Snacking in Bed: Blending Residential and Agricultural Typologies

Taylor Chin
Roger Williams University, tchin452@g.rwu.edu

Follow this and additional works at: https:// docs.rwu.edu/archthese
Part of the Architecture Commons

Recommended Citation

Chin, Taylor, "Snacking in Bed: Blending Residential and Agricultural Typologies" (2018). Architecture Theses. 114.
https://docs.rwu.edu/archthese/114

SNACKING IN BED:

BLENDING RESIDENTIALAND AG RICULTURAL TYPOLOGIES

OF COURSE, MOST EVERYBODY CHEATS SOME TIME OR OTHER. PEOPLE ALWAYS BEND THE RULES IF THEY THINK THEY CAN GET AWAY WITH IT. … THEN AGAIN. THAT DOESNT JuStify my cheating.

THEN I THOUGHT, LOOK CHEATING ON ONE LITILE TEST ISNT SUCH A BIG DEAL. IT DOESNT HURT ANYONE.
... BUT THEN I WONDERED IF I WAS JUST RATIONALIZING MY UNWILLINGNESS TO ACCEPT THE CONSEQUENCE OF NOT STUDYING.

1 ABSIRACT
2 PROBLEM STATEMENT
3 MANIFESTO
4 THESS PROPOSAL
5 SIIE SELECTION \& ANALYSIS
6 PRECEDENTCASE STUDY ANALYSS
7 TECHNICALREPORT
8 ARCHITECTURAL PROGRAM
9 CODEREVIEW
10 BIBLOGRAPHY

Rocinha Favela, Rio De J a neiro, Brazil
"Bigness no longer needs the city: it competes with the city; it represents the city; it preempts the city; or better still, it is the city."
"Without a theory of Bigness, architects are in the position of Frankenstein's creators: instigators of a partly successful experiment whose results are running amok and are therefore discredited."
-Rem Koolha as

Shinonome Canal Court Tokyo, Japan

2 - PROBLEM DERNITION

PROBLEM STATEMENT

The global population has been increasing exponentially over the last one hundred years and has done so at a staggening rate; in 1927, the human population of the Earth was estimated at two billion, in 1960, it had grown to three billion, a nd in 1999, it was already at six billion and with no sign of slowing. Presently, the world population stands at approximately seven billion, thuscontinuing this growth trend. Perhapsworse is that there are places like India where the population is so incredibly dense, that there is almost no hope to a dequately house everyone with the space provided. Add to this the need forgreater management of food supplies and resources and the issuescompound. Great technological leaps in a griculture over the last 100 years have allowed countries to generate massive reserves of food at any point throughout the year. Despite these feats, much of that food is wasted while widespread hunger remains a problem.

Architecture has the capability to serve asthe jumping point in the resolution to both of these problems. Advances in both urban housing strategies and modem landscape technology presents the opportunity for architects to design buildings that not only provide a place to live, but also the meansto live.

This of course begs the question; how can architecture balance the needs of urban housing while still allowing the land to be productive?

The answer to this problem is one that will likely need to change over a larger expanse of time. Architecture can only make so many strides before cultural norms and issue begin to limit the capabilities of designers. Even if the ideal form of housing is built tomorrow, there is no gua ra ntee that it will be used. If the units are slightly too sma ll or the location of the units is not right, then the social climate will not accommodate the advancements. Architecture will need to take careful steps in order to find the best ways to align the wants of people with the needs of urban planning.

