
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

9-1988

A simulation of a message passing protocol for a
network of transputers
Janice R. Glowacki
Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/etd
Part of the Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Glowacki, Janice R., "A simulation of a message passing protocol for a network of transputers" (1988). FIU Electronic Theses and
Dissertations. 3830.
https://digitalcommons.fiu.edu/etd/3830

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F3830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3830?utm_source=digitalcommons.fiu.edu%2Fetd%2F3830&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

ABSTRACT

A SIMULATION OF A MESSAGE PASSING PROTOCOL

FOR A NETWORK OF TRANSPUTERS

by
Janice R. Glowacki

With decreasing cost and size of processors and more

sophisticated demands of computer users, it is becoming
popular to execute programs in parallel on a distributed

network. Processors communicate through shared memory or
hard-wired links depending on the hardware and topology of

the system. Simulation is an appropriate tool for the
investigation of system throughput, and the projection of

system behavior under various workloads.

In this paper is described the configuration and

communication protocol of an INMOS Transputer network, and

the construction, verification, and validation of a detailed

simulation model for the network. Results obtained from the
execution of the model, projecting system behavior under both

heavy and moderate workloads, are presented. The most

significant results obtained indicate that system throughput

is severely degraded when increases are made to either

message traffic distance or network buffer size. Several

areas for further research are suggested, including an

alternative topology for large networks.

A SIMULATION OF A MESSAGE PASSING PROTOCOL

FOR A NETWORK OF TRANSPUTERS

by

Janice R. Glowacki

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

at

FLORIDA INTERNATIONAL UNIVERSITY

Committee in Charge:

Professor John Craig Comfort

Professor David Barton

Professor Doron Tal

Chairperson

September 1988

To Professors John Comfort

David Barton,

Doron Tai,

This thesis, having been approved in respect to form

and mechanical execution, is referred to you for judgment

upon its substantial merit.

Dean James Mau
College of Arts and Sciences

The thesis of Janice R. Glowacki is approved.

Professor David Barton

Professor Doron Tai

Major Professor John Comfort

Date of Examination: September 16, 1988

A SIMULATION OF A MESSAGE PASSING PROTOCOL
FOR A NETWORK OF TRANSPUTERS

by
Janice R. Glowacki

A Thesis submitted in Partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

at

FLORIDA INTERNATIONAL UNIVERSITY

1988

ACKNOWLEDGEMENTS

I wish to thank my husband, Paul, and Professor John

Comfort, whose support and encouragement helped make this

project a success. In addition, I give special thanks to Li

Qiang and Raja Gopal for sharing their friendship and

Transputer expertise.

ii

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLESvii

1. INTRODUCTION 1

DISTRIBUTED NETWORKS 1

SIMULATION 2

SUMMARY OF PREVIOUS WORK 4

2. THE REAL NETWORK 6

TRANSPUTER HARDWARE AND SOFTWARE 6

THE COMMUNICATION PROTOCOL 8

The Five Communication Processes

Avoiding Deadlock

Proof The Algorithm Is Deadlock-Free

ii I

3. THE SIMULATION MODEL 16

SIMULATION METHODOLOGY 16

SYSTEM REPRESENTATION 18

REFINEMENT OF THE SIMULATION MODEL 22

The Original Version

The Second Version

The Third Version

The Final Version

4. VERIFICATION AND VALIDATION , 26

MODEL VERIFICATION 26

MODEL VALIDATION * * 28

5. RESULTS , , 32

SYSTEM PERFORMANCE UNDER DIFFERENT WORKLOADS . . 32

EFFECT OF BUFFER SIZES-' 40

6. CONCLUSIONS . . . , 43

iv

7. FURTHER RESEARCH 45

APPENDICES

A. THE STATE DIAGRAMS 48

The User Generator

The User Receiver

The User Front

The Network-In (Server)

The Network-Out (Transmitter)

B. THE NETWORK COMMUNICATION CODE 54

C. THE SIMULATION CODE 70

LIST OF REFERENCES102

VITA103

v

LIST OF FIGURES

Figure Page

1. Transputer network topology 7
2. A single node in the network.................... 9
3. Pre-deadlock situation 14
4. Simulated network topology 17
5. Simulated Versus Real: Message Time in System . . 30
6. Workload Comparison 34
7. Average Time in System: Moderate Load #1 37
8. Average Time in System: Moderate Load #2 38
9. Average Time in System: Heavy Load #1 39

10. Average Time in System: Heavy Load #2 40
11. Alternate topology for large networks 45
12. Summary of State Diagram Symbols 48
13. The User Generator State Diagram 49
14. The User Receiver State Diagram 50
15. The User Front State Diagram 51
16. The Network-In (Server) State Diagram 52
17. The Network-Out (Transmitter) State Diagram . . . 53

vi

LIST OF TABLES

Table Page

1. Simulated Versus Real: Average Message Time
in System (Seconds) 29

2. Average Time a Message Remains in a Four-Node
Network With Random Message Length (Seconds). . 31

3. Aggregated Average Time in System: All Loads
(Milliseconds) 36

4. Effect of Buffer Size for Worst Case
Scenario (Milliseconds) 41

5. Effect of Buffer Size for Best Case
Scenario (Milliseconds) 42

vii

1

CHAPTER 1
INTRODUCTION

1.1 DISTRIBUTED NETWORKS
Large computer networks, local area networks, and

multiple processor systems are considered to be distributed
networks. With these systems, processes of a single program
can be distributed over several processors such that each
processor on the network performs a subtask of the main

program. Network processors need to share mutual information

and are classified as tightly or loosely coupled [7].

Because tightly coupled systems have shared memory, an
algorithm must exist to insure mutually exclusive access to
it. Loosely coupled systems have local memory for each

processor and communicate by using a message passing scheme.

Processors (nodes) in a ring network are loosely

coupled and physically connected in a circle, usually with

one-way communication links. Generally, a token or
store-and-forward message passing scheme is used to support
communication between nodes.

In a token passing scheme, a specific message, the

token, continuously circulates through the network [7]. If a

node wants to send a message, it must first acquire access to
the network by removing the token when it arrives. This

sending node forwards a message header followed by the

2
message. When the message has traveled completely around
the network, the sending node removes it (guaranteed the
destination node received it) and forwards the token. Thus,
only one message may travel through the system at one time.

With a store-and-forward message passing scheme, each

node has designated storage (buffer) for incoming messages.

As messages are received, they are placed in this buffer.

When messages can be forwarded, they are removed from it.

Because the buffer is a shared resource, the communication
scheme is not trivial. The sending and receiving processes

form a producer/consumer relationship and special techniques

must be employed to prevent deadlock.

With advanced system architecture it is not uncommon
to find systems with a large number of processors. The
Ethernet1 local area network, for instance, can support up to

1024 processors [5].

1.2 SIMULATION
In order to analyze a network and evaluate system

throughput or determine the number of processors needed for

efficient communication, a simulation model can be designed.

The behavior of a simulation system, according to Banks and
Carson [1], ’’can be used to experiment with new designs or

policies prior to implementation". Shannon [6] explains:

1Ethernet is a registered trademark of the Xerox Corporation.

3
Simulation is the process of designing a model of a real
system and conducting experiments with this model for
the purpose either of understanding the behavior of the
system or of evaluating various strategies (within the
limits imposed by the criterion or set of criteria) for
the operation of the system.

Simulation models are classified as continuous or

discrete-event. The difference is based on the way the

state of the system changes over time. Continuous

simulation is used to model a system that changes

continuously over time. Discrete-event simulation is used
to model a system which changes state at discrete intervals

of time.
Banks and Carson explain a discrete-event simulation

"proceeds by producing a sequence of system snapshots (or

system images) which represent the evolution of the system

through time" [1]. A snapshot for time (CLOCK = t)

includes:

* the system state at time t--the variables that

describe the system and are needed for the study

* the Future Events Queue (FEQ)—the list containing

all activities in progress and the time they will

terminate

* the status of all entities—the objects of interest

* current accumulators and counters used for
statistic summaries

In discrete-event simulation models, events are classified
as bound or contingent. Bound events mark the ending of an

activity of specified length. Contingent events are

4
determined by certain conditions of the system and are

triggered by the occurrence of a bound event.

1.3 SUMMARY OF PREVIOUS WORK
Several distributed systems have been simulated in

order to evaluate their performance. The maximum mean data

rates for several local area networks are presented by Stuck
[8]. He explained that transmission medium has a dual

purpose: to control access to the network and to transmit

the data. Traffic on the network may be of low or high
delay. When the network has high delay traffic, it is a

bottleneck, and more time may be spent controlling access to
the network than actually transmitting data.

Stuck included an evaluation of two ring networks and

two bus networks. The ring networks consisted of 100

stations using a token passing scheme. The first had a

single station sending to any of the 99 other stations, while

the second had all 100 stations sending messages to each

other. The bus networks consisted of a token passing scheme
and carrier sense multiple access with collision detection.

Stuck concluded by stating "Token passing via a ring is the

least sensitive to workload, offers short delay under light

load, and offers controlled delay under heavy load".

Garcia and Shaw [3] studied transient behavior of a

five-node network using a store-and-forward message passing
scheme. Assuming message traffic would be changing in the

future, they were interested in analyzing current

5
communication channels to determine if they were adequate for
future loads. In addition they were concerned with how
performance might be improved.

Both a sudden burst of messages and a sudden
reduction in interarrival time for given periods were
modeled. They found network performance severely degraded by
these transient message loads.

6

CHAPTER 2
THE REAL NETWORK

The INMOS Corporation manufactures microprocessors

specifically designed for parallel processing. These

processors are called Transputers2 and can be put together

as a distributed network connected by their fast, hard-wired

communication links. Currently, the School of Computer

Science at Florida International University has a

four-processor distributed network of T414 Transputers.

2.1 TRANSPUTER HARDWARE AND SOFTWARE
According to the INMOS Transputer Reference Manual,

these T414 Transputers context switch in a microsecond and

perform approximately seven million integer/data move

instructions per second [4]. The communication links

between processors transmit data at a rate of 10 or 20 MHz

(individually switch selectable) with effective rates of .8

and 1.6 million bytes per second, respectively.

INMOS markets several different configurations of its

Transputers. The University owns several INMOS B004 and

INMOS BOOS boards. The B004 board is an IBM PC/XT or PC/AT

transputer is a registered trademark of the INMOS Group of
Companies,

7
add-in board containing one T414 Transputer with two

megabytes of memory. In addition, it contains an IMS C002
link adaptor which connects one of the T414 communication
links with the Input/Output channel of the PC/XT or PC/AT.
The PC can then be used as an Input/Output device and file

server for the Transputer. For this reason, the T414

Transputer on the B004 board is referred to as the ’’host"
Transputer.

The network of four T414 Transputers, each with 256

kilobytes of memory, resides on an INMOS B003 board. Each

Transputer has four bidirectional communication links which

can be connected to other Transputers or local memory.

Therefore, several topologies are available for a network of

Transputers. The current topology of the network is shown
in Figure 1.

Figure 1 : Transputer network topology

8
Occam3 is the native language of the Transputer

system. The basic elements of an Occam program are
processes that can run sequentially or in parallel. Occam
processes communicate over user-specified logical channels.
These channels can be links connecting Transputers or local
soft channels connecting processes running on the same
Transputer. In addition,. Occam supports most of the
constructs available in modern high-level languages.

One advantage of the Occam view of processes is they
are assigned to processors at compile time. Thus, a program
developed as a set of parallel processes on a single
Transputer system may be recompiled for any valid
Transputer/process mapping [2],

2.2 THE COMMUNICATION PROTOCOL
A store-and-forward message passing scheme for the

network of four Transputers was written by Li Qiang of
Florida International University [9]. The system is
comprised of five processes running on each node.

There exist two types of processes: network and local
user. Network processes are those that have access to the
physical links of the network. Local user processes do not
have access to the physical network and are thereby "local"
to a given node.

3 Occam is a registered trademark of the 1NMOS Group of
Companies.

9
There are three local user processes. The main one,

performs the application program and generates messages for
the node. The second receives all messages for the node.
The third acts as an intermediate process supporting

communication between the network and the receiving local
process.

Figure 2 displays the five processes of a single node
and shows the flow of message traffic through the network.

Previous Network Contingency Next
Node Buffer Buffer Node

Figure 2: A single node in the network.

10
In order to accommodate incoming messages, there exist

three buffers: the user, the network, and the contingency.
The user buffer contains those messages received for the
local node. The network buffer holds those messages to be
transmitted to the next node. The contingency buffer is a
protective buffer holding a message that would otherwise
overflow the network buffer. This buffer is necessary to
avoid deadlock as explained by Qiang [9] and later in this
chapter.

Each message contains a message header that indicates
its source, destination, and length. The header itself is
exactly one word regardless of the length of the message.
It is important to note that messages are handled at the
"word level". Each word of a message is sent individually
although it is part of an entire message.

2.2.1 The Five Communication Processes
The primary responsibilities of the five processes

shown in Figure 2 are explained below. To clearly identify
each individual process, they have been named and
underlined.

The User Generator. This process is responsible for
creating messages and passing them over a soft channel to
the server. The channel acts as a blocking channel.
Therefore, the user generator is blocked between passing
each word of a message.

Th£-_Vs^x__Jiec< 1.ver.. This process is responsible for

11
reading the messages sent to the current node. It sends a
request over a soft channel to the user front to read each
word. It is therefore blocked from the time it sends a
request until a word is actually forwarded.

The User Front. This process is responsible for the
user buffer. It handles the producer/consumer relationship

of the server and user receiver. The server passes words to

the user buffer via the user front, while the user receiver
gets words from the user buffer via the user front.

Occam channels are blocking channels. That is, if

process Pl sends a word to process P2, Pl cannot continue

until P2 receives the word. If P2 is busy and not ready to
receive, then Pl remains blocked. In order to create a

non-blocking channel, an intermediate process,P3, must be

created [10].

Accordingly, in order to have the server (Pl) pass

messages to the local user receiver (P2) without blocking,

there must exist the user front (P3) as an intermediate

process. The user front takes messages from the server and,
transparent to the server, places them in the user buffer.

Upon request, it removes them from the buffer and forwards

them to the user receiver. Because messages are handled at

the word level, a separate request must be issued for each
word of the message.

The Server. This process takes words from the
incoming link and places them in the appropriate buffer.
Messages for the current node are sent to the user front and

12
placed in the user buffer, while all other messages are

placed in the network buffer for retransmission. It also

receives messages from the user generator and places them in

the network buffer for retransmission. Lastly, it answers

the transmitter * s requests by removing and forwarding

messages from the network buffer (one word at a time).

The Transmitter. This process monitors the outgoing

link. Whenever the link is available, it requests and

receives a word from the server to be placed on the outgoing

link .

2.2.2 Avoiding Deadlock
Deadlock can easily occur in this network if each user

generator saturates the network to the point where every

node is blocked from servicing incoming messages. In order

to prevent this situation, there exists a protocol for

filling the network buffer [9] .

In short, the server receives messages from the user

generator and the incoming link. Messages from the

incoming link are categorized as ’’local" or ’’■non-local'’.

