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Abstract

The luminous bacterial symbionts of anomalopid flashlight fish are thought to be obligately dependent on their hosts for growth and

share several aspects of genome evolution with unrelated obligate symbionts, including genome reduction. However, in contrast to

mostobligate bacteria, anomalopid symbionts have anactive environmental phase thatmay be important for symbiont transmission.

Here we investigated patterns of evolution between anomalopid symbionts compared with patterns in free-living relatives and

unrelated obligate symbionts to determine if trends common to obligate symbionts are also found in anomalopid symbionts. Two

symbionts, “Candidatus Photodesmus katoptron” and “Candidatus Photodesmus blepharus,” have genomes that are highly similar

in gene content and order, suggesting genome stasis similar to ancient obligate symbionts present in insect lineages. This genome

stasis exists in spite of the symbiont’s inferred ability to recombine, which is frequently lacking in obligate symbionts with stable

genomes.Additionally,weusedgenomecomparisonsandtestsof selectionto inferwhichgenesmaybeparticularly important for the

symbiont’s ecology compared with relatives. In keeping with obligate dependence, substitution patterns suggest that most symbiont

genes are experiencing relaxed purifying selection compared with relatives. However, genes involved in motility and carbon storage,

which are likely to be used outside the host, appear to be under increased purifying selection. Two chemoreceptor chemotaxis genes

are retained by both species and show high conservation with amino acid sensing genes, suggesting that the bacteria may actively

seek out hosts using chemotaxis toward amino acids, which the symbionts are not able to synthesize.

Key words: Photodesmus, bioluminescent symbiosis, genome reduction, symbiont transmission, genome stability.

Introduction

Most bacterial symbionts whose growth occurs mainly within

their hosts (referred to here as being obligately dependent on

hosts for growth, or simply obligately dependent) are vertically

transmitted to new host generations and are frequently phys-

ically restricted to intracellular habitats (Moran et al.

2008; Bright and Bulgheresi 2010; Sachs et al. 2011).

The bacterium “Candidatus Photodesmus katoptron”

(Gammaproteobacteria: Vibrionaceae), the luminous symbi-

ont of the anomalopid flashlight fish Anomalops katoptron

(Beryciformes: Anomalopidae), has many genomic features

in common with unrelated obligately dependent symbionts,

such as insect endosymbionts, including genome reduction,

gene content similarities, and an elevated evolutionary rate

(Hendry and Dunlap 2011; Hendry et al. 2014). In contrast

to endosymbionts, however, anomalopid symbionts are extra-

cellular and have an active environmental phase (Kessel 1977;

Haygood et al. 1984; Haygood 1993). “Ca. Photodesmus

katoptron” has lost genes for metabolism of carbohydrates

other than glucose and for synthesis of most amino acids and

is therefore unlikely to establish free-living populations in the

environment (Hendry et al. 2014). However, symbionts are
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continually released into seawater, where they remain lumi-

nous for a few to several hours and are motile (Kessel, 1977;

Haygood et al. 1984; Haygood, 1993; Hendry and Dunlap,

2014). It is not known how long these cells persist or how they

are acquired by new hosts, as anomalopid symbionts are

unculturable and difficult to study, but it is clear that the life-

style of these bacteria is unusual compared with most known

obligate symbionts and free-living relatives (Herring and Morin

1978; Hastings and Nealson 1981; Haygood and Distel 1993).

No indication of direct parent to offspring vertical transmis-

sion of anomalopid symbionts has been found, but genomic

and behavioral evidence suggests that the symbionts may be

transmitted pseudovertically, from adults to larval fish within a

population, after release into the environment (Haygood

1993; Haygood and Distel 1993; Hendry et al. 2014).

The two fish hosts from this study, A. katoptron and

Photoblepharon palpebratus, co-occur for much of their

range (Mccosker and Rosenblatt 1987), but appear to consis-

tently harbor specific symbiont species, “Ca. Photodesmus

katoptron” and “Ca. Photodesmus blepharus,” respectively

(Haygood and Distel 1993; Hendry and Dunlap 2014). These

fishes, which are strictly nocturnal, can sometimes be found at

night together in groups near the ocean surface (Morin et al.

1975; Wolfe and Haygood 1991; Hendry and Dunlap 2014).

When schooling in groups, the fish use bacterially produced

light from two under-eye light organs to hunt prey and avoid

predators (Harvey 1922; Morin et al. 1975; Herring and Morin

1978). It has been hypothesized that aggregation of adults,

and possibly larval fish, particularly in caves and crevices during

the day, has facilitated the convergent evolution of genome

reduction and obligate host dependence in anomalopid sym-

bionts, which are nested within a bacterial family containing

many free-living, facultatively symbiotic, and host-associated

bacteria with horizontal transmission (Haygood 1993; Hendry

and Dunlap 2011; Hendry et al. 2014).

