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Original Article

Diffuse interstitial fibrosis assessed by cardiac magnetic resonance
is associated with dispersion of ventricular repolarization in patients
with hypertrophic cardiomyopathy

David Hurtado-de-Mendoza, MDa,b,1, Celia P. Corona-Villalobos, MDc,1, Iraklis Pozios, MDa,
Jorge Gonzales, MDb, Yalda Soleimanifard, MDa, Sanjay Sivalokanathan, MDa,
Diego Montoya-Cerrillo, MDb, Styliani Vakrou, MDa, Ihab Kamel, MDc, Wilfredo Mormontoy-Laurel, MDd,
Ketty Dolores-Cerna, MDd, Jacsel Suarez, MDb, Sergio Perez-Melo, MDe, David A. Bluemke, MDf,
Theodore P. Abraham, MDa, Stefan L. Zimmerman, MDc, M. Roselle Abraham, MDa,n

a Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 871, Baltimore, MD 21205, USA
b Cayetano Heredia University School of Medicine, 430 Honorio Delgado Ave, Lima, LIMA 31, Peru
c The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, 600 North Wolfe Street, MRI 110B, Baltimore, MD 21287, USA
d Faculty of Sciences, Department of Statistics, Demography, Humanities and Social Sciences, Cayetano Heredia University, 430 Honorio Delgado Ave, Lima, LIMA 31, Peru
e Department of Mathematics and Statistics, Florida International University, S.W. 8th Street, DM 430, Miami, FL 33199, USA
f Department of Radiology and Imaging Sciences, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Drive, Rm 10/1C355, Bethesda,
MD 20892, USA

a r t i c l e i n f o

Article history:
Received 11 March 2016
Received in revised form
2 October 2016
Accepted 6 October 2016
Available online 19 November 2016

Keywords:
Hypertrophic cardiomyopathy
Corrected QT dispersion
Late gadolinium enhancement
T1 relaxation time

a b s t r a c t

Background: Hypertrophic cardiomyopathy (HCM) is characterized by myocyte hypertrophy, disarray,
fibrosis, and increased risk for ventricular arrhythmias. Increased QT dispersion has been reported in
patients with HCM, but the underlying mechanisms have not been completely elucidated. In this study,
we examined the relationship between diffuse interstitial fibrosis, replacement fibrosis, QTc dispersion
and ventricular arrhythmias in patients with HCM. We hypothesized that fibrosis would slow impulse
propagation and increase dispersion of ventricular repolarization, resulting in increased QTc dispersion
on surface electrocardiogram (ECG) and ventricular arrhythmias.
Methods: ECG and cardiac magnetic resonance (CMR) image analyses were performed retrospectively in
112 patients with a clinical diagnosis of HCM. Replacement fibrosis was assessed by measuring late
gadolinium (Gd) enhancement (LGE), using a semi-automated threshold technique. Diffuse interstitial
fibrosis was assessed by measuring T1 relaxation times after Gd administration, using the Look–Locker
sequence. QTc dispersion was measured digitally in the septal/anterior (V1–V4), inferior (II, III, and aVF),
and lateral (I, aVL, V5, and V6) lead groups on surface ECG.
Results: All patients had evidence of asymmetric septal hypertrophy. LGE was evident in 70 (63%)
patients; the median T1 relaxation time was 411738 ms. An inverse correlation was observed between
T1 relaxation time and QTc dispersion in leads V1–V4 (po0.001). Patients with HCM who developed
sustained ventricular tachycardia had slightly higher probability of increased QTc dispersion in leads
V1–V4 (odds ratio, 1.011 [1.004–1.0178, p¼0.003). We found no correlation between presence and per-
centage of LGE and QTc dispersion.
Conclusion: Diffuse interstitial fibrosis is associated with increased dispersion of ventricular repolariza-
tion in leads, reflecting electrical activity in the hypertrophied septum. Interstitial fibrosis combined with
ion channel/gap junction remodeling in the septum could lead to inhomogeneity of ventricular refrac-
toriness, resulting in increased QTc dispersion in leads V1–V4.
& 2016 Japanese Heart Rhythm Society. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hypertrophic cardiomyopathy (HCM) is the most common
inherited cardiovascular disease characterized pathologically by
myocyte hypertrophy, myocyte disarray, fibrosis, and arteriolar
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remodeling [1]. HCM is also the most common cause of sudden
cardiac death in young individuals [2]. Increased QT dispersion is
considered a risk factor for sudden death in HCM [3–6]. The pos-
sible mechanisms underlying increased QT dispersion in HCM are
ion channel [7] and gap junction remodeling [8], leading to
increased action potential duration, decreased conduction velocity,
and increased spatiotemporal dispersion of repolarization [9],
which would manifest as QRS prolongation and increased QT
dispersion on surface electrocardiogram (ECG).