The server forwards local ones to the user front and fills

the network buffer with non-local ones. The server places

a message from the user generator into the network buffer

if, and only if, the entire message can fit. Whenever the

network buffer is full, however, the server blocks the user

generaX-Qr and processes messages from the incoming link by

filling the contingency buffer. This buffer must be large

13
enough to hold one complete message.

This protocol enables the server to push messages
through the system even when the local user process has
saturated the system. In other words, if the network buffer
fills, the contingency buffer is still available to buffer
network traffic.

The Transputer link, like a soft channel, behaves as a
blocking link. Therefore, any word sent down a link remains
on it until removed by the next node. For deadlock to
occur, each link must be transmitting data, and each buffer
(network and contingency) must be full such that every node
is blocked and will remain blocked indefinitely. To avoid
this situation, it is necessary to have the priority scheme
for filling the network and contingency buffers as
described.

2.2.3 Proof The Algorithm Is Deadlock-Free
The store-and-forward message passing algorithm by

Qiang is deadlock-free [9].
Proof by contradiction. Assume the algorithm is hot

deadlock-free and the network is in the state of deadlock.
In other words, each network and contingency buffer is full,
each link has data on it, and each user generator is blocked
from submitting a message into the network. Then, there is
a situation just before deadlock similar to that shown in
Figure 3.

14

Figure 3: Pre-deadlock situation.

Suppose the last node to fill its contingency buffer
was node #2 . Then, when node #2 removed data from the

incoming link it would enable node #1 to move data from its

network buffer to its outgoing link, transfer data from its

contingency buffer to its network buffer, and receive the

data on its incoming link to be placed in its contingency
buffer. But then the network is not in a state of deadlock.

Contradiction of assumption. Hence, the algorithm

is deadlock free.

When the network buffer is full, the algorithm’s

protocol requires the data from the incoming link be

received before submitting to the network messages generated

by the local node. This way, it guarantees flow of traffic

even when the network is saturated with messages.
When the pre-deadlock situation occurs, filling node

#n’s contingency buffer enables node #n-l to unload data

from its network buffer and transfer contents from its
contingency buffer. Thus, node #n-l now has an empty

15
contingency buffer to place data from the incoming link.
This will continuously propagate such that there is never an
instance where each contingency buffer is full. Thus, when
traffic is intense, the network can become blocked.
However, because of this protocol for filling the network
and contingency buffers, the network cannot deadlock.

16

CHAPTER 3
THE SIMULATION MODEL

Simulating a network communication protocol requires
complete understanding of both the real system and of

simulation techniques. The simulation is not a duplication

of the system with added statistical computations. Instead,
it models the real system by recording and gathering
statistical information based on the events and actions that
would be occurring in the system. The computer programs for

both the real and simulated systems are given in the

Appendices in order to exemplify the significant difference
between them.

3.1 SIMULATION METHODOLOGY
It is not uncommon for a simulation to use an enormous

amount of computing time due to the number of calculations

used for generating random numbers, accumulating statistics,

and managing the future events queue. One attractive

solution to shortening the run-time of a simulation is to
incorporate a network of computing power. Comfort has
investigated the idea of distributed simulation whereby
related processes of the simulation can be placed on
separate processors of a network [2].

Comfort has written a distributed simulation package

17
to run on the INMOS Transputer system [2] . The program
identifies objects such as a statistics module, random
number generator, and a priority queue handler. Each object
is a unique process. The program can be run on a single
Transputer system; however, when running the simulation on a

network of Transputers, it is possible to distribute each
object onto separate processors of the network and enjoy the

benefit of decreased run-time.

A simulation program using this package must first
instantiate specific instances of these objects. The future

events queue is an instance of a priority queue. The
objects are then accessed by standard calls. Statistics are

updated for an entity in the simulation by sending messages

to the statistics package whenever the entity changes its

state.
A comprehensive simulation model, using Comfort’s

package, was designed to investigate system throughput of

the four-node ring network on the INMOS BOOS board. The

topology is shown in Figure 4.

Figure 4: Simulated, network topology.

18
Qiang’s message passing protocol, as described in the
previous chapter, is modeled. Also of interest were the
effects of message length variation, message traffic
destination (distance a message travels), and system
workloads.

3.2 SYSTEM REPRESENTATION
This section explains how the processes, links,

buffers, and messages were represented in the simulation
model. In addition, timing of the network and parameters of
the simulation are discussed.

The servers and entities. In order to simulate the
real network it was necessary to determine how processes and
messages should be represented. As processes service
messages in the real network, servers process entities in
the simulation model. Each server required a set of states
and well-defined actions to be performed.

Although processes on the same processor are

conceptualized as running in parallel, only one process can
actually be running at a time. Thus, for every node in the
model, only one server (process) could be servicing
(running) at a time. Each type of server had a designated
set of states and actions describing the process being
modeled and could therefore be in only one state and perform
only one action at a time.

Messages in the system. Messages in the real network
consisted of two parts: the message header and message

19
body. The header contained the source, destination, and
length of the message. In the simulation model, each
message header was an entity.

Simulating the buffers. Physically, the network and
contingency buffers comprise one buffer and are logically
separated in software. Because the contingency part was
required to accommodate the largest message size, the total
buffer space needed had to be at least as large as two
maximum size messages (one for each part of the buffer) .
Let the term network buffer now refer to the combination of
the contingency and network buffer.

In order to model the user and network buffers that
held messages, it was necessary to create one FIFO queue for
each buffer of every node. These queues held the message
header entities while local counters were updated to track
the total words in a given buffer.

Simulating the links. A Transputer link could only
hold one word at a time (message headers were single words).

Because actions performed depended on the type of data sent,
links were simulated using two variables. The first
variable indicated the type of data on the link: a message
header, a word of the message body, or indication the link
was free. If a message header was on the link, then it was
necessary to identify the actual entity number. This was
held in the second variable.

The_£uture.Even t s Queue. A single future events queue
(FEQ) held the bound event notices for the entire

20
simulation. These notices included scheduling processes to
time-out while waiting for a channel or because their
run-time expired. Also included were notices from a node to
another indicating data was sent down or removed from the
link. In addition, there were batch run termination

notices, as well as several others.

System timing. The time needed to perform each action

was not easy to determine. Each Transputer cycle took about
67 nanoseconds which evaluates to 15 million cycles per

second. In order to acquire accurate results, it was

necessary to determine the time needed for each server to

perform its various actions. The level of detail was so
crucial that code for each process in the real network

communication program was thoroughly evaluated to the point
where instructions were literally counted [9]. In addition,

the INMOS Reference manual was consulted for system timing

statistics [4] .

System clock. The simulation clock time referenced

Transputer cycles rather than seconds. This was because

each activity was evaluated in terms of the number of cycles
necessary. If activity times were measured in nanoseconds,

the clock time would become too large for some simulation

runs. If activity times were measured in microseconds, then

each activity would be rounded individually. Because each

activity is performed a significant number of times each
second, over or under estimating a time value would become
significant. In order to minimize losing integrity in the

21
times estimated, it was decided to keep all times in
reference to Transputer cycles. As a result, a single
simulation clock tick evaluated to 5 Transputer cycles.
Thus, to simulate one second of real time, the simulation
would have to run for time = 3,000,000.

Random number generators. There were five random
number streams used for the model. Each stream required the

mean, seed, and distribution type. There were three

possible distributions: constant, negative exponential, or

uniform. The streams were used to generate numbers for:

* Average links a message travels (distance)

* Number of messages to send at once

* Length of the current message
* Time to run the local user application
* Operating system delay to schedule a process

Parameters to the system. The system required 23

parameters. They were:
* The number of nodes in the network (2 to 32)

* The speed of the links (10 or 20 MHz)

* The number of batches to run

* The length of each batch

* The maximum length of a message

* The number of messages to send at once
* The size of the network buffer
* The size of the user buffer
* The distributions, means, and seeds, for each of

the five random number streams

22
3.3 REFINEMENT OF THE SIMULATION MODEL

To simulate a computer system it is necessary to
decide the level of detail which will be modeled.
Specifically, "the circuit level, gate level,
register-transfer level, and system level" [3]. The initial
simulation model was revised several times. Each revision

increased the level of detail modeled. The state diagrams

and a description of the bound event actions for the final

version are given in the Appendix.

3.2.1 The Original Version
In the original model there were three servers. One

for each network process and one to represent all local user
processes. The model itself would deadlock even though the

real network did not.

The reason the simulation would deadlock is relatively

simple and can be seen in the following scenario. Suppose

each link contained a word being sent to the next node, and
each contingency buffer was full. Furthermore, suppose node

#n was the last node to fill it’s contingency buffer. Then,

the last bound event was for the server of node #n to place

a word from the incoming link into the contingency buffer.

The key here is the link between node #n-l and node #n.
Because the last bound event was for node #n, node #n-l was
not aware of the change in status of its outgoing link. It
is possible for all servers on node #n-l to be blocked. In

such a case there would be no bound events for that node on
the FEQ. Contingent events for node #n are only checked

23
after a bound event has been processed, for node #n.
Therefore, if no bound events are scheduled for a node, then
it can never reevaluate the status of its outgoing link.
Hence the simulation could deadlock.

3.2.2 The Second Version
The second version eliminated the possibility of

deadlock in the simulation. The ’’fix” was quite simple

although not elegant. After a bound event was processed for

node #n, the conditions for contingent events were checked

for both node #n and node #n-l. Thus, the sending node
would be able to update the status of the link when the
receiving node made the link available. As expected,

run-time of the simulation program was effected.

This model did not reflect the real network statistics

as the simulated results were off by at least a factor of
5. All local user processes were handled as one server in

the simulation and could not accurately reflect the real
network. This was because the simulation did not account

for the time needed for a context switch. In other words,

the simulation modeled three separate processes running each

for time t as one process running for time 3t. In reality,
it requires time 3t + 2c where c is the time for a context
switch to occur between running processes. Clearly, 3t + 2c

is strictly greater than 3t.

3.2.3 The Third Version
In the third model, two servers were added, separating

24
the three local user processes and clearly defining the
duties of the user receiver, uaer.ggn$Mor, and MS£r_fronh.
This version attempted to adjust the timing problem in the
previous version. Although the simulation results were
significantly closer to the real network statistics, it was
clearly evident another level of detail needed to be
modeled.

3.2.4 The Final Version
Unless a priority scheme for scheduling servers was

represented, an unrealistic ordering occurred in the
simulation. Therefore, it was necessary not only to keep
track of the servers that could process an entity (message),
but also the order in which they became available to do so.

For this reason, two queues were added in the final
model: Block and Ready. The Block queue held those servers
waiting for some event or condition to occur before they
could run, while the Ready queue held those servers which
could be run. The servers in the simulation were placed on
the block queue after serving an entity (message) and moved
to the ready queue according to pre-defined conditions for
the process being modeled. Essentially, this modeled the
operating system’s scheduler.

After a bound event was processed, the status of each
server on the Block queue (for that specific node) had to be
evaluated in order to determine which servers, if any,
needed to be moved to the Ready queue. Then, if no servers

25
were currently running, one from the Ready queue was
scheduled.

Although this approach modeled the network more
realistically, it did add several drawbacks. First,
significantly more computations were being performed and as
a result, program run-time was severely degraded. Second,
as contingent events were not tested in the ’’traditional”
scheme, the simulation would deadlock in the same manner as
the original model. Therefore, it was again necessary to
design a technique to avoid deadlock in the simulation.

There were two solutions investigated. The first one
would require moving node #n-l’s transmitter from the Block
queue to the Ready queue whenever node #n removed a word
from the link. However, there did not seem reasonable
justification to manipulate a node’s data structures while
processing events of another node.

The second solution required an additional bound event
notice to be scheduled. Although sending node #n could
compute the time a word would arrive at node #n+l, it could
not determine when the word would actually be removed.
Therefore, whenever node #n+l removed data from the link, it
was required to create and schedule a bound event notice for
node #n indicating the link became available.

26

CHAPTER 4
VERIFICATION AND VALIDATION

The simulation model must be verified and validated.
Model verification deals with verifying the code performs
accurately and is implemented correctly. Model validation
deals with showing the code accurately models the real
system. The previous chapter discussed the several versions
of the simulation model. Each version was carefully
evaluated in an attempt to verify and validate it. However,
the earlier versions did not accurately model the real
network and the revisions became evident during the
evaluation process. This chapter discusses the verification
and validation of the final version.

4.1 MODEL VERIFICATION
Verifying the simulation model, like verifying any

computer program, can be done using very common sense
techniques [1]. Banks and Carson suggest:

* make the code "self-documenting"
* make a flow diagram indicating the possibilities
encountered when an action for an event occurs

* verify the input parameters are not modified
* use a program trace while testing the code
* closely examine the output for "reasonableness"

27
Each of these techniques were incorporated in order to
verify the simulation code. An explanation of the use of
each techniques as it was applied to this project is given
here.

Self-documenting code. An Occam program is viewed as

a single fold comprised of other folds. A fold is simply

the concept of grouping information or code together as a

separate unit. Each fold can be identified with a name

(generally used to explain the fold’s contents) and may

contain other folds, comments, and code. In general, folds

are kept small and concise. Therefore, Occam programs are
’’self-documenting” by nature.

The code for the simulation program is given in the

Appendix. Along with explanatory fold names, documentation
for all variables, states, and actions were included in the
source code.

Flow diagram. A flow diagram is suggested in order to

evaluate each possible action the system can perform after

each event. The flow diagram for the simulation model

consists of the state diagrams for each of the servers.

These can be found in the Appendix.
Verify input parameters. The 23 input parameters for

the system were printed after several tests to verify they
were not modified during the execution of the simulation.

Trace the execution. The trace was used to get output
while the simulation was running to determine if the code
was performing accurately. The trace was very useful and

28
helped determine the reason the simulation would deadlock.
In addition, it helped identify the unfair scheduling of
processes in the earlier versions.

The trace included information about each queue (what
was being added or removed from it) , each random number

stream (what stream was generating numbers and what the

numbers were), the statistics package (what entity was

entering and leaving what state), and each bound event
action (what and when it was pulled from the FEQ).

Examine the output. The output for each version was
evaluated. It was not until the final version that

"reasonable” results were found. These results are

explained and shown in the validation part of this chapter.

4.2 MODEL VALIDATION
Validation is an approach used to determine if the

model accurately represents the real system. According to

Banks and Carson [1]:

Validation is usually achieved through the calibration
of the model, an iterative process of comparing the
model to actual system behavior and using the
discrepancies between the two, and the insights gained,
to improve the model. This process is repeated until
model accuracy is judged to be acceptable.

The rest of this chapter presents the results obtained
from both the real and simulated networks. The results are

compared and the simulation is ’’judged to be acceptable".
The real four-node network was run until each node

sent/received 30,000 messages of 15 words to/from the node
three links away. This test was run several times with

29
different network buffer sizes but with the user buffer and
link speed set constant at 2000 words and 10 MHz
respectively. A few timers were added and the system
appeared to reach stability almost immediately. The average
time in the system is displayed in Table 1.

