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Abstract The human behavioral repertoire greatly

exceeds that of nonhuman primates. Anatomical special-

izations of the human brain include an enlarged neocortex

and prefrontal cortex (Semendeferi et al. in Am J Phys

Anthropol 114:224–241, 2001), but regional enlargements

alone cannot account for these vast functional differences.

Hemispheric specialization has long believed to be a

major contributing factor to such distinctive human

characteristics as motor dominance, attentional control

and language. Yet structural cerebral asymmetries, docu-

mented in both humans and some nonhuman primate

species, are relatively minor compared to behavioral lat-

eralization. Identifying the mechanisms that underlie these

functional differences remains a goal of considerable

interest. Here, we investigate the intrinsic connectivity

networks in four primate species (humans, chimpanzees,

baboons, and capuchin monkeys) using resting-state fMRI

to evaluate the intra- and inter- hemispheric coherences of

spontaneous BOLD fluctuation. All three nonhuman pri-

mate species displayed lateralized functional networks

that were strikingly similar to those observed in humans.

However, only humans had multi-region lateralized net-

works, which provide fronto-parietal connectivity. Our

results indicate that this pattern of within-hemisphere

connectivity distinguishes humans from nonhuman

primates.
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Introduction

Hemispheric specialization refers to the differential func-

tions of the left and right cerebral hemispheres. One of the

most pronounced behavioral asymmetries in humans is

hand dominance, with a majority of individuals expressing

right-handedness. Though the neuroanatomical differences

underlying this major behavioral specialization are minor

(Amunts et al. 1996), motor-task functional activation

studies using fMRI readily illustrate this behavior neuro-

physiologically (Biswal et al. 1995). Similarly, left-later-

alized language dominance is the rule in humans, to the

degree that left hemisphere lesions routinely yield aphasia,

while right hemisphere lesions do so only rarely. As in the

manual motor system, lateralized neuroanatomical corre-

lates that subserve these functional differences are rela-

tively modest (Geschwind and Levitsky 1968; Steinmetz

1996) while neurophysiological metrics acquired during

speech paradigms mirror the behavioral asymmetry (Pet-

ersen et al. 1988; Fox et al. 2000). Finally, attentional

dominance is a strongly lateralized function in humans,

with hemi-spatial neglect occurring with right hemisphere

lesions but not with left hemisphere lesions (Mesulam

1981). To our knowledge, there are no such anatomical

asymmetries yet discovered that underlie this behavioral

specialization, but functional imaging studies show this

effect quite readily (Fox et al. 2006). Collectively, these

observations illustrate that humans show extreme behav-

ioral lateralization, which parallels task activation as

imaged by fMRI. Neurobiological explanations of these

marked brain-behavioral asymmetries should be sought

with functional, rather than structural, imaging methods.

Nonhuman primates (NHP) also demonstrate hemi-

spheric specialization. As in humans, the most marked

expression of this is seen in hand dominance. Chimpan-

zees, baboons, and capuchin monkeys display hand domi-

nance for various skilled motor tasks, though at levels of

lateralization that are less pronounced than humans (Hop-

kins 2007). Anatomical asymmetries related to hand

dominance have been reported in the motor cortices of

great apes (Hopkins and Cantalupo 2004; Gannon et al.

1998; Hopkins et al. 2010) and monkeys (Phillips and

Sherwood 2005; Phillips and Thompson 2013). Behavior

and lesion studies indicate that monkeys, like humans,

preferentially use the auditory system in the left hemi-

sphere to process vocalizations (Heffner and Heffner 1984;

Poremba et al. 2004), though again at levels less lateralized

than humans. In addition, some indications suggest

functional lateralization for the production of attention-

getting vocalizations in chimpanzees which is associated

with asymmetry of language area homologs (Taglialatela

et al. 2008). To our knowledge there are no data on later-

alization of attention in NHP. Thus, there appears to have

been positive selection within the primate order for

increasing complexity of hemispheric specialization.

Task-activation networks in humans correspond to intrin-

sic functional connectivity networks (ICNs) (Biswal et al.

1995; Fox and Raichle 2007; Smith et al. 2009). Functional

connectivity can be inferred from spontaneous BOLD signal

fluctuations arising from low frequency (\0.1 Hz) brain

activity (Biswal et al. 1995; Damoiseaux et al. 2006). These

ICNs provide a means of identifying the neurophysiological

underpinnings of the brain’s functional architecture, which in

some cases reflects the underlying structural connectivity of

the brain (van den Heuvel et al. 2009) without task-engage-

ment. Furthermore, resting-state connectivity networks are

robust in sleeping infants and anesthesia, hence this connec-

tivity is intrinsic and can be examined in anesthetized NHP

(Fransson et al. 2007; Vincent et al. 2007).

