
Roger Williams University
DOCS@RWU

Mathematics Theses Feinstein College of Arts and Sciences Theses

5-2019

Mathematical Model Investigating the Effects of
Neurostimulation Therapies on Neural
Functioning: Comparing the Effects of
Neuromodulation Techniques on Ion Channel
Gating and Ionic Flux Using Finite Element
Analysis
Kaia Lindberg

Follow this and additional works at: https://docs.rwu.edu/math_theses

Part of the Applied Mathematics Commons

https://docs.rwu.edu?utm_source=docs.rwu.edu%2Fmath_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.rwu.edu/math_theses?utm_source=docs.rwu.edu%2Fmath_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.rwu.edu/fcas_thesis?utm_source=docs.rwu.edu%2Fmath_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.rwu.edu/math_theses?utm_source=docs.rwu.edu%2Fmath_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=docs.rwu.edu%2Fmath_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


 
Mathematical Model Investigating the Effects of 

Neurostimulation Therapies on Neural Functioning: 

Comparing the Effects of Neuromodulation Techniques on 

Ion Channel Gating and Ionic Flux Using Finite Element 

Analysis 

 

 

Kaia Lindberg 

 

 

Bachelor of Science 

Mathematics 

 

 

Feinstein College of Arts and Sciences  

Roger Williams University 

 

 

May 2019 

 



���("��!�!(��(
���(��������(%�!(��#��&��(�'(���(��� �$��(�'("��(����&����(

	��������#��#��!����!���#

��!�!(��#�!��(

�����# 
����#��������
�����!���!#������#	��������#��#��!����!���#

���# ���!����#�������������#
	��������#��#
 "������#

��"��(

��"��( ���(	(� ���

��"��( ���( ��( �������

ii
ii
ii

ii

J



Acknowledgements

Thank you to Dr. Edward Dougherty. Without his dedicated guidance, instruction, and

advice throughout the past two years of working on this project this thesis would not have

been possible. In addition, thank you to the past and present members of our research team:

Abigail Small, Elizabeth Gilchrist, Madison Guitard, and Andrew Delsanto.

Thank you to Dr. Yajni Warnapala and Dr. Victoria Heimer-McGinn for being on the

committee for this thesis and for their feedback that helped strengthen this research and

thesis. This research was supported by the Summer Undergraduate Research Fellowship

(SURF) Program of the Rhode Island Institutional Development Award (IDeA) Network for

Biomedical Research Excellence from the National Institute of General Medical Sciences of the

National Institutes of Health under grant number P20GM103430. Finally, thank you to the

Roger Williams University Provost’s Fund, Student Senate Academic Allocations Committee,

and Joint Mathematics Meeting Student Travel Grant for providing funding for the

opportunity to present this research at local, regional, and national conferences.

I dedicate this thesis to my family for their endless support and encouragement.

ii



Contents

1 Introduction 1

2 Methods and Procedures 4

2.1 Poisson-Nernst-Planck Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Computational Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 DBS and TES Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Transmembrane Flux Boundary Conditions . . . . . . . . . . . . . . . . . 8
2.3.3 Additional Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 PDE Weak Formulation Derivations . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Nernst-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Computational Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Transcranial Electrical Stimulation Results 16

3.1 Transmembrane Voltage Polarization Exhibits Location Specificity . . . . . . . . 16
3.2 Voltage Gated Ion Channel State Variables Exhibit Location Specificity . . . . . 18
3.3 Membrane Ion Flux Exhibits Location Specificity . . . . . . . . . . . . . . . . . . 20
3.4 TES Causes Intracellular Calcium Dyshomeostasis . . . . . . . . . . . . . . . . . 21

4 Deep Brain Stimulation and Comparison Results 22

4.1 Instantaneous Transmembrane Polarization . . . . . . . . . . . . . . . . . . . . . 22
4.2 Asymmetric Location Specificity in Ion Channel Gating Variables . . . . . . . . . 26
4.3 Speed of Changes in Gating Variables . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Transmembrane Ionic Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Discussion 34

5.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Mathematical Concepts and Definitions 43

A.1 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.1.1 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.1.2 Finite Element Method Steps . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.1.3 One Dimensional Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.2 Gauss-Seidel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



List of Figures

1 Diagram illustrating the structure of a neuron within the brain, especially the
node of Ranvier region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Diagram of computational domain with intracellular (⌦I), membrane (⌦M ), and
extracellular (⌦E) subdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Computational mesh with nodes on which the PDEs are solved . . . . . . . . . . 7
4 Diagram illustrating the object-oriented approach to the software’s design with

the relationships between the di↵erent classes . . . . . . . . . . . . . . . . . . . . 14
5 Electric potential energy (�) throughout the computational domain during TES

treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Transmembrane voltage during TES treatment . . . . . . . . . . . . . . . . . . . 17
7 Gating variable values due to TES application at equispaced locations within the

node of Ranvier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Gating variable values during TES at each location along the node of Ranvier at

simulation times t = 2.0, 2.1, 2.2, 2.5, 5, 10, and 20 ms . . . . . . . . . . . . . . . 20
9 Transmembrane ionic flux due to the application of a TES stimulus . . . . . . . . 20
10 Concentration of calcium in the intracellular space during the simulation at times

t = 0, 2, 5, 10, 15, and 20 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11 Comparison of electric potential energy throughout the domain . . . . . . . . . . 23
12 Transmembrane voltage during DBS and TES treatment . . . . . . . . . . . . . . 24
13 Gating variables at equispaced positions along the node of Ranvier during DBS

treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
14 Comparison of changes in gating variables between DBS and TES . . . . . . . . 28
15 Transmembrane ionic flux during DBS and TES simulations . . . . . . . . . . . . 31
16 Electric potential energy throughout a computational domain of a neuron with

three nodes of Ranvier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
17 Extracellular concentration of calcium during TES in a three-dimensional com-

putational domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
18 Illustration of finite element approximation of a one-dimensional problem . . . . 47

List of Tables

1 Parameters for the PNP model of electrodi↵usion . . . . . . . . . . . . . . . . . . 5
2 Ion channel conductance parameters used in the calculation of membrane current

for each ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Neurostimulation treatment (stimulus amplitude, frequency, and duration) and

simulation (time step, simulation length) parameters . . . . . . . . . . . . . . . . 15
4 Asymmetry in changes in DBS gating variables . . . . . . . . . . . . . . . . . . . 28
5 Changes in transmembrane flux during neurostimulation treatments . . . . . . . 33

iv



Abstract

Neurostimulation therapies demonstrate success as a medical intervention for individuals with

neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease. Despite promising

results from these treatments, the influence of an electric current on ion concentrations and

subsequent transmembrane voltage is unclear. This project focuses on developing a unique

cellular-level mathematical model of neurostimulation to better understand its e↵ects on

neuronal electrodynamics. The mathematical model presented here integrates the

Poisson-Nernst-Planck system of PDEs and Hodgkin-Huxley based ODEs to model the e↵ects

of this neurotherapy on transmembrane voltage, ion channel gating, and ionic mobility. This

system is decoupled using the Gauss-Seidel method and then the equations are solved using

the finite element method on a biologically-inspired discretized domain. Results demonstrate

the influence of transcranial electrical stimulation on membrane voltage, ion channel gating,

and transmembrane flux. Simulations also compare the e↵ects of two di↵erent types of

neurostimulation (transcranial electrical stimulation and deep brain stimulation) showcasing

cellular-level di↵erences resulting from these distinct forms of electrical therapy. Hopefully

this work will ultimately help elucidate the principles by which neurostimulation alleviates

disease symptoms.
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1 Introduction

Clinical experiments have demonstrated the e�cacy of neuromodulation techniques in treating

a variety of neurological conditions including Parkinson’s disease (PD) and Alzheimer’s

disease [1–4]. There are several types of neurostimulation currently used for the treatment of

neurodegenerative diseases, including transcranial electrical stimulation (TES) and deep brain

stimulation (DBS).

Transcranial electrical stimulation (TES) is a group of neurostimulation therapies that

deliver low doses of electric current to targeted brain regions via noninvasive electrodes placed

on a patient’s scalp. The most common type of TES is transcranial direct current stimulation

(tDCS), which administers a constant amount of electrical energy during therapy sessions.

Other forms of TES include transcranial alternating current stimulation (tACS) as well as

transcranial random noise stimulation (tRNS), both of which utilize a non-constant dosage of

electric current [5, 6]. Most recently, high-definition TES has been introduced as a

neurostimulation approach that achieves a more focused delivery of electrical energy through

the use of numerous smaller anode and cathode electrodes, as opposed to just the single

larger-sized anode and cathode traditionally used in tDCS, tACS, and tRNS [7,8]. On the

other hand, deep brain stimulation is a more invasive treatment that involves surgically

implanting electrodes, which deliver stimuli directly to targeted regions of the brain via a

pacemaker typically placed just below the clavicle [9, 10].

Clinical experiments clearly show that TES is an e↵ective intervention for treating

conditions that manifest from neurodegenerative disorders. Parkinson’s disease patients, for

example, have demonstrated enhanced movement capabilities and memory skills from

TES [2,11]. Also, individuals su↵ering from Alzheimer’s disease have demonstrated improved

recognition and memory capabilities [3, 4]. Further, TES has shown to improve language

re-learning in dementia patients [12, 13]. Recently, TES has shown to alleviate numerous

psychological symptoms that manifest from post-traumatic stress disorder [14–16]. In

contrast, DBS has historically been restricted to treating movement disorders, and has shown

to be e↵ective in improving symptoms for patients with PD, essential tremor [17–19], and

dystonia [20, 21]. More recently, DBS has demonstrated success in alleviating symptoms of

psychiatric disorders such as obsessive compulsive disorder and major depressive

disorder [22–24].
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In addition to clinical findings, biological experiments have begun to show the e↵ects of

TES and DBS on membrane polarization [25–28] and calcium homeostasis [29–31], however

di�culties in capturing ion channel state, ionic flux, and intracellular calcium concentrations

continuously over time with a high sampling frequency yields limited neurostimulation data at

the cellular level [31]. Thus, the direct influence of an applied electric current on voltage-gated

ion channel states as well as other cellular level mechanism by which neurostimulation

operates is largely unknown [32].