An important feature of HCM is inhomogeneity of the distribution
of left ventricular (LV) hypertrophy, which has been shown to pre-
dispose to increased QT dispersion [10]. Another possible contributor
to increased QT dispersion that has not been investigated is fibrosis.
Fibrosis could slow impulse propagation and enhance dispersion of
repolarization induced by hypertrophy.

Gadolinium (Gd)-enhanced cardiac magnetic resonance (CMR)
imaging permits non-invasive assessment of replacement fibrosis
[11] and diffuse interstitial fibrosis [12–14], which are commonly
seen in patients with HCM [15]. Gadolinium rapidly diffuses out of
capillaries into the cardiac interstitium, but is unable to cross
intact cell membranes. A greater volume of distribution combined
with slower kinetics of Gd efflux from areas of interstitial and
replacement fibrosis leads to higher amounts of Gd per unit
volume in areas of fibrosis compared with the normal myo-
cardium, which is detected by CMR imaging.

In this study, we examined the relationship between fibrosis,
dispersion of ventricular repolarization, and ventricular arrhyth-
mias in patients with HCM. QTc dispersion on surface ECGs was
used to assess dispersion of ventricular repolarization [16]. Diffuse
interstitial fibrosis [17] and replacement fibrosis [14] (Fig. 1) were
assessed by measuring post-contrast T1 relaxation time and late
Gd enhancement (LGE), respectively, using CMR imaging.

2. Methods

The study was approved by the Johns Hopkins Institutional
Review Board (IRB# NA_00079621, last approval date 01-07-2013).
Consecutive, unrelated adult patients who were seen in the Johns
Hopkins HCM Clinic between 2009 and 2012 were retrospectively
studied if they fulfilled the standard diagnostic criteria for HCM,
namely left ventricular hypertrophy (maximum wall thickness
Z15 mm) and/or septal-to-posterior free wall ratio 4 1.3 by
echocardiography, in the absence of other causes such as hyper-
tension and/or valvular disease.

All patients had undergone contrast-enhanced CMR imaging
and echocardiography within 12 months after ECG. Patients were
excluded if they had a history of myocardial infarction, alcohol
septal ablation, myectomy, ventricular pacing, left bundle branch
block, poor ECG traces, and/or incomplete CMR data. None of the
patients included in the study had an implantable cardioverter
defibrillator (ICD) implanted before CMR imaging.

The mean follow-up period was 12 months. ICD discharges and
ventricular tachycardia (VT) events were recorded by reviewing
Holter, exercise ECG tracings, ICD interrogation reports, and clinic
visit notes. Sustained VT was considered as VT with a rate of 4100
beats per minute and duration of 430 s or VT that resulted in an
ICD shock or anti-tachycardia pacing. Appropriate ICD therapies
were all confirmed by an electrophysiologist and resulted from
ventricular tachyarrhythmias, not arrhythmias, such as atrial flut-
ter or fibrillation associated with a rapid ventricular response or
device/lead malfunction.

2.1. Cardiac magnetic resonance imaging

2.1.1. Image acquisition
All CMR imaging was performed on a 1.5 T (MAGNETOM

Avanto, Siemens Healthcare, Erlangen, Germany) system. LGE
images were obtained by using 2D FLASH T1-weighed gradient-
echo in short-axis view 10 min after administration of 0.2-mmol/
kg gadopentate dimeglumine. Myocardial T1 mapping was
acquired with gradient echo multiphase-IR (TI scout) images from
the Look-Locker (LL) sequence, using a single image plane in four-
chamber view.

Please see Supplemental Data Section for detailed methods for
CMR and Echocardiography image acquisition and image analysis.

