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ABSTRACT OF THE DISSERTATION 

IMPROVED METHODS FOR NETWORK SCREENING AND  

COUNTERMEASURE SELECTION FOR HIGHWAY IMPROVEMENTS 

by 

Md Asif Raihan 

Florida International University, 2018 

Miami, Florida 

Priyanka Alluri, Co-Major Professor 

Albert Gan, Co-Major Professor 

Network screening and countermeasure selection are two crucial steps in the 

highway improvement process. In network screening, potential improvement locations are 

ranked and prioritized based on a specific method with a set of criteria. The most common 

practice by transportation agencies has been to use a simple scoring method, which, in 

general, weighs and scores each criterion and then ranks the locations based on their 

relative overall scoring. The method does not deal well with criteria that are qualitative in 

nature, nor does it account for the impacts of correlation among the criteria. The 

introduction of Analytic Hierarchy Process (AHP) provides agencies with a method to 

include both quantitative and qualitative criteria. However, it does not address the issue on 

correlation. This dissertation explores the use of both Analytic Network Process (ANP) 

and Fuzzy Analytic Network Process (FANP) for their potential capabilities to address both 

issues. Using urban four-lane divided highways in Florida for bicycle safety improvements, 
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both ANP and FANP were shown to provide more reasonable rankings than AHP, with 

FANP providing the best results among the methods. 

After the locations are ranked and prioritized for improvements, the next step is to 

evaluate the potential countermeasures for improvements at the selected top-ranked 

locations. In this step, the standard practice has been to use Crash Modification Factors 

(CMFs) to quantify the potential impacts from implementing specific countermeasures. In 

this research, CMFs for bicycle crashes on urban facilities in Florida were developed using 

the Generalized Linear Model approach with a Zero-Inflated Negative Binomial (ZINB) 

distribution. The CMFs were tested for their spatial and temporal transferability and the 

results show only limited transferability both spatially and temporally. The CMFs show 

that, in general, wider lanes, lower speed limits, and presence of vegetation in the median 

reduce bicycle crashes, while presence of sidewalk and sidewalk barrier increase bicycle 

crashes. The research further considered bicycle exposure using the bicycle activity data 

from the Strava smartphone application. It was found that increased bicycle activity 

reduces bicycle crash probabilities on segments but increases bicycle crash probabilities at 

signalized intersections. Also, presence of bus stops and use of permissive signal phasing 

at intersections were found to increase bicycle crash probabilities.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Transportation agencies ideally would like to improve all the locations that have a 

transportation problem. However, it is not feasible due to financial constraints. 

Transportation engineers and planners are, therefore, tasked with selecting the potential 

locations that provide maximum benefit for improvements. This is commonly termed as 

network screening. Network screening is the first and the most important aspect of making 

investment decisions. 

In network screening, potential improvement locations are ranked and prioritized 

based on a specific method with a set of criteria. Transportation agencies have been 

screening highway locations using simple scoring and ranking method which assigns fixed 

weight to each of the criterion. In this method, each of the selected quantitative criterion is 

assigned a maximum score. The actual score of each criterion is then determined based on 

site-specific characteristics. Finally, for each location, scores from all the criteria are 

summed up to obtain the overall score which is then used in ranking. Top-ranked locations 

are then scrutinized using qualitative criteria to determine the final location list for potential 

funding.  

The criteria for screening can either be quantitative or qualitative, with the 

qualitative criteria requiring subjective judgment. Moreover, some measures could be 

correlated requiring the screening method to consider their interdependencies. The simple 

scoring method, however, cannot efficiently address these issues, and thus agencies have 
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become more interested in advanced screening methods that are transparent, effective, 

accountable, and defendable. 

After the locations are prioritized and selected for improvements, the next 

important step is to evaluate the potential countermeasures for improvements at the 

selected top-ranked locations. How changes in roadway characteristics affect safety is one 

of the critical issues to be considered. The safety impacts of roadway characteristics can be 

evaluated from expected changes in number of crashes after implementing a 

countermeasure. This can be attained by Crash Modification Factors (CMFs). A CMF is a 

multiplicative factor which is used to compute the expected number of crashes when a 

particular countermeasure is implemented at a specific site. A CMF greater than 1.0 

indicates an expected increase in crashes, while a CMF less than 1.0 indicates an expected 

reduction in crashes when a particular countermeasure is implemented (Gross et al., 2010). 

The preferred methods for developing CMFs can be classified into two broad 

categories: before-after study, and cross-sectional study. Although before-after study is 

usually preferred over cross-sectional design, it is not always practical because there could 

be insufficient locations to allow for credible results (Gross et al., 2010). Cross-sectional 

studies are thus often adopted. The most common norm to develop CMFs using cross-

sectional method is through Negative Binomial (NB) models. Crashes are rare and random 

events. Therefore, the crash data is expected to be zero inflated. In other words, several 

locations (i.e., roadway segments and intersections) may not have experienced any crashes 

during the analysis period. Traditional NB models may not be able to handle the datasets 

that have a large number of zero crash observations. 
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1.2 Problem Statement 

 

Network screening criteria can be quantitative and qualitative, and interdependent. 

For example, if an agency prioritizes highway locations based on safety, annual average 

daily traffic (AADT), and land use, it is quite clear that safety and AADT can be measured 

quantitatively in terms of crash frequency and number of vehicles per day, respectively. 

On the other hand, land use needs to be assessed qualitatively. In decision making that 

involves multiple criteria, the Analytic Hierarchy Process (AHP) is being widely used for 

its capability to organize quantitative and qualitative criteria in a systematic way, and 

provide a structured yet relatively simple solution to decision making problem 

(Skibniewski and Chao, 1992). Thus, the AHP can overcome the limitation of addressing 

qualitative criteria along with quantitative criteria.  

AHP, however, structures the problem hierarchically; thus, it does not consider the 

impacts of interdependencies that may exist among the criteria. For example, if an agency 

screens highway locations based on AADT, volume to capacity (v/c) ratio, delay, truck 

volume, and truck percentage, it is quite clear that AADT and v/c ratio are interdependent, 

so are truck volume and truck percentage. Further, delay and v/c (thus AADT) are also 

interdependent as delay is a function of v/c (Raihan et al., 2016). It can thus be concluded 

that several of the criteria can essentially be interdependent. Therefore, a method that can 

take into account the impacts of such interdependencies will yield more meaningful and 

defendable results. In summary, a desirable network screening method should address: 

 qualitative and quantitative criteria, 

 interdependencies of the criteria, and 

 undue weight of any criterion on decision making. 
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The method should also be simple and easily applicable for the transportation agencies to 

adopt and implement.   

Once the locations are prioritized and ranked, the next step is to determine what to 

improve. Since traffic safety has enormous scopes, this research particularly focuses on 

bicycle safety improvements. Bicyclists are vulnerable road users who are at a greater risk 

for fatal or serious injury when involved in a crash with a motor vehicle. While bicycling 

accounts for only 1% of all trips taken in the United States (Pucher et al., 2011), bicycle 

fatalities constitute over 2% of all traffic fatalities (NHTSA, n.d.). Moreover, bicycle 

fatalities across the nation have increased by 31% from 2010 to 2015. During the same 

period, Florida has led the nation with over 750 bicycle fatalities, representing 

approximately 18% of the nation’s total (NHTSA, 2017). These grim statistics underscore 

the need for a thorough investigation of bicycle crashes and forms the rationale for this 

research.  

Improving bicycle safety is a different challenge compared to improving the safety 

and mobility of motorized vehicular traffic because of the following reasons: bicycle 

crashes are rare and often severe; bicycle exposure is different from vehicle exposure and 

is difficult to quantify; and bicycle crash trends are quite distinctive and are dependent on 

land use, existing bicycle infrastructure, socio-economic factors, etc. A thorough analysis 

of these factors is therefore required to improve bicycle safety. The unavailability of data 

and the zero inflation in crash data pose additional challenge to address bicycle safety. 

Therefore, the following issues need to be considered while developing the CMFs: 

 roadway characteristics, i.e., the cross-sectional properties, 

 existing bicycle infrastructure,  
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 bicycle exposure,  

 the surrogate measures of bicycle exposure, and 

 the zero inflated crash data.  

Furthermore, the applicability of a CMF depends on the data from which the CMF 

is estimated. It may vary by crash severity, crash type, and/or site condition (Gross et al., 

2010). This instigates the question whether CMFs developed using state-wide data are 

applicable to different jurisdictions and for different time periods, i.e., are CMFs spatially 

and temporally transferable.   

 

1.3 Research Goal and Objectives 

 

The goal of this research is to improve the traffic safety of Florida’s state roads by 

determining an appropriate network screening method, and quantifying the safety impacts 

of critical cross-sectional geometrics. The specific objectives of this research are: 

1. to explore and determine the most suitable network screening method for 

bicycle safety improvements; 

2. to quantify the impact of roadway characteristics, bicycle infrastructure, and 

bicycle exposure on bicycle safety; and 

3. to explore the scope of spatial and temporal transferability of the CMFs for 

bicycle crashes.  

 

1.4 Dissertation Organization 

 

This dissertation is comprised of six chapters. Chapter 2 presents a comprehensive 

literature review of the state-of-the-art and state-of-the-practice network screening 

methods, potential factors affecting bicycle crashes, existing bicycle CMFs, crash 
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frequency modeling, and studies on CMFs transferability. Chapter 3 discusses the potential 

network screening methodologies, and CMF development and transferability assessment 

methodologies adopted to attain the research objectives. Chapter 4 describes the detailed 

data collection and preparation efforts undertaken in this dissertation. Chapter 5 presents 

the analyses and discusses the results. The most suitable network screening method and 

Florida-specific bicycle CMFs are provided in this chapter. The possibility of CMFs 

transferability is also discussed. Chapter 6 concludes this dissertation by summarizing the 

contributions of this research and providing recommendations for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter provides a comprehensive literature review on three topics: (a) 

network screening practices and methods; (b) risk factors affecting bicycle safety, and the 

bicycle crash countermeasures and CMFs; and (c) the transferability aspects of the CMFs. 

Section 2.1 discusses the state Departments of Transportation (DOTs’) network screening 

practices and the screening methods developed or adopted by different researchers. Section 

2.2 focuses on different risk factors, causes, patterns, contributing factors associated with 

bicycle crashes, and bicycle crash countermeasures and CMFs. Finally, Section 2.3 

presents the literature on transferability of CMFs.    

 

2.1 Network Screening Methods for Highway Improvements 

 

This section reviews different screening methods. It is divided into two broad sub-

sections: (a) the network screening, i.e., project location prioritization practices that are 

either currently being applied or being considered for adoption by the state DOTs, 

Metropolitan Planning Organizations (MPOs), and local transportation agencies across the 

country; and (b) the state-of-the-art screening, i.e., prioritization methodologies. 

A state-of-the-practice review of the screening methods revealed that none of the 

agencies focused on identifying improvement locations. However, a majority of the 

methods prioritize projects, rather than highway improvement locations. This is in contrast 

to the principle of differentiating the prioritization process into two categories: (a) 

screening for highway project locations with potential for improvement; and (b) 

prioritizing projects. Nonetheless, the approaches discussed to prioritize projects are to a 
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large extent applicable to screening highway improvement locations, and could potentially 

be used to screen the locations for improvements. 

 

2.1.1 State-of-the-practice Methodologies 

 

This section summarizes the prioritization methodologies currently being applied 

or being considered for adoption by the following 12 state DOTs: Delaware, Florida, 

Indiana, Missouri, North Carolina, Ohio, Oregon, Texas, Utah, Virginia, Washington, and 

Wisconsin, and by eight MPOs and local transportation agencies from North Central 

Pennsylvania, Hampton Roads, Fredericksburg Area, Broward, Winston-Salem Urban 

Area, Boston Region, Nashville Area, and Metrolinx. Gan et al. (2016) provides detailed 

discussion on the methodologies.  

It is evident from the review that most of the transportation agencies are still relying 

on simple scoring and ranking algorithm for prioritizing the projects thus the project 

locations; and the criteria used for prioritization are quantitative and qualitative requiring 

subjective judgments. In addition to the simple scoring method, agencies were found to use 

rating scale, and the Technique for Order Preference by Similarity to an Ideal Solution 

(TOPSIS) approaches. Rating scale is just an alternate form of simple scoring. Instead of 

giving direct point to any project for any particular criterion, rating scale provides the point 

values in terms of a scale. The potential best criterion is given the highest rating and the 

potential worst criterion is given the lowest rating; the rest lies in between. Thus it makes 

the scale continuous and therefore easy to assign points to any project for that criterion. 

TOPSIS’s principle is that any chosen alternative should have the shortest distance from 

the positive-ideal solution and the farthest distance from the negative-ideal solution. Hence, 
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it eventually applies the simple scoring algorithm in the methodological steps. Thus, most 

of the state transportation agencies are confined with the limitations of simple scoring 

methodological approach.  

 

2.1.2 State-of-the-art Methodologies 
 

 Researchers have used several methods including Analytic Hierarchy Process 

(AHP), Conjoint-based AHP, Analytic Network Process (ANP), Fuzzy-ANP (FANP), 

Multi-layer prioritization, Goal Achievement Matrix, etc. to prioritize locations for 

highway improvements. Studies that applied these methods are discussed in the following 

paragraphs. 

Amponsah (2013) presented the potential of AHP in prioritizing highway projects. 

A hierarchical structure was constructed based on commonly known factors used by 

highway agencies for selecting projects. Social, Legal, Environmental, Economical, 

Political, and Technological (SLEEPT) influence of roads were incorporated in this study 

to form an integrated factor base (IFB) to prioritize the highway projects systematically. 

Candidate projects were prioritized in a descending order through AHP.  

 Outwater et al. (2011) presented a conjoint-based AHP to prioritize projects. They 

determined that the AHP is useful in developing weights for multiple goals; however, it 

has a limitation in determining the ways to achieve goals through quantitative performance 

measures. A conjoint-based approach specifically designed to complement an AHP 

weighting exercise was developed. Several performance measures were manifested for 

each goal and conjoint exercises were structured for each goal in such a way that it was 

able to elicit information about the relative importance of each of the performance 
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measures in achieving that goal. The number of conjoint exercises required for each goal 

depends on the number of performance measures being tested for that goal as well as the 

number of levels to be tested. In brief, AHP provided the platform to develop the weights 

of the goals for the transportation projects and conjoint method estimated stakeholders’ 

weights for each measure in their study. 

The ANP methodology has been applied to solve decision making problems in 

various fields including business, construction, and transportation. For example, El-

Abbasy et al. (2013) integrated ANP and Monte Carlo simulation to prioritize competitive 

contractors at the pre-bidding stage for highway projects. Sadeghi et al. (2012) used the 

ANP for supplier selection. Macura et al. (2011) applied ANP for prioritizing rail 

infrastructure investment projects in Serbia. Banai (2010) also utilized the ANP for light 

rail route selection in Memphis, Tennessee. The study highlighted the fact that the analysis 

of land use and transportation was facilitated by the ANP methodology. Tuzkaya and Önüt 

(2008) employed a fuzzy ANP-based approach to transportation-mode selection between 

Turkey and Germany. Cheng and Li (2005) demonstrated the potential of the ANP for 

construction project selection. Cheng and Li (2004) applied ANP for the contractor 

selection process. Azis (2003) compared ANP and AHP while studying the impact of 

highway construction, and found that ANP model is more stable and robust compared to 

the AHP model.  

Mohanty et al. (2005) applied the fuzzy ANP approach for research and 

development (R&D) project selection case study. Ramík (2007) also proposed a decision 

algorithm using ANP and fuzzy inputs. The algorithm provides the platform of doing the 

pairwise comparisons using fuzzy numbers. The author discussed the extended arithmetic 
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operations with fuzzy numbers, and the procedure adopted to order the fuzzy relations to 

compare the outcomes.  

Tuzkaya and Önüt (2008) conducted a case study to prioritize the different freight 

transportation modes between Turkey and Germany. Both qualitative and quantiative 

criteria were incorportated in the study. The research presented the potential of fuzzy 

analytic network process (FANP). Furthermore, the analysis results were compared with 

the  results of the ANP. The results of the FANP and ANP procedure did not differ in 

prioritizing the transportation modes. However, the researchers stated that consideration of 

the upper or lower values of the ranking algorithm affect the final verdict of the decision 

maker in decision making process. As the study included imprecise data, giving lower and 

upper values with triangular fuzzy numbers was considered preferable over crisp numbers, 

and therefore, the FANP was considered to be more reliable compared to the ANP.  

 Dağdeviren et al. (2008) employed the FANP framework to evaluate work system 

safety and identify faulty behavior risk (FBR). Work system safety is a function of many 

factors, and is dynamic and complex. Thus the study used the FANP algorithm to determine 

the factors’ and sub-factors’ weights to calculate the FBR. The authors concluded that the 

methodology’s analytical framework made it possible to make better decision. 

Guneri et al. (2009) used the FANP approach in selecting an appropriate location 

for a shipyard. Chen and Chen (2010) developed a conjunctive multi-criteria decision 

making (MCDM) approach based on decision making trial and evaluation laboratory 

(DEMATEL), FANP, and TOPSIS to develop an innovation support system (ISS) for 

Taiwanese higher education. The approach was able to address the dependent relationships 

among the measurement criteria. Later, Büyüközkan and Çifçi (2012) used the fuzzy 
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DEMATEL, FANP, and fuzzy TOPSIS to evaluate green suppliers. The study also 

proposed a case study for green supplier evaluation in a specific company, namely Ford 

Otosan.  

Sevkil et al. (2011) proposed SWOT (i.e., Strengths, Weakness, Opportunities, and 

Threats) FANP methodology to rank the business factors for the Turkish airline industry. 

The study results showed that the SWOT FANP is a viable and highly capable 

methodology over the traditional SWOT methodology in providing invaluable insights for 

strategic management decisions for the airline industry in Turkey. The authors concluded 

that a better method was indeed needed for complex business situations triggered by 

continuous stringent constraints of global marketplace demands while optimizing multiple 

goals and considering inherent uncertainty. Yücenur et al. (2011) compared the fuzzy AHP 

and FANP approaches in global supply chains for supplier selection. The analyses from 

the two models selected the same supplier as the best alternative; however, ordering of the 

triggering factors for alternative selection differed in the two models. Bhattacharya et al. 

(2014) used the FANP framework for green supply chain performance measurement.   

Ayağ and Özdemir (2012) evaluated machine tool alternatives through modified 

TOPSIS and alpha-cut based fuzzy ANP. The study utilized a fuzzy extension of ANP to 

address uncertain qualitative preferences as input in the decision making process and used 

modified TOPSIS to determine the rank of the competing machine tool alternatives in terms 

of overall performance. Although fuzzy logic is useful to model vague and uncertain 

judgments of the decision makers and is insensitive to noisy data, it is computationally 

intensive and time and resource consuming. Therefore, the modified TOPSIS algorithm 

was utilized to eliminate the time consuming fuzzy calculations of the FANP method.  
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However, the authors (Ayağ and Özdemir, 2007) proposed a FANP approach to select 

enterprise resource planning (ERP) software before.  

Lu and Wang (2005) implemented Multi-Layer Prioritizing (MLP) method to 

prioritize intersections for improvements. Safety was integrated with operational 

considerations to generate a more rational prioritized list. The MLP method was employed 

with three criteria, benefit-to-cost ratio of safety performance, delay reduction, and existing 

delay. The authors adopted two priority categories, one with safety ahead of operations, 

and the other with operations ahead of safety. Accordingly, when safety was prioritized, 

the criteria for the first layer was benefit-to-cost ratio of safety performance, followed by 

delay reduction in the second layer, and existing delay as the criterion in the last layer. On 

the other hand, when operations was prioritized, delay reduction, safety, and existing delay 

were considered in the three layers, respectively. The intersection improvement projects 

were ranked and clustered into the layers based on similarity. The sequential process 

continued until the final priority list was obtained. However, the thresholds regarding 

choosing the layer criteria were beyond the scope of their study.  

Berechman and Paaswell (2005) presented the Goal Achievement Matrix (GAM) 

methodology to prioritize transportation investment projects in New York. The following 

paragraphs briefly discuss the three phase methodology used by Berechman and Paaswell 

(2005) to evaluate, rank, and prioritize the projects in New York.  

Out of a number of competing proposals, eight most visible and important projects 

that meet basic transportation and economic needs, and thus had the best chance to be 

considered for implementation were selected in the first phase. However, no 

comprehensive regional analyses were carried out to test the needs or to set the priority list. 
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The projects were mainly Manhattan-oriented-passenger-transportation-type projects. 

Cost-benefit analysis of transportation and economic development impacts was the second 

phase of the study. Transportation benefits were measured using two variables: expected 

number of riders at the completion of the project’s construction, and the amount of time 

saved per rider. A growth model with declining growth rate was used to measure the 

expected number of riders. The growth model is: 

                                              g(t)=
g

1+ α(t - Tc)
  for   t > Tc                                            (2-1)   

where 

 g(t) = the growth in ridership over time (t), 

 g = 0.523% (annual growth rate), 

 Tc = construction period, and 

 α = 0.1 (attenuation rate).  

The time savings variable included two aspects: direct time saved, and indirect time 

saved on other applicable transit lines. Transportation cost mainly comprised of operation 

costs and maintenance costs. Projects’ respective sources of funding always pose a question 

to assessing the cost of a project. Therefore, the funding sources were also considered 

during the study by factoring the Net Present Value (NPV) formula into debt service costs, 

which should be borne by the project. The NPV of transportation benefits for the Cost 

Benefit Analysis (COBA) was calculated as:  

 NPV(C,Tc,Bt) = −  [∑
(

C
Tc

) +r.C

(1+r)T

Tc

t=1

] + ∑
Bt.[(1+g(t)(t-Tc))]+(R)-(MO)-(r.C)

(1+r)t

T+Tc

t=Tc

       (2-2)  
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where 

 Tc = construction period, 

 C = capital costs, 

 r = discount factor (5%), 

 r.C = debt service (assumed to be paid during construction period and then during 

life span of the project), 

 Bt = annual transportation benefits for effective year of project completion, 

 g(t) = ridership growth function (shown in Equation 2-1), 

 R = fare box revenue, 

 MO = maintenance and operating costs, 

 t = year index, and 

 T = life span of a project (assumed 50 years).  

The equation is based on consumer and producer surplus, capital costs, debt service, 

and operating and maintenance costs. The study identified that the projects could not be 

justified by transportation benefits alone; however, most of the projects generated positive 

net economic development benefits. Thus, the final step of the three-phase methodology 

was to employ a GAM method to address this critical issue in a systematic manner and to 

rank, i.e., prioritize, projects unequivocally. Obviously, another crucial component of 

GAM method is the weights of the criteria. A modified Delphi approach was applied to 

determine the weights. A modified Delphi approach is a process in which a panel of experts 

determine the most appropriate criteria weights for the concerned projects.  

Herbel et al. (2010) presented a variety of methods including benefit-cost analysis, 

ranking, and optimization approaches to prioritize safety improvement programs. They 
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emphasized on quantitative analysis procedures rather than qualitative judgment in 

prioritizing safety projects. However, they highlighted innovative design standards, project 

development effort, competing transportation needs, unfamiliarity of countermeasures, and 

constituent concerns as important hindrances in the project prioritization process. The 

authors concluded that a combination of project prioritization strategies and concerns of 

other agencies (e.g., DOT district or regional offices, FHWA division safety staff, etc.) 

should be taken into account to rank the projects for sequential selection and 

implementation.  

Schweikert and Chinowsky (2013) stressed on including social concerns in 

prioritizing rural roads. They highlighted the fact that most prioritization processes utilize 

technical and economic benefit-cost analysis and completely ignore the most vulnerable 

needy communities that could gain the most from any roadway project. The existing 

prioritization processes consider rural road projects with low rate of return as “low 

priority”. This study proposed to incorporate a social impact score metric system 

combining rural mobility, rural accessibility, urban accessibility and mobility, and 

employment into the prioritization methodology. 

 

2.2 Risk Factors Affecting Bicycle Safety and the Bicycle CMFs 

 

This section presents a brief review of the literature on bicycle safety. The section 

is divided into three major sub-sections. The first sub-section includes a review of recent 

literature on different risk factors affecting bicycle crashes. It also includes studies that 

focus on the causes, patterns, and contributing factors associated with bicycle crashes. As 

researchers have used several statistical and spatial models to evaluate bicycle safety, this 
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sub-section is therefore organized according to the analytical methods applied in the 

reviewed literature. The second sub-section presents a review of literature on the safety 

performance of the existing engineering-related bicycle crash countermeasures. 

Particularly, the following countermeasures are discussed:  

 bicycle lanes,  

 bicycle tracks,  

 bicycle boulevards, 

 wide curb lanes, 

 traffic calming measures such as speed humps and road diets (i.e., lane reductions), 

 roadway and intersection geometry related countermeasures such as raised 

medians, 

 crosswalks, 

 roadway lighting, and 

 on-street parking treatments. 

The third sub-section focuses on crash frequency modeling approaches. The pros 

and cons of different approaches are included in this discussion. 

 

2.2.1 Bicycle Safety 
 

2.2.1.1 Statistical Methods 

This section discusses the studies that have applied statistical models including 

logit models, probit models, odds models, multivariate Poisson-lognormal models, and 

regression models to identify the factors affecting bicycle safety. 
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Logit Models 

 

Klassen et al. (2014) analyzed the severity of bicycle crashes using spatial mixed 

logit model for Edmonton, Canada. A total of 424 intersection-related and 147 mid-block-

related bicycle crashes that occurred during 2006-2009 were investigated. Corridor design, 

human, temporal, and environmental factors were considered as covariate categories. The 

authors did not identify any common factor contributing to bicycle crash severity at 

intersections or mid-block locations. However, the interaction between roadway and 

approach-control type, the existence of partial crosswalks and bicycle signs, and the 

bicyclist’s gender and age were identified as significant factors affecting bicycle crash 

severities at intersections. Roadway classification, on-street parking, and driver’s age were 

found significant for mid-block bicycle crash severities.  

Moore et al. (2011) also differentiated the factors for intersection and non-

intersection bicycle crashes. A total of 10,029 bicycle crashes that occurred from 2002-

2008 in Ohio were analyzed. Standard multinomial logit and mixed logit models were 

developed to estimate the injury severity factors. Roadway geometry (horizontal curve and 

vertical grade), vehicle type (van, heavy truck, etc.), bicyclist safety devices (helmet), drug 

and alcohol usage, and driver insurance played a significant role in determining the injury 

severity of bicycle crashes at intersections and mid-block sections.   

Zahabi et al. (2011) used an ordered logit model to investigate the effects of crash 

location, roadway type, vehicle movement, vehicle type, environmental conditions, 

population density, road connectivity, and land use mix on injury severity of pedestrians 

and bicyclists involved in collision with motor vehicles in the City of Montreal, Canada. 

Crashes at signalized intersections were found to be more dangerous for bicyclists. 
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Through movement of vehicles was found to have significant associations with sustaining 

an injury, i.e., increased the bicyclist’s injury severity. Transit access and median income 

were not statistically significant. The authors did not find population density and lighting 

to be significant factors. This result is contradictory to the result from a later study by 

Hamann et al. (2014) which considered these factors to be significant.  

Eluru et al. (2008) applied a mixed generalized ordered response logit model to 

analyze pedestrian and bicyclist injury severity using data from the 2004 General Estimates 

System (GES). Age (the elderly are more injury-prone), speed limit (higher speed limits 

lead to more severe injuries), crash location (crashes at signalized intersections are less 

severe compared to those that occurred elsewhere), and time-of-day (dark conditions 

resulted in more severe injuries) were identified as influential variables affecting the non-

motorist injury severity.   