In the present study, we used resting-state functional

imaging to examine the evolution of lateralized ICNs in

representative primate species: humans, chimpanzees (a

Great Ape), baboons (an Old World Primate), and capuchin

monkeys (a New World Primate). We expected to find

evidence for continuity of lateralized ICNs with increasing

complexity within the primate order. However, if hemi-

spheric specialization is unique to humans, as has been

proposed (Crow 1998), then lateralized ICNs associated

with motor function, attention, and especially language

should only appear in humans.

Methods

Subjects

We acquired 100 resting-state fMRI scans from human

participants (45 males, 55 females; age = 43.2 ± 12.1

years), five resting-state fMRI scans from chimpanzees (Pan

troglodytes, 1 male, 4 females; age = 24.8 ± 12.5 years),

24 resting-state fMRI scans from baboons (Papio hamadryas

spp., 14 females; age = 12.7 ± 4.5 years) and 25 resting-

state fMRI scans from capuchin monkeys (Cebus apella, 3

males, 5 females; age = 9.2 ± 7.9 years). Human imaging

data were provided by the Genetics of Brain Structure and

Function study (structural MRI—Kochunov and Davis

2010; resting-state fMRI—Glahn et al. 2010). Humans were

instructed to relax with eyes open during scans. Nonhuman

primates were anesthetized with isoflurane (1–2 %) for the

purpose of restraint and to keep the subjects immobilized

during the collection of the brain images. Subjects remained
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anesthetized throughout the MRI procedure while a veteri-

narian continually monitored respiration rate, heart rate, and

oxygen consumption. The Institutional Review Board and

Institutional Animal Care and Use Committee of the Uni-

versity of Texas Health Science Center at San Antonio and/

or the Texas Biomedical Research Institute (San Antonio,

Texas) approved the research.

Image acquisition

All MRI studies were performed on a 3T Siemens TIM TRIO.

Gradient echo EPI was used for BOLD resting-state images

with the following parameters: TR/TE = 3000/30 ms. In

NHPs, images were acquired with matrix = 124 9 124, field

of view (FOV) = 12.4 9 12.4 cm (1 9 1 9 1.9 mm reso-

lution), and 27 slices for 30 min; in human studies, images

were acquired with matrix = 128 9 128, FOV = 22 9

22 cm (1.7 9 1.7 9 3 mm resolution), and 43 slices for

8.5 min. Each subject underwent high-resolution T1-weigh-

ted 3D Turbo-flash imaging with an adiabatic inversion con-

trast pulse and the following parameters: TE/TR/TI = 3.04/

2100/785 ms, flip angle = 13�, and 800 micrometer isotropic

voxel resolution. These images were subjected to retrospec-

tive motion correction to achieve optimal gray/white matter

contrast (Kochunov and Davis 2010).

Image pre-processing

Analyses were performed using The Oxford Center for

Functional Magnetic Resonance Imaging (FMRIB) soft-

ware, FSL (www.fmrin.ox.ac.uk/fsl). Standard image pre-

processing for functional MRI data was employed. Time-

series data were skull-stripped using automated brain

extraction software (Smith 2002) and motion corrected

(Jenkinson et al. 2002). Images were then band-passed

temporal filtered at 0.01–0.08 Hz (fslmaths). The resulting

data were spatial smoothed with either a 6 mm FWHM

(capuchin monkeys and baboons) or an 8 mm FWHM

(chimpanzees and humans) Gaussian kernel. Individual

time-series data were then registered to its own high-res-

olution T1-weighting anatomical image and further regis-

tered to a standard template brain. Both co-registration

steps use affine linear registration with 12 degrees-of-

freedom. Human data were co-registered to an MNI-152

atlas brain, and data of NHPs were co-registered to brain

study specific templates created by averaging anatomic

images of each species.

Independent component analysis

Intrinsic connectivity networks (ICNs) were derived using

temporal-concatenation independent component analysis

(Beckmann and Smith 2004), which is a well-established

and robust data-driven group-level functional connectivity

approach (Smith et al. 2009). To facilitate comparison of

results herein with previous publications and to compare

ICNs across species, the dimensionality of all ICA analyses

was 20. The identification of ICNs was based on visual

inspection of spatial similarity. In addition, to confirm the

results were not biased due to difference in sample sizes

(one hundred (8.5 min) datasets in human vs. five to

twenty-five (30 min) datasets in NHPs), the same func-

tional connectivity analysis using TC-ICA was applied for

a subset of human subjects (N = 18, 18 (8.5 min) data

were chose to resemble 5 (30 min) worth of data in NHPs).