TABLE 1
Simulated Versus Real: Average Message Time

in System (Seconds)

Buffer
Size Real Simulated Difference Relative Error
36 .00767 .00492 .00275 .3585
54 .00748 .00981 -.00233 .3115

150 .03380 .03900 -.0052 -.1538
300 .08300 .08300 .0000 .0000
500 .14616 .14633 -.00017 -.0012

2000 .60320 .60330 .00010 -.0002

Intuitively, we could visualize the local user generator
flooding the server with messages so the network buffer
would be filled to capacity. Then, the user generator would
be blocked and the server would be able to handle incoming
messages by placing them in the contingency buffer. At some
point, the server could .reach a steady state of handling
both incoming and local messages.

The simulation was then tested where each of the four
nodes were sending/receiving continuously to the node three
links away. The user buffer size and link speed were set to
constants of 2000 words and 10 MHz respectively. The test
was run several times varying the network buffer size.

Each test was run for eight blocks, each representing

30
one second of real time. The network was presumed to have
been saturated with messages and reached steady state as the
results for blocks three to eight were the same (as expected
for constant input parameters). A comparison of the average
message time in the system for both the real and simulated
networks are shown in Table 1 and Figure 5.

Average Message Time in System

Real Simulated

Figure 5: Simulated Versus Real: Message Time in System.

31
The simulation was then run with uniformly distributed

random message lengths between 1 and 31 words. Again, each

node was sending messages across 3 links at 10 MHz. The
user buffer was set to 2000 words. The simulation was set

to run for 25 intervals each representing one-half second of

real time.

The results are shown in Table 2 along with the 90%

confidence interval which encapsulates the real network’s

average message time in the system (see Table 1). Note that

network buffer sizes of 32 and 54 could not be tested

because the maximum size of a message was 31 words and the

network buffer was required to accommodate two maximum size

messages (one for the contingency buffer, one for the

network buffer).

TABLE 2

Average Time a Message Remains in a Four-Node
Network With Random Message Length (Seconds)

Average
Network Time in Standard
Buffer. System. Devl a.,t rQrx

90% Confidence

150
300

2000

,03185
.09867
.79333

.00701

.01364

.12100

.02033 TO .04337

.07623 TO .12111

.59426 TO .99235

With several, test runs and the results listed here, it

was decided the model was valid.

32

CHAPTER 5
RESULTS

In order to evaluate system performance, a

well-defined, organized, and statistically sound testing

method was required. Each test was run at least twice with

different random number generator seeds in order to insure
that no bias was added by the choice of seed. This chapter
presents the major test results and findings of this
research.

5.1 SYSTEM PERFORMANCE UNDER DIFFERENT WORKLOADS
When validating the model, it was noted that, message

time in the system usually decreased as the buffer size
decreased. However, real system performance was better at
buffer size 54 than 36. This indicated that smaller buffers

increased system performance, but that at some point there

was a cut-off, at which time performance slightly decreased.
However, as determining the cut-off point was not part of
this evaluation, tests in this section incorporated the fact
that smaller buffers increased system performance, but did
not seek to determine an ’’optimal” buffer size.

Testing was extremely time consuming (12 minutes to
simulate one second of real time) . Therefore, not all
configurations could be thoroughly studied. Although the

33
system had 23 parameters and could model numerous

configurations, certain consistent parameters were used for

all the tests dvsciibed here. The network size was fixed

with four processors. Because message lengths may vary, the

tests used message lengths uniformly distributed between one

and eleven words. The network and user buffers were kept

relatively small (33 words—chosen to hold three maximum

size messages). Lastly, as preliminary tests from the real

and simulated networks indicated only slight improvement in

system performance when the links were set at 20 MHz, it was

decided to test with links set at 10 MHz.

Two workloads describing the message traffic were

defined: heavy and moderate. The heavy load assumed the

user application program continuously generated messages.

The application program would spend only a few microseconds

processing before generating its next message. The moderate

workload had the application program run for a short while,

thereby generating only a moderate number of messages.

There are four cases discussed in this section. Two

for heavy workload and two for moderate workload. The heavy

workloads used a constant of five microseconds for

processing time between generating messages, while the

moderate loads used a uniformly distributed processing time

between zero and two milliseconds. Therefore, the heavy

loads had one random number stream (message length), and the

moderate loads .had two (message length and processing time) .

34

Workload Comparison
Average Message Time in System

Messages Travel 3 Links

Heavy Load #1 —Constant Moderate —*— Moderate Load #1

Messages (Uniform) 1 to 11 Words
Buffers @ 33 Words; Links @ 10 MHz

Figure 6: Workload Comparison.

Each load had a designated seed or seed pair used for

each test. In order to compare workloads and to evaluate

the effect of introducing the second random stream, the
first heavy and moderate workloads used the same seed for
message length. There was an additional run which used the
same seed for message length but had a constant workload of

one millisecond.
The simulation was -run to model the network where each

message destination was the previous node (message distance
was three links/worst case analysis). Figure 6 displays the
average message time in the system for the heavy, moderate,

35
and moderate constant loads with the same message length
seed. The randomness introduced by the process time can be
seen along with the difference between workloads.

For each test case, several preliminary tests were run
in order to determine when steady state was achieved. The

simulation was run such that each node sent messages to the
previous node. These preliminary tests were run for

approximately 25 seconds of real time in block lengths

equivalent to 1/4, 1/2, and one second. The "deleted moving
average" for block lengths of 1/4 and 1/2 was computed and
compared to the results of the one second block length.

These data were examined to determine when steady state

occurred and which block size was most appropriate.

It was found, that block length of 1/2 second was less
sensitive to random variation as the 1/4 second block, and

captured more information than the 1 second block. Thus, it

was used for the block length of the following cases.

Each test workload was run for all possible message

distances, for several seconds past the time determined as

"steady state" . The averages for message time in the

system, following the decided steady state time, were then
aggregated. Table 3 displays these aggregated averages and
standard deviations.

36

TABLE 3
Aggregate Average Time in System: All Loads

(Milliseconds)

Message Heavy Heavy Moderate Moderate
Distance Load #1 Load #2 Load #1. Load #2

1 Link 1.755 1.766 4.031 4.003
2 Links 5.145 5.143 8.949 9.013
3 Links 6.413 6.554 10.777 11.048
4 Links 15.103 15.263 19.476 26.586

Figures 7 through 10 display each 1/2 block value for

the different case workloads—from start-up through a couple

of seconds at steady state.

37
Destination Length Comparison

Average Message Time in System
Moderate Load #1

Milliseconds

Link 2 Links 3 Links 4 Links

Process Time (Uniform) 0 - 2 millisec.
Messages (Uniform) 1 to 11 Words

Buffers @ 33 Words; Links @ 10 MHz

Figure 7: Average Time in System: Moderate Load #1.

For all workloads, when message distance was one link
(best case scenario), the time in the system was minimal.
Clearly, no message had to compete with network messages to
get into the network buffer. Each message was immediately
placed in its network buffer, sent across the link, and was
placed in the user buffer of the successor node, never
really competing for space in any buffer.

Significant difference was found as soon as the
messages had to travel more than one link. The competition
for the network buffers can be seen in Figures 7 to 10.

38
Destination Length Comparison

Average Message Time in System
Moderate Load #2

Milliseconds

_____ Link _4__ 2 Links —3 Links ~4 Links

Process Time (Uniform) 0 - 2 miilisec.
Messages (Uniform) 1 to 11 Words

Buffers <5> 33 Words; Links @ 10 MHz

Figure 8: Average Time in System: Moderate Load #2.

Results of the two moderate workloads are displayed in
Figures 7 and 8. Comparable results were found.

There was a dramatic degradation in system performance
when messages had to travel across four links. Messages
were in circulation longer, competed for even more buffers,
and were affected more by the randomness of the test than
any other message distance. If a network were to be
increased, and message distance were significant to the size
of the network, projected system performance would degrade
radically.

39

Destination Length Comparison
Average Message Time in System

Heavy Load #1

Milliseconds

Process Time (Constant) 5 microseconds
Messages (Uniform) 1 to 11 Words

Buffers @ 33 Words; Links @ 10 MHz

Figure 9: Average Time in System: Heavy Load #1.

Results of the two heavy workload systems are
displayed in Figures 9 and 10. The results were consistent
indicating the random seeds did not introduce a new bias.
Because the application program was not really executing for
any significant time, there was less time between the
network processes running. As a result, message time in the
system was decreased consistently across all message
distances as compared with the moderate workloads. In fact,
there was a minimum three millisecond increase for all
message distances.

Destination Length Comparison
Average Message Time in System

Heavy Load #2

40

Milliseconds

Process Time (Constant) 5 microseconds
Messages (Uniform) 1 to 11 Words

Buffers @ 33 Words; Links @ 10 MHz

Figure 10: Average Time in System: Heavy Load #2,

A five-node network was run with the message distance
held constant at four links. The average message time in
the system was found to be greater than with the four-node
network with message distance of four links. Although all
test cases were not run yet for the five-node network, the
evidence indicated considerable degradation of system
performance as the network size increased along with message
distance.

5.2 EFFECT OF BUFFER SIZES

Several tests were run in order to determine the

41
effect of changes made to the user and network buffer sizes.
The random number generator used for message lengths
(uniformly distributed between one and eleven words) was run
with several different test seeds. Message distance was
held constant to three links. Once the system reached
steady state, the averages were aggregated and some are
shown in Table 4. For these tests, the link speed was set
at 10 MHz and the network was run at heavy load.

TABLE 4
Effect of Buffer Size for Worst Case Scenario

(Milliseconds)

Test Seed #37
Network User Aggregated Standard
Buffer Bubfut Ay^ruge BsyiuiJgn

33 99 6.322 0.2045
33 33 6.322 0.2045
99 33 33.986 1.2344

Test Seed #83
Network User Aggregated Standard
Buffer Buffer Averace Deviation

33 11 6.554 0.1716
33 22 6.554 0.1716
33 33 6.554 0.1716

333 33 131.022 1.5609

* Messages (Uniform) 1 to 11 Words
* Message Distance (Constant) 3 Links

These results indicated that the user buffer was not a
bottleneck. Thus, for the system at heavy load, the user
buffer could be small. This would be useful for

42
applications programs with large memory requirements.

However, further research is needed in order to determine if

this conclusion remains valid when the system is running at

other workloads.

If the application program were required to

communicate with only its successor node (best case) , would

it be more efficient to have larger buffers? Table 5 shows

the results of the simulation program running at heavy load

with message distance constant at one link. These results

indicate, again, that smaller buffers improve system

performance.

TABLE 5

Effect of Buffer Size for Best Case Scenario
(Milliseconds)

Network User Aggregated Standard
B.uX.fer______Buffer_______Averse_________ Deviation

33 11 1.766 0.007
33 33 1.766 0.007

330 33 30.928 2.009
330 330 30.928 2.009

* Message Distance (Constant) 1 Link
* System Running at Heavy Load #2

Consideration should be given to the type of

application program being run. For instance, if a program

required significant computing time, larger buffers would

minimize time spent waiting to send a message. The

application program could generate a message, deposit it in

the buffer, and continue processing. Although the message

itself would remain in the system longer, the application
program would not be blocked for a significant time.

43

CHAPTER 6
CONCLUSIONS

Both system throughput and average message time in

system were strongly influenced by the size of the network

buffer. When the- buffer was large, the system could

accommodate more messages. However, each message would have

to remain in the system longer because it had to trickle
through larger buffers.

The ring network studied was quite sensitive to

message distance. As message destination length increased,

system performance was radically degraded. Message time in

the system increased because messages, not only had to
travel further, but also had to also compete for space in

each network buffer with the local messages being generated.

Therefore, system performance is projected to decrease as

both the size of the network and the message distance

increase.
Lastly, special attention should be given to the type

of application program to be executed on the system. If it
is more important for an application to be able to execute
than to minimize message time in the system, larger buffers
should be considered. The network processes would be
delayed because of the longer application run time.

In order to evaluate system performance of the

44
Transputer network, a simulation model was designed. The

model allowed investigation of workloads and conditions that

would otherwise be at best difficult to monitor and analyze.

With five processes running in parallel on each Transputer,

the simulation attempted to model "chaos" in an organized

and elegant fashion.

45

CHAPTER 7
FURTHER RESEARCH

When message distance is increased the network
performance is severely degraded. Thus, poor performance

can be projected for large ring networks demanding intensive

communication between processors. Therefore, if this

project were extended, it is suggested to investigate
throughput of other network topologies. Specifically,

topologies which reduce the number of links a message must
travel. One such topology is shown in Figure 11.

Minor Network 1

Minor Network 3

Figure 11: Alternate topology for large networks.

46
Each ’’host" Transputer for a minor network would be

responsible for sending its minor network messages onto the
major network. Likewise, it would be responsible for
receiving messages for its minor network from the major
network. This particular ’’network of networks" could be
simulated in a two-step process. First, statistics about
the minor networks would be gathered. Second, the major
network would be simulated by incorporating the minor
network statistics.

It is clearly evident from the results obtained that
the network buffer size effects message time in the system.
System performance degrades when this buffer is increased
slightly. Further research may find an "optimal" message to
buffer size ratio for either a given number of processors, a
given workload, or both.

47

APPENDICES

48

APPENDIX A. THE STATE DIAGRAMS

A description of each state and bound event for
server in the simulation is described in this Appendix
symbols used are described in Figure 12:

every

The

Bound Event #n

Start State

Contingent Event

Figure 12: Summary of State Diagram Symbols,

49
The User Generator

Xhgt-JSlLatÆs :
0. UG.Think ---------> running, thinking up messages
1. UG.Block----- .___> blocked waiting to send a word
2. UG.Fill .Nbuff filling network buffer (the

server process is not running)

2. UG. Time.Out ---- > time out for running
3. UG. Xfer ----- > time required to transfer a

word of a message to the nbuff

Figure 13: The User Generator State Diagram.

50
The User Receiver

3. UR.Block.UF----- > waiting for UF to pass a word
4. UR.Block-------- > blocked waiting to read one

word
5. UR.Read.Mail ----- > reading one word of a message

Bmnxi_Ey^nt_Agrion^. :
4. UR.Close.Mail --> read one word of a message

Figure 14: The User Receiver State Diagram.

51

The User Front

6. UF.Block---- --- --> blocked, waiting to run
7. UF.Fill.Ubuff ----> placing word in user buffer
8. UF.Remove.Ubuff --> removing word from user buffer

Bnund...Event Actlons, :
5. UF. Produce----- ■> place word in user buffer
6. UF. Consume ----- > remove word from user buffer

Figure 15: The User Front State Diagram.

52

The Network-In (Server)

9. NI.Sleep
10. NI.Block .Nbuff —-
11. NI.Block .Ubuff --
12. NI.Block .UF ——
13. Nl.Wait. On.Link --
14. NI.Fill.'Nbuff -----

15. NI.Fill. Ubuff ---

>
>
>
>
>
>

>

nothing on link to get
waiting for room (net buffer)
waiting for room (user buffer)
waiting for UF to run
waiting to get word on link
moving word (link to net
buffer)
put word in user buffer via UF

Bound Event Act ions:
7. NI.Get.Link -> a word arrived on the link
8. Nl.Xfer--- -------> word was moved (link-buffer)

Figure 16: The Network-In (Server) State Diagram.

