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RESEARCH ARTICLE Open Access

A novel uncultured heterotrophic bacterial
associate of the cyanobacterium Moorea
producens JHB
Susie L. Cummings1,2†, Debby Barbé2†, Tiago Ferreira Leao2†, Anton Korobeynikov3,4, Niclas Engene5,
Evgenia Glukhov2, William H. Gerwick2,6 and Lena Gerwick2*

Background: Filamentous tropical marine cyanobacteria such as Moorea producens strain JHB possess a rich
community of heterotrophic bacteria on their polysaccharide sheaths; however, these bacterial communities have
not yet been adequately studied or characterized.

Results and discussion: Through efforts to sequence the genome of this cyanobacterial strain, the 5.99 MB
genome of an unknown bacterium emerged from the metagenomic information, named here as Mor1. Analysis of
its genome revealed that the bacterium is heterotrophic and belongs to the phylum Acidobacteria, subgroup 22;
however, it is only 85 % identical to the nearest cultured representative. Comparative genomics further revealed
that Mor1 has a large number of genes involved in transcriptional regulation, is completely devoid of transposases,
is not able to synthesize the full complement of proteogenic amino acids and appears to lack genes for nitrate
uptake. Mor1 was found to be present in lab cultures of M. producens collected from various locations, but not
other cyanobacterial species. Diverse efforts failed to culture the bacterium separately from filaments of M.
producens JHB. Additionally, a co-culturing experiment between M. producens JHB possessing Mor1 and cultures of
other genera of cyanobacteria indicated that the bacterium was not transferable.

Conclusion: The data presented support a specific relationship between this novel uncultured bacterium and M.
producens, however, verification of this proposed relationship cannot be done until the “uncultured” bacterium can
be cultured.

Background
Filamentous cyanobacteria, bathed in seawater and often
growing in nutrient-rich environments, are surrounded
by diverse communities of heterotrophic bacteria. The
heterotrophic bacteria closely associated with cyanobac-
teria likely consume released nutrients, but may also
produce vitamins and other factors useful to cyanobac-
terial growth, as well as assisting in cycling of CO2 and
phosphate, or lowering O2 levels for oxygen-sensitive
processes such as nitrogen fixation [1, 2]. Various studies
have classified some of the taxa of heterotrophic bacteria
that live in close proximity to cyanobacterial blooms,
including common aquatic phyla such as Proteobacteria,

Bacteroidetes, Actinobacteria, and Planctomycetes [3, 4].
Some potentially new species or genera were also lo-
cated within these samples, which could suggest that
some bacteria may have specific relationships with
cyanobacteria [3]. However, many of these latter bacteria
are also found living independently of cyanobacteria [4],
and the makeup of cyanobacterial-associated communi-
ties varies based on the location, type of cyanobacteria,
and environmental conditions including nutrient avail-
ability and temperature [4–6]. The heterotrophic bacter-
ial community around cyanobacterial blooms appears to
be directly influenced by the bloom in that the commu-
nity structure changes over its progression [6]. In fact, if
the cyanobacteria are eliminated by a viral infection, the
heterotrophic bacterial community drastically shifts [7].
Conversely, heterotrophic bacteria have also been shown
to affect the growth of cyanobacteria. Various strains of
bacteria found living with Nodularia spumigena were
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co-cultured with the cyanobacterium, and several were
found to either increase or decrease the growth of the
cyanobacterium compared to axenic cultures [8]. Add-
itional studies of heterotrophic bacteria associated with
cyanobacterial blooms have verified that co-cultures can
increase or decrease cyanobacterial growth [9]. This is
likely due to specific interactions of carbon and nutrient
exchange [10]. However, the interactions between cyano-
bacteria and natural assemblages of heterotrophic bac-
teria involve a large number and variety of interfaces,
and are certainly more complex than a specific symbiosis
involving two specific partners. Thus, it becomes clear
that gaps exist in our knowledge of the microbial com-
munities surrounding cyanobacteria.
Cyanobacteria have been a rich source of bioactive

natural products (secondary metabolites and/or toxins),
and their biosynthesis has been studied at the chemical,
biochemical and genomic levels [11–14]. There is some
evidence that the bacterial communities associated with
cyanobacteria may affect these biosynthetic processes in
different ways. Heterotrophic bacterial communities sur-
rounding cyanobacteria may not only change cyanobac-
terial growth characteristics, but also have the potential
to break down cyanobacterial toxins [15] or modulate
toxin production. For example, toxic Microcystis blooms
with different heterotrophic bacteria produce altered
microcystins of varying toxicity [16].
Additionally, in some cases there are uncertainties about

which organism is the true producer of a natural product,
or if a collaborative biosynthetic effort is required between
the cyanobacterium and a heterotrophic bacterium. Con-
sidering the complexity of these metabolites and their as-
sembly pathways, it is highly unlikely that the pathways
separately evolved in such divergent organisms as cyano-
bacteria and heterotrophic bacteria. For example, the
lyngbyatoxins, a class of potent skin irritants and tumor
promoters isolated from field collections of M. producens,
show high structural and pharmacological similarity to tel-
eocidin, a metabolite which is produced by Streptomyces
species [15, 17]. Similarly, an extract from an assemblage
of the cyanobacteria Moorea producens and Tolypothrix
sp. yielded the toxin kalkipyrone; this metabolite is closely
related to the Streptomyces metabolites actinopyrone and
iromycin [18, 19]. Another example is given by swinholide
A, an actin-binding toxin originally isolated from the
sponge Theonella swinhoei [20], but subsequently shown
to originate from a member of the complex community of
heterotrophic bacteria growing within the sponge [20].
However, swinholide A was also isolated from field collec-
tions of a marine cyanobacterium along with a glyco-
sylated derivative [21], initially creating some confusion
about the true metabolic source of this complex polyke-
tide. However, recent characterization of closely related
gene clusters for swinholide-like molecules from a

heterotrophic bacterial symbiont of the sponge, Entotheo-
nella sp., and several cultured cyanobacteria, reveals a
complex evolutionary relationship between these path-
ways, and suggest a mixture of vertical inheritance and
convergent evolutionary processes [22]. As these examples
illustrate, there is considerable uncertainty concerning
the true biosynthetic source of secondary metabolites
isolated from cyanobacteria that possess natural assem-
blages of heterotrophic bacteria. Overall, the study of
these cyanobacterial-associated heterotrophic bacterial
communities is important as it relates to the ecology
and physiology of these organisms as well as the roles
and production of their secondary metabolites.
Moorea producens (previously Lyngbya majuscula) [23]

is a filamentous tropical marine cyanobacterium capable
of photosynthesis but unable to fix atmospheric nitrogen.
Members of this genus are known to be prolific producers
of natural products; around 200 secondary metabolites
have been isolated from this organism, and the genomes
of various strains contain many polyketide synthase and
non-ribosomal peptide synthetase genes [23–25]. M. pro-
ducens has been observed to possess a large community of
bacteria on its filaments [23]. However, very little is known
about this bacterial community or its inter-relationships
and interactions with the cyanobacterial host. One such
strain, M. producens JHB, a known producer of the natural
products hectochlorin [26], the jamaicamides [27], and
cryptomaldamide [unpublished], was originally collected
from a shallow habitat in Hector’s Bay, Jamaica in 1996. It
has been maintained in uni-cyanobacterial culture since
this time along with its associated heterotrophic bacterial
community. The metagenome of this M. producens JHB
strain was sequenced and assembled, followed by ex-
tensive binning for cyanobacterial versus heterotrophic
bacterial DNA. This process yielded a draft genome of the
cyanobacterium along with the essentially complete
5.99 MB genome of a M. producens JHB-associated bac-
terium. Analysis of this latter bacterial genome, along with
experiments to determine its identity and potential func-
tion as an associate of M. producens JHB, is the focus of
this current report.