Spatially similar ICNs were found in this subset of data.

Lateralization index

Lateralization index (LI) was calculated using equation:

LI = (Left – Right)/(Left ? Right), where Left and Right

represents voxel counts from the region-of-interests (ROIs)

defined within the left and right hemisphere of each ICN

(Z [ 3), respectively. LI was derived from all primate spe-

cies and plotted in Fig. 4. A LI larger than 0 is considered

left-lateralized, while a LI\0 is considered right-lateralized.

A |LI| C 0.2 is typically considered as strongly lateralized.

Homotopic connectivity analysis

Studies have proposed that the strength of homotopic

connectivity as an index for the tendency of hemispherical

asymmetry (Zuo et al. 2010). Homotopic connectivity

(termed voxel-mirrored homotopic connectivity in early

studies) was calculated between every pair of symmetric

inter-hemispheric voxels. Specifically, we calculated the

Pearson’s correlation coefficient between the time series of

each voxel and its symmetric inter-hemispheric voxel. The

resulting correlation coefficients were then Fisher z-trans-

formed. Individual z-maps representing the strength of

homotopic connectivity were averaged by subject within

each group and normalized by dividing each voxel by the

average hemisphere value.

Results

We computed the homotopic functional coherences and

demonstrated similar spatial patterns among humans,

chimpanzees, baboons, and capuchin monkeys (Fig. 1). This

suggests that the overall distributions of functional connec-

tivity are similar across some primate species (Stark et al.

2008). Furthermore, resting-state based functional connec-

tivity in humans and anesthetized NHP is broadly consistent

and appropriate for finer grained analyses of specific net-

works (Rilling et al. 2007; Hutchison et al. 2011).
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Most of the ICNs, in both humans and NHP, were not

lateralized. Several spatially similar ICNs, albeit with minor

differences, were found across primate species and pertained

to basic sensory-motor functions (Fig. 2). Visual and

somatosensory ICNs, including the occipital cortex and pre-

and post-central sulcus, respectively, were robust in all pri-

mate species. In addition, the default mode network

(DMN)—which encompasses the anterior and posterior

cingulate cortex, the medial and lateral superior parietal

lobe, and the medial prefrontal cortex—was spatially similar

in all species. Furthermore, each group demonstrated a

strikingly similar split of the DMN into two separate anterior

and posterior components (Fig. 2).

We found the left- and right- asymmetric ICNs generally

reported in humans to be present across species. Contrary to

expectation, these ICNs were strikingly similar in all species,

suggesting that functional laterality emerges early in the pri-

mate lineage (Fig. 3). Laterality indices indicated significant

lateralization of these ICNs in all species (Fig. 4). This

strongly argues against hemispheric specialization as a unique

feature of humans. However, an unexpected and notable dif-

ference existed in humans, where two strongly left-lateralized

Fig. 1 Inter-hemispherical

synchrony of spontaneous brain

activity. The strength of inter-

hemispherical coherences is

shown. The higher degree of

coherence indicates a higher

inter-hemispherical connectivity

and coordination. The

correspondence of the maps is

proof-of-concept that the

resting-state data contributing to

the findings herein is broadly

similar appropriate for cross-

species comparison

Fig. 2 Bilateral intrinsic

connectivity networks across

primate species. ICNs from the

four primate species that

correspond to basic bottom-up

processing. The visual, sensory-

motor, auditory, and cerebellar

networks incorporate the input

of information from the

surround and the output of

motor plans. The default mode

network is associated with self-

referential, non-directed

processing. These ICNs were

symmetric and most similar

across species
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and one right-lateralized ICN were consistently shown to

include frontal and parietal components (Damoiseaux et al.

2006; Smith et al. 2009). In NHP, the frontal and parietal

components were split into separate lateralized ICNs.

Discussion

Our results provide compelling evidence that functional

laterality is phylogenetically conserved in primates. As in

humans, functional laterality is far more profound than

anatomical asymmetry. Furthermore, the notable difference

in functional laterality between humans and NHP is fronto-

parietal connectivity, where multi-region (inter-lobar) net-

works existed only in humans. While functional laterality

alone is not a distinguishing characteristic of human brains,

we suggest the observed pattern of multi-region functional

connectivity is. Passingham (2008) postulated that it is the

connections of neurons, particularly those in association

cortices, that account for the distinguishing mental char-

acteristics of humans.

When not engaged in goal-directed behavior, sponta-

neous fluctuations in brain activity give rise to coherent and

structured ICNs that are nearly identical to networks

engaged during cognitive or behavioral tasks (Smith et al.

2009; Biswal et al. 2010). Given this high degree of cor-

respondence between rest and task, the behavioral corre-

lates of human networks are reliable and have been

assessed using previously published ICA of task-based data

(See Laird et al. 2011 for detailed descriptions of each

human network). In contrast, the default mode putatively

supports self-referential or non-directed cognitive pro-

cessing (Gusnard et al. 2001) and served as a benchmark in

two regards for the current report. First, NHP subjects were

anesthetized and humans were not. It is possible that the

lateralized multi-region hemispheric, inter-lobar connec-

tivity is present in NHPs yet masked by anesthesia. How-

ever, as the DMN—which has inter-lobar connectivity—

was readily and uniformly detectable in all species, it was

deemed unlikely that a lateralized functional network with

inter-lobar connectivity would be masked by anesthesia.

Second, consistency of default mode networks across

species was used to affirm the validity of making group

comparisons in groups of varying size. Because these

default mode based benchmarks were met, implications of

task-associated networks were assessed.

ICNs underlying basic input of sensory information

from the surround and output of simple motor plans were

extremely homogenous across humans and NHPs. The

visual ICN was strongly linked to simple visual stimuli

such as flashing checkerboards. This sensorimotor ICN was

associated with action and somesthesis corresponding to

hand movements, including tasks such as finger tapping,

grasping, pointing, and electrical and vibrotactile stimula-

tion. The auditory ICN was related to audition, including

tone and pitch discrimination tasks. The cerebellar ICN

was associated with action and somesthesis, including both

overt and covert object recognition even though no other

language or speech tasks were associated with this region.

Indeed, the cross-species congruence of ICNs and behav-

ioral repertoire in bottom-up processing is clear.

In contrast, human ICNs responsible for higher aspects

of cognition (attention and language) required inter-lobar

fronto-parietal connectivity, while NHP ICNs included

Fig. 3 Unilateral intrinsic connectivity networks across primate

species. Left- and right-lateralized ICNs that correspond top-down

cognitive functionality. In humans, the left lateralized fronto-parietal

network is associated with speech and language processing, while the

right lateralized fronto-parietal network is associated with reasoning,

attention, inhibition and working memory. These networks are

confined to a single frontal node in non-human primates
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only the frontal subcomponent. The left-lateralized fronto-

parietal network strongly mapped to a host of semantic,

phonologic, and orthographic language tasks such as word

generation and covert reading, as well as working and

explicit memory tasks, such as paired associate recall, cued

encoding and recognition. The right-lateralized fronto-

parietal ICN was associated with multiple cognitive pro-

cesses, such as reasoning, inhibition, and memory. More-

over, top-down processing that is thought to be exclusive to

humans evidently requires intrinsic connectivity of multi-

ple brain regions.

Because our findings ultimately reflect connectivity,

white matter tracts are surely involved. The superior lon-

gitudinal fasciculus, a group of white matter fibers located

in the frontal, parietal and temporal regions provides con-

nectivity within the fronto-parietal networks. Recent dif-

fusion tensor imaging (DTI) and dissection studies revealed

three different components of this perisylvian tract, which

connect to specific cortical areas within the frontal, parietal

and temporal lobes (Martino et al. 2012). In humans, this

tract and working memory performance share genetic

influence (Karlsgodt et al. 2010). Thiebaut de Schotten

et al. (2012) reported major differences in the arcuate

fasciculus, the inferior fronto-occipital fasciculus, and the

inferior aspect of the superior longitudinal fasciculus.

Another DTI study revealed differences across humans,

chimpanzees, and macaques in the arcuate fasciculus, the

white matter tract connecting the frontal and temporal

cortices, which is associated with language in humans

(Rilling et al. 2008). Our results are in strong support of

their overall premise, that similarities suggest preserved

functions across anthropoids while connectivity differences

indicate human specific functional specialization. We build

upon these findings by demonstrating that the observed

structural connectivity has multi-regional, lateralized

physiological properties and is correlated with human

specific behavior.
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Fig. 4 Lateralization Indices

(LI). Lateralization indices (LI)

for ICNs illustrated in Figs. 2

and 3. ICNs are considered

lateralized when the LI is larger

than 0.2 or lower than -0.2.

While separate frontal and

parietal networks were

lateralized in all four groups

(not shown), the fronto-parietal

human networks were the only

multi-region lateralized ICNs in

any of the species
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