Kim et al. (2007) used a multinomial logit model to identify the factors leading to 

the four injury severity levels in bicyclists (i.e., fatal injury, incapacitating injury, non-

incapacitating injury, and possible or no injury). The authors used crash data from 1997-

2002 from North Carolina. Inclement weather, no streetlights, morning peak hour (06:00 

AM to 09:59 AM), head-on crashes, speeding involving vehicle speeds over 30 mph, truck 

involvement, drunk driver, bicyclist age 55 or over, and drunk bicyclist were found to 

double the probability of a fatal injury in a bicycle crash. An estimated pre-crash speed of 

vehicles of more than 50 mph was found to increase the bicyclist’s probability of a fatal 

injury by more than 16 times. Compared to the bicycle crashes involving at-fault drivers, 

those involving at-fault bicyclists were identified to be more closely correlated with 

bicyclist injury severity.  
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Probit Models 

 

Klop and Khattak (1999) examined the impacts of physical and environmental 

factors on the bicyclist injury severity. North Carolina Highway Safety Information System 

(HSIS) crash and inventory data from 1990-1993 for state-controlled, two-lane, undivided 

roadways were analyzed. Using the KABCO scale of injury severity distribution, two 

ordered probit models, one with all crashes and the other one restricted to only those in 

rural areas were developed [In the KABCO scale, K = fatal, A = incapacitating injury, B = 

non-incapacitating injury, C = possible injury, and O = property damage only]. Roadway 

characteristics such as speed limit, both straight and curved grades; driver- and bicyclist-

related factors including impaired braking, acceleration, and maneuverability; 

environmental factors including fog and dark unlighted conditions showed increased 

severity trend, most probably due to their effect on driver reaction time and speed 

differentials at the time of impact. Annual average daily traffic (AADT), interaction 

between shoulder width and speed limit, and street lighting were found to be associated 

with decreased injury severity. Marginal effects of each factor on the likelihood of each 

injury severity class were identified. They highlighted the fact that in addition to vehicular 

traffic and scenery, decision makers should also review the frequency of both straight and 

curved grades on roadway segments, the presence of a shoulder, and the presence of foggy 

conditions in selecting state bicycle routes. The authors concluded that reducing grades and 

curves on new two-lane roadway construction might have additional benefits in terms of 

reduced bicycle crash severity. 
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Odds Models 

Wang et al. (2015) investigated the factors associated with the severity of injuries 

sustained by bicyclists in bicycle crashes at unsignalized intersections. Bicycle crash data 

were extracted from Kentucky State Police’s Kentucky Collision Database for the period 

2002-2012. The authors employed a partial proportional odds model. Stop-controlled 

intersections, one-lane approaches, helmet usage, and lower speed limits were found to be 

associated with decreased injury severity. On the other hand, uncontrolled intersections, 

older drivers and bicyclists (age > 55 years), child bicyclists (age < 16 years), foggy and 

rainy weather, inadequate use of lights in dark conditions, and wet road surface were found 

to increase bicycle injury severity. 

Multivariate Poisson-Lognormal Models 

 

Kaplan and Prato (2015) utilized a multivariate Poisson-lognormal model to 

analyze land use and network effects on frequency and severity of bicycle crashes in the 

Copenhagen region. A total of 5,349 bicycle crashes from 2000-2013 were extracted for 

analysis from the National Crash Database compiled by the Danish Road Directorate. 

Traffic exposure of non-motorized and motorized transport modes was controlled in the 

model. The effect of infrastructure (e.g., the presence of bicycle lanes or paths, the presence 

of different types of intersections) and land use (e.g., the characteristics of the area where 

the roads were located and their interactions with the aforementioned infrastructure) was 

evaluated, and heterogeneity and spatial correlation across links was accounted in the 

model framework. The model resulted in reduced crash rates as bicycle traffic increased 

and this happened more for fatal and severe injury bicycle crashes.  
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The study revealed that crash rates decreased with increasing traffic volume, and 

particularly severe crash rates reduced more with increasing level of congestion. Fatal and 

severe injury crashes were related to the presence of more heavy vehicles on the road. 

Bicycle lanes and segregated bicycle paths reduced the number of severe injury crashes, 

and the effects were more pronounced in suburban areas. Possible injury or no injury 

crashes were more concentrated at the Copenhagen city center; whereas, fatal and severe 

injury crashes were more associated with industrial zones. One-way streets were correlated 

with decreased number of crashes, although this relationship was found to be reversed for 

the city center. The model identified intersections to be more problematic than mid-block 

sections, and the difference was even more pronounced when located in suburban areas. 

Roundabouts were found to be the most problematic type of intersections. Giving the right-

of-way, crossing a traffic signal, and crossing a roundabout triggered more bicycle crashes 

(Kaplan and Prato, 2015).   

Regression Models  

 

Boufous et al. (2012) examined the risk factors associated with the injury severity 

of bicyclists involved in traffic crashes in Victoria, Australia during 2004-2008. A logistic 

regression was used to ascertain the predictors of serious injury and fatal crashes. About 

34% of 6,432 police-reported bicycle crashes resulted in severe injury. The multivariate 

analysis identified age (50 years and above), not wearing helmet, dark unlit roadway 

conditions, 70 kmph or above speed zones (43.5 mph), curved roadway sections, rural 

locations, head-on collisions, run-off-road crashes due to loss of control, striking the door 

of a parked vehicle on paths as the main factors increasing the severity of injuries in bicycle 

crashes. 
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Schepers et al. (2011) also investigated the safety of bicyclists at unsignalized 

intersections within built-up areas in Netherlands using crash data from 2005-2008. The 

study focused on the association between intersection design characteristics and bicycle 

crashes. The authors classified bicycle crashes into two types based on the movements of 

the involved motorists and bicyclists: type I - through bicycle-related crashes where the 

bicyclist had the right-of-way, i.e., bicycle on the priority road; and type II - through motor 

vehicle-related crashes where the motorist had the right-of-way, i.e., motorist on the 

priority road. Negative Binomial (NB) method was employed for the study. The probability 

of each crash type was found related to its relative flows and independent variables. Type 

I crashes were found to occur more at intersections with two-way bicycle tracks, well-

marked, and reddish colored bicycle crossings; and these crashes are negatively related to 

raised bicycle crossings, i.e., speed humps and other speed-reducing measures. The 

intersections where the bicycle track approaches were 2-5 m away from the main 

carriageway were found to have lower crash probabilities. Roadway geometric factors such 

as raised medians did not have any significant impact on type II crashes. However, bicycle 

crashes were found to be less severe at intersections with speed-reducing devices.  

Bíl et al. (2010) evaluated the critical factors in fatal crashes involving adult 

bicyclists (over 17 years) using multivariate regression analysis. The authors analyzed 

1995-2007 crash data from the Traffic Police of Czech Republic. Inappropriate driving 

speeds, head-on collisions, and unlit roadways were identified as significant factors. 

Bicycle crashes were found to be more serious when associated with the consequence of 

bicyclist’s denial of right-of-way on crossroads. Male bicyclists were found to be more 

prone to fatal injuries compared to female bicyclists. The most vulnerable age group was 
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found to be 65 years and older. The authors also found that more crashes where bicyclists 

were at-fault resulted in a fatal injury compared to those where drivers were at-fault (598 

vs. 370). 

Oh et al. (2008) developed bicycle crash prediction models for urban signalized 

intersections. The authors conducted field surveys at 151 intersections in Inchon, Korea to 

identify the potential variables affecting bicycle crashes. The study revealed Poisson 

regression model to be most suitable for predicting bicycle crashes. The models identified the 

following factors (and their direction of association) to be the most critical for bicycle crashes 

at urban signalized intersections: AADT (+), presence of bus stops (-), sidewalk width (-), 

number of driveways (+), presence of speed restriction devices (-), presence of crosswalk (+), 

and industrial land use (+). In addition, the study emphasized the need to incorporate driver 

characteristics, roadway geometric design, and operational features in the analysis.  

2.2.1.2 Spatial Frameworks 

Researchers have traditionally been using spatial analysis to study the influence of 

socio-economic and demographic factors such as population, median household income, 

vehicle ownership, etc., on bicycle crashes. This section presents the recent studies that 

have analyzed bicycle safety spatially in ArcGIS. More specifically, studies focusing on 

the spatial analysis of bicyclist injury severity trends, bicycle crash clusters, and the spatial 

correlation between bicycle safety and several engineering, socio-economic and 

demographic factors are reviewed and summarized.  

Lawrence et al. (2015) conducted a geospatial analysis of bicyclist injury trends in 

Melbourne, Australia. The objective was to identify reduced bicyclist injury areas. The 

study examined crash characteristics and cycling environment to better understand the 
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factors associated with bicycle safety. Two methods were employed: (a) cycling injury 

severity was calculated using a kernel density estimation method for the period 2000-2011 

to study patterns in injury density across Melbourne over an extended time period; and (b) 

the absolute change in injury density was calculated between 2005 and 2011, which helped 

identify a geographic area which experienced a relatively more significant reduction in 

injury density. Figure 2-1 displays the spatial analysis results. The crash characteristics 

were then analyzed to identify the changes to the cycling environment that were associated 

with reduced injury rate. As shown in Figure 2-1, a geographical area to the southeast of 

Melbourne was found to have experienced a significant reduction in injury rate. It appeared 

that a combination of behavior and road infrastructure changes might be the contributing 

factors for the observed reduction. However, the lack of cycling exposure data prevented 

more conclusive remarks.  

Chimba et al. (2014) also used GIS to geo-locate and cluster the pedestrian and 

bicycle crash locations on the roadway network in Tennessee. The study objective was to 

investigate demographic, socio-economic, roadway geometric, traffic, and land use 

characteristics affecting pedestrian and bicycle crash frequency. NB regression was 

employed to model the relationship between contributing factors and crashes. The findings 

were used to identify patterns of pedestrian and bicycle high crash locations in Tennessee. 

Population distribution by race, age group, mean household income, percentage in the labor 

force, poverty level, vehicle ownership, land use, number of lanes crossed by pedestrians 

or bicyclists, posted speed limit, and the presence of special speed zones were found to 

significantly influence the frequency of pedestrian and bicycle crashes. 
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Figure 2-1: Geographic Region in Melbourne, Australia, Selected for Detailed Case 

Study Based on Spatial Analysis (Source: Lawrence et al., 2015) 

 

Siddiqui et al. (2012) applied a Bayesian spatial framework to model bicycle 

crashes to investigate the spatial correlation at Traffic Analysis Zones (TAZs) level in 

Hillsborough and Pinellas counties in Florida. Roadway characteristics, environmental, 

demographic, and socio-economic variables associated with bicycle crashes were used to 

develop the aggregate (i.e., macroscopic) models. The Bayesian models were compared 

with the traditional NB models to assess the effect of spatial correlation. Two Bayesian 

models were developed, one with only the random effects which did not account for the 

spatial correlation, and the other with both the random effects and spatial correlation to 

compare the results and explicitly identify the effect of spatial correlation. A Heuristic 

approach, Bayesian Poisson-lognormal, was used along with the traditional forward and 
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backward methods for variable selection while developing the non-Bayesian models. 

Florida Department of Transportation (FDOT) District Seven’s bicycle crash data for 2005-

2006 was analyzed. It was found that variations contributed by spatial correlations are about 

79% for bicycle crashes in the TAZs; thus, Bayesian models controlled for spatial correlation 

resulted in a better fit.  

The authors considered the following eleven significant variables for the non-

Bayesian NB model: (1) the total length of roadways with 15 mph posted speed limit, (2) 

total length of roadways with 35 mph posted speed limit, (3) total number of intersections 

per TAZ, (4) median household income per TAZ, (5) total number of dwelling units, (6) 

log of population per square mile of a TAZ, (7) percentage of households with non-retired 

workers but zero auto, (8) percentage of households with non-retired workers and one auto, 

(9) urban flag for a TAZ, (10) number of kindergarten through 12th grade enrollment, and 

(11) log of total employment number in a TAZ. The Bayesian model which did not account 

for spatial correlation identified similar variables as significant; whereas, median 

household income per TAZ, urban flag for a TAZ, and number of kindergarten through 

12th grade enrollments were found statistically insignificant when spatial correlation was 

considered in the Bayesian model. Neighborhood-related variables did not reveal any 

significant difference in the two models.  

A similar conclusion was drawn by Kim et al. (2007) except for institutional areas 

(i.e., schools) which were found to be associated with higher probabilities of incapacitating 

injuries. Moran’s I statistic identified the spatial orientation of kindergarten through 12th 

grade school enrollment as ‘random’ which explained the reason why it was not found 

significant in the model addressing the spatial relation by Siddiqui et al. (2012). Total 



28 
 

roadway length with 15 mph posted speed limit was found to be the only variable 

negatively associated with bicycle crashes. On the contrary, total roadway length with 35 

mph posted speed limit was found to have positive association. A similar positive 

association between 30 mph and 40 mph was observed by Kim et al. (2007). The number 

of intersections was also found to be highly associated with bicycle crashes. A study by 

Carter and Council (2007) identified the similar relationship that about 48% of bicycle 

crashes are intersection-related in urban areas. The estimates for percent of households 

with non-retired workers with zero autos was found to be twice than that of non-retired 

workers with one auto in the model with spatial correlation, implying the latter is less 

critical than the former variable while other variables being controlled. Population density 

and total employment, the two possible surrogate measures for bicycle exposure, were also 

found to be positively associated with bicycle crashes. Siddiqui et al. (2012) concluded that 

Bayesian Poisson-lognormal models with spatial correlation to be the better one compared 

to other models that did not account for spatial correlation among TAZs. Quddus (2008) 

acknowledged the Bayesian framework as a more capable platform to account for spatial 

correlation and uncontrolled heterogeneity present in macro-level crash data.  

Loo and Tsui (2010) conducted a spatial, circumstantial, and epidemiological study 

on bicycle crashes in Hong Kong, where bicycle is a minor mode of transport. The Traffic 

Accident Database System (TRADS) of Hong Kong police from 2005-2007 and a hospital 

based Road Casualty Information Database (RoCIS) were used. Spatial and statistical tools 

including buffer analysis, chi-square tests, analysis-of-variance, and binary logistic 

regression were used to analyze bicycle crashes. It was found that large proportion of 

crashes occurred on public roads near cycle tracks which triggered the careful 
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consideration of fully integrated cycle tracks in the new territories and sufficient safe road 

network connecting the new cycle tracks. Majority of the bicycle crashes were found to 

have taken place on relatively simple road environment which highlighted the lack of 

sufficient training and practice. The bicycle safety problem was found to be more serious 

on roads outside the cycle tracks as these locations experienced bicycle crashes often 

resulting in serious and fatal injuries. These bicyclists were mainly middle-aged males (> 

45 years) riding bicycles on public roads and were using bicycles as their mode of 

transportation for daily trips. Proper education for all bicyclists focusing on the use of 

helmets and protective gears was stressed in the study.   

2.2.1.3 Descriptive Data Analyses 

Descriptive data analysis is one of the oldest and the most common techniques in 

crash data analyses. It provides an overall understanding about the safety situation and 

helps to identify the most probable predictors that affect crash frequency and severity. This 

section discusses several recent studies that have used the descriptive data analysis 

techniques to improve bicycle safety.   

Johnson et al. (2013) studied the crash characteristics and risk factors associated 

with bicyclists and open vehicle doors in Victoria, Australia. Three complementary data 

sources were used in this study: a total of 1,247 police-reported bicycle crashes from 2000-

2011, a total of 401 hospitals’ emergency department presentations for the period 2000-

2010, and a sample of video footage from a naturalistic study of commuter bicyclists in 

Melbourne from 2009-2010. Bicyclist-open vehicle door crashes accounted for about 8.4% 

of the police-reported crashes, and 3.1% of the hospital-recorded crashes. Male population 

(police report: 67.1%; hospital record: 65.8%) comprised the higher portion of the injured 
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bicyclists. Adults aged 18 years or older (police report: 97.5%; hospital record: 96.3%) 

were found to be the most vulnerable age group for bicyclists. A high percentage (93.1%) 

of crashes took place within 60 kmph (37.3 mph) speed zones. The study identified 13 

door-related events with a rate of 0.59 events per trip from the naturalistic cycling study 

data; most drivers were found to not look in the direction of the bicyclist before opening 

their vehicle doors. 

Schepers and Wolt (2012) investigated the single-bicycle crash types and their 

characteristics using a questionnaire survey conducted in the Netherlands. The survey 

targeted bicycle crash victims treated at an Emergency Care Department. The questionnaire 

had two types of questions: open-ended questions about the crash, and closed-ended 

questions focusing on possible direct causes, crash characteristics, and circumstances. 

About half of all single-bicycle crashes were found to be related to infrastructure: collision 

with an obstacle, run-off-road, bicycle skidding due to slippery road surface, the bicyclist 

was unable to stabilize the bicycle or stay on the bicycle because of an uneven road surface. 

Loss of control at low speed, forcing on the front wheel, poor or risky riding behavior, 

bicycle defects, and gust of wind were the other main contributing factors. 

2.2.1.4 Combination of Methods 

This section focuses on recent studies that have applied a combination of spatial 

methods and regression techniques in analyzing bicycle crash frequency and severity, and 

identifying bicycle crash causes, patterns, and contributing factors. 

Hamann et al. (2014) examined bicycle crashes at intersections and non-

intersections in Iowa for the period 2001-2011 to identify the influence of person, crash, 

environment, and population characteristics. The study employed descriptive statistics, 
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GIS mapping, and multivariable logistic regression to examine factors associated with 

crash risk and crash location. These variables were identified as independent predictors of 

the crash location (i.e., intersection or non-intersection). It was found that young bicyclists 

(< 10 years old) were more prone to non-intersection bicycle crashes. Obscured vision was 

found to be a triggering factor for non-intersection crashes. Non-intersection crashes were 

found to take place outside the city limits, i.e., in rural areas, probably due different 

exposure or with reduced lighting. Failing to yield right-of-way was a less associated factor 

for non-intersection crashes. Densely populated, low income, and low education areas were 

found to be more crash prone; however, crash location did not make any difference on the 

crash statistics in these areas. Evans and Kantrowitz (2002) attributed bicycle crash issues 

to more traffic and/or poorer maintenance of these areas. On the other hand, Edwards et al. 

(2008) and Morency et al. (2012) recognized the socio-economic disparity inclusive of 

behavioral aspects has greater risk-taking likelihood for these bicycle crashes.  

As mentioned earlier, Chimba et al. (2014) investigated demographic, socio-

economic, roadway geometric, traffic, and land use characteristics affecting pedestrian and 

bicycle crash frequency in Tennessee. In this study, GIS was used to geo-locate and cluster 

the crash locations, and NB regression was employed to model the relationship between 

contributing factors and pedestrian and bicycle crashes. Pedestrian and bicycle crash data 

for the period 2003-2009 from Tennessee Department of Transportation (TDOT) and 

Tennessee Department of Safety (TDOS) databases were used in the study. The crash data 

contained 5,360 pedestrian crashes and 2,558 bicycle crashes. TDOT’s geospatial data and 

U.S. census website’s demographic and socio-economic data at census tract level were also 

used for the GIS analysis. Population distribution by race, age group, mean household 
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income, percentage in the labor force, poverty level, vehicle ownership, land use, number 

of lanes crossed by pedestrians or bicyclists, posted speed limit, and the presence of special 

speed zones were found to significantly influence the frequency of pedestrian and bicycle 

crashes. The findings were used to identify patterns of pedestrian and bicycle high crash 

locations in Tennessee. Emaasit (2013) recommended the similar approach to identify 

bicycle and pedestrian hot spots and identify the contributing factors for such crashes.    

Rodgers (1997) used logistics regression technique to evaluate the crash risk factors 

associated with adult bicyclists by comparing information on the characteristics and travel 

patterns of bicyclists who had crashed with those who had not. The analysis was based on 

data from a national survey of over 3,000 bicyclists 18 years and older. The survey had the 

information on the characteristics and use patterns of the bicyclists and whether they had 

crashed or fallen from their bicycles during the preceding year. The crash risk was found 

higher for males than for females, and was lower for bicyclists in the 25-64 year age group 

than it was for bicyclists younger than 25 years and older than 64 years. Risk was found to 

be directly proportional to the miles traveled. Furthermore, risk was found to be 

substantially higher for off-road bicyclists compared to on-road bicyclists; for those who 

race; for all-terrain style bicycles as opposed to general-purpose bicycles; and for Pacific 

Coast states compared to eastern, midwestern, southern, and mountain states. Hands-on 

training geared toward adults, improvement of riding environment by bicycle paths and 

bicycle lanes, use of helmets, and further research were emphasized as injury reduction 

strategies. 
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2.2.2 Bicycle Crash Countermeasures and CMFs 

 

2.2.2.1 Bicycle Lanes 

Bicycle lanes are defined as a portion of the roadway designated for the preferential 

or exclusive use of bicyclists and are separated from motor vehicle traffic through the use 

of pavement markings (Mead et al., 2014). Figure 2-2 shows an example of bicycle lanes 

in Chicago, IL.   

 

Figure 2-2: Bicycle Lanes in Chicago, IL (Source: NACTO, 2012; Photo: CDOT) 

 

Park et al. (2015) determined the relationships between the safety effects of adding 

a bicycle lane and the roadway characteristics on urban arterial facilities in Florida. The 

authors used observational before-and-after with empirical Bayes (EB) and cross-sectional 

methods to develop the CMFs. Adding a bicycle lane on urban arterials had a positive 

safety effect (i.e., CMF < 1.0) for all crashes, and was more effective in reducing bicycle 

crashes (CMF of 0.439 with EB method and 0.422 with cross-sectional method). The 

CMFs were found to be varying across the sites with different roadway characteristics. 

AADT, number of lanes, AADT per lane, median width, bicycle lane width, and lane width 
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were found to be the significant characteristics that affect the variation in safety effects for 

adding a bicycle lane. Socio-economic characteristics such as bicycle commuter rate and 

population density were also found to have significant effect on the CMFs. Full crash 

modification functions showed better model fit than simple crash modification functions 

since they account for the heterogeneous effects of multiple roadway and socio-economic 

characteristics. 

Chen et al. (2012) evaluated the safety effects of bicycle lanes installed prior to 

2007 in New York City on total crashes, bicycle crashes, pedestrian crashes, multi-vehicle 

crashes, and fatal and injury crashes. The impact of bicycle lane installation in a treatment 

group and a comparison group was studied using generalized estimation equation 

methodology. The study revealed that the number of bicyclists increased after the installation 

of bicycle lanes; however, the lanes did not increase bicycle crash frequency, most likely due 

to reduced vehicular speeds and fewer vehicle-bicycle conflicts. 

Nosal and Miranda-Moreno (2012) studied the bicyclist injury risk on bicycle lanes 

in Montreal using relative risk ratios. Most bicycle lanes were found to exhibit lower 

bicyclist injury rates than the corresponding control streets. Operation way, visibility, 

physical separation, presence and location of parking, vehicular traffic, and the direction 

of vehicular traffic were identified as the prominent factors affecting the bicyclist injury 

risk.  

Turner et al. (2011) analyzed three main safety studies undertaken in New Zealand 

and Adelaide, Australia. The authors applied generalized linear modeling and before-and-

after, control-impact methods. Crash, traffic, and bicycle volumes, and layout data were 

collected for urban road links, traffic signals, and roundabouts. A safety-in-numbers effect, 
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i.e., crash risk per bicyclist, was shown to be lower as bicycle volume increased. This was 

demonstrated by the flow-only models. Before-and-after analysis was employed to identify 

the presence of biasness toward the sites with bicycle facilities. The research findings on 

the impact of bicycle facilities on safety were mixed. The safety performance factor value 

with bicycle lane was 1.21, indicating a 21% increase in bicycle crashes after the bicycle 

lanes were constructed. However, a before-and-after study using the EB method showed a 

10% reduction in bicycle crashes at treatment sites, which indicated bias in the sites that 

were selected for treatment. Colored bicycle lanes decreased bicycle crashes by 39% in the 

before-and-after studies, and resulted in safety performance factors of less than 0.5 for most 

crash types. Thus, well-designed bicycle lane facilities with adequate width and color 

pavement performed best. 

Hunter et al. (2009) examined bicycle counts and speeds associated with the 

installation of bicycle lanes in St. Petersburg, Florida. The study showed a total of 17.1% 

increase in bicycle usage per day after the installation of bicycle lanes; however, one of the 

streets experienced almost no change in bicycle usage. The average bicycle speeds 

remained the same (approximately 11-12 mph) both prior to and after the construction of 

bicycle lanes. The study highlighted the fact that the addition of bicycle lanes alone on a 

street could not guarantee an immediate increase in bicycle volume and/or speed; rather 

other factors such as adjacent land use, convenient origins and destinations, and 

connectivity of bicycle lanes to other bicycle facilities within the street system were critical 

in encouraging bicycling.  

Hunter et al. (2008) studied the impact of green colored pavement and 

accompanying signing in a bicycle lane weaving area (Figure 2-3), where motor vehicles 
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cross the bicycle lane near intersection on bicyclists’ and motorists’ behavior. The study 

was conducted in St. Petersburg, Florida. The authors compared the operational behavior 

of the bicyclists and motorists at selected locations using video footage recorded before 

and after the green pavement and signing treatments were installed. The authors found that 

11.8% more motorists yielded to bicyclists, and 4% more motorists signaled their intention 

to turn right in the after-period. Overall, 6% more bicyclists scanned for proximate vehicles 

in the after-period; while the percentage of conflicts (i.e., sudden changes in speed and/or 

direction) was lower in the after-period, the differences were not statistically significant. 

The significant increase in yielding behavior by motorists was similar to the study findings 

by Hunter et al. (2000) in Portland, Oregon. 

 

Figure 2-3: Green-colored Pavement and Accompanying Signing in a Bicycle Lane 

Weaving Area in St. Petersburg, FL (Source: Hunter et al., 2008) 

 

Jensen (2008) conducted an observational before-and-after study to evaluate the 

safety performance of bicycle lanes in Copenhagen, Denmark. A general comparison group 
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in the observational study was incorporated to address the changes in traffic volumes and 

crash frequency and crash severity trends through correction factors. Bicycle lanes in the 

study resulted in a 5% increase in crashes and a 15% increase in injuries in urban areas. 

Thus, the study revealed that safety for bicyclist’s worsened at locations where bicycle 

lanes were constructed and safety was found to be the worst for bicyclists and moped riders 

with a 49% increase in injuries. The study findings are quite contradictory to the findings 

from several other studies including Rodegerdts et al (2004), Chen et al. (2012), Nosal and 

Miranda-Moreno (2012), and Park et al. (2015). Rodegerdts et al. (2004) concluded that 

bicycle lanes reduced fatal, serious, and minor injury bicycle crashes by 35%, i.e., the study 

resulted in a CMF of 0.65 for bicycle lanes. 

2.2.2.2 Bicycle Tracks  

Bicycle track is a bicycle facility which is designated for the exclusive use of 

bicyclists. These are physically separated from the sidewalk and the roadway by curbs. 

Parked vehicles between the moving traffic and the bicycle track may offer an additional 

buffer from roadway traffic (Mead et al., 2014). Figure 2-4 depicts a schematic diagram of 

a bicycle track and a bicyclist using such a track in Copenhagen, Denmark. 

Nosal and Miranda-Moreno (2012) studied the bicyclist injury risk on bicycle lanes 

and also the effect of bicycle tracks in Montreal using relative risk ratios. The performance 

of bicycle track was found to be similar to the performance of bicycle lanes. Most bicycle 

tracks were found to result in lower bicyclist injury rates than the corresponding control 

streets. Similar to the bicycle lanes, direction of traffic operation (i.e., bidirectional or not), 

visibility, physical separation, presence and location of on-street parking, vehicular traffic, 
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and the direction of vehicular traffic were identified as the prominent factors affecting the 

bicyclist injury risk on bicycle tracks.  