In addition to genomic reduction and the loss of redundant

genes, findings from physically host-restricted, vertically trans-

mitted symbionts have shown that population bottlenecks be-

tween host generations and small effective population sizes

increase the effect of genetic drift and cause higher rates of

evolution in symbiont populations compared with those of

free-living relatives. Selection may also be less effective in sym-

biont populations, as suggested by fixation rates of deleterious

mutations (Moran 1996; Wernegreen and Moran 1999;

Woolfit and Bromham 2003; Wernegreen and Funk 2004).

Although selection in obligate symbionts is thought to be rel-

atively weak, accumulation of deleterious mutations can be

costly. Genes that have changed function or are important for

an obligately symbiotic lifestyle may be under increased puri-

fying selection in symbionts compared with orthologs of these

genes in free-living relatives (Fares et al. 2002; Toft and Fares

2008). Despite this high rate of evolutionary change, some

ancient symbiont lineages are thought to eventually have

become relatively static in gene content and genome

structure. For example, the aphid symbiont Buchnera aphidi-

cola has codiverged with diverse aphid hosts, diverging at the

nucleotide sequence level but retaining a highly conserved

gene content and order (Tamas et al. 2002; McCutcheon

and Moran 2012). Several causes for this pattern have been

suggested, such as limited potential for recombination, loss of

mobile genetic elements, or increased selection on the remain-

ing genes to conserve their function (McCutcheon and Moran

2012). The loss of recombination ability has been presented as

a likely cause of genome stability (McCutcheon and Moran

2012), but conflicting patterns have been found in different

symbionts (Sloan and Moran 2013). Ideally more data from

multiple unrelated symbiont lineages could possibly help re-

solve this question.

The independent evolution of obligate host dependence in

anomalopid symbionts presents an opportunity to confirm

broad evolutionary patterns of symbiont evolution, such as

genome stasis and reduced selection, within a distinct

system from commonly studied insect symbionts.

Furthermore, it may be possible to connect gene content

and evolutionary patterns within anomalopid symbionts to

their lifestyle of obligate host dependence with an active en-

vironmental phase. For instance, by investigating patterns of

gene retention in an obligately dependent stinkbug symbiont

with environmental transmission, Kenyon et al. (2015) were

able to infer which genes were likely to be involved in envi-

ronmental persistence of the symbiont. In the A. katoptron

symbiont, genes involved in chemotaxis and motility, which

are typically lost in obligate symbionts, have been largely re-

tained, suggesting that they are important for the ecology of

the bacterium and might be involved in finding new hosts, as

seen in other obligate and facultative symbionts (Toh et al.

2006; Mandel et al. 2012; Hendry and Dunlap 2014; Hendry

et al. 2014). To infer evolutionary patterns among anomalopid

symbionts, we generated a de novo genome sequence for a

second anomalopid symbiont, “Ca. Photodesmus blepharus”

for comparison with a second de novo sequenced A. katop-

tron symbiont from the same location. Additionally, we used

these comparisons to infer which types of genes may be im-

portant for the anomalopid symbiont’s symbiotic lifestyle or

environmental persistence.

Materials and Methods

Material

Symbiont DNA was obtained from anomalopid flashlight fish

species A. katoptron and P. palpebratus collected in coastal

waters in the Republic of Vanuatu in 2011 and DNA was

extracted as in Hendry and Dunlap (2011). Bacteria were re-

leased from light organs by squeezing into sterile buffered

artificial seawater and bacterial cells were pelleted by centri-

fugation and used for DNA extraction. For the P. palpebratus

symbiont, four specimens (Ppalp.1 to Ppalp.4) were collected
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and DNA from one light organ of each specimen was com-

bined for sequencing. For the A. katoptron symbiont, eight

specimens (Akat.10 to Akat.18) were combined. The genome

sequences resulting from these samples are technically

metagenomic; however, anomalopid symbionts are monoclo-

nal within a host and show little genetic polymorphism be-

tween hosts (Hendry et al. 2014; Hendry and Dunlap 2011).

Previous work, including polymerase chain reaction (PCR) am-

plification and sequencing of multiple loci from different hosts

at one location (Hendry and Dunlap 2011) and comparisons of

whole genome sequences from individuals across a wide geo-

graphic range, substantiate this pattern (Hendry 2012). Pooled

symbiont genome samples from the A. katoptron and

Photoblepharon blepharus individuals used in this study

were found to have single nucleotide polymorphisms (SNPs)

at a rate of approximately 0.21/kilobase and 0.55/kilobase,

respectively (supplementary table S1), making their genomic

diversity similar to bacteria considered genetically monomor-

phic (Achtman 2008) (supplementary fig. S1). Furthermore,

symbiont samples from across the geographic range of A.

katoptron were found to have only 10 SNPs in 9,591 bases

(PCR amplified from 16 coding genes, four rRNA and tRNA

genes, and five noncoding spacer regions) (Hendry 2012). A

similar pattern is found in some insect endosymbionts (Funk

et al. 2001; Abbot and Moran 2002). For consistency, as it is

the convention in insect systems for obligate symbiont ge-

nomes to be generated using low diversity DNA from multiple

host individuals, we will refer to the sequences reported here

as genomes rather than metagenomes.