That is not to say progress cannot be made. Architecture can begin to take the steps necessary and pave the way for continued advancement of this productive housing typology. High density housing needs to take on the responsibility of providing users not only a home, but also the essentials of life. The end goal will be to create a self serving build ing that supplies the occupants with all the produce they need; a city designed with this in mind will have the potential to grow to much largerscales and densities, without needing expansive reserves of supporting land. Of course, this is a big step to take all at once. Presently the need for architecture is to develop the means of designing housing situations that supply occupants with a set percentage of agric ultural produce. Over time, the normalization of this housing typology will allow it to become the backbone of urban design and be accepted asthe social standard for housing.
"Historic ally, a rchitecture has been dominated by two opposing extremes: an avantgarde full of crazy ideas, originating from philosophy or mystic ism; and the well organized comorate consultantsthat build predictable and boring boxes of high sta ndard. Arc hitec ture seems entrenc hed: naively utopian or petrifyingly pragmatic.
We believe there is a third way between these diametric opposites: a pragmatic utopian a rchitecture that creates socially, economic ally and environmentally perfect
placesasa practicalobjective. At BIG we are devoted to investing in the overlap between radical and reality. In all our actions we try to move the focus from the little details to the BIG picture."

- Bjarke Ingels

Noblerot Restaurant \& Rooftop Garden, Portland, Oregon

Villa Antinori Winery, Florence, Italy

High density housing needs to take steps to become self serving by incorporating a full range of resource management services into a highly efficient housing structure. Successful architecture must meet at the intersection of needsand wants. In the United States, this is a glaring issue where housing tends to fall on either end of the density spectrum, but rarely meets in the middle. The U.S. suffers from sprawling suburban neighborhoods where every fa mily ma inta ins an under utilized piece of land, a s well a sovenly dense urban centers that are devoid of human and environmental consideration. Architecture needs to begin to bridge this gap in order to lay the groundwork for the future expansion of cities and to provide a greatermeaning to residential architecture. Urban areas in partic ular must begin to think about the way land is used and how buildings occupy a nd use it. Modem developments have allowed buildings to efficiently provide more than one service to the people which is vital to planning a city with appropriate density. There is now the ability to design a building that is not only an apartment complex but also an office, a garden that provides food while also acting as a public recreation space. These multi-use buildings need to become the norm in order to balance the needs and wants of people.

Cities like Burlington, Vemont have already seen the ment in these endeavors a nd have begun to restructure their urban centers in response. One example of Burlington's Legacy Project Action plan is the re-purposing formercoal factories into housing projects as well as transforming these buildings into flood management systems.

Buildings like the Villa Antinori Winery have begun to investigate how a building can merge with the landscape while also producing food. This winery in Italy is buried into the hillside which allows it to mainta in a vineyard. Buildings like these need to become the norm rather than applauding the occasional occurance. The typology of the productive housing development is one that needs to be the next architectural movement in order to set a new social nom and pave the way for future urban growth.

The building will be one that blendsthe residential and a gricultural typologies. The project will explore the generation of a productive residence in an urban setting. The thesis a nalyzes the cultural conditions of such a building and how it might fit into the urban fabric of a city. In addition, it will investigate the scaling of such a building and how a plot of land will answer to population density as well as agricultural use. A standardized set of building layers will be clearly defined as a rationale for designing a building that conforms to the site and cultural concerns. The summation of these considerations and intents will be a building that supplies the community with a food-producing building and recreational landsc a pe while also serving the urban needs of the environment.

CRIERIA

CLIMATE: In consideration of the agricultural aspect of the program, the building will want to have a temperate climate that has more productive growing seasons. A site with a full range of seasons will be ideal for this type of program in order to test the thesis a gainst an intensive and varied climate. Greenhouse technologies can be implemented to supplement growing seasons and increase diversity of a gric ulture.

SETING: The project statement dictates the need for an urbanized setting. In order to fully consider the building as a solution to the future housing and land use concems. The program will be most successful if a site is located on the fringe of a city where it has ample space to test the ideas but also a strong relationship to an existing urban center. The fringebased location will also be important in consideration of the growth of the city; as the urban center grows, the building will become a foothold within a densifying area and ideally shape the way the surrounding context evolves.