   

Figure 2-4: Bicycle Track (Source: Mead et al., 2014) 

(Photo Courtesy: Lars Gemzøe and Gehl Architects, Member of the Cycling 

Embassy of Denmark) 

Schepers et al. (2011) also investigated the safety effects of bicyclists at 

intersections with two-way, well-marked, and reddish colored bicycle crossings in 

Netherlands. Bicycle crashes where the bicyclist had the right-of-way (i.e., bicyclist on the 

priority road) were found to be more prone to occur at these sites than where the motorist 

had the right-of-way (i.e., motorist on the priority road). Intersections where bicycle track 

approaches were 2-5 meters away from the main travel way were found to have decreased 

bicycle crash probability, with a CMF of 0.55. Similarly, bicycle tracks that were over 5 

meters away from the main travel way also resulted in a decreased bicycle crash probability 

with a CMF of 0.93. However, the crash probability was found to be almost the same for 

bicycle lanes and bicycle paths when the distance between the bicycle track and the side of 

the main road is less than 2 meters. The red color and high quality markings did not improve 

the safety for bicyclists, and resulted in a CMF of 1.47 for red color, a CMF of 1.74 for 

high quality markings, and a CMF of 2.53 for the presence of both red color and high 

quality markings at bicycle crossings.  
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Jensen (2008) conducted an observational before-and-after study to evaluate the 

safety performance of bicycle tracks in Copenhagen, Denmark. A general comparison 

group in the observational study was incorporated to address the changes in traffic volumes 

and crash and injury trends through correction factors. Bicycle tracks increased crashes and 

injuries by 10% in urban areas. Thus, the study revealed that safety for bicyclists worsened 

at locations with bicycle tracks. However, bicycle tracks resulted in a 20% increase in 

bicycle/moped traffic mileage and a 10% decrease in AADT. The author calculated a CMF 

of 1.05 for all crash types and for all crash severities. The study also calculated the CMFs 

for different combinations of crash types and crash severities. 

2.2.2.3 Bicycle Boulevards  

Bicycle boulevards are defined as traffic-calmed side streets signed and improved 

for bicyclists to provide a safer alternative to riding on arterials. Figure 2-5 gives an 

example of a bicycle boulevard. Minikel (2012) studied bicyclist safety on bicycle 

boulevards and parallel arterial routes in Berkeley, California. Police-reported bicycle 

crashes and manually collected bicyclist count data from bicycle boulevards and parallel 

arterial routes in Berkeley, California from 2003 to 2010 were analyzed. The study 

identified that crash rates on Berkeley’s bicycle boulevards are two to eight times lower 

than those on parallel, adjacent arterial routes, and resulted in a CMF of 0.37.  

2.2.2.4 Wide Curb Lanes 

An alternative to the installation of a five-foot bicycle lane is to design the curb 

lane wide enough so that it can accommodate bicyclists. It is a good provision when there 

is right-of-way limitation. The wide curb lanes are often enhanced with shared lane 
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markings to increase awareness of the presence and position of bicyclists. Figure 2-6 gives 

an example of a wide curb lane in Virginia.  

 

Figure 2-5: Bicycle Boulevard (Source: Williams, 2014) 

 

Sando et al. (2011) studied the motorists’ behavior when passing bicyclists on wide 

curb lanes. The authors video recorded 956 passing events at 10 sites in Tallahassee, St. 

Petersburg, and Brandon, Florida during peak hours. A multivariate regression model was 

developed to identify and understand the significant variables influencing the passing 

behavior. The authors concluded that motorist passing distance is influenced by 

environmental factors, such as lane width; contextual factors, such as the presence or 

absence of vehicles in adjacent lanes; and bicyclist characteristics, such as gender. 

Hunter et al. (1999) conducted a comparative study of bicycle lanes versus wide 

curb lanes in Santa Barbara, California; Gainesville, Florida; and Austin, Texas. They 

video recorded motor vehicle-bicyclist interactions at 48 study sites and documented 276 

conflicts between motor vehicles and bicyclists. It was found that while passing bicyclists 

on the left, a significantly higher percentage of vehicles encroached into the adjacent traffic 
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lane at locations with wide curb lanes (17%) than at locations with bicycle lanes (7%). 

Lane encroachments hardly caused any conflict with motor vehicles using the other lane. 

Where the bicycle lane width was 5.2 feet or less, the average bicyclist distance from the 

curb was less than for wide curb lanes; however, at locations where the bicycle lane width 

was greater than 5.2 feet, the average bicyclist distance from the curb was greater than for 

wide curb lanes. The authors concluded that bicycle lanes and wide curb lanes were both 

effective in improving bicyclist safety; however, they recommended the installation of 

bicycle lanes if right-of-way permits. 

 

Figure 2-6: Wide Curb Lane (Source: Mead et al., 2014) 

(Photo Courtesy: James and Gilbert, 2012) 

 

Harkey and Stewart (1997) examined motorist and bicyclist behavior on roadway 

segments with a bicycle lane, a wide curb lane, and a paved shoulder. The study revealed 

that motorists passed at a distance of approximately six feet irrespective of the facility type. 

Motorists tended to move about one foot laterally while passing a bicyclist in a bicycle 

lane, regardless of the width of the bicycle lane; whereas, motorists kept an additional 1.3 
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feet when passing bicyclists in a wide curb lane compared to bicycle lanes and paved 

shoulders. Moreover, bicyclists were more likely to ride further from the curb in a bicycle 

lane or paved shoulder than in a wide curb lane. The authors conducted an observational 

study and concluded that bicycle lanes and paved shoulders offered a safety advantage over 

wide curb lanes. 

2.2.2.5 Traffic Calming Measures 

Traffic calming consists of modifications to the roadway design and signing to slow 

down and/or reduce traffic, and to improve safety. Several traffic calming measures 

including speed-reducing measures (e.g., speed humps) and road diets (i.e., lane 

reductions) are proven to be effective in improving bicycle safety.   

Speed-reducing Measures  

 

Schepers et al. (2011) studied the impacts of speed-reducing measures such as 

raised bicycle crossings and speed humps on bicycle safety. Similar to the findings of 

Gårder et al. (1998), Schepers et al. (2011) revealed that speed-reducing measures for 

drivers leaving or entering the main road (e.g., a raised bicycle path and/or exit 

construction) effectively improved safety and resulted in a CMF of 0.49. The authors stated 

that speed-reducing measures on the minor road are suitable for most cases as they do not 

require additional right-of-way, in contrast to the construction of a bicycle path or a bicycle 

track. However, for through motorized vehicles on the main road where the motorists had 

the right-of-way, installation of speed-reducing measures such as a raised bicycle crossing 

resulted in a CMF of 1.28. Elvik and Vaa (2004) also recognized such negative effect of a 

raised bicycle crossing in reducing bicycle crashes and serious and minor injuries. Their 

study resulted in a 9% increase in bicycle crashes after the construction of raised bicycle 

http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
http://www.cmfclearinghouse.org/detail.cfm?facid=4043
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crossings. Oh et al. (2008) concluded that the presence of speed restriction devices such as 

speed bumps and red light cameras improved bicycle safety (CMF of 0.28).  

Lane Reduction  

 

Chen et al. (2013) evaluated the effectiveness of lane reduction at intersections on 

bicycle safety. The researchers applied a pretest-posttest methodology to compare crash 

statistics after the implementation of lane reduction at 324 intersections in New York City. 

Five-year crash data before the lane reduction strategy implementation and two-year crash 

data after the implementation were analyzed. Analysis of covariance (ANCOVA) was used 

to control for potential regression-to-the-mean effects. The study identified that bicyclist 

crash incidence increased by 5.9% at treatment intersections compared to a 25.6% 

reduction at comparison intersection sites. Thus, an ANCOVA adjusted increase of 21% 

bicyclist crashes at intersections was calculated; however, the results were not significant 

at the 5% significance level. The authors could not make a conclusive decision due to lack 

of bicycle volume data.   

Hamann & Peek-Asa (2013) examined the link between on-road bicycle facilities 

and bicycle crashes in Iowa during 2007-2010. A total of 147 crash sites were matched 

with 147 non-crash control sites, and conditional multivariate logistic regression was 

employed. It was found that for every 10-foot increase in the total roadway width, the odds 

of the roadway being the site of a bicycle crash increased by 38%. However, the researchers 

were not able to specify whether crashes took place when bicyclists were crossing the 

roadway or riding along the roadway. The results indicated that reducing the roadway 

width may be associated with a decreased crash risk for bicyclists. 
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2.2.2.6 Roadway and Intersection Geometry 

Schepers et al. (2011) studied the effect of number of lanes and intersection 

geometry on bicycle safety. The authors did not identify any statistically significant relation 

for bicycle crashes involving through motor vehicles where motorists had the right-of-way 

(i.e., motorist on the priority road).  

Räsäsen and Summala (1998) found that the provision of raised middle islands at 

intersections that enclosed a left-turn section for both vehicles and bicyclists on roadways 

with more than two lanes resulted in a CMF of 0.96; on the other hand, raised middle 

islands at intersections on roadways with two lanes resulted in a reduction in safety, with 

a CMF of 1.48. The authors found that enabling bicyclists to cross in two phases might 

lower the demands and increase safety on roadways with more than two lanes.  

Miranda-Moreno et al. (2011) concluded that the presence of medians produced a 

positive safety effect on bicycle crashes (CMF of 0.97), while a CMF of 1.67 was estimated 

for locations without the raised medians (Räsäsen and Summala, 1998). 

Turner et al. (2011) analyzed the effect of left-turn lanes at signalized intersections 

in Christchurch, New Zealand and Adelaide, Australia. In New Zealand, intersections with 

exclusive left-turn lanes resulted in a CMF of 0.97, and the intersections with shared left turn 

and through lanes resulted in a CMF of 0.60. However, bicycle safety worsened in Adelaide, 

Australia; intersections with exclusive left-turn lanes resulted in a CMF of 1.36, and those 

with shared left turn and through lanes resulted in a CMF of 1.40. Schepers et al. (2011) in 

their study observed a similar result. In their study, left-turn lane or left-turn section on the 

main road where bicyclists have right-of-way at the intersections in Netherlands resulted in 

a CMF of 1.12. 

http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
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Schepers et al. (2011) concluded that restricted visibility of vehicles on a minor 

road to approaching bicyclists at intersections with bicyclist priority worsened the safety 

condition. The study resulted in a CMF of 1.37. Surprisingly, the authors found that very 

poor visibility improved the safety situation and resulted in a CMF of 0.54 for the same 

scenario. The same study identified that three-legged intersections are more bicyclist 

friendly (CMF 0.83) than four-legged intersections (CMF 1.28). Miranda-Moreno et al. 

(2011) also supported this observation, the authors calculated a CMF of 0.86 for three-

legged intersections in Montreal, Canada.   

Daniels et al. (2009) investigated the effect of converting intersections into 

roundabouts on bicycle safety. The study assumed that the effectiveness of roundabouts 

depend on the types of bicycles, bicycle facilities, and other geometric factors. Regression 

analyses on effectiveness-indices resulting from a before-and-after study of bicyclist injury 

crashes at 90 roundabouts in Flanders, Belgium were performed. Roundabouts with bicycle 

lanes performed significantly worse compared to three other design types (mixed traffic, 

separate bicycle paths, and grade-separated bicycle paths) for all injury crashes involving 

bicyclists. Conversion of traditional intersections into roundabouts with bicycle lanes 

resulted in a CMF of 1.93 for all injury crashes and a CMF of 1.37 for fatal and severe 

injury crashes. Conversion of traditional intersections into roundabouts with separated 

bicycle paths however improved the overall bicycle safety (CMF 0.83); however, degraded 

the fatal and severe bicycle crash scenario (CMF 1.42). Conversion of traditional 

intersections into roundabouts with grade separated bicycle paths also improved safety with 

a CMF of 0.56 for all crash severities, and a CMF of 1.31 for fatal and severe injury crashes. 

Elvik and Vaa (2004) also recognized the negative effect of raised intersections in reducing 

http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
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crashes. Their study resulted in a 5% increase in serious and minor injury crashes and a 

13% increase in property damage only (PDO) crashes.  

2.2.2.7 Crosswalks 

Oh et al. (2008) concluded that the presence of crosswalks is crucial in the 

prevention of bicycle crash probability at intersections. Their study for Korea indicated 

bicyclists might have a conflict with pedestrians and vehicles making a right turn when 

crossing an intersection. Permitting a RTOR (Right-Turn-On-Red) signal at signalized 

intersections increased the probability of crashes between pedestrians and bicyclists. Signs 

prohibiting a RTOR signal during certain hours could be more effective. The study also 

identified presence of bus stops as very favorable (CMF 0.18) in reducing bicycle crashes 

at intersections.  

2.2.2.8 Roadway Lighting  

Kim et al. (2007) investigated the factors that increase the probability of a severe 

or fatal injury in a bicycle crash using a multinomial logit model. The analysis was based 

on police-reported crash data from 1997-2002 from North Carolina. It was found that lack 

of street lights at night was associated with a 111% increase in the probability of a fatal 

injury. The researchers emphasized that lighting not only affected bicyclist visibility but 

also decreased the probability of a driver taking evasive action that would reduce injury 

severity. However, the study did not account for the presence or absence of illumination 

equipment on bicycles. 

Wanvik (2009) examined the safety effect of roadway lighting on night time 

crashes on Dutch roads. The author analyzed two decades of crash data. The study 

concluded that roadway lighting was associated with nearly 60% reduction in bicyclist 
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injury crashes in dark conditions on rural roads. The observed safety effect was found to 

be significantly greater for bicyclists compared to vehicles. 

2.2.2.9 Parking Treatments 

The City of Toronto Transportation Services Division (2003) reported running into 

open car doors as the third most frequent type of bicycle crashes. The analysis was based 

on police-reported bicycle crashes that occurred from 1997-1998. The authors found that 

these crashes accounted for 11.9% of the 2,574 reported crashes, and resulted in more 

severe injuries compared to other types of bicycle crashes.  

Duthie et al. (2010) studied the effects of on-street bicycle facility configuration on 

bicyclist and motorist behavior. Observational studies were conducted at 48 sites in three 

large Texas cities, Austin, Houston, and San Antonio. Bicyclist and motorist lateral 

position and motorist encroachment on an adjacent lane were observed. Two multivariate 

regression models were developed based on these observations. It was found that bicycle 

lanes created a safer and more predictable riding environment compared to wide outside 

lanes, and the provision of a buffer between parked vehicles and bicycle lanes was found 

to result in fewer conflicts between bicyclists and open car doors. Furthermore, the lateral 

position of bicyclists was found to be safer when riding next to a row of parked vehicles 

than riding next to only a few parked vehicles.  

Teschke et al. (2012) examined the route infrastructure on injury risk to bicyclists. 

A total of 690 bicycle crashes in Toronto and Vancouver, Canada were analyzed, and the 

infrastructure of the crash location was compared to a randomly selected control site from 

the same trip. A case-crossover methodology was adopted in this research. It was found 

that bicycle riding on a major street route without parked vehicles and with bicycle 
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infrastructure decreased bicyclists’ injury risk by 37% when compared to the same type of 

road with on-street parking. Vancouver route preference survey also indicated a public 

preference for major streets without on-street parking and with shared lanes or bicycle 

lanes. 

 

2.2.3 Crash Frequency Modeling 

 

Crash frequency data are non-negative integer numbers. The standard ordinary 

least-square (OLS) regression which requires the dependent variable to be continuous is 

therefore not suitable to model crash data (Lord and Mannering, 2010). Since the dependent 

variable is a non-negative integer, Poisson and Negative Binomial (NB) regression models 

are the most common model forms for developing crash prediction models, i.e., Safety 

Performance Functions (SPFs). As NB models can handle over-dispersion, which is very 

common in crash data, these models have an advantage over Poisson models.  

El-Basyouny and Sayed (2006) compared the traditional negative binomial (TNB) 

model and the modified negative binomial (MNB) model while developing the crash 

prediction models for British Columbia, Canada. The TNB approach assumes that the 

shape parameter of the negative binomial distribution is fixed for all locations, while the 

MNB approach assumes that this shape parameter varies with the location's characteristics. 

MNB provided a statistically significant improvement in model fit over the TNB model.  

Cafiso et al. (2010) employed a NB structure to develop comprehensive crash 

models for two-lane rural highways using exposure, geometry, consistency, and context 

variables. Malyshkina and Mannering (2010) considered NB model while conducting an 

empirical assessment of the impact of highway design exceptions on vehicle crash 
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frequency. Park et al. (2015) developed CMFs to assess the safety effects of adding bike 

lanes on urban arterials. The researchers used a NB model form while developing the SPFs.  

Lord and Bonneson (2007) tried different NB regression models using one-way and 

two-way frontage roads together in one model, and then in separate models; and finally 

used a Poisson regression model to develop CMFs for rural frontage road segments in 

Texas. Some of the NB models did not provide reasonable results due to low sample mean 

and small sample size. Models developed from datasets with such characteristics can show 

significant signs of instability during the model estimation process as the data may exhibit 

over-dispersion which cannot be captured by a NB regression model (Lord, 2006).  

Since crashes are usually rare and random, there can be a large number of locations 

that have not experienced any crashes. Traditional Poisson and NB models may not be able 

to handle the datasets that have a large number of zero crash observations. Recent literature 

has suggested that motor vehicle crashes can be modeled successfully assuming a dual-

state data-generating process to account for the excess zeros. This means the entities such 

as road segments, intersections, etc. exist in one of the two states – perfectly safe and 

unsafe. Please refer to Lord et al. (2005) for a detailed discussion on these two states. Thus, 

the zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB) models have 

frequently been applied to account for the preponderance of excess zeros observed in crash 

count data (Lord et al., 2005).  

Miaou (1994) compared the performance of Poisson model, NB model, and ZIP 

model while establishing the relationship between truck crashes and geometric elements of 

road sections. All the three models were found to estimate the regression parameters 

consistently. In general, the author suggested that NB model estimated using the moment 
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and regression-based methods should be used with caution. If the over-dispersion of crash 

data is found to be moderate or high, both the NB and ZIP models are recommended to be 

explored. Overall, the ZIP model appeared to be a potential model when data exhibit excess 

zeros. Shankar et al. (1997) examined ZIP and ZINB models, and proposed these models 

for modeling crash frequencies. Their study findings showed that ZIP model structures are 

promising and have the flexibility to uncover the processes that affect crash frequencies on 

roadway sections that experienced zero crashes and those with crash occurrences.  

Carson and Mannering (2001) applied ZINB models to understand the effect of ice 

warning signs on ice-accident frequencies. The ZINB model was found to be the most 

appropriate to assess the effects of ice-warning signs on accident frequencies. Lee and 

Mannering (2002) studied the impact of roadside features on the frequency of run-off-road 

crashes using a ZINB model. Their findings showed significant promise in applying this 

method to run-off-road crash analysis. Kumara and Chin (2003) modeled accident 

occurrence at signalized Tee intersections with special emphasis on excess zeros. The 

authors compared the performance of NB model with ZINB model. Their study highlighted 

the fact that the latter was a better representative model than its parent NB model in 

detecting excess zeros after controlling for over-dispersion.  

Shankar et al. (2003) presented an empirical note on the predictive modeling of 

pedestrian crashes. The researchers developed the models using NB and ZIP distributions, 

and discussed their applicability to pedestrian crash phenomena. The study results 

identified ZIP as a promising methodology for providing explanatory insights into the 

casualty behind pedestrian crashes. Qin et al. (2004) used ZIP approach to estimate models 

for predicting counts considering single-vehicle, multi-vehicle same direction, multi-
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vehicle opposite direction, and multi-vehicle intersecting crash types as a function of daily 

traffic volume, segment length, speed limit, and roadway width.  

Lord et al. (2005) provided a comprehensive guidance on modeling crash data. The 

researchers examined the motor vehicle crash process from theoretical principles and from 

basic understanding of crash mechanism perspective. The study explored the progress of 

statistical models applied toward motor vehicle crash process and indicated how good they 

statistically approximate the process of crash occurrence. The research shed light on the 

application rationale of commonly used statistical models, such as, Poisson, Poisson-

gamma (or negative binomial), ZIP, and ZINB. The study demonstrated that certain 

circumstances trigger excess zeros frequently observed in crash data; and these 

circumstances arise from low exposure and/or inappropriate selection of time/space scales, 

and not from underlying dual state process. The researchers concluded that careful 

selection of time/space scales for analysis, an improved set of explanatory variables and/or 

unobserved heterogeneity effects in count regression models, or small-area statistical 

methods (observations with low exposure) represent the most defensible modeling 

approaches for datasets with a preponderance of zeros.    

Later, Lord et al. (2007) illustrated the logic problem with zero-inflated (ZI) models 

as they lack the boundary conditions delimiting the two states (i.e., perfectly safe and 

unsafe states) of such models. The researchers concluded that although ZI models offer 

improved statistical fit, these models could only be adopted when prediction is the sole 

research objective, which is seldom the research objective for safety. They added that 

“statistical methods and their underlying assumptions need to be applied judiciously in 
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order to achieve model parsimony and to withstand detailed logical scrutiny” Lord et al. 

(2007). 

Huang and Chin (2010) examined the performance of ZIP regression with site-

specific random effects (REZIP) model versus random effect Poisson (REP) model and 

standard ZIP model. Their study demonstrated that REZIP model may significantly 

improve the model-fitting and predictive performance of crash prediction models. 

However, the authors concluded that the differences in parameter in the REZIP, REP, and 

ZIP models may not be sufficient to justify the suitability of any one model. Furthermore, 

it was emphasized that modeling traffic crashes require serious examination of specific 

dataset with respect to special data structures, model fitting as well as predictive 

performance, and engineering judgment based on the results estimated from the models. 

Dong et al. (2014) proposed a multivariate random-parameter ZINB (MRZINB) regression 

model to account for unobserved heterogeneity. Prasetijo and Musa (2016) preferred ZIP 

and ZINB models over Poisson and NB models while analyzing road crashes in Malaysia.  

This study concentrated on developing CMFs for bicycle crashes. Bicycle crashes 

are rare and random; therefore, the bicycle crash data is expected to be zero inflated. In 

other words, several locations (i.e., roadway segments and intersections) may not have 

experienced any bicycle crashes. The most common norm to develop CMFs using cross-

sectional method (detailed in Chapter 3) is through NB models. Crash prediction modeling 

techniques have advanced a lot in the past few years. However, researchers still consider 

NB and/or Poisson as the foundation for all models. This research has attempted to find a 

common ground where CMFs can be developed considering the recent advancements and 
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guidance from the researchers as well as keeping the traditional norm intact. This study has 

used ZINB modeling approach for developing the CMFs for bicycle crashes.     

It is quite clear from the previous studies that even ZINB has some methodological 

constrains (Lord et al., 2005; Lord et al., 2007). Therefore, to address the model’s 

limitations identified in the previous studies, data for this research was processed very 

carefully keeping in mind the time/space scales and exposure issue while finalizing the 

dataset for modeling. Furthermore, an attempt has been made to address the logic problem 

of boundary conditions for two states by keeping all the independent variables for the count 

model component and developing zero-inflated model with only offset term (i.e., a constant 

term) resembling the boundary condition as latent. The true proportion of zeros was 

monitored and the model was accepted as long as the proportion of true zeros was found 

to be lower than 2%. 

 

2.3 CMF Transferability 

 

Farid et al. (2016) explored the transferability of the Safety Performance Functions 

(SPFs). Rural divided multilane highway models from Florida, Ohio, and California were 

examined to understand the influence of SPF transferability. Single-state SPFs, two-state 

SPFs, and three-state SPFs were developed using traffic, roadway geometry, and crash data 

from the three states. SPFs were estimated through Negative Binomial (NB) models for 

different crash types and severities. A transfer index was used to evaluate the transferability 

of the models for other regions. Models from Florid and California were found to be more 

transferable compared to the models from Ohio. When pooled data (from two or three 

states) were used, the transferability index increased. The research proposed Modified 
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Empirical Bayes (MEB) measure that provided segment specific calibration factors for 

transferring SPFs to local jurisdictions. MEB outperformed the Highway Safety Manual 

(HSM) calibration factor for transferring the SPFs. 

Wang et al. (2016) estimated the CMFs for the effect of signalization at 

intersections in Florida. Empirical Bayes method was applied to derive the CMFs for 

KABCO, KABC, and rear-end crashes using SPFs from various jurisdiction, and adjusted 

by calibration factors. SPFs were developed using Florida and Ohio data. The SPFs 

suggested in the HSM were also used to calculate the CMFs. The research concluded that 

it is not suitable to apply SPFs from other states without thorough examination. The CMF 

was found 0.785 for KABCO with the SPF from Florida, significantly smaller than 1 

indicating signalization at intersections resulted in fewer crashes. But the SPFs from Ohio 

and the HSM resulted in higher CMFs of 1.06 and 1.07, respectively, significantly larger 

than 1, indicating that the signalization resulted in more crashes. Therefore, the CMFs may 

be significantly different when SPFs developed from other states’ data are applied. Thus, 

CMFs would be biased if SPFs are transferred from other states without proper 

adjustments. 

Almasizadeh (2016) explored the transferability of CMFs for passing lanes and dual 

rumble strips on two-lane highways in Ontario, Canada using the prior research results 

from the United States. The study found consistent safety effects for passing lanes in 

Michigan and Ontario. The effects of center line and shoulder rumble strips were also found 

quite consistent in the study. Saleem et al. (2016) also explored the transferability of CMFs 

for Ontario. In addition to the study efforts by Almasizadeh (2016), the researchers 

investigated the impact of acceleration ramps for freeway ramps. The CMFs were found 
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compatible to the values recommended in the HSM. Persaud et al. (2015) addressed the 

methodological issues and other factors that cause CMFs vary in different studies and in 

fostering the transferability of the CMFs. Several research results were summarized to 

demonstrate how CMFs could mathematically account for the factors that caused CMFs to 

vary in different applications. The research focused on the CMFs related to intersection, 

alignment, and cross section design of the roadways.   

 

2.4 Summary 

 

This chapter presented a comprehensive literature review on network screening, 

i.e., location prioritization practices and methods for highway improvements. 

Transportation agencies are still using simple scoring and ranking method for 

prioritization. Some agencies are using different methods which are basically alternate 

forms of simple scoring algorithm. However, researchers have used several methods 

including ANP, AHP, FANP, multi-layer prioritization, etc. to overcome the deficiencies 

of simple scoring and ranking algorithm for prioritization.  

Furthermore, risk factors affecting bicycle safety, the bicycle crash 

countermeasures and bicycle CMFs, crash frequency modeling approach, and the 

transferability aspects of the CMFs were also reviewed. Researchers preferred to 

differentiate the risk factors affecting bicycle safety for intersections and mid-block 

locations due to the obvious variability in the operational characteristics. Roadway traffic, 

geometric, and socio-economic variables were investigated to determine their impact on 

bicycle crash frequency and severity. Spatial analysis, especially the use of ArcGIS, has 

evolved as an effective tool to better understand and model bicycle crash frequencies. 
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Several studies, however, used a combination of different methods to identify and rank 

bicycle high crash locations.   

In addition to the typical bicycle infrastructure such as bicycle lanes and bicycle 

slots, researchers have investigated the impact of several other roadway characteristics, 

including shared path width and separation, shoulder type, shoulder width, etc., on bicycle 

safety. One of the main challenges observed in improving bicycle safety is the lack of 

bicycle exposure data. Unlike traffic volumes, bicycle volumes are scarcely available, if at 

all. Researchers addressed this limitation by using surrogate measures of bicycle exposure 

such as number of transit stops in a region, population, etc. 