Genome Sequencing and Annotation

Sequencing was done at the University of Michigan DNA

Sequencing core on an Illumina HiSeq 2000 machine.

Illumina reads of 100 bp in length were assembled in Velvet

1.1.06 (Zerbino and Birney 2008). For each species, six inde-

pendent assemblies with a minimum read coverage of 45x

were generated using subsets of the total reads. At this cov-

erage minimum no host sequence contigs (based on BLAST)

were recovered in the assembly. The SeqMan Pro 9.05 soft-

ware by DNASTAR was then used to combine contigs from

the assemblies to check for sequence consistency and to gen-

erate consensus sequences. Glimmer 3.02 (Delcher et al.

2007) was used to predict open reading frames (ORFs)

within both assemblies, and ORFs were annotated by BLAST

comparison with the Swiss-Prot and UniRef 90 databases

(December 2011 releases). Predicted ORFs were thrown out

if they were <100 amino acids in length and had <40%

identity to database protein sequences. Predicted ORFs with

<100 amino acids but>40% identity over at least 50% of the

length of orthologs were retained. Predicted ORFs were cate-

gorized as pseudogenes if they were above this threshold but

contained premature stop codons (a stop codon resulting in a

gene<66% the length of orthologs). Homologs between the

two symbiont genomes were identified with reciprocal best

BLAST comparisons and the same identity and length cutoffs

described above.

Both assemblies consist of several large (19,935–452,950

bp in length for “Ca. Photodesmus katoptron” and 10,794–

244,971 bp in length for “Ca. Photodesmus blepharus”) con-

tigs containing protein coding genes (nine contigs in “Ca.

Photodesmus katoptron” and 19 in “Ca. Photodesmus

blepharus”) and smaller contigs containing tRNA and rRNA

genes. Additionally, in both assemblies, plasmid sequences

were recovered. These were determined to be circular in the

assembly but this was not confirmed with PCR. The high read

depth (average coverage = 181� for “Ca. Photodesmus

katoptron” and 197� for “Ca. Photodesmus blepharus”) in-

dicates that each genome is likely fully represented in each

assembly. Furthermore, the assembly of the “Ca.

Photodesmus katoptron” genome presented here is similar

in number of genes to the previously reported complete as-

sembly (916 genes vs. 903, respectively).

Molecular Analysis

For comparisons of synteny, the predicted genome annota-

tions of each symbiont were analyzed with the SynMap tool in

CoGe using default parameters (Lyons et al. 2008). We also

performed analyses on the following Vibrio relative pairs:

Vibrio splendidus ATCC 33789 and Vibrio mimicus MB-451,

Vibrio vulnificus CMCP6 and Vibrio harveyi 1DA3, Vibrio cho-

lerae O395 and Vibrio parahaemolyticus RIMD 2210633,

V. harveyi 1DA3 and V. mimicus MB-451, V. vulnificus

CMCP6 and V. parahaemolyticus RIMD 2210633, and

V. splendidus ATCC 33789 and V. cholerae O395. These

taxa pairs were chosen because they are of similar phyloge-

netic distance apart at neutral loci as the two “Ca.

Photodesmus” symbionts (Hendry and Dunlap, 2011). We

then summed the total length of all syntenic blocks for each

comparison and divided by the total genome size. To test a

molecular clock hypothesis and investigate evolutionary rate in

the anomalopid symbionts compared with free-living relatives,

we used Tajima’s relative rate test (Tajima 1993) implemented

in Mega7 (Kumar et al. 2016). Seven housekeeping gene loci

with conserved function were chosen as in Hendry and

Dunlap (2014) and concatenated for 7,285 bp. Sequences

from one anomalopid symbiont and a free-living close relative

(V. splendidus ATCC 33789) were compared with a free-living

outgroup species (Aliivibrio fischeri ATCC 7744T). This test

should tend to give a conservative assessment of relative

rates as it will underestimate multiple substitutions, particularly

in fast-evolving taxa.

To produce estimates of changes in purifying selection

compared with relatives, SynMap was used to identify ortho-

logous coding loci and estimate dN and dS (nonsynonymous

and synonymous substitution) values. We used default param-

eters with the exception that the maximum distance between

Genome Evolution in Flashlight Fish Symbionts GBE
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matches was increased to 4,000 genes to maximize the

number of matches and any duplicate matches were

thrown out. For substitution estimates, SynMap implements

the default likelihood-based (codeml) package adapted from

the program PAML (Yang 2007). This analysis was run for the

anomalopid symbionts as well as the pairs of taxa listed above

for comparison of synteny. Comparisons between “Ca.

Photodesmus katoptron” and the six relative genomes were

used to identify homologs, and only loci identified in both

symbionts and at least three of the relative pairs were used

in analysis (720 loci in total).