53
The Network-Out (Transmitter)

Th.Q.-S.,t$te£:

16. NO. Sleep--------- > link to next node is empty
17. NO.Busy •------- —> link to next node is full
18. NO.Fill.Nlink —■—> a word is being put on link

9. NO.Xfer -- > a word arrived on link
10. NO.Received ----- > the word on link was removed

Figure 17: The Network-Out (Transmitter) State Diagram.

54

APPENDIX B. TBE NETWORK COMMUNICATION CODE
PROC net.server(CHAN from.host, to.host, from.prev.node, to.next.node)

VAL number.of.processors IS 4:
VAL max.msg.size IS 18:
{{{ dels

{{{ channels connected to users
CHAN OF INT user. to. f ront :
CHAN OF INT u ser. to. server :
CHAN OF INT front . to .user :
) })

} })

PAR
{{{ node.server processes (3 processes)
{{{ channel dels
CHAN OF INT server.kill.user.front:
CHAN OF INT server.kill.sender:
CHAN OF INT server.to.user.front:
CHAN OB’ INT msg.request:
CHAN OF INT from.overflow:
CHAN OF INT server.to.sender:

} } }

{ {I network msg headc
VAL xf er IS 0:
VAL config IS 1 :
VAL term IS 2 :
VAL config,done IS 3 :
VAL term.done IS 4 :
VAL ring.token IS 5 :
VAL
}) }

broadcast IS 6:

{ { { mise definitions
VAL prog.start IS it.
BYTE tested:
} I }

{{{ debug del
} 1 }

PAR
{{{ user.frönt

5**s

— process to .maintain buffer
{{{ del
VAL buff.size IS 5000:
[buff.size]INI buff:
INI next.slotf count:
INI next.data:
BOOL done:
BOOL consumer awaiting:
INI msg:
INT req.token :
INT quit*token:

to.consumer I S' front, .to.user:
from.producer IS server.to.user«front:
consumer , request. IS user .to. front:
quit IS server , kill»user. * front
BOOL msg. hanging':
} } }

SEQ
done:-FALSE-
consumer . waiting-: -FALSE-
msg.hanging:-FALSE
count:-0
next B slot:-0

WHILE NOT done
PRI ALT

(NOT msgThanging) & from-«producer ? msg
{{{ get a msg and pass along if consumer is waiting

SFOw
{{{ COMMENT trace Fr

} } }

consumer-, waiting
CFO

to*consumer ! msg
c o n s u m e r . w a 11 i n g- : =■ F A L S E.
— done:-msg-stop.flag

TRUE
IF

count < buff.size
{{{ insert into buff

SEQ
buf f [next.. slot) :-msg-
next. slot: -next. slotr'l

IF
next. slot-buff . si ze-
next.slot:-0

TRUE
SKIP

56
count:=count+1

}) I

TRUE
SEQ

msg,hanging:=TRUE
— ENDIF

} } }

consumer.request ? req.token
{{{ pass a msg to consumer if one is available

SEQ
IF

count=0 — There are no msgs available
consumer.waiting:=TRUE

TRUE
SEQ

next.data:=next.slot-count
IF

next.data<0
next.data:=next.data+buff.size

TRUE
SKIP

ENDIF
to.consumer ! buff[next.data}
-- done : =buf f [next. data] =sf op. flag-
count : =count-l
IF

msg.hanging
{ { { insert the hanging- msg into buff

SEQ
bu f f [next. s i ot'] : =msg
count:=count+l
next.slot:=next.slot+1

IF
next. slot=buff.size
next.slot:=0

TRUE
SKIP

msg . hangi ng : =FALSE
} } I

'TRUE
SKIP

-- ENDIF
} } }

quit ? quit.token
done;=TRUE

{{{ COMMENT trace
} })

57
}})

{{{ server
{{{ del
to.user IS server.to.user.front:
from,user IS user.to.server:
overflow IS from.overflow:
to. sender IS server.to.sender:
kill.user.f ront IS server.kill.user.front
kill, sender IS server.kill.sender:

INI my.addr:
BOOL configured:
INI opcode:
INI dest:
INI m s g.header:
INI msg:
INI msg.size:
BOOL run:
BOOL out.channel.avail;
BOOL terminating:
INT kill.token:
INI req.token:

INI buff.count,
VAL buff.size
VAL limit
(buff.size]INI buff:

n e xt.s1ot, n ext,d at a:
IS 2000:
IS { (buf f.size+1) (2 *max.msg. size)) :

-- [1910]INI dummybuff;

PROC decode(INI msg, opcode, dest, size)
SEQ

opcode:=(msg BITAND iFOOOOOOO) » 28
dest :=(msg BITAND #0FF00000) >> 20
size :=(msg BITAND #000FFFFF)

PROC make.net.header(VAL INI opcode,dest,size, INI
header : = ((opcode << 28) BITOR (dest << 20))

header)
BITOR size

PROC wait.for.out.channel()
IF

NOT out.channel.avail
msg. request. ? req. token

TRUE
o u t. c h a n n e 1 . a v a i 1: = F A LS E

}}}

{{{ buff routine dels
PROC insert.buff(INT msg)
SEQ

IF
b u f f . c o u n t < b a f 1 . s i z e put the msg into buff

58
{{{ put into buff
SEQ

buff [next,slot]:=msg
—next.slot:=((next.slot + 1) BITAND indxmask)
next.slot:=next.slot+1

IF
next,slot=buff.size
next,slot:=0

TRUE
SKIP

buff, count: -bu f f. count. + 1
} } }

TRUE — buffer is full , wait for room
{ { {
SEQ

IF
NOT out.channel.avail

msg.request ? req,token
TRUE

out.channel.avail:=FALSE

next.data:=next.slot - buff.count
IF

next.data<Q
next.data:=next.data + buff.size

TRUE
SKIP

to. sender ! buff[next.data J
buf f [next.slot]:=msg
next,slot:=next.slot+1

IF
next.slot=buff.size
next.slot:=0

TRUE
SKIP

—next.slot: = ((next.slot + 1) BITAND indxmask)
— buff.count is not changed

} J }

PROC insert.a.msg(INT msg)
SEQ

bu f t[next.s1ot] :=msg
next,slot :=next.slot + 1

IF
n e x t. s 1 o t=b u f f . s 1 z e
next.slot :=0

TRUE
SKIP

--next.slot(next.slot + 1) BITAND indxmask)
-- indxmask= buff.size-1
buff.count:=buff.count+1

5 9

PROC send.a,msg()
SEQ

next.data:=next.slot-buff.count
IF

next,data<0
next,data:=next.data+buff.size

TRUE
SKIP

to.sender ! buff[next.data 1
buff.count:=buf f.count-1
out.channel.avail:=FALSE

PROC try.to.send.msg{)

IF
buff.count>0

send.a.msg()
TRUE

out.channel.avail:=TRUE

Hl

SEQ
{ { { ini
configured:=FALSE
run;=TRUE
out.channel.avail:-FALSE
terminating:=FALSE
my.addr:=1

buff.count;=0
next.slot:=0
} } i

WHILE run
ALT

msg.reques
{ ((
SEQ

? req.token

Buff.count>0
send,a.msg(J

TRUE
out,channel.avail:=TRUE

} })

-- try,tb,send.msg()
from,prev.node ? msg

{ ({
SEQ

60
decode(msg,opcode,dest,msg.size)

IF
opcode=xfer

{ { {
—INI d:
SEQ

d:=dummybuff(3]
IF

dest=my,addr
{{{ transfer the whole msg to local user

SEQ
WHILE msg.size>0
ALT

from.prev.node ? msg
SEQ

to.user !■ msg
msg.size:=msg.size-1

msg.request ? req.token
try.to.send.msg()

i I)

(destoO) OR (my.addrol)
{{{ put msg into buff and

— try to empty the buff at same time
SEQ

{{{ put msg into buff
IF

out.channel.avail
SEQ

to.sender ! msg
out.channel.avail:=FALSE

TRUE
insert.buff(msg)

} }}

WHILE (msg.slze>0)
ALT

from.prev.node ? msg
SEQ

{{{ put msg into buff
IF

out.channel.avail
SEQ

to,sender ! msg
out.channel.avail:=FALSE

TRUE
in se r t.buff(msg)

} })

msg . size:=msg.size-1

msg.request ? req.token

61
{{{
SEQ

IF
buff. count>0

send.a.msg{)
TRUE

out. channel.avail:=TRUE
I } J

try.to.send.msg()
} } }

TRUE
{{{ pass the whole msg to host

SEQ
to.host ! msg
WHILE msg.si2e>0-
ALT

from.prev,node ? msg
SEQ

to.host f msg
msg.size:=msg.size-1

msg.request ? req.token
t ry.to.send.msg()

J } }

5B

o p c ode=b r o a d c a st
{ { {
SEQ

IF
my.addrcnumber.of.processors

{{{ put msg into buff
IF

out.channel.avail
SEQ

to.sender f msg
out.channel.avail:=FALSE

TRUE
insert.buff(msg)

)) }

TRUE
SKIP

WHILE (msg.size>0)
ALT

from.prev.node ? msg
SEQ

to.user ! msg
IF

my , addi;<number. of . pr ocessor

62
{{{ put msg into buff

IF
out.channel.avail
SEQ

to,sender > msg
out, channel.avail:=FALSE

TRUE
insert.buff(msg)

} n

TRUE
SKIP

msg.size:=msg.size-1

msg , request ? req.token
{ { {
SEQ

IF
buf f, count>0
send.a.msg()

TRUE
out, channel. avail:=TRUE

} } }

-- try.to.send,msg()
) } }

opcode=cbn f Ig-
{ { (
SEQ

IF
NOT configured
SEQ

conf igu red:=TRUE
my.addr;=dest
dest:=dest+1
make.net.header (config,dest,0,msg.header)
wait.for,out.channel ()
to,sender ’ msg,header

TRUE
SEQ

make.net.header(confIg.done,dest,0,msg.header)
to.host ! msg,header

in

opcode=term
{ { {
SEQ

IF
NOT terminating
SEQ

wait,for.out, channel<)
to,sender ! msg

TRUE

63
SEQ

make,net.header(term,done,0,0,msg.header)
to.host ! msg.header

kill.user.front ! kill.token
kill.sender ! kill.token
run:=FALSE

} } }

TRUE
SKIP

} Ì }

(buff, count < limit) & from,user ? dest
{ { { take- the user msg into the network

SEQ
from.user ? msg.size
make.net.header(xfer,dest,msg.size,msg.header)

IF
(dest-0) AND (my.addr=l)

{ { { pass the msg to host
crnL..*

to.host > msg.header
SEQ i=0 FOR msg.size
SEQ

from.user ? msg
to.host ! msg

m

TRUE
{{(get. msg into buff

SEQ
insert.a.msg(msg.header)
SEQ i=0 FOR msg.size
SEQ

from.user ? msg
insert.a.msg(msg)

IF
out.. channel. avail
send.a.msg ()

TRUE
SKIP

} } }

) } }

(buff.count < limit) &; from-.host ? msg
{ { { take the hosts msg into thé network

INT temp:
SEQ

decode (msg, opcode, dest , rfisg, size)
IF

opcode=xfer

64
SEQ

{ { {
IF

destomy.addr — my.addr is 1 in this case
{{{ put the whole msg into buffer

SEQ
insert.a.msg(msg) —• msg header
SEQ 1=0 FOR msg,size
SEQ

from.host ? msg
insert.a.msg(msg)

IF
out. channel.avail
send,a.msg()

TRUE
SKIP

} } }

TRUE'
{{{ transfer the whole msg to local user

SEQ
SEQ 1=0 FOR msg,size
SEQ

from.host ? msg
to.user ! msg

J })

n i

b p c o be=b r o a d c a s t
{{{ put the whole msg into buffer

SEQ
insert.a.msg(msg) msg header
SEQ i=0 FOR msg,size
SEQ

from,host ? msg
insert.a,msg (msg)
to,user ! msg

IF
out.channel.avail
send,a.msg{)

TRUE
SKIP

) n

opcode-config
(({
SEQ

my.adcir:=desi
dest:=dest+l
make.net,header(config,dest,0,msg.header)
wait,for.out.channel()
to,sender ! msg,header

65
configured :=IRUE

} } }

opcode=term
{ { (
SEQ

terminating :=TRUE
wa.it, for . out, channel ()
to.sender ! msg

} } }

TRUE
ÇKTPA V -X. X.

n}

} i}

{{{ sender / transmitter
{{{ dels
from.server IS server,to.sender;
quit IS server.kill,sender :

BOOL run:
INT req.token, quit.token:
INT msg:
} } }

cpOO id
run:=TROE
WHILE TRUE
SEQ

msg.request ! req.token
from.server ? msg
to.next.node ! msg
{{{ COMMENT
} } }

}}}

{ { { channel del for u sg r
get.msg IS front.to.user :
request.msg I s user.to.front :
send.msg 1 s user.to.server
} } }
} } }

{{{F userhOde.tsr (2 processes) *usernode.tsr
{{{ user msg header function code definitions
VAL data IS 0:
VAL config IS 1:

f Z"6 D
VAL config.done IS 2 :
VAL term IS 3 :
VAL term.done IS 4 :
VAL go IS 5 ’
VAL test.done IS 6:
} } }

{{{ user msg en/decoding procedures

PROC decodedNT msg, opcode, originator, size)
SEQ

opcode:=(msg BITAND »F0000000) >> 28
originator:=(msg BITAND #0FF00000) >> 20
size :=(msg BITAND #000FFFFF)

PROC make.msg.header(VAL INT opcode,originator,size, INT header)
header : = ((opcode << 28) BITOR (originator << 2 0)) BITOR size

PROC send.msg.header(VAL INT opcode,dest,size»originator)
INT header:
SEQ

header : = ((opcode << 28) BITOR (originator << 20)) BITOR size
send.msg ' dest
send, msg ! (sized)
send.msg ! header

} } }

{{{ dels
BOOL done:
INT msg, msg.header•
INT msg.size, opcode, orig:
BOOL done:
BYTE ch:
INT my.addr:
INT dest:

INT interval:
{ { {
PROC delay! VAL INT interval)

TIMER clock:
INT timenow:
SEQ

clock ? timenow
clock ? AFTER timenow PLUS interval

}) }

}) I
{ { (random numbe r geneator abbreviatio n s
VAL unii IS 1 : -•-uniform distribution.
VAL nexp IS 2 : - -negative e x pone nt ial d i str ibut i o n
VAL const IS 3 : -•-constant distribution.
VAL uni f b IS 4: --■ uniform with bound

67
VAL rn.init IS 1:
VAL rn.get IS 2:
VAL rn.quit IS 3:
} } }
{ { (chan to rnd
CHAN to,len.rand, from.len.rand:
CHAN to.dest.rand, from.dest.rand:

} } }
{{{ channels between user processes
CHAN control:
} } }

PAR
{{{ User receiving messages
SEQ

interval:=5000
done:=FALSE
WHILE NOT done

SEQ
request,msg ! 0 -- ready to accept new msg
get,msg ? msg,header
decode(msg.header,opcode,orig,msg.size)