This study also concentrated on CMFs for bicycle crashes. The most common norm 

to develop CMFs using cross-sectional method is through NB models. Crash prediction 

modeling techniques have advanced a lot in the past few years. However, researchers still 

consider NB and/or Poisson as the foundation for all models. Regarding the transferability 

of the CMFs, researchers used transferability indices to evaluate the transferability scopes. 
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CHAPTER 3 

METHODOLOGY 

 

This chapter presents the methods in detail that were adopted to achieve the three 

research objectives mentioned in Chapter 1, Introduction. 

 

3.1 Network Screening 

 

The first objective of this dissertation was to determine the most suitable approach 

for network screening, i.e., prioritizing the highway locations for improvements. Three 

potential screening methodologies, AHP, ANP, and FANP were identified from the 

literature review. These three methods were compared while prioritizing the state 

maintained urban four-lane divided segments in Florida. The pertinence of these methods 

was also discussed. The following sections explain these three methods in detail. 

 

3.1.1 Analytic Hierarchy Process (AHP) 

 

The Analytic Hierarchy Process (AHP), developed by Professor Thomas L. Saaty, 

is perhaps one of the most commonly used multi-criteria decision-making techniques. AHP 

is designed to solve multi-criteria decision problems by comparing several alternatives 

based on the same set of attributes. These comparisons may be taken from actual 

measurements or from a fundamental scale which reflects the relative strength of 

preferences and feelings. AHP is being widely used in multi-criteria decision making, 

planning and resource allocation, and in conflict resolution (Saaty, 1987). The objective of 

AHP is to quantify relative priorities for a given set of alternatives on a ratio scale using 

the judgment of the decision maker. The method stresses the importance of the intuitive 

judgments of a decision maker as well as the consistency of the comparison of alternatives 
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in the decision making process (Saaty, 1980). Further, it has the ability to organize tangible 

and intangible factors in a systematic way, and provide a structured yet relatively simple 

solution to decision making problem (Skibniewski and Chao, 1992).  

The key steps of AHP are (Lind and Schurba, 2002):  

 Dividing the problem into a hierarchy, i.e., one overall goal on the top level, several 

criteria contributing to the goal on the next level, and finally, several decision 

alternatives on the last level. 

 Comparing pairs of alternatives with respect to each criterion and pairs of criteria 

with respect to the achievement of the overall goal. 

 Synthesizing judgments and obtaining priority rankings of the alternatives with 

respect to each criterion and the overall priority ranking for the problem. 

The computational steps of AHP are further elaborated in the following paragraphs. 

Model Construction and Problem Structuring  

The goal of network screening is to prioritize and rank highway improvement 

locations based on several criteria. Figure 3-1 illustrates the hierarchical structure for this 

goal. As can be observed from the figure, Level 0 is the analysis goal, i.e., to prioritize the 

highway improvement locations. Level 1 is the multi-criteria which are used for screening. 

Finally, Level 2 consists of the alternative choices, i.e., the highway locations. The lines 

between the three levels indicate the relationship between goal, criteria, and the alternatives 

(i.e., highway locations). Figure 3-2 depicts the AHP model structure for this scenario. 

In Figure 3-2, each arrow has specific impacts on the interrelation of different 

levels, and on the next steps. W21 represents the impact of goal on each of the criterion and 

W32 represents the impact of criteria on each of the alternatives. The direction of arrows is 
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dependent on the rationale of the problem structure. For the stated scenario, the goal of 

prioritizing highway locations can be achieved through the criteria, i.e., the criteria are 

impacting the goal; and these criteria determine the ranking of the alternatives. 

 

Figure 3-1: Hierarchical Structure of Highway Improvement Location Selection 

 

 

Figure 3-2: AHP Model Structure  

Pair-wise Comparison Matrices and Priority Vectors 

When the AHP model structure is established, the next step is to determine the 

relative importance of each criterion and each alternative (i.e., highway segment) with 

respect to each criterion. It is achieved via pairwise comparisons that aim to compare the 
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relative importance of two criteria (or, alternatives) at a time. This approach theorizes that 

an analyst can better assess the relative importance of a set of criteria when given only two 

criteria to compare at a time, than when given all at once. The pairwise comparisons are 

performed on a pre-defined relative scale of 1-9, which translates to comparing how much 

preference one criterion gets over the other. A reciprocal value is assigned to the inverse 

comparison.   

Once the pairwise comparisons are performed, the next steps in the AHP model are 

to generate pairwise comparison matrices and priority vectors. Level 1 corresponds to one 

n×n comparison matrix for the pair-wise comparison between n criteria with respect to the 

goal. Similarly, since the m locations are connected to each of the n criteria, n number of 

m×m comparison matrices are created to evaluate the m locations. The pair-wise 

comparison matrices are then used to generate priority vectors, which are the normalized 

Eigen vectors of the comparison matrices. A Priority vector, w, is computed as an estimate 

of the relative importance of the elements compared by solving (Saaty, 1987; Tuzkaya and 

Önüt, 2008) 

                                                             Aw  =  λmaxw                                                       (3-1) 

where λmax is the largest eigenvalue (i.e., Principal Eigenvalue corresponding to the 

Principal Eigen vector) of the pair-wise comparison matrix, A. Priority vectors are 

generated for all the m highway locations with respect to each criterion, and for all the 

criteria at cluster level with respect to the n criteria. 

These pairwise comparisons might not always be completely logical. For example, 

if Measure A is more important than Measure B, and Measure B is more important than 

Measure C, the selections would be inconsistent if Measure C is considered to be more 
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important than Measure A, which is not logical. However, such conflicts will arise 

naturally, especially when several criteria are involved.  

A comparison matrix M is considered to be consistent if aij.ajk = aik for all i, j, and 

k. However, this consistency cannot be always expected because of subjective judgment. 

For instance, if A > B has the numerical interpretation as 3 > 1 and C > A has numerical 

interpretation as 5 > 1, then, C > B may not result in value as 15 > 1. However, the relation 

between C and B as C > B should be consistent; i.e., the rank can be transitive but the values 

may not.  

To help gauge the degree of consistency in a set of pairwise comparisons made, 

Professor Saaty (Saaty, 1987) developed the “consistency ratio” as a quick measure of the 

level of consistency. A 0% consistency ratio indicates that the pairwise comparisons are 

perfectly consistent, and a consistency ratio < 10% can be considered to be acceptable. 

Otherwise, the pairwise comparisons should be revised to improve their consistency. The 

following paragraphs explain this concept in detail.  

Professor Saaty (Saaty, 1987) explained that if the largest Eigenvalue is equal to 

the number of performance measures, i.e., 𝛌max = n, then the matrix is consistent. He also 

provided a measure called Consistency Index (CI) as deviation or degree of consistency, 

                                            Consistency Index, CI = 
λmax  -  n

n - 1
                                        (3-2)             

The next step is to compare the calculated consistency index with Random 

Consistency Index (RI). Professor Saaty (Saaty, 1987) generated matrices using scale 1/9, 

1/8, 1/7, … , 1, … , 7, 8, 9 (similar to the idea of Bootstrap) and calculated the standard 

RIs for comparison. Table 3-1 provides the average RIs estimated from a sample size of 

500 matrices.  
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Table 3-1: Values of Random Consistency Indices  

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 

The comparison is termed as Consistency Ratio (CR), and is calculated as: 

                                                  Consistency Ratio, CR = 
CI

RI
                                                     (3-3)                                               

Ranking of Alternatives 

Once the consistency checks are performed, the next and the final step in the AHP 

is to compute the overall composite weight of each alternative (i.e., highway location) 

based on the determined weight at Level 1 and Level 2 comparison matrices, i.e., from the 

cluster level priorities. The composite weight is simply the weighted sum of the criteria. 

In brief, a set of evaluation criteria and a set of alternatives are considered at first. A 

weight is then generated for each evaluation criterion according to the decision maker’s pair-

wise comparisons of the criteria. The higher the weight, the more important the 

corresponding criterion is. For each criterion, AHP assigns a score to each option according 

to the decision maker’s pair-wise comparisons of the options based on that criterion. The 

higher the score, the better the performance of the option is with respect to the considered 

criterion. Finally, AHP combines the criteria weights and the options’ scores to determine a 

global score for each option, and a consequent ranking. The global score for a given option 

is a weighted sum of the scores it obtained with respect to all the criteria (Saaty, 1980). 

 

3.1.2 Analytic Network Process (ANP) 

 

The Analytic Network Process is a multi-criteria decision algorithm. Unlike the AHP, 

the ANP, however, is not restricted to the traditional hierarchical top-down structure of 

decision making; rather it is a network which can address the interaction among elements of 
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each cluster (i.e., goal, criteria, or alternatives) or between clusters of a decision process. 

Figure 3-3 illustrates the main difference between the hierarchical structure and the ANP’s 

network structure in decision-making process. In the hierarchical structure the decision 

process follows a top-down approach from goal to criteria, and then from criteria to 

alternatives. The interaction among elements of each cluster or between clusters however 

cannot be addressed in this hierarchical structure. The ANP structure, on the other hand, 

considers possible interactions among different elements of a cluster and between clusters. 

Depending on its complexity, a decision problem may take any form of the network (Saaty, 

2008). 

The ANP is composed primarily of the following computational steps (Chung, 

2005; Yüksel and Dağdeviren, 2007):  

 model construction and problem structuring  

 pair-wise comparison matrices and priority vectors  

 supermatrix, weighted supermatrix, and limit matrix formations  

 ranking of alternatives 

 

Figure 3-3: Difference between Hierarchy and Network Decision Making Process  

(Azis, 2003; and Sadeghi et al., 2012) 
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Basically, ANP is a generalized form of AHP. Although both methods account for 

subjective judgment, the main difference lies in their model structure. Figure 3-4 highlights 

this difference schematically for network screening objective. Unlike the ANP, the AHP 

considers a simpler hierarchical structure, limiting its ability to account for 

interdependencies among the criteria and the alternatives. Since the ANP and the AHP are 

similar in the comparative judgment steps (i.e., with respect to pair-wise comparison and 

priority vectors), the following methodological steps are similar in the two methods: pair-

wise comparison, comparison matrix, priority vector, and consistency ratio. The ANP 

method and its computational steps are elaborated further in the following paragraphs. 

Model Construction and Problem Structuring  

As can be observed from Figure 3-1, the problem of network screening can be 

disintegrated into three levels (similar to hierarchical structure): goal to rank the alternatives, 

criteria to achieve the goal, and alternatives (i.e., the highway locations that need to be 

prioritized). The ANP addresses the interdependency of the criteria by including an inner 

dependence loop in the network structure. Figure 3-4 depicts the potential network structure 

for this scenario. 

In Figure 3-4, W21 represents the impact of goal on each of the criterion and W32 

represents the impact of criteria on each of the alternatives similar to AHP. However, in 

ANP, the interdependency within the criteria is represented by W22 additionally. 

Pair-wise Comparison Matrices and Priority Vectors 

 The computational step of ANP for pair-wise comparison matrices and priority 

vectors is exactly similar to AHP. However, ANP requires generating priority vectors also 

at sub-cluster level with respect to the n criteria to address the interdependency issue.  
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Figure 3-4:  Network and Hierarchical Model Structures  

 

Supermatrix, Weighted Supermatrix, and Limit Matrix Formations 

A supermatrix is a comparatively large square matrix where the cluster priority 

vectors are entered in appropriate columns to obtain global priorities with interdependent 

influence (Yüksel and Dağdeviren, 2007). Supermatrix is used to represent the flow of 

influence from a component of elements to itself as in the loop that flows back to criteria 

(W22 in Figure 3-4), or from a component from which an arrow is directed out to another 

component (W21 and W32 in Figure 3-4). Special care should be taken to address the influence 

of the component at the end (Saaty and Vargas, 2006). The following supermatrix resembles 

the supermatrix framework developed in Model Construction and Problem Structuring step.  

  Goal Criteria Alternatives  

Goal  0 0 0  

Criteria  W21 W22 0  

Alternatives  0 W32 I  
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Note that, each of the elements in this supermatrix represents a submatrix. Zero (0) 

elements correspond to those elements which do not have any influence. Since each 

alternative depends only on itself, identity matrix (I) submatrix is used in the supermatrix 

framework in row: Alternatives and column: Alternatives. In other words, the level of 

alternatives in the adopted ANP model structure is a sink cluster of nodes that absorbs 

priorities but does not pass them on. This calls for using an identity matrix (I) in the 

supermatrix framework. In summary, supermatrix formation means placing the priority 

vectors in proper positions of a big matrix for synthesizing the judgments, i.e., decision 

making. 

ANP’s principle is to derive the limit priorities of influence from the supermatrix. 

Once the supermatrix is generated, the next step is to derive the limit priorities of influence 

from the supermatrix. To obtain such priorities, the supermatrix needs to be transformed to 

a matrix each of whose column sums to unity, known as column stochasticity (Saaty and 

Vargas, 2006). If the matrix is stochastic, the limit priorities can be viewed in a way to depend 

on the concepts of reducibility, primitivity, and cyclicity of the matrix. Saaty (2005) and 

Saaty (2001) provide detail explanation of these matrix properties. The resulting stochastic 

matrix is known as weighted supermatrix. The rationale behind this transformation is to 

convert the elements’ local cluster priorities to global priorities.  

The limit supermatrix is next obtained by raising the weighted supermatrix to 

exponential powers 2k+1, where k is an arbitrary number; and it can be achieved when the 

weighted supermatrix is irreducible and primitive. If the supermatrix has the effect of 

cyclicity (irreducible and imprimitive) there can be other roots and the limiting matrix would 

be more than one. In that case, Cesaro sum is calculated to get the average priority.  
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The Cesaro sum is used when the limits are not unique. As limiting priorities of the 

supermatrix depend on the reducibility, primitivity, and cyclicity of the matrix, there can be 

different forms of the limit depending on whether the matrix is reducible, and on the 

multiplicity of its principal eigenvalue, which must be equal to one or a complex root of one 

(Saaty, 2006). Thus, the limit priorities of the stochastic supermatrix must be computed 

according to whether it is irreducible, or whether it is reducible with one being a simple or a 

multiple root, or whether the system is cyclic. If the matrix is reducible, then the multiplicity 

of the roots of the principal eigenvalue needs to be considered to obtain the limit priorities of 

a reducible stochastic matrix with the principal eigenvalue being a multiple root (Tuzkaya 

and Önüt, 2008).  

In summary, the limit supermatrix provides the long-term relative influences of the 

elements on each other through convergence on the importance weights. A detailed 

discussion regarding the steps and mathematical process of the ANP can be found in Raihan 

et al. (2016), Tuzkaya and Önüt (2008), Ramik (2007), Meyer (2000), Saaty and Vargas 

(1998), and Saaty (1996).   

Ranking of Alternatives 

The final priorities of all elements are obtained by normalizing each cluster of the 

limit matrix. Thus, when the locations are ranked from the highest value to the lowest value, 

the final prioritization list is obtained. 

  

3.1.3 Fuzzy Analytic Network Process (FANP) 
 

The fuzzy set theory, developed by Zadeh (1965; 1976), is suitable for uncertain 

and qualitative decision making. Qualitative judgments are generally characterized by 
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vague notions, such as, “equally”, “moderately”, “strongly”, “very strongly”, “extremely”, 

and a “significant degree” (Tuzkaya and Önüt, 2008). It is difficult to do pairwise 

comparisons on a predefined relative scale of 1-9; rather in practice, qualitative decisions 

are more likely expressed through natural language such as, “possibly 5”, “approximately 

7” or “about 9” (Ramík, 2007). Fuzzy set theory provides the platform to translate the 

qualitative judgments of a decision maker into quantitative data. Triangular fuzzy numbers 

(Figure 3-5) are very useful in this regard.  

A triangular fuzzy number a is defined by a triple of real numbers, i.e., a = (aL; aM; 

aU), where aL is the smallest possible value (lower bound), aM is the modal value (middle 

number), and aU is the largest possible value (upper bound), and aL ≤ aM ≤ aU. If aL = aM 

= aU, then a is said to be the crisp number (non-fuzzy number). Evidently, the set of all 

crisp numbers is isomorphic to the set of real numbers. In order to distinguish fuzzy and 

non-fuzzy numbers, the fuzzy numbers, vectors, and matrices can be denoted by the tilde 

above the symbol, e.g., ã = (aL; aM; aU) (Tuzkaya and Önüt, 2008; Ramík, 2007). 

 

 

Figure 3-5: A Triangular Fuzzy Number (Source: Ramík, J., 2007) 
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The arithmetic operations addition (+), subtraction (-), multiplication (×), and 

division (/) can be extended to fuzzy numbers by the extension principle (Chen et al., 1992). 

Thus, if ã = (),  �̃� = (), aL > 0, bL> 0, then,  

ã +̃�̃� = (aL + bL;  aM + bM; aU + bU); 

ã −̃�̃� = (aL - bL;  aM - bM; aU - bU); 

ã ×̃ �̃� = (aL × bL;  aM × bM; aU × bU); 

ã /̃�̃� = (aL / bL;  aM / bM; aU / bU).  

The detailed definitions and discussions regarding the arithmetic operations on 

triangular fuzzy numbers can be found in Ghatee and Hashemi (2007), Wagenknecht et al. 

(2001), Giachetti and Young (1997), Kaufmann and Gupta (1988), Dubois and Prade 

(1978), and Zadeh (1965).    

 In the fuzzy ANP method, instead of using the discrete scale of 1-9, a triangular 

fuzzy number (TFN) scale 1̃ - 9̃ is used to state the preferences of the decision maker (Table 

3-2, Figure 3-6).   

Table 3-2: TFN-linguistic Scale for Importance (Source: Sevkil et al., 2011) 

TFN Linguistic Scale for Importance Triangular Fuzzy Scale 

1̃ Equally preferred (1, 1, 1) 

2̃ Equally to moderately preferred (1, 3/2, 3/2) 

3̃ Moderately preferred (1, 2, 2) 

4̃ Moderately to strongly preferred (3, 7/2, 4) 

5̃ Strongly preferred (3, 4, 9/2) 

6̃ Strongly to very strongly preferred (3, 9/2, 5) 

7̃ Very strongly preferred (5, 11/2, 6) 

8̃ Very strongly to extremely preferred (5, 6, 7) 

9̃ Extremely preferred (5, 7, 9) 
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Figure 3-6: Fuzzy Membership Function Scale (Source: Tuzkaya and Önüt, 2008) 

 

The difference between fuzzy ANP approach and ANP approach lies in fuzzy 

pairwise comparison matrix creation and calculating triangular fuzzy weights from it; and 

finally, rank the alternatives from limit supermatrix. These two steps are elaborated in the 

following paragraphs. 

Fuzzy Weights from Fuzzy Pairwise Comparison Matrix    

A triangular fuzzy matrix is composed of triples as follows: 

 

 The generic form of a fuzzy pairwise comparison matrix is: 
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where 1 ≤ 𝑎𝑖𝑗 
𝐿 ≤  𝑎𝑖𝑗

𝑀 ≤ 𝑎𝑖𝑗
𝑈 , i,j = 1, 2, …, n. 

The triangular fuzzy weights are calculated as evaluations of the relative 

importance of the criteria, and the relative importance of the alternatives with respect to 

each criterion. Logarithmic least square method (Chen et al., 1992; Tuzkaya and Önüt, 

2008; Ramík, 2007) can be applied to estimate the fuzzy priorities, �̃�𝑖, where �̃�𝑖 = 

(𝑤𝑖
𝐿 , 𝑤𝑖

𝑀, 𝑤𝑖
𝑈), and i = 1, 2, …, n, from the judgment matrix (fuzzy pairwise comparison 

matrix), �̃�, which approximates the fuzzy ratios �̃�𝑖𝑗, so that �̃�𝑖𝑗 ≈   �̃�𝑖 / �̃�𝑗 . The logarithmic 

least square method calculates the fuzzy triangular weights as (Sevkil et al., 2011; Tuzkaya 

and Önüt, 2008; Ramík, 2007):   

                                 �̃�𝑘 = (𝑤𝑘
𝐿 , 𝑤𝑘

𝑀, 𝑤𝑘
𝑈), 𝑘 = 1, 2, 3, … , 𝑛                                       (3-4)   

where  

                                 𝑤𝑘
𝑆 =

(∏ 𝑎𝑘𝑗
𝑆𝑛

𝑗=1 )
1/𝑛

∑ (∏ 𝑎𝑘𝑗
𝑀𝑛

𝑗=1 )𝑛
𝑖=1

1/𝑛 , 𝑆 ∈  {𝐿, 𝑀, 𝑈}                                       (3-5)     

Ranking of the Alternatives 

The first phase in this step is to transform the fuzzy numbers of the limit matrix to 

crisp numbers by defuzzification. There are different defuzzification methods, such as, 

center of gravity, maximum-membership principle, center of area, weighted average, 

smallest of maximum and largest of maximum (Tuzkaya and Önüt, 2008). The simplest 

method is the center of gravity method (Ramík, 2007).  This method is based on computing 

the x-th coordinates 𝑥𝑖
𝑔

 of the center of gravity of every triangle given by the corresponding 

membership functions, �̃�𝑖, i = 1, 2, …, n. The concept can be illustrated as:  

                                                            𝑥𝑖
𝑔

 =
𝑧𝑖

𝐿 + 𝑧𝑖
𝑀 + 𝑧𝑖

𝑈

3
                                                       (3-6) 
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Chen et al. (1992), and Ramík (2006) provide a comprehensive review of other 

sophisticated defuzzification methods. Once the defuzzification is completed, the 

remaining step, i.e., ranking the alternative process is similar to the ANP methodology.    

 Once the urban four-lane divided segments were prioritized through ANP, AHP, 

and FANP, the ranks of the first 30 prioritized locations were compared with respect to the 

criteria. An attempt had been made to understand and find out which screening 

methodology ranked the locations most comprehensively, i.e., considered all the criteria, 

did not give any undue weight to any criterion, and addressed the limitations of the current 

simple scoring practice by the transportation agencies. As there were no direct methods or 

algorithms to compare the performance of these three approaches, the comparison with 

respect to the criteria was adopted.     

 

3.2 Crash Modification Factor (CMF) Development 

 

The second objective of this research is to quantify the safety impacts of roadway 

characteristics such as, lane width, median width, sidewalk, sidewalk barrier, shared path; 

bicycle infrastructure such as, bicycle lanes and slots; traffic characteristics such as section 

average daily traffic; and bicycle activity data obtained from Strava smartphone application 

on bicycle crashes. The study developed crash modification factors (CMFs) for bicycle 

crashes for different roadway segment and intersection facility types in urban areas to 

quantify the impacts. 

This objective can be attained using two study designs: experimental study design 

and observational study design. These two study design types differ in terms of data 

collection effort. Experimental studies are planned; it means sites identified for a treatment 
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are randomly assigned to either a treatment group or to a control group that is left untreated. 

The groups are identified before the treatment implementation. Observational studies are 

not planned; it means data are collected retrospectively by observing the performance of 

existing roadways, where the treatment has already been implemented, not on the basis of 

a planned experiment rather based on engineering judgment including safety. However, 

observational studies are more common in road safety research because of the ethical 

concerns with experimentation in road safety (Gross et al., 2010).  

The preferred methods for developing CMFs with observational data can be 

classified again into two broad categories: (a) before-after design, and (b) cross-sectional 

design. For the before-after design, the CMFs are estimated from the change in crash 

frequency between the periods before and after a treatment is implemented. However, there 

is a need to account for changes in safety due to factors other than the treatment of interest. 

In an experimental study, the planned control group serves this purpose. For the cross-

sectional design, crash experience of locations with and without a specific feature is 

studied; and then the difference in safety is attributed to that feature, i.e., treatment or 

countermeasure. Although before-after study is usually preferred over cross-sectional 

design, it is not always practical because there could be insufficient situations to allow for 

credible results (Gross et al., 2010). Considering the data (detailed in Chapter 4) for this 

research, it was not practical to adopt the before-after studies. Cross-sectional design was 

therefore adopted in this research. 

In this research, CMFs were developed for total bicycle crashes for different 

roadway facility types. Section 3.2.1 elaborates on the cross-sectional analysis. Section 

3.2.2 details the modeling framework adopted in this research. 
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3.2.1 Cross-sectional Analysis 

 

Cross-sectional analysis was used to develop CMFs for bicycle crashes in this 

research. Cross-sectional studies are useful for CMF estimation when before-after studies 

cannot be conducted due to insufficient before and after crash data when a particular 

engineering countermeasure is implemented; or the date of the implemented treatment is 

unknown; or when it is difficult to distinguish the effect of a countermeasure from 

confounding factors. For example, there may be too few projects where lane width is 

reduced from 12-ft to 11-ft; however, there may be many road segments with 11-ft and 12-

ft lanes. In such cases, before-after study might not yield credible results, especially when 

sufficient before and after data are not available. Considering the datasets available for this 

study, and the methodological pros and cons, cross-sectional study was identified as the 

best suited approach.  

In cross-sectional studies, crash experience at locations with and without a specific 

feature is studied; and then, the difference in safety is attributed to that feature. To obtain 

reliable results from cross-sectional studies, it is critical that all locations are similar to 

each other in all other factors affecting crash risk. However, in practice, it is difficult to 

collect data for enough locations that are similar in all other factors affecting crash risk. 

Therefore, cross-sectional studies are often conducted through multiple variable regression 

models.   

The multiple variable regression models attempt to address all the variables that 

might potentially affect the safety performance of the locations. The models are developed 

using crash data from sites both with and without treatments (or, countermeasures). The 
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change in crashes from a unit change in a specific variable can be estimated from regression 

model. The CMFs are then deduced from the model parameters (Gross et al., 2010).  

 

3.2.2 Zero Inflated Negative Binomial (ZINB) Models 

 

This research used generalized linear model (GLM) approach with a Zero Inflated 

Negative Binomial (ZINB) distribution to develop the relevant regression models. The 

ZINB models are applicable for count data that exhibit over-dispersion and excess zeros. 

Since bicycle crashes are relatively rare and random, the ZINB model was used to account 

for the segments with zero crashes that cannot be solely explained by the Negative 

Binomial (NB) models. The models have crash frequency as the response variable, and the 

roadway or intersection characteristics as explanatory variables. The probability 

distribution of the ZINB random variable yi (NCSS, 2018) is:  

                             𝑃𝑟(𝑦𝑖 = 𝑗) = { 
𝜋𝑖 + (1 − 𝜋𝑖) 𝑔(𝑦𝑖 = 0), 𝑖𝑓 𝑗 = 0 

(1 − 𝜋𝑖) 𝑔(𝑦𝑖), 𝑖𝑓 𝑗 > 0
                               (3-7)        

where 𝜋𝑖 is the proportion of true zeros that cannot be explained by NB model, and 𝑔(𝑦𝑖) 

follows the negative binomial distribution as (NCSS, 2018):    

               𝑔(𝑦𝑖) = 𝑃𝑟(𝑌 = 𝑦𝑖 | 𝜇𝑖, 𝛼) =
Γ(𝑦𝑖+ 𝛼−1)

Γ(𝛼−1) Γ(𝑦𝑖+ 1)
 (

1

1+𝛼𝜇𝑖
)

𝛼−1

(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)

𝑦𝑖

                (3-8) 

where 𝜇𝑖 is the mean crash frequency, and 𝛼 is the over-dispersion parameter. Cameron 

and Trivedi (2013), Hilbe (2014), and Garay et al. (2011) presented detailed discussion on 

count data models. The basic form of the NB regression model used in this study is:  

          µ
i
=exp (β

0
+ β

1
× ln AADTi + β

2
×LWi+ β

3
×BLi+…+ β

k
×Xik +OFFSET )            (3-9) 
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where 

µi = crash frequency on a road section i, 

AADTi = average annual daily traffic on a road section i (vehicle/day), 

LWi = lane width of a road section i (ft), 

BLi = presence of bicycle lane along a road section i (0 if absent, 1 if 

present), 

Xik = roadway characteristic k (i.e., countermeasure) of road section i, 

β0 = model intercept/constant, 

β 1, β2,…, βk = model coefficients, and 

OFFSETi = ln (4×(section length of road section i, i.e., SLi)) for segments and 

ln (4) for intersections. Note that, the number 4 was used in the 

offset term because this study considered four years of crash data.  