To identify changes in substitution patterns compared with

relatives, we determined the ratio of nonsynonymous to syn-

onymous substitutions (o) for the symbiont pair (oPk-Pp) and

each relative pair. A value of change in purifying selection in

the symbionts compared with relatives, R, was estimated by

dividing each ratio (R = oPk-Pp/orelative1-relative2). In these anal-

yses, a value of R > 1 indicates that the symbiont locus is

experiencing relaxed selective constraints compared with non-

symbiotic relatives, R = 1 suggests no change in selection, and

R < 1 indicates increased purifying selection compared with

relatives. For each locus we determined the mean R value for

symbionts compared with the three to six possible pairs of

relatives and used the range of values to identify loci for

which the mean was greater or less than 1 by two standard

deviations. Loci with mean R values significantly>1 were con-

sidered to be under relaxed selection and those with values

significantly <1 were considered to be under increased puri-

fying selection compared with relatives. We note that this is

likely to be a conservative estimate of increased purifying se-

lection, as saturation at synonymous sites, which is common in

obligate symbionts, would tend to inflate oPk-Pp and therefore

increase R (Moran 1996; Toft and Fares 2008).

Analysis of Methyl-Accepting Chemotaxis Protein Genes

We sought to determine the possible function of the methyl-

accepting chemotaxis protein (MCP) genes present in the

anomalopid symbiont genomes, as these genes are responsi-

ble for sensing chemoattractants and could therefore be used

to find hosts. All MCP genes found in anomalopid symbionts

and their free-living relatives V. harveyi 1DA3, V. splendidus

ATCC 33789, Vibrio orientalis CIP102891, V. cholerae O395,

V. vulnificus CMCP6, V. parahaemolyticus RIMD 2210633,

Photobacterium profundum SS9, A. fischeri MJ11, and A.

fischeri ZF211 were identified in the IMG DOE database

(Markowitz et al. 2012) and aligned by protein sequence in

ClustalW2 (Larkin et al. 2007). Only genes with >40% se-

quence identity to anomalopid symbiont MCP genes, over

at least 40% of the gene length, were included. A Bayesian

tree was generated in Mr. Bayes (Huelsenbeck and Ronquist

2001) using a fixed rate amino acid model run for 200,000

generations. We found that some anomalopid symbiont MCP

genes show sequence similarity to MCP genes known to sense

amino acids, and so we sought to verify this by searching for

ligand binding sequences. Each of the MCP sequences in-

cluded in the tree were searched for a conserved amino acid

ligand binding sequence using the sequence identified in V.

vulnificus (Nishiyama et al. 2012) and was considered to have

the conserved binding site if the sequence matched at 9/17

amino acids.

Results and Discussion

Genome Features

At 1.11 Mb (megabases), the de novo sequenced genome of

“Ca. Photodesmus blepharus,” the second anomalopid sym-

biont genome to be sequenced, is reduced by approximately

80% compared with the average genome size of free-living

relatives (Hendry et al. 2014). The genome assembly yielded

33 contigs, including two circular plasmids, with an average

coverage depth of 197�. The assembly appears to be frag-

mented at multi-copy loci such as rRNA genes. The genome is

predicted to contain 984 functional genes, 923 protein coding

genes, 46 tRNA genes, and 15 rRNA genes in 5 operons

(based on coverage depth compared with single-copy

genes), and 23 pseudogenes. The predicted ORFs include

genes for all pathways considered necessary for life and pre-

dicted to indicate completeness of genome coverage in the

previously sequenced anomalopid symbiont genome; the

“Ca. Photodesmus blepharus” assembly therefore appears

to fully represent the genomic content of this bacterium

(Raes et al. 2007; Hendry et al. 2014).

The genome of “Ca. Photodesmus katoptron” from

Vanuatu is highly similar to the previously sequenced and an-

notated genome for this symbiont species from the Philippines

(Hendry et al. 2014). The genome assembly yielded 18 contigs

including one circular plasmid. This assembly is the same size

(1 Mb) and contains a similar number of predicted functional

genes, 916 compared with 903, as in the previously published

assembly of “Ca. Photodesmus katoptron.” These include

873 protein coding genes, 35 tRNA genes, 15 rRNA genes

in 5 operons, and 13 pseudogenes. The gene differences be-

tween genome assemblies for “Ca. Photodesmus katoptron”

are mostly copy number disparities and likely result from dif-

ferences in the methods and sequencing technology used

rather than meaningful geographic differences. This new as-

sembly does not change previous conclusions involving

genome reduction or metabolic capabilities in this species.

Genome Similarity between Symbionts

The “Ca. Photodesmus blepharus” genome, like “Ca.

Photodesmus katoptron,” is severely reduced in amino acid

synthesis and energy metabolism genes. The “Ca.

Photodesmus blepharus” genome has only four of the

many amino acid synthesis genes missing from the “Ca.