SIZE: The agric ultural characteristics suggest the need for a medium to large lot, which is unlikely to be found in an established urban center, which reinforces the need for a site located on the outer edge of a city. Multiple smaller sites can also be used to achieve the same effect, orto create a more dispersed building that may be more in line with a housing complex.
"The minimum amount of agricultural land necessary for sustainable food security, with a diversified diet similar to those of North America and Westem Europe (hence including meat), is 0.5 of a hectare perperson. This does not allow for any land degradation such as soil erosion, and it assumes a dequate water supplies. Very few populous countries have more than an average of 0.25 of a hectare. It is realistic to suppose that the absolute minimum of arable land to support one person is a mere 0.07 of a hectare-and this assumes a largely vegetarian diet, no land degradation or water shortages, virtually no post-harvest waste, and fa mers who know precisely when and how to plant, fertilize, inigate, etc. [FAO, 1993]"

Nutritional based needs for 1 person for 1 year (Mini Farming, Self sufficiency on a $1 / 4$ acre)
Veggies: 456 lbs
Fruit: 365 lbs
Wheat, com, oats, nice: 250 lbs
Lean mean and eggs: 159 lbs
A 200 person residential program would require roughly 34 acres to be fully sustaining. 50% of this requirement would be approximately 17 acres. For the purposes of this thesis, the goal will not be to produce 100% of a person's diet, but rather use the agricultural a spect to reduce economical strain on the build ing's residents.

Baltimore was founded in 1797, when Baltimore town merged with FellsPoint. Baltimore is a historic ally a working man's city that has roots in a variety of trades including flour and linen. The introduction of railroads saw to a boost in the city's economy at a time when it had begun to falter and helped to revolutionize business and managerial practices. The port became a staple to the city's economic growth asit allowed the city to take part in a variety of industries including tobacco, grain, autmobiles, and tin and sheet-iron ware products. The boom of these markets allowed Baltimore population, a nd subsequently housing structure, to expand and between 1869 and 1896.

Around this time, Baltimore was poorly managed and had begun to fall behind in infrastructural technologies when compared to other major cities such as Chicago or New York. In 1904, the city suffered The Great Baltimore Fire which razed 70 blocks and 1,526 build ings. While it was a major crisis, it allowed to city to begin to restructure itself; Baltimore began to focus on resolving its issues such as sanitation and water supply. These adjustments following the fire allowed the city to catch up to some of the modemization efforts of the era.

World Warll brought large a mounts of industry to Baltimore, which served as a hub formassive war production endeavors. The leading factories were Bethlehem Steel's Fairfield Yard, a ship manufacturer on the southeastern edge of the harbor, and Glenn Martin, an aircraft plant northeast of downtown. These, along with other war-based factories and industries, brought between 150,000 to 200,000 workers from surrounding southem countries to Baltimore. The city continued to expand with the influx of war workers and during this time and brought about new housing developments.

Baltimore following The Great Baltimore Fire

As Baltimore and its population grew, the diversity of the city began to vary. Historically, the city has always been heavily mixed in its demographic ; the civil warand the events leading to it demonstrated the ethnic diversity of Baltimore and the political strife that came with it. In the 1800's, Baltimore found itself as a city with mixed feelings about ensla vement. Unlike other cities of the time, there were some black citizens of Baltimore who had gained freedom and some that still found themselves as sla ves but regardless of their situation, they found more freedom than other places of the time. During this period there was also an influx of German and Irish immigrants who helped to saturate the labor market, which was particularly difficult on the black economy. Leading up to the Civil War and even following it, Baltimore had the highest Afric an Americ an population.

Simila r conditions persisted throughout the early 1900's and into the post World Warll area. Following the war, the civil rights movement began with Baltimore at the center. The African American demographic of the city began to protest for their rights and organized one of the first sit-ins at Read's Drug Store. The racial divide continued following Martin Luther King's death, which sparked riots throughout Baltimore a nd left six dead, 700 injured, and 5,800 arrested. The riots escalated to the point where 6,000 Amy troops were required to reign in the city, which had become drastically divided.

