × 0.06 × 0.05 

T (K) 298 273 296.15 

 limits, ° 3.004-27.239 2.896-26.636 1.766-27.081 

Reflections 

collected  

40290 147054 34487 

ind. refl. 14698 13050 13306 

idn.refl.[ [I2] 10392 8909 6299 

Data/restraints/para

meters. 

14698/0/775 13050/0/737 13306/3/744 

goodness-of-fit on 

F2 

1.119 1.120 0.922 

R(F); Rw(F) [I2] 0.0755/0.1402 0.1065/0.2086 0.0485/0.0803 

R; Rw (all data) 0.1043/0.1591 0.1478/0.2332 0.1410/0.1047 

Largest peak/hole 

(e Å-3) 

1.37/-1.14 1.03/-0.76 0.35/-0.31 
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Table A. 2. Crystallographic data and structure refinement for (PPN)[Cu3(µ3-OH)(µ-pz)3(µ1,1-

N3)2(N3)][4], [Cu3(µ3-OMe)(µ2-Cl)(µ-Pz)3(py)2]Cl [5] and [Cu3(µ3-OH)(µ2-Cl)(µ-Pz)3(py)2Cl](py) 

[6].  

 

Compound [4] [5] [6] 

Chemical formula C45H40Cu3N16OP2 C20H22Cl2Cu3N8O C24H25Cl2Cu3N9O 

FW 1073.49 651.97 717.05 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system monoclinic Triclinic Orthorhombic 

space group P21/c P-1 Pnma 

a (Å) 8.6459(8) 9.2009(10) 19.8505 (12) 

b (Å) 17.1790(16) 11.1495(12) 15.0337 (9) 

c (Å) 32.397(3) 12.4400(14) 9.4632 (5) 

α (°) 90 77.6670(10) 90 

β (°) 96.4270(10) 79.9440(10) 90 

 (°) 90 81.421(1) 90 

V (Å3) 4781.6(8) 1219.2(2) 2824.1 (3) 

Z 4 2 4 

Dc, g cm-3 1.491 1.776 1.686 

µ (Mo Kα) mm-1 1.443 2.843 2.464 

F (000) 2188.0 654.0 1444.0 

Crystal size, mm 0.27 × 0.07 × 0.06 0.499 × 0.164 × 0.152 0.451 × 0.17 × 0.161 

T (K) 296.15 293(2) 293(2) 

 limits, ° 1.824-28.338 2.263-28.198 2.974-28.252 

Reflections collected  54361 13494 16860 

ind. refl. 11367 5460 3571 

idn.refl.[ [I2] 7240 4581 2697 

Data/restraints/param. 11367/0/628 5460/0/307 3571/0/193 

goodness-of-fit on F2 1.031 1.039 1.019 

R(F); Rw(F) [I2] 0.0580/0.1529 0.0233/0.0559 0.0328/0.0779 

R; Rw (all data) 0.0999/0.1753 0.0320/0.0601 0.0522/0.0869 

Largest peak/hole (e 

Å-3) 

3,38/-0.47 0.27/-0.34 0.5/-0.42 
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Table A. 3. Crystallographic data and structure refinement for Cu3(µ3-OH)(µ3-4-Cl)3(py)3 

(ClO4)2]·(CH2Cl2)(CH3)2CO)[7], (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-NO2)2(η2-NO2)][8], (PPN)3[Cu3 (µ3-

OH)(µ-pz)3(η1-NO2)3](OH)(NO3) [9]  

                                                                                                                                                

Compound [7] [8] [9] 

Chemical formula C28H30Cl7Cu3N9O10 C81H69Cu3N11O7P4 C117H100Cu3N13O11.12P6 

FW 1091.38 1622.97 2242.48 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system monoclinic monoclinic trigonal 

space group P21/n P2/c R3  

a (Å) 10.6000(6) 12.5887(7) 22.7476(12) 

b (Å) 29.3617(17) 13.0204(7) 22.7476(12) 

c (Å) 13.6591(8) 23.2687(13) 18.1826(10) 

α (°) 90 90 90 

β (°) 97.8390(10) 103.6000(10) 90 

 (°) 90 90 120 

V (Å3) 4211.4(4) 3707.0(4) 8148.1(10) 

Z 4 2 3 

Dc, g cm-3 1.721 1.454 1.371 

µ (Mo Kα) mm-1 2.007 1.003  0.737 

F (000) 2188.0 1670.0 3477.0 

Crystal size, mm 0.223 × 0.198 × 0.183 0.49 × 0.294 × 

0.254 

0.124 × 0.093 × 0.084 

T (K) 273.15 150.0 200.42 

 limits, ° 2.845-26.483 3.122-27.08 2.956-28.357 

Reflections collected  51256 47110 40177 

ind. refl. 8679 8091 9023 

idn.refl.[ [I2] 7009 6804 5492 

Data/restraints/param. 8679/0/520 8091/0/480 9023/1/452 

goodness-of-fit on F2 1.041 1.062 1.042 

R(F); Rw(F) [I2] 0.0462/0.1004 0.0374/0.0842 0.0695/0.1415 

R; Rw (all data) 0.0623/0.1078 0.0480/0.0893 0.1393/0.1679 

Largest peak/hole (e Å-3) 1.04/-0.85 0.71/-0.62 1.39/-1.19 
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Table A. 4. Crystallographic data and structure refinement for (PPN)2[Cu3(µ3-O)(µ-pz)3(η1-