Photodesmus katoptron” genome, and it lacks one amino

Hendry et al. GBE
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acid synthesis gene present in the “Ca. Photodesmus

katoptron” genome (supplementary tables S1 and S2). Both

symbionts appear to be unable to synthesize most amino acids

and we surmise therefore that they acquire amino acids from

their host fishes. Similarly, “Ca. Photodesmus blepharus” ap-

pears to be restricted to glucose as a carbon/energy source

and has only two genes involved in energy metabolism not

found in the “Ca. Photodesmus katoptron” genome (supple-

mentary table S1). Together these findings suggest that both

symbionts are obligately dependent on their hosts for growth.

The gene content of the two anomalopid symbiont ge-

nomes is highly similar. The symbionts share orthologs for

834 protein coding genes (90.4% and 96.3% of “Ca.

Photodesmus blepharus” and “Ca. Photodesmus katoptron”

gene content, respectively). Furthermore, although these ge-

nomes are not closed, the assembled contigs are generally

similar in gene order (fig. 1). The two genomes share more

syntenic blocks, areas of chromosomes with homology and

shared gene order, relative to genome size, than is typical of

Vibrio genomes. “Ca. Photodesmus katoptron” and “Ca.

Photodesmus blepharus” share 79.3% and 71.4% of their

genomes in syntenic blocks compared with six pairs of Vibrio

relatives, which share an average of 50.1% of genomic se-

quence in syntenic blocks (values range from 37.1% to

61.1%). Genome reduction in the symbionts’ common ances-

tor and subsequent low rates of genomic rearrangement could

account for this pattern. The high similarity in gene content and

gene order is consistent with genome stasis, as found in long-

term intracellular symbionts such as Buchnera, which appears

to have a pattern of genome stability over 50 million years of

evolution (Tamas et al. 2002; McCutcheon and Moran 2012).

Genome Divergence between Symbionts

Although the gene content of the genomes of “Ca.

Photodesmus katoptron” and “Ca. Photodesmus blepharus”

is more similar than is typical of closely related free-living

Vibrionaceae species, at the nucleotide sequence level the

two symbionts appear to be evolving at a faster rate than

free-living close relatives. The anomalopid symbionts are

both evolving significantly faster than a free-living close rela-

tive (�2 (1) = 295.79, P < 0.00001; �2 (1) = 285.59, P <

0.00001 for “Ca. Photodesmus katoptron” and “Ca.

Photodesmus blepharus,” respectively), compared with a dis-

tant free-living relative outgroup taxon in Tajima’s relative rate

test (Tajima 1993). These results support the previous finding

that “Ca. Photodesmus” is evolving at a faster rate than is

typical for Vibrionaceae species (Hendry and Dunlap 2011),

and are consistent with high levels of genetic drift owing to

an obligate host association.

The “Ca. Photodesmus blepharus” genome contains 89

unique, species-specific genes and the “Ca. Photodesmus

katoptron” genome contains 32 unique genes (supplemen-

tary tables S2 and S3). The majority of these genes are also

present in other Vibrionaceae genomes, which suggests that

they have been retained in one symbiont species but not the

other. The species-specific genes represent multiple functional

categories and may be the result of stochastic gene loss dif-

ferences during genome reduction since the split of the two

species, or they could relate to ecological differences. In “Ca.

Photodesmus blepharus,” all plasmid genes (15 total between

both plasmids, excluding the parA and repA plasmid replica-

tion genes) are unique to that symbiont, whereas “Ca.

Photodesmus katoptron” has 4 out of 11 unique plasmid

genes. These unique plasmid genes may contribute to pheno-

typic differences between the symbionts; however, they are

largely of unknown function and it is therefore difficult to infer

their purpose. We focus here on genes for which entire path-

ways or multiple genes involved in a function have been dif-

ferentially retained between the symbionts, as these genes are

less likely to have been retained by chance.

A significant number of unique “Ca. Photodesmus

blepharus” genes (22 genes; 24.7% of unique “Ca.

Photodesmus blepharus” genes compared with 16.7% of

the total “Ca. Photodesmus blepharus” gene content, z-

ratio proportion test P = 0.0324) are involved in functions

that may be more important outside of the host than

within. These functions include the synthesis of cell wall com-

ponents, chemotaxis and motility, and the metabolism of gly-

cogen (supplementary table S2). Cell wall components,

including cell surface proteins, and chemotaxis and motility

genes were previously hypothesized to be necessary for an

environmental phase for anomalopid symbionts, as genes of

these kinds are frequently lost in host-restricted symbionts

(Hendry et al. 2014). Genes required for metabolism of glyco-

gen, primarily a carbon storage molecule, are also typically lost

in obligate bacteria, presumably because the host supply of

carbon is steady (Henrissat et al. 2002). Electron micrographs

of anomalopid symbionts have identified what appear to be

poly-3-hydroxybutyrate (PHB) granules, another carbon stor-

age molecule, inside cells (Kessel 1977). This observation leads

to the hypothesis that carbon storage during host association

may prepare the bacteria to survive outside the host where

carbohydrate sources may not be plentiful (Haygood 1993).