Methods
Cyanobacterial cultures
Moorea producens JHB (GenBank: FJ151521.1) was col-
lected in Hector’s Bay, Jamaica in August 1996 [27]. M.
producens 3 L (NR116539) was collected in December of
1993 at Las Palmas Beach near the CARMABI Research
Station in Curaçao, Netherland Antilles, N12 07.387'
W68 58.157' [24]. 3 L Oscillatoria (EU244875), identified
as Oscillatoria nigroviridis, was isolated as a contamin-
ant of the 3 LM. producens strain. M. bouillonii (FJ041298)
was collected in May of 2005 near Pigeon Island in Papua
New Guinea, S4 16.063' E152 20.266'. Leptolyngbya sp.
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(ISBN3Nov94-8, KC207938.1) was collected in November
of 1994 near Sulawesi, Indonesia. PAP25Jun12-3 was col-
lected in June of 2012 near Portobello, Panama. All of these
were established and maintained as uni-cyanobacterial cul-
tures using standard microbiological isolation techniques
[27, 28]. The cultures were grown under static conditions
at 28 °C under uniform illumination (4.67 μmol photon
s−1 m−2) with a 16 h/8 h light/dark cycle provided by
40 W cool white fluorescent lights. SWBG-11 media con-
tained 35 g/L Instant Ocean (Aquarium Systems Inc.).

DNA extraction and sequencing
DNA was extracted from the harvested biomass of cul-
tures of M. producens JHB, along with its microbiome of
heterotrophic bacteria, using the JGI phenol-chloroform
protocol [29]. The metagenomic DNA was sequenced
using the Illumina HiSeq system, paired end library of 2 ×
100 bp. Approximately 12 GB of data were obtained.

Assembly and other bioinformatics
The metagenomic reads were assembled using SPAdes ver-
sion 3.0.0 [30]. The contigs were binned by GC content,
coverage, tetranucleotide fingerprint, and phylogenetic clas-
sification of 107 single copy genes. This binning strategy
strongly suggested that the six largest non-cyanobacterial
contigs most likely belonged to the same taxon. Using
Geneious De Novo Assembler (Geneious®), an isolated re-
assembly of these six contigs resolved the repeated regions
and generated a circular scaffold comprised of a single con-
tig that only lacked part of the 16S-ITS-23S rRNA operon.
However, previous PCR experiments (as described below)
had already provided a single and complete 16S rRNA se-
quence. The final circular scaffold, including the complete
16S rRNA gene, was submitted for automatic annotation
using RAST [31]. Numbers of copies of this complete 16S
rRNA gene were confirmed by comparing the coverage of a
single copy gene found only in this genome (selA) versus
the coverage of the 16S rRNA gene, confirming that a sin-
gle 16S rRNA gene was present, and most likely, only a
single 16S-ITS-23S operon as well. The identified selA
gene, which is unique to the Mor1 genome, was used for
further experiments as a marker for presence or absence of
the Mor1 bacterium. In addition, a more detailed annota-
tion of the Mor1 genome was obtained by submitting the
genome to the expert reviewed annotation at JGI (Joint
Genome Institute) IMG/ER web platform and to anti-
SMASH for identification/annotation of secondary metab-
olite biosynthetic gene clusters [32].
The assembly of the M. producens JHB genome was per-

formed using a combination of assembly utilizing SPAdes
along with a reference assembly to a closed Moorea
genome (unpublished). This assembly generated a single
scaffold of 9.37 Mb with a 43.5 % GC content. The M. pro-
ducens JHB genome was submitted to the same annotation

tools as Mor1, and comparative genomics and statistics be-
tween Mor1, M. producens JHB, and other genomes were
developed using Genome Statistics, Search Pathways, COG
Homology and the Abundance Profile tools from the JGI
(Joint Genome Institute) IMG/ER database.
The relative abundance of M. producens JHB and

Mor1 in the overall sequenced metagenomic sample was
estimated by the percentage of reads recruited to each of
these draft genomes compared to the total number of
metagenomic reads (approximately 16 Mb). The ge-
nomes were normalized by the average genome size of
3.6 Mb (average size of all 3,777 complete bacterial ge-
nomes currently available at JGI database). Similarly, the
same percentage was calculated for 421 contigs (max-
imum size of 10,422 bp, total size of 225,489 bp) not as-
sembled into a genome and not belonging to neither
JHB or Mor1 (representing other JHB associates), The
recruitment of reads was performed by using Bowtie2
mapping with the option end-to-end and disregarding pair
end reads to minimize the exclusion of reads from small
contigs. Gene calling using Prodigal was performed and
the predicted open reading frames (proteins) were submit-
ted to DarkHorse [33] in order to infer phylogenetic clas-
sification for these open reading frames.

16S rRNA gene location and analysis
The full length16S rRNA sequence was obtained using
PCR. DNA was extracted from M. producens JHB cultures
using the QIAGEN Genomic-tip 20/G kit and following
its standard protocol, and PCR was performed using
25 μL volumes, containing 12.5 μL of 2x Taq Master Mix,
0.5 μL MgCl2 (25 mM), 1.0 μL of each primer (10 μM),
1.0 μL of DNA template, and 9 μL sterile water. The amp-
lification conditions were as follows: initial denaturation at
95 °C for 4 min, followed by 30 cycles of 95 °C for 30 s,
56 °C with 1 Fw + 1451 Rv or 61 °C with 1 Fw + 899 Rv/
1151 Rv for 30 s, and 72 °C for 30 s, followed by a final ex-
tension step at 72° for 1 min. Primer sequences are shown
in Table 1, and were designed based on the sequence of
the 16S rRNA gene from Escherichia coli strain K-12. The
ensuing PCR product was cloned into the pCR 4-TOPO
Vector (Invitrogen TOPO TA Cloning Kit) using the
standard protocol, followed by sequencing. The full 16S
rRNA sequence was analyzed by BLASTn and RDP

Table 1 Primers designed for use in this study

Primer name Primer sequence Tm in °C

1 Fw 5′ -AAGGAGGTGATCCAGCCGCAGG- 3′ 66.0

899 Rv 5′ -TGAGAGGGTGACCGGCCACACT- 3′ 67.0

1151 Rv 5′ -AGGCGACGATGGGTAGCCGACC- 3′ 68.0

1451 Rv 5′ -CTGGAGAGTTTGATCCTGGCTCAG- 3′ 61.0

selA Fw 428 5′ -ACTATCGCAAGGCGATCAACAAGA- 3′ 58.6

selA Rv 1180 5′ -CTAGCTCATCGCTCCTATCAG- 3′ 58.3
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Classifier [34] to gain more insights into the phylogenetic
characteristics of the unknown organism Mor1.
A phylogenetic tree based on this 16S rRNA gene was

created, incorporating 16S rRNA sequences from Acido-
bacteria, Proteobacteria, and Cyanobacteria. 16S rRNA
sequences were obtained from GenBank, then aligned
using MUSCLE aligner with 5 iterations, gap open score
−1 and word size of 5 bp. The tree was built using Gen-
eious Tree Builder, with the Jukes-Cantor genetic dis-
tance model, Neighbor-joining tree build method, 100
bootstraps, and Anabaena variabilis ATCC 29413 as the
out-group.