IF
opcode=dat. a

({{ process data (user read/eat mail & get fat!)
SEQ

SEQ i=0 FOR msg.size
SEQ

request.msg ! 0
get.msg ? msg

{{{ COMMENT
}) }

} })

o p c o d e=c o n f i g
{ ({
SEQ

request.msg ! 0
g e t. m s g ? m y . a d d r
— send.msg.header(conf ig.done,0,0, my.addr)

control ! my.addr
n}

opcode=go
control ' 0

opcode=term
({{ ternminate
SEQ

-- send.msg,header(term.done,0,0,my,addf)
done: =F’ALSE
control. ! 0

68
}}}

}}}

{{{ User sending messages
{{{ del delay
PROC delay(VAL INT interval)
TIMER clock;
INT timenow:
SEQ

clock ? timenow
clock ? AFTER timenow PLU'S interval

} } }

TIMER clock:
INT start.time, finish.time ;
INT my.addr, msg:
INT msg.size,dest:

w

control ? my.addr
{{{ config
SEQ

send » msg.header(config.done,0,0,my.addr)
{{{ COMMENT

} } }

} } }

control ? msg -- go

SEQ 1=1 FOR 30000

{ { { place messages into the network
SEQ

{ { { COMMENT
}}}

dest:= (((dest-1) + 3 J \ 4J+1
— dest;=(my.addr REM 4) a 1
SEQ

dest := my.addr
IF

dest>4
dest:“dest-4

TRUE
SKIP

{{{ COMMENT
} })
msg . size :=14
send.msg,header(data,dest,msg,si2e,my.addr)

SEQ j=0 FOR msg.size

69
send.msg ! my.addr

IF
(i \ 1000)=0
SEQ

send.msg.header(data,0,1,my.addr)
send.msg ! my.addr

IF
1=20000

clock ? start.time
i=22000

clock ? finish.time
TRUE

SKIP

TRUE.X. .4 4
SKIP

} } }

send.msg.Header(data, 0,8,my.addr)
send.msg ! my.addr
send.msg ! (finish.time-start.time)

SEQ 1=1 FOR 6
send.msg ! { (INT ' = ’) - (INT 'O’))

send.msg.header(test.done,0,0,my.addr)
control ? msg
send.msg.header(term.done,0,0,my.addr)

} } }
H }

70

APPENDIX C THE SIMULATION CODE
PROC xnet (CHAN keyboard, screen)

{{{ headers and declarations
{{{F c:\janny\tdslibjr\header0 9.tsr
ATTACHED
m
{{{F c:\janny\tdslibjr\ioproc06.tsr
ATTACHED
}}}
{{{F c:\janny\tdslibjr\ioint004.tsr
ATTACHED
} })
{{{F c:\janny\tdsiibjr\ioreal39.fsr
ATTACHED
}})

*c:\jannyXtdsiibjr\header09.tsr

*c:\jannyitdslibjr\ioproc06.tsr

*c : \janny\tdslibjr\ioint004.tsr

*c:\jannyitdslibjr\iorea!39.tsr

{ {{ channels
VAL max.sys.queues IS 129: — max
VAL max.nodes IS 32: -- max
VAL evs IS 0: -- the
[max.nodes}INI nbuff, ubuff: — the
[max.nodes]INI blockq,readyq:the

of queues needed
nodes in network
event set queue
buffer queues
operating system queues

[5]CHAN to.rand,from.rand :
[max.sys.queues]CHAN to.prq,from.prq:
CHAN to,stats,from.stats:
}}}

{{{ random number stream names
VAL proc.time IS 0: --
VAL nbr.msgs IS 1: --
VAL msg.len IS 2:
VAL os .time IS 3:
VAL msg.dist IS 4: -•
)))

{ { { action codes for the simu i<

— BOUND event actions:
VAL s.term IS 1:
VAL u g.t i me.o u t IS 2 : --
VAL ur.close.mai1 IS 3 : ~~
VAL ug.xfer IS 4 : —
VAL uf .produce IS 5: --

VAL uf.consume IS 6: --

VAL ni.get.link IS 1: --

:ess time needed to do useful work

user proc finsihes reading a message
user proc moves a msg to the net buffer

71

VAL n i . x f e r IS 8 : -- net-in xferred word to the appropriate buffer
VAL no.xfer IS 9: — net-out is putting word on the link
VAL no.word. received IS 10: -- link is now free, word was removed

■— CONTINGENT event actions:
VAL ug.do.work IS 12: — user proc runs its application program
VAL ug.send.mail IS 13: —- user proc places message in nbuff for xmit
VAL ur.get.mail IS 14 : — user proc reads mail message
VAL u f.put.ubuff IS IS: — user front fill ubuff
VAL uf.get.ubuf f IS 16: -- user front removes word from ubuff
VAL ni.put,nbuff IS 1? : -- net-in proc places the word on link in nbuff
VAL ni.put.ubu f f IS 18: — net-in proc places the word on link in ubuff
VAL no.send.word IS 19: -- net-out proc places word of msg on link link
} } }
{{{ function and distribution codes
{{{ distribution codes for the RNG
VAL invalid.distr IS 0: -- invalid distribution type
VAL unif IS 1: -- uniform distribution.
VAL nexp IS 2: -- negative exponential distribution.
VAL const IS 3: -- constant distribution.
} } }
{ { {
VAL
VAL
VAL
}}}
{ { {
VAL
VAL
VAL
VAL
VAL
} })
{ { {
VAL
VAL
VAL
}} }
{ { {
VAL
VAL
VAL
VAL
VAL
VAL
VAL
Bì
{ ({
VAL
VAL
VAL
}} }
m
)}}

common function codes
error IS -1:
init IS 0:
quit IS 1 :

PRO function codes
sched IS 2 : put an entity id on the queue
next IS 3: -- get the next entity id from the queue
dump IS 4 : -- print contents of queue
length IS 5: -- return lenght of queue
view IS 6: — return next, item without removing it from queue

RNG function, codes
rn.init IS 1: ~- initialize the random number generator
rn.get IS 2: -- get the next random number
rn.quit IS 3: -- destroy random number generator

entity and stat function codes
get IS 2: — get an entity id number for new entity
put IS 3: -- return the entity id number for reuse later
enter IS 4: -- enter a new state
leave IS 5: — leave a current state
reset IS 6: -- reset the statistics
cpu IS 8: -- cpu statistics
dmp IS 9: -- dump statistics

function codes for the simulation
sim.init IS 0: -- start the simulation
sim.sim IS 1: -- run a block of the simulation
sim.quit IS 2; — end the simulation

72

{{{ SC c:\janny\tdslibjr\sim\random
{{{f c:\janny\tds1ibjr\sim\random06
ATTACHED
} })
5 } }
{{{F c;\janny\tdslibjr\sim\random07
ATTACHED
} } }
{{{ SC c:\janny\tdslibjr\sim\prq
{{{F c:\janny\tdslibjr\sim\prq00001
ATTACHED
}}}
B }
{{{F c:\jannyXtdslibjr\sim\prqif002
ATTACHED
} } }
{{{ SC c:\janny\tdslibjr\sim\stats
{{{F c:XjannyXtdslibjr\sim\stats002
ATTACHED
B }
}} }
{{(F c:\janny\tdslibjr\sim\statsi03
ATTACHED
}}}

tsr *c:\jannyXtdslibjrXsim\randomO6,tsr

tsr *c: \jannyXtdslibjr\sim\randomO7.tsr

tsr *c:\janny\tdslibjr\sim\prq00001.tsr

tsr *c: X jarinyXtdslib jr Xs imXprqif 002 »tsr

tsr *c:\jannyXtdslibjr\sim\stats002.tsr

tsr *c:XjannyXtdslibjr\simXstatsiO3.tsr

[23] TNT params :
{{{ parameter map
max.msg.len IS params[0]:
max.nbuff IS params[2]:
max,ubuff IS par ams [3] :

fi.blocks IS params MJ:
block.len IS params[5 J:
trace IS params[6]:

seed.msg.dist IS paramsflj:
seed.proc.time IS params[7]:
seed,gen.msgs IS params[8]:
seed.msg.len IS params[9]:
seed.ostime IS params[10]:

mean.proc.time IS params[Il]:
mean.ostime IS params[12]:
mean.gen.msgs IS params[13j:
mean.msg.len IS params!141:
mean.msg.dist IS params(Ih]:

cwxmit IS params[16]:
n.nodes IS params[17]:

distr.proc.time IS params[IS]:
distr»gen.msgs IS params[19]: —
distr.msg.len IS params[20]: —

max length of a message
max number of words nbuff can hold
max number of words ubuff can hold

number of blocks to run
length of each block
values of the trace

seed for msg dist -- # links a msg travels
seed for the process time between gen msgs
seed for the number of msgs being created
seed for the length of msg being created
seed for the ostime (op sys delay)

mean process time between generating msgs
mean sleep time for the receiver
mean number of messages created at once
mean length of a generated message
the mean number of links a msg travels

the speed of the link
the number of nodes in the system

distr type for local user process
distr type for # msgs to generate at once
distr type for message length

distr.ostime IS params[21J: — distr type for operating system delay
distr.msg.dist IS params[22]: — distr type for # links a msg should travel
} } I

PROC xnetsimCVAL INT opus, INI clock)
{{{ run the simulation
{{{ states of the system
VAL ug,think IS 0: -- user proc is thinking/processing
VAL ug,block IS 1: user proc blocked waiting to read/send mài 1
VAL ug.fill.nbuff IS 2: —• user ¥■> r ¡g r* kX X W V-’ is filling nbuff with a msg

VAL ur.block,uf IS 3 : —— user proc is waiting for user front to run
VAL ur.block IS 4 : — user proc is blocked to read mail
VAL ur,read,maxi IS 5 : — n cpr proc is reading a mail msg

VAL uf.block IS 6 : —— user front process is not doing anything
VAL uf.fill,ubuff IS 7: — user f o r process filling ubuff
VAL uf.remove.ubUff IS 8: user front -X. f »Cf •—* removing from ubuff

VAL ni.sleep IS 9: -- net-in
VAL ni.block •nbuff IS 10: -- net-in
VAL ni.block • f-i» S 1 , -- net-in
VAL ni.block .uf IS 12: -- net-in
VAL ni.wait. on. link IS 13: -- net-in
VAL ni.fill. nbuff IS 14: — net-in
VAL ni.fill. ubuff IS 15: — net-in

VAL no.sleep IS 16: -- net-out
VAL no.busy IS 17: -- net-out
VAL no.fill. nlink IS 18: -- net-out

is sleeping, nothing on link to get
is blocked waiting for the nbuff
is blocked waiting for the ubuff
is waiting for user front to run
is waiting to receive a word on link
moves the msg to nbuff from the link
moves the msg to local ubuff

in idle state (link is not busy)
in xmit state (link is busy)
x s filling the 11 n x with a word

is in the systemVAL msg.traf fie ÏS 19:
)) }
f { { ç f A t P of t h P link
VAL link.no.msg IS 0;
VAL link . head.msg IS 1:
VAL link.word.msg 7 C 9 ,X o e~. «

} } }

{ { { constants for testing
VAL max.proc.time IS 3000

msg header

~ link is free
- link holds the header of the msg
- link holds a word of the msg

-- max proc time before time slice

VAL u.read,header IS 45:
VAL u.read,word IS 16:

— time to
— time to

read header (+ 10 for clock)
read one word of a msg

VAL
VAL

u.word.gen I S 10 :
u.he a de r. g e n IS 62 :

—™ -b I m©
-- time

VAL
VAL

u . put. h . nbü f f 15 61:
u.put.w.nbuff IS 19:

-- time
-- time

VAL
VAL

uf.get IS 40:
u f.pu t IS 2 8 :

—- "time
-- time

VAL ni.put.h.nbuff IS 47: -- time

to generate one word of msg
to generate the header, (+10 Clock

to put header in nbuff
to put word in nbuff

for user front to get next word
for user front to put next word

to place header in nbuff

74

VAL ni.put,h.ubuff IS 42; — time to place header in ubuff

VAL ni,insert,msg,wait IS 32:— time to place word in nbuff if full
VAL ni.insert.msg.no.wait IS 13: -- time to place word in nbuff if not full

VAL ni.put.w.nbuff IS 21 : —• t ime to place word in nbuff
VAL ni.put.w.ubuff IS 26: -- time to place word in ubuff

VAL no.put.word IS 60: —■ time to put word on link
} } }

{{{ declarations

{{{ array declarations, vars
[max.nodes]INT succ, prev:

for each node
holds successor previous n ode numbers

[max.nodes[i INT ug,ur,uf,ni, no: -- the 5 processes for each node
[max.nodes[i INT ug.state : -- holds current state for ug process
[max.nodes[I INT ur.state : -- holds current state for ur process
[max.nodes j| INT ni.state : — holds current state for ni process
[max.nodes[I INT no.state : — holds current state for no process
[max.nodes[I INT uf.state : -- holds current state for the user front

max.nodes j1 INT ni.rest.msg: — holds
max.nodes\I INT ni. block : -- holds
max.nodes[i INT ni.decode : — holds

max.nodes[I INT nlink: — holds
max.nodes[) INT nlink.online : — holds

wrds left to send/receive
the buffer ni is currently blocking
the time to decode a msg header

the entity on the link
type of contents in nlink

[max.nodes]INT
[max.nodes]INT

msg.header :
n o . s e n d i n g , w o r d s

holds current header of msg being read
- holds # words no is currently sending

max.nodes]INT
max . nodes]INT
max.nodes]INT
max . nodes]INT

u .think.time:
u,send,nbr,msgs
u. sending. words
u .reading.words

holds the time for user proc to think
holds # of msgs to send before thinking
holds the # words currently being sent
holds the # words currently being read

[max.nodes]INT ubuff
[max.nodes]INT nbuff
[max.nodes]INT ubuff
[max.nodes[INT nbuff

nwords:
nwords:
nheader s
nheader s

holds the nbr of
holds the nbr of
holds the nbr of
holds the nbr of

words in the ubuff
words in the nbuff
headers in the ubuff
headers in the nbuff

[max.nodes]BOOL proc.running:
[max.nodes[BOOL u.filling:
[max.nodes]BOOL ni.filling:
}) 5

INT term, sys, sid:
INT word, header:
INT dummy,prior:
INT len, blockq.len:
INT distjdest:
INT os;

hold true when process is running on node
holds true when u is filling nbuff
holds true when ni is filling nbuff

index to entity objects
index to entity objects
prq params prior
temp var for length of queue
distance and destination of a msg
holds random operating system time: delay

"7 ^3

INI gen.msg.can « f it ; -- max length of nbuff SO that g can add msg
INI send.nbr.msgs: -- temp var to get random number
INT think : -- temp var & used to get random think time
INT read.time, send.time: -- time to read or send a word of a msg
INT i, j: -- loop control vars
INT act, node, nbr.words: -- holds values for ani entity
INT ch :
INT stime, newtime: — used to hold clock time
TIMER realclock: — used for timing
INT etìmer,stimer, ftimer: -- more timers
REAL32 durance:
INT clock :
BOOL. run :
}))

{ { (entity control
{ i { entity object parameters

VAL maxent IS 20000: —
VAL num.of.flelds IS 5: —
VAL maxstate IS 14: —
VAL maxatr IS 4: —

the max entities in the system at once
there are five fields in an entity
the number of states in the system
attributes; node,id, n.words, fdest