2.2. Electrocardiographic analyses

Standard 12-lead ECGs were obtained with patients in the supine
position and recorded at a paper speed of 25mm/s. Heart rate, PR
interval, QRS duration, QT interval and QTc (using Bazett's formula)
were measured automatically at acquisition and were confirmed using
Cardio Caliper softwares. A prolonged QTc interval was defined as
Z450ms and Z470ms in men and women, respectively, in the
absence of bundle branch block or intraventricular conduction delay. QT
intervals were measured from the QRS onset to the end of the T wave,
defined as the intersecting point of a tangent line on the terminal T
wave and T-P baseline. QTc dispersion was defined as the difference
between the maximum andminimum QTc [16] in the following groups
of leads that reflect electrical activity in septal/anterior (V1, V2, V3, and
V4), inferior (II, III, and aVF), and lateral (I, aVL, V5, and V6) heart walls.
Leads with T waves whose height/depth was o1.5 mmwere excluded
from the analysis. Lead grouping was performed based on previous
studies correlating ECG with coronary artery territories in patients
presenting with acute myocardial infarction [18,19].

2.3. Statistical analysis

After calculating the QTc dispersion in each patient, the collective
leads, representing selected myocardial regions, were characterized as a
median value (Table 1) because distribution of values was non-
Gaussian. The medians were used to describe continuous variables,
unless stated otherwise. The Wilcoxon-rank sum test was applied for
independent samples not showing normal distribution. T1 relaxation
time was plotted against QTc dispersion by using the Spearman cor-
relation coefficient. Spearman correlation was also used for comparing
LV mass values with T1 relaxation times and QTc dispersion. When
performing multiple correlations, the Bonferroni correctionwas applied
to adjust the level of statistical significance of correlation coefficients
and therefore reduce type I error. The threshold levels of significance for
correlation coefficients were adjusted for multiple comparisons in a set
of k correlation coefficients (k¼1, 5, 10, 20, 50, 100) using the Bonfer-
roni correction.

3. Results

We studied 112 patients (mean age 49715 years); 73 (65%) were
male. Majority of the patients were classified as New York Heart
Association (NYHA) class I or II (Table 1). Angina and pre-syncope were
present in 36 (32%) and 15 (13%) patients, respectively; a significant
proportion of patients (27%) had ventricular arrhythmias, consisting of
non-sustained VT (n¼17) and sustained VT (n¼13).

3.1. CMR, Echocardiogram, and ECG analyses

All patients had evidence of asymmetric septal hypertrophy. LGE by
CMR was evident in 70 (63%) patients and was most frequently
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localized within the septum and/or anterior right ventricular insertion
point. Because LGE has been reported to be a risk factor for ventricular
arrhythmias in HCM, patients with HCM were categorized into two
groups based on the presence/absence of LGE by CMR (Table 2).

The peak left ventricular outflow tract gradients at rest and
following exercise were similar in the two groups. The LV mass
index was significantly higher (po0.001) in patients with HCM
with evidence of LGE. Median T1 relaxation time was 411738 ms
for the entire population. We found no difference in T1 relaxation
times between patients with HCM with and without LGE (Table 3).

QRS duration was similar in patients with HCM with/without
LGE (LGE positive: 9679 ms; LGE negative: 97711 ms; p¼0.6).
No significant difference was found in QTc dispersion between
patients with HCM with/without LGE (Table 3).

3.2. Association between CMR and ECG variables

We observed a statistically significant inverse correlation between
T1 relaxation times and QTc dispersion in the V1–V4 lead group
(Table 4, Fig. 2). LV mass and presence/percentage of LGE were not
correlated with QTc dispersion.

3.3. Arrhythmias

Patients with HCM with sustained VT had a slightly higher
probability of increased QTc dispersion in the V1–V4 lead group
(odds ratio, 1.011 [1.004–1.0178; p¼0.003). QTc dispersion was not
significantly different in patients with non-sustained VT or

Fig. 1. A, B. CMR images of a patient with HCM without LGE: (A) horizontal long-axis and (B) short-axis view of the nulled myocardium. C, D. CMR images of a patient with
HCM with LGE within the septal wall of the LV (orange arrows) in the (C) horizontal long-axis and (D) short-axis view. E–H. T1 relaxation time calculation in a patient with
HCM (E) Short-axis image shows nulled myocardium without LGE. (F) Horizontal long-axis image illustrates the method used for calculating T1 relaxation time where the
endocardial and epicardial contours were manually drawn in every slice of the TI scout image. (G) Graph depicts how T1 times were calculated using pixel by pixel fit
performed to a three-parameter model. (H) Horizontal long-axis image shows areas of interstitial fibrosis depicted in red–orange; mean T1 time was 423 ms.
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syncope (Table 5). We observed no correlation between T1
relaxation time and ventricular arrhythmias.