Genes required for PHB synthesis (phaB and phaC) are found

in the genomes of both anomalopid symbionts, which indi-

cates that synthesis of PHB is likely in both species. Because

“Ca. Photodesmus blepharus” may be able to synthesize and

break down glycogen for carbon storage, in addition to PHB,

this species may be better able to survive in seawater than

“Ca. Photodesmus katoptron,” possibly explaining the reten-

tion of these genes in the genome. Consistent with this pos-

sibility, cells of the P. palpebratus symbiont remain luminous

for longer periods in seawater after release from the host

(Hendry and Dunlap 2014). Regulatory genes, including

those typically involved in regulating luminescence, are also

relatively highly represented among unique “Ca.

Photodesmus blepharus” genes, possibly because more
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regulatory genes may be needed for additional pathways in

the slightly larger “Ca. Photodesmus blepharus” genome.

Loci under Selection

To identify those genes that might be needed for the anom-

alopid symbiont’s unusual lifestyle, we performed genome

wide tests for purifying selection. We focused on testing for

loci with signatures of increased purifying selection compared

with free-living relatives, as these loci are likely to be important

for the bacteria and possibly related to the switch to an obli-

gate symbiotic lifestyle. Following the methods of Toft and

Fares (2008), we compared ratios of dN with dS between

“Ca. Photodesmus katoptron” and “Ca. Photodesmus

blepharus” with six pairs of relatives to obtain a measure of

change in purifying selection (R) in symbiont genes compared

with orthologs in free-living relatives. The genome-wide R

values determined for each symbiont locus were similar re-

gardless of the relative pair used for comparison (fig. 2A).

We therefore used the range of comparisons for each locus

to determine which genes showed a significant increase or

decrease in purifying selection for symbiont genes compared

with values seen for the same genes in relatives. Genes that

had an R value less than two standard deviations from no

change compared with relatives were classified as having in-

creased purifying selection compared with orthologs, whereas

genes with an R value greater than two standard deviations

from no change were classified as having decreased purifying

selection compared with orthologs. These terms will be used

throughout to refer to genes with significant changes in se-

lection. This test for purifying selection in the symbiont lineage

is predicted to be conservative as it focuses only on increased

selection compared with relatives.

Many genes, 49% of those analyzed (352 genes), showed

a significant decrease in purifying selection compared with

relatives, as has been shown in previous tests of selection on

the genomes of other obligate symbionts (Toft and Fares

2008). Additionally, 40% of genes (285) showed no change

and only 11% of genes (82) were found to be under increased

FIG. 1.—Genome similarity between (A) the anomalopid symbionts, “Ca. Photodesmus katoptron” (Pk) and “Ca. Photodesmus blepharus” (Pb), and (B)

free-living relatives V. cholerae N16961 (Vc), V. parahaemolyticus RIMD 2210633 (Vc), and V. vulnificus CMCP6 (Vv). Alignments were determined by the

Artemis Comparison Tool (Carver et al. 2005). Each connecting line represents an area of high nucleotide sequence similarity; red lines indicate alignment of

two positive strands and blue lines represent similarity between positive and negative strands. Homology was determined with an e value cutoff of 1.0.

Chromosome segments in (A) are labeled by contig number and in (B) are labeled by chromosome number.
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purifying selection in the symbionts compared with ortholo-

gous genes in free-living relatives (supplementary table S4). Of

the genes under increased purifying selection, >90% fall into

eight functional categories: protein synthesis, energy metab-

olism, protein fate, motility, cell division, transcription, DNA

synthesis and repair, and cell wall synthesis and structures

(supplementary table S4). In each of the categories of cell

division, transcription, and protein synthesis, >25% of the

genes were found to be under increased purifying selection

compared with relatives (fig. 2B), a significantly higher per-

centage compared with genes with no change in or decreased

selection (supplementary table S4). These categories are some

of the least reduced in anomalopid symbionts compared with

relatives (Hendry et al. 2014), and an inverse, although not

significant, relationship exists between the percentage of

gene reduction and the average R value in each category.

This inverse relationship indicates that functional categories

with less gene loss tend to have greater increases in purifying

FIG. 2.—Boxplots for R values indicating changes in purifying selection in anomalopid symbiont loci compared with orthologs in free-living relatives. (A) R

values for each free-living relative comparison. (B) R values for each locus averaged across relative pair comparisons and divided into functional categories.

The mean value of R across all loci is shown with a line and values < 1 indicate increased purifying selection.
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selection in the symbionts (supplementary fig. S2). It is possible

that genes in those categories most important for cell function

are the least likely to be lost and also that, if such genes are

lost, perhaps eliminating some redundancy in function, the

remaining genes become more functionally constrained and

under increased selection compared with relatives with larger

genomes. This possibility is consistent with the idea that selec-

tion against the loss of necessary genes may partly explain

genome stasis in endosymbionts (Tamas et al. 2002).