As an accompaniment to biomedical experimentation, mathematical modeling and

computational simulation are helping to address this knowledge gap by enabling in silico

investigations of the impact of an applied electrical stimulation on the brain. Computer-based

simulations of DBS have investigated the e↵ect of changing electrode parameters including

electrode size, shape, and stimulation settings on the electric field distribution and neural

excitation [33–36]. Other research has coupled models of the electric field in the extracellular

space with multi-compartment cable models of neurons to demonstrate the e↵ects of DBS on

neural activity and predict action potential generation. These simulations show both

depolarizing and hyper-polarizing e↵ects in the neuron as well as activation and suppression of

action potential generation, depending on the neuron’s position and orientation in relation to

the electrode [37–39].

Computational simulations have also helped to enhance the neurological communities’

understanding of TES. Recent models have begun to describe the impact of electrical

stimulation on electric potential around neural tissue [40]. In addition, biodomain models have

provided a means to begin to characterize the influence of electrical energy on transmembrane

potential using volume averaging approaches [41, 42]. These models support the physiological

conclusion that TES influences the neuron by slightly polarizing the cell membrane [32],

however, the level of biological abstraction of their mathematical formulations inherently

prohibits a quantitative description of individual ion species and their movements around and

through the neuron cell wall.

Despite promising clinical results from both TES and DBS, as well as a basic

comprehension of their anatomical extents, the precise mechanisms by which these treatments

impact cellular level electrodynamics are still largely unknown. While it is generally accepted

that the electric current causes variation in the neuron’s resting membrane potential, the

details of this modification remain uncertain. In addition, the e↵ects on ion channel gating,
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ionic flux, and individual ion concentrations are unknown. Knowledge of how electrical

therapies operate at the cellular level will fundamentally enhance our understanding of

neuronal electrophysiology due to neurostimulation treatments, and in doing so, could help

uncover potential neurotherapeutic targets for treating the progression of neurological

disorders. In addition, investigating di↵erences in neuron response due to DBS and TES

would facilitate an even greater understanding of the advantages, limitations, and mechanisms

by which these forms of neuromodulation operate to achieve therapeutic success.

To do so we present a novel mathematical model of neurostimulation that provides a

description of its e↵ects on cellular level neuronal electrodynamics. The model integrates the

Poisson-Nernst-Planck electrodi↵usion system of partial di↵erential equations (PDEs) [43,44]

and Hodgkin-Huxley [45] motivated boundary conditions for cell membrane ionic flux with

extracellular boundary conditions that model neurostimulation treatments. Four ion species,

namely sodium, potassium, chloride, and calcium, are incorporated in the model. We include

calcium in this model as cytosolic calcium is known to be an essential member of the

intracellular biochemical network that triggers proper neurotransmitter secretion, and in

addition, holds an integral connection with neurodegenerative diseases [46–49]. The model is

then simulated on a biologically-inspired computational domain [50–52] that includes

intracellular, extracellular, and membrane regions. Using in silico experiments, we examine

the impact of neurostimulation on (i) extracellular and intracellular electric potential, (ii)

resting membrane potential along the node of Ranvier, (iii) voltage-dependent ion channel

gating, (iv) ionic membrane flux, and (v) extracellular and intracellular ion di↵usion.

First, the model is used to simulate TES, a low-dose, non-invasive neurostimulation

therapy. Next, the model is adjusted slightly to simulate the higher-intensity and intermittent

current applied during DBS. Using the same model to simulate these two neuromodulation

techniques (DBS and TES) allows for a comprehensive comparison of the e↵ects of these two

treatments on cellular level processes.

To our knowledge, this paper presents the first neurostimulation model that

incorporates the e↵ect of these therapies on individual ion concentrations and membrane

fluxes as well as the state of voltage gated ion channels at locations along the membrane

during treatment. In addition, this research is the first numerical comparison of DBS and TES

on cellular level neurophysiological processes. It is our goal that the approaches and

simulation results presented here help refine the communities’ understanding of neuronal
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functioning due to both DBS and TES.

2 Methods and Procedures

2.1 Poisson-Nernst-Planck Model

The time-dependent Poisson-Nernst-Planck (PNP) system of partial di↵erential equations

(PDEs) can be used to model ion electrodi↵usion around and within a neuron [43,53].

Electrodi↵usion is the process that describes the movement of charged particles (ions) in a

medium under the influence of electric potential and an ionic concentration gradient. The

Nernst-Planck equation, which describes particle movement due to both di↵usion and

electrostatic forces, is given by

@ni

@t
+r · Fi = 0, (1)

where the ion flux, Fi, is given by

Fi = �Di(rni +
ni

↵i
r�), (2)

where ni = ni(~x, t) and � = �(~x, t) represent the concentration of the ith ion and the electric

potential energy respectively, both of which are unknown quantities to be solved for. In

addition, constant Di is the di↵usivity in water for the ith ion and the constant ↵i equals
RT
Fzi

,

where R, T , and F are the gas constant, temperature of the medium, and Faraday’s constant

respectively.

The Poisson equation portion of the PNP system quantifies the electric potential energy

due to ion concentrations and their relative valences, and is given by

r · (✏r�) = �F
X

i=1

zini, (3)

where zi is the valence of ion i. In addition, ✏ denotes the permittivity of the medium,

equaling ✏c · ✏0 in intracellular and extracellular regions, and ✏memb · ✏0 in the cell membrane.

Here, ✏0 is given by vacuum permittivity while ✏c and ✏memb are relative permittivities of the

intra/extra-cellular and membrane domains respectively.

In this paper, four ion species are used in the PNP model, namely sodium (Na+),

potassium (K+), calcium (Ca+2), and chloride (Cl�); thus, Equation 1 is realized four times,
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and the summation term of Equation 3 contains four terms. Values of these parameters as

well as initial ion concentrations are given in Table 1.

Table 1: Parameters for the PNP model of electrodi↵usion.

Parameter Value

Perfect Gas Constant 8.31 J ·mole�1 ·K�1

Faraday’s Constant 96485 C ·mole�1

Temperature 279.45 K
Vacuum Permittivity 8.89 · 10-12 C ·m�1 ·V�1

Cytosol Relative Permittivity 80
Membrane Relative Permittivity 2

Initial Na+ Intracellular Concentration 12 mM
Initial Na+ Extracellular Concentration 145 mM
Initial K+ Intracellular Concentration 155 mM
Initial K+ Extracellular Concentration 4 mM
Initial Ca+2 Intracellular Concentration 0.0001 mM
Initial Ca+2 Extracellular Concentration 1 mM
Initial Cl� Intracellular Concentration 166.8 mM
Initial Cl� Extracellular Concentration 123.27 mM

Na+ Di↵usivity 1.33 · 10-9 m2 · s�1

K+ Di↵usivity 1.96 · 10-9 m2 · s�1

Ca+2 Di↵usivity 0.5 · 10-9 m2 · s�1

Cl� Di↵usivity 2.0 · 10-9 m2 · s�1

2.2 Computational Domain

The brain contains billions of neurons, which are responsible for transmitting information to

other cells. Each neuron consists of a cell body with the nucleus, an axon, and dendrites, as

illustrated in Figure 1. Nodes of Ranvier are the regions of the axon that are rich in ion

channels and thus play an important role in transmembrane ionic transport.

Figure 1: Diagram illustrating the structure of a neuron within the brain. The node of Ranvier
region is highlighted, which is the region that is modeled in these simulations, is highlighted in this
diagram.

The model is simulated on a biologically-inspired two-dimensional domain representing a
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portion of a neuron axon that includes a single node of Ranvier The domain was constructed

using both the myelinated and unmyelinated regions of the membrane, and biologically

accurate dimensions were incorporated [43,44,50–52,54–57]. The three subregions of the

computational domain consists of (i) intracellular space, (ii) membrane, (iii) and extracellular

space. Figure 2 presents the domain, noting the locations of the three regions as well as all

domain boundaries. The length of the axon portion of the domain is 4 µm [43,56] with the

nodal portion having a length of 1 µm [43,50,51,54,56]. The radius of the myelinated and

unmyelinated sections of the membrane are 0.406 µm [43,56] and 0.005 µm [44,52,55],

respectively. The radius of the intracellular space is 0.434 µm [43,56], and the whole domain,

i.e. intracellular, membrane, and extracellular spaces, has a radius of 2 µm [43,56].

Figure 2: Diagram of computational domain with intracellular (⌦I), membrane (⌦M), and

extracellular (⌦E) subdomains. The diagram also includes labels for each boundary in the domain.
�L and �R are the boundaries for the left and right sides of the extracellular space respectively. �1 is the
boundary for the top of the extracellular space and �2 labels the exterior boundaries for the intracellular
subdomain. �3 is the exterior boundary of the membrane and �5 labels the boundary between the
membrane and intra/extra-cellular space other than in the node of Ranvier, which is labeled by �4.

Figure 3 displays the discretized computational mesh used in each simulation; in this

mesh, there are 725,528 elements, with 67,810 nodes in the membrane, 502,644 in the

intracellular space, and 159,410 in the extracellular space. The mesh has a much finer grid

resolution in the Debye layer, the extracellular space directly adjacent to the membrane, as

well as its neighboring intracellular space; this finer discretization is necessary to accurately

model the rapid solution changes that take place in these regions of the domain [44].

2.3 Boundary Conditions

Equation 1 is defined on the intracellular and extracellular regions of the domain, namely ⌦I

[ ⌦E , whereas Equation 3 is defined on the entire domain ⌦ = ⌦I [ ⌦M [ ⌦E [44]. Thus,
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Figure 3: Computational mesh with nodes on which the PDEs are solved. Intracellular and
extracellular subdomains are shown in blue and the membrane region is shown in red.

boundary conditions for these equations must be stipulated on these respective boundaries.

To appropriately model TES at the cellular level, boundary conditions for the Nernst-Planck

equation and the Poisson equation must be specified to model TES administration as well as

ion transport across the cell membrane. These conditions are described in the following

sections.

2.3.1 DBS and TES Boundary Conditions

A fundamental di↵erence between DBS and TES is the waveform of applied electrical

stimulation. Constant stimulation TES, typically called transcranial direct current stimulation

(tDCS), delivers a low, but constant dose of electric current during treatment. On the

contrary, DBS delivers higher doses of electric current at intermittent intervals/pulses. During

DBS treatments, the stimulus amplitude is typically between 1 V and 5 V with a pulse

duration from 60 µs to 200 µs, and a frequency that can range from 120 Hz to 180 Hz [58–60].

For DBS simulations in this paper, all stimulus parameters were chosen to be within these

ranges. Specifically, a stimulation amplitude of 3 V is used, with a duration of 100 µs, and

frequency of 150 Hz. Further, all of these values are consistent with prior models of

DBS [37,38].