NO2)2Cl] [10], (PPN)[Cu3(μ3-OH)(μ-4-Ph-pz)3(1-NO2)3](CH2Cl2)0.5 [11], (PPN)3[Cu3(μ3-O)(μ-4-

Me-pz)3 (1-NO2)3](NO3) [12].  

 

Compound [10] [11] [12] 

Chemical formula C81H69ClCu3N10O5P

4 

C127H107Cl2Cu6N20O13P

4 

C120H106Cu3N13O12P

6 

FW 1612.41 2710.32 2450.30 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system monoclinic Monoclinic  Trigonal  

space group P2/c P-1 R3 

a (Å) 12.6164(7) 14.7002(6) 22.8385(10) 

b (Å) 12.9846(8) 15.0742(6) 22.8385(10) 

c (Å) 23.1900(14) 17.4451(7) 18.3868(8) 

α (°) 90 65.3550(10) 90 

β (°) 103.855(2) 65.3470(10) 90 

 (°) 90 65.8460(10) 120 

V (Å3) 3688.4(4) 3061.1(2) 8305.6(8) 

Z 2 1 3 

Dc, g cm-3 1.452 1.470 1.470 

µ (Mo Kα) mm-1 1.041 1.191 0.706 

F (000) 1658.0 1386.0  3792.0 

Crystal size, mm 0.446 × 0.365 × 

0.107 

0.230× 0.312 × 0.135 0.202 × 0.198 × 

0.12 

T (K) 149.88 273(2) 273.15 

 limits, ° 3.135-26.482 2.99-26.41 2.941-28.299 

Reflections collected  45974 38310 79088 

ind. refl. 7611 12466 9188 

idn.refl.[ [I2] 6520 8503 6828 

Data/restraints/param

. 

7611/0/481 12466/0/784 9188/2/466 

goodness-of-fit on F2 1.044 1.028 1.0 

R(F); Rw(F) [I2] 0.0426/0.1115 0.0551/0.1372 0.0447-0.1043 

R; Rw (all data) 0.0515/0.1176 0.0920/0.1499 0.066/0.1132 

Largest peak/hole (e 

Å-3) 

1.40/-0.63 1.83/-0.77 0.95/-0.66 
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Table A. 5. Crystallographic data and structure refinement for and (PPN)3[Cu3(μ3-O)(μ-4-Cl-

pz)3(1-NO2)3](NO3) [13], [PPN][Cu3(µ3-O)(µ-pz)3(N3)2(η2-NO2)] [14] and [{Cu3(µ3-OCH3)(µ-

C3H2N2 Cl)3}2(µ-C3H2N2Cl)3 (µ6-Cl)] [15]. 

 

Compound [13] [14] [15] 

Chemical formula C117H96Cl3Cu3N13O11P

6 

C40.5H34.5Cu1.5N7.5O1.5P

2 

C29H24Cl10Cu6N18O

2 

FW 2342.88 807.50 1392.40 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system Trigonal  monoclinic orthorhombic 

space group R3 P2/n Pbcn 

a (Å) 22.8693(10) 12.5336(9) 16.5655(10) 

b (Å) 22.8693(10) 13.3055(9) 18.4743(11) 

c (Å) 18.3055(9) 23.6547(18) 14.6065(9) 

α (°) 90 90 90 

β (°) 90 104.797(2) 90 

 (°) 120 90 90 

V (Å3) 8291.2(8) 3814.0(5) 4470.1(5) 

Z 3 4 4 

Dc, g cm-3 1.408 1.406 2.069 

µ (Mo Kα) mm-1 0.798 0.973 3.456 

F (000) 3615.0 1662.0 2736.0 

Crystal size, mm 0.302 × 0.258 × 0.123 0.189 × 0.14 × 0.089 0.208 × 0.203 × 

0.16 

T (K) 295.69 298.14 298.88 

 limits, ° 2.94-24.748 3.08-26.32 2.884-26.137 

Reflections collected  30157 4701  63202 

ind. refl. 6294 3062 5726 

idn.refl.[ [I2] 4857 1929 4647 

Data/restraints/param

. 