-- THE FIELDS OF THE STRUCTURE
VAL action IS 0:
VAL link IS 1:
VAL node.id IS 2:
VAL n.words IS 3;
VAL fdest IS 4;

ENTITY:
— the bound event action id
— used to link entitites
-- the node associated with the entity
-- number of words in the msg / with header
-- holds the node to receive the msg

— THE STRUCTURE ENTITY:
[maxentHnum,of,fields]INI entity: — the storage for the entities

} } Ì
{{(F c:\jannyitdslibjr\sim\entitys.tsr *c:\janny\tdslibjr\sim\entitys.tsr
ATTACHED
} })
} } }

SEQ

{{{ initialize the model
SEQ

{ { { initialize the entity object
ent (init, sys)
/ } 1

{{{ determine the size of the network buffer less contingency part
-- at least 2 maximum size msgs must be able to fit in the
-- to insure that when a msg is placed in the network buffer
-- there is still room for 1 max size msg,
msg,can.fit := (max.nbuff + 1) - (2 * paramsiO])gen

76

}}}

{{{ set the order of nodes in the system (successor, previous)
SEQ

— compute the SUCCESSOR of every node
node := 0
succfn.nodes - 11 := 0
WHILE node < (n.nodes ~ 1)

SEQ
succ(node) := node + 1
node ;= node + 1

— compute the PREVIOUS node for every node
prevfOj := n.nodes - 1
node := 1
WHILE node < (n.nodes)

SEQ
prevfnode] : =■ node - 1
node := node + 1

} } }
{{{ create control entity term
SEQ

ent (get, term)
entityiterm] [action) := s.term — mark the termination point

) })
{{{ schedule first user proc time out, init buffers and counters
SEQ

think := 0 — think for time 0 in order to get on evs
node := 0 — all contingent tests will fail/proc will run
WHILE (node < h.nodes) — for ail nodes

SEQ
({{ Schedule the first time out for the user procs
SEQ

ent(get,sys) — get an entity id
entity[sys][node.id] := node -- set its node id
entity[sys][action] := ug.time.out — set act to gen mail
prq(scned,evs,sys,think,(trace/\2)) — schedule time out
proc.running[node] := TRUE — note proc is running

} } }
{{{ Initialize buffer and link counters
SEQ
— initialize the buffer counters to zero
nbuff.nwords[node] :- 0
ubuff,nwords[node] : = 0
nbuff.nheaders[node] := 0
ubuff.nheaders[node] := 0

— Initialize link marker to zero (nothin on link)
nlink.online[node] ; = link»no.msg

— Initialize the msg
u.think.time [node] :=
u.send.nbr.msgs[node}
u.sending.words[node J

counters
0
:= 0
:= 0

for user processes

77

u,reading.words[node] := 0
no.sending,words[node] := 0
ni.rest,msg[node] := 0

— Initialzie the boolean flags for user & net-in
-- network buffer

u.filling[node) := FALSE
ni . filling[node] := FALSE

} } }
node := node + 1 — increment counter

} } }
{{{ schedule first block end
SEQ

newtime : = block,len -- set newtime to end
-- schedule the termination action at time newtime
prq (sched,evs,term,newtime, (trace/\2))

} })
{{{ initialize the simulation clock
clock := 0 — set clock to time
) } }

{{{ create the set of network processes (servers)
SEQ

node := 0
price ;= 0
WHILE (node < n.nodes)

SEQ
({{ Create the user process (ug)

-- get the entity id, assign it to this- process
-- the node this id, let stats know start state
-- assign the process to the start state,

SEQ
ent (get,sys)
ug(node) := sys
entity[sys][node.id] := node
ens (get,sys,ug.think,prior, (trace/\16))

ug.statefnode J := ug.think
)) 3
{({ Create the user process (ur)

— get the entity id, assign it to this process,
-- the node this id, let stats know start state,
— assign the process to the start state, and pi
— process on Block queue

filling

block

zero

, assign
, and

a s sign
and

<3 C G

ent(get,sys)
ur[node] := sys
entIty(sys)[node .id) :== node
ens(get,sys,ur.block.uf,prior,(trace/\16))
ur.state[node] := ur.block,uf
prq(sched,blockq(node],sys,clock, (t raced\4))

1 Q

i } }

{{{ Create the user front process (uf)
— get the entity id, assign it to this process, assign
-- the node this id, let stats know start state, and
— assign the process to the start state, and place
-- process on Block queue

SEQ
ent(get,sys)
uf[node] := sys
entity[sys3 [node.id] := node
ens(get,sys,uf.block,prior,(trace/\16))
uf.state[node] := uf.block
prq(sched,blockq[node],sys,clock,(trace/\4))

} } }

{{{ Create the network receiver (ni)
— get the entity id, assign it to this process, assign
-- the node this id, let stats know start state, and
-- assign the process to the start state, and place
-- process on Block queue

SEQ
ent(get,sy s)
nilnode] sys
entity [sys] [node.id] := node
ens (get,sys,ni. sleep,prior, (trace/\16))
ni.state[node] := ni.sleep
prq(sched,blockq[node],sys,clock,(trace/\4))

}) }

{({ Create the network transmitter (no)
-- get the entity id, assign it to this process, assign
— the node this id, let stats know start state, and
— assign the process to the start state, and place

process on Block queue

SEQ
ent(get,sy s)
no[node] := sys
entity[sysj[node.id] :== node
ens(get,sys,no.sleep,prior, (trace/\l6))
no,state•node} := no.sleep
prq (sched,blockq[node],sys,clock, (trace/\4))

} })
node := node + 1

i } i

J))

opus - sim,sim

79

{{{ run one block
SEQ

realclock ? stimer
ens (reset,dummy,dummy,clock,(trace/\16))
run := TRUE
WHILE run

SEQ
{{{ get next event, action and node
SEQ
prq(next,evs,sid,clock,(trace/\2)) — get next event notice
act := entity[sid][action] — get the action id
node := entity[sid][node.id] — get node it is for
{{{ if traceAl print action — trace if necessary
IF

(trace A 1) <> 0
SEQ

IF
act = s,term
write, full. string (screen, "block end *')

act = ur.close,mail
write.full,string(screen,

" user process closes mail msg")
act = ug.time.out
write.full.string(screen,

"user process just timed-out")
act. = ug.xfer
write.full.string]screen,

"user just moved msg to nbuff")
act = uf.produce
write.full. string(screen,

"user front just filled ubuff”)
act = uf.consume
write,full.string(screen,

"user front just removed word from ubuff")
act = ni, get.link
write.full.string(screen,

" net process received a word on the link”)
act = ni.xfer
write.full.string(screen,

" net process removed a word from the link")
act = no.xfer
write,full.string(screen,

" net process just filled link")
act = no.word.received
write.full.string{screen,

" word was removed from link”)
TRUE

write, full. string (screen, "(?! %£W ! f ")
write.full.string(screen," with id ’’)
INTwrite(sid,4)
write.full.string(screen," at time "j
INTwrite (clock,6)
write.full.string (screen,"*c*n")

TRUE

80

SKIP
} } }

} } }

{{{ Process BOUND EVENTS
IF

act = ug.time.out
{{{ time has expired for user process ug to run
SEQ

{{{ Kill the control entity
ent(put» sid)
} } }
{{{ Leave u.think state /enter u.block state
SEQ

ens(leave, ug[node], ug.think, clock, (trace/\16))
ens(enter, ug(node), ug.block, clock, (trace/\16))
ug.state[node] := ug.block

}}}
{{{ Move user process ug from proc.running to BLOCK Queue
SEQ
prq(sched,blockq[node],ug[node],clock,(trace//4))
proc.running[node] := FALSE

} } }
J) }

act = ur.close.mail
{{{ time has expired for user process ur to read a mail msg
SEQ

{{{ Kill the control entity
ent(put,sid)
) i I
{{{ Leave ur.read.mail state / enter ur.block.uf state
SEQ

ens(leave, ur[node], ur.read.mail, clock, (trace//16))
ensienter, ur[node], ur.block.uf, clock, (trace//16))
ur.state[node J := ur.block.uf

} })
{{{ Move user process ur from proc.running to BLOCK Queue
SEQ

prqfsched, blockq[node] , ur[node],clock, (trace//!))
proc,running[node] := FALSE

} } }
{{{ Leave msg.traffic state if last word of msg received
IF
u.reading.words[node] = 0

SEQ
ens(leave,msg.header(node],msg.traffic,

clock,(trace//16))
ent(put,msg.header[node])

TRUE
SKIP

1) }
} })

act = ug.xfer
{ { { time expired for user process ug- to fill nbuff w/msg

81

SEQ
{{{ Kill the control entity
ent(put,sid)
} } I
{{{ Leave ug.fill,nbuff state / enter ug.block state
SEQ
ensdeave, ug[node], ug.fill.nbuff, clock, (traee/\16))
ens{enter, ugfnode], ug.block, clock, (trace/\16))
ug.state[node] ;= ug.block

3 3 3
{{{ set u.filling false if last word of msg was xferred
SEQ

IF
u.sending.words[node] = 0
u. filling[node] := FALSE'

TRUE
SKIP

3 3 3
{{(Move user process ug from proc.running to BLOCK Queue
SEQ
prq(sched,blockq[node],ug[node],clock, (trace/\4))
proc.running[node] := FALSE

3 } 3
}})

act = uf.produce
{{{ time expired for user front to fill ubuff with word
SEQ

{{{ change uf state
SEQ
ens(leave,uf[node],ufifill.ubuff,clock, <trace/\16))
ens (enter, uf [node] , uf .block, clock, (trace/M6))
uf . state[node] := uf .block

} 3 3
(is change ni state (tell ni that it can fill ubuff now)
SEQ
ens{leave, ni[node] , ni.block.uf, clock, (trace/\16))
ens (enter,ni[node},ni.block.ubuff,clock, (trace/\16))
ni . state[node} := ni.block.ubuff

3 3 }
{{{ kill control entity; wait on contingent event
ent(put,sid)
3 3 3
{{(move uf proc to block queue & set proc.running false
SEQ
prq(sched,blockq[node],uf[node],clock,(trace/\4))
proc.running[node] := FALSE

3 } }
} } }

act := uf. con sums
tit time expired for User front to get word from Ubuff
SEQ

{{{ change uf state
SEQ

ens (leave,uf[node],uf.remove.ubuff, clock, (trace/VI6))

82

ens (enter,uf{node],uf.block,clock, (trace/\16))
uf . state[node] := uf.block

}))
{{{ change ur state(move ur to block so it can read next)
SEQ
ens(leave,ur[node],ur»block.uf,clock,(traceAlS))
ens(enter,ur[node],ur.block,clock,(trace/\1€))
ur.state[node] ;= ur.block

} } }
{{{ kill control entity; wait on contingent event
ent(put,sid)
} })
{{{ move uf to block queue and set proc.running to false
SEQ
prq(sched,blockq[nodeJ,uf[node J,clock, (trace A 4))
proc.running[node] := FALSE
m

}}}
act = ni.get.link

{{{ a word has arrived on the link
SEQ

IF
ni .state [node] = ni. sleep

{{{ message header on link
SEQ

{{{ get msg header & best, set ni.rest.msg counter
SEQ

header ;■ = nlinkfnode]
ni.rest.msg[node] := entity[header] [n.words J + 1

} } }
IF
entity[header][fdest] = node

{{{ message is local (let uf run first)
SEQ
ni.block[node] := ni.block.uf
ni.decode[node] := ni.put.h.ubuff
ubuf f.nheaders[node] :=ubuff.nheaders[node]+1
prq(sched,ubuf f[node],header,

dummy, <trace/\4))
}}}

TRUE
{{{ message is for another node
SEQ

ni ».block [node] := ni .block .nbuff
nbuf£.nheaders[node] :=nbuf£.nheaders[nodeJ +1
prq(sched,nbuff[node 1,header,

dummy, (trace/\4))
IF

nbuff.nwords[node] = max.nbuff
ni.decode(node] := ni . put.. h » nbuf f +
ni.insert »msg.wait

TRUE
ni.decode[node] := ni.put.h.nbuff +

.ni » insert »msg »no .wait

83

}})
{{{ enter block state
SEQ
ens(leave,ni(node],ni.sleep,clock,(trace/\l6))
ens(enter,ni[node],ni.block[node],

clock,(trace/\16))
ni.state[node] := ni.block[node]

} } }
{{{ kill control entity
ent(put,sid)
m

}}}
TRUE •— ni is waiting on the link

{{{ one word of the message is on link
SEQ

{{{ enter block state
SEQ
ens(leave,ni[node],ni.wait.on.link,

clock,(trace/\16))
ens(enter,ni[node],ni.block[node],

clock, (trace/\16))
ni.state[node] := ni.block [node]

} I }
{{{ set time to decode word to time needed to place

-- word in nbuff or ubuff
IF
ni.block[node] = ni.block.ubuff
ni.decode[node] := ni.put.w.ubuff

nbuff.nwords[node] = max.nbuff
ni.decode[node] ;= ni.put,w.nbuff +

ni . insert.msg.wait
TRUE
ni.decode[node J := ni.put.w.nbuff +

ni.insert.msg.no.wait
m
{{{ kill control entity
ent(put,sid)
}) }

} I }
)}}

act = ni.xfer
{{{ time expired to move a word from link to buffer
SEQ

IF
ni.rest.msg[node] > 0

{{(message not complete, enter wait on link
SEQ

ens (leave, ni [node] , ni . state [node]',
clock, (trace/\16))

ens (enter,ni[node],ni.wait.on.link,
clock, (trace/\16))

ni.state[node] := ni.wait.on.link
n}

TRUE

8 4

{{{ complete message received, go back to sleep
SEQ

ni. . filling[node] := FALSE
ens (leave,ni inode],ni.state[node] ,

clock, (trace/\16))
ens (enter,ni[node],ni.sleep,clock, (trace/\l6))
ni.state[node] := ni.sleep

] } I
{{{ kill control entity (prev node will send a get.link)
ent(put,sid)
}) I
{{{ move net-in process from proc.running to BLOCK Queue
SEQ
prqisched,blockq[node], ni[node],clock,(trace/\4))
proc.running[node] := FALSE

} I }
} H

act = no.xfer
{{{ time expired to move a word from buffer to link
SEQ

({{ schedule next node to receive word
SEQ

{{{ set control entity, next node to get word off link
SEQ
entity[sid][action] := ni.get.link
entity[sid][node.id] := succfnode]

}) I
{{{ compute time to transmit down the line
SEQ

rng.get(os.time, os, (trace/\32))
newtime := (os + cwxmit) + clock

} } }
{{{ schedule the control entity
prq(sched,evs,sid,newtime,(trace/\2))
} } }

} })
{{{ leave no.fi11.nlink state / enter nd.busy state
SEQ

ens (leave, no[node] , no. fill, .nlink, clock, (trace/MS))
ens(enter,no[node],no.busy,clock,(trace/\16))
no.state[nodej ;= no.busy

f) }
{{{ move net-out process from proc.running to BLOCK Queue
SEQ
prq(sched,blockq[node],no[node],clock, (t race/\4))
proc.running[node] := FALSE