Prior to treatment, depicting a neuron under normal conditions, the left and right sides

of the domain act as the ground with electric potential values of zero. The external current is

then applied to the left side of the domain with the right side remaining as the ground.

For both TES and DBS simulations, the electric potential on right side of the

extracellular space (�R) is maintained at a value of zero using the homogeneous Dirichlet

boundary condition

� = 0, ~x 2 �R. (4)
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Electrical stimulation for both TES and DBS is simulated using a time-dependent

Dirichlet boundary condition for the Poisson equation (Equation 3) on the left extracellular

space boundary, �L. For TES, the value of the electric potential on �L is set to 0 V for the

first 1 ms of the simulation. Then, this value is changed to 0.1 V, e↵ectively simulating the

start of the TES therapy. This dosage is consistent with electric potentials achieved within

neural tissue during TES sessions [61–63]. This boundary condition is stipulated with the

following equation

� =

8
><

>:

0 : t  1 ms, ~x 2 �L

0.1 : t > 1 ms, ~x 2 �L

(5)

Unlike TES, DBS administers a higher dose of electric current and the application is

intermittent, and so a larger and non-constant value of � is used. Like TES, the value of

electric potential on �L is set to 0 V for the first 1 ms of the DBS simulation, and after this

time, DBS treatment begins by changing � on �L to 3 V. This value is maintained for 0.1 ms,

at which time the stimulation is returned to zero for 6.5 ms, based on a frequency of 150 Hz.

Two additional pulses are applied with the same amplitude, pulse width, and frequency. This

complete DBS waveform is governed by the time-dependent Dirichlet boundary condition

� =

8
><

>:

0 : t 2 [0, 1] [ (1.1, 7.6] [ (7.7, 14.2] [ (14.3, 20.8] ms, ~x 2 �L

3 : t 2 (1, 1.1] [ (7.6, 7.7] [ (14.2, 14.3] ms, ~x 2 �L

(6)

2.3.2 Transmembrane Flux Boundary Conditions

The transmembrane flux for the ith ion specie (Equation 1) is incorporated into the model

with a time, concentration, and voltage dependent Neumann boundary condition given by

Fi · ~n = fmemb
i (ni,�, t), ~x 2 �4, (7)

where fmemb
i quantifies the transmembrane flux for the ith ion, and is given by

fmemb
i =

Ii
ziF

. (8)

Note that this flux condition applies only to the �4 boundary, which corresponds to the

membrane wall within the node of Ranvier. This equation also incorporates a
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Hodgkin-Huxley [64] based scheme to compute Ii, the transmembrane ionic current for the ith

ion specie. This model was adapted from Dione et. al. [43] to include calcium and chloride

current [65, 66]. These equations are unique due to an individual ion’s Nernst potential and

combinations of the gating variables, and are given by

INa+ = (glNam
3h) · (V � ENa), (9)

IK+ = (glKn4) · (V � EK), (10)

ICa+2 = (glCam
2) · (V � ECa), (11)

ICl� = (glCl) · (V � ECl). (12)

The transmembrane voltage, V = �I - �E , is computed along the node of Ranvier at

each point in the discretized computational mesh (Figure 3). This voltage is then used to

calculate the state of the gating variables m, n, and h via the Hodgkin-Huxley [64] system of

ODEs given by

dn

dt
= ↵n(V )(1� n)� �n(V )n, (13)

dm

dt
= ↵m(V )(1�m)� �m(V )m, (14)

dh

dt
= ↵h(V )(1� h)� �h(V )h. (15)

The gating variables quantify probabilities that replicate the opening and closing of the

neuron’s voltage gated ion channels, and thus dictate ion channel permeability and subsequent

transmembrane ionic flux.

Finally, the Nernst potential of the ith ion, Ei, is given by

Ei =
RT

ziF
ln

✓
nextra
i

nintra
i

◆
, (16)

where gli and gvi designate the conductance of the leak channels and voltage gated channels for

each ion. Conductance values [43, 44,65,66] used in the mathematical model are presented in

Table 2.
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Table 2: Ion channel conductance parameters used in the calculation of membrane current.

Parameter Value

gvNa 1000.0 S/m2

gvK 400.0 S/m2

gvCa 9.0 S/m2

gvCl 0.2 S/m2

glNa 0.175 S/m2

glK 0.50 S/m2

glCa 0 S/m2

glCl 0 S/m2

2.3.3 Additional Boundary Conditions

The concentration of each ion is set to a constant bulk solution on the top boundary of the

extracellular space, �1, [43, 44] using the non-homogeneous boundary condition

ni = n0
i , ~x 2 �1. (17)

For Equation 1, ion flux is set to zero on all boundaries other than the membrane using

the homogenous Neumann boundary condition

Fi · ~n = 0, ~x 2 �2 [ �5 [ �L [ �R. (18)

Finally, the charge density in Equation 3 is set to zero on the boundaries not governed

by a TES or DBS source or ground:

✏r� · ~n = 0, ~x 2 �1 [ �2 [ �3. (19)

2.4 Numerical Implementation

Equations 1 and 3 are decoupled using the Gauss-Seidel method [67]. The solution algorithm

consists of the following steps:

1. Solve Equation 3 for � at time step k + 1 given ion concentrations at time step k, nk
i ,

with boundary conditions given by Equations 4, 5, and 19. Let �k+1 denote this solution.

2. Solve for fmemb
i given nk

i and �k+1 (see Section 2.3.2).

3. Solve Equation 1 for ni, for each ion type, at time step k + 1 given �k+1, with boundary
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conditions given by Equations 17, 18, and 7. Let nk+1
i denote these solutions.

The result is numerical solutions of � and ni at time step k + 1. This iterative sequence

is initiated using prescribed intracellular and extracellular initial concentrations of each ion

type, and is repeated until the end of the simulation. Within this loop, an inner iteration is

used in step 2 to solve the Hodgkin-Huxley system with a smaller time step. This approach

ensures the accuracy of the ion flux at the membrane and enables a larger time step for the

more computationally intensive PDE solvers in steps 1 and 3. Given that the transmembrane

voltage and subsequent flux vary along the node of Ranvier, a di↵erent realization of these

ordinary di↵erential equations (ODEs) is needed to be solved at every point along the

membrane. In this work, the discretized domain generates 1,700 nodes along the membrane,

thus the Hodgkin-Huxley ODE system was instantiated and solved 1,700 times at each

simulation time step.

The PDE in step 1 is solved using the finite element method. The PDE system in step 3

is discretized in time using the ✓-rule and space using the finite element method [68]. The

value of ✓ was set equal to 1, which corresponds to the backward Euler method, due to its

L-stability properties [69]. Resulting weak formulations for these equations are presented in

Section 2.5. The Hodgkin-Huxley ODEs are solved using LSODE [69,70]. This iterative

implementation approach enables numerical solvers tailored to each individual equation to be

used [71], as well as individualized time steps for the PDEs and ODEs.

2.5 PDE Weak Formulation Derivations

The derivations of the weak formulations for the Poisson and Nernst-Planck equations for the

finite element method are shown here. A more in-depth description of the finite element

method and other mathematical definitions are explained in Appendix A.

2.5.1 Poisson Equation

Let f = �F
nX

i=1

zini

Given f ✏ L2(⌦), multiply Equation 3 by an arbitrary test function, v, and integrate over the

domain ⌦: Z

⌦
r · (✏r�)v d⌦ =

Z

⌦
f(n)v d⌦.
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Applying Green’s Theorem yields:

Z

⌦
✏r� ·rv d⌦ = �

Z

⌦
f(n)v d⌦+

Z

�
v(~n · ✏r�) ds

Applying boundary conditions given by Equation 19 gives:

Z

⌦
✏r� ·rv d⌦ = �

Z

⌦
f(n)v d⌦.

We stipulate the solution space to inforce the Dirichlet boundary conditions in Equations 4

and 5, and arrive at the weak formulation: Given f ✏ L2(⌦), find � ✏ H1
0 (⌦) such that:

Z

⌦
✏r� ·rv d⌦ = �

Z

⌦
f(n)v d⌦, for all v ✏ H1

0 (⌦),

where H1
0 (⌦) = {u | u ✏ H1(⌦) and u = 0 on �1}.

2.5.2 Nernst-Planck Equation

Discretize the time derivative in Equation 1 using the ✓-rule:

@ni

@t
⇡

nk+1
i � nk

i

�t
= ✓(�r · F k+1

i ) + (1� ✓)(�r · F k
i )

Given Fi ✏ L2(⌦), multiply Equation 1 by an arbitrary test function v and integrate over ⌦:

Z

⌦
nk+1
i v d⌦ =

Z

⌦
nk
i v d⌦� ✓dt

Z

⌦
(r · F k+1

i )v d⌦� dt(1� ✓)

Z

⌦
(r · F k

i )v d⌦.

Applying Green’s Theorem yields:

Z

⌦
nk+1
i v d⌦ =

Z

⌦
nk
i v d⌦� ✓dt

Z

�
(F k+1

i · ~n)v ds+ ✓dt

Z

⌦
F k+1
i ·rv d⌦

� dt(1� ✓)

Z

�
(F k

i · ~n)v ds+ dt(1� ✓)

Z

⌦
F k
i ·rv d⌦.

Applying boundary conditions given by Equations 18 and 7 gives:

Z

⌦
nk+1
i v d⌦� ✓dt

Z

⌦
F k+1
i ·rv d⌦ =

Z

⌦
nk
i v d⌦� ✓dt

Z

�4

fmembk+1

i v ds

� dt(1� ✓)

Z

�4

fmembk
i v ds+ dt(1� ✓)

Z

⌦
F k
i ·rv d⌦.
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We stipulate the solution space to enforce the Dirichlet boundary conditions in Equation 17

and arrive at the weak formulation: Given Fi ✏ L2(⌦), find nk+1 ✏ H1
ni
(⌦) such that:

Z

⌦
nk+1
i v d⌦� ✓dt

Z

⌦
F k+1
i ·rv d⌦ =

Z

⌦
nk
i v d⌦� ✓dt

Z

�4

fmembk+1

i v ds

� dt(1� ✓)

Z

�4

fmembk
i v ds+ dt(1� ✓)

Z

⌦
F k
i ·rv d⌦,

for all v ✏ H1
ni
(⌦).