6294/1/460 3062/0/480 5726/0/296 

goodness-of-fit on F2 1.019 1.032 1.078 

R(F); Rw(F) [I2] 0.0501/0.1098 0.0674/0.1481 0.0410/0.1096 

R; Rw (all data) 0.0773/0.1213 0.1151/0.1728 0.0533/0.1191 

Largest peak/hole (e 

Å-3) 

0.83/-0.67 0.42/-0.31 0.74/-1.61 
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Table A. 6. Crystallographic data and structure refinement for [Cu6(μ3-OMe)2(μ4-Cl)(μ-4-Ph-

pz)8Cl]2 [bpe] [19], [Cu6(μ3-OMe)2(μ4-Cl)(μ-4-Ph-pz)8Cl]2[abp] [20] and [{Cu3(µ3-OH)(µ-4-Cl-

pz)3 (py)2}2(abp)](ClO4)4 [21] 

 

Compound [19] [20] [21] 

Chemical formula C81H69Cl4Cu6N17O2 C81H71Cl4Cu6N18O3 C192H176Cl40Cu24N80O72 

FW 1835.57 1867.59 7699.08 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system triclinic triclinic orthorhombic 

space group P-1 P-1 Fddd 

a (Å) 14.7574(9) 14.588(2) 25.436(3) 

b (Å) 17.5451(11) 17.055(3) 34.820(4) 

c (Å) 20.6238(12) 20.222(3) 37.667(4) 

α (°) 92.9100(17) 93.106(3) 90 

β (°) 107.6930(15) 106.082(3) 90 

 (°) 108.9740(16) 109.141(3) 90 

V (Å3) 4744.1(5) 4508.4(12) 33362(7) 

Z 2 2 4 

Dc, g cm-3 1.285 1.376 1.533 

µ (Mo Kα) mm-1 1.482 1.562 1.890 

F (000) 1864.0 1898.0 15360.0 

Crystal size, mm 0.4 × 0.4 × 0.17 0.47 × 0.332 × 

0.142 

0.161 × 0.156 × 0.151 

T (K) 298.84 100.0 273.15 

 limits, ° 2.901-24.808 2.911-26.347 2.88-24.957 

Reflections collected  16252 45915 7233 

ind. refl. 16252 18050 7233 

idn.refl.[ [I2] 11169 12072 3487 

Data/restraints/param. 16252/0/991 18050/3/1015 7233/0/460 

goodness-of-fit on F2 1.070 1.168 0.969 

R(F); Rw(F) [I2] 0.0568/0.1635 0.0978/0.2347 0.08003/0.1081 

R; Rw (all data) 0.0821/0.1787 0.1275/0.2566 0.1656/0.2212 

Largest peak/hole (eÅ-

3) 

1.02/-0.67 2.05/-1.26 0.80/-0.73 
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Table A.7.  Crystallographic data and structure refinement for {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl(tmpy) 

(CH3CN)]}n [22], {[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl]2(tmpy)2](CH3CN)2}n [23] and {[Cu3(µ3-OH)(µ-

Cl)(µ-pz)3Cl(tmpy)](CH3CN)}n [24] 

 

Compound [22]  [23] [24] 

Chemical formula C96H108Cl8Cu12N36O4 
 

C26 H30Cl2Cu3N10O C46 H51 Cl4 Cu6 N17 

O2 

FW 2876.26 760.12 1397.08 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system Orthorhombic Monoclinic monoclinic 

space group Pnma P21/n C2/c 

a (Å) 10.8947(6) 11.4342 (8) 26.609(1) 

b (Å) 15.7770(9) 17.801 (1) 9.2327(3) 

c (Å) 17.785(1) 15.733 (1) 23.543(1) 

α (°) 90 90 90 

β (°) 90 95.709(2)  96.902(1) 

 (°) 90 90 90 

V (Å3) 3057.0(3) 3186.5 (4) 5742.0(4) 

Z 1 4 4 

Dc, g cm-3 1.562 1.584 1.616 

µ(Mo Kα) mm-1 2.276 2.190 2.421 

F(000) 1452.0 1540 2816 

Crystal size, mm 0.17 × 0.15 × 0.14 0.14 × 0.10 × 0.08 0.20 × 0.13 × 0.10 

T (K) 273(2) 200(0) 200(0) 

 limits, ° 2.957-26.49 2.91-26.37 2.97-26.42 

Reflections collected  46032 38031 48851 

ind. refl. 3259 6516 5894 

idn.refl.[ [I2] 3393 4196 4541 

Data/restraints/param. 3259/0/194 4916/0/381 4541/3/353 

goodness-of-fit on F2 1.207 0.95 1.035 

R(F); Rw(F) [I2] 0.08/0.1305 0.0554; 0.1059 0.0341; 0.0665 

R; Rw (all data) 0.1213/0.1439 0.1065; 0.1244 0.057; 0.0731 

Largest peak/hole (e Å-3) 0.56/-1.12 0.767/ -0.510 0.45/−0.44 
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