We were particularly interested in selection on genes in-

volved in chemotaxis and motility. The functions of these

genes might differ in the anomalopid symbionts compared

with relatives given the symbiont’s potentially limited environ-

mental phase. The median R values for genes involved in che-

motaxis and regulation of the flagellar motor is lower than the

total median value of R, indicating that a higher proportion of

these genes is experiencing increased purifying selection com-

pared with relatives than other genes in the symbiont ge-

nomes (fig. 2B). Six of these genes, cheR (involved in

chemotaxis), an ortholog of the V. cholerae gene mlp24

(coding for a MCP), and fliG (a motor switch regulator), as

well as flagellar genes (flgE, flgJ, and flaD) were found to be

under increased purifying selection compared with orthologs

in free-living relatives. These genes might therefore be ecolog-

ically important for the symbionts. In particular, the MCP gene

might be used by symbionts to find hosts, as these genes code

for membrane-bound proteins that sense chemical attractants

and repellants and lead to a motility response.

Members of Vibrionaceae typically have large numbers of

MCP genes (V. cholerae, for instance, has 45 and A. fischeri

has 43), which are thought to respond to a diverse array of

chemicals (Nishiyama et al. 2012; Brennan et al. 2013).

In contrast, however, only two MCP genes have been re-

tained in “Ca. Photodesmus katoptron” and three in “Ca.

Photodesmus blepharus.” Two of the MCP genes are present

in the genomes of both symbionts; they are highly similar in

amino acid sequence and have protein sequences that are

most closely related to Vibrionaceae MCPs thought to be in-

volved in binding environmental amino acids (fig. 3). Mutation

experiments and chemotaxis assays have found that MCPs

that bind and respond to amino acids in the environment

share a ligand-binding sequence motif that is highly conserved

across Gammaproteobacteria, including Vibrionaceae species

(A. fischeri and V. cholerae) (Taguchi et al. 1997; Glekas et al.

2010; Nishiyama et al. 2012; Brennan et al. 2013); this motif is

also present in the shared MCP gene sequences of the anom-

alopid symbionts (fig. 4).

With the exception of the reduction in copy number for

MCP genes, both anomalopid symbiont genomes have re-

tained the full complement of chemotaxis and motility

genes found in some free-living relatives (Hendry et al.

2014), including all genes necessary for flagellum synthesis

and function and all chemotaxis genes necessary for signal

transduction from MCPs to the flagella (cheW, cheA, cheY,

cheZ, cheB, and cheR). The conservation of these pathways

indicates that chemotaxis using the retained MCP genes

could be functional for the bacteria. The high sequence sim-

ilarity of anomalopid MCP genes with probable amino-acid

sensing MCPs and the conserved amino-acid binding motif

suggests that these “Ca. Photodesmus” proteins could bind

and respond to environmental amino acids as chemoattrac-

tants. Because the symbionts cannot synthesize most amino

acids (this study, Hendry et al. 2014), they must acquire them

from the environment or fish hosts. Therefore the ability to

sense and move toward amino acids could be important for

the bacteria, explaining why these MCP genes, but not

others, have been retained. In this case, the anomalopid sym-

bionts would seem to show a narrowing of chemotactic sen-

sory abilities, perhaps in keeping with a restricted lifestyle as a

symbiont. However, it is also possible that these few MCP

genes have been retained by chance or some unknown

function.

FIG. 3.—Bayesian tree based on amino acids sequences for all MCP

genes found in anomalopid symbionts and the free-living relatives V. har-

veyi 1DA3, V. splendidus ATCC 33789, V. orientalis CIP102891, V. cho-

lerae O395, V. vulnificus CMCP6, V. parahaemolyticus RIMD 2210633,

P. profundum SS9, A. fischeri MJ11, and A. fischeri ZF211. Genes with

>40% sequence identity to anomalopid MCP genes, over 40% of the

gene length, were included. Branches shown in black have �95% poste-

rior probability and branches with less support are in gray. Arrows indicate

location of anomalopid symbiont sequences and purple bars denote se-

quences with a conserved amino acid ligand binding sequence, suggest-

ing that they may respond to amino acids in the environment

(Taguchi et al. 1997; Glekas et al. 2010; Nishiyama et al. 2012; Brennan

et al. 2013).
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Conclusions

The genome conservation observed here is similar to the

genome stasis observed in ancient obligate symbionts

(Tamas et al. 2002; McCutcheon and Moran 2012). The age

of the split between the fish family Anomalopidae and relatives

is not known, but divergence of the host order Beryciformes

from other teleost fishes has been estimated as approximately

100 million years ago (Santini et al. 2009). The association

between anomalopids and their symbionts therefore could

have existed for a similar length of time as the Buchnera asso-

ciation, though it is also possible that the rate of reduction in

anomalopid symbionts was relatively fast and the observed

stability is therefore more recent. We note that the anomalo-

pid symbionts have retained many genes necessary for DNA

recombination (table 1), as well as multiple copies of repetitive

genes such as rRNA operons, which are frequently lost in in-

tracellular symbionts (Tamas et al. 2002; McCutcheon and

Moran 2012). The retention of these genes could increase

the likelihood of recombination and genomic rearrangements

compared with Buchnera, yet “Ca. Photodesmus” genomes

seem to be similarly stable. This result is consistent with pat-

terns found in whitefly symbionts showing that recombination

ability and genome stability are not necessarily related (Sloan

and Moran 2013). It is possible that genomic stasis is beneficial

to some symbionts with significant genome reduction, per-

haps because the loss of additional genes would be highly

deleterious to both bacteria and hosts, and that genomic sta-

bility is selected for in anomalopid symbionts.