2.6 Computational Tools

The computational domain (Figure 3) was constructed and discretized using GMSH [72]. The

FEniCS computing platform [73] was used to solve the partial di↵erential equations. This

Python based library o↵ers packages to solve finite element weak formulations subject to all

boundary and initial conditions. In addition, Python’s SciPy library was used to access the

LSODE method [74].

Given the complexity of the mathematical model and solution approach, an

object-oriented implementation of the code was developed, as illustrated in Figure 4. This

approach compartmentalizes major modeling components into ’classes’, and in doing so,

facilitates debugging as each class can be analyzed independently, and in addition, improves

code readability. Furthermore, while object-oriented implementations often take more time to

design and implement than traditional procedural implementations, a significant advantage of

using a class-based structure is its inherent ability to support alternative applications. For

example, changes in domain geometry, mesh resolution, neurostimulation treatment

parameters, or even in the set of ions used can be e↵ortlessly incorporated with virtually no

changes to the software [75].

A class for the Nernst-Planck equation incorporates all information needed to solve this

equation. This includes its associated weak formulation, di↵usivity values, boundary

conditions, time steps, and domain information. There are eight instantiations of this class,

one for each ion type for both the intracellular and extracellular domains. A separate class is

used to solve for fmemb
i needed in step 2 of the iterative solution algorithm. There is an

instantiation of this class for each of the four ion types. These membrane current classes in

turn possess an object dedicated to solving the Hodgkin-Huxley di↵erential equations, which

generates solutions for the gating variables m,n, and h (see Section 2.3.2). There are 1,700
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Figure 4: Diagram illustrating the relationships between the di↵erent classes in the software.

instantiations of this class, one for each discretized point on the membrane. Information in

this Hodgkin-Huxley class is used by the membrane current class to resolve fmemb
i along the

membrane, which is then used by the Nernst-Planck class via access to the membrane current

class.

2.7 Numerical Simulations

For the comparison between TES and DBS, the same initial conditions, domain, simulation

time, and numerical implementation are used for both simulations. This implementation

allows for direct comparison of the two treatments. A time step of 0.01 ms was selected for the

outer iteration of the solution algorithm (2.4) as this value is small enough to accurately

model the changes in electric potential and ion concentrations [44]. For solving the inner

iteration of step 2, the ODE system was solved with a maximal time step of 0.0005 ms.

A major di↵erence between these two therapies is the nature of electric current that is

applied. The simulations incorporate the di↵erent nature of these electric currents through the

use of a di↵erent boundary condition on the left side of the extracellular space for the Poisson

equation (Equation 3) as described by Equation 5 for TES and Equation 6 for DBS.

First, a simulation of TES was performed via the boundary condition given by Equation

5. As described by Equation 5, TES is simulated by changing the Dirichlet boundary condition

value from 0 V to 0.1 V on the left boundary of the extracellular space after t = 1 ms; this

dosage is consistent with electric potentials achieved during TES sessions [61–63]. This allows

the electric potential, transmembrane voltage, ion channel gating variables, ionic flux, and ion
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concentrations before and after electrical stimulation to be directly compared, thus enabling a

direct assessment of the specific impact of TES on neuronal electrodynamics. Then, for the

DBS simulation Equation 6 is enforced on the left boundary of the extracellular space.

All parameter values used in the model and simulations (see Tables 1 and 3) are taken

from published biomedical literature and previous neuronal-based mathematical

models [43, 44, 56].

Table 3: Neurostimulation treatment (stimulus amplitude, frequency, and duration) and

simulation (time step, simulation length) parameters

Parameter Value

Time Step 0.01 ms
Hodgkin-Huxley Time Step 0.0005 ms

Simulation Start 0 ms
Start Time of DBS and TES Application 1 ms

Total Simulation Time 20.8 ms
TES Stimulus Amplitude 0.1 V
TES Stimulus Duration 19.8 ms
DBS Stimulus Amplitude 3 V

DBS Stimulus Duration (Pulse Width) 0.1 ms
DBS Stimulus Frequency 150 Hz

An iterative implementation and testing approach was used to verify the accuracy of the

model implementation. First, individual solvers for the PDEs given by Equation 1 and

Equation 3 were constructed and validated against the online PDE solver Di↵packSE [76,77].

Second, the Hodgkin-Huxley ODE model was implemented and verified independently of the

PDEs, thus ensuring that changes in intracellular and extracellular electric potential and ion

concentrations at the membrane correctly compute gating variable states as well as flux during

membrane polarization [64–66]. Third, these three solvers were integrated into a single

solution code using the object-oriented approach as detailed in Section 2.6. Fourth, verification

of the complete code came by comparing sodium and potassium membrane flux time courses

and magnitudes to results from previous PNP modeling implementations [43,44,56]. Fifth, the

transmembrane voltages, intra/extra-cellular ion concentrations, ion channel gating variables,

and membrane current fluxes predicted by the complete, fully-coupled model were compared

to the isolated Hodgkin-Huxley code to validate the accuracy of the fully integrated, coupled

implementation used in all simulations. Finally, we draw comparisons between our results and

those of published medical studies and biological experiments when available.
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3 Transcranial Electrical Stimulation Results

3.1 Transmembrane Voltage Polarization Exhibits Location Specificity

The electric potential energy, �, throughout the neuronal domain at both the beginning and

the end of the simulation is shown in Figure 5. Here, changes in both the distribution and

magnitude of � from TES are observed. In particular, prior to neurostimulation application,

the electric potential distribution is highly symmetric (Figure 5A), however, after TES

administration, the domain is highly asymmetric; the majority of high voltage areas are

concentrated on the left side of the domain, juxtaposed with the stimulation source boundary

condition � = 0.1 V, and electric potential declines more rapidly as the ground boundary is

approached (Figure 5B). In addition, the maximum extracellular electric potential value

increases by 55.2% from 0.096 V at the start of the simulation to 0.149 V at the end, which

due to ionic electrodi↵usion, is 49.0% greater than the anode source voltage of 0.1 V. Further,

intracellular values for � increase themselves from a minimum and maximum of 0.020 V and

0.026 V to 0.063 V and 0.078 V, respectively.

ФIntra (V)
0.026

0.024

0.023

0.022

0.020

ФExtra (V)
0.096

0.072

0.048

0.024

0.000

ФIntra (V)
0.078

0.074

0.071

0.067

0.063

ФExtra (V)
0.149

0.111

0.074

0.037

0.000

A

B

Figure 5: Electric potential energy (�) throughout the computational domain during TES

treatment. The distribution of electric potential is shown at t = 0 ms (A) and t = 20 ms (B).
Illustrates the Dirichlet boundary conditions used to simulate TES treatment with a ground of � = 0
on left and right extracellular boundaries prior to treatment and then a left boundary of � = 0.1 during
treatment to simulate the stimulation source on the left side of the domain.

Along the neuron membrane, there is a change in transmembrane voltage upon
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application of electrical stimulation after t = 1 ms (Figure 6). Figure 6A shows the

transmembrane voltage throughout the simulation at 11 equispaced points within the node of

Ranvier. These points are labeled as a percent based on their position along the node of

Ranvier where, for example, 0%, 50%, and 100% refer to the points on the far left, middle,

and far right of the node. The resting transmembrane voltage for each of these points is

approximately -70.23 mV. For the point in the center of the node the transmembrane voltage

does not change upon stimulation, maintaining its value of -70.23 mV throughout the

simulation. For all other points, immediately at stimulation application, there is an

instantaneous jump in transmembrane voltage. However, this change depends on the location

along the membrane (Figure 6B).
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Figure 6: Transmembrane voltage during TES treatment.

(A) Transmembrane voltages due to TES application at equispaced locations within the node
of Ranvier. Positions labeled with 0%, 50%, and 100% being the far left, middle, and far right
of the node, respectively. (B) Percent change in the transmembrane voltage due to TES at
each point along the membrane. A positive percent change indicates depolarization and a

negative percent change indicates hyperpolarization.

These results demonstrate the location dependence of changes in transmembrane voltage

due to TES. Specifically, transmembrane voltages at points left of center become

hyperpolarized, whereas depolarization occurs on the right-hand side. In addition, the

magnitude of the polarization from TES administration varies depending on proximity to the

edges and center of the node of Ranvier; these values change to a greater degree near the

edges as compared to locations near the center. Furthermore, maximum changes in

transmembrane voltage do not occur at the extreme edges of the node, but rather at locations

situated at 1.64 · 10-6 µm and 2.35 · 10-6 µm, which correspond to approximately 9% and 91%,

both well within the the edge of the node of Ranvier. Interestingly, hyperpolarization occurs

for locations on the side with the 0.1 V stimulation source, whereas depolarization occurs on
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the side adjacent to the ground boundary condition.

In addition to these findings, it is observed that membrane voltage polarization is

sustained throughout the TES application, which is consistent with clinical results that TES

e↵ects persist in sessions consisting of tens of minutes [32, 78]. This sustained increase in

neural impulse sensitivity in specific regions of a node of Ranvier permits the TES treatment

e�cacy recognized by the medical field [7, 32]. Our results are also consistent with clincal

research that shows that TES has the net e↵ect of increasing neuron excitability by

depolarizing to sub-threshold potential [25–28]. In addition, changes in transmembrane

voltage magnitude are consistent with previous mathematical simulations of TES [42].

3.2 Voltage Gated Ion Channel State Variables Exhibit Location Specificity

The changes in transmembrane voltage due to TES directly impact the behavior of voltage

gated ion channels due to changes in their gating variables (Figure 7). Like Figure 6A,

Figure 7 displays the values of each gating variable throughout the simulation at the same 11

equispaced points within the node of Ranvier. The location specificity previously observed

with transmembrane voltage is also present for the changes in all gating variables.
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Figure 7: Gating variable values due to TES application at equispaced locations within the

node of Ranvier.

Prior to stimulation, m, n, and h show minimal position dependence as their respective

values are essentially equal throughout the membrane. For example, before TES application,

m is approximately 0.0281 everywhere in the node of Ranvier. When stimulation is applied,

changes in m, n, and h become location specific, points where the cell becomes hyperpolarized,

i.e. locations between 0% and 50%, result in decreases in m and n as well as increases in h.

On the other hand, at sites of depolarization, namely positions between 50% and 100%, m and

n increase while h decreases.