)) }
) } }

act = no.word.received
({! successor node received the word on link
SEQ

nlink ..online [succ [node]] := link.no.msg
ens(leave,no[node],no.busy,clock,(trace/\16))
ens(enter,no[node],no.sleep,clock,(trace/\16))

85

no,state{node] := no.sleep
ent(put,sid)

}} }

act = s.term
{{{ end this block
SEQ

run := FALSE
newtime := clock + block.len
ens(cpu,dummy,dummy,clock, (trace/\16))
prq (sched, evs, sid, newtime,(trace/\2))

}}}
TRUE

{{{ illegal control code
SEQ

write, full. string (screen,’’Illegal control code*c*n")
STOP

} } }
} } }

IF
act <> s.term

{{{ Process CONTINGENT EVENTS
SEQ

{{{ update BLOCK and READY Queues
prq(length,blockq[node],blockq.len,dummy,(trace/!4))
i ;= 0
WHILE i < blockq.len —do all items on block queue

SEQ
prq(next,blockq[node],sid,dummy,(trace/\4))
IF
sid = uginode]

{{{ update user process generator
IF
u.think.time[node] > 0

{{{ run before sending mail
SEQ
entity[sid][action] := ug.do.work
prq(sched,readyq[node],sid,

clock, (trace/\4))
m

u.sending.words[node] > 0
{({ currently sending a message
SEQ
entity[sid][action J := ug.send.mail
prq{sched,readyq[node],sid,

clock,(trace/\4))
} } 5

u.send.nbr.msgs[node] > 0
{{{ send start of new mail message or block
IF

((NOT ni.filling[node]J AND
inbuff.nwords[node] < gen ,msg , can . f it))
SEQ

86
u. f illing[node] := TRUE
entity[sid][action] := ug.send.mail
prq(sched,readyq[node],sid,

clock,(trace/\4))
TRUE —msg can’t be moved,go on BLOCK Queue
prq(sched,blockq[node],sid,

clock, (trace/\4))
}) }

TRUE
{{{ run the application program
SEQ
entity[sid][action] := ug.do.work
prq(sched,readyq[node] , sid,

clock,(trace/\4))

rng.get(nbr.msgs, len,(trace/\32))
u.send.nbr.rnsgs[node] := len

rng.get(proc.time,think,(trace/\32))
u.think.time[node] := think

} })
} } }

sid = urfnode]
{{{ update user process receiver
SEQ

JP
ur.state[node] ~ ur.block

{{(move ur to READY queue
SEQ
entity(sid][action] := Ur.get.mail
prq(sched,readyq[node],sid,

clock,(trace/\4))
} })

TRUE
{{{ place ur back on Block Queue
prq(sched,blockq[node] , sid,

clock, (trace/\4))
} } }

} } }
sid = uf[node]

({{ update user front process
SEQ

IF
ni.state [nodeJ=nl .block .uf -- ni has priority

SEQ
entity[sid](action) := uf.put.ubuff
prq(sched,readyq[node],sid,

clock,(trace/\4))
(ur,state[node] = ur.block.uf) AND

(ubuff.nwords[node] > 0)
SEQ

entity [sid] [action] := uf.get.ubuff
prq{sched,readyq[node],sid,

clock, (trace/\4))

87
TRUE
prq{sched,blockq[node]» sid,

clock, (trace/\4))
} } }

sid = ni(node]
{{{ update net-in process
IF

(((ni.state[node] = ni.block.ubuff) AND
(ubuff.nwords[node] < max.ubuff)) AND
(NOT u.filling[node]))
SEQ
ni.filling[node] := TRUE
entity[sid][action] ;= ni.put.ubuff
prq(sched,readyq[node],sid,

clock, (trace/\4))
(((ni . state [node] = ni.block.nbuff) AND

inbuff.nwords[node] < max.nbuff)) AND
(NOT u.filling[node]))

SEQ
ni.filling[node] := TRUE
entity[sid][action] := ni.put.nbuff
prq(sched,readyq[node],sid,

clock, (trace/\4))
TRUE -- net-in can’t run,go back on BLOCK' Queue
prq(sched,blockq[node],sid,clock,(trace A4))

} } }
sid = no[node]

{{(update net-out process
IF

((nlink.online[succ[node)} = link,no,msg) AND
(nbuff.nwords[node] > 0,)
SEQ

entity[sid][action] := no.send.word
prq(sched,readyq[node],sid,

clock, (trace/\4))
TRUE
prq(sched,blockq[node],sid,clock, (trace/\4))

S})
TRUE
write.full.string(screen,

"Illegal control entity on BLOCK queue*e*n")
i ; == i + 1

} } }
{{{ set one process running if necessary/possible
prq{length,readyq[node],len,dummy,(trace//4))
IF

(len > 0) AND (proc.running[node] = FALSE)
SEQ

({{ get next action and proc,set proc.running TRUE
SEQ
prq(next/readyq[node],sid,len, (trace/\4))
act := entity[sid][action]
proc.running[node] ; = TRUE

88

}}}
{{{ perform the contingent event
IF

act = ng.do.work
{{{ set user proc running its application
SEQ

{{{ Determine operating system delay for run
SEQ

rng.get(os,time, os, (trace/\32J)
} } }
{ { {■ Determine time to run before u.time.out
SEQ

IF
u.think.time[node] > max.proc.time

SEQ
newtime :=== (max.proc .time + os)+clock
u.think.time[node]:=
u.think.time[node] - max.proc.time

TRUE
SEQ"

newtime (u.think.time[node] + os)+
clock.

u.think.time(node] := 0
} } i
{ { { Create control entity. &

--Schedule u.time. out
SEQ

ent(get,sys)
entity[sys][node.id] node
entity [sys] [action J := ug ,time. Out.
prq(sched, evs, sys, newtime, (trace/\2))

} } }
{{{ Leave ug.block / enter ug.think state
SEQ
ens(leave,ug[node],ug.block,

clock, (trace/MS))
ens(enter,ug[node],ug.think,

clock, (trace/\16))
ug.state[node] := ug.think

1) 1
m

act = ug. send,mail
{{{ let user process fill nbuff with mail
SEQ

IF
u . sending ..words (■ node] = O'-

({ { starting new msg
SEQ

{ { { Generate random length of msg-
SEQ

rng. get (msg . len, len, (trace/\32))■■
m
{ { { Generate distance "the msg should

— travel (number of. links)

89

SEQ
rng.get(msg.dist, dist, (trace/\32))
dest := (node + dist) REM n,nodes

} } }
{{{ Create MSG HEADER
SEQ

ent(get, header)
entity[header)[fdest] dest
entity[header] [n.words J := len
— does not include header

ens(enter,header,msg.traffic,
clock, (trace/\16))

}) !
{{(Place msg in nbuff (header in

— nbuff, update buffer counters)
SEQ

prq(sched, nbuff[node], header,
prior, (trace/\4))

nbuff.nheaders[node] :=
nbuff.nheaders[node]+1

nbuff.nwords[node] :=
nbuff,nwords[node]+1

} } }
{{{ Update counters
SEQ
u.send.nbr.msgs[node] :=
u,send.nbr.msgs[node]-1

u,sending.words[node] := len
}) }
u.think.time[node] := u.header.gen
send.time := u.put.h.nbuff
m

TRUE
{{{ currently sending words of a msg
SEQ
nbuff.nwords[node] :=
nbuff.nwords[node] + 1

u.sending.words[node] :=
u . sending.words[node] -d

u.think.time[node] ;= u,word.gen
send.time := u.put.w.nbuff
m

{{{ Determine time to move msg to nbuff
SEQ

rng.get(os.time,os,(trace/\32))
newtime := (send»time + os) + clock

}) }
{{{ Create control entity & Schedule xfer
SEQ
ent(get,sys)
entity [sys] [node.id] := node
entity[sys][action] :=■ ug.xfer
prq(sched, evs, sys, ttewtime, (traee/U))

30

{{{ Leave ug.block / Enter ug.fill.nbuf£
SEQ
ens(leave,ug[node],ug,block,

clock,(trace/\16))
ens(enter,ug[node],ug.fill.nbuff,

clock,(trace/\16))
ug.state[node] := ug.fill.nbuff

} } i
}} }

act = ur, get.mail
{{{ let user process read mail msg waiting
SEQ

IF
u.reading.words[node] = 0

{{{ get next header from ubuff, set
— counters, set read time

SEQ
prq(next,ubuff[node] , header,

dummy,(trace/\4))
u.reading.words[node]:=
entity[header] [n.words J

Ubuff.nwords[node] :=
ubuff.nwords[node] - 1

ubuff.nheaders[node]:=
ubuff.nheaders[node] - 1

msg,header[node] := header
-- ent(put,header)
read.time := u.read.header

}))
TRUE

{{{ update counters, set read time
SEQ

ubuff.nwords[node] :=
ubuff.nwords[node] - 1

u.reading.words[node]:=
u.reading.words[node]-1

read»time := u. read.word
m

{{{ compute time to read the msg
SEQ

rng.get(os.time,os,(trace/\32))
newtime := (read.time + os) + clock

} })
{{{ create control entity & schedule transfer
SEQ

ent(get,sys)
entity[sys][node.id] ;= node
entity [sys][action] := ur.close.mail
prq(sched,evs,sys,newtime,(trace/\2))

} } >
{{{ leave ur.block / enter ur.read.mail state
SEQ
ens(leave,ur[node],ut.block,

clock, (trace/\16))

31

ens (enter,ur(node],ur.read.mail,
clock, (trace/\16))

ur . state(node] := ur.read.mail
m
m

act - uf.get.ubuff
{{{ let user front proc get next word in ubuff
SEQ

{{{ compute time to read the msg
SEQ

rng.get(os.time,os,(trace/\32))
newtime ;= (uf.get + os) + clock
m
{{{ create control entity s schedule transfer
SEQ

ent(get,sys)
entity(sys][node.id] := node
entity[sys](action] := uf.consume
prq(sched,evs,sys,newtime,(trace/\2))

} } }
{{{ leave uf.block / enter uf.remove.ubuff
SEQ
ens(leave,uf(node],u f.block,

clock, (trace/\16))
ens (enter,uf[node],uf.remo ve.ubuff,

clock,(trace/\16))
uf.state[node] ;= uf.remove.ubuff

} } >
} } }

act = uf,put.ubuff
{{{ let user front proc put next word in ubuff
SEQ

{({ Create control entity to transfer word
SEQ

ent(get,sys)
entity[sys](node.id) := node
entity(sys][action] := uf.produce

} })
{{{ Determine time needed to make transfer
SEQ

rng.get(os.time,os, (trace/\32))
newtime := (uf.put + os) + clock

}}}
{((Schedule the transfer
prq(sched,evs,sys,newtime,(trace/\2))
}) }
{{{ leave uf.block Z enter uf , fill.utouff
SEQ
ens(leave,uf(node],uf.block,

clock, (trace/\16))
.ens(enter,uf[node],uf.fill.ubuff,

clock, (trace/\16))
uf . state[node] := uf.fill.ubuff

} } }

92

}}}
act = ni.put.nbuff

{{{ let net-in proc fill nbuff w/ word on link
SEQ

{{[Create control entity to transfer word
SEQ

ent(get,sys)
entity[sys][node.id] node
entity{sys][action] := ni.xfer

} })
{{{ Determine time needed to make transfer
SEQ

rng.get(os.time,os,(trace/\32))
newtime ;= (ni.decode[node] + os) + clock

}}}
{{{ Schedule the transfer
prq(sched,evs,sys,newtime, (trace/\2))
}) !
{{{ update word counters
SEQ

nbuff.nwords[node] : = nbuff.nwords[node]+1
ni . rest. msg[node] := ni.rest.msg[node] - 1

) })
{{{ leave ni.block.nbuff/ enter ni . fill.nbuff
SEQ

ens(leave,ni[node],hi.block.nbuff,
clock,(trace/\16S)

ens (enter,ni[node],ni.fill.nbuff,
clock,(trace/\16))

ni.state[node] := ni.fill.nbuff
}))
{({ schedule control entity for previous node
SEQ

ent(get,sys)
entity[sys][node.id] := prevfnode]
entity[sys][action] := no.word.received
prq(sched,evs,sys,clock,(trace/\2))

} } >
}))

act = n i.put,ubuf f
{{{ let net-in proc fill ubuff w/word from link
SEQ

{{{ Determine time needed to make transfer
SEQ

rng.get(os.time,os, (trace/\32))
newtime := ni.decode[node]+(clock + (3*05))

)))
{{{ Schedule the transfer
SEQ

ent (get,sys)
entity[sys][node.id] := node
entity(sys][action] := ni.xfer
prq(sched,evs,sys,newtime,(trace/\2))

) })

93

{{{ update word counters
SEQ

ubuff.nwords[node] : = ubuff.nwords[node]+1
ni.rest.msg[node] := ni.rest.msg[node] - 1

}) }
{{{ leave ni.block.ubuff/ enter ni.fill.ubuff
SEQ
ens(leave,ni[node],ni.block.ubuff,

clock,(trace/\16))
ens(enter,ni[node],ni.fill.ubuff,

clock, (trace/\16))
ni.state [node] := ni . fill.ubuff

}}}
{{{ schedule control entity for previous node
SEQ

ent (get,sys)
entity[sys)[node.id] := prevfnode]
entity[sys][action] := no.word.received
prq(sched,evs,sys,clock,(trace/\2))

} })
n >

act = no.send.word
{{{ let net-out process place word on link
SEQ

IF
(no.sending.words[node J > 0}

— still sending' a msg'
{{{ put word or. link (decrement counters}
SEQ
no.sending.words[node]:=
no.sending.words[node]-1

nbuff.nwords[node] ;=
nbuff.nwords[node] - 1

nlink . online [succ [node]]■ : =
link.word.msg

} } }
TRUE -- send start Of msg

{{{ put header on link,decrement counters
SEQ

{{(move the header from nbuff to
— nlink, update sending.words

SEQ
prq(next,nbuff[node],header,
prior,(trace/\4))

no.sending.words[node] :=
entity(header][n»words]

nlink[succ[node]] : = header
5 } }

{{{ update counters controlling buffers
— and links

SEQ
nbuff.nheaders[node J : =
nbuff,nheaders[node] - 1

94

nbuf f.nwords[nodej : =
nbuff.nwords[node]-1

nlink.online[succ[node]) :=
link . head,msg

} } }
5 } }

{{{ Determine time needed to do the transfer
SEQ

rng.get(os.time, os, (trace/\32))
newtime := no.put.word + ((6 * os) + clock)

i))
{{{ Create control entity S Schedule event
SEQ

ent (get,sys)
entity[sys][node.id] := node
entity[sys][action] := no.xfer
prq(sched, evs, sys, newtime, (trace/\2))

} } }
{{{ Leave no.sleep / enter no.fill.nlink
SEQ

ens (leave,no(node],no.sleep,
clock, (trace/\16))

ensfenter, no[node), no . fill.nlink, clock,
(trace/\16))

no.state[node] := no.fi11.nlink
)))