Culturing attempts of the associated bacterial community
from Moorea producens JHB
Efforts to culture Mor1 separately from filaments of M.
producens JHB used a variety of solid media containing
2 % agar, as listed in Table 2. Intact or cut filaments of
M. producens JHB were placed onto each media type.
For some culturing trials, M. producens JHB filaments
were freeze-dried and ground up and then added to the
media. Additionally, associated bacteria were washed
from the surface of M. producens JHB filaments using
the following protocol: 2 g of biomass was placed into
10 mL of 0.45 M NaCl, 10 mM KCl, 7 mM Na2SO4,
0.5 mM NaHCO3, and 10 mM EDTA. Added to this was
0.1 mL filter-sterilized Rapid Multienzyme Cleaner
(3 M). The sample was then incubated for 2 h at room
temperature while shaking at 80 rpm. The sample was
vortexed and then centrifuged at 300 × g for 15 min. An
aliquot of the supernatant (50–100 μL) containing

associated bacteria was then plated onto the various
types of media.
Bacterial colonies that grew on these plates were iso-

lated and grown overnight in liquid media. DNA was ex-
tracted from the overnight cultures using the Wizard
Genomic DNA Purification Kit (Promega). PCR was per-
formed on the DNA samples using the selA primers
(Table 1), and the 16S rRNA 27 F and 1492R primers
[34]. PCR was carried out in 25 μL volumes, containing
12.5 μL of 2x Taq Master Mix, 0.5 μL MgCl2 (25 mM),
1.0 μL of each primer (10 μM), 1.0 μL of DNA template,
and 9 μL sterile water. The amplification conditions
were as follows: initial denaturation at 95 °C for 4 min,
followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s,
and 72 °C for 30 s, followed by a final extension step at
72 °C for 1 min. The 16S rRNA PCR products were then
cloned into the pCR 4-TOPO Vector (Invitrogen TOPO
TA Cloning Kit) using the standard protocol, followed
by sequencing. The obtained sequences were analyzed
using BLASTn.

Electron microscopy
Samples for TEM were prepared using 2 % glutaralde-
hyde in saltwater (1 h), 2 × 5 min rinses in saltwater, 1 %
osmium tetroxide (1 h), 1 × 5 min rinse in 0.15 M caco-
dylate buffer, 2 × 5 min rinses in ddH20 and 2 % uranyl
acetate overnight. This was followed the next day with
2 × 5 min ddH20 rinses. Dehydration was achieved with
a graded (20 %, 50 %, 70 %, 90 %, 100 %, 100 %) EtOH
series. The samples were then embedded in 50/50 mix-
ture of Spurr’s/EtOH overnight. The next day the sam-
ples were incubated in 100 % Spurr’s for 24 h, after
which the samples were placed in 100 % fresh Spurr’s
for 2 × 1 h and left to polymerize for 48 h. Thin sections
(70 nm) were obtained using an Ultracut E microtome
(Reichert-Jung, Vienna, Austria) and then placed on
200 mesh fine bar copper grids. The grids were subse-
quently stained with uranyl acetate and Sato lead. A
1200FX TEM (JEOL, Tokyo, Japan) was used to view the
samples.

Semi-quantitative PCR of DNA from washed and
unwashed filaments
One sample of JHB filaments was prepared according to
the wash protocol specified above in “Culturing trials of
the associated bacterial community of Moorea producens
JHB”. After centrifugation, the supernatant was removed
and the cyanobacterial filaments were used as a “washed
filament” sample.
DNA was extracted from the washed filament sample as

well as an equivalent mass of unwashed JHB filaments
using the Wizard Genomic DNA Purification Kit (Pro-
mega) using the standard protocol. PCR was then per-
formed on both samples using the selA primers (Table 1).

Table 2 Solid media utilized for culturing heterotrophic bacteria
associated with M. producens JHB sheaths

Media name Media content Enrichment

SWBG-11 SWBG-11 N/A

Enriched
SWBG-11

SWBG-11 0.4 % glucose

MA Difco Marine Agar N/A

SSS 3 % Sigma Sea Salt + 0.4 %
mannose + 0.3 % casamino
acids

N/A

Enriched SSS 3 % Sigma Sea Salt + 0.4 %
mannose + 0.3 % casamino
acids

0.5 μM or 2 μM Ferric
Ammonium Citrate

A1 1 % starch + 0.2 % yeast
extract + 0.4 % peptone

N/A

SWBG-11 SWBG-11 Media mixed with cut
up filaments of Moorea
producens JHB

SWBG-11 SWBG-11 Media mixed with freeze
dried and ground up
filaments of Moorea
producens JHB
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PCR was carried out in 25 μL volumes, containing 12.5 μL
of 2x Taq Master Mix, 0.5 μL MgCl2 (25 mM), 1.0 μL of
each primer (10 μM), 1 μL (18.6 ng/μL) of DNA template,
and 9 μL sterile water. The amplification conditions were
as follows: initial denaturation at 95 °C for 4 min, followed
by 28 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for
30 s, followed by a final extension step at 72° for 1 min.
After PCR, the samples were run on a 1 % agarose gel and
the intensities of the bands quantified using Gel Quant
Express (Life Technologies).

Examination for the presence of Mor1 in other cultures
In order to examine the extent of Mor1 in other la-
boratory cultures, a possible indication of cross-
contamination between cultures, the following were
tested for the presence of the selA gene (present in
Mor1 but not M. producens; see Results): Moorea pro-
ducens JHB, Moorea producens 3 L, Moorea bouillonii,
3 L Oscillatoria, Scytonema hoffmani “2846 axenic and
xenic,” Leptolyngbya sp. (coded ISBN3Nov94-8), and
PAP25Jun12-2. In each case, DNA was extracted from
several grams of wet biomass using the QIAGEN
Genomic-tip 20/G kit applying the standard protocol.
PCR was performed on the extracted DNA samples
using the selA primers (sequences indicated in Table 1).
PCR was carried out in 25 μL volumes, containing 12.5 μL
of 2x Taq Master Mix, 0.5 μL MgCl2 (25 mM), 1.0 μL of
each primer (10 μM), 1.0 μL of DNA template, and 9 μL
sterile water. The amplification conditions were as follows:
initial denaturation at 95 °C for 4 min, followed by 30 cy-
cles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s,
followed by a final extension step at 72° for 1 min.

Co-culturing of the JHB strain with other cyanobacteria
To determine whether Mor1 could be transferred from
M. producens JHB to other cyanobacteria, co-culturing ex-
periments were performed. The cyanobacteria chosen for
co-culture were M. producens 3 L, Oscillatoria, Leptolyng-
bya sp. (coded ISBN3Nov94-8), and PAP25Jun12-2. The
co-cultures and controls were set up as diagrammed in
Table 3. Each co-culture or control was grown in dup-
licate, in 250 mL of SWBG-11 each. After 2 weeks, the
co-cultures were separated under sterile conditions using
a dissecting microscope, and grown in SWBG-11 until

several grams of wet biomass could be obtained for DNA
extraction.
DNA extraction was performed for each sample utiliz-

ing JGI’s phenol-chloroform protocol [29] or the QIA-
GEN Genomic-tip 20/G kit using the standard protocol.
Each DNA sample was then tested for the presence of
the 16S rRNA gene (to indicate sample quality) and the
selA gene using PCR. Primers 27 F and 781R for 16S
rRNA [35], and selAFw 428 and selARv 1180 were used
(Table 1). PCR was carried out in 20 μL volumes, con-
taining 10 μL of 2x Taq Master Mix, 0.5 μL MgCl2
(25 mM), 1.0 μL of each primer (10 μM), 1.0 μL of DNA
template, and 6.5 μL sterile water. The amplification
conditions were as follows: initial denaturation at 95 °C
for 4 min, followed by 30 cycles of 95 °C for 30 s, 50 °C
with 16S rRNA or 55 °C with selA for 30 s, and 72 °C
for 60 s, followed by a final extension step at 72 °C for
7 min.

Accession numbers
The genome of the bacterium Mor1 has been deposited
in GenBank under the accession number CP011806.