Corresponding to the locations of maximum change in transmembrane voltage, positions

of greatest change in all gating variables also occur o↵ of the membrane edges near 10% and
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90%. In addition, the curves of the gating variables are directly associated to the polarized

membrane voltages at the same 11 points. In particular, the amplitudes of the gating variable

curves correspond to their associated transmembrane voltages, as well as distances between

the curves. More precisely, the ranking of each curve of m based on plot amplitude is identical

to the ranking of the transmembrane voltage curves. In addition, the amount of spacing

between m curves (Figure 7A) is proportional to the spacing between transmembrane voltage

curves (Figure 6A). The same observations apply for n (Figure 7B), and h (Figure 7C) as well

with the exception that the ordering is inverted due to characteristics of h.

While dependence of gating variables on transmembrane voltage is not unexpected,

location specificity of the gating variables due to TES is novel, and begins to explain how

neurostimulation impacts ion channel gating and subsequent ionic flux. Of particular interest

in this regard, a clear di↵erence in the shapes, magnitudes and trajectories of the m, n, and h

time course curves is observable; the m gating variable changes rapidly, hitting a limiting

value early in the simulation, whereas n and h grow more slowly, and fail to reach an

asymptotic value within 20 ms. However, m has the lowest amplitude change of the three,

with a maximum change of 0.0013, which is only 26.1% and 16.25% of the changes in n and h,

respectively.

Figure 8 shows the values of each gating variable at every point along the discretized

membrane at seven di↵erent simulation times. At t = 2 ms, each gating variable maintains

the same value along the membrane as TES application has not yet started; after

administration, the value of each gating variable changes over time based upon its location in

the membrane. The speed at which m reaches its limiting value is also seen here as the curves

for 5 ms, 10 ms, and 20 ms are virtually identical. In contrast, all curves for n and h are

visible and continually change throughout the 20 ms simulation. Similar to transmembrane

voltage, maximum and minimum values occur approximately at the 9% and 91% locations.

Furthermore, it is seen that on the left-half of the node of Ranvier, the m and n probability

values are lower than those attained on the right-half, and the opposite is true for h. As will

be shown in Section 3.3, the time and location dependence of changes in these gating variables

as a result of TES has a direct impact on transmembrane ionic current.
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Figure 8: Gating variable values during TES at each location along the node of Ranvier at

simulation times t = 2.0, 2.1, 2.2, 2.5, 5, 10, and 20 ms. (A) shows m, (B) shows n, and (C)

shows h.

3.3 Membrane Ion Flux Exhibits Location Specificity

As the gating variables dictate ion channel permeability, the location specificity observed in

transmembrane voltage as well as m, n, and h has a direct influence on ion flux into and out of

the neuron. Figure 9 shows the ion flux for sodium, potassium, and calcium over time at the

11 equispaced points within the node of Ranvier. Given the sign convention of the boundary

condition governing membrane current (Equation 7), a negative value for flux indicates

current coming into the cell from the extracellular space.
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Figure 9: Transmembrane ionic flux due to the application of a TES stimulus. Membrane flux
for sodium (A), potassium (B), and calcium (C) over the course of the simulations for the 11 equispaced
points on the node of Ranvier. A negative flux indicates ion flow into the cell from the extracellular
space, and a positive value indicates an e✏ux out of the cell.

Due to passive electrodi↵usion forces from the multi-ion environment, as well as a

transmembrane voltage not precisely equal to -70 mV, a slight flux of ions across the

membrane occurs prior to TES application. Upon activation after t = 1.0 ms, there are

significant changes in neuronal flux. For locations on the right-half of the node of Ranvier,

where the cell becomes depolarized (Figure 6B), there is an increase in sodium influx

(Figure 9A). This is precisely predicted by the gating variable results (Figures 7A and 7C); as

m represents sodium channel activation, which increases on the right-hand side, and h, sodium

channel inactivation, which decreases on the right, an increase in sodium influx is this region
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is expected, and as shown in Figure 9A is attained. In addition, this influx is greatest at the

91% mark, which correlates with all prior results including (i) where the cell experiences its

greatest depolarization, (ii) where m is maximal, and (iii) where h in minimal. On the

hyperpolarized left-hand side, sodium influx still occurs, but at a decreased rate as m

decreases and h increases here.

The m gating variable also controls calcium channel activation (see Section 2.3.2), and

so trends in calcium flux function similarly to sodium flux (Figure 9C). Specifically, locations

where the cell becomes depolarized yield an increase in calcium influx and hyperpolarized

regions experience a decreased influx. For potassium, due to its reversal potential, the

opposite occurs and an e✏ux transpires throughout the entire node of Ranvier. In addition, as

n governs potassium activation, potassium e✏ux increases on the left side where

hyperpolarization presents and decreases on the right half of the node of Ranvier (Figure 9B).

These results are consistent with published TES studies that show an increase in

calcium influx from a membrane depolarization due to an electric field applied in the

extracellular medium [29,31]. In addition, like the biological literature, our model predicts

that this influx is governed by voltage gated calcium channel permeability [30]. The novelty of

this model is in extending this knowledge to provide a description of how the voltage gated

calcium channels within the node of Ranvier operate to achieve this. First, the model allows

to see the changes in flux at a greater frequency and with more spacial detail than has been

captured with experiments. In addition, the model identifies the gating variable m as driving

the changes in flux. Finally, these results reveal a time and spatial based dependence of the

gating variable, voltage gated channel activation, and calcium flux.

3.4 TES Causes Intracellular Calcium Dyshomeostasis

As shown in Section 3.3, calcium flows into the neuron from the extracellular space at di↵erent

rates depending on the region within the node of Ranvier (Figure 9C). Thus, over the course

of the TES simulation, an increase in intracellular calcium concentration occurs. However, the

magnitude and rate of this increase is unknown. Figure 10 shows intracellular calcium

concentrations at six simulation time steps. At t = 0 ms, the entire intracellular space has a

constant concentration of 10-4 mM, which is the initial condition for calcium in this domain.

Over time, an increase in calcium concentrations from calcium flux due to TES is seen at all

subsequent time steps. In addition, for times t > 0, a larger concentration of calcium is
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noticed at the membrane region, precisely due to calcium influx at the membrane, along with

a di↵usion throughout the intracellular domain. At the 91% membrane location calcium

concentrations increase by 71.65% over the course of the simulation. Furthermore, the total

amount of calcium within the intracellular space increases by 63.86% during the course of the

simulation. This increase is approximately linear, as can be seen from the color gradients of

the intracellular concentration plots.

CaIntra (mM)
1.7e-4 1.5e-4 1.4e-4 1.2e-4 1.0e-4

t = 0 ms

t = 2 ms

t = 20 ms

t = 10 ms

t = 5 ms

t =15 ms

Figure 10: Concentration of calcium in the intracellular space (⌦I in Figure 2) during the

simulation at times t = 0, 2, 5, 10, 15, and 20 ms. Visualizes the increase in intracellular calcium
concentrations as a result of the TES-induced calcium influx.

These results are consistent with prior experiments that found an increase in calcium

concentration due to an influx of calcium in the presence of electrical stimulation [30,31]. In

fact, the values predicted by the model are within one order of magnitude of those shown in

electrical stimulation biological studies [31]. Moreover, the model augments this knowledge by

providing a detailed prediction of how, where, and when calcium ion flow into the neuron as

described in Section 3.3.

4 Deep Brain Stimulation and Comparison Results

4.1 Instantaneous Transmembrane Polarization

The electric potential energy (�) throughout the intra- and extracellular regions of the domain

is shown in Figure 11. The electric potential before the neurostimulation treatment begins at

1 ms is identical for both simulations (TES and DBS) and is shown in Figure 11A. When the

treatments begin at a time of 1 ms there are immediate changes in the electric potential

distributions for both DBS (Figure 11B) and TES (Figure 11C) due to the di↵erent value for
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the Dirichlet boundary used to model the amplitude of the electrode. The value of this

Dirichlet boundary is clear from these figures, for DBS this value is 3 V (Equation 5) and for

TES it is 0.1 V (Equation 6), as observed in the color of the left side of the extracellular space

in Figures 11B and 11C respectively. Clearly, there are notable di↵erences in the electric

potential magnitude and distribution with and without the neurostimulation as well as

between these two modes of neurostimulation.
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Figure 11: Comparison of electric potential energy throughout the domain. A: Electric potential
at the beginning of the simulations (same for both TES and DBS). B: Electric potential energy throughout
the domain for DBS during the first pulse application time = 1.1 ms. C: Electric potential energy
throughout the domain for TES after the current is applied, time = 1.1 ms.

One major di↵erence in these electric potential figures is the location within the domain

where the highest voltage areas are concentrated. Prior to the neurostimulation application

(Figure 11A), the highest voltage is concentrated in the center of the domain as the lowest

voltage (� = 0 V) regions are the far left and right edges of the extracellular space. With DBS

(Figure 11B) the highest voltage area is concentrated on the left side of the domain,
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juxtaposed with the stimulation source boundary condition � = 3 V. With TES (Figure 11C)

the electric potential distribution is highly asymmetric with high voltage areas that are larger

and concentrated just left of the center of the domain. Also, the color distribution appears

more symmetric and evenly distributed with DBS whereas in the TES figure the electric

potential changes more rapidly on the side approaching the ground boundary.

The application of a DBS current causes an instantaneous polarization of the cell’s

membrane potential, as shown in Figure 12. Figure 12A shows the transmembrane voltage

throughout the simulation at 11 equispaced points along the node of Ranvier. Each location is

labeled in terms of its percent into the node with 0%, 50%, and 100% being the far left,

middle, and far right respectively. The neuron begins at with a resting membrane potential of

-70.23 mV, but when the stimulus is turned on at a time of 1 ms this transmembrane voltage

experiences an immediate polarization, where the value either increases or decreases for the

duration of the current pulse. When the current pulse is turned o↵ at 1.1 ms the

transmembrane voltage immediately returns to its initial value. This instantaneous

polarization coincides with when the DBS current is applied occurs for each of the three pulses.
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Figure 12: Transmembrane voltage during DBS and TES treatment. A: Transmembrane voltage
throughout DBS simulation at 11 equispaced locations within the node of Ranvier. B: Transmembrane
voltage during the first DBS pulse to better illustrate the distribution of the position curves during each
pulse. C: Percent change in transmembrane voltage between when the current is o↵ versus on at each
point along the membrane for DBS (red, left axis scale) and TES (blue dashed line, right axis scale).
1.585 · 10-6 µm is the far-left, 2 · 10-6 µm is the center, and 2.385 · 10-6 µm is the far right. A positive
percent change indicates depolarization and a negative percent change indicates hyperpolarization. D:
Transmembrane voltage throughout TES simulation at the same 11 locations.