At around the same time drugs had become a major problem, with heroin being the biggest. The 1960's saw to a drastic rise of heroin addiction and accompanying it an increase in drug-related violence and burglaries. To make matters worse, a failed attempt to integrate school systems caused white flight from public schools which led to many urban schools becoming reliant on government aid and lacking sufficient funds to provide proper education.

Race relations sparked aga in in 2015 following the death of Freddie Gray while in police custody. The case caused outrage among the black community and resulted in riots that began peacefully, but tumed violent following Gray's funeral.

Average Rainfall Amount (mm) and Rainy Days

Baltimore, Maryland

Max, Min and Average Temperature $\left({ }^{\circ} \mathrm{C}\right.$)

Baltimore, Maryland
Average Cloud and Humidity (\%)

Baltimore's climate encompa sses all four sea sons and lies in a humid subtropical climate zone. The city experiencesa range of temperatures, with the lowest tending to be around $20^{\circ} \mathrm{F}$ and the highest reaching above $105^{\circ} \mathrm{F}$. The region tendsto experience warmer temperatures, and higher humidities that range from 70\%80\%.

The winters see a verage temperatures of approximately $38^{\circ} \mathrm{F}$ with highs of about $50^{\circ} \mathrm{F}$. While the winters tend to be on the wa mer side, there is still sporadic snowfall that a verages out to 20 inc hes yearly, though there are significant variations in this number. The heat island effect plays notable role in winter precipitation as the denser parts of the city may reduce the amount of snowfall.

Spring is also a relatively warm season, though it also exhibits some of the more extreme weather. Spring sees the most frequent and highest a mount of precipitation throughout the year and istypically experienced as rainfall. Baltimore frequently receives up to 6 inches of precipitation throughout the spring sea son, which at times can cause flash flooding. Baltimore is susceptible to severe winds and even tomados at times.

Summers in Baltimore a re hot and humid with temperatures a veraging at $80^{\circ} \mathrm{F}$. The high temperature in combination with the high humidity leads to summer thunderstorms.

Late summer and early a utumn are when huric a nes are the most likely to occur which may also cause flooding throughout the city. Like spring, autumn tends to be warm and experience significant precipitation.

6,301 O'DONNEL STREET, BALIMORE, MARYLAND, 21224

In consideration of the site, two major factors played a role: the size of the site, and the proximity to the center of the city. The size of the site needed to be large enough to facilitate both an agricultural program, as well as a residential. The intention of the thesis is that these two programs overlap, but in order to propenly consider both to a full degree there would need to be ample space for them to operate as well as to maximize density. Proximity to the heart of Baltimore is important to the urban growth aspect of the thesis. The site needsto be one that is within an area of expansion for the city in order to support the concept of long term building use. In addition, the location must also accommodate the scale and typology of the building within the local context.

HERRING RUN

Located on the Northeast end of Baltimore
Adjacent to Heming Run watershed
Adjacent to Morgan State University
Meeting point of large scale development and single home residential
Approximately 5.6 acres (244,320 sq ft)
The third site better considered the context of the neighborhood as it is located at the transition between a large scale college campus and single home residences, though the site size needs to be expanded upon.

O'DONNELL HEGHIS, BALTIMORE MARYLAND, 21224

The neighborhood is namesfor a public housing project that lands on the Eastem edge of Baltimore county. During World War II when Baltimore saw a large influx of migrant workers, the city expanded and many new housing projects were built to accommodate the growth. O'Donnell Heights wasone of these neighborhoods. Originally built as a 900 unit neighborhood, the development was renovated in 1983 a nd consisted prima rily of rowhouses. Following 2007, O'Donnell heights began a new wave of development where many of the existing housing units were demolished in or to allow forconstruction of mixed-income housing.

6,301 O'DONNEL STREET, O'DONNEL HEGHIS

The O'Donnell heights site is significantly larger than the previous ones at 28 acres. The selection of a site with such a large area resulted from the conclusion that the scale of the program would require twenty ormore acres in orderto appropriately ta ckle the thesis. On top of this, the site is mainta ins a sixty foot slope across the length of the site, which is ideal for an agricultural program.