Results and discussion
Genome assembly and annotation
The non-axenic uni-culture of the cyanobacterium M.
producens JHB, originally collected in Hector’s Bay,
Jamaica, was sequenced along with its associated hetero-
trophic bacterial community by Illumina HiSeq sequen-
cing, assembly with SPAdes, binned and reassembled
with the Geneious De Novo Assembler. In addition to a
single scaffold for the cyanobacterial genome (to be re-
ported separately), this process yielded a 5.99 Mb contig
from an associated bacterium. Average coverage of this
bacterial contig was 33.6 fold and it possessed a 66.8 %
GC content, very different from the 43.5 % GC content
of the M. producens JHB genome. Further analysis re-
vealed that the scaffold was circular and lacked only a
fraction of the 16S-ITS-23S operon (partial 16S and 23S
rRNA genes were present but the full ITS region was ab-
sent) comprising 2820 nucleotides between the 5′ and
3′ ends of the circular scaffold. Continued search of the
raw sequencing data was unsuccessful to resolve this re-
gion. However, sequence data from PCR amplification of

Table 3 Matrix of co-culturing experiments involving M. producens JHB and various other filamentous tropical marine cyanobacteria

M. producens JHB 3 L Oscillatoria Leptolyngbya sp. PAP25Jun12-2

M. producens JHB Single culture control Mor1 transfer experiment Mor1 transfer experiment Mor1 transfer experiment

3 L Oscillatoria X Single culture control Mor1-absent control Mor1-absent control

Leptolyngbya sp. X X Single culture control Mor1-absent control

PAP25Jun12-2 X X X Single culture control

The entries indicate the intent of each co-culturing combination
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the complete 16S rRNA gene was incorporated into the
scaffold (hereafter named the Mor1 chromosome).
The assembled complete genome of Mor1 was submit-

ted for rapid automatic annotation through RAST
(http://rast.nmpdr.org/), and using RAST’s SEED Viewer,
revealed that the genes for photosynthesis or carbon fix-
ation were lacking, thus indicating that it was hetero-
trophic. Preliminary comparison of the genomes of M.
producens JHB and Mor1, again using RAST, revealed sev-
eral genes present in the bacterium but not in JHB. Of
these, the L-seryl-tRNA selenium transferase gene (selA)
was selected for use as a specific genetic marker of Mor1,
useful for examining the presence of this organism in
other cyanobacterial strains. This gene encodes for the
tRNA incorporation of selenium-containing cysteine resi-
dues in proteins and is not common in cyanobacteria [36].
Additional inspection of the sequenced metagenome re-
vealed that the selA gene was present only in the Mor1
chromosome and as a single copy. Moreover, BLASTN
analysis revealed that none of the 30,622 bacterial ge-
nomes in the JGI database contains a single sequence with
more than 50 % coverage and 90 % identity to the Mor1
selA gene, identifying this gene as an excellent specific
genetic marker of this bacterium. Consequently, specific
primers were created from the sequence of the selA gene
and utilized in later experiments as described below.
The antiSMASH program was used to identify second-

ary metabolite pathways within the Mor1 genome [32],
and revealed one polyketide type III pathway and one
terpene biosynthetic pathway. The polyketide synthase
(PKS) type III pathway has high amino acid identity as
well as open reading frame organization with the alkyl-
resorcylic acid pathway in Myxococcus xanthus [37], as
shown in Fig. 1. However, efforts to identify alkylre-
sorcylic acid from the chemical extract of the M. produ-
cens JHB consortium using the GnPS mass spectral
network were not successful [38]. Thus, from gene se-
quence and MS analyses, Mor1 is not a major producer
of recognizable secondary metabolites (e.g. PKS, NRPS
or hybrid natural products typical of cyanobacteria).

Comparison of the 16S rRNA sequence of Mor1 to
NCBI’s database via BLAST revealed an identity of less
then 95 % to an unknown, uncultured bacteria from mar-
ine environmental sediment samples. The closest match
for a cultured bacterium was Desulfobacca acetoxidans
(GenBank: NC_015388.1), with an 85 % identity and
100 % coverage. The 16S rRNA sequence was submitted
to RDP Classifier for further phylogenetic characterization
[34]. This resulted in identification of the organism as be-
longing to the phylum Acidobacteria, subgroup 22 with a
100 % confidence threshold. Further taxonomic classifica-
tion of Acidobacteria subgroup 22 does not currently exist
[39, 40]; thus, this bacterium belongs to an, as yet, un-
named and unidentified genus and species. A phylogenetic
tree comparing the 16S rRNA sequence of Mor1 with
those of other bacteria, including members of Acidobac-
teria, Cyanobacteria, and Proteobacteria, is depicted in
Fig. 2. Although the phylum Acidobacteria is not currently
well-classified, members of the phylum have been discov-
ered living within the associated communities of marine
sponges and zoanthids, suggesting that marine Acidobac-
teria are capable of complex interactions and symbioses
with other organisms [41, 42].

Relative abundance and estimated consortium composition
The relative abundance of M. producens JHB, Mor1, and
other associates was estimated from the recruitment of
raw reads. As expected, M. producens JHB was the most
abundant taxon represented by 64 % of the reads in the
metagenomic sample. This was followed by Mor1, with
19 % of the reads. The total relative abundance of all
other associates was 17 %, implying that Mor1 is more
abundant than the sum of all the other associated het-
erotrophic bacteria. Phylogenetic classification of these
other associates using DarkHorse allowed for a qualita-
tive assessment of the consortium composition (Fig. 3).
Unfortunately, the relative abundance of each taxon des-
ignated by the DarkHorse analysis cannot be precisely
quantified, due to the short lengths of the contigs, which
dramatically increase the chances of a highly repetitive

Fig. 1 Schematic of the polyketide synthase (PKS) type III pathway discovered within the Mor1 genome using antiSMASH [41]. a The entire Mor1
type III PKS gene cluster with maroon genes corresponding to biosynthetic genes, green genes corresponding to regulatory genes, and grey genes
corresponding to other uncharacterized genes. This locus is located between nucleotides 1238773 – 1279822 of the genome. b The comparison of
the Mor1 gene cluster with homologous areas within the alkylresorcylic acid pathway gene cluster in the genome of Myxococcus xanthus DZF1. The
red arrow corresponds to a stilbene synthase gene with 58 % identity and 99 % coverage; the green arrow corresponds to a methyltransferase gene
with 54 % identity and 85 % coverage; the blue arrow corresponds to an AMP-dependent synthetase with 54 % identity and 96 % coverage; the
yellow arrow corresponds to a monooxygenase gene with 47 % identity and 69 % coverage. Images generated by antiSMASH [31]
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Fig. 2 Phylogenetic tree comparing the 16S rRNA sequence of Mor1 to those of other bacteria. Anabaena variabilis ATCC 29413 was used as
the outgroup. Mor1, indicated by an arrow, clusters with uncultured Acidobacteria strains, indicating that it likely belongs to a novel clade of
phylum Acidobacteria

Fig. 3 Relative abundance of raw reads belonging to Moorea producens JHB, Mor 1 and all the reads unassembled, thus, not belonging to either
Moorea producens JHB or Mor1
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gene skewing the read estimation by up to an order of
magnitude.

Efforts to culture Mor1 free of M. producens JHB
A number of different kinds of media, as described in
the Methods and Table 2, were evaluated for Mor1 culti-
vation. These culture attempts included numerous nutri-
ent combinations as well as enrichments with iron. In
order to provide potentially required growth factors for
Mor1 culture that might be found in M. producens JHB,
filaments of JHB were cut into short pieces, freeze-dried
and ground with a mortar and pestle, and then added to
nutrient agar for culturing experiments. Source bacteria
for these culture attempts were obtained from the cyano-
bacterial sheaths by a wash procedure described in the
Methods, and bacteria were cultured from the wash buf-
fer. As a result of these trials, dozens of different bacterial
cultures were obtained. By 16S rRNA analysis, these in-
cluded species of the genera Muricauda, Alteromonas,
Rhodovulum, and Alcinovorax, as well as Marinobacter
salsuginis and a Rhodobacteraceae strain. However, none
of the cultured strains were found to possess the selA gene
by PCR analysis, and hence, Mor1 was not among the cul-
turable bacteria from M. producens JHB. We propose that
Mor1 has nutrient requirements not met by any of these
supplemented media types.

Mor1 exists mainly on the exterior of the M. producens
JHB sheath
TEM images of cross-sections of JHB filaments are
shown in Fig. 4. Bacteria are evident on the outside of
the polysaccharide sheath, but the space between the
cyanobacterial cell and the sheath appears free of bac-
teria, and intracellular bacteria are also not in evidence.
Thus, Mor1 is likely located on the exterior of the
cyanobacterial sheaths. To further explore this hypoth-
esis, we examined two samples of M. producens JHB
using semi-quantitative PCR of the selA gene. One sam-
ple contained the intact external bacterial community
(unwashed) whereas the second sample was subjected
to a wash protocol (described in Methods) designed to
remove a substantial fraction of the externally attached
bacteria. The selA signal was decreased in the washed
sample by 56.6 %, indicating that a majority of Mor1
was removed by the washing procedure. Thus, Mor1
exists predominantly on the outside surface of JHB
sheaths (Fig. 5).

Examination of the specificity of Mor1 on Moorea spp.
To explore whether Mor1 is a specific associate of
Moorea and not generally a microbial constituent of our
laboratory cyanobacterial cultures, seven different gen-
era/species were tested for the presence of the selA gene
(see Methods and Fig. 6). The selA gene only appeared

in cultures of M. producens 3 L collected in Curaçao and
in M. producens JHB from Jamaica, and not in any other
of our cyanobacterial cultures, including Moorea bouillo-
nii from Papua New Guinea. On the basis of this observa-
tion, Mor1 was deduced to not be a general laboratory
bacterial contaminant in our cultures, and thus we specu-
lated that it is a highly specific associate of M. producens.
To further explore this hypothesis and to characterize

the specificity of the relationship, a set of co-culturing
experiments were performed (Table 3). The aim of these
was to examine whether Mor1 could be transferred to
different genera of cyanobacteria by growing them in co-
culture with M. producens JHB. Initial PCR screening
for the selA gene in the “acceptor” species verified that
Mor1 was absent and thus exclusive to the M. producens
JHB culture. M. producens JHB was then co-cultured in
intimate contact with the strains listed in Table 3 for
2 weeks. The individual strains were then separated and
cultured for a variable period to obtain sufficient bio-
mass for DNA extraction and PCR analysis. Two differ-
ent PCRs were performed on each of the co-culture

Fig. 4 Transmission electron microscopy (TEM) images of 1 Moorea
producens JHB, showing its polysaccharide sheath and the location
of its associated bacterial community. a Cross section of a filament
of M. producens JHB, showing the cell centrally, surrounded by the
intermembrane space and polysaccharide sheath. Note that the
bacterial growth appears outside the polysaccharide sheath, and not
within the intermembrane space. b Close-up of bacterial growth on
the outside of the polysaccharide sheath
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samples, as shown in Fig. 7. The 16S rRNA gene was
used as a positive control that verified that each sample
had similar amounts of high-quality DNA (Fig. 7a). In-
deed, each sample showed a strong 16S rRNA band of
essentially equal intensity. When the same samples were
tested for the presence of the selA gene, the selA gene
signal only appeared in the M. producens JHB samples
and was absent in all of the “acceptor” cyanobacterial
cultures that had been co-cultured with JHB (Fig. 7b).
From these experiments, we conclude that Mor1 was
not transferrable to these other strains, and thus consti-
tutes a specific associate of M. producens.

Genome comparison between M. producens JHB and Mor1
To explore the potential metabolic interactions between
M. producens JHB and Mor1, the gene abundance pro-
files of these two organisms were calculated using the
online Abundance Profile tool from the IMG/ER website

(https://img.jgi.doe.gov/cgi-bin/mer/main.cgi). The two
bacteria share 939 clusters of orthologous genes (COGs).
The number of COGs exclusive to M. producens JHB
and exclusive to Mor1 are 549 and 495, respectively. All
orthologous genes (OG) are clustered and classified by
category in Fig. 8, where substantial differences are
highlighted in red between the gene counts and the corre-
sponding cell functions (categories A, G, K, Q, R, X and
Z). The categories A and Z represent “RNA processing and
modification” and “Cytoskeleton”, respectively, and these
categories are highlighted because M. producens JHB lacks
OG in these categories. Those same genes are missing in
other Moorea sp. (unpublished) genomes, as well as miss-
ing in 90 % of the 345 cyanobacteria from JGI/IMG (larger
than 1 Mb) for category Z and around 84 % are missing
similar genes in category A. Because these categories of
genes appear not to perform essential cell functions in
cyanobacteria, they are not considered further in this ana-
lysis. Next, categories G, Q and R represent “Carbohydrate
transport and metabolism”, “Secondary metabolites biosyn-
thesis, transport and catabolism” and “General function
prediction only”, respectively. The number of genes in
these categories would be expected to be more numerous
in the M. producens JHB genome, given it is a larger gen-
ome that it also contains many more biosynthetic gene
clusters (predicted by antiSMASH to be an astounding 43

Fig. 5 Semi-quantitative PCR of washed and unwashed M. producens
JHB samples, visualized on a 1 % agar gel. Lane 1: Washed Moorea
producens JHB sample. Lane 2: Unwashed Moorea producens JHB
sample. External washing of the filaments reduced the incidence of
the Mor1 selA gene by an estimated 56.63 % using densitometry

Fig. 6 Evaluation of laboratory cyanobacterial cultures for the presence
of Mor1. The figure shows the results of PCR with selA primers of
various laboratory cyanobacterial cultures, run on a 1 % agarose gel.
Lane 1: Molecular weight marker (Invitrogen 1 kb Plus DNA Ladder).
Lane 2: Negative control, sterile water. Lane 3: M. producens JHB. Lane
4: M. producens 3 L. Lane 5: M. bouillonii. Lane 6: 3 L Oscillatoria. Lane 7:
PAP25Jun12-2. Lane 8: Leptolyngbya sp. Lane 9: Scytonema hoffmani
“2846 axenic and xenic”
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biosynthetic gene clusters which account for approximately
22 % of the M. producens JHB genome).
Strikingly, category K, “Transcription”, is represented

by more than double the OGs in the Mor1 genome ver-
sus the JHB genome. This is unexpected as it was previ-
ously reported that M. producens 3 L (aka L. majuscula
3 L) contains a large number of genes involved in tran-
scription and signal transduction. According to this re-
port, “the numbers and diversity of sigma factors that
are global regulators of gene expression in bacteria ap-
pear higher in L. majuscula 3 L than in most other cyano-
bacteria” [43]. Indeed, Moorea producens JHB has the
same number of annotated sigma factors as 3 L, 15 in
total. Remarkably, the associated Mor1 genome contains
90 sigma-factor genes (the average number of sigma-
factor genes among the Acidobacteria genomes currently
available at JGI/IMG is 26), 55 of which are annotated as
“RNA polymerase sigma-70 factor [a Extra Cytoplasmic
Function (ECF) subfamily of factors]. The most important
mode of action for ECF sigma in Gram negative bacteria
(such as the Acidobacteria) is through Cell Surface Sig-
naling [44]. The other proteins involved in cell surface

Fig. 7 Results of co-culturing M. producens JHB with various other laboratory cultures to evaluate the transferability of Mor1. Shown are 16S rRNA
and selA PCR reactions using DNA from co-culturing of M. producens JHB with other cyanobacteria, visualized on 1 % agar gels. a The 16S rRNA
PCR of all samples. b The selA PCR of all samples. Both gels were loaded with the same order of samples for each respective PCR reaction. Lane 1:
Molecular weight marker (Invitrogen 1 kb Plus DNA Ladder). Lane 2: Negative control, sterile water. Lane 3: M. producens JHB. Lane 4: 3 L Oscillatoria.
Lane 5: PAP25Jun12-2. Lane 6: Leptolyngbya sp. Lanes 7 and 8: 3 L Oscillatoria from co-culture with JHB, duplicate co-cultures. Lanes 9 and 10:
PAP25Jun12-2 from co-culture with JHB, duplicate co-cultures. 1 Lanes 11 and 12: Leptolyngbya sp. from co-culture with JHB, duplicate co-cultures.
Lane 13: PAP25Jun12-2 from co-culture with Leptolyngbya sp. Lane 14: PAP25Jun12-2 from co-culture with 3 L Oscillatoria. Lane 15: Leptolyngbya sp.
from co-culture with PAP25Jun12-2. Lane 16: Leptolyngbya sp. from co-culture with 3 L Oscillatoria. Lane 17: 3 L Oscillatoria from co-culture with
PAP25Jun12-2. Lane18: 3 L Oscillatoria from co-culture with Leptolyngbya sp

Fig. 8 Function category comparison of COGs between Mor1 (dark
green) and JHB (light green). Categories that are indicated as different
are: A = RNA processing and modification, G = Carbohydrate transport
and metabolism, K = Transcription, Q = Secondary metabolites
biosynthesis, R = General function prediction only, X =Mobilome
(prophages and transposons) and Z = Cytoskeleton
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signaling via the sigma-70 factor are the anti-sigma factor
TonB-dependent outer membrane receptor and the
TonB-ExbB-ExbD system (see description in reference
[43]). The only other receptors found that can be associ-
ated with iron metabolism in Mor1 are annotated as
“Outer membrane receptor proteins, mostly Fe transport”.
M. producens JHB lacks this ECF Cell Surface Signaling
system, thereby suggesting that the iron acquisition and
regulation systems are much more sophisticated in Mor1
than M. producens JHB. This hypothesis was explored by
adding Ferric Ammonium Citrate to the enriched Sigma
Sea Salt media in an attempt to culture Mor1; however,
this was unsuccessful.
Lastly, category X [Mobilome (prophages and transpo-

sons)] has the most notable difference in gene count be-
tween the two bacterial species. The M. producens JHB
genome possesses 199 transposases whereas none are
found in the Mor1 genome. It has been hypothesized
that intracellular bacteria have a tendency to accumulate
transposases in early stages of intracellular symbiosis
[45, 46]. Therefore, the lack of transposases suggests that
Mor1 is not an intracellular symbiont; rather, it appears
to be extracellular, which is supported by the previously
mentioned decrease in signal of the selA gene signal
when semi-quantitative PCR was performed (Fig. 5). In-
triguingly, while analyzing the COGs of 26 other Acido-
bacteria genomes available at IMG/JGI, it was observed
that only one other Acidobacterial genome [JGI GOLD
ID: Ga0001215] lacks transposases, indicating that this is
an uncommon feature within this phylum. Transposases
are important for giving genomes the ability to adapt to
evolutionary pressures by facilitating horizontal gene
transfer or rearranging of the genome [47]. However, obli-
gate pathogens and endosymbionts have lower numbers
of transposases [46]. Hence, the absence of transposases
in Mor1 suggests that the potential symbiotic relationship
with the M. producens JHB strain precludes the need for
horizontal gene transfers or rearrangement of the Mor1
genome [48]. Lastly, both M. producens JHB and Mor1
harbor a gene from category X known as ParE. This gene
is responsible for plasmid stabilization, thus indicating
that both organisms may harbor plasmids, even though
contigs encoding for plasmids were only found in associ-
ation with the M. producens JHB genome (on the basis of
similar GC content). However, it was not possible to com-
pletely assemble any plasmids from the metagenomic data
due to the fragmented nature of the assembly.
With regards to primary metabolism, Mor1 is only

prototrophic for the biosynthesis of L-alanine, L-aspartate,
L-glutamate, L-glycine, and L-glutamine, as well as for
common co-factors such as flavin, coenzyme A, NAD,
heme and thiamine. The lack of biosynthetic genes for a
number of key primary metabolites, including several es-
sential amino acids, suggests that Mor1 is adapted to

thrive in a consortium with other bacteria, such as with
M. producens JHB and its microbiome. Specifically, Mor1
lacks biosynthetic genes for several important amino
acids: the aromatic amino acids Phe, Tyr and Trp, the
positively charged amino acids Lys, Arg and His, and
all non-polar amino acids except glycine and alanine.
Complementing this, however, is the occurrence in the
Mor1 genome of several transporters that are annotated
as “amino acid/polyamine/organocation transporter
(APC superfamily)”, “amino acid/amide ABC transporter
substrate-binding protein (HAAT family)”, and “amino
acid transporter”.
Furthermore, it is not capable of cobalamin or biotin

biosynthesis, a metabolic insufficiency clearly revealing
its dependency on other organisms for survival. Interest-
ingly, a transporter for the uptake of cobalamin was
identified in both Mor1 and M. producens JHB, which
also lacks the capacity for biotin synthesis; this indicates
that other bacteria in the consortium are likely providing
this key co-factor. Because Mor1 possesses the genes for
the biotin carboxyl carrier protein and biotin ligase, bio-
tin is clearly required, but is presumably acquired
through uptake from the environment.
In general, the genus Moorea is unable to fix nitrogen

[43], and by genome analysis of M. producens JHB and
Mor1, neither of these bacteria possess the required ni-
trogen fixation genes. However, three interesting Ortho-
logous Groups (OGs) were identified in Mor1 that might
be aiding in nitrogen metabolism. The first OG consists of
a “uncharacterized protein, possibly involved in nitrogen
fixation” (COG3197) whereas the latter two are predicted
to be “signal transduction histidine kinases involved in ni-
trogen fixation and metabolism regulation” (COG5000).
Comparison of the nitrogen metabolism KEGG pathway
from Mor1 and M. producens JHB revealed that they share
very few genes (marked in blue, Fig. 9) and that they ap-
pear to assimilate nitrogen from very different sources.
Whereas M. producens JHB possesses the genetic capacity
for the uptake of extracellular nitrate and ensuing assimi-
latory nitrate reduction to produce ammonia and thereby
incorporate nitrogen into its amino acids, Mor1 lacks both
the nitrate uptake and assimilatory pathways. Rather,
Mor1 possesses genes possibly involved in the uptake of
ammonium, suggesting that it may rely on acquiring ni-
trogen from this source as well as by the uptake and re-
cycling of amino acids.

Conclusions
The sequencing effort of the M. producens JHB meta-
genome revealed a 5.99 Mb genome of an unknown, un-
cultured heterotrophic bacterium, named here as Mor1.
The organism belongs to the phylum Acidobacteria,
subgroup 22, but is unable to be taxonomically further
classified, and as of yet, has not been successfully
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cultured. A comparative genomics study generated sev-
eral hypotheses regarding the potential relationship be-
tween the M. producens JHB and Mor1. Four main
areas of interest emerged from this analysis: transcrip-
tional regulation, iron metabolism, nitrogen cycling be-
tween the two microbial species, and a complete lack of
transposases in the Mor1 genome. Examination for the
presence of Mor1 in various laboratory cultures, along
with co-culturing experiments to evaluate the transfer-
ability of Mor1 to other cyanobacteria, support the idea
that it is a specific associate of some strains of M.
producens.
Because all natural products investigations of M. produ-

cens JHB to date have occurred using cultured non-axenic
biomass which is comprised of cyanobacterial filaments
and its associated microbiome, there remains the pos-
sibility that some of the identified secondary metabolites
(e.g. jamaicamide, hectochlorin) are actually produced
by Mor1 or another associated bacterium. Because we
have not been able to cultivate Mor1 or the cyanobac-
terium independent of one another, we are not able to
answer this question using chemical methodologies.
However, several lines of evidence support the conclu-
sion that these natural products are of cyanobacterial
origin: 1) their chemical structures are consistent with

pathways known for cyanobacterial natural products, 2)
they are produced in relatively high yield per unit of
biomass, 3) their biosynthetic pathways use motifs, co-
dons, and GC content consistent with cyanobacterial
pathways, and 4) new to this reported work, the major
associated heterotrophic bacterium, Mor1, lacks the
genes for these metabolic pathways. In fact, only two
secondary metabolite pathways were detected in Mor1
based on an antiSMASH analysis of its assembled gen-
ome [32], and neither of these is predicted to produce a
compound thought to be of cyanobacterial origin.
To further characterize the potential symbiotic relation-

ship between Mor1 and M. producens, additional effort is
needed to culture M. producens and Mor1 independently
of one another. Growth rates of M. producens with and
without Mor1 might infer a symbiotic interaction of these
two microbial species [8, 9]. Interaction between these
two organisms involving nutrient exchange or signaling
molecules could be examined via a transcriptomic analysis
[10], imaging mass spectrometry [49], or further chemical
analyses. Overall, this work reveals that niche environ-
ments such as the sheaths of tropical marine cyanobac-
teria may be rich locations in which to prospect for novel
microbial species with potentially useful biotechnology
applications.

From JHB

From Mor1

From JHB and Mor1

Fig. 9 Nitrogen KEGG pathway comparison between a Moorea producens JHB and b Mor1. White boxes represent absent genes, orange
represent genes from JHB, Orange box with red line represent genes found in Mor 1 and blue boxes represent homologs of the same gene
found in both JHB and Mor1 (http://www.genome.jp/kegg/pathway.html)

Cummings et al. BMC Microbiology  (2016) 16:198 Page 12 of 14

http://www.genome.jp/kegg/pathway.html


Acknowledgements
The work was supported by the NIH grants CA108874 and GM107550. A.K.
was supported in part by the Russian Science Foundation (grant 14-50-
00069). T.F.L. was funded by a CAPES Foundation Fellowship, n° 13425137,
Ministry of Education of Brazil.

Availability of data and materials
The genome of the uncultured bacterium Mor1 was deposited in Genbank.
Accession number CP011806.

Authors’ contributions
SLC designed experiments, performed all the co-culture experiments, made
figures and wrote the manuscript; DB designed experiments, determined
distribution of Mor1, performed isolation experiments using different conditions,
made figures and co-wrote manuscript; TFL performed genomic comparison
bioinformatics, made figures and co-wrote manuscript; AK assembled the
genome and edited manuscript; NE provided electron micrographs (EM) figures
and edited manuscript; EG provided cultures and edited manuscript; WHG
designed experiments and edited manuscript; LG designed experiments,
provided guidance to SLC, DB and TFL and co-wrote manuscript. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent to publish
N/A.

Ethics approval and consent to participate
N/A.

Author details
1Division of Biological Sciences, University of California San Diego, La Jolla,
CA 92093, USA. 2Center for Marine Biotechnology and Biomedicine, Scripps
Institution of Oceanography, University of California San Diego, La Jolla, CA
92093, USA. 3Department of Statistical Modelling, St. Petersburg State
University, Saint Petersburg, Russia. 4Center for Algorithmic Biotechnology, St.
Petersburg State University, Saint Petersburg, Russia. 5Department of
Biological Sciences, Florida International University, Miami, FL 33199, USA.
6Skaggs School of Pharmacy and Pharmaceutical Sciences, University of
California San Diego, La Jolla, CA 92093, USA.

Received: 27 June 2015 Accepted: 19 August 2016

References
1. Paerl HW. A comparison of cyanobacterial bloom dynamics in freshwater,

estuarine and marine environments. Phycologica. 1996;35(6):25–35.
2. Eiler A, Bertilsson S. Composition of freshwater bacterial communities

associated with cyanobacterial blooms in four Swedish lakes. Environ
Microbiol. 2004;6(12):1228–48.

3. Hube AE, Heyduck-Söller B, Fischer U. Phylogenetic classification of
heterotrophic bacteria associated with filamentous marine cyanobacteria in
culture. Syst Appl Microbiol. 2009;32:256–65.

4. Brauer VS, Stomp M, Bouvier T, Fouilland E, Leboulanger C, Confurius-Guns
V, Weissing FJ, Stal LJ, Huisman J. Competition and facilitation between the
marine nitrogen-fixing cyanobacterium Cyanothece and its associated
bacterial community. Front Microbiol. 2015;5:795.

5. Limei S, Yuanfeng C, Hualin Y, Peng X, Pengfu L, Lingdong K, Fanxiang K.
Phylogenetic diversity and specificity of bacteria associated with Microcystis
aeruginosa and other cyanobacteria. J Environ Sci. 2009;21:1581–90.

6. Tuomainen J, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K.
Community structure of the bacteria associated with nodularia sp.
(cyanobacteria) aggregates in the Baltic Sea. Microb Ecol. 2006;52:513–22.

7. Van Hannen EJ, Zwart G, Van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ.
Changes in bacterial and eukaryotic community structure after mass lysis of
filamentous cyanobacteria associated with viruses. Appl Environ Microbiol.
1998;65(2):795–801.

8. Salomon PS, Janson S, Granéli E. Molecular identification of bacteria
associated with filaments of Nodularia spumigena and their effect on the
cyanobacterial growth. Harmful Algae. 2003;2:261–72.

9. Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J.
High diversity of cultivable heterotrophic bacteria in association with
cyanobacterial water blooms. ISME J. 2009;3:314–25.

10. Beliaev AS, Romine MF, Serres M, Bernstein HC, Linggi BE, Markillie LM, Isern NG,
Chrisler WB, Kucek LA, Hill EA, Pinchuk GE, Bryant DA, Wiley HS, Fredrickson JK,
Konopka A. Inference of interactions in cyanobacterial-heterotrophic co-cultures
via transcriptome sequencing. ISME J. 2014;8:2243–55.

11. Wiegand C, Pflugmacher S. Ecotoxicological effects of selected
cyanobacterial secondary metabolites, a short review. Toxicol Appl
Pharmacol. 2004;203:201–18.

12. Gerwick WH, Moore BS. Lessons from the past and charting the future of
marine natural products drug discovery and chemical biology. Chem Biol.
2012;19:85–98.

13. Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH. New tricks from
ancient algae: natural products biosynthesis in marine cyanobacteria.
Curr Op Chem Biol. 2009;13(2):216–23.

14. Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH.
The unique mechanistic transformations involved in the biosynthesis of
modular natural products from marine cyanobacteria. Nat Prod Rep.
2010;27(7):1048–65.

15. Fujiki H, Mori M, Terada M, Sugimura T, Moore RE. Indole alkaloids:
dihydroteleocidin B, teleocidin, and lyngbyatoxin A as members of a new
class of tumor promoters. Proc Natl Acad Sci. 1981;78(6):3872–6.

16. Dziallas C, Grossart HP. Microbial interactions with the cyanobacterium
Microcystis aeruginosa and their dependence on temperature. Mar Biol.
2012;159:2389–98.

17. Edwards DJ, Gerwick WH. Lyngbyatoxin biosynthesis: sequence of biosynthetic
gene cluster identification of a novel aromatic prenyltransferase. J Am Chem
Soc. 2004;126:11432–3.

18. Graber MA, Gerwick WH. Kalkipyrone, a toxic gamma-pyrone from an
assemblage of the marine cyanobacteria lyngbya majuscula and tolypothrix
sp. J Nat Prod. 1998;61:677–80.

19. Surup F, Wagner O, von Frieling J, Schleicher M, Oess S, Muller P, Grond S.
The iromycins, a New family of pyridone metabolites from streptomyces sp.
I. Structure, NOS inhibitory activity, and biosynthesis. J Org Chem. 2007;72:
5085–90.

20. Bewley CA, Holland ND, Faulkner DJ. Two classes of metabolites from
Theonella swinhoei are localized in distinct populations of bacterial
symbionts. Experientia. 1996;52(7):716–22.

21. Andrianasolo EH, Gross H, Goeger D, Musafija-Girt M, McPhail K, Leal RM,
Mooberry SL, Gerwick WH. Isolation of swinholide A and related
glycosylated derivatives from two field collections of marine cyanobacteria.
Org Lett. 2005;7(7):1375–8.

22. Ueoka R, Uria AR, Reiter S, Mori T, Karbaum P, Peters EE, et al. Metabolic and
evolutionary origin of actin-binding polyketides from diverse organisms. Nat
Chem Biol. 2015;11(9):705–12.

23. Engene N, Rottacker EC, Kastovsky J, Byrum T, Choi H, Ellisman MH, Komarek J,
Gerwick WH. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb.
nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int
J of Syst Evol Microbiol. 2012;62:1171–8.

24. Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH,
Gerwick WH. Biosynthetic pathway and gene cluster analysis of curacin A,
an antitubulin natural product from the tropical marine cyanobacterium
Lyngbya majuscula. J Nat Prod. 2004;67(8):1356–67.

25. Flatt PM, O’Connell SJ, McPhail KL, Zeller G, Willis CL, Sherman DH, Gerwick
WH. Characterization of the initial enzymatic steps of barbamide
biosynthesis. J Nat Prod. 2006;69:938–44.

26. Ramaswamy AV, Sorrels CM, Gerwick WH. Cloning and biochemical
characterization of the hectochlorin biosynthetic gene cluster from the
marine cyanobacterium lyngbya majuscula. J Nat Prod. 2007;70(12):1977–86.

27. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA,
Gerwick WH. Structure and biosynthesis of the jamaicamides, New mixed
polyketide-peptide neurotoxins from the marine cyanobacterium lyngbya
majuscula. Chem Biol. 2004;11(6):817–33.

28. Sitachitta N, Marquez BL, Williamson RT, Rossi J, Roberts MA, Gerwick WH,
Nguyen VA, Willis CL. Biosynthetic pathway and origin of the chlorinated
methyl group in barbamide and dechlorobarbamide, molluscicidal agents
from the marine cyanobacterium Lyngbya majuscula. Tetrahedron. 2000;
56(46):9103–13.

29. Feil WS, Feil H, Copeland A. Bacterial genomic DNA isolation using
CTAB, US Department of Energy’s Joint Genome Institute. 2012. Web.

Cummings et al. BMC Microbiology  (2016) 16:198 Page 13 of 14



<http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-
content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf.

30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G,
Alekseyev MA, Pevzner PA. SPAdes: a New genome assembly algorithm and its
applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.

31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA,
Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R.
The SEED and the rapid annotation of microbial genomes using
subsystems technology (RAST). Nucleic Acids Res. 2014;42(D1):D206–14.

32. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E,
Weber T. antiSMASH 2.0 - a versatile platform for genome mining of
secondary metabolite producers. Nucleic Acids Res. 2013;41:W204–12.

33. Podell S, Gaasterland T. DarkHorse: a method for genome-wide prediction
of horizontal gene transfer. Genome Biol. 2007;8(2):R16.

34. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid
assignment of rRNA sequences into the New bacterial taxonomy. Appl
Environ Microbiol. 2007;73(16):5261–7.

35. Nubel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes
from cyanobacteria. Appl Environ Microbiol. 1997;63(8):3327–32.

36. Romero H, Zhang Y, Gladyshev VN, Salinas G. Evolution of selenium
utilization traits. Genome Biol. 2005;6:R66.

37. Hayashi T, Kitamura Y, Funa N, Ohnishi Y, Horinouchi S. Fatty acyl-AMP
ligase involvement in the production of alkylresorcylic acid by a myxococcus
Xanthus type III polyketide synthase. Chem BioChem. 2011;12:2166–76.

38. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing
and community curation of mass spectrometry data with global natural
products social molecular networking. Nat Biotechnol. 2016;34(8):828–37.

39. Barns SM, Cain EC, Sommerville L, Kuske CR. Acidobacteria phylum
sequences in uranium-contaminated subsurface sediments greatly expand
the known diversity within the phylum. Appl Environ Microbiol. 2007;73(9):
3113–6.

40. Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM.
Acidobacterial community responses to agricultural management of
soybean in Amazon forest soils. FEMS Microbiol Ecol. 2012;83(3):607–21.

41. Webster NS, Luter HM, Soo RM, Botte ES, Simister RL, Abdo D, Whalan S.
Same, same but different: symbiotic bacterial associations in GBR sponges.
Front Microbiol. 2013;3:444.

42. O’Connor-Sanchez A, Rivera-Dominguez AJ, De los Santos-Briones C,
Lopez-Aguiar LK, Pena-Ramirez YJ, Prieto-Davo A. Acidobacteria appear
to dominate the microbiome of two sympatric Caribbean sponges and
one zoanthid. Biol Res. 2014;47:67.

43. Jones AC, Monroe EA, Podell S, Hess WR, Klages S, Esquenazi E, Niessen S,
Hoover H, Rothmann M, Lasken RS, Yates JR, Reinhardt R, Kube M, Burkart
MD, Allen EE, Dorrestein PC, Gerwick WH, Gerwick L. Genomic insights into
the physiology and ecology of the marine filamentous cyanobacterium
Lyngbya majuscula. Proc Natl Acad Sci U S A. 2011;108:8815–20.

44. Llamas MA, Imperi F, Visca P, Lamont IL. Cell-surface signaling in
pseudomonas: stress responses, iron transport, and pathogenicity. FEMS
Microbiol Rev. 2014;38:569–97.

45. Moran NA, Plague GR. Genomic changes following host restriction in
bacteria. Curr Opin Genet Dev. 2004;14:627–33.

46. Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C. Evolution
of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica
genome. BMC Genomics. 2011;12:210.

47. Aziz RK, Breitbart M, Edwards RA. Transposases are the most abundant, most
ubiquitous genes in nature. Nucleic Acids Res. 2010;38:4207–17.

48. Stucken K, John U, Cembella A, Murillo AA, Soto-Liebe K, Fuentes-Valdés JJ,
et al. The smallest known genomes of multicellular and toxic cyanobacteria:
comparison, minimal gene sets for linked traits and the evolutionary
implications. PLoS One. 2010;5(2):e9235.

49. Esquenazi E, Dorrestein PC, Gerwick WH. Probing marine natural product
defenses with DESI-imaging mass spectrometry. Proc Natl Acad Sci. 2009;
106(18):7269–70.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Cummings et al. BMC Microbiology  (2016) 16:198 Page 14 of 14

http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf
http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf

	Florida International University
	FIU Digital Commons
	8-30-2016

	A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB
	Susie L. Cummings
	Debby Barb
	Tiago Ferreira Leao
	Anton Korobeynikov
	Niclas Engene
	See next page for additional authors
	Recommended Citation
	Authors


	Background
	Methods
	Cyanobacterial cultures
	DNA extraction and sequencing
	Assembly and other bioinformatics
	16S rRNA gene location and analysis
	Culturing attempts of the associated bacterial community from Moorea producens JHB
	Electron microscopy
	Semi-quantitative PCR of DNA from washed and unwashed filaments
	Examination for the presence of Mor1 in other cultures
	Co-culturing of the JHB strain with other cyanobacteria
	Accession numbers

	Results and discussion
	Genome assembly and annotation
	Relative abundance and estimated consortium composition
	Efforts to culture Mor1 free of M. producens JHB
	Mor1 exists mainly on the exterior of the M. producens JHB sheath
	Examination of the specificity of Mor1 on Moorea spp.
	Genome comparison between M. producens JHB and Mor1

	Conclusions
	Acknowledgements
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent to publish
	Ethics approval and consent to participate
	Author details
	References