As with TES, DBS exhibits location specificity in the changes in transmembrane
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voltage, that is, the type and magnitude of this polarization depends on the location along the

node of Ranvier. During each application, positions on the left side of the membrane become

hyperpolarized while locations on the right half of the node become depolarized. As shown in

Figures 12B and D the distribution of the curves during the electric current application look

almost identical between DBS (Figure 12B) and TES (Figure 12D) other than, of course, the

magnitude of the changes. The spacing between each curve is proportionate as well as the

order of each curve is the same between DBS and TES, indicating that the locations that

experience the largest hyperpolarization and depolarization are the same in each of these two

treatments. Specifically, out of these 11 positions the largest changes in transmembrane

voltage for both TES and DBS occur at 10% and 90%, not at the extreme 0% and 100%. In

addition, the distribution of the potential curves for both TES and DBS are symmetric with

the curves from 0% to 50% being a near perfect reflection of the curves from 50% to 100%.

Figure 12C shows the percent change in transmembrane voltage for both TES and DBS

at each point along the node of Ranvier. For DBS the percent change is calculated based on

the transmembrane voltage during the first pulse whereas TES uses the value at the end of the

simulation since the change in transmembrane voltage is maintained throughout. This plot

uses a di↵erent axis scales for each TES and DBS given the major di↵erence in the degree of

change for each treatment. As observed in the figure, the curves line up perfectly, meaning

that the points with the minimum, maximum, and no change in transmembrane voltage occur

in the exact same locations for both forms of neurostimulation. These curves are identical

other than the magnitude of the changes, showing the major similarities in how DBS and TES

polarize the transmembrane voltage at each point along the node.

Given that TES applies only a low dose of current while DBS administers a more direct,

higher dose it is reasonable that the changes in transmembrane voltage are much larger in DBS

than TES. Specifically, in the TES simulation the maximum percent change in transmembrane

voltage is 0.52% while in DBS it is 15.58%. Thus, the transmembrane voltage during TES gets

only as low as -70.60 mV and as high as -69.87 mV while with DBS transmembrane voltage

experiences a range from -81.10 mV to -59.34 mV. This maximal value of transmembrane

voltage of -59.36 mV is near the threshold of -55 mV required to fire an action potential.

Thus, DBS raises the membrane potential in some location close to the threshold, supporting

the treatment’s ability to increase the possibility of action potential generation.

Another major di↵erence between the treatments is the duration of the polarization. For
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TES, polarization is sustained for the whole simulation due to the fact that the current is

applied throughout the treatment session. On the other hand, DBS polarization occurs in

pulses where the polarization turns on and o↵ with the DBS stimulus. Thus, while the

DBS-induced changes in transmembrane voltage are much greater, they only last for 0.1 ms,

after which they return to their initial value, whereas TES-induced polarization persists for

the whole simulation.

4.2 Asymmetric Location Specificity in Ion Channel Gating Variables

Figure 13 shows the values of the gating variables m, n, and h throughout DBS treatment at

the same 11 equispaced points along the node of Ranvier as shown in Figure 12. These gating

variables are probabilities between 0 and 1 that indicate ion channel state, controlling the

opening and closing of the voltage gated channels.
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Figure 13: Gating variables at equispaced positions along the node of Ranvier during DBS

treatment. A-C: Gating variables m (A), n (B), and h (C) throughout the whole simulation. D-F:
Gating variables m (D), n (E), and h (F) during the first 2 ms of the simulation, showing their behavior
during the first of three DBS pulses.

The location specificity observed in the transmembrane voltage results contribute to

similar position-dependent e↵ects on voltage gated ion channel states, m, n, and h. As a result

of DBS, these gating parameters exhibit either increases or decreases depending on the

location along the node of Ranvier. Each increase/decrease corresponds to the direction of the

change (hyper/de-polarization) in transmembrane voltage as well as the magnitude, which was

also observed in TES. Locations where the membrane potential becomes depolarized exhibit
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increases in m and n along with decreases in h. On the other hand, hyperpolarized locations

display the opposite behavior, with m and n decreasing in value while h increases. The order

of curves for m and n are the same as that of V, meaning that the positions that exhibit the

largest increases, no change, and largest decreases in m and n correspond to the same

locations that display the largest increases, no change, and largest decreases in

transmembrane voltage as well. This relationship is similar, but reversed for h. For example,

the 10% location is the most hyperpolarized and this location also exhibits the smallest value

of m and n along with the largest value of h.

TES showed similar location dependence, but with TES the increases and decreases in

the gating variables were mostly symmetric whereas in DBS there is more asymmetry.

Interestingly, the changes in transmembrane voltage (Figure 12) are highly symmetric for DBS

(as well as TES), but yet for DBS the subsequent changes in the gating variables are

asymmetric even though the gating variables in the TES simulations maintained the

symmetric patterns. This di↵erence can be observed in Figure 14, which compares the changes

in the gating variables between TES and DBS at the same locations on the membrane. For

example, as seen in Figure 14A, with TES the magnitude of the increase in h at the 10%

position is approximately equal to the decrease in h at the 90% position. However, when

looking at the same positions for DBS it is clear that the decrease in h at 90% exceeds the

corresponding increase at 10%. Similarly, with m and n (14D and G) the TES curves at 90%

and 10% exhibit roughly equal increases and decreases, but with DBS the increases in m and

n at 90% are greater than their decreases at 10% (the corresponding point on the opposite

side of the membrane).

This same symmetry for TES and asymmetry for DBS is also observed for other

location pairs such as 25% and 75% as well as 40% and 60% in Figure 14. The asymmetry in

the changes in gating variables in DBS can also be observed in Figure 13. In these figures it is

clear that the increases in m and n on the right hand side of the membrane (50% to 100%)

exceed the decreases on the left (0% to 50%) meanwhile the increases in h are less than the

corresponding decreases.

Table 4 also demonstrates this asymmetry in the gating variable changes for DBS,

specifically at the 10% and 90% locations. With TES, the change in the gating variables at

these locations are equal, such as m increasing by 0.001 at 90% and decreasing by the same

amount at 10%. On the other hand, with DBS these values are not the same. For example, m
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Figure 14: Comparison of changes in gating variables between DBS and TES. Plots comparing
the behavior of the gating variables h (A-C), n (D-F), and m (G-I) overtime during DBS (red curves)
and TES (blue curves) treatment. A, D, and G show the gating variables for each treatment at the 10%
and 90% locations while B, E, and H show the 25% and 75% positions and finally C, F, and I display the
gating variables at 40% and 60%. Each plot also includes the 50% location for TES and DBS (shown in
black) to provide a reference of the location that exhibits no change.

increases by 0.035 at 90%, but only decreases by 0.018 (just over half as much) at 10%.

Table 4: Asymmetry in changes in DBS gating variables.

DBS TES

90% 10% 90% 10%
m 0.035 -0.018 0.001 -0.001
n 0.006 -0.004 0.005 -0.005
h -0.010 0.006 -0.010 0.010

Table notes: This table shows the change in each gating variable at the 90% and 10%
membrane locations from the start of the simulation to the maximum value it achieves during
stimulation for both TES and DBS. A positive value indicates an increase in the value of the
gating variable whereas a negative value signifies a decrease.
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4.3 Speed of Changes in Gating Variables

As with the instantaneous change in transmembrane voltage observed in Figure 12A the

gating variables also begin to change precisely when each stimulus is applied. But unlike

transmembrane voltage that exhibits a sharp jump, the gating variables increase/decrease

more gradually. Similarly, when the current pulse is turned o↵ the gating variables do not

immediately jump back to their initial value like transmembrane voltage does, instead they

recover more slowly. Interestingly, the gating variables each have a distinct recovery speed.

Particularly, m recovers much faster than both n and h, which both are much slower in

returning back towards their initial value. The gating variable m increases up to 0.05 during

the first stimulus pulse and then at a time of 2 ms, 0.9 ms after the first stimulus is turned o↵,

m has already returned to its initial value of 0.028. On the other hand, n and h never fully

recover to their initial value during the 6.5 ms between the DBS pulses. Thus, when the

second pulse begins at 7.6 ms n and h are at slightly di↵erent values than they were at the

start the simulation.

The di↵erent speeds of these changes between the di↵erent gating variables is also

observed in the TES simulations where in a 20 ms simulation m reached its limiting value only

1 ms after the stimulus application while n and h continued to change throughout the

remaining 19 ms of the simulation. Thus, it is clear that m changes more quickly than the

other two gating variables, both when changing to a new value upon external current

application and when returning to its resting value when the stimulus is turned o↵.

Another impact of the di↵ering speeds at which the gating variables change is the

observed in the comparison of the magnitude of changes in m, n, and h between TES and

DBS. Figure 14 shows the changes in each gating variable at the same points (10%/90%,

25%/75%, and 40%/60%) in both TES and DBS to compare the magnitude of the changes

between the two treatments. Clearly, m experiences greater changes in DBS than TES, for

example 0.034 more at the 90% location. On the other hand, n and h change about the same

in DBS as they do in TES.

This di↵erence is somewhat surprising because the magnitude of changes in

transmembrane voltage are significantly greater in DBS than TES. However, the DBS current

is only applied for 0.1 ms at a time, which does not leave the slower-changing n and h much

time to adjust. Presumably, if a DBS-amplitude pulse were applied for a longer period of

time, then n and h would increase/decrease significantly more than they do in TES and in the
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short (0.1 ms) pulse modeled here. As explained earlier, m changes faster than both n and h

so even in the short DBS pulse of 0.1 ms m achieves a higher value than in does in the longer

TES stimulation.

Another di↵erence between the gating variables is which of the three pulses in which

they reach their maximum value. For m the most change occurs in the first pulse, reaching a

value of 0.063. In the other two pulses, m changes slightly less (as observed in the slightly

lower second and third peaks in Figure 13A) reaching a value of 0.061, even though the

amplitude of the electric current pulse is the same and the transmembrane voltages change by

the same amount. On the other hand, n and h reach their maximum values (most extreme

peaks) in the final pulse, as observed in the fact that each subsequent peak is higher than the

last. One plausible explanation for this di↵erence is the fact that n and h do not fully return

to their initial value by the time the next pulse begins so their value is already starting closer

to their last peak so when they change with the next pulse they achieve a higher value than

the previous peak.

4.4 Transmembrane Ionic Flux

The DBS and TES-induced changes in transmembrane voltage and ion channel state influence

the transmembrane flux for each ion. These changes in transmembrane flux for sodium,

calcium, and potassium at the 11 equispaced points along the node of Ranvier throughout the

simulation for both DBS and TES are shown in Figure 15. The pulse-like behavior of

transmembrane voltage and the gating variables (especially m) generate similar bursts of

responses in transmembrane flux. As a result of the DBS-induced electric current, each time

the stimulus is applied there are major increases and decreases in flux . When the stimulus is

removed the fluxes begin to return to their initial value (Figures 15A-C and D-F). The curves

for each ion’s flux exhibit di↵erent patterns of behavior, which can be explained by each ion’s

unique equation for flux (Equations 9-12) with distinct combinations of the gating variables

and di↵erent Nernst potentials.

One major di↵erence between the ions is the shape of the flux curves for the 0.1 ms that

the pulse is applied. During the DBS pulse (1 to 1.1 ms), Ca+2 flux (Figures 15B and E)

exhibits smooth changes, with an almost parabolic shape for points on the left side of the

node (where calcium influx decreases). Meanwhile, calcium flux changes in a seemingly linear

fashion for points on the right side of the domain (50% to 100%) where there is a substantial
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Figure 15: Transmembrane ionic flux during DBS and TES simulations. A-C: Membrane flux
at equispaced locations in the node of Ranvier throughout the whole DBS simulation for sodium (A),
calcium (B), and potassium (C). D-F: Flux around the first DBS pulse (first 2 ms of the simulation) for
sodium (D), calcium (E), and potassium (F). G-I: Membrane flux during the whole TES simulation for
sodium (G), calcium (H), and potassium (I).

increase in calcium influx due to the fact that the neuron becomes depolarized and calcium

channel activation (m) increases. In addition, the ranking of these flux curves based on the

magnitude of the changes is identical to that of the changes in transmembrane voltage and the

gating variable m.

Similarly, Na+ flux (Figures 15A and D) exhibits the same direction of changes and

ranking of change magnitude at each point as observed in Ca+2 flux, with the same locations

exhibiting increases and decreases in influx. While the direction and magnitude rankings of

these changes in flux are comparable, the shape of the Na+ flux curves are quite di↵erent

from that of Ca+2. The flux curves for sodium exhibit an initial spike in one direction before

continuing in the other direction. While the behavior and shape of the DBS sodium flux

curves di↵ers significantly from that of calcium when the pulse is turned on, their curves

exhibit similar shapes and time courses when the stimulus is removed and the fluxes return to
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their initial value.

Potassium flux (Figures 15C and F) behaves quite di↵erently than both sodium and

calcium. Instead of the smooth, gradual changes observed with calcium, potassium’s flux

curves exhibit a vertical jump immediately when the stimulus is applied at 1 ms (similar to

the shape of the transmembrane voltage curves), and then the flux continues to move in the

same direction for the remaining 0.1 ms of the DBS pulse, but at a much slower rate than the

initial jump. When the pulse is turned o↵ the flux curves display another vertical jump back

towards their initial value, but do not quite reach this level. Then, the fluxes move more

slowly to return the rest of the way to their initial value. While sodium and calcium flux

return back to their initial value 0.05 ms after the stimulus is removed, potassium does not

quite return all the way back even after the 6.5 ms break between the pulses. The fact that

potassium does not fully recover relates to the fact that the gating variable that governs

potassium channels (and thereby flux) is n (Equation 10), which as described in the gating

variable section does not completely recover (Figure 13B). On the other hand, m, which

regulates both sodium and calcium channels (Equations 9 and 11), recovers quickly so sodium

and calcium return back to their initial level at about the same rate because transmembrane

voltage and their commanding gating variable also recover by that time.

The behavior of each ion’s flux during DBS treatment is clearly di↵erent than that of

TES treatment. As described above, the DBS-induced flux alterations occur in short pulses of

significant changes. On the other hand, with TES the changes in the fluxes are maintained

throughout the simulation (Figures 15G-I) because the TES current is applied for the whole

time, instead of in short pulses like with DBS. Thus, the changes in transmembrane voltage,

gating variables, and flux are sustained throughout for TES while with DBS the alterations

occur in an oscillating fashion. While the DBS-induced changes in flux are short-lived, the

magnitude is significantly greater than the changes observed in TES. Table 5 shows the

maximum flux achieved during TES and DBS as well as the respective percent change in flux

at the 90% membrane location to illustrate the di↵erence in the magnitude of changes between

TES and DBS. For calcium in particular, influx increases by 369.70% during DBS but only

increases by 8.56% during TES. Similarly, sodium influx increases by 73.47% due to DBS

while TES only increases sodium influx by 0.99%.

Also, a similar asymmetry as noted in the gating variables is observed in these flux

curves as instead of the decreases in sodium and calcium influx on the left side equaling the
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Table 5: Changes in transmembrane flux during neurostimulation treatments.

Initial Deep Brain Stimulation Transcranial Electrical Stimulation

Flux Flux Percent Change Flux Percent Change
FNa -2.59 · 10-7 -4.49 · 10-7 (73.47%) -2.62 · 10-7 (0.99%)
FCa -6.66 · 10-9 -3.13 · 10-8 (369.70%) -7.23 · 10-9 (8.56%)
FK 3.43 · 10-7 6.01 · 10-7 (75.02%) 3.73 · 10-7 (8.55%)

Table notes: Sodium, calcium, and potassium flux at the 90% membrane location before the
neurostimulation application as well as the maximum fluxes achieved during both DBS and
TES simulations. The number in the parenthesis shows the percent increase in flux.

increases at the associated location on the right (such as 10% and 90%), with DBS the

increases in influx significantly exceed the decreases. Thus, it is clear that DBS causes a larger

influx of sodium and calcium into the intracellular space. Despite the fact that the increase in

calcium flux during the DBS pulse is significantly larger, since it is only for a brief time the

increase in intracellular calcium concentration throughout the simulation is roughly equal for

both TES and DBS with increases of 66.39% and 66.84% respectively. Thus, the two

treatments seem to have similar e↵ects on overall calcium concentration despite the di↵erences

in the shape, time course, and magnitude of changes in calcium flux.

Despite these clear di↵erence in the behaviors of the flux there are some notable

similarities. First, the direction of the flux changes are the same at each location. For

example, each location where an ion type experiences an increased influx with TES also

undergoes an increased influx for that ion with DBS. Another similarity is in the shapes of the

curves with the TES sodium flux curve (Figure 15G) also exhibiting an initial spike in the

opposite direction as observed with DBS sodium flux (Figure 15A and D). Potassium’s flux

curves also reveal a comparable shape with a similar vertical change at the start of treatment

with TES (Figure 15I) as described with DBS (Figure 15C and F). Also, the order of the

curves are the same suggesting that the locations that experience the largest (and smallest)

flux alterations are the same with TES and DBS, namely 90% being the location with the

largest sodium and calcium influx as well as the largest potassium e✏ux in both TES and DBS

treatments. These similarities suggest connections between the e↵ects of these treatments as

well as the biological behavior of the ion channels and fluxes no matter the external conditions.
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5 Discussion

Despite successful clinical experiments demonstrating the success of neurostimulation

treatments in relieving symptoms of neurodegenerative disorders, it remains elusive exactly

how they do so. Mathematical modeling and computer-based simulation has shown to be a

valuable component in enhancing neurostimulation e�cacy as well as providing an instrument

for helping the research community learn about the mechanisms by which it operates. While

both in silico and biological experimentation have facilitated a greater understanding of

neuromodulation, the cellular-level electrodynamics during electrical stimulation treatments

still remain highly elusive.

To help address this contention, we have presented a novel mathematical model of two

types of neurostimulation that incorporates transmembrane voltage, ion channel gating,

individual ion species, and transmembrane ionic flux during treatment to suggest an

explanation of how, where, and when cellular-level changes occur during treatment.

Experimentally it is di�cult to assess these quantities under these conditions (the application

of an external current) so mathematical modeling can be advantageous in providing clues into

how these treatments work. Thus, with the model and simulations presented in this paper we

hope to suggest possible mechanisms by which these treatments operate to suggest directions

for future studies, indicate ways to improve this treatment, and/or identify new potential

pharmaceutical targets.

A key finding of this work is the location specificity exhibited by the cell’s electrical

processes due to the application of a TES or DBS current. In particular, results show that

these treatments polarize the neuron as expected, however, the degree of voltage change is

dependent on the location within a node of Ranvier, a phenomena reported by the deep brain

stimulation modeling community [37,38]. In turn, results show that the states of the ion

channels also exhibit location-dependent changes, which directly impacts membrane flux and

subsequent intracellular sodium, potassium, calcium, and chloride concentrations. While the

degree and type of electrical polarization is location dependent, these results show that these

treatments e↵ectively elevate resting membrane potential so that ultimately neuron firing is

more achievable [32].

Our simulations suggest two possible mechanisms by which neurostimulation operates to

relieve disease symptoms. First, the instantaneous polarization of the cell membrane due to
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the stimulus application raises the neuron’s resting potential closer to the threshold for firing

an action potential in certain regions of the membrane. Thus, one plausible way that

neurostimulation helps improve the symptoms of neurodegenerative disorders is by facilitating

action potential generation. Our findings also show that the depolarization and changes in ion

channel gating due to DBS causes an increase in calcium influx of up to 369.70%, which

indicates that during each DBS pulse there is an increase in the concentration of calcium inside

the neuron. An increase in calcium influx is also demonstrated in our models of TES, however

with TES the increase in flux is smaller but is sustained for a longer period of time versus the

high magnitude and short-lived increase with DBS. It is well-known that cytosolic calcium is a

key element in the intracellular signaling cascade that enables neurotransmitter secretion as

well as cell viability. In addition, a disruption to calcium homeostasis is correlated with

neurodegenerative disease [46–49]. Our results augment these findings by showing that TES

and DBS directly alter calcium membrane flux and intracellular calcium concentration via

voltage gated calcium channels, by 66% over the course of the simulation. These findings may

suggest that a possible mechanism by which neurostimulation achieves therapeutic success, in

addition to depolarizing the cell, is by altering calcium dyshomeostasis in diseased neurons.

To our knowledge, this model is also the first to simulate two distinct neurostimulation

treatments (namely transcranial electrical stimulation and deep brain stimulation) using the

same approach, allowing for the cellular e↵ects of these two treatments to be compared

directly for the first time. The main di↵erence between these treatments, as shown in our

simulation results, is the magnitude and duration of the changes to neuronal electrodynamics.

With TES the changes are smaller and persist throughout the whole treatment, but with DBS

most alterations are significantly larger and occur in short pulses. While both TES and DBS

are e↵ective in relieving symptoms of neurodegenerative disorders, they are typically used for

patients in di↵erent stages. TES is typically used in earlier stages because the treatment is

less invasive. Our simulations show that TES causes smaller changes in transmembrane

voltage and flux than DBS, but presumably larger changes are not necessary for early stage

patients because the disease has not yet progressed as far, so the small but sustained changes

are enough to improve symptoms. On the other hand, DBS is typically administered in later

stages, which is justified by these simulation results showing the much larger changes in

transmembrane voltage, the gating variable m, and ionic flux during DBS pulses.
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5.1 Future Directions

By implementing the simulation software using an object-oriented approach, its utility can be

seamlessly extended to other computational studies and future work. Using these tools, we

have begun investigating the impact of TES on more biologically complex domains, including

one that encompasses three nodes of Ranvier (Figure 16). In addition, we are starting to

examine the e↵ect of TES on three-dimensional domains (Figure 17). Finally, we are

interested in examining the e↵ects of ionic flux and cytosolic ion concentrations on

intracellular signaling pathways that have implications to neurodegenerative disorders.
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Figure 16: Electric potential energy throughout a computational domain of a neuron with

three nodes of Ranvier.
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Appendices

Appendix A Mathematical Concepts and Definitions

Here we present preliminary mathematical concepts, definitions, and numerics utilized

throughout this thesis.

A.1 Finite Element Method

Many equations that model real life phenomena in science and engineering, including this

neurostimulation model, involve partial di↵erential equation (PDE) that cannot be solved

analytically. Complex geometries and boundary conditions make finding the exact solution

di�cult, if not impossible. In such cases, a numerical method, such as the finite element

method (FEM), can be used to find an approximate solution. This method is based on the

weak formulation of the original PDE system and its governing boundary conditions. Once

constructed, the finite element method recasts this weak formulation to the so called discrete

formulation by discretizing the solution function space and the domain.

A fundamental theorem in this process is Green’s Theorem [79]. Green’s Theorem states

the divergence of a vector field within a closed curve is equal to the outward flux of the vector

field across the surface of the closed curve, and is properly formulated as follows:

Theorem 1 (Green’s Theorem). For all functions u, v in C1(⌦̄),

Z

⌦
u
@v

@xi
dx =

Z

@⌦
uv⌫i ds�

Z

⌦
v
@u

@xi
dx, (20)

where ⌫i is the ith component of the outward unit normal vector (⌫) to the boundary @⌦

of a domain ⌦. Here, we assume that the boundary is su�ciently smooth, and C1(⌦̄) is defined

to be the set of all continuous functions that have continuous first derivatives on ⌦@ [ ⌦.

The governing equations for partial di↵erential equations include boundary conditions.

The forms of boundary conditions used in this project are defined here.

Definition 1: A Dirichlet boundary condition specifies values that a PDE solution take

on the domain boundary:

u(~x, t) = f(~x, t), ~x 2 @⌦, t 2 R, (21)
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where f(~x, t) is a known real-valued function. The Dirichlet boundary condition is commonly

referred to as a fixed or essential boundary condition.

Definition 2: A Neumann boundary condition specifies values that the derivative of a

PDE solution takes on the domain boundary:

k(~x, t)
@u

@~n
= k(~x, t)(ru · ~n) = f( ~x, t), ~x 2 @⌦, t 2 R, (22)

where f(~x, t) and k(~x, t) are known real-valued functions. Due to its seamless integration into

a PDE weak formulation, a Neumann boundary condition is commonly referred to as a natural

boundary condition. A homogeneous Neumann boundary condition states that u(~x, t) does

not change in the direction of the outward normal ~n, thus restricting u(~x, t) to the boundary

⌦ as a consequence of restricting the flux of u(~x, t) to zero.

A.1.1 Function Spaces

To properly recast a partial di↵erential equation into its weak formulation, several function

spaces are required. These function spaces are defined here.

Definition 3: The space L2(⌦) is the set of square-integrable functions on ⌦:

L2(⌦) :=

⇢
u(~x) :

Z

⌦
|u(~x)|2dx < 1

�
. (23)

Definition 4: The space H1(⌦) is the set of functions that are square-integrable and

whose first derivative(s) are square integrable on ⌦:

H1(⌦) :=

⇢
u(~x) : u(~x) 2 L2(⌦),

@u

@~x
2 L2(⌦)

�
. (24)

Definition 5: The space H1
e (⌦) is the set of functions that are in H1(⌦) and satisfy the

essential boundary condition u(~x) = e(~x) on @⌦e,

H1
e (⌦) :=

�
u(~x) : u(~x) 2 H1(⌦), and u(~x) = e(~x) for ~x 2 @⌦e

 
. (25)

The choice of L2(⌦), and subsequently H1(⌦), as a solution space for our PDEs is so

that integrals in our upcoming weak formulations converge. Theorem 1 states that the

product of two functions in L2(⌦) is also in L2(⌦).
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Theorem 2 (Cauchy-Schwartz). Let ⌦ be a bounded domain in Rn. If u(x), v(x) 2 L2(⌦),

then Z

⌦
u(x)v(x)dx < 1.

Proof of Theorem 2. The proof of this theorem is a direct result of the Cauchy-Schwartz

Inequality [80]. In this context, the Cauchy-Schwartz inequality tells us that

Z

⌦
u(x)v(x)dx 

sZ

⌦
|u(x)|2dx

sZ

⌦
|v(x)|2dx.

Since u(x), v(x) 2 L2(⌦), by definition,

Z

⌦
|u(x)|2dx < 1 and

Z

⌦
|v(x)|2dx < 1.

It follows that Z

⌦
u(x)v(x)dx 

sZ

⌦
|u(x)|2dx

sZ

⌦
|v(x)|2dx < 1.

A.1.2 Finite Element Method Steps

The following detail the main steps in the finite element method to arrive at the discrete

formulation.

1. Construct the variational form using Galerkin’s method

First, assume that f ✏ L2(⌦) and u ✏ V . The process of generating the variational

problem involves multiplying the PDE by an arbitrary test function, v ✏ H1
0 , and

integrating over the domain. Then, Greens theorem (the divergence theorem) is applied

to integrate the second derivative terms by parts. Using the divergence theorem reduces

the order of the derivatives and facilitates the incorporation of boundary conditions.

2. Identify solution spaces

The solution spaces that the trial function (u) and test function (v) are members of

must be defined so that the integrals in the weak formulation exist. Boundary conditions

that are enforced on the trial solution are called essential (or Dirichlet) boundary

conditions. Essential boundary conditions are imposed on the solution space for the trial

function u ✏ H1
E . Natural (or Neumann) boundary conditions are incorporated into the
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weak formulation.

3. Discretize the domain

The finite element method breaks up the complex domain (⌦) into discrete components,

called elements. As such, the problem is solved on ⌦h, an approximation of ⌦. For

one-dimensional problems the domain is broken up into line segments. Similarly, for

two-dimension domains triangles or quadrilaterals can be used for the elements while

tetrahedral and hexahedral elements are typically used in three-dimensional problems.

4. Approximate the solution space(s) with a polynomial space

In this method the trial function in the PDE, u, can be approximated by a function uh

by using linear combinations of basis functions: u ⇡ uh and uh = ⌃↵i · �i, where �i

denotes the basis function (which represents v) and ↵i denotes the coe�cients of the

basis functions that are used to approximate u with uh. In other words, uh is a linear

combination of the basis functions. Thus, using the finite element method turns the

problem of solving a partial di↵erential equation into solving a system of linear

equations. Since ↵i is the height of the function it can also be denoted as ui the value of

the function at each location. From here, the discrete formulation is derived where uh is

⌃↵i · �i and vh is phii. By substituting these into the original problem, the problem is

thereby reduced to solving a system of linear equations, A~u = ~b.

A.1.3 One Dimensional Example

Figure 18 shows how this process works using a one-dimensional problem. Each basis function

(�i, represented by the black lines) spans two elements with the center point (xi) representing

the node. Each basis function has a value of one at its respective node and a value of zero at

all other nodes (i.e. �2 has a value of zero at all nodes except x2 where its value is one). Using

linear combinations of the basis functions and coe�cients the function u (green line) can be

approximated with uh (red dashed line). This example uses linear basis functions, but it is

also possible to use other basis functions such as quadratic or cubic functions.

The example on the left uses uniform elements that are equal sized and evenly spaced.

However, in the example on the right the elements are not equally sized and spaced. In

particular, the elements are placed closer together in regions where the original function

exhibits more variability. By using a greater number of elements and adjusting their spacing
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Figure 18: Illustration of finite element approximation of a one-dimensional problem.

according to properties of the true solution, the approximation (uh) is closer to the actual

function (u). The finite element method allows for this flexibility in determining how the

domain is discretized and selecting the number of elements.

As illustrated above, increasing the number of elements does reduce the error between

the true and approximate solution. However, if the domain is larger and/or the equations are

being solved multiple times (over multiple time steps), then it could be ine�cient or too

computationally intensive to continue to increase the number of elements.

A.2 Gauss-Seidel Method

The Gauss-Seidel method is a numerical approach that allows individual equations of a PDE

system to be solved independently. This decoupling strategy allows solvers tailored to the

individual PDEs to be used and expedites accurate implementation. The Gauss-Seidel method

operates according to the following algorithm. We present the Gauss-Seidel method using a

system of two di↵erential equations, but the approach could be extended to any number of

di↵erential equations.

Let L1[u(~x, t), v(~x, t)] = f(~x, t) and L2[u(~x, t), v(~x, t)] = g(~x, t), where ~x 2 ⌦ ⇢ Rn, t � 0.

The Gauss-Seidel method decouples this PDE system, solving for u and v independently, but

using intermediate solutions in each step of the iterative solution process:

1. Set u and v to initial conditions: u = u(~x, 0), v = v(~x, 0).

2. Solve for u(~x, tn+1) using L1 equation: L1[u(~x, tn+1), v(~x, tn)] = f(~x, tn+1).

3. Solve for v(~x, tn+1, ) using L2 equation: L2[u(~x, tn+1, ), v(~x, tn+1, )] = g(~x, tn+1, ).
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This formulation of Gauss-Seidel introduces a global first-order (numerical splitting)

error, O(t). Nevertheless, each equation is solved for explicitly and so a small time-step can be

used without introducing a significant computational burden.
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