4. Discussion

4.1. Diffuse interstitial fibrosis, but not replacement fibrosis, is
associated with dispersion of ventricular repolarization in leads
V1–V4

The main result of our study is a statistically significant corre-
lation between interstitial fibrosis and QTc dispersion in leads V1–
V4, which reflect electrical activity in the septum/anterior wall.
Because all patients with HCM in our study had asymmetric septal
hypertrophy, we attribute this result to structural and electrical
(ion channel and gap junction) [9] remodeling in the

hypertrophied septum/anterior wall, resulting in increased trans-
mural dispersion of repolarization. At the cellular level, a high
degree of cell–cell coupling dampens transmural repolarization
heterogeneities normally present due to differences in electro-
physiology between epicardial, endocardial, and mid-myocardial
myocytes. Interstitial fibrosis would be expected to amplify the
transmural dispersion of repolarization induced by hypertrophy by
reducing electrotonic interactions between cardiac myocytes in
the septum/anterior wall. Lack of association between interstitial
fibrosis, which is diffuse in HCM, and QTc dispersion in the inferior
and lateral walls, may be attributed to lack of overt ventricular
hypertrophy and electrical remodeling in these regions. Our
results, which suggest greater degree of electrical and structural
remodeling in the interventricular septum, compared with other
regions, are concordant with a previous invasive electro-
physiological study that compared electrograms and local
stimulus-to-V intervals in the septum and lateral wall in nine
patients with HCM who demonstrated asymmetric septal hyper-
trophy. Using 3D electroanatomic mapping, Schumacher et al.
observed a high prevalence of fractionated, split, and low ampli-
tude potentials associated with conduction slowing in the inter-
ventricular septum, but not in the lateral wall [20], indicating
markedly higher prevalence of electrophysiologic abnormalities
and heterogeneity in the septum in patients with HCM.

Table 2
Imaging characteristics of patients with HCM with and without LGE.

No LGE (n¼42) LGE (n¼70) p Value

ECHO
Rest LVOTG (mmHg) 1178 1078 0.50
Exercise LVOTG (mmHg) 35732 39736 0.50
IVS_DT (cm) 1.970.4 2.270.5 0.001

CMR
LV mass index 80726 89731 o0.001
LVEF (%) 6778 6577 0.047

ECHO: echocardiography; LVOTG: left ventricular outflow tract gradient; IVS_DT:
inter-ventricular septum diastolic wall thickness; CMR: cardiac magnetic resonance
imaging; LV: left ventricle; LVEF: left ventricular ejection fraction.

Table 3
QTc dispersion and T1 relaxation times in patients with HCM with and
without LGE.

QTc dispersion All LGE No LGE p Value

II, III, aVF 22720 ms 19720 ms 23714 ms 0.30
I, aVL, V5, V6 27715 ms 27713 ms 29720 ms 0.97
V1, V2, V3, V4 24721 ms 23721 ms 27719 ms 0.77
T1 relaxation time 411738 ms 406737 ms 4177425 ms 0.21

All continuous variables are medians represented with interquartile deviations. The
p Value was calculated by using a two-sample Wilcoxon rank-sum test.

Table 4
Correlation between T1 relaxation time and QTc dispersion.

QTc dispersion Lead
groups

Rho Spearman
(n¼99)

p Value Bonferroni
correction

II, III, aVF �0.22 0.03 0.21
I, aVL, V5, V6 �0.16 0.12 0.84
V1, V2, V3, V4 �0.31 o0.001 o0.001
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Fig. 2. Modest inverse correlation is present between T1 relaxation time and QTc
dispersion in leads V1–V4 (r ¼ �0.31; po0.001).

Table 5
Association between ventricular arrhythmia and QTc dispersion in the V1–V4
lead group.

OR p Value 95% CI

Sustained VT
QTc dispersion V1–V4 1.011 0.003 1.004–1.018

Non-sustained VT
QTc dispersion V1–V4 0.998 0.604 0.99–1.006

Syncope
QTc dispersion V1–V4 1.003 0.232 0.998–1.008

Table 1
Demographic and clinical characteristics of the HCM cohort (n¼112).