Variables that were found to be significant at 0.05 level of significance from the 

ZINB models were considered in the CMF development. The regression coefficients and 

over-dispersion parameter were estimated using the zeroinfl function of pscl package in the 

statistical software R (R Core Team, 2014). An offset term was added to the regression 

equation to predict the crash frequency in crashes per mile per year for segments and 

crashes per year for intersections, as shown in Equation 3-9. 

The CMFs were inferred from the estimated model parameters, i.e., coefficients; 

and as the model form is log-linear, the CMFs were calculated as the exponent of the 

associated coefficient of the countermeasure variable as (Lord and Bonneson, 2007; 

Stamatiadis et al., 2009; Carter et al., 2012; Abdel-Aty et al., 2014): 

                                              CMFk = exp (β
k
×(X

kr - Xkb))                                          (3-10) 



77 
 

where Xkr is the range of values for roadway characteristic k, and Xkb is the baseline 

condition for roadway characteristic k (when needed or available). For example, according 

to Equation 3-9, the CMF for increasing lane width (LW) by one foot is equal to exp (β2).  

As ordinary regression was not used, the selection of variables for inclusion in the 

final models and statistical tests to determine the significance of the derived relationships 

cannot be done using conventional approaches; rather methods that do not assume 

normality of the dependent variable was used. Apart from checking the maximum log-

likelihood estimates, Akaike Information Criterion was also reviewed (Hadi et al., 1995). 

Akaike Information Criterion (AIC) for Selection of Regressor Variables 

 

The Akaike Information Criterion (AIC) was used to determine the subset of 

independent variables to be included in the crash estimation models. AIC can be defined 

as (Gilchrist, 1985; Hadi et al., 1995):  

                                                       AIC =  ̶  2 × ML + 2 × K                                                      (3-11)    
 

where ML is the maximum log-likelihood, and K is the number of parameters in subset 

selection used as a measure of model complexity.  

The smaller the AIC value, the better the model. Starting with the full set of 

independent variables, a stepwise procedure was used to select the best model based on 

minimizing the AIC value. This was achieved by using the stepAIC function of MASS 

package in the statistical software R (R Core Team, 2014). Once the variables were 

selected, CMFs were estimated using the ZINB models. Note that, the stepAIC function 

was used in the NB environment as this research adopted the ZINB framework to develop 

the CMFs. This research also took into account the interaction between variables while 
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developing the CMFs. Furthermore, the variables were scaled and centered as needed to 

ensure the robustness of the models.      

 

3.3 CMF Transferability 

 

This research explored the spatial and temporal transferability scopes for the 

developed CMFs. Urban four-lane divided facility was considered for the assessment. To 

study the spatial transferability, the seven Florida Department of Transportation (FDOT) 

districts were considered as seven different spatial zones. The CMFs developed using state-

wide data were applied to each district, and the scope of spatial transferability within intra-

Florida was explored using the transferability index (TI) measure (discussed in Section 

3.3.1) which indicates the performance of the transferred model for the jurisdiction of 

interest.   

To explore the temporal phenomena, CMFs were first developed for the entire state 

using crash data for the period of 2013-2014; then, 2011-2012 and 2015 (the most recent 

data that were available during this research) crash data were used to examine the 

transferability of the CMFs. Additionally, the models were evaluated using different 

goodness of fit measures (discussed in Section 3.3.2) to estimate the prediction capabilities. 

 

3.3.1 Transferability Assessment 

The transferability of the developed ZINB models was assessed by calculating the 

Transfer Index (TI) (Hadayeghi et al., 2006; Sikder et al., 2013; Farid et al., 2016). The TI 

measure indicates the performance of the transferred model for the jurisdiction of interest 

(Farid et al., 2016). TI is calculated as:  
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                                               TIj (βi) = 
LLj (βi) −  LLj (βreference j)

LLj (βj) −  LLj (βreference j)
                                     (3-12)   

 where 

LLj(βi)  =  log-likelihood of the SPF developed from data, i, that is being 

applied to data of a specific jurisdiction, j;  

LLj(βj)  =  log-likelihood of jurisdiction j’s SPF;  

LLj(βreference j) =  log-likelihood of jurisdiction j’s constant only SPF.  

“The TI measure compares the performance of the model of interest with respect to 

the performance of a constant only model. The higher the TI value the better is the 

performance relative to the constant only model. The closer TI is to unity, the SPF, 

developed from data i, is more transferable to jurisdiction j. A negative TI indicates that 

state j’s constant only model performs better than the SPF of state i applied to state j” (Farid 

et al., 2016).  

 

3.3.2 Goodness of Fit (GOF) 

Apart from Log-likelihood (LL) and AIC values, this research employed Mean 

Absolute Deviation (MAD), Mean Predicted Bias (MPB), and Mean Squared Predicted 

Error (MSPE) to assess the Goodness of Fit for the developed ZINB models which are 

commonly used by several researchers (Washington et al., 2005; Lord and Mannering, 

2010; Mehta and Lou, 2013; Farid et al., 2016). 

 Mean Absolute Deviation (MAD): MADs were calculated to assess the Goodness of 

Fit (GOF) of the ZINB models. MAD is defined as the difference between the 

predicted (NSPF) and observed number of crashes (Nobs) per segment, i. The equation 

below illustrates this concept (Farid et al., 2016). MAD gives the average variability 
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of the prediction. Smaller values are preferred to larger values (Mehta and Lou, 

2013). 

                                                    MAD = 
∑ |𝑁𝑆𝑃𝐹𝑖

− 𝑁𝑜𝑏𝑠𝑖
|𝑛

𝑖=1

𝑛
                                             (3-13)  

 Mean Predicted Bias (MPB): The MPB measure was suggested by Washington et 

al. (2005). The equation below defines this measure. MPB measures the magnitude 

and direction of the average model bias. Unlike MAD, MPB measures can be either 

positive or negative. A positive value indicates that the SPF is overestimating the 

number of crashes, while a negative value implies that the site is safer than it 

actually is (Mehta and Lou, 2013).    

                                                    𝑀𝑃𝐵 =  
∑ (𝑁𝑆𝑃𝐹𝑖

−  𝑁𝑜𝑏𝑠𝑖
)𝑛

𝑖=1

𝑛
                                         (3-14)  

 Mean Squared Predicted Error (MSPE): MSPEs were also calculated to assess the 

Goodness of Fit (GOF) of the ZINB models. MSPE is also defined from the 

difference between the predicted (NSPF) and observed number of crashes (Nobs) per 

segment, i. Equation below illustrates this concept (Farid et al., 2016). A lower 

value implies a better model (Mehta and Lou, 2013). 

                                              MSPE = 
∑ (𝑁𝑆𝑃𝐹𝑖

−  𝑁𝑜𝑏𝑠𝑖
)

2n
i=1

n
                                         (3-15)  

The transferability indices and the GOF measures indicate whether the developed 

models from statewide data are applicable for spatial jurisdiction of interest and for 

different time periods. 
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3.4 Summary  

 

This chapter discussed the methodologies and the application steps that were 

adopted to achieve the three objectives of this research. Three potential network screening 

methods, ANP, AHP, and FANP were discussed in this chapter. The ZINB modeling 

approach was presented and the rationale of selecting this model for developing CMFs and 

the mathematical background of this approach was discussed in detail. Finally, for the 

spatial and temporal transferability assessment, transferability index (TI) was described in 

this chapter.  
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CHAPTER 4 

DATA PREPARATION 

 

This research has three specific objectives. The first objective focused on screening 

highway locations for bicycle safety improvements. Florida’s urban four-lane divided 

facility was considered for screening. Since application of the screening methods would be 

same for other roadway facilities, the analyses were not repeated for other facilities. The 

second objective focused on developing bicycle CMFs, and an attempt was made in this 

research to develop CMFs for all major urban facilities. The third objective explored the 

scope of spatial and temporal transferability of the developed CMFs. Similar to the facility 

considered in the first objective, only urban four-lane divided facility was researched for 

transferability assessments.   

As mentioned, the second and third objectives focused on CMFs, and hence 

required similar data preparation efforts. Thus, the data preparation steps were broadly 

divided into two major categories: data preparation for network screening and data 

preparation for developing CMFs. The following sections elaborate the efforts that were 

undertaken in this research. 

 

4.1 Network Screening 

The first step in network screening was to identify all the potential criteria and 

assign them to each of the locations. The following seven criteria were considered for 

screening:  

 bicycle crash frequency,  

 bicycle facility (bicycle lane and/or bicycle slot),  
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 bicycle volume,  

 AADT,  

 auto ownership,  

 land use, and  

 transit stops.  

The selection of these criteria was based on 2060 Florida Transportation Plan 

(FDOT, n.d.), the existing FDOT’s prioritization practice (Gan et al., 2016), feedback from 

practicing transportation professionals in Florida, literature review, and obviously data 

availability. Data availability was confirmed before making the final list.     

The following five databases were used for preparing the final dataset for screening 

the locations: FDOT’s Crash Analysis Reporting (CAR) System for information on 

crashes, FDOT’s Roadway Characteristics Inventory (RCI) database for information on 

roadway characteristics, Strava database for bicycle exposure data, Florida Geographic 

Data Library (FGDL) for census and land use data (U.S. Census Bureau, 2016), and Florida 

Transit Information System for data on transit stops (FDOT, 2018). The following sub-

sections briefly discuss these databases. 

   

4.1.1 Crash Analysis Reporting (CAR) System 

Crash data for the years 2011-2014 were obtained from the FDOT’s CAR system. 

The CAR database includes the following three files: 

 crash level file, 

 vehicle-driver-passenger level file, and 

 non-motorist level file.  
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Crash level file includes crash-related information such as crash number, roadway ID 

where the crash occurred, milepost of the crash location, crash severity, etc. The vehicle-

driver-passenger file includes the road user-related information for each crash record; thus it 

has information on crash number, all vehicles involved in the crash, all drivers and 

passengers involved in the crash, etc. Non-motorist level data file includes information about 

each non-motorist involved in a crash such as crash number, type of non-motorist, non-

motorist location, non-motorist injury severity, etc.   

Bicycle crashes from 2011-2014 were identified first from the non-motorist level 

data file using the following codes for non-motorist type code variable 

(NON_MOTR_TYP_CD): 3 (bicyclist), and 4 (other cyclist). Since multiple bicyclists 

could be involved in a single crash, only the information of the bicyclist with highest injury 

severity in each crash was retrieved, and included in the analysis. Once bicycle crashes 

were identified from the non-motorist data file, the records were linked to the crash level 

data file using crash number. The bicycle crash database was then merged with the roadway 

segment database such that each site has the total number of bicycle crashes that occurred 

during 2011-2014. 

  

4.1.2 Roadway Characteristics Inventory (RCI) 

 FDOT maintains and updates the RCI database every year for the state of Florida. 

This database has information on more than 200 roadway characteristics. Since 2011-2014 

crash data were used in this research, roadway characteristics data from 2014, the most 

recent analysis year, were used. AADT and bicycle facility information were extracted 

from the RCI.  GIS shapefiles of bicycle lane and slot were also incorporated. Segmentation 



85 
 

was performed according to the guidelines provided in the HSM, i.e., a new segment starts 

either at each intersection, or whenever there is a slight change in any one of the variables. 

Segmentation is necessary to ensure homogeneity of each segment in terms of the variables 

considered in the analysis (AASHTO, 2010). 

Once the database was prepared for urban four-lane divided segments containing 

AADT, bicycle lane, and bicycle slot information; bicycle lane and slot information were 

combined in a way that if either lane or slot is present along the roadway, the roadway was 

considered to have a bicycle facility. Finally, the bicycle crash data were merged with the 

roadway segment database such that crashes were assigned to the segments based on crash 

locations. Later, this database was linear referenced in ArcGIS based on on-system and 

off-system GIS shapefiles from FDOT. Linear referencing was performed to add the spatial 

information to the prepared database (i.e., to create a shapefile of the database). 

 

4.1.3 Strava Database 

The bicycle activity data was retrieved from the 2014 Strava dataset which includes 

distance of bicycle rides, time, pace, trail routes, and other geographic information data 

(collectively called “Activity Data”). This information was collected from the Strava 

smartphone application users who were biking in Florida. Since bicycle exposure provided 

in the Strava dataset is a sample and is dependent on the number of Strava smartphone 

application users in the area, the variables do not represent the overall population of 

bicyclists. Therefore, the raw Strava data representing the actual bicycle trips on each 

segment was processed to obtain a more representative bicycle exposure data. Bicycle 

volumes in each census block group was estimated by counting the number of bicycle trips 
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made on the roadway segments in each census block group. The bicycle activity was then 

categorized into the following three classes:  

 Low Bicycle Activity (total bicycle trips per year ≤ 2,000)  

 Medium Bicycle Activity (total bicycle trips per year > 2,000 and ≤ 10,000) 

 High Bicycle Activity (total bicycle trips per year > 10,000) 

The roadway segments in each census block group were then assigned the bicycle 

activity of their census block group. However, bicycle volume data for prioritization was 

not only derived from Strava; rather, the processed Strava data were combined with bicycle 

commuters (who use bicycle for commuting purpose and represent the working population 

of 16 years and older) data from the census database. Detailed discussion on bicycle 

commuter data is provided in Section 4.1.4.  

 

4.1.4 Florida Geographic Data Library (FGDL) 

Bicycle commuters, auto ownership, and land use data were derived from FGDL 

database. The 2015 census data provided information on commuter population 16 years 

and older who were biking to work, and auto ownership information for the households. 

The census data are provided at the census block group level. The linear referenced RCI 

file was spatially joined (i.e., intersected) with census data in the GIS platform to extract 

the census information for the segments. It was made sure that if any roadway segment 

passes through multiple census blocks, then all blocks census information is reflected on 

that roadway segment. The census information was summed up using the Dissolve function 

of ArcMap for each roadway segment for this purpose.   
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Bicycle commuting in each census block group was later re-categorized into the 

three classes (similar to the categories for bicycle activity data).  

 Low Commuting Block (# of persons using bicycle for commuting = 0)  

 Medium Commuting Block (# of persons using bicycle for commuting ≥ 1 & ≤ 50) 

 High Commuting Block (# of person using bicycle for commuting > 50) 

The roadway segments in each census block group were then assigned the bicycle 

commuter class of their census block groups. This bicycle commuting category was merged 

with bicycle activity category, and was considered as the surrogate measure for bicycle 

volume when prioritizing methodologies were compared. 

To extract the land use information, FGDL’s shapefiles of generalized land use 

derived from 2015 parcels for FDOT districts were used. At first, DOT district level files 

were combined.  Then, a 250-ft buffer was created along the previously linear referenced 

RCI file. Finally, the RCI shapefile was intersected with the land use file in ArcGIS to 

extract the land use information along each segment. The intersected land use area was 

recalculated in GIS. The predominant land use in terms of area along any roadway segment 

was then considered as the land use for that particular segment. Note that, the University 

of Florida’s GeoPlan Center is the publisher of this land use data. Parcel-level data were 

originally acquired from the State Department of Revenue (DOR). The GeoPlan Center 

generalized 99 land use classes into 15 classes in this database (Lin et al., 2017). However, 

for this research, these 15 classes were again generalized into five classes before 

intersecting the land use file with the RCI file. Table 4-1 presents the reclassified land use 

variables used in this research. 
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Table 4-1: Reclassified Land Use  

Reclassified Land Use GeoPlan Land Use 

Residential & Institutional 

Residential 

Institutional 

Vacant Residential 

Commercial 

Retail/Office 

Public/Semi-Public 

Industrial 

Recreational Recreation 

Other 

Vacant Nonresidential 

Centrally Assessed 

Acreage Not Zoned for Agriculture 

ROW 

Other 

Low Bicycle Activitya 

Parcels with No Values 

Agricultural 

Mining 

Water 

No Data Available 
Note: a Low Bicycle Activity stands for the Land Use where bicyclists are least expected. 

 

4.1.5 Florida Transit Information System (FTIS) 

Florida Transit Information System (FTIS) is a FDOT maintained web-based 

platform for transit planning in Florida. Transit stops shapefiles were collected from 

Florida Transit Data Exchange (FTDE) portal of FTIS. The available shapefiles from this 

portal were merged to form a combined transit stops shapefile. Once the census information 

were extracted to the linear referenced RCI shapefile, then a 40-ft buffer was created along 

the road segments in GIS on this RCI shapefile. Then, the buffered file was spatially joined 

(i.e., intersected) with the combined transit stops file to extract the number of stops along 

the route. As there could be more than one stop along any segment, thus, the number of 

stops for each segment were added to get the total number of stops for any segment. GIS 

platform was used to do the data processing.  

Once transit stops data were added to the RCI file, each segment was then assigned 

with the seven performance measures - bicycle crash frequency, bicycle facility (bicycle 
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lane and/or bicycle slot), bicycle volume, AADT, auto ownership, land use, and transit 

stops. Next step was to apply the location prioritization methodologies to determine the 

potential of these methods for prioritization. 

 

4.2 CMF Development 

RCI, CAR, and Strava databases were used for CMF development. Unlike network 

screening, several RCI variables were used to develop bicycle CMFs. The following sub-

sections discuss the datasets and the data variables used to develop the CMFs in this 

research.  

 

4.2.1 Roadway Segment Data 

 The following data were used to develop the CMFs: 

 2014 RCI data 

 GIS shapefiles for: 

o bicycle lane 

o bicycle slot 

o shared path 

o sidewalk barrier 

o sidewalk width and separation 

o state roads 

o intersections 

Detailed roadway characteristics information was extracted from the 2014 FDOT’s 

RCI database. Of over 200 variables that are available in the RCI database, only those that 
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could potentially affect bicycle safety were extracted. Table 4-2 lists these variables. The 

variables are also discussed in detail.  

Table 4-2: RCI Variables Extracted for CMF Development  

RCI Variable RCI Code 

Section Average Annual Daily Traffic SECTADT 

Number of Lanes NOLANES 

Median Width MEDWIDTH 

Bicycle Lane BIKELNCD 

Bicycle Slot BIKSLTCD 

Shared Path Width and Separation SHARDPTH 

Sidewalk Width and Separation SIDWLKWD 

Sidewalk Barrier SDWLKBCD 

Type of Road TYPEROAD 

Type of Parking TYPEOP 

Speed Limit MAXSPEED 

Pavement Surface Width SURWIDTH 

Type of Median RDMEDIAN 

Shoulder Type SHLDTYPE 

Functional Classification of Roadways FUNCLASS 

 

 Section AADT: It is an estimate of the AADT on the roadway section. The natural 

logarithm of AADT was considered in developing the regression models.  

 Number of Lanes: Information on number of lanes was used to categorize segments 

into different facility types. When the roadway is divided, the RCI provides number 

of through lanes for each direction of travel. On the other hand, when the roadway 

is undivided, the RCI provides number of through lanes for both directions of travel 

combined. Since the total number of lanes for both directions of travel was 

considered for model fitting, the number of lanes information on undivided sections 

was used directly. However, when roadway is divided, the number of through lanes 

in each direction of travel were added to obtain the total number of through lanes 

along both directions of travel.  
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 Median Width: It denotes the width of the median in feet. The actual value of 

median width varies from 2 ft to over 100 ft. Since this level of detail was not 

required, the measured median width was rounded per the recommendations 

provided in the Highway Safety Manual (HSM). Table 4-3 presents the HSM 

guidance in rounding the median widths. 

Table 4-3: HSM Recommended Rounded Median Widths (Source: AASHTO, 

            2010)  

Measured Median Width Rounded Median Width 

1 to 14 ft 10 ft 

15 to 24 ft 20 ft 

25 to 34 ft 30 ft 

35 to 44 ft 40 ft 

45 to 54 ft 50 ft 

55 to 64 ft 60 ft 

65 to 74 ft 70 ft 

75 to 84 ft 80 ft 

85 to 94 ft 90 ft 

95 ft or more 100 ft 

 

 Bicycle Lane: The 2014 RCI database includes bicycle lane information for 

approximately 1,100 miles of road network. However, the GIS shapefile for bicycle 

lanes include this information for nearly 1,600 miles. Since the GIS shapefile 

provides a more complete inventory of the road network with bicycle lanes, the 

bicycle lanes shapefile was appended to the RCI database. Although the shapefile 

includes different categories for bicycle lanes such as designated, colored, etc., only 

presence or absence of bicycle lane was considered in the analysis.  

 Bicycle Slot: Bicycle slot data were prepared in the same manner as the bicycle lane 

data. However, since bicycle slots are always located at or near intersections, this 

variable was considered while analyzing intersections only.  
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 Shared Path Width and Separation: Shared path width provides information about 

the actual width of the shared path in feet. If enough variability existed, then actual 

width and separation type (e.g., no barrier; on-street parking lane/meter; trees, 

planters, utility poles, etc.; guardrail/traffic railing barrier/swale) could have been 

used; however, only the presence or absence of shared path was considered while 

developing the regression models due to limited variability in the data. Similar to 

bicycle lane and bicycle slot data, this variable was extracted from FDOT’s GIS 

shapefile.  

 Sidewalk Width and Separation: Similar to shared path width and separation, only 

the presence or absence of sidewalk was considered. Since the FDOT’s GIS 

shapefile had more complete information about sidewalks compared to the RCI, 

this variable was extracted from the FDOT’s GIS shapefile.   

 Sidewalk Barrier: Information on sidewalk barrier was also extracted from the GIS 

shapefile, and the presence or absence of sidewalk barrier was considered while 

developing the regression models.    

 Type of Road: This variable denotes whether a roadway is undivided, divided, or one-

way. This classification was used to divide the road network into different facility 

types.  

 Type of Parking: This variable includes the following information: no parking 

allowed, parking permitted on one side, and parking permitted on both sides. The 

same information was considered while developing the regression models.   

 Speed Limit: Information on speed limit is provided for each direction of travel on 

divided roads and for both directions of travel on undivided roads. If the speed limit 
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is different for each direction of travel, the highest value was taken as the speed 

limit of the roadway. The speed limit value was used directly for undivided 

sections.  

 Pavement Surface Width: Surface width is the total width of all through lanes. For 

divided roadway segments, the surface widths on each direction of travel was 

summed up to obtain the total surface width of the roadway segment. The surface 

width for undivided segments was used directly. Note that lane width, instead of 

surface width, was considered while developing the regression models. Lane widths 

were calculated by dividing the total surface width by the total number of lanes for 

each roadway segment.  Furthermore, the calculated lane widths were rounded as per 

the recommendations provided in the HSM (see Table 4-4). 

Table 4-4: HSM Recommended Rounded Lane Widths (Source: AASHTO, 

            2010)  

Measured Lane Width Rounded Lane Width 

9.2 ft or less 9 ft or less 

9.3 to 9.7 ft 9.5 ft 

9.8 to 10.2 ft 10 ft 

10.3 to 10.7 ft 10.5 ft 

10.8 to 11.2 ft 11 ft 

11.3 to 11.7 ft 11.5 ft 

11.8 or more 12 ft or more 

 

 Type of Median: Table 4-5 lists the different types of medians included in the RCI. 

The codes were redefined to yield longer and more homogeneous segments. The 

table also provides the modified median types that was considered in the analysis. 

 Shoulder Type: The RCI includes information about three shoulder types based on 

offset direction (left, right, and both left and right): highway shoulder type, highway 

shoulder type2, and highway shoulder type3. Each type has ten different codes. Due 
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to limited variability in the data, the codes were re-categorized. Table 4-6 presents 

both the original and the modified codes for shoulder type. Note that when the same 

segment has different codes for the three shoulder types (shoulder type, shoulder 

type2, and shoulder type3), the shoulder type was coded as “mixed”.   

Table 4-5: Codes for Median Type  

Highway Median Type 
Original 

RCI Code 

Reclassified Median 

Type 

Modified 

Code 

Paved 01 Paved 01 

Raised Traffic Separator 02 Raised Traffic Separator 02 

Vegetation 08 Vegetation 08 

Curb & Vegetation 17 Curb & Vegetation 17 

Other 20 

Other 20 

Counted Roundabout 41 

Non-counted Roundabout 42 

Counted Traffic Circle 43 

Non-counted Traffic Circle 44 

Non-counted Managed Lane 50 

 

Table 4-6: Codes for Shoulder Type, Shoulder Type2, and Shoulder Type3 

RCI Code Description 
Original RCI 

Code 

Modified 

Code 

Raised Curb 0 0 

Paved (including paved parking and bicycle slots) 1 

12 Paved with Warning Device (any device that serves 

to warn, guide, or regulate the motorist) 
2 

Lawn (number of feet to support roadbed) 3 

345 Gravel/Marl 4 

Valley Gutter (not a barrier) 5 

Curb & Gutter 6 
68 

Curb with Resurfaced Gutter 8 

Other 7 7 

 

 Functional Classification of Roadways: Since bicyclists are not expected on 

limited-access facilitates; these facilities were excluded from the analysis. Only the 

following roadway functional classifications were included in the analysis. Note 

that the number in parentheses is the RCI code.  

o Rural – Principal Arterial – Other (04) 
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o Rural – Minor Arterial (06) 

o Rural – Major Collector (07) 

o Rural – Minor Collector (08) 

o Urban – Principal Arterial – Other (14) 

o Urban – Minor Arterial (16) 

o Urban – Major Collector (17) 

o Urban – Minor Collector (18) 

The entire road network was divided into the following facility types in this 

research for CMF development.  

 Urban Two-lane Divided Segments 

 Urban Four-lane Divided Segments 

 Urban Six-lane Divided Segments 

 Urban Two-lane Undivided Segments 

 Urban Three-lane Undivided Segments 

 Urban Four-lane Undivided Segments 

 Rural Two-lane Undivided Segments 

 Rural Two-lane Divided Segments 

 Rural Four-lane Divided Segments 

FDOT collects and maintains information for more than 200 variables in its RCI 

database. With this level of detail, segmentation of road network might result in shorter 

segments as roadways are segmented whenever there is a slight change in any one of these 

variables. However, not all these variables affect bicycle safety, and hence, are required 

for CMF development. Therefore, segmentation was conducted only by considering the 
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potential RCI variables that might affect bicycle safety. Segmentation was performed 

according to the guidelines provided in the HSM, i.e., a new segment starts either at each 

intersection, or whenever there is a slight change in any one of the variables. Note that, 

segmentation is necessary to ensure homogeneity of the each segment in terms of the 

variables considered for bicycle safety.  

 

4.2.2 Intersection Data 

Intersection data were difficult to obtain directly from the existing FDOT databases. 

Therefore, intersection data collected for a recently completed FDOT Project BDK80-977-

37 (Alluri et al., 2014) were used to develop the models. The following intersection-related 

variables were included in the analysis:  

 major road AADT 

 minor road AADT 

 intersection skew angle 

 presence of lighting 

 number of bus stops within intersection influence area (i.e., within 1,000 ft of the 

intersection) 

 presence of schools within intersection influence area (i.e., within 1,000 ft of the 

intersection)  

 number of alcohol sales establishments within intersection influence area (i.e., 

within 1,000 ft of the intersection) 

 number of approaches with left-turn lanes 

 number of approaches with right-turn lanes 
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 number of approaches with protected signal control 

 number of approaches with permitted signal control 

 number of approaches with protected-permitted signal control 

 number of approaches with no Right-Turn-on-Red 

 presence of red light running camera 

In addition to the above-listed data variables, GIS shapefiles for bicycle slot and 

bicycle lane were included. If either bicycle slot or bicycle lane are located within 250-ft 

of an intersection, the intersection was considered to have a bicycle facility. Due to sample 

size limitations, only urban four-leg signalized and urban three-leg stop-controlled 

intersections were analyzed. 