}} }
TRUE
write.full.string(screen,

"Illegal action on READY queue *c*n")
}) i

TRUE
SKIP

) } }
TRUE

SKIP
{{{ print time elapsed
SEQ

realclock ? ftimer
etimer ;= ftimer MINUS stimer
durance := (REAL32 ROUND etimerj*(0.000064(REAL32))
write.full.str ing(screen, "*#07")
write . full.string(screen, "*#07")
write, full.string(screen,"*c*n")
write.full.string(screen,"Elapsed time for this block is ")
REAL32write(durance,6,2)
write.full.string (screen," seconds* c*n")

} })
{{{ dump the accumulated statistics
ens (dmp,dummy,dummy,clock,(trace/\32))
} } }
{{{ dump the priority queues
SEQ

95

prq (dump, evs, dummy, dummy, (trace/\8))
node := 0
WHILE node < n.nodes

SEQ
prq (dump, ubuff[node], dummy, dummy. (trace/\8))
prq (dump, nbuf f[node], dummy, dummy, (trace/\85)
prq (dump. readyq[node],dummy, dummy, (trace/\8))
prq (dump, blockq[node],dummy, dummy, (trace/\8))
node ;= node + 1

) I }
} } }

opus = sim.quit
SKIP

TRUE
{ {{ error
STOP
— display an error from here. This path should never be taken.
} } I

} } }

PROC xnetrunO
{{{ control the simulation
{{{ Get the parameters
PROC cnv.si(VAL INT len, VAL MBYTE str, INT val)

{{{ convert an integer string to the integer value
INT i, rival:
SEQ

val := 0
i := 0
WHILE ((i < len) AND ((str[i] < 1!on OR (str[ij > ’9’)))

WHI LE ((i < len) AND ((strii) >= , Q .) AND (str[i] <= ‘9'
SEQ

dval := (INT str tin - '0'1 (INT)
val := (10*val) + (INT dval)
i : — i + 1

} } }

PROC get.params(CHAN screen, keyboard, MINT P)
{{{ prompt for the parameters
INT ch:
INT i, len, veil:
INT distr:
[80]BYTE str:

SEQ
{{{ print blank lines
wr it e.f u11.s t r in g(s c reen,"* c * n *n")
} Ì }
{{{ GET the # nodes and speed of the links (10 or 20 MHz)
({{ # of nodes in the system
write.full.string(screen, "Number of NODES in the system (1-32)

96

read.string(keyboard,screen,len,str)
cnv.si (len,str,P[17])
}) }
Hi speed of the link
write.full. string{screen, "Link speed (10 or 20} = = > ")
read.string(keyboard,screen,len,str)
cnv.si (len,str,P[16])
IF
P[16] = 10
P[16] ;= 30

TRUE
Pi 16j := 15

}}}

} } }
({{ GET the size of the buffers (nbuff, ubuff) and max words/msg
{{{ max words in a msg
write.fui1.string(screen, "Max No. of words in a msg ==> ")
read.string(keyboard, screen, len, str)
cnv.si (len, str, P [0])
P[0] := P[0] + 1 -- account for the message header
} } }
{{{ network and user buffer sizes
write.full.string (screen, "Network buffer size (MAX 2000) ==> ")
read.string(keyboard, screen, len, str)
cnv.si(len, str, P[2])
write.full.string (screen, "User buffer size (MAX 2000) ==> ")
read.string(keyboard, screen, len, str)
cnv.si (len, str, P[3])
}}}
)))
{{{ Explain the distribution codes
SEQ
write.full.string(screen,"*c*n*n")
write.full.string(screen,"Distribution Codes :*c*n")
write.full.string(screen,

" Uniform Negative Exponential Constant *c*h")
write.full .string(screen,

" 1 2 3 *c*n")
}) }
{{{ GET the distribution, mean, and seed (# msgs to send at once)
{{{ distribution # msgs to send
write.fui1.string(screen,"*c‘n")
write . full. . str ing (screen, "Number of messages to send at one time *c*n")
distr := invai id.distr — set to an invalid distr.type
WHILE (distr <> const) AND ((distr <> nexp) AND (distr <> unit))

SEQ
write.full.string(screen," -- Distribution Code: ")
read.string(keyboard,screen,len,str)
cnv.si(len,str,distr)

P [19] := distr
) Ì)
{{{ mean # msgs to send
write.full.string(screen," -- Mean: '•)
read.string(keyboard,screen,len,str)

97

cnv.sí(len,str,P {13}}
IF

P[13] > p [0] — if the mean is greater than the maximum
P[13] ;= p[0] -- set mean to max

TRUE
SKIP

n>
{{{ seed for # msgs to send
write.full,string(screen, " —■ Seed: ")
read.string(keyboard, screen, len, str)
cnv.siflen» str, P[8J)
IF
P(8] = 0
P(81 := 37

TRUE
SKIP

} } }
} } }
{{{ GET the distribution, mean, and seed {# words in a msg)
{{{ distribution # words in a msg
write , full. string ('screen, "*c*n")
write.full.string(screen,"Number of words in a message *c*n")
distr := invalid,distr — set to an invalid distr.type
WHILE (distr <> const) AND ((distr <> nexp) .AND (distr <> unif))

SEQ
write.full.string(screen," -- Distribution Code: ")
read,string(keyboard,screen,len,str)
cnv,si (len,str,distr)

P[20] ;= distr
}})
{{{ mean # words in a msg
write.full,string(screen, " -- Mean: ")
read,string(keyboard,screen,len,str)
cnv.si(len,str,P [14])
}}}
{{{ seed for msg length
write.full.string (screen, " -- Seed: ")
read,string(keyboard, screen, len, str)
cnv.siflen, str, P [9])
IF

Pl 9] = 0
Pl 9] := 61

TRUE
SKIP

m
!))
{{{ GET the distribution, mean, and seed (destination length)
{{{ distribution # links a msg should travel
write,full,string(screen,"*c*n")
write , full.string(screen,

"Number of links a message should travel *c*n")
distr := invalid,distr — set to an invalid distr.type:
WHILE (distr <> const) AND ((distr <> nexp) AND (distr o unif))

SEQ

98

write . full. string (.screen, " -- Distribution Code: ")
read.string(keyboard,screen,ien,str)
cnv.si(len,str , distr)

P [22] := distr
} i }
{{{ mean # links a msg should travel
write.full.string(screen, " — Mean: ")
read.string(keyboard,screen,len,str)
cnv.si(len,str,P(15])
} } i
{{{ seed for the operating system delay
write.full.string (screen," — Seed: ")
read,string(keyboard,screen,len,str)
cnv.si (len,str,P (1j)
IF

P[l] = 0
Pfl) := 37

TRUE
SKIP

} S }
}}}
{{{ GET the distribution, mean, and seed (operating system delay)
{{{ distribution for operating system delay
write. full.string(screen,"*c*n")
write.full.string(screen,"Operating System Delay *c*n")
distr := invalid.distr — set to an invalid distr.type
WHILE (distr <> const) AND ((distr <> nexp) AND (distr <> unif))

SEQ
write.full.string(screen," -- Distribution Code: ")
read.string(keyboard,screen,len,str)
cnv.si(len,str,distr)

P[21] := distr
} } }
({{ mean operating system delay
write.full.string(screen," — Mean: ")
read.string (keyboard,screen,len,str)
cnv.si(len,str,P [12])
}} }
{{{ seed for the operating system delay
wr ite . fu 11 . str ing (screen, " -- Seed: '*)
read.string(keyboard,screen,len,str)
cnv,si(len,str,P[10])
IF

P [10] = 0
Pi 10] := 8 3

TRUE
SKIP

}} }
m
{{{ GET the distribution, mean, and seed (user process run time)
{{{ distribution for time to create a word (user process time)
write.full.string(screen, "*c*n")
write.full.string(screen,"Time to process between generating msgs*c*n")
distr : = invalid.distr -- set to an invalid distr.type

99

WHILE (distr <> const) AND ((distr <> nexp) AND (distr <> unit))
SEQ
write.full.string(screen," — Distribution Code: ")
read,string(keyboard,screen,len,str)
cnv,si(len,str,distr)

P [18] distr
}} }
{{{ mean time to create a word
write. full. string (screen, " -- Mean: ")
read.string(keyboard,screen,len,str)
cnv.si(len,str,P[11])
} })
({{ seed for user process time
write.full.string(screen, " Seed: ")
read.string(keyboard, screen, len, str)
cnv.siden, str, P[7J)
IF

P[7] = 0
P[7] := 61

TRUE
SKIP

}}}

} B
{{{ GET # blocks and' the block length
write. full.string (screen, "*c*n*n")
write.full.string(screen, "Number of blocks ==> ")
read.string(keyboard, screen, len, str)
cnv.siden, str, P [4])
write.ful1.string(screen, "Block duration ==> ")
read.string(keyboard, screen, len, str)
cnv.siden, str, P[5])
B I
{{{ GET trace values
write.full.string(screen, "TRACE VECTOR Value ==> ")
read.string (keyboard, screen, len, str)
cnv. si. (len, str, P[6])
B }
{{{ print blank lines
write.full.string (screen,"*c*n*n")
B }

IB
INT 1:
INT clock:
BYTE; ch:
INT kint:
INT dummy:
INT len:
SEQ
write,full.string(screen,"Simulation Of An Occam Network (1988) *c*n*n ")
get.params(screen,keyboard,params)

100

{{{ initialize the priority quG11 ©
are

g]q s
self initializingthe priority queue objects

INT c, c. 1, c2,c 3,n ode : ASSIGN THE PRIORITY QUEUES
SEQ

node := 0 __ node ♦'s start at 0
c := 1 — ubuff queues #'s start at 1
cl := max.nodes * 1 -- nbuff queues start at max. nodes
c2 := max.nodes * 2 — ready queues start at 2 * max.nodes
c3 := max,nodes * 3 -- block queues start at 3 * max.nodes

WHILE node < max.nodes For each node:
SEQ

ubuffinodej := c -- start at 1 (note: evs is queue 0)
nbuff[node] c + cl __ get next queue number for this node
readyqtnode] •= c + c2 __ get next queue number for this node
blockqfnode] := c + c3 -- get next queue number for this node
node := node + 1 — get next node number
c ;= c + 1 — increment by one

}))
{{{ initialize the RNG objects
CFf)
rng,init(nbr.msgs,dlstr,gen.msgs,params[13],params[8 J)
rng.init(proc.time,distr.proc.time,params f11},params[7}J
rng,init(msg.len,dlstr,msg.len,params[14J,params[9])
rng.init(os.time,distr.ostime,params[12] ,params[10])
rng.init(msg,di st,dist r »msg,dist,params[15],params[1])

} } }

xnetsim(sim.init,clock)

kint := 1
WHILE (kint <= n.blocks)

{{{ Run simulation for another block
SEQ
xnetsim(sim.sim,clock)
write,full.string(screen,"*c*n")
write.full.string(screen,"BLOCK #")
INTwrite(kint,3)
write.full.string(screen,"*c*n")
kint := kint + 1

5) I

xnetsim(sim,quit,clock)

{{{ terminate the statistics process
SEQ
ens (quit, dummy, dummy, clock, itrace/'\16))
}))
{{{ terminate the priority queue objects
SEQ

prq(quit,evs,dummy,dummy,(trace/\2))
i := 1
WHILE i < max.sys.queues

101

SEQ
prq(quit» i,dummy,dummy, (trace/\4))
1 := i + 1

} I }
{{{ terminate the RNG objects
SEQ

rng.quit(proc.time,(trace/\32))
rng.quit(nbr.msgs, (trace/\32))
rng.quit(msg.len,(trace/\32))
rng.quit(os.time, (trace/\325)
rng.quit(msg.dist, (trace/\32))

}}}
write.full.string(screen,"End program execution*c*n")
keyboard ? ch

} } }

PAR
PAR i = 0 FOR 5
c.rand(to.rand[i},from.rand[i])

PAR i = 0 FOR max.sys.queues
c.prq(to.prq[i],from.prq[i J,screen)

SEQ
c . stats (to.stats,from,stats,screen)

SEQ
xnetrunf)

102

LIST OF REFERENCES

1. Banks, Jerry, and Carson, John S. Discrete-Event System
£ifflnXâL±pn. Englewood Cliffs: Prentice-Hall, 1934.

2. Comfort, J.C. and Raja Gopal, R., "Environment
Partitioned Distributed Simulation With Transputers”.

Simulation Conference.pp. 103-108, Feb. 1988.
3. Garcia, Albert B., Shaw, Wade H., ’’Transient Analysis

Of A Store-And-Forward Computer-Communications Network"
PrQce2ecilngjs_d2£_JJi^ Simulation Conference.
pp. 752-760, Washington, D.C., Dec. 1986.

4. INMÛ,S_JLrailSWL£X--£^Î£.r..enc^JlanwI. INMOS Ltd. 72-TRN
006-03, Bristol, UK, 1987

5. MacDougall, M.H. MmulâLins ¿SfflMer..Sy s,t..e.m_,„„Techniques,
and Tools. Cambridge: The MIT Press, 1987.

6. Shannon, R. E. System simulation: The.,A£,L-..and-..-S..C.i.eD-£e.♦
Englewood Cliffs: Prentice-Hall, 1975.

7. Silberschatz, Abraham, and Peterson, James L. Operating
System Concepts. New York: Addison Wesley Publishing
Company, 1988.

8. Stuck, Bart W. "Calculating the Maximum Mean Data Rate
in Local Area Networks". QpffipUlPX, May 1983, pp. 72-76.

9. Qiang, Li, William B. Feild Jr., and Donald Klein.
"Implementation of a Transputer Ring Network and a
Deadlock Prevention Algorithm". Proceedings from the
3 r d J...S... Occam .„U s e r Group.Meeting, Sept. 1987.

10. Qiang, Li, William B. Feild Jr., and Donald Klein.
"Channel Design Primitives in Occam". Proceedings from
the_3xd-JIÆ^-^£paiiLll£exAlrQiiB_.Meeting, Sept. 1987.

103

VITA

Master’s Thesis Title:

A SIMULATION OF A MESSAGE PASSING PROTOCOL
FOR A NETWORK OF TRANSPUTERS

Janice R. Glowacki

Born in Miami, Florida, on January 11, 1963

Attended Sable Palm Elementary, John F. Kennedy Junior High,
Highland Oaks Junior High, and North Miami Beach Senior High,
all in Miami, Florida.

Attended Diablo Valley College in Pleasant Hill, California,
from September 1980 to December 1981.

Attended Florida International University in Miami, Florida,
from August 1982 to December 1986 at which time a Bachelor of
Science degree was awarded. Majored in Computer Science.

Attended Florida International University in Miami, Florida,
from January 1987 to date for graduate studies.

Member of Association of Computing Machinery.

Author of ”A Simulation of a Store-and-Forward Distributed
Network of Transputers" for the Proceedings of the 1988
Mnbex-SlimilMj^iLAlQrLfexencB (San Diego, California) .

School of Computer Science

September 16, 1988
Janice R. Glowacki

	Florida International University
	FIU Digital Commons
	9-1988

	A simulation of a message passing protocol for a network of transputers
	Janice R. Glowacki
	Recommended Citation

	tmp.1546035901.pdf.mGWh9