The context of O'Donnell heights worked in favor of the program for multiple reasons. The site acts as a transition between a commercial/industrial zone and a residential zone which justifies the scale of the program. The location is adjacent to multiple public cemeteries, two elementary schools, and a boys and girls club which are vital for any housing project. Though it is on the Eastem edge of Baltimore, the surrounding a rea is still undergoing development and expansion.

SOILDATA

SOILTYPE	AREA (ACRES)	STE COVERAGEOF CONCREIE	CORROSION	SEEDUNG MORIALTY	SURFACE TEXTURE	pH (1:1 WATER)	SLOPE RANGE	DRAINAGE
KEYPORT 15UB	14.5	51.7%	HIGH	LOW	LOAM	4.7	0 TO 8	WELL
UDORTHENTS 42E	13.5	48.3%	HIGH	LOW	GRAVELY	4.5	0 TO 35	VERY WEL

SOILINFORMATION

KEYPORT- SYMBOL 15UB

"The Keyport series consists of very deep, moderately well drained soils on upland foot slopes on the Coastal Pla in. These soils formed in moderately fine textured, old fluvial sediments underlain by older deposits of silty clay, Slopes range from 0 to 15 percent.

Soils of the Keyport series a re clayey, mixed, mesic Aquic Ha pludults.

Typical pedon of Keyport loam, 0 to 8 percent slopes, about 50 feet north of connecting cemetery roads, 0.25 mile northwest of mausoleum on Wilkens Avenue, in Loudon Park Cemetery, in a wooded, undeveloped a rea..

The thickness of the solum ranges from 40 to 60 inches. Depth to unc onforming, coarser materials is typic ally more than 5 feet. Reaction is strong a cid to extremely acid in unlimed a reas."
-Information from Baltimore Soil Survey

UDORIHENTS - SYMBOL 42E

"This map unit is made up of earthen fill and nonsoil material that has been placed on poorly drained to somewhat exc essively drained soils on uplands, terraces, and flood plains of the Coastal Pla in and Piedmont Plateau. It is on sites of buildings, roads, railroads, recreation areas, and other uses. Areas range from 2 to 570 acres in size. Slopes are very complex and irregular. They range from nearly level to steep, but are domina ntly nearly level to moderately sloping The thickness of the fill varies, but is more than 20 inches. The source of the fill material in this unit is variable, mixed, organic, and inorganic waste from human a c tivity and sandy, gravelly, clayey, silty, a nd mic a ceous soil material...

Typically, the surface la yer is a bout 5 inches thick. It is very dark grayish brown gravelly sandy loam that has brick and glass fragments throughout. The subsoill fill material extends to a depth of 65 inches or more. It consists of stratified layers of strong brown, brown, pinkish gray, and gray sand, sandy loam, a nd gra velly sandy loam that has pockets of charcoal, ash, and brick fragments throughout....

Permeability and available watercapacity are variable. in some highly compacted areas, watertends to pond on the surface under heavy rainfall.

Some areas of this unit are almost totally covered with buildings, asphalt, c oncrete, or other impervious surfaces. Most a reas a re subject to differential settling and, therefore, have poor potential for use as building sites... Many of the uncovered, nearly level areas, which conta in only small a mounts of coarse fragments a re generally high in fertility and available water capacity and thus have potential for lawns, trees, oma mental shrubs, vegetable gardens and most recreation uses."

6- ARC HITECTURAL PRECEDENIS
-SPARK ARC HITECTS - HOMEFARM
CONCEPT- SINGAPORE

3 PRODUCE MARKET
4 HEALTH CENTRE
5 FOODCOURT/SOCIAL CENTRE
KINDERGARTEN/LIBRARY
seniors' mall
CENTRAL PLAZA
9 CARPARKENTRANCE
10 WATER CATCHMENT
11 PACKAGING WORKSHOPS

GROUND FLOOR PLAN

The housing proposal by SPARK architