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Synthesizing topological structures containing
RNA
Di Liu1, Yaming Shao2, Gang Chen1, Yuk-Ching Tse-Dinh3, Joseph A. Piccirilli1,2 & Yossi Weizmann1

Though knotting and entanglement have been observed in DNA and proteins, their existence

in RNA remains an enigma. Synthetic RNA topological structures are significant for

understanding the physical and biological properties pertaining to RNA topology, and these

properties in turn could facilitate identifying naturally occurring topologically nontrivial

RNA molecules. Here we show that topological structures containing single-stranded

RNA (ssRNA) free of strong base pairing interactions can be created either by configuring

RNA–DNA hybrid four-way junctions or by template-directed synthesis with a single-

stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly

sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low

RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting

activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of

reverse transcription (RT) and obtain different RT–PCR patterns for an ssRNA knot and circle

of the same sequence.
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K
notting and entanglement are not only common macro-
scopic phenomena, but also present at the molecular level,
via either random statistical threading1,2 or elegant rational

designs3–5. The occurrence of molecular topology is also frequent
in biological context6, and two of the most important biological
macromolecules, DNA7,8 and proteins9,10, have been found to
adopt nontrivial topologies. Whereas the functional implications
of knotted proteins still remain unclear, DNA topology is
a prominent and fundamental theme in modern biology, and
largely defines the structural, biological and functional principles
of DNA and most DNA-processing enzymes8,11. In fact, the
biological importance of DNA topology can partly be reflected by
the diversity of DNA topoisomerases (DNA Topos)12–14,
which are enzymes evolved to solve the topological problems
of DNA.

An interesting question naturally arises regarding the impor-
tance of RNA topology. Although the recent systematic screening
of the Protein Data Bank indicated the absence of genuine
linear knots in known RNA structures15,16, it is yet premature
to disclaim the existence of naturally occurring knotted (linear or
closed) RNA structures. On the one hand, the set of solved
RNA structures are not representative of all RNA molecules.
There are many more RNAs with unknown structures, and
RNAs that remain to be identified. It is likely that knotted
RNA structures can be discovered as more and more RNA
structures are solved. On the other hand, RNA pseudoknots
with two sufficiently long (at least around 11 bp) helices can
adopt knotted conformation and several likely knot-forming
candidates have been suggested16 based on their sequences
from an RNA pseudoknot database17. Instead of passively waiting
for RNA topological structures to emerge through the
accumulation of structural data, RNA topologies can be
created and investigated through synthesis. Importantly,
synthetic RNA topological structures can help us understand
the physical and biological properties associated with RNA
topology. Based on these properties, new tools and methods to
identify the naturally occurring RNA topological structures can
be developed.

Synthetic DNA topology is an active field, where various
nanoscale DNA topological structures have been constructed
and functionalized18–20. However, synthetic RNA topology
has received far less attention. So far, the only method to access
it was described by Seeman and co-workers21. As a sequel
to a series of their remarkable studies on single-stranded
DNA (ssDNA) topologies22–25, a single-stranded RNA (ssRNA)
trefoil knot was constructed by utilizing the intrinsic
topological properties of an RNA duplex21. The realization of
synthetic RNA topology essentially led to the discovery of the first
enzyme with RNA topoisomerase (RNA Topo) activity—
Escherichia coli DNA Topo III (ref. 21). Based on this, RNA
Topo activity has also been recently found in other Type IA
DNA Topos26,27, including the human DNA Topo 3b (ref 26),
which is crucial to neurodevelopment. RNA topology and
RNA Topos, similar to their DNA counterparts, have the
potential to transform our understanding of fundamental RNA
biology.

Here we demonstrate that synthetic RNA topologies can
be accessed either by configuring the RNA–DNA hybrid
four-way junction (4WJ), or by template-directed synthesis using
a ssDNA topological structure. The resulting RNA topological
structures are free of strong base-pairing interactions, enabling
the RNA Topo activity study of E. coli DNA Topo I and the
discovery of topological inhibition of reverse transcription (RT).
We expect our work on synthetic RNA topological structures
will stimulate research in the essentially unexplored area of RNA
topology and RNA topoisomerase.

Results
Strategies for the construction of ssRNA topological structures.
The first ssRNA knot was constructed by Seeman’s helix-based
method21, the principle of which is that a half-turn (5 or 6 bp) of
RNA duplex generates a node (Fig. 1a,b). Recently, we have
expanded the spectrum of synthetic DNA topologies with a
versatile method based on the stacked X structure of
DNA 4WJ, in which the two helical strands (continuous along
the stacked helices) are held by the two crossover strands
(exchanged at the junction) to form a node for topological
construction28. Compared with the previous helix-based method,
this junction-based method has three major advantages. First, the
resulting topological constructs contain no intrinsic strong base
pairings. Second, the method enables the convenient generation
of both positive and negative nodes. Finally, the method
circumvents undesired braiding of the ssDNA linkers that is
frequently encountered in the helix-based method29. This
junction-based method can be further developed for synthetic
RNA topologies by using the RNA–DNA hybrid 4WJ (Fig. 1c),
which contains RNA helical strands and DNA crossover strands.
Thus, RNA topological structures can be generated by folding
RNA scaffolds into hybrid 4WJs with DNA staples. Figure 1d
illustrates the construction of an RNA trefoil knot using the
helix-based method. Alternatively, DNA-templated synthesis can
be used to construct an RNA topology, that is, a pre-prepared
ssDNA topological structure can be used as a template to
synthesize the corresponding RNA structure (Fig. 1e).

Right- and left-handed RNA trefoil knots with the same sequence.
To produce closed RNA topological structures, the linear
RNA strands can be ligated enzymatically. However, RNA strands
synthesized by in vitro runoff transcription, which is the most
convenient and economic method to produce long RNA strands,
contain both 50- and 30-heterogeneities. Therefore, their
enzymatic ligation poses a significant challenge. To solve these
problems, a 50-end hammerhead ribozyme and a 30-end hepatitis
delta virus ribozyme30 were designed in each RNA transcript
to undergo self-cleavage to produce uniform ends (Fig. 2a).
T4 polynucleotide kinase is then used to add a phosphate group
to the 50-hydroxyl group (in the presence of ATP) and remove
the 20,30-cyclic phosphate31 of self-cleaved RNA transcripts.
The resulting RNA molecules contain both ends proper for
ligation and can serve as the scaffolds for topological
construction.

The RNA–DNA hybrid 4WJs presumably have structural
properties similar to that of DNA 4WJs due to the fact that
the former have been utilized in the construction of various
RNA–DNA hybrid nanostructures32,33, within which the 4WJs
are composed of helical strands of RNA and crossover strands of
DNA. Therefore, the design principles of DNA nanostructures
based on DNA 4WJs also hold for those containing the
RNA–DNA hybrid 4WJs. The tensegrity triangle34, a structural
motif containing three 4WJs, is a case in point and it is utilized
extensively in this work for topological construction. The number
of base pairs between the 4WJs dictates the tensegrity triangle to
be either right- or left-handed35, which results in positive
or negative nodes, respectively. The construction of topoisomers
of both right- and left-handed trefoil knots can be achieved
by folding the same RNA scaffolds into different tensegrity
triangles with different sets of DNA staples (Fig. 2b). After
geometrical analysis according to previous work28,35 (see also
Supplementary Table 1), we used a 17-bp-edged tensegrity
triangle for the right-handed RNA trefoil knot 3þ1ð Þ, TKj(þ )
and 14-bp-edged for the left-handed trefoil knot 3�1

� �
, TKj(� ).

Notably, for the helix-based method, generating positive nodes
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would demand the formation of left-handed Z-form RNA, which
requires harsher conditions (higher salt concentration and higher
temperature)36 than the formation of Z-form DNA. In contrast,
our junction-based method provides a more convenient way to
generate the positive nodes because the handedness of the nodes
is controlled by applying geometric constraints to 4WJs, but not
by the formation of nonstandard duplex structures.

Experimentally, three 76-nt ssRNA scaffolds were annealed
with three DNA splints and either set of four DNA staples. In the
resulting assembled complex, the ssRNA scaffolds are folded by
the staples to form three 4WJs (configured within the tensegrity
triangle) and joined end to end by the splints (Fig. 2b).
Subsequent ligation seals the nicks in between the scaffolds and
thereby fixes the topology. T4 RNA ligase 2 was used for the
DNA-splinted RNA ligation because lower enzyme concentration
is needed compared to T4 DNA ligase (which ligates RNA less
efficiently and only catalyses approximately stoichiometric
ligation). All the assisting DNA strands (staples and splints) are
dissociated on purification with denaturing polyacrylamide gel
electrophoresis (dPAGE), and consequently relaxed 228-nt
ssRNA topological constructs are generated without strong

intrinsic intramolecular base pairings. TKj(þ ) and TKj(� )
were obtained in yields of 13% and 28%, respectively
(Supplementary Fig. 1), comparable to the previous synthesis of
DNA trefoil knots of similar size28. Figure 2c shows the purified
RNA trefoil knots analysed by dPAGE: lane 1 for TKj(þ ), lane 3
for TKj(� ), along with the circular (Cj, lane 5) and linear (Lj,
lane 7) references. Similar to the previous results with DNA
topological structures28, TKj(þ ) and TKj(� ) have almost
identical electrophoretic mobility, which is higher than that of
Cj. The resistance to digestion with RNase R proves the closed
structure for knots (lanes 2 and 4) and circle (lane 6), but not for
the linear species (lane 8).

Hybrid Borromean rings (BR). To further demonstrate the
high-level complexity of topological structures we can achieve
with RNA, we create a hybrid Borromean rings (BR) 63

2

� �

structure containing one ssRNA and two ssDNA rings.
The defining feature of this famous topology is that the whole
assembly of three rings falls apart on the scission of any one ring.
This requires an equal number of positive and negative nodes

ssDNA template DNA–RNA hybrid ssRNA knot

Complementary
RNA strands DNase I

1. Annealing
2. Ligation

Digestion

a b

c

e

d

Figure 1 | Strategies of constructing ssRNA topological structures. (a,b) Seeman’s method of using A-form RNA helix to generate ssRNA topological

structures21. In a, one turn of an A-form RNA helix is shown with the helical and schematic representations. The two component strands form two negative

nodes within this one-turn helix. In b, a strand of ssRNA (orange) is designed to contain alternating complementary pairing segments to form two one-turn

A-form helices, and a trefoil knot is formed after enzymatic ligation aided by a DNA splint (green). However, topological structures constructed in this way

contain very strong intrastrand base pairings. (c,d) Junction-based method to generate ssRNA topological structures. In c, a 4WJ is formed with two

RNA strands (blue) as the helical strands and two DNA strands (grey) as the crossover strands, and is shown with the helical and schematic

representations. The two RNA helical strands generate a node. In d, the assembly complex for the trefoil knot is formed, where the RNA scaffolds (blue) are

threaded into the targeted topology by DNA staples (grey) and linked end to end by DNA splints (green). After ligation and subsequent removal of the

DNA staples and splints, a ssRNA knot free of strong intrastrand base pairings is generated. (e) The ssDNA trefoil knot can be used as a template for the

construction of ssRNA trefoil knot. The ssDNA knot template (red) is pre-prepared and annealed with the complementary RNA strands (blue). After

ligation, the DNA–RNA hybrid knot is formed. The ds DNA–RNA hybrid is more rigid than single-stranded structure, the careful design of curvature

(by adding bulges) and torsion (by adjusting the length of hybrid helix) is necessary. The hybrid knot can then be subjected to DNase I digestion to obtain

the ssRNA knot.
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to ensure that no two rings are interlocked. In our previous
construction of ssDNA BR28, two tensegrity triangles with
different handednesses were designed in the assembly complex
to meet this requirement. Similarly, in the assembly complex
for this hybrid BR, a 95-nt circular RNA, a 105-nt circular
DNA and two linear DNA (57- and 59-nt, respectively) scaffolds
are folded into a 17-edged right-handed tensegrity triangle
for the three positive nodes and a 14-edged left-handed one
for the three negative nodes (Fig. 2d). The two linear
DNA scaffolds (precursors for the 116-nt DNA ring) are joined
by two splints and the hybrid BR structure is formed after ligation
by T4 DNA ligase (Supplementary Fig. 2). To conclusively prove
the topology of this hybrid BR, each DNA ring is installed with
a unique restriction site. As shown in Fig. 2e, the hybrid
BR is disassembled by the cleavage of the ssRNA ring by RNase
H (lane 2), or either ssDNA ring by the corresponding nickase
(lanes 3 and 4).

In the field of chemical topology, molecular BR is a well-known
challenging target37, attracting researchers from different
disciplines to develop various novel strategies to realize
it25,28,38–41. Here we further extend the chemical diversity of
this topological target by creating this hybrid BR structure,

which is the first BR molecule to contain component rings of
different materials. To the best of our knowledge, it is also
the first topological structure composed of both DNA and
RNA. Additionally, the successful construction of a topological
target as complex as BR reasonably implies that our junction-
based method would provide access to the ssRNA or ssRNA–
ssDNA hybrid versions of any of our previous topological targets
realized with ssDNA28.

ssRNA knot constructed via DNA-templated synthesis.
Synthetic ssDNA topological structures constructed previously, in
principle, can direct the synthesis of ssRNA structures of the
same topology (Fig. 1c). The intermediates would be the
double-stranded (ds) RNA–DNA hybrid structures; however, the
conversion of the structures from ssDNA to ds version is not
always straightforward. This is especially true for small ds knots,
which are more difficult to synthesize than other ds topological
structures that contain only rings (such as rotaxanes5

or catenanes6). Because ds nucleic acid structure is more rigid
and adopts a better-defined geometry compared to ssDNA or
ssRNA, constructing ds knot necessitates the careful design
of curvature and torsion in 3D space28: (1) the total curvature
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Figure 2 | Constructing ssRNA topological structures with the junction-based method. (a) Preparation of the ssRNA strand with uniform ends and

proper end groups for the DNA-splinted RNA ligation. (b) Both the positive (TKj(þ )) and negative (TKj(� )) RNA trefoil knots of the same sequence are

constructed by configuring tensegrity triangles with different handedness. The same scaffolds (blue) are threaded by different staple sets (grey or purple)

to form a 17-bp-edged right-handed tensegrity triangle for the positive trefoil knot, or a 14-bp-edged left-handed tensegrity triangle for the negative one,

respectively. Each topology is designated by the Alexander–Briggs notation ni or nC
i , where n is the minimal number of nodes, C is the number of

components (for links), and i distinguishes different topologies with the same n and C. (c) dPAGE analysis of TKj(þ ) (lanes 1 and 2), TKj(� ) (lanes 3 and

4), and their circular (Cj, lanes 5 and 6) and linear (Lj, lanes 7 and 8) counterparts. Lanes 2, 4, 6 and 8 contain samples digested by RNase R. (d) The

assembly complex for the hybrid BR contains tensegrity triangles of both handedness to generate three positive nodes plus three negative nodes.

(e) Topological analyses of the hybrid BR. Lane 1, gel-purified BR; lanes 2–6, BR treated by RNase H, Nt.AlwI (for cleaving the red ring), Nt.BspQI

(for cleaving the green ring), DNase I, and E. coli DNA Topo I; lanes 7 and 8, DNA and RNA references of the three individual components. During the

purification of BR, the breaking down of the 95-nt circular RNA component is unavoidable, and a portion of BR falls apart as a result. The treatment of BR by

RNase H, Nt.AlwI and Nt.BspQI is conducted in the presence of an assisting DNA strand complementary to the corresponding ssRNA or ssDNA ring.

LX and CX represent X-nt linear and circular species, respectively. In all the gels, lane M contains the DNA size markers.
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of a knot should be larger than 4p (more than two times that
required for a circle) according to the Fary–Milnor theorem;
(2) the torsion of a knotted space curve should not be zero
everywhere because a knot cannot be flattened onto the plane.

To construct the ds RNA–DNA hybrid knot, a 264-nt ssDNA-
positive trefoil knot was pre-prepared (using the junction-based
method) to serve as the template, and three 76-nt complementary
RNA strands were then annealed onto the DNA template and
ligated to form a 228-nt RNA strand (Supplementary Fig. 4).
Six poly(dT)6 bulges are designed in the DNA strand of the
hybrid to provide six curving points, and they connect three outer
34-bp helices (generating a 33� torsion angle) and three inner
42-bp ones (generating a � 65� torsion angle) into the closed
ds knot structure (Fig. 3a–c and Supplementary Fig. 3). If the
sequence details are neglected, this ds knot is a C3-symmetry
molecule. Using ssDNA circle as the template, we also prepared
a ds hybrid circle as a topoisomeric reference. The atomic force
microscopy (AFM) images of the ds hybrid circle (Fig. 3d)
and knot (Fig. 3e) reveal the obvious structural differences

between them, and the ds hybrid knot adopts a more compact
structure with strand crossings (reflected by the higher bumps in
the AFM image). Furthermore, these ds hybrid structures
were digested by nucleases and subsequently analysed by
dPAGE (Fig. 3f). The highly compact structure of the hybrid
knot is again reflected by the very high electrophoretic mobility
(lane 1), which exceeds the hybrid circle (lane 4) and the ssDNA
template (lane 7). DNase I digests the DNA strand of either
hybrid structure and, as expected, the ssRNA knot (lane 2) or
circle (lane 5) is released. The ssDNA templates are recovered by
RNase H digestion of the hybrid structures (lanes 3 and 6).
Not only does our approach provide the alternative route of
DNA-templated synthesis for the construction of ssRNA
topological structures, but also demonstrates the first realization
of a ds RNA–DNA hybrid topological structure. This kind of ds
hybrid structure, with more rigid and better-defined 3D structure,
may find other potential applications in nanobiotechnology and
nanofabrication. Additionally, the principle of using a knotted
DNA template to guide the topology of RNA in the current

34 bp

33° –65°

42 bp

nt

766

500

350

300

250

200

Hybrid knot

DNase I RNase H

Hybrid circle Hybrid knot Hybrid circle ssDNA ssRNA

ssRNA knot
(228 nt)

ssRNA circle
(228 nt)

ssDNA circle
(264 nt)

ssDNA knot
(264 nt)

M1 2 3 4 5 6 7 8 9 10

e

a b c

d

e

f

Figure 3 | Design and construction of a ds DNA–RNA hybrid knot. (a–c) Three views of 3D helical model of the ds DNA–RNA hybrid knot: along the

threefold rotation axis (a), the axis of the outer (b) and inner (c) helices. The template DNA strand is shown in red and the complementary RNA strand in

blue. Also see Supplementary Fig. 3 for stereo views. (d,e) AFM images for the ds hybrid circle (d) and knot (e). Scale bar, 50 nm. (f) Nuclease digestion

confirming the formation of the hybrid knot. Lanes 1–3, purified ds hybrid knot undigested (lane 1), digested by DNase I (lane 2) or by RNase H (lane 3).

Lanes 4–6, purified ds hybrid circle undigested (lane 4), digested by DNase I (lane 5) or by RNase H (lane 6). Lanes 7 and 8, ssDNA references of the

ssDNA template knot and circle. Lanes 9 and 10, ssRNA references (TKj(þ ) and Cj), which are of the same size with the RNA strand in the ds hybrid

structures but a different sequence.
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research reveals the possibility of synthesizing topological
structures of other non-nucleic acid materials with the more
general DNA-templated synthesis42.

Probing RNA topoisomerase activity. One of the most significant
discoveries resulting from synthetic RNA topology is the identifi-
cation of E. coli DNA Topo III as the first enzyme possessing
RNA Topo activity21. More recently, several other DNA Topos
were also reported to have RNA Topo activity26,27. Unlike DNA
Topos, the research on RNA Topos is belated and rare, mainly due
to the lack of proper RNA Topo probes. The ssRNA knot prepared
with our junction-based method does not contain strong base
pairings, and here we show that it serves as a more sensitive probe
for RNA Topo activity compared with the previous helix-based
probe21. We tested E. coli DNA Topo I (denoted as Topo I
afterwards for clarity) for the RNA Topo assay, and in contrast to
previous report21, we find that Topo I indeed possesses RNA Topo
activity. (While we were preparing the paper, the RNA Topo
activity of Topo I was independently reported27.)

We used our ssRNA negative trefoil knot, TKj(� ) (simplified
as TKj afterwards), as the topological probe, which would be

converted to the ssRNA circle, Cj, in the presence of an
RNA Topo activity. Additionally, four RNA structures containing
strong base pairings were constructed from the same 114-nt
linear RNA strand, Lh, according to Seeman’s helix-based
method21 with minor modifications. By adding different sets of
assisting DNA strands in the synthesis, the monomeric trefoil
knot, TKh, and circle, Ch, and the dimeric Granny knot
(3�1 # 3�1 , a complex knot), GKh, and circle, C2h, were
prepared (Supplementary Figs 5 and 6). Figure 4a shows
dPAGE analyses of these structures and the electrophoretic
mobility is a function of both size and topology. Figure 4b
illustrates the topological conversion of these structures under
‘ideal’ RNA Topo conditions, that is, when the RNA strand-
passage events occur freely and lead to the most thermo-
dynamically stable topoisomers. The most stable topoisomer for
the structures free of strong base pairings (with junction-based
method) is that of a simpler topology (Cj). In contrast, the most
stable topoisomers of the helix-based structures are those
favouring maximum base pairings and consequently are those
of more complex topology (TKh and GKh respectively).
Therefore, Ch, and C2h were used as the helix-based RNA
Topo probes to be compared with the junction-based TKj (also
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Figure 4 | Comparing probes for RNA topoisomerase (RNA Topo) activity. (a) dPAGE analyses of various structures: monomeric linear (Lh, lane 1), trefoil

knot (TKh, lane 2), and circular (Ch, lane 3) RNA molecules with the sequence for helix-based topological structures; dimeric granny knot (GKh, lane 4), and

circular (C2h, lane 5) species with the same sequence; and the junction-based negative trefoil knot (TKj, lane 6). (b) Hypothetical conversions of

junction-based (between Cj and TKj) and helix-based (between Ch and TKh, and between C2h, TK2h and GKh) topological structures under ‘ideal’

RNA Topo condition, when the RNA strand-passage event can freely take place. (c–e) Topological relaxations of TKj (c), Ch (d) and C2h (e) catalysed by

increasing concentrations of WT E. coli DNA Topo I (30 min incubation at 37 �C). In c,e, the RNA probe substrates (TKj or C2h) were 80 nM and Topo I in

lanes 1–4 was 40, 80, 160 and 320 nM. In d, the RNA probe substrate (Ch) was 160 nM and Topo I in lanes 1–4 was 80, 160, 320 and 640 nM. In e, C2h is

relaxed to the trefoil knot TK2h and to GKh after one and two strand-passage events, respectively. All lanes contain the linear break-down products of the

closed RNA structures and they are annotated by LX, in which X represents X-mer.
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see Supplementary Fig. 7 for more explanation of why Ch, but not
TKh, is used as the helix-based probe).

Figure 4c shows the increasing conversion of TKj to Cj catalysed
by increasing concentrations of wild-type (WT) Topo I. Though
Topo I has RNA Topo activity, this activity is relatively low and
B28–35% of conversion was observed when the molar ratio of
Topo I to RNA is 4:1 (lane 4). Based on our previous result that
Topo I catalyses the fast approximately stoichiometric unknotting
of ssDNA knot within 30 min28, the RNA Topo activity of Topo I is
estimated to be B1/15–1/12 of the DNA Topo activity. Comparing
with TKj, Ch is a much less sensitive RNA Topo probe (Fig. 4d).
Only B3% conversion was observed when the molar ratio of Topo
I to RNA is 4:1 (lane 4). Figure 4e shows the RNA Topo assay using
probe C2h. Though C2h is more sensitive than Ch, probably due to
the more severe topological stress, it is still not as sensitive as TKj at
high enzyme-to-RNA ratios. As expected, there are two products of
the topological conversion of C2h, the larger-amount intermediate
trefoil knot TK2h (after one strand-passage event), and the smaller-
amount final GKh (after two strand-passage events). We also find
that TK2h migrates slightly faster than TKj, though both are of the
same size and topology, probably due to the different sequences or
the formation of transient base pairings within TK2h even during
migration in the dPAGE.

The observation that Ch and C2h (helix-based) are not as
sensitive probes as TKj (junction-based) can be explained by both
the Topo I binding to ssRNA and its low RNA Topo activity. Topo
I binding is expected to inhibit the formation of base pairings,
countering the thermodynamic driving force for the topological
conversion illustrated in Fig. 4b for Ch and C2h. This problem is
further exaggerated due to the low RNA Topo activity, which
necessitates a higher concentration of Topo I and ultimately leads
to even more severe protein binding. The low sensitivity of the
helix-based probe may account for the previous failure of finding
RNA Topo activity of Topo I (ref. 21). Besides, better sensitivity
would circumvent the inconvenience associated with the use of
autoradiography with 32P-labelled RNA as described in the recent
study27.

Substrate-specificity study of Topo I mutants. In the crystal
structure of the Topo I ssDNA covalent complex43, domain IV of
the enzyme provides several contacts with the DNA substrate
and is important for the binding and recognition of the substrate

(Fig. 5a). A key residue is R173, which interacts with the
� 4 position cytosine base via hydrogen bonding. Previous
studies demonstrated that the R173A point mutation displays
an B100-fold decrease in the relaxation activity of supercoiled
(sc) plasmid DNA44 and completely loses the ability to relax
the helix-based ssRNA probe27. With our junction-based
probes of both ssDNA (a previously prepared ssDNA trefoil
knot, dTKj)28 and ssRNA (TKj), the R173A mutant was
investigated regarding its relaxation activities of ssDNA and
ssRNA. Interestingly, we could still detect the unknotting activity
of R173A mutant for the ssDNA probe (Fig. 5b), but not for
ssRNA (Fig. 5c). The Y319F mutant was assayed as the negative
control, unable to unknot either dTKj or TKj due to the loss of
the active-site tyrosine residue.

To further determine the ssDNA unknotting efficiency of the
R173A mutant, the concentration-dependent topological conver-
sion assay was conducted with the ssDNA probe dTKj (Fig. 5d).
It turns out that the R173A mutant has almost identical ssDNA
unknotting activity as the WT enzyme28, both catalysing the
approximately stoichiometric topological conversion of ssDNA
knot within 30 min. The different activities of the WT enzyme
and the two mutants are summarized in Fig. 5e. This is the first
report of an amino-acid substitution in topoisomerases that
affects DNA and RNA Topo activity differently. Our results imply
that the region containing R173 in the domain IV, which was
suggested to be important for the sequence selectivity of different
Type IA DNA Topo43, plays an important role in the enzyme’s
specificity to different nucleic acid substrates, for example,
ssDNA, ssRNA and partially unwound dsDNA to different
extents (as in sc plasmid). It is also possible that the substrate
specificity can be tuned by engineering this region, and more
efficient RNA Topo or RNA-specific Topo is envisioned, which
can serve as a promising tool for the identification and the
consequent concomitant studies of RNA topology.

Topological inhibition of RT. DNA topology affects the
DNA-templated processes in the living cell, such as DNA
replication and transcription8. Our previous research showed that
in vitro the procession of various DNA polymerases can be
blocked on a knotted ssDNA template28. Analogously, we
expect that RT would also be affected by RNA topology
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Figure 5 | Activity of Topo I mutants against different substrates. (a) Crystal structure of the Topo I ssDNA covalent complex (Protein Data Bank ID:

3PX7)43. The four domains (D I–IV) of the enzyme are shown in different colours, with the two mutated residues in mutant study, R173 and Y319,
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(Fig. 6a). If a knotted ssRNA is used as the RT template, the RT
enzyme can extend the primer only to a certain point,
when the increased free energy associated with the tightening of
the diminishing ssRNA region and bending of the ds RNA–DNA
hybrid region causes the enzyme to stall. As a result,
only incomplete product of complementary DNA (cDNA) is
generated. In contrast, on the circular ssRNA template, the
RT enzyme, as a strand-displacing polymerase, could synthesize
long products containing tandem repeats of the cDNA with
a rolling-circle amplification fashion. To confirm this assumption,
we conducted the cDNA synthesis with the ProtoScript II reverse
transcriptase (NEB) on both knotted (TKj) and circular (Cj)
ssRNA templates (228 nt) and the reaction mixtures were
analysed by dPAGE (Fig. 6b). As expected, only incomplete
cDNA product (B210 nt) was generated from TKj, (lanes 1
and 2), and the rolling-circle amplification product (up to
B1,500 nt) was generated from Cj (lanes 3 and 4). The faint top
band in lane 1 and that sticking to the well in lane 3 are probably
due to the strong association of the RT enzyme with the
RNA–DNA complex, even after heat denaturation and during
dPAGE. After treatment with RNase H, these bands disappear
(lanes 2 and 4).

The cDNA products obtained were subsequently subjected to
PCR with a pair of convergent primers to amplify a 167-nt region.
Figure 6c shows that the different RT–PCR patterns from RNA of
different topologies. A single major band corresponding to the
correct target PCR product was observed for TKj (lane 1).
However, a smear containing multiple bands was observed with
Cj (lane 2) due to the tandem-repeat sequence of its cDNA.
As a result, different RT–PCR patterns have been obtained for
ssRNA knot and circle with the same sequence. This topology-
dependent RT–PCR feature can be utilized to identify closed
RNA knots from the naturally occurring circular RNAs45. Assays
of screening other proteins for RNA Topo activity are also
envisioned.

Discussion
Synthetic DNA topology plays a prominent role in the develo-
pment of DNA nanotechnology46,47. In the very beginning of the
field, most of the earliest DNA nanostructures were actually
topological targets29,48 and the design principles were gained by

building and characterizing them on the topological level. Today,
the exciting field of RNA nanotechnology is beginning to
emerge49,50. However, it is unfortunate that there was virtually
no progress on RNA topological structures after Seeman’s first
construction of RNA knot21. Synthetic RNA topology will
certainly catalyse further developments in this field. In fact,
considering RNA’s structural and functional diversity, future
work is likely to yield a plethora of design strategies and
practical applications of synthetic RNA topology.

Our current work, serving as a starting point, has greatly
expanded the richness of RNA topological structures, including
the first realization of RNA topoisomers of both positive and
negative trefoil knots, and two different forms of RNA–DNA
hybrid structures. The tools and methods that have been
demonstrated or suggested in our work can help solve several
unexplored problems associated with RNA topology. Aside from
searching for naturally occurring RNA topological structures,
whether or not there exists RNA-specific Topo is also
a fundamental question worth pursuing. Though RNA Topo
activity has been spotted in some proteins, there is to date no
evidence supporting the cellular functions of these proteins as
being directly related to the RNA Topo activity. Hypothetically,
RNA Topos may correct the misfolded RNA structures or resolve
RNA entanglements that could inhibit the normal functions.
If so, this will open new opportunities for fundamental
RNA biochemical and biophysical research, as well as for
novel therapeutic inventions.

Methods
RNA preparation. The design of the sequences followed the rule of sequence
symmetry minimization51 and was assisted by the programme CANADA52. Details
of the sequences for each topological construct are shown in Supplementary
Tables 2–5. All RNA molecules were synthesized by in vitro transcription using the
HiScribe T7 High Yield RNA Synthesis Kit from the New England Biolabs (NEB).
The corresponding DNA templates were generated by the PCR amplification of the
gBlocks gene fragments from the Integrated DNA Technologies using the Q5 Hot
Start High-Fidelity DNA Polymerase (NEB). To enhance the ribozyme cleavage,
five thermal cycles were performed after transcription, with each cycle containing
three steps: 70 �C for 10 s, 50 �C for 1 min and 37 �C for 10 min. The target RNA
molecules were then purified by dPAGE. Each purified RNA molecule was treated
with T4 polynucleotide kinase (NEB) in 1�T4 DNA ligase buffer
(NEB, 1� buffer: 50 mM Tris-HCl, 10 mM MgCl2, 10 mM DTT, 1 mM ATP,
pH 7.5 at 25 �C) at 37 �C for 6 h to remove the 20 ,30-cyclic phosphate31 and to

RT + dNTPs

nt

766
500

300
350

250

200

150

nt

1,000

1,500

500

300

400

200

RT template

TKj Cj

RNase H – + – +

M2M1 1 2 3 4 5
nt

766
500

300
350

250

200

150

nt

1,000

1,500

500

300

400

200

M2
TKj Cj

RT template

M1 1 2

a b c
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add a phosphate to 50-hydroxyl end. After the treatment, these RNA molecules
were directly used as RNA scaffolds for the topological construction.

Topological construction. The ssRNA topological constructs were prepared with
the all-in-one protocol. It involves two steps: (1) Annealing to get the assembly
complex. Equimolecular quantities (normally with a final concentration of 1 mM
each) of all strands (RNA scaffolds, DNA staples and splints) were mixed in
a buffer with the ultimate concentration of 1�T4 DNA ligase buffer (by adding
10�T4 DNA ligase buffer because the kinase-treated RNA scaffolds were in
1� buffer) and annealed from 70 to 16 �C over 4 h. (2) Ligation to seal the nicks.
To each 100 ml of reaction mixture, 4 ml of T4 RNA ligase 2 (NEB, 10 U ml� 1),
1.5 ml of 100 mM fresh DTT (NEB) and 1.5 ml of 100 mM fresh ATP (NEB) were
added and incubated at 16 �C at least 16 h for the ligation. The ds RNA–DNA
hybrid structures were prepared using the corresponding ssDNA knots as
templates, which were prepared according to previous work28. The complementary
RNA strands were designed as three substrands, which were annealed to the
ssDNA knot templates with a ratio of complementary:template¼ 1.2:1. After
the annealing, T4 RNA ligase 2 was used to seal the nicks in complementary
RNA strands.

dPAGE. Gels of different concentrations were prepared using 30% acrylamide
and bis-acrylamide solution (Bio-Rad, 29:1) with 7 M urea in 0.5�TBE buffer
(Bio-Rad) and run on a PROTEAN II xi cell (Bio-Rad) or a Mini-PROTEAN Tetra
cell (Bio-Rad). Samples were mixed 1:1 with TBE-urea sample buffer (Bio-Rad) and
heated at 70 �C for 5 min before they were loaded into the wells. Gel concentrations
were carefully chosen to ensure the proper separations between different topologies
as well as the references. For imaging, gels were stained with GelRed (Biotium), and
images were taken by Gel Doc XRþ (Bio-Rad) imaging system and processed by
software Image Lab (v.4.0.1, Bio-Rad). For purification, gels (without staining)
were visualized by UV shadowing against a fluorescent thin-layer chromatography
plate and bands of interest were cut. The bands were then eluted using the
crush-and-soak method and the eluent was purified and concentrated on
3 K Nanosep filters (Pall). The concentration of product was determined by
measuring the OD260. Optionally, the ssRNA knots and circles can be digested
by RNase R (Epicentre) after the gel extraction to remove the unavoidable
cleaved linear RNA during the purification. However, RNase R digestion is not
useful for the hybrid BR.

Digestion with various nucleases. Various nucleases were used in this work,
including Nt.AlwI (NEB), Nt.BspQI (NEB), RNase H (NEB), DNase I (NEB) and
RNase R (Epicentre). We used the reaction conditions for these enzymes as
recommended by the providers.

Topoisomerase assay. The E. coli Topo I WT and mutant proteins were
expressed and purified as described in previous study53. Commercial product
of E. coli Topo I (NEB) was also tested and its RNA Topo activity was found to be
slightly higher than that of the in-house prepared WT enzyme, probably due to the
contamination of E. coli Topo III (Supplementary Fig. 8). The reaction buffer
contained 1�NEBuffer 4 (NEB, 1� buffer: 50 mM KOAc, 20 mM Tris-acetate,
10 mM Mg(OAc)2, 1 mM DTT, pH 7.9 at 25 �C) and 100mg ml� 1 BSA. The
concentration of substrates and proteins were described in the text. Reactions
were quenched by phenol–chloroform extraction followed by ethanol precipitation.
The reactions were then analysed by dPAGE.

AFM imaging. For AFM imaging of the ds RNA–DNA hybrid structures, 30 ml of
0.1 mg ml� 1 polyornithine (Sigma) solution was added to freshly cleaved mica and
stand for 3 min to increase the binding to the structures before applying the
samples. Then the mica was rinsed with 1 ml water and dried with compressed air.
An aliquot of 5 ml of each sample (about 5 nM) in 1�TAE-Mg buffer (11 mM
MgCl2, 40 mM Tris, 20 mM acetic acid, 1 mM EDTA, pH 8.0) was applied to the
treated mica and stand for 1 min. Then the mica was rinsed with 1 ml water and
dried with compressed air. AFM imaging was performed on a Veeco MultiMode 8
AFM in the ScanAsyst in air mode using the scanayst-air tips (Veeco). The AFM
images were processed with the software Gwyddion.

RT–PCR. The ProtoScript II First Strand cDNA Synthesis Kit (NEB) was used for
the RT. Each reaction (20 ml) contained 100 nM ssRNA template (TKj or Cj) and
200 nM primer (sequence is shown in Supplementary Table 6) and followed the
recommended protocol. After RT, the enzyme was heat-inactivated at 80 �C for
5 min. Then the reactions were treated by RNase H. For the subsequent PCR,
HotStart-IT FideliTaq DNA Polymerase (Affymetrix) was used and 1 ml of each RT
mixture was added to each 50 ml of PCR reaction for amplification.

Data availability. Data supporting the findings of this study are available within
the article and its Supplementary Information Files, and from the corresponding
author on reasonable request.
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