We hypothesized that loci experiencing increased purifying

selection in the anomalopid symbionts compared with ortho-

logs in free-living relatives were likely to have either shifted

function or to be increasingly functionally constrained. The

fact that many of these genes were from functional categories

with low levels of gene reduction, and therefore are presumed

to be essential for cell growth, suggests that these loci may be

more functionally constrained in the symbionts rather than

that they have changed in function. Intriguingly, a number

of chemotaxis and motility genes appear to be under in-

creased purifying selection compared with relatives, highlight-

ing their likely importance to the symbionts. It is difficult to

know if these genes have shifted function or are simply more

important in a new ecological context. The two MCP genes

retained in both anomalopid symbionts are conserved with

relatives, suggesting that their function has not changed,

but the increased purifying selection on one of these genes

in the symbionts indicates that their function may be impor-

tant. To our knowledge, the genomes of only a few obligate

symbionts with reduced genomes, the aphid symbiont

Buchnera, the tsetse fly symbionts Wigglesworthia glossinidia

and Sodalis glossinidius, and the rice weevil symbiont Sodalis

pierantonius have retained genes involved in motility.

Buchnera is non-motile and uses flagellar apparatus genes

for protein secretion, whereas flagella may be involved in

host transmission in the tsetse fly symbionts (Akman et al.

2002; Maezawa et al. 2006; Toh et al. 2006; Toft and Fares

2008; Rio et al. 2012). Sodalis glossinidius has retained some

chemotaxis genes (cheW and cheZ) but no MCP genes (Toh

et al. 2006), and the recently reduced genome of S. pieranto-

nius contains predicted flagellar and chemotaxis genes, but

many of these, including all MCP genes, are pseudogenes

(Oakeson et al. 2014). Although anomalopid symbionts re-

leased from hosts are known to remain luminous for at least

a few hours in seawater, it is not known how long they persist

or what the fate of environmental cells is. However, it is un-

likely that pathways used only outside the host would be re-

tained and maintained by purifying selection if release from

the host was a dead end and these cells did not go on to

colonize new hosts. The increased purifying selection com-

pared with relatives on the chemotaxis genes retained in

anomalopid symbionts is therefore further support for the

FIG. 4.—Alignment of the portion of MCP gene amino acid sequence implicated in amino acid ligand binding (ligand binding motif) and signal

transduction (Cache domains) in chemotaxis proteins. Sequences are shown for anomalopid symbiont genes, some orthologs from close relatives (V.

parahaemolyticus, V. splendidus, V. cholerae sequences in fig. 3), and four orthologs with experimentally demonstrated amino acid binding and response

capabilities (Vchol_mlp24: V. cholerae, Afisc_vfcA: A. fischeri, Paeru_pctA: Pseudomonas aeruginosa, and Bsubt_mcpB: Bacillus subtilus). Sites with identical

amino acids compared with the Akat8003 sequence are shown with a period. The conserved sequence shown to bind to amino acids is highlighted.
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hypothesis that an extra-host phase is important for symbiont

ecology and possibly transmission between hosts

As these analyses show, Vibronaceae members typically

have many MCP genes, including one to four copies that

appear to respond to amino acids (fig. 4). Because the anom-

alopid symbionts appear to be unable to synthesize most

amino acids, the ability to detect them in the environment

could be highly beneficial. That the symbionts have retained

these genes and lost most other MCP genes suggests that the

bacteria are not generally responding to nutrients (e.g. glu-

cose) in the environment, but specifically to amino acids. It

seems unlikely that this ability would be beneficial inside the

host light organ, where the bacteria are too densely packed

for motility or chemotaxis to be effective (Kessel 1977;

Haygood 1993). More likely is that the bacteria sense and

respond to amino acids as a way to find new host fish.

According to this scenario, bacteria released from adult light

organs persist in the local environment and are tactic toward

amino acids released by aposymbiotic larvae of the fish. The

use of amino acids as a means to identify host cells has been

described for the pathogen V. cholerae. The V. cholerae ortho-

log of one of the MCP genes found in the anomalopid sym-

bionts, mlp24, binds and responds to amino acids and is

involved in host cell attachment and subsequent toxin secre-

tion (Lee et al. 2001; Nishiyama et al. 2012). The ancestral

pathway to sense environmental amino acids may have

become tied to host identification in “Ca. Photodesmus.”

Supplementary Material

Supplementary figures S1 and S2 and tables S1–S4 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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