 

4.2.3 Bicycle Exposure Data 

The bicycle activity data was retrieved from the 2014 Strava dataset. Section 4.1.3 

discussed the efforts that were undertaken to incorporate the bicycle activity data as bicycle 

exposure. 

 

4.2.4 Crash Data 

Bicycle crash data for the years 2011-2014 were obtained from FDOT’s CAR 

repository. Crash data for CMF development was processed as discussed in Section 4.1.1. 

The bicycle crash data were merged with the roadway segment and intersection database 

such that each site was assigned the total number of bicycle crashes that occurred during 

2011-2014. 
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4.3 Summary 

The databases, data variables, and how the data were processed to be included in 

the analyses in this research were discussed in this chapter. In summary, five databases 

were used in this research: FDOT’s CAR database, FDOT’s RCI database, Strava database, 

FGDL database, and FTIS database. For network screening, all the above mentioned 

databases were used to extract the seven screening criteria, bicycle crash frequency, 

presence of bicycle facility, surrogate measure for bicycle volume, AADT, auto ownership, 

land use, and number of transit stops along the roadways. For CMF development, CAR, 

RCI, and Strava databases were used. The roadway characteristics variables that could 

potentially affect bicycle safety were extracted from RCI for CMF development.  



99 
 

CHAPTER 5 

ANALYSIS AND RESULTS 

 

This chapter is divided into three major sections. The first section presents the 

analyses, results, and discussion on the application of AHP, ANP, and FANP in network 

screening for bicycle safety improvements. The second section focuses on CMFs for 

bicycle crashes. Finally, the third section explores the possibility of spatial and temporal 

transferability of the developed CMFs.  

 

5.1 Network Screening 

The following sections detail the application of AHP, ANP, and FANP for 

prioritizing urban four-lane divided roadway segments in Florida, the facility with the 

largest available sample size.  

 

5.1.1 Analytic Hierarchy Process (AHP) 

As discussed in Section 3.1.1, the computational steps of AHP are: model 

construction and problem structuring, pair-wise comparison matrices and priority vectors, 

and ranking of alternatives. The model depicted in Figure 3-2 is used in this research. 

Therefore, the first step, model construction and problem structuring, is not repeated here 

again. The following sub-sections provide a detailed discussion on other steps. The second 

step, pair-wise comparison matrices and priority vectors, is discussed in subsequent 

sections so that the application is easily understandable. 

Pair-wise Comparison of the Criteria 

Bicycle crash frequency, bicycle facility (bicycle lane and/or bicycle slot), bicycle 

volume, AADT, auto ownership, land use, and transit stops are the seven criteria that were 
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selected for network screening purpose in this research. The pair-wise comparisons of these 

seven criteria were required and this comparison was very crucial. This research focused 

on the roadway facilities in Florida; thus, to drive the pragmatic results, the comparisons 

should come from the policy makers who are lead transportation decision makers in 

Florida. Therefore, an attempt had been made to reach out to the industry experts to obtain 

their feedback on these pair-wise comparisons. Feedbacks from five experts were received. 

The survey excel file that was sent out, and the five responses received from the expert 

panel are presented in the appendix. The responses were kept anonymous to have the results 

unbiased.   

The number of pair-wise comparisons is a function of the number of criteria (or 

alternatives) (n) to be compared, and can be calculated as: 

                                    Number of pair-wise comparisons = 
n(n-1)

2
                                     (5-1) 

The seven criteria resulted in a total of 21 pair-wise comparisons. 

Pair-wise Comparison of the Segments 

There were 2,236 segments which needed pairwise comparisons for each of the 

seven criteria. Therefore, for each criterion, a total of 2,498,730 comparisons were 

required. It was quite impossible to do it manually; therefore, the range of values of the 

criteria were converted to the pre-defined 1-9 scale so that the pair-wise comparisons could 

be performed automatically. Furthermore, the conversion simplifies the process of 

incorporating outliers in a systematic manner. For example, if there are 100 segments, and 

if a couple of segments have unrealistically high AADT values (i.e., outliers), the pairwise 

comparisons, when generated automatically based on original values, will be biased toward 
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these segments. The following sections discuss how each of the seven criterion was 

converted to the pre-defined 1-9 scale. 

 Bicycle Crash Frequency: Bicycle crash frequency was first normalized based on 

segment length. All the segments with zero bicycle crashes were assigned to pre-

defined scale 1. The rest of the crash rates (bicycle crashes/mile), i.e., 0-1, 1-2, 2-

4, and ≥ 4 crashes/mile were converted to Scale 3, 5, 7, and 9, respectively. The 

scaling, i.e., this assignment was based on uniform percentiles of coverage (i.e., 

sum of segment lengths in miles).   

 Bicycle Facility (Bicycle Lane and/or Bicycle Slot): Bicycle lane and slot 

information were combined such that if either lane or slot was present along the 

roadway, the roadway was considered to have bicycle facility. As this research 

focuses on prioritizing locations that needed improvements, locations with no 

bicycle facility were given priority, and were assigned a value of 7 in the pre-

defined scale; and the locations having bicycle facility were assigned a value of 1 

in the scale.  

 Bicycle Volume: Bicycle activity from Strava and commuting bicyclist data from 

census database were combined to categorize bicycle volume.  Table 5-1 presents 

the combined categories and the converted scales for each of the combined 

category. Sections 4.1.3 and 4.1.4 elaborated the activity and commuting data 

preparation and the representing category formation steps in detail. 

 AADT: AADT data were also converted to pre-defined scale based on percentiles. 

First, the segments were organized in ascending order according to the segment 

AADT. Then, the segments were assigned to the pre-defined scale from 1 to 9 based 
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on summation of segment lengths percentile, i.e., 1st to 11th percentile were given 

the scale of 1, from 12th to the 22nd percentile were given the scale of 2, and so on. 

Table 5-1: Pre-defined Scaling for Bicycle Volume 

Bicycle Activity Bicycle Commuting 
Combined Activity & 

Commuting 
Scale 

Low  Low  Low + Low 1 

Medium  Low  Medium + Low 3 

High Low  High + Low 5 

Low  Medium  Low + Medium 3 

Medium  Medium  Medium + Medium 5 

High Medium  High + Medium 7 

Low  High  Low + High 5 

Medium  High  Medium + High 7 

High  High  High + High 9 

 

 Auto Ownership: Auto ownership information was extracted from FGDL’s 2015 

census database. The households having zero and one auto were considered 

potential households of bicycle users. This information was normalized by the 

segment length. Then, the segments were organized in ascending order according 

to the normalized value. Finally, the segments were assigned to the pre-defined 

scale from 1 to 9 based on segments percentile, i.e., 1st to 11th percentile segments 

were given the scale of 1, from 12th to the 22nd percentile were given the scale of 2, 

and so on. 

 Land Use: Section 4.1.4 elaborated how the land use information was reclassified 

in this research, and Table 4-1 presented the reclassified land use categories.  The 

reclassified land use categories are: residential and institutional, commercial, 

recreational, other, and low bicycle activity. Scale 1, 3, 5, 7, 9 were assigned to 

these five land use categories depending on the possibility of potential bicyclists in 

each of the land use.  Thus, Table 5-2 presents the scales assigned to each of the 

land use.  
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Table 5-2: Pre-defined Scaling for Land Use 

Reclassified Land Use Pre-defined Scale 

Residential and Institutional 9 

Recreational 7 

Commercial 5 

Othera 3 

Low Bicycle Activityb 1 
 Note: aOther land use includes acreage not zoned for agriculture, centrally assessed, right-of-way, 

 vacant non-residential; bLow Bicycle Activity includes parcels with no values, agricultural, mining, 

 water, no data available.  

 

 Transit Stops: Transit stops data were converted to pre-defined scale in the similar 

approach as it was done for bicycle crash frequency. Segments having zero transit 

stops/mile were allocated Scale 1. The rest of the segments were organized in 

ascending order based on transit stops (stops/mile); and then, were converted to 

Scale 3, 5, 7, and 9 based on uniform percentiles of segments for each category, 

i.e., uniform number of segments in each category.   

Once the values of the crieria were converted to the pre-defined scale, the segments 

(i.e., the alternatives) were compared by calculating the ratio of the two alternatives. For 

example, if the converted value of AADT was 3 for segment A and 9 for segment B, the 

pairwise comparison of segments A and B was given a value of 3/9. Similarly, if the pre-

defined scale value of transit stops was 7 for segment C and 1 for segment D, the pair-wise 

comparison of segments C and D was given a value of 7/1. 

Comparison Matrix and Priority Vector from the Criteria 

Section 3.1.1 detailed the concept of comparison matrix and priority vector. The 

prioritization of segments with respect to seven criteria requires eight comparison matrices 

and thus, eight priority vectors; of which, one comes from criteria’s comparisons, while 

the remaining seven from segments’ comparisons with respect to each of the criterion.  
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Since this research received the pair-wise comparisons of the criteria from five 

transportation experts, all the feedbacks were incorporated in this study. The average 

priorities were considered in the final matrix. Table 5-3 presents the final priorities.  

Table 5-3: Cluster Level Priorities with Respect to Goal  

Criteria 
Priorities Derived from Expert Panel Feedback  

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 32.49 41.73 43.51 44.90 4.88 33.50 

Bicycle Facility 16.81 10.73 11.29 12.18 14.20 13.04 

Bicycle Volume 10.23 9.69 14.58 7.33 5.60 9.49 

AADT 11.69 21.69 9.14 4.91 12.28 11.94 

Auto Ownership 7.15 2.97 5.42 8.49 27.56 10.32 

Land Use 9.95 4.90 5.42 7.99 18.12 9.28 

Transit Stops 11.67 8.29 10.62 14.20 17.36 12.43 

Total 100 100 100 100 100 100 

 

Comparison Matrices and Priority Vectors of the Segments 

All the 2,236 segments were compared pair-wise with respect to each of the seven 

criteria. This step was performed automatically once the values of the seven criteria for all 

the segments were converted to the predefined 1-9 scale. Seven priority vectors were 

derived from the seven sets of pair-wise comparisons (W32 in Figure 3-2).       

Ranking of Alternatives 

The final step in the AHP was to compute the overall composite weight of each 

alternative (i.e., highway location) based on the determined weight at Level 1 and Level 2 

comparison matrices, i.e., from the cluster level priorities. The composite weight is simply 

the weighted sum from the seven criteria. The final ranks of the locations were then 

determined from the calculated composite weights of the locations. The higher the score, 

the lower the rank, and the greater is the priority. 
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5.1.2 Analytic Network Process (ANP) 

As aforementioned, the ANP is a generalized form of AHP. Although both methods 

account for subjective judgment, the main difference lies in their model structure. As 

discussed in Section 3.1.2, the four sequential steps of ANP are: model construction and 

problem structuring; pair-wise comparison matrices and priority vectors; supermatrix, 

weighted supermatrix, and limit matrix formations; and ranking of alternatives. The ANP 

model structure presented in Figure 3-4 is used in this research. Therefore, the first step, 

model construction and problem structuring, is not repeated here. 

Since the ANP and the AHP are similar in the comparative judgment steps (i.e., 

with respect to pair-wise comparison and priority vectors), the following computational 

steps in both the methods are similar: pair-wise comparison, comparison matrix, and 

priority vector. However, to account for interdependencies of the criteria, ANP requires 

another seven comparison matrices and priority vectors from the criteria in addition to the 

comparison matrices and priority vectors developed for AHP. Thus, a total of eight 

comparison matrices and priority vectors need to be developed from the criteria.  

Of the eight comparison matrices from the criteria, one is at cluster level (from all 

criteria with respect to goal, W21 in Figure 3-4 similar to AHP) and the remaining seven 

are from sub-cluster level (comparison of the criteria when one criterion is omitted each 

time to account for interdependencies, W22 in Figure 3-4).  

This research processed all the eight matrices for each expert’s feedback deriving 

40 (= 8 matrices × 5 experts) matrices first. Then, the average priorities were considered 

for the final 8 matrices and for the supermatrix formation. Table 5-3 presents the cluster 
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level final priorities of the criteria which is common for ANP and AHP. Tables 5-4 through 

5-10 present the sub-cluster level priorities. 

Table 5-4: Sub-cluster Level Priorities with Respect to Bicycle Crash  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Facility 22.82 18.89 20.39 23.49 13.99 19.92 

Bicycle Volume 15.70 16.53 27.48 12.79 4.21 15.34 

AADT 18.37 40.46 16.11 7.79 10.51 18.65 

Auto Ownership 10.97 3.92 8.63 14.39 30.41 13.66 

Land Use 14.23 7.07 8.63 14.45 20.34 12.94 

Transit Stops 17.91 13.12 18.77 27.08 20.55 19.49 

Total 100 100 100 100 100 100 

 

Table 5-5: Sub-cluster Level Priorities with Respect to Bicycle Facility  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash  44.14 45.92 48.88 48.90 6.52 38.87 

Bicycle Volume 11.27 12.05 13.86 8.74 6.25 10.43 

AADT 16.41 23.64 11.82 6.03 17.55 15.09 

Auto Ownership 9.27 3.27 6.35 9.38 25.27 10.71 

Land Use 5.48 5.39 6.35 8.78 25.31 10.26 

Transit Stops 13.42 9.73 12.74 18.17 19.10 14.63 

Total 100 100 100 100 100 100 

 

Table 5-6: Sub-cluster Level Priorities with Respect to Bicycle Volume  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash  37.59 45.45 48.64 49.65 5.95 37.46 

Bicycle Facility 18.96 10.48 14.95 12.52 16.43 14.67 

AADT 7.67 22.66 10.14 4.90 11.26 11.33 

Auto Ownership 5.58 3.45 6.27 9.35 30.43 11.02 

Land Use 13.95 6.40 6.27 9.27 18.25 10.83 

Transit Stops 16.25 11.55 13.72 14.31 17.68 14.70 

Total 100 100 100 100 100 100 

 

Table 5-7: Sub-cluster Level Priorities with Respect to AADT  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 38.33 46.99 48.44 49.85 6.95 38.11 

Bicycle Facility 16.21 16.19 9.91 12.37 10.90 13.11 

Bicycle Volume 12.80 14.66 16.76 7.78 7.82 11.97 

Auto Ownership 10.41 3.73 6.28 7.82 32.07 12.06 

Land Use 11.73 6.61 6.28 7.17 19.31 10.22 

Transit Stops 10.52 11.83 12.34 15.00 22.94 14.52 

Total 100 100 100 100 100 100 
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Table 5-8: Sub-cluster Level Priorities with Respect to Auto Ownership  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 35.94 47.03 47.73 50.79 6.22 37.54 

Bicycle Facility 15.69 10.89 11.67 13.75 22.43 14.88 

Bicycle Volume 12.86 9.06 15.59 8.13 8.48 10.82 

AADT 11.63 22.28 9.22 5.80 17.13 13.21 

Land Use 10.65 3.74 5.69 9.01 26.61 11.14 

Transit Stops 13.23 7.00 10.10 12.52 19.14 12.40 

Total 100 100 100 100 100 100 

 

Table 5-9: Sub-cluster Level Priorities with Respect to Land Use  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 35.41 47.44 47.73 49.00 5.40 37.00 

Bicycle Facility 22.05 11.33 11.67 13.98 17.17 15.24 

Bicycle Volume 10.35 8.09 15.59 6.62 6.88 9.51 

AADT 13.52 22.29 9.22 5.68 15.98 13.34 

Auto Ownership 7.66 3.71 5.69 9.58 32.23 11.78 

Transit Stops 11.01 7.14 10.10 15.13 22.33 13.14 

Total 100 100 100 100 100 100 

 

Table 5-10: Sub-cluster Level Priorities with Respect to Transit Stops  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 35.40 46.59 47.85 49.29 4.13 36.65 

Bicycle Facility 21.52 11.20 13.15 12.68 17.51 15.21 

Bicycle Volume 7.63 9.41 15.68 10.13 6.80 9.93 

AADT 13.41 22.81 10.24 5.87 13.83 13.23 

Auto Ownership 7.17 3.59 6.54 11.74 37.80 13.37 

Land Use 14.87 6.41 6.54 10.30 19.92 11.61 

Total 100 100 100 100 100 100 

 

The comparison matrices and priority vectors of the segments were exactly similar 

to the ones developed for AHP. Thus, the priority vectors developed for AHP were directly 

for ANP. The following sub-sections provide a detailed discussion on the last two steps.  

Supermatrix, Weighted Supermatrix, and Limit Matrix Formation 

Priority vectors were placed in proper positions of the general supermatrix 

framework to derive the final supermatrix. Table 5-11 presents the expanded supermatrix 

framework that was used in this research. ANP’s principle is to derive the limit priorities 
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of influence from the supermatrix. To obtain such priorities, the supermatrix needs to be 

transformed to a matrix each of whose column sums to unity, known as column 

stochasticity. The resulting stochastic matrix is known as weighted supermatrix.  

Therefore, once the supermatrix was formed, the columns of the supermatrix were 

normalized to unity to obtain the weighted supermatrix.  

Table 5-11: Expanded Supermatrix Framework  

 Goal 
Criteria Alternatives 

C-1 … C-7 A-1 A-2 A-3 … A-n 

Goal 0 0 0 0 0 0 0 0 0 

 Criteria 

C-1 W21 W22 W22 W22 0 0 0 0 0 

… W21 W22 W22 W22 0 0 0 0 0 

C-7 W21 W22 W22 W22 0 0 0 0 0 

Alternatives 

(Segments)  

A-1 0 W32 W32 W32 1 0 0 0 0 

A-2 0 W32 W32 W32 0 1 0 0 0 

A-3 0 W32 W32 W32 0 0 1 0 0 

… 0 W32 W32 W32 0 0 0 1 0 

A-n 0 W32 W32 W32 0 0 0 0 1 

 Note: n = 2,236 in this study. 

 

The limit supermatrix is obtained by raising the weighted supermatrix to 

exponential powers 2k+1, where k is an arbitrary number. It provides the long-term relative 

influences of the elements on each other through convergence on the importance weights. 

In this research, the weighted supermatrix was raised to power 22 to obtain the convergence 

of the alternatives’ priorities up to 12 decimal places. Interested readers are referred to 

Raihan et al. (2016) for step by step calculations of the complete procedure with an 

example. 

Ranking of Alternatives 

The final priorities of all elements were obtained by normalizing each cluster of the 

limit matrix. 



109 
 

5.1.3 Fuzzy Analytic Network Process (FANP) 

The difference between FANP approach and ANP approach lies in fuzzy pairwise 

comparison matrix formation and in calculating triangular fuzzy weights; and finally, in 

ranking the alternatives from the limit supermatrix. In the FANP method, instead of using 

the discrete scale of 1-9, a triangular fuzzy number (TFN) scale 1̃ - 9̃ is used to state the 

preferences of the decision maker. Table 3-2 was used in this research for this purpose. 

Three sets of cluster level (W21) and sub-cluster level (W22) priority vectors (lower bound, 

middle value, and upper bound) were generated involving the criteria while applying the 

FANP approach. Tables 5-12 through 5-35 present the priority vectors. To synthesize the 

final ranks for the locations from three limit matrices, gravity method was employed in this 

research. 

Table 5-12: Lower Bound Cluster Level Priorities with Respect to Goal  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 32.62 33.77 33.33 33.24 7.03 28.00 

Bicycle Facility 15.05 10.47 11.11 11.08 14.32 12.41 

Bicycle Volume 8.74 9.73 11.11 11.08 7.65 9.66 

AADT 10.99 19.61 11.11 11.08 13.17 13.19 

Auto Ownership 8.74 6.54 11.11 9.47 24.40 12.05 

Land Use 10.99 7.65 11.11 11.08 18.03 11.77 

Transit Stops 12.86 12.24 11.11 12.96 15.41 12.92 

Total 100 100 100 100 100 100 

 

Table 5-13: Modal Cluster Level Priorities with Respect to Goal  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 37.27 37.98 39.50 40.32 5.60 32.14 

Bicycle Facility 15.71 11.25 11.09 11.91 13.58 12.71 

Bicycle Volume 8.35 9.57 12.97 8.85 6.30 9.21 

AADT 10.05 21.70 10.04 6.85 12.53 12.23 

Auto Ownership 7.58 4.11 7.52 9.19 25.98 10.88 

Land Use 9.46 5.76 7.52 9.44 19.46 10.33 

Transit Stops 11.57 9.63 11.36 13.44 16.54 12.51 

Total 100 100 100 100 100 100 
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Table 5-14: Upper Bound Cluster Level Priorities with Respect to Goal  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 39.16 40.16 42.35 43.06 5.12 33.97 

Bicycle Facility 15.53 10.62 10.57 11.36 13.67 12.35 

Bicycle Volume 7.92 9.08 12.36 8.42 5.95 8.75 

AADT 9.66 21.96 9.57 6.52 12.24 11.99 

Auto Ownership 7.23 3.69 7.16 8.57 26.68 10.67 

Land Use 9.10 5.26 7.16 9.01 19.82 10.07 

Transit Stops 11.39 9.23 10.83 13.07 16.51 12.20 

Total 100 100 100 100 100 100 

 

Table 5-15: Lower Bound Sub-cluster Level Priorities with Respect to Bicycle Crash 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Facility 19.79 15.26 16.67 16.57 14.03 16.47 

Bicycle Volume 13.72 15.26 16.67 16.57 6.75 13.79 

AADT 16.48 31.75 16.67 16.57 12.72 18.84 

Auto Ownership 13.72 8.81 16.67 13.80 26.12 15.83 

Land Use 16.48 10.58 16.67 16.57 22.03 16.47 

Transit Stops 19.79 18.33 16.67 19.90 18.35 18.61 

Total 100 100 100 100 100 100 

 

Table 5-16: Modal Sub-cluster Level Priorities with Respect to Bicycle Crash 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Facility 21.91 17.77 18.55 20.70 12.96 18.38 

Bicycle Volume 13.92 15.52 22.27 14.35 5.29 14.27 

AADT 16.72 38.25 16.52 10.65 11.31 18.69 

Auto Ownership 12.45 5.49 11.79 14.67 27.62 14.40 

Land Use 15.29 8.14 11.79 15.80 22.71 14.74 

Transit Stops 19.71 14.83 19.08 23.84 20.11 19.51 

Total 100 100 100 100 100 100 

 

Table 5-17: Upper Bound Sub-cluster Level Priorities with Respect to Bicycle Crash 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Facility 22.14 17.27 18.55 20.65 12.83 18.29 

Bicycle Volume 13.61 15.09 22.27 14.32 4.86 14.03 

AADT 16.63 40.33 16.52 10.62 10.87 19.00 

Auto Ownership 12.23 5.03 11.79 14.32 27.99 14.27 

Land Use 15.24 7.61 11.79 15.76 23.31 14.74 

Transit Stops 20.15 14.67 19.08 24.32 20.14 19.67 

Total 100 100 100 100 100 100 
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Table 5-18: Lower Bound Sub-cluster Level Priorities with Respect to Bicycle Facility  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 41.97 37.39 37.50 37.34 8.85 32.61 

Bicycle Volume 9.02 10.51 12.50 12.45 8.13 10.52 

AADT 14.17 23.81 12.50 12.45 18.41 16.27 

Auto Ownership 10.84 6.61 12.50 10.36 24.08 12.88 

Land Use 9.83 7.94 12.50 12.45 22.11 12.96 

Transit Stops 14.17 13.75 12.50 14.95 18.41 14.76 

Total 100 100 100 100 100 100 

 

Table 5-19: Modal Sub-cluster Level Priorities with Respect to Bicycle Facility  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 48.24 41.76 43.94 44.18 6.97 37.02 

Bicycle Volume 8.42 11.83 13.45 10.35 6.49 10.11 

AADT 13.43 24.40 12.57 8.06 18.22 15.34 

Auto Ownership 9.67 4.41 8.55 10.11 25.48 11.64 

Land Use 7.91 6.24 8.55 10.44 24.16 11.46 

Transit Stops 12.32 11.36 12.94 16.86 18.69 14.43 

Total 100 100 100 100 100 100 

 

Table 5-20: Upper Bound Sub-cluster Level Priorities with Respect to Bicycle Facility 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 50.66 43.76 46.86 46.98 6.43 38.94 

Bicycle Volume 7.85 11.13 12.75 9.80 6.08 9.52 

AADT 12.94 24.78 11.92 7.63 18.12 15.08 

Auto Ownership 9.23 3.89 8.10 9.34 25.96 11.30 

Land Use 7.33 5.61 8.10 9.90 24.74 11.14 

Transit Stops 11.99 10.82 12.26 16.35 18.68 14.02 

Total 100 100 100 100 100 100 

 

Table 5-21: Lower Bound Sub-cluster Level Priorities with Respect to Bicycle Volume 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 33.69 35.96 37.50 37.34 9.19 30.74 

Bicycle Facility 17.86 11.99 12.50 12.45 17.55 14.47 

AADT 10.31 20.76 12.50 12.45 13.25 13.85 

Auto Ownership 7.89 6.92 12.50 10.36 24.99 12.53 

Land Use 12.39 9.98 12.50 12.45 19.11 13.28 

Transit Stops 17.86 14.39 12.50 14.95 15.91 15.12 

Total 100 100 100 100 100 100 
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Table 5-22: Modal Sub-cluster Level Priorities with Respect to Bicycle Volume  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 38.58 41.10 43.85 44.90 7.39 35.17 

Bicycle Facility 18.71 11.76 14.09 12.74 16.84 14.83 

AADT 8.65 22.56 11.18 7.15 11.93 12.29 

Auto Ownership 6.49 4.58 8.53 10.08 27.01 11.34 

Land Use 11.08 7.62 8.53 11.13 20.33 11.74 

Transit Stops 16.50 12.37 13.81 13.99 16.50 14.63 

Total 100 100 100 100 100 100 

 

Table 5-23: Upper Bound Sub-cluster Level Priorities with Respect to Bicycle Volume  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 40.30 43.47 46.77 47.67 6.86 37.02 

Bicycle Facility 18.47 11.06 13.35 12.10 17.10 14.42 

AADT 8.12 22.55 10.60 6.77 11.50 11.91 

Auto Ownership 6.01 4.06 8.09 9.31 27.69 11.03 

Land Use 10.59 7.03 8.09 10.57 20.54 11.36 

Transit Stops 16.52 11.83 13.10 13.58 16.30 14.26 

Total 100 100 100 100 100 100 

 

Table 5-24: Lower Bound Sub-cluster Level Priorities with Respect to AADT  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 37.02 39.18 37.50 37.34 8.76 31.96 

Bicycle Facility 15.01 11.99 12.50 12.45 13.94 13.18 

Bicycle Volume 11.48 13.23 12.50 12.45 9.67 11.86 

Auto Ownership 11.48 8.32 12.50 10.36 31.17 14.77 

Land Use 12.50 9.99 12.50 12.45 18.23 13.13 

Transit Stops 12.50 17.30 12.50 14.95 18.23 15.10 

Total 100 100 100 100 100 100 

 

Table 5-25: Modal Sub-cluster Level Priorities with Respect to AADT 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 41.12 44.10 43.82 45.07 7.31 36.28 

Bicycle Facility 15.01 15.08 11.17 12.19 12.68 13.23 

Bicycle Volume 11.85 14.02 15.06 9.68 8.38 11.80 

Auto Ownership 10.39 5.23 8.53 9.01 31.81 12.99 

Land Use 10.68 7.76 8.53 9.31 19.72 11.20 

Transit Stops 10.95 13.82 12.90 14.73 20.11 14.50 

Total 100 100 100 100 100 100 
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Table 5-26: Upper Bound Sub-cluster Level Priorities with Respect to AADT  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 43.05 46.65 46.74 47.83 6.71 38.19 

Bicycle Facility 14.63 14.25 10.59 11.57 12.55 12.72 

Bicycle Volume 11.41 13.58 14.28 9.16 7.99 11.29 

Auto Ownership 10.08 4.75 8.08 8.32 32.89 12.83 

Land Use 10.26 7.19 8.08 8.83 19.75 10.82 

Transit Stops 10.57 13.58 12.23 14.29 20.10 14.16 

Total 100 100 100 100 100 100 

 

Table 5-27: Lower Bound Sub-cluster Level Priorities with Respect to Auto Ownership  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 34.55 38.46 37.50 37.50 9.08 31.42 

Bicycle Facility 15.25 11.77 12.50 12.50 22.69 14.94 

Bicycle Volume 11.67 10.81 12.50 12.50 10.91 11.68 

AADT 10.58 20.39 12.50 12.50 15.73 14.34 

Land Use 12.70 6.80 12.50 12.50 22.69 13.44 

Transit Stops 15.25 11.77 12.50 12.50 18.89 14.18 

Total 100 100 100 100 100 100 

 

Table 5-28: Modal Sub-cluster Level Priorities with Respect to Auto Ownership 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 40.01 42.93 44.03 45.75 7.21 35.98 

Bicycle Facility 15.10 11.65 11.78 13.58 21.83 14.79 

Bicycle Volume 11.43 9.65 14.14 9.61 8.91 10.75 

AADT 9.14 22.35 10.49 8.00 16.00 13.20 

Land Use 10.74 4.76 8.01 10.37 26.73 12.12 

Transit Stops 13.58 8.67 11.55 12.70 19.33 13.16 

Total 100 100 100 100 100 100 

 

Table 5-29: Upper Bound Sub-cluster Level Priorities with Respect to Auto Ownership 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 41.96 45.21 46.95 48.49 6.67 37.85 

Bicycle Facility 14.70 10.96 11.16 12.91 22.40 14.43 

Bicycle Volume 11.05 9.13 13.41 9.11 8.49 10.24 

AADT 8.60 22.36 9.95 7.58 15.64 12.82 

Land Use 10.31 4.22 7.59 9.85 27.44 11.88 

Transit Stops 13.38 8.13 10.95 12.06 19.36 12.78 

Total 100 100 100 100 100 100 
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Table 5-30: Lower Bound Sub-cluster Level Priorities with Respect to Land Use 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 36.02 38.63 37.50 37.34 7.20 31.34 

Bicycle Facility 21.06 11.82 12.50 12.45 16.52 14.87 

Bicycle Volume 9.30 9.04 12.50 12.45 9.54 10.57 

AADT 12.16 20.48 12.50 12.45 17.99 15.12 

Auto Ownership 9.30 8.20 12.50 10.36 30.76 14.22 

Transit Stops 12.16 11.82 12.50 14.95 17.99 13.88 

Total 100 100 100 100 100 100 

 

Table 5-31: Modal Sub-cluster Level Priorities with Respect to Land Use  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 39.95 42.99 44.03 44.27 5.99 35.45 

Bicycle Facility 22.63 12.24 11.78 13.71 15.74 15.22 

Bicycle Volume 8.21 8.61 14.14 9.06 8.09 9.62 

AADT 10.91 22.38 10.49 8.07 17.65 13.90 

Auto Ownership 7.85 5.10 8.01 10.13 31.34 12.49 

Transit Stops 10.44 8.68 11.55 14.76 21.19 13.32 

Total 100 100 100 100 100 100 

 

Table 5-32: Upper Bound Sub-cluster Level Priorities with Respect to Land Use 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 41.53 45.31 46.95 47.09 5.40 37.26 

Bicycle Facility 22.86 11.53 11.16 13.01 15.85 14.88 

Bicycle Volume 7.73 7.99 13.41 8.58 7.72 9.09 

AADT 10.42 22.41 9.95 7.64 17.56 13.60 

Auto Ownership 7.44 4.61 7.59 9.36 32.33 12.27 

Transit Stops 10.02 8.15 10.95 14.32 21.14 12.91 

Total 100 100 100 100 100 100 

 

Table 5-33: Lower Bound Sub-cluster Level Priorities with Respect to Transit Stops  

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 36.09 38.69 37.50 37.50 7.16 31.39 

Bicycle Facility 17.57 11.84 12.50 12.50 16.42 14.17 

Bicycle Volume 7.76 10.88 12.50 12.50 9.48 10.62 

AADT 14.63 20.51 12.50 12.50 14.89 15.01 

Auto Ownership 9.32 8.21 12.50 12.50 30.58 14.62 

Land Use 14.63 9.86 12.50 12.50 21.47 14.19 

Total 100 100 100 100 100 100 
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Table 5-34: Modal Sub-cluster Level Priorities with Respect to Transit Stops 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 39.83 42.81 44.04 44.56 5.43 35.33 

Bicycle Facility 18.68 12.19 12.60 12.90 16.31 14.53 

Bicycle Volume 7.09 9.62 14.15 10.95 7.99 9.96 

AADT 13.67 22.78 11.23 7.75 13.87 13.86 

Auto Ownership 7.99 5.07 8.99 12.57 34.74 13.87 

Land Use 12.74 7.53 8.99 11.27 21.66 12.44 

Total 100 100 100 100 100 100 

 

Table 5-35: Upper Bound Sub-cluster Level Priorities with Respect to Transit Stops 

Criteria 
Priorities Derived from Expert Panel Feedback 

Average 
Expert-A Expert-B Expert-C Expert-D Expert-E 

Bicycle Crash 41.55 45.12 46.96 47.44 4.87 37.19 

Bicycle Facility 18.47 11.48 11.95 12.25 16.36 14.10 

Bicycle Volume 6.56 9.11 13.41 10.38 7.58 9.41 

AADT 13.37 22.75 10.64 7.34 13.45 13.51 

Auto Ownership 7.57 4.59 8.52 11.88 35.70 13.65 

Land Use 12.47 6.95 8.52 10.70 22.05 12.14 

Total 100 100 100 100 100 100 

 

5.1.4 Comparison of Results 

There are no direct methods to compare the performance of AHP, ANP, and FANP 

in screening highway improvement locations. Therefore, an attempt has been made in this 

research to compare the top 30 prioritized locations considering the criteria. Table 5-36 

presents the top 30 locations ranked by AHP, ANP, and FANP approaches. It was difficult 

to compare all the locations at once and understand the logical explanation of the rankings 

by these three methods. Therefore, two pairs of locations were studied at the site specific 

level to understand the logical difference in the rankings from the three methods.  

It can be observed from Table 5-36 that the top 30 prioritized locations were 

common in all three methods; however, the ranks of the locations based on the methods 

are quite different. The following sub-sections compare the rankings from the three 

methods at the site specific levels. 
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Table 5-36: Top 30 Prioritized Locations using AHP, ANP, and FANP Approaches 

# 
Segment 

Length 
AADT 

Presence 

of 

Bicycle 

Facility 

Total 

Bicycle 

Crashes 

Total 

Bicycle 

Crashes 

per mile 

Scaled 

Bicycle 

Volume 

# of Households 

with 0 & 1 

Vehicle along 

the Segment 

# of Households 

having 0 and 1 

Vehicle per mile 

along the Segment 

# of Bus 

Stops 

# of Bus 

Stops  

per mile 

Land Use 

Rank 

AHP  ANP  FANP  

1 0.706 40,000 0 4 5.67 7 2,062 2,920.68 7 9.91 Residential 1 1 1 

2 0.327 36,000 0 4 12.23 7 1,806 5,522.94 3 9.17 Commercial 2 2 2 

3 0.232 39,000 0 1 4.31 7 502 2,163.79 2 8.62 Commercial 3 3 3 

4 0.244 30,000 0 1 4.10 7 969 3,971.31 3 12.29 Commercial 4 4 4 

5 0.753 45,500 0 7 9.30 9 2,011 2,670.65 6 7.97 Commercial 5 5 7 

6 1.377 33,500 0 7 5.08 7 4,745 3,445.90 8 5.81 Residential 6 6 5 

7 0.184 36,500 0 5 27.17 9 664 3,608.70 1 5.43 Commercial 7 7 8 

8 0.094 30,500 0 1 10.64 5 189 2,010.64 1 10.64 Residential 8 8 6 

9 0.738 21,200 0 3 4.07 7 2,546 3,449.86 8 10.84 Residential 9 9 9 

10 0.152 40,000 0 1 6.58 7 690 4,539.47 1 6.58 Commercial 10 11 11 

11 0.381 33,000 0 2 5.25 7 750 1,968.50 3 7.87 Residential 11 10 10 

12 0.400 17,100 0 2 5.00 9 995 2,487.50 4 10.00 Residential 12 13 12 

13 1.320 33,500 0 6 4.55 9 926 701.52 14 10.60 Commercial 13 12 14 

14 0.563 34,000 0 4 7.10 5 1,911 3,394.32 6 10.66 Commercial 14 14 13 

15 0.625 27,000 0 3 4.80 9 1,091 1,745.60 7 11.20 Commercial 15 15 16 

16 0.255 22,000 0 2 7.84 9 706 2,768.63 3 11.76 Commercial 16 16 17 

17 0.150 32,000 0 1 6.67 7 333 2,220.00 1 6.67 Residential 17 17 15 

18 0.126 30,500 0 1 7.94 3 1,212 9,619.05 2 15.87 Commercial 18 18 18 

19 0.313 21,700 0 2 6.39 7 1,227 3,920.13 4 12.78 Commercial 19 19 19 

20 0.176 25,500 0 2 11.36 5 649 3,687.50 3 17.04 Commercial 20 20 20 

21 0.158 16,600 0 1 6.33 7 1,038 6,569.62 2 12.66 Commercial 21 21 21 

22 0.776 28,000 0 4 5.15 7 832 1,072.16 11 14.17 Commercial 22 22 23 

23 0.319 24,000 0 2 6.27 9 1,048 3,285.27 2 6.27 Commercial 23 24 24 

24 0.249 43,000 0 1 4.02 7 50 200.80 2 8.03 Residential 24 23 22 

25 0.178 46,000 0 1 5.62 5 437 2,455.05 1 5.62 Commercial 25 25 25 

26 0.503 47,500 0 4 7.95 5 964 1,916.50 3 5.96 Commercial 26 26 26 

27 0.432 15,900 0 4 9.26 7 2,189 5,067.13 4 9.30 Commercial 27 27 29 

28 0.257 25,000 0 3 11.67 9 141 548.64 3 11.67 Commercial 28 28 35 

29 0.318 47,500 0 2 6.29 5 189 594.34 2 6.29 Residential 29 29 28 

30 0.466 23,000 0 2 4.29 7 578 1,240.34 4 8.58 Commercial 30 30 32 

 



117 
 

Scenario 1 

Table 5-37 presents the first scenario. Segment #10 experienced an AADT of 

40,000 veh/day and Segment #11 experienced an AADT of 33,000 veh/day. It can be seen 

that ANP and FANP ranked Segment #11 on the top; AHP however, ranked the locations 

in reverse order (Segment #10 on the top). Note that, Segment #10 is comparatively shorter 

than Segment # 11, and normalization with respect to total length was done for some 

criteria so that the segments could be compared. If the criteria are considered, #10 had 

higher AADT than #11; none of the locations had any bicycle facility; #11 had higher total 

bicycle crash, but, after normalizing by segment length #10 weighted more; and scaled 

bicycle volume were same for the two locations. Considering auto ownership #11 was more 

potential location for bicyclists, however, the order switched once normalized by segment 

length; #11 had more bus stops than #10; and #11’s land use would generate more bicyclists 

than #10. 

The pair-wise comparison of the criteria for the two locations depicts that, ANP 

and FANP approach ranked the locations more comprehensively considering all the criteria 

and keeping a reasonable consideration of segment length. On the other hand, AHP ranked 

Segment #10 on the top considering the location having higher value on the criteria which 

weighted more; and segment length played a biased role here. Thus, ANP and FANP could 

be considered to be more holistic approaches.   
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Table 5-37: Scenario 1 - Comparison of Ranks from AHP, ANP, and FANP 

# 
Segment 

Length 
AADT 

Presence 

of 

Bicycle 

Facility 

Total 

Bicycle 

Crashes 

Total 

Bicycle 

Crashes 

per mile 

Scaled 

Bicycle 

Volume 

# of Households 

with 0 & 1 

Vehicle along 

the Segment 

# of Households 

having 0 and 1 

Vehicle per mile 

along the Segment 

# of Bus 

Stops 

# of Bus 

Stops  

per mile 

Land Use 

Rank 

AHP  ANP  FANP  

10 0.152 40,000 0 1 6.58 7 690 4,539.47 1 6.58 Commercial 10 11 11 

11 0.381 33,000 0 2 5.25 7 750 1,968.50 3 7.87 Residential 11 10 10 

 

Table 5-38: Scenario 2 - Comparison of Ranks from AHP, ANP, and FANP 

# 
Segment 

Length 
AADT 

Presence 

of 

Bicycle 

Facility 

Total 

Bicycle 

Crashes 

Total 

Bicycle 

Crashes 

per mile 

Scaled 

Bicycle 

Volume 

# of Households 

with 0 & 1 

Vehicle along 

the Segment 

# of Households 

having 0 and 1 

Vehicle per mile 

along the Segment 

# of Bus 

Stops 

# of Bus 

Stops  

per mile 

Land Use 

Rank 

AHP  ANP  FANP  

5 0.753 45,500 0 7 9.30 9 2,011 2,670.65 6 7.97 Commercial 5 5 7 

6 1.377 33,500 0 7 5.08 7 4,745 3,445.90 8 5.81 Residential 6 6 5 
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Scenario 2 

Table 5-38 presents the second scenario. The location with AADT 45,500 veh/day 

is labeled as Segment #5, and location with AADT 33,500 veh/day as Segment #6 for this 

scenario. ANP and AHP ranked #5 over #6, whereas, FANP ranked #6 over #5. If the 

criteria are considered, #5 had more AADT than #6; none of the locations had bicycle 

facilities; total bicycle crash count were same for the two locations, however, #5 was 

shorter than #6, thus triggering #5’s crash count per mile over #6’s crash rate; scaled 

bicycle volume was more for Segment #5; considering auto ownership, #6 was a more 

suitable location for improvements; #6 had more bus stops than #5 but the rate (bus stops 

per mile) calculation swapped the positions; being residential and institutional type of land 

use along the roadway, #6 had more potential to be considered for prioritization.   

Unlike Scenario 1, here ANP rank was not in line with FANP’s rank choice. 

Segment #5 was not that a small segment; it was about 0.75 mile long and Segment #6 was 

about 1.3 miles. The normalization of the variables with respect to length affected the 

choice expectation of the location or sensitivity of the approaches. It seems that if the 

decision is to be made based on a comprehensive review of the criteria Segment #6 might 

be chosen over Segment #5. However, in this example, ANP and AHP ranked the locations 

in a similar order.  

Thus, FANP was found to be relatively the most comprehensive network screening 

method among AHP, ANP, and FANP, if the locations need to be prioritized in a holistic 

manner considering all criteria.  
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5.2 CMF Development 

Bicycle CMFs for urban two-lane, four-lane, six-lane divided roadway segments, 

and urban four-leg signalized intersections were developed. Depending on the extent (i.e., 

coverage in miles and variation within each predictor) of the following 11 variables, NB 

models for segment facilities were developed: AADT, median width, presence of bicycle 

lane, presence of shared path, presence of sidewalk, presence of sidewalk barrier, type of 

on-street parking, speed limit, lane width, median type, shoulder type, and bicycle activity. 

The Akaike Information Criterion (AIC) was then used to determine the subset of 

independent variables to be included in the final NB models. Once the variables were 

selected, bicycle CMFs were estimated using the ZINB models.  

Similar approach was adopted for urban four-leg signalized intersections 

considering the following 15 variables: major road AADT, minor road AADT, presence of 

lighting, number of bus stops within intersection influence area, presence of schools within 

intersection influence area, number of alcohol establishments within intersection influence 

area, number of approaches with left-turn lanes, number of approaches with right-turn 

lanes, number of approaches with protected signal control, number of approaches with 

permitted signal control, number of approaches with protected-permitted signal control, 

number of approaches with no right-turn-on-red sign, presence of red light camera, 

presence of bicycle facility, and bicycle activity.  

Two sets of CMFs were developed for each segment and intersection facility type: 

one set considered the bicycle activity data, and the other set did not consider the bicycle 

activity data. The coefficients of the developed models and the associated CMFs estimated 

from the models from the two sets were then compared for each facility type to assess the 
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impact of bicycle activity data on the developed bicycle CMFs. The models with and 

without bicycle activity data were also compared using the Likelihood ratio test to 

determine whether the models are significantly different.  

 

5.2.1 Urban Two-lane Divided Segments 

Table 5-39 presents the descriptive statistics of the initial set of variables considered 

while developing the CMFs for urban two-lane divided segments. Median width, shared 

path, type of on-street parking, and median type were excluded from further analysis 

considering the limited variability in the extent of coverage of these variables within the 

dataset. For example, median width of 10 ft was found for a total of 362.9 miles; while 

only 36.4 miles have median width over 10 ft. Thus, due to limited variability within the 

predictor space, this variable was not considered for further analysis. Furthermore, lane 

width was re-categorized into two categories, 12-ft lanes, and < 12-ft lanes, to ensure 

sufficient variability within this variable. 

Table 5-40 presents the model coefficients, Confidence Interval (CI) of the 

coefficients at 0.05 level of significance, and the CMFs for bicycle crashes developed for 

urban two-lane divided highways in Florida with and without considering the bicycle 

activity data. The presence of bicycle lane was found to be insignificant at 0.05 level of 

significance for both cases. When bicycle activity data is considered, the presence of 

sidewalk barrier has a coefficient of 0.60497 and a CMF of 1.83. Thus, it can be inferred 

from the CMF that, the presence of sidewalk barrier increases the probability of bicycle 

crashes by 83% per year per mile on urban two-lane divided roadways in Florida. 
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Table 5-39:  Descriptive Statistics for Segment Facility Types 
Attribute Attribute Category 2La  4Lb  6Lc  

Roadway Length (mi.) -- 399.3 1,573.4 782.7 

Bicycle Crash Frequency  

(2011-2014) 

Total 178 1,174 1,283 

FS 43 197 227 

Section AADT (veh/day) 

Minimum 1,300 2,300 8,000 

Maximum 42,000 120,000 98,500 

Mean 12,017 24,826 42,703 

Standard Deviation 5,374 10,260 13,056 

Bicycle Activity  

Low (≤ 2,000)d 98.4 365.1 182.5 

Medium (> 2,000 and ≤ 10,000)d 117.3 553.2 290.2 

High (> 10,000)d 183.7 655.1 310.1 

Median Width (ft) 

Minimum 10 10 20 

Maximum 100 60 40 

Mean 12.24 26.22 25.76 

Standard Deviation 7.78 12.92 6.7 

Bicycle Lane (mi.) 
No 293.2 1,153 481.8 

Yes 106.1 420.4 300.9 

Shared Path (mi.) 
No 386.9 1,527.3 751.8 

Yes 12.4 46.1 30.9 

Sidewalk (mi.) 
No 212.6 600.3 103.3 

Yes 186.7 973.1 679.5 

Sidewalk Barrier (mi.) 
No 212.4 607.3 105.4 

Yes 189.9 966.1 677.4 

Type of On-street Parking 

No 65 299.5 138.5 

On-street Parking on One Side 0.3 2.5 0.9 

On-street Parking on Both Sides 7.9 34.3 10.8 

Data Unavailable 326.1 1,237 632.5 

Speed Limit (mph) 

Minimum 30 35 40 

Maximum 55 60 55 

Mean 43.7 45.06 46 

Standard Deviation 7.5 6.65 3.8 

Lane Width (ft) 

Minimum 9 10 10 

Maximum 12 12 12 

Mean 11.8 11.75 11.5 

Standard Deviation 0.45 0.5 0.6 

Median Type 

Paved 380.9 334.2 -- 

Raised Traffic Separator 

18.4 

124.8 166.1 

Vegetation 640.9 
616.6 

Curb & Vegetation 473.5 

Shoulder Type 

Paved 336.1 1,178 543.1 

Curb & Gutter 

63.2 

394.5 239.7 

Raised Curb -- -- 

Lawn, Gravel/Marl, Valley Gutter -- -- 

Note: -- is not applicable due to data unavailability; a urban two-lane divided; b urban four-lane divided; c urban 

six-lane divided; FS stands for Fatal and Severe/Incapacitating Injury crashes; d  total # of bicycle trips per year; 

the sub-category lengths may not add up to facility length due to rounding issues. 
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However, without considering the bicycle activity data, the coefficient and the 

corresponding CMF are 0.564051 and 1.76, respectively. It implies that the probability of 

bicycle crash increases by 76% per year per mile.  

The CMFs with and without bicycle activity data were found to be consistent in 

quantifying the impact of the presence of sidewalk barrier on bicycle crashes. In other 

words, both the models predict that the presence of sidewalk barrier increase bicycle crash 

frequency. Other CMFs, with and without the activity data, presented in Table 5-40 can be 

interpreted in a similar way. When bicycle activity data were considered, the CMFs for 

bicycle crashes for urban two-lane divided roadways in Florida are: 

 segments with higher speed limit have a 6% reduced crash probability;  

 segments with narrower lanes (< 12-ft) increase the bicycle crash probability by 

72%; 

 segments with raised curb, lawn, gravel/marl, valley gutter, and curb and gutter 

type shoulders reduce the bicycle crash probability by 52% compared to the 

segments with paved shoulders; and 

 segments with medium bicycle activity decrease the bicycle crash probability by 

49% compared to the segments with low bicycle activity. 

Presence of sidewalk barrier was found to increase bicycle crash probability. This 

could be because barriers reduce the lateral clearance between travel way and sidewalk, 

and force bicyclists to ride closer to the motorists, increasing their crash probability. Speed 

limit was found to have a positive impact on crash risks. Bicycle exposure and AADT were 

carefully checked to cross-validate this result. AADT was found to be relatively lower on 

higher speed urban two-lane divided highways; thus, reducing the bicycle crash 
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probability. Another possibility could be that bicyclists might be riding carefully on high 

speed corridors. However, an in-depth field investigation and research on this issue is 

needed.  

Lane width was found to have a significant impact on bicycle crashes. Segments 

with narrower lanes (< 12-ft) increased the bicycle crash probability by 72% when bicycle 

exposure was considered, and by 81% when bicycle exposure was not considered. This is 

expected as wider lanes provide safe lateral distance between the vehicles and the 

bicyclists. It is worth mentioning that increased bicycle activity reduces the probability of 

bicycle crashes. Segments with medium activity were found to be relatively safer for 

bicyclists compared to the segments with low bicycle activity. Motorists on two-lane 

roadways with medium-high bicycle activity may get accustomed to seeing bicyclists, and 

share the roadway accordingly.   

The following interaction terms (two variables interacting with each other) were 

considered while developing the ZINB model: presence of bicycle lane & speed limit, 

presence of bicycle lane & lane width, presence of bicycle lane & bicycle volume, speed 

limit & lane width, speed limit & bicycle volume, and lane width & bicycle volume. 

However, the latter two interaction terms were found to be highly correlated with the 

individual terms, and were discarded from the final model. The final model did not 

recognize any of the first four interaction terms as significant at 0.05 level of significance. 

The zero-inflated component of the ZINB model predicted the intercept coefficient as 

insignificant at 0.05 level of significance; thus, the developed CMFs were considered to be 

reliable and the segments with zero crash frequencies follow the NB distribution.  
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As can be observed from Table 5-40, the CMFs estimated from the models that 

considered bicycle activity data were similar to the CMFs derived from the models that did 

not consider bicycle activity data. The Likelihood ratio test comparing the models with and 

without bicycle activity found no statistical difference between the two models at 0.05 level 

of significance (p-value 0.9971). 

 

5.2.2 Urban Four-lane Divided Segments 

Table 5-39 presents the descriptive statistics of the variables for urban four-lane 

divided segments considered in this study. Shared path and type of on-street parking were 

excluded from further analysis considering their limited variability. Table 5-41 presents 

the CMFs for bicycle crashes developed for urban four-lane divided roadways in Florida. 

Unlike urban two-lane divided segments, the bicycle activity variable was found to be 

insignificant in the NB model. In other words, the same variables were significant in both 

the cases (i.e., with and without considering the bicycle activity data). 

Presence of sidewalk was found to increase bicycle crash probability. Motorists 

probably do not expect moving traffic on a sidewalk, and do not expect bicyclists while 

backing out of driveways or turning. However, bicyclists may tend to ride on the sidewalk, 

when available, and sidewalks may suddenly force the bicyclists onto a road where 

motorist do not expect them. Furthermore, sidewalks probably increase the chance of 

conflicts between bicyclists and pedestrians. NHTSA (n.d.), Cornell University (n.d.), and 

Godwin and Price (2016) have drawn analogous conclusion regarding bicycling on 

sidewalks.  
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Table 5-40:  Bicycle CMFs for Urban Two-lane Divided Segments 

Variable 
With Bicycle Exposure Without Bicycle Exposure 

Coefficient CIa of the Coefficient CMF Coefficient CIa of the Coefficient CMF 

Presence of Bicycle Lane -- -- -- -- -- -- 

Presence of Sidewalk Barrier 0.60497 0.20734  ̶  1.0026 1.83 0.564051 0.16855  ̶  0.95955 1.76 

Speed Limit  -0.06230 (-0.09946)  ̶  (-0.02514) 0.94 -0.063124 (-0.10024)  ̶  (-0.02600) 0.94 

Lane Width (< 12-ft)b 0.54265 (-0.10295)  ̶  1.18825 1.72 0.596342 (-0.04631)  ̶  1.23899 1.81 

Shoulder Type (Raised Curb, Lawn, 

Gravel/Marl, Valley Gutter, & Curb & 

Gutter)c 

-0.73602 (-1.28658)  ̶  (-0.18545) 0.48 -0.699246 (-1.25289)  ̶  (-0.14559) 0.50 

Medium Bicycle Activity (Annual Trips > 

2,000 and ≤ 10,000)d 
-0.67723 (-1.22861)  ̶  (-0.12584) 0.51 NA NA NA 

High Bicycle Activity (Annual Trips > 

10,000) d 
-- -- -- NA NA NA 

Bicycle Lane : Speed Limitd -- -- -- -- -- -- 

Bicycle Lane : Lane Width (< 12-ft)e -- -- -- -- -- -- 

Bicycle Lane : Bicycle Activity (Med, High)e -- -- -- NA NA NA 

Speed Limit : Lane Width (< 12-ft)e -- -- -- -- -- -- 

Note: -- Not significant; NA is Not Applicable; a CI stands for confidence interval at 0.05 level of significance; b The base condition for lane width is 12-ft;   
c the base condition for shoulder type is paved; d the base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000); e interaction term.  
 