Age (years) 49715
Male 73 (65)
NYHA Class I 45 (40)
NYHA Class II 37 (33)
NYHA Class III 14 (12.5)

Symptoms
Angina 36 (32)
Dyspnea 47 (42)
Presyncope, syncope 15 (13)
Palpitations 14 (12.5)
Dizziness 19 (17)
Arrhythmia (NSVT, VT) 30 (27)

Medications
Beta-blockers 73 (65)
CCB 19 (17)
ACEi /ARB 17 (15)
ICD 37 (33)

Values in parentheses indicate percentages. NYHA: New York Heart Association;
CCB: calcium-channel blockers, ACEi: angiotensin-converting enzyme inhibitors;
ARB: angiotensin receptor blocker. Arrhythmia: non-sustained ventricular tachy-
cardia (NSVT) and sustained ventricular tachycardia (VT).
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CMR imaging and pathologic analysis of the septal myocardium
[21] in patients undergoing surgical myectomy reveal a high pre-
valence of interstitial and replacement fibrosis in the inter-
ventricular septum (Fig. 3A and B). Based on these results, we
expected a correlation between replacement fibrosis (LGE) and
QTc dispersion, but we were surprised to find no association
between LGE and QTc dispersion. This result may be explained by
LGE being a less sensitive fibrosis indicator than T1 relaxation time
[15].

4.2. Fibrosis imaging by CMR

CMR imaging is the gold standard imaging technique to assess
cardiac anatomy, function, fibrosis, edema, and inflammation [22]
in a variety of cardiac diseases. Replacement fibrosis regions have
higher Gd concentrations compared with normal myocardium due
to increased distribution volume and delayed Gd clearance. Dif-
ferences in tissue concentrations of Gd between areas of replace-
ment fibrosis and normal myocardium results in the appearance of
replacement fibrosis as focal white areas, and normal myocardium
as black, using the inversion-recovery sequence (Fig. 1A–D). LGE
has recently been shown to represent both interstitial and repla-
cement fibrosis when measured at 4 SD and 5 SD above the mean
signal intensity of the normal myocardium [15]. Moravsky et al.
found that a threshold of 10 SD was required to discriminate
replacement fibrosis from interstitial fibrosis [15]. A threshold of
6 SD was used in this study; hence, LGE probably reflects both
replacement and interstitial fibroses.

Reduced post-contrast T1 relaxation times have been shown to
correlate with diffuse interstitial fibrosis [17]. This technique
quantifies the T1 relaxation time of a tissue by using image-based
signal intensities. Here, a specific inversion recovery time is used
to determine the recovery rate of longitudinal magnetization.
Increased Gd concentration in diffuse interstitial fibrosis speeds
magnetization recovery, resulting in the shortening of T1 relaxa-
tion time. This technique overcomes the limitation of standard LGE
techniques where diffuse fibrosis is not detectable because of the
requirement to null the signal in a myocardial reference region,
which is likely abnormal. Reduced T1 relaxation times have been
shown to correlate with serum biomarkers of fibrosis in genotype-
positive patients with HCM who lack LVH or evidence of LGE,
indicating that it is an early and sensitive indicator of structural
remodeling/fibrosis in HCM. Notably, small pathologic studies in
asymptomatic children and young adults with HCM who died
suddenly [23] reveal marked increase and disorganization of
interstitial and perivascular collagen content, but no evidence of
replacement fibrosis, suggesting the importance of including an
assessment of interstitial fibrosis in risk stratification for ven-
tricular arrhythmias in HCM.

4.3. QTc dispersion reflects dispersion of ventricular repolarization

Cardiac myocytes are well coupled electrically by gap junctions
in normal hearts, resulting in rapid propagation of the electrical
impulse and repolarization. Experimental models reveal that car-
diac pathologies induce heterogeneous changes in myocyte elec-
trophysiology, which primarily affect the repolarization phase of
the action potential, leading to increased transmural dispersion of
ventricular repolarization [24]. Transmural dispersion of repolar-
ization is quantified by the difference between the longest and
shortest action potentials in the heart. QTc dispersion has been
proposed as an index of heterogeneity of ventricular repolarization
— this is supported by the link between dispersion of ventricular
recovery times (measured using monophasic action potentials)
and genesis of arrhythmias [24–26].