Table 5-41: Bicycle CMFs for Urban Four-lane Divided Segments 

Variable Coefficient CIa of the Coefficient CMF 

Presence of Sidewalk 0.424809 0.16004  ̶  0.68957 1.53 

Speed Limit -0.045234 (-0.07537)  ̶  (-0.01509) 0.96 

Lane Width  -0.343627 (-0.54722)  ̶  (-0.14002) 0.71 

Median Type (Raised Traffic Separator)b 0.237202 0.00790  ̶  0.46650 1.27 

Median Type (Vegetation)b -0.325210 (-0.58925)  ̶  (-0.06116) 0.72 

Median Type (Curb & Vegetation)b -- -- -- 

Lane Width : Shoulder Type (Curb & Gutter)c,d 0.324764 0.05071  ̶  0.59881 1.38 

Note: -- Not significant; a CI stands for confidence interval at 0.05 level of significance; b the base condition for median type is paved; -- Not significant;        
c interaction term; d the base condition for shoulder type is paved. 
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Similar to urban two-lane divided facilities, speed limit was found to have a positive 

impact on bicycle crash risk. Wider lanes provide safe lateral distance between the vehicles 

and the bicycles, and hence, were found to decrease the bicycle crash probability. Raised 

traffic separators which do not provide any refuge area for bicyclists were found to increase 

the bicycle crash probability for urban four-lane divided segments; whereas, vegetation in 

the median which provide refuge area for bicyclists was found to reduce crash probability.  

The following interaction terms were considered while developing the ZINB 

model: AADT & speed limit, presence of sidewalk & speed limit, speed limit & lane width, 

presence of sidewalk & shoulder type, and lane width & shoulder type. Lane width’s 

interaction with shoulder type was found to be significant at 0.05 level of significance; and 

thus, was included in the final model. When shoulder is curb and gutter type, the lane width 

increment was found to have no positive impact on urban four-lane divided segments. The 

zero-inflated component of the ZINB model estimated the true zero proportion to be 0.7%; 

implying that 0.7% of the total segments that have zero crashes could not be explained by 

the NB models. The developed CMFs are therefore considered to be reliable.   

 

5.2.3 Urban Six-lane Divided Segments 

The descriptive statistics of the variables for the urban six-lane divided segments 

considered in this study are presented in Table 5-39. Shared path and type of on-street 

parking were excluded from further analysis. Median width and lane width were re-

categorized to ensure proper variability within the predictor space.  

Table 5-42 presents the CMFs for bicycle crashes developed for urban six-lane 

divided roadways in Florida. The CMFs for the presence of sidewalk, speed limit, lane 
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Table 5-42: Bicycle CMFs for Urban Six-lane Divided Segments  

Variable 
With Bicycle Exposure Without Bicycle Exposure 

Coefficient CIa of the Coefficient CMF Coefficient CIa of the Coefficient CMF 

Presence of Sidewalk 1.12690 0.13913  ̶  2.11466 3.08 1.03095 0.69614  ̶  1.36575 2.80 

Speed Limit -0.09328 (-0.12268)  ̶  (-0.06388) 0.91 -0.09392 (-0.12332)  ̶  (-0.06452) 0.91 

Lane Width (< 12-ft)b 0.22334 0.06301  ̶  0.38366 1.25 0.22840 0.06766  ̶  0.38913 1.25 

Median Type (Vegetation 

& Curb & Vegetation)c 
-0.35914 (-0.51474)  ̶  (-0.20353) 0.70 -0.37480 (-0.53101)  ̶  (-0.21858) 0.69 

Shoulder Type (Curb & 

Gutter)d 
0.19035 0.03292  ̶  0.34777 1.21 0.23181 0.07591  ̶  0.38770 1.26 

Medium Bicycle Activity 

(Annual Trips > 2,000 and 

≤ 10,000)e 

-- -- -- NA NA NA 

High Bicycle Activity 

(Annual Trips > 10,000) e 
-- -- -- NA NA NA 

Speed Limit : Lane Width 

(< 12-ft) f 
0.04793 0.00218  ̶  0.09367 1.05 0.04884 0.00218  ̶  0.09486 1.05 

Presence of Sidewalk : 

Bicycle Activity f 
-- -- -- NA NA NA 

Note: -- Not significant; NA is Not Applicable; a CI stands for confidence interval at 0.05 level of significance; b the base lane width is 12 ft; c the base condition 

for median type is raised traffic separator; d the base condition for shoulder type is paved; e the base condition for bicycle exposure is low bicycle activity 

(Annual Trips ≤ 2,000); f interaction term.  
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width, and median type are consistent with urban two-lane and four-lane divided facilities. 

The rationale for these observations was discussed in the earlier sections. Curb & gutter 

shoulder type was found to increase the bicycle crash probability when compared to paved 

shoulders. Bicyclists might prefer to ride on shoulder when it is available and well 

maintained; and while driving through an urban six-lane divided facility, drivers might not 

expect bicyclists on the roadways at all. However, when the shoulder is not paved bicyclists 

might ride on the roadways thinking that the drivers have enough maneuvering space. No 

refuge area for bicyclists might trigger the crash to go high on such corridors.   

The following interaction terms were considered while developing the ZINB 

model: speed limit & lane width, presence of sidewalk & bicycle volume, presence of 

sidewalk & shoulder type, speed limit & bicycle volume, and lane width & bicycle volume. 

However, the latter three interaction terms were found to be highly correlated with the 

individual terms; and hence, were discarded from the final model. The final model only 

recognized the interaction of speed limit & lane width as significant at 0.05 level of 

significance. It can be interpreted as narrow lanes even with speed limit’s positive 

interaction increases the bicycle crash probability. 

The zero-inflated part (logit part) of the ZINB model predicted the intercept 

coefficient (-3.8105) as significant at 0.05 level of significance. This signifies that the true 

zero not explained by the NB distribution is only 2%; thus, the developed CMFs were 

considered reliable and the segments with zero crash frequencies follow the NB 

distribution. Again, similar to the other facility types, the CMFs for urban six-lane divided 

segments developed with and without the bicycle activity data were found to be consistent 

in quantifying the impact of the cross-sectional characteristics on bicycle safety. The 
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Likelihood ratio test comparing the models (p-value 0.999) also supported that the models 

are not significantly different.  

 

5.2.4 Urban Four-leg Signalized Intersections 

Table 5-43 presents the descriptive statistics of the variables for urban four-leg 

signalized intersections considered in this study. Number of alcohol sales establishments 

within intersection influence area, number of approaches with left turn lanes, number of 

approaches with protected signal control, and number of approaches with no right-turn-on-

red variables were re-categorized to make sure sufficient variability is present within the 

predictor space. For example, number of alcohol sales establishments were re-categorized 

into absence and presence of alcohol sales establishments; number of approaches with left-

turn lanes were re-categorized into less than or equal to three approaches with left-turn 

lanes and four approaches with left-turn lanes; number of approaches with protected signal 

control were re-categorized into absence and presence of protected signal controls; and 

number of approaches with no right-turn-on-red signal were re-categorized into absence 

and presence of no right-turn-on-red signal.  

Table 5-44 presents the bicycle CMFs for urban four-leg signalized intersections in 

Florida. The reliable CMFs are: 

 presence of three or more bus stops within intersection influence area was found to 

increase the probability of bicycle crashes by 61% when bicycle activity was 

considered; however, the increment was 97% when activity was not considered in 

the model development; 
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 intersection approaches with protected signal control resulted in a 31% and 43% 

reduction in the probability of bicycle crashes with and without considering bicycle 

activity; and 

 medium and high bicycle activity at intersections were found to increase bicycle 

crash probability by almost three times compared to the intersections with low 

bicycle activity.  

As expected, bus stops were found to increase the probability of bicycle crashes. 

Higher bicycle crash probability at intersections with increased bicycle exposure could be 

attributed to improper and/or inadequate bicycle facilities at these intersections. However, 

protected signal control system at the intersections provide the users a better understanding 

of the crossing maneuvers, thus reducing bicycle crash probability. Note that none of the 

interaction terms were included during model development as they are not logical. 

The zero-inflated component of the ZINB model predicted the intercept coefficient 

as insignificant at 0.05 level of significance; thus, the developed CMFs were considered to 

be reliable.  However, the Likelihood ratio test (p-value 0.010) did not conclude that there 

was no difference between the two models. 

Table 5-43:  Descriptive Statistics for Urban Four-leg Signalized Intersections  
Attribute Attribute Category Urban Four-leg Sig. Int. 

Number of Intersections --- 397 

Total Bicycle Crashes (2011-2014) 
Total 380 

FS 57 

AADT on Major Road (veh/day) 

Minimum 1,500 

Maximum 74,500 

Mean 31,829 

Standard Deviation 14,214 

AADT on Minor Road (veh/day) 

Minimum 1,025 

Maximum 55,250 

Mean 18,532 

Standard Deviation 11,708 

Presence of Lighting No 27 
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Attribute Attribute Category Urban Four-leg Sig. Int. 

Yes 370 

# of Bus Stops within Intersection 

Influence Area 

0 127 

1-2 72 

≥ 3 198 

Presence of Schools within Intersection 

Influence Area 

No 330 

Yes 67 

# of Alcohol Sales Establishments 

within Intersection Influence Area 

0 40 

1-8 355 

≥ 9 2 

# of Approaches with Left-Turn Lanes 

0 2 

1 10 

2 20 

3 31 

4 334 

# of Approaches with Right-Turn Lanes 

0 77 

1 95 

2 80 

3 77 

4 68 

# of Approaches with Protected Signal 

Control 

0 328 

1 28 

2 23 

3 10 

4 8 

# of Approaches with Permitted Signal 

Control 

0 159 

1 32 

2 62 

3 13 

4 131 

# of Approaches with Protected-

Permitted Signal Control 

0 163 

1 28 

2 70 

3 31 

4 105 

# of Approaches with No Right-Turn-

on-Red Signal 

0 387 

1 8 

2 1 

3 1 

4 0 

Presence of Red Light Camera 
No 300 

Yes 97 

Presence of Bicycle Facility 
No 194 

Yes 203 

Bicycle Activity 

Low (≤ 2,000)a 236 

Medium (> 2,000 and  

≤ 10,000)a 
83 

High (> 10,000)a 78 

--- Not Applicable; a total # of bicycle trips per year. 
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Table 5-44:  Bicycle CMFs for Urban Four-leg Signalized Intersections 

Variable 
With Bicycle Exposure Without Bicycle Exposure 

Coefficient CIa of the Coefficient CMF Coefficient CIa of the Coefficient CMF 

1-2 Bus Stops within Intersection 

Influence Areab 
-- -- -- -- -- -- 

≥ 3 Bus Stops within Intersection 

Influence Areab 
0.47876 0.18346  ̶  0.77405 1.61 0.68031 0.36402  ̶  0.99659 1.97 

# of Approaches with Right-Turn Lanes -- -- -- -- -- -- 

Approaches with Protected Signal 

Controlc 
-0.36754 (-0.76012)  ̶  0.02504 0.69 -0.56403 (-0.97762)  ̶  (-0.15043) 0.57 

Medium Bicycle Activity (Annual 

Trips > 2,000 and ≤ 10,000)d 
1.38275 1.10392  ̶  1.66157 3.98 NA NA NA 

High Bicycle Activity (Annual Trips > 

10,000)d 
1.35349 1.06852  ̶  1.63845 3.87 NA NA NA 

Note: -- Not significant; NA is Not Applicable; a CI stands for confidence interval at 0.05 level of significance; b The base condition for bus stops is absence 

of bus stops within intersection influence area; c The base condition for approaches with protected signal control is absence of protected signal; d The base 

condition for bicycle activity is low bicycle activity (Annual Trips ≤ 2,000).  
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5.2.5 Reflection on Strava Data 

Bicycle volume data are crucial in quantifying the safety impacts of roadway and 

traffic characteristics. Bicycle activity data from Strava used in this study is a 

crowdsourced biking data. This was the only available bicycle activity data for the entire 

state of Florida. Constrained by the limitations of crowdsourced data, this research 

attempted to check the adequacy of this data on bicycle safety evaluation. CMFs developed 

with and without considering the Strava data were found to be consistent for urban two-

lane, six-lane divided segment facilities, and for urban four-leg signalized intersections. 

However, the bicycle activity data for urban four-lane divided segments was found to be 

insignificant.  

Thus, Strava data did not affect the CMFs significantly as the developed CMFs 

with and without this data for urban facilities were very close. Furthermore, the Likelihood 

ratio test based on the Log-likelihood estimates derived from the models with and without 

activity data for each facility type was conducted to check whether the model without 

activity data is significantly different from the model with activity data. It was found that, 

for urban two-lane and six-lane divided facility the models derived with and without 

activity data were not statistically different at 0.05 level of significance. The impact of the 

activity data was only observed on the models for urban four-leg signalized intersections. 

As CMFs are critical for roadway infrastructure, actual bicycle volume (i.e., ground 

truth) data once available need to be used to cross-validate and/or calibrate Strava data; 

until then, using Strava may not yield representative results. However, the consistency 

found in the developed CMFs renders the potential approach to incorporate Strava data for 

future safety studies. 
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5.3 Transferability Assessment 

 The applicability of a CMF depends on the data from which the CMF is estimated. 

Thus, it instigates the question of spatial and temporal transferability of the developed 

CMFs, i.e., whether CMFs developed using state-wide data are applicable to different 

jurisdictions, and for different time periods. This dissertation addressed this question by 

assessing the transferability of the developed CMFs using Transferability Index (TI). 

Although CMFs were developed for multiple facilities in this dissertation, transferability 

assessment was conducted only for urban four-lane divided segments. As the assessment 

approach would be similar for all facilities, thus, only one facility was chosen to 

demonstrate the framework; and urban four-lane divided facility was chosen as 

comparatively this facility had more comprehensive data in terms of coverage and other 

crash predictors. The following sections, Section 5.3.1 and Section 5.3.2, focus on spatial 

and temporal transferability, respectively.  

 

5.3.1 Spatial Transferability 

To explore the scope for spatial transferability, the seven FDOT districts were 

considered as seven different spatial zones (Figure 5-1). The data for urban four-lane 

divided segments were divided into seven DOT districts’ databases. This was done from 

the roadway identification (RDWYID) number. The first two digits of the RDWYID 

denotes the county. Once the county number was derived, then the segments were assigned 

to the respective DOT districts based on these counties. Table 5-45 provides a brief 

coverage summary of district-wise urban four-lane divided segments. 
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Table 5-45: FDOT District-wise Urban Four-lane Divided Segments  

FDOT 

District 
Coverage in Miles (%) # of Segments (%) Bicycle Crashes (%) 

D1 248.21  (15.93%) 733  (16.19%) 145  (12.65%) 

D2 248.39  (15.94%) 661  (14.60%) 160  (13.96%) 

D3 243.57  (15.63%) 694  (15.33%) 124  (10.82%) 

D4 155.56  (9.98%) 488  (10.78%) 141  (12.30%) 

D5 361.90  (23.23%) 1,045  (23.08%) 273  (23.82%) 

D6 97.38  (6.25%) 219  (4.84%) 157  (13.70%) 

D7 202.87  (13.02%) 687  (15.17%) 146  (12.74%) 

Total 1,557.88  (100%) 4,527  (100%) 1,146  (100%) 
Note: The sub-categories may not add up to total due to rounding errors. 

 

Equation 3-12 provided in Chapter 3 was used to assess the spatial transferability. 

The state-wide model was applied to each district, and district-wise complete and constant-

only models were developed using the same set of regressor and interaction terms. Table 

5-46 presents the TI indices that were calculated using Equation 3-12 from the log-

likelihood estimations. Table 5-47 depicts the GOF measures for the district complete 

models. 

Table 5-46: Spatial TI Indices for FDOT Districts  

Measure 
FDOT Districts 

I II III IV V VI VII 

TI 0.80 0.75 1.40 0.66 0.93 0.27 0.70 
Note: TI close to unity indicates better transferability. 

 

Table 5-47: Spatial GOF Indices for FDOT Districts  

Measure 
FDOT Districts 

I II III IV V VI VII 

MAD 0.278 0.306 0.255 0.414 0.335 0.670 0.322 

MPB 0.002 0.001 0.022 0.053 0.001 0.086 0.039 

MSPE 0.003 0.001 0.361 1.371 0.001 1.625 1.054 

 

The GOF measures indicate that the district models fitted well. However, the TI 

indices are far from unity except for District 5 (D5). Since CMFs quantify the potential 

safety benefits of improvements which may also be used to derive the benefit-cost ratios 

to prioritize improvements, thus even the TI 0.93 for D5 may raise question about the 
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applicability of the developed state-wide CMFs for local jurisdictions. The worst result was 

observed for D6 probably because of low representative sample for the models. Therefore, 

as implied by the derived TI indices, the CMFs from state-wide models may not represent 

the actual safety performance in the local jurisdictions. It would always be a better 

approach to develop local models. 

  

5.3.2 Temporal Transferability 

To explore the temporal phenomena, crash data for the periods 2011-2012, 2013-

2014, and 2015 were analyzed.  At first, state-wide model was developed using crash data 

for the period 2013-2014, and this model served as the base model. Then, individual 

complete and constant-only models using crash data 2011-2012 and 2015 were developed. 

Finally, the base model developed with 2013-2014 crash data was applied for 2011-2012 

and 2015 time periods to assess the possibility of temporal transferability. Again, Equation 

3-12 was used to calculate the TI indices. Table 5-48 presents the TI indices that were 

calculated from the log-likelihood estimations and Table 5-49 provides the GOF measures. 

Please note that, model could not be fitted for 2015 crash data; because, the model 

assumption for the ZINB model was not met. 

Table 5-48: Temporal TI Indices for 2011-2012 and 2015 Periods 

Measure 2011-2012 2015 

TI 0.87 -- 
Note: TI close to unity indicates better transferability; -- model assumption was not met. 

 

Table 5-49: Temporal GOF Indices for 2011-2012 and 2015 Periods 

Measure 2011-2012 2015 

MAD 0.201 -- 

MPB 0.005 -- 

MSPE 0.142 -- 
Note: -- model assumption was not met.  
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Figure 5-1: FDOT District Map (Source: Google Image, 2018) 

(Image Courtesy: Teach America & FDOT) 
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The GOF measures indicate that the 2011-2012 model fitted well. However, the TI 

index is far from unity; thus, the TI 0.87 for 2011-2012 may raise question for temporal 

transferability of the CMFs. However, if the temporal phenomena would have been 

assessed with a longer time span, i.e., the models would have been developed with more 

years of crash data, a better conclusion could have been drawn.   

Another attempt has been made in this research to assess the spatial-temporal 

transferability. The idea was to assess the temporal transferability within a local 

jurisdiction. The best spatial transferability index was derived for FDOT D5. The D5 data 

was then used to explore the possibility of temporal transferability. The approach was 

exactly similar to the temporal transferability assessment using the entire state’s data. The 

TI index was not encouraging, as can be observed in Table 5-50. Table 5-51 presents the 

GOF indices.    

Table 5-50: Temporal D5 TI Indices for 2011-2012 and 2015 Periods 

Measure 2011-2012 2015 

TI 0.68 -- 
Note: TI close to unity indicates better transferability; -- model assumption was not met. 

 

Table 5-51: Temporal D5 GOF Indices for 2011-2012 and 2015 Periods 

Measure 2011-2012 2015 

MAD 0.204 -- 

MPB 0.011 -- 

MSPE 0.143 -- 
Note: -- model assumption was not met.  

 

5.4 Summary 

In summary, three potential methods, AHP, ANP, and FANP were compared while 

screening urban four-lane divided highways in Florida for bicycle safety improvements. 

The seven criteria considered for screening were: bicycle crash frequency, presence of 

bicycle facility, bicycle volume, AADT, auto ownership, land use, and transit stops. FANP 
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was found to be the most suitable method among the three if the locations are to be 

prioritized in a holistic manner considering all criteria. 

CMFs were also developed for bicycle crashes using cross-sectional analysis and 

the scopes of spatial and temporal transferability of the developed CMFs within Florida 

were assessed. Furthermore, Safety researchers have been looking for ways to consider 

bicycle exposure in developing bicycle crash prediction models. Unfortunately, bicycle 

volumes, the most accurate measure of bicycle exposure, are only scarcely available. As 

such, several surrogate measures of bicycle exposure are usually considered. This research 

has, for the first time, considered bicycle exposure by incorporating the bicycle activity 

data from Strava smartphone application and compared the bicycle CMFs with and without 

this activity data.  

Lane width, speed limit, and vegetation in the median were found to have positive 

and presence of sidewalk and sidewalk barrier were found to negative impact on bicycle 

crash probabilities. Increased bicycle activity was found to reduce the bicycle crash 

probabilities on segments, while resulted in higher bicycle crash probabilities at 

intersections. Bus stops were found to increase the bicycle crash probabilities at 

intersections, whereas, protected signal control had a positive impact on bicycle safety. It 

was found that the developed CMFs developed from state-wide data should not be directly 

transferred to local jurisdictions, spatially or temporally. 
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CHAPTER 6 

CONCLUSIONS 

 

This research explored the available network screening methodologies, discussed 

the pertinence of the approaches, and determined the most suitable screening method for 

bicycle safety improvements. Furthermore, Florida-specific crash modification factors 

(CMFs) were developed to quantify the impacts of roadway characteristics, bicycle 

infrastructure, and bicycle exposure on bicycle safety. The spatial and temporal 

transferability of the developed CMFs were also assessed among the Florida Department 

of Transportation (FDOT) Districts. This chapter summarizes the findings of this research 

and outlines the precincts for future research.  

 

6.1 Summary and Conclusions 

Network screening is a multi-criteria complex decision making process that 

prioritizes and ranks the potential locations based on specific criteria. It is considered as 

the most important aspect of making investment decisions for highway location 

improvements. The decision making criteria for screening can either be quantitative or 

qualitative. Qualitative criteria require subjective judgments. Therefore, a method that can 

effectively measure quantitative and qualitative criteria on the same platform is required. 

Another issue with using multiple criteria in location prioritization for improvement is that 

the criteria are often correlated. Thus, a method that can take into account the impacts of 

such interdependencies, and does not give undue weight to a specific criterion is desired. 

Transportation agencies are still using simple scoring and ranking algorithm which cannot 

address these issues efficiently.   
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Three methods, which could potentially address the above mentioned screening 

issues, Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), and Fuzzy 

Analytic Network Process (FANP), were applied to prioritize state maintained urban four-

lane divided highways of Florida. The roadways were prioritized based on seven criteria: 

bicycle crash frequency, presence of bicycle facility, bicycle volume, AADT, auto 

ownership, land use, and transit stops. The key findings on the network screening methods 

are:  

 AHP is more similar to simple ranking in the sense that the criteria which is 

weighted more has significant impact on the ranking. 

 ANP’s performance was found to be better than AHP’s performance while 

prioritizing the highway locations for improvements.  

 ANP and FANP do prioritize locations giving importance to all criteria; not only to 

the criteria which weighs more. 

 FANP is found to be comparatively the most suitable screening method among 

AHP, ANP, and FANP if the locations are to be prioritized in a holistic manner 

considering all criteria.  

Once the locations are prioritized for improvement, the next important step is to 

identify the specific improvements. How changes in the roadway characteristics affect 

safety is one of the most critical issues to be evaluated or studied. CMFs provide greater 

insight into how the roadway geometric characteristics affect safety; thus, makes it easier 

for the decision makers to improve any location with appropriate geometric features.  

To quantify the impact of roadway characteristics, bicycle infrastructure, and 

bicycle exposure on bicycle safety for urban facilities in Florida, this research focused on 
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developing Florida-specific CMFs for bicycle crashes. Roadway characteristics such as 

shared path, sidewalk, sidewalk barrier, type of on-street parking, lane width, median 

width, etc.; bicycle infrastructure such as bicycle lane, and bicycle slot; and bicycle 

exposure from Strava smartphone application were considered in this study. Cross-

sectional analysis was used to develop the CMFs for bicycle crashes. Generalized Linear 

Model approach with a Zero Inflated Negative Binomial distribution was adopted to 

develop the relevant regression models. The research focused on urban two-lane, four-lane, 

and six-lane divided roadway facilities, and urban four-leg signalized intersections. Some 

key findings from the developed CMFs are: 

 Lane width, speed limit, and vegetation in the median were observed to have 

positive impacts on reducing bicycle crashes.  

 Presence of sidewalk and sidewalk barrier were found to increase the bicycle crash 

probabilities. 

 Increased bicycle activity was found to reduce the bicycle crash probabilities on 

segments, while increased bicycle activity resulted in higher bicycle crash 

probabilities at intersections.  

 Bus stops were found to increase the bicycle crash probabilities at intersections, 

whereas, protected signal control had a positive impact on bicycle safety. 

The applicability of a CMF depends on the data from which the CMF is estimated. 

This instigates the question of transferability of the CMFs; whether the CMFs developed 

using state-wide data are applicable to different jurisdictions and to different time periods. 

The scope of spatial and temporal transferability of the developed CMFs within FDOT 

districts for urban four-lane divided highways was assessed using transferability index (TI). 
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When spatial transferability was considered, the TI measure indicated the performance of 

the transferred model for the jurisdiction of interest; and when temporal transferability was 

considered the TI measure indicated the performance of the transferred model for the time 

period of interest. The seven FDOT districts were considered as seven different spatial 

zones to explore the spatial transferability. Crash data for the period 2011-2012, 2013-

2014, and 2015 were analyzed to assess the temporal phenomena. It was found that the 

developed CMFs should not be directly transferred, spatially or temporally. If possible, it 

would always be a better approach to develop local models or calibrate the CMFs.  

This research provides agencies with an equitable and reliable solution to prioritize 

and improve locations such that the limited available funding is allocated to the locations 

which will yield the highest positive impact.  

 

6.2 Research Contributions 

This research has presented the shortcomings of current network screening practice 

and recommended an improved method FANP. The potential of FANP was demonstrated 

while prioritizing 2,236 urban four-lane divided highway segments in Florida for bicycle 

safety improvements. FANP and ANP were shown to provide more reasonable rankings, 

with FANP providing the best results among FANP, ANP, and AHP. Moreover, this 

research is one of the very few studies that addressed the network screening step for bicycle 

safety improvements in a holistic manner.  

Furthermore, ZINB models were used to develop the CMFs for bicycle crashes, a 

topic that is seldom considered by researchers and practitioners. The interaction effect of 

different roadway factors were also considered while developing the CMFs. This research 
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has, for the first time, considered bicycle exposure by incorporating the bicycle activity 

data from Strava smartphone application; and investigated the impact of bicycle activity 

data on bicycle CMFs. Spatial and temporal transferability of the developed CMFs within 

FDOT districts were also assessed to determine if the CMFs developed using state-wide 

data were applicable to different jurisdictions and for different time periods.  

 

6.3 Recommendations for Future Research 

Future studies to extend this research could focus on network screening and CMF 

estimation. The potential research scopes are discussed below. 

 

6.3.1 Network Screening 

FANP and ANP are computationally rigorous. If a new location is added to the 

existing list of locations, the entire process needs to be redone to rank the new location. 

This would be a tedious process. Future research could focus on incorporating any new 

location in the prioritization process reasonably. Furthermore, ANP and FANP cannot 

eliminate the human judgments completely from the prioritization process; rather, 

incorporate such judgments systematically and in a logical manner. An automated process 

would help the decision makers to provide consistent judgments. 

 

6.3.2 CMF Development 

CMFs were developed using ZINB models. Future research could validate the study 

findings, i.e., the CMFs, by conducting a before-after study. This research recommends to 

develop local CMFs if possible. An attempt can be made in the future research to transfer 

the models developed from state-wide data to local jurisdictions through calibration, i.e., 
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future research can focus on calibrating the state models for local domains. Furthermore, 

future research may extend the scope of temporal transferability assessment with more 

years of data.  
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Figure A-1: Pair-wise Comparison Survey Sheet 
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Figure A-2: Expert-A’s Feedback on Pair-wise Comparison 
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Figure A-3: Expert-B’s Feedback on Pair-wise Comparison 
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Figure A-4: Expert-C’s Feedback on Pair-wise Comparison 
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Figure A-5: Expert-D’s Feedback on Pair-wise Comparison 
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Figure A-6: Expert-E’s Feedback on Pair-wise Comparison 
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