QTc dispersion has been measured in several lead groups [27].
Whether QTc dispersion truly represents dispersion of ventricular
repolarization or is a mere reflection of different projections of
cardiac electrical activity onto varying lead axes has been debated
[28,29]. Coumel et al. have opined that QTc dispersion measure-
ment in the unipolar leads, V1–V6 (as opposed to limb leads), is
most reflective of local activity in the myocardium. A statistically
significant inverse correlation was only observed between T1
relaxation times and QTc dispersion in the V1–V4 lead group in
our study, which strengthens the significance of our results.
Increased QTc dispersion has also been reported in patients with
hypertensive heart disease, dilated cardiomyopathy, and cardiac
amyloidosis [30–32].

4.4. Lack of correlation between QTc dispersion and LV hypertrophy

We found no association between LV mass and QTc dispersion
in patients with HCM in contrast to previous studies in hyper-
tensive patients with LV hypertrophy [33]. A possible explanation
for this result is as follows: unlike hypertension, where increased
afterload predictably leads to hypertrophy and fibrosis, the mole-
cular mechanisms underlying fibrosis and hypertrophy in HCM are
probably separate. This is exemplified in patients with HCM with
mutations in the gene encoding cardiac troponin T (TNNT2) who
often have mild LV hypertrophy [34] on clinical imaging, evidence
of interstitial fibrosis and/or myocyte disarray [35], and high
incidence of sudden cardiac death. Hence, QTc dispersion would be
expected to correlate with interstitial fibrosis, but may not corre-
late with degree of hypertrophy in HCM.

4.5. Clinical Implications

The link between increased QTc dispersion and ventricular
arrhythmias has been previously demonstrated in patients with
HCM [3], long QT syndrome [16], and myocardial infarction

Fig. 3. Septal tissue from a patient with HCM (from the JHU-HCM Registry) who underwent surgical septal myectomy. Masson Trichrome stain reveals evidence of
(A) interstitial fibrosis and (B) replacement fibrosis in blue color. Calibration bars represent 200 mm.
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[36,37]. In our study of 112 patients with HCM, patients with
sustained VT (but not non-sustained VT) had slightly greater odds
of higher QTc dispersion. A possible explanation for this result is
that QTc dispersion could predispose to development of reentrant
arrhythmias, manifesting as sustained VT; in contrast, triggered
activity due to abnormalities in Ca2þ handling could underlie non-
sustained VT.

No association was present between T1 relaxation times and
ventricular arrhythmias. These results could be attributed to the
small numbers of patients and short follow-up in our study.
Another possible explanation is that fibrosis is pro-arrhythmic
only in the presence of dispersion of ventricular repolarization.

4.6. Limitations

Myocyte disarray, which is commonly seen in HCM, can also
affect T1 relaxation times and cannot be distinguished from
interstitial fibrosis by CMR. All T1 relaxation time calculations
were performed retrospectively. Although a previously validated
correction factor was used, contrast dose and timing of imaging
post-injection were variable, which could lead to slight variations
in T1-weighted scout images. We did not correct for the signal-to-
noise ratio; therefore, an incorrect selection of the inversion time
could have resulted in poor myocardial suppression, increasing the
signal-to-noise ratio with possible overestimation of LGE quanti-
fication. None of the patients included in this study underwent
surgical septal myectomy or endomyocardial biopsy. Hence, we
were unable to correlate CMR results with histopathology in
this study.

5. Conclusion

This is the first non-invasive study that suggests a link between
interstitial fibrosis and dispersion of ventricular repolarization in
patients with HCM. The association between interstitial fibrosis
and QTc dispersion was most evident in leads reflecting electrical
activity in the septum/anterior wall, the maximally hypertrophied
segments. Our results suggest that interstitial fibrosis and ion
channel/gap junction remodeling in the septum could lead to
inhomogeneity of ventricular refractoriness, resulting in increased
QTc dispersion in leads V1–V4. Prospective studies incorporating
QTc dispersion and CMR assessment of interstitial fibrosis (T1
relaxation time) in addition to replacement fibrosis (LGE) may be
useful to improve risk stratification for ventricular arrhythmias in
patients with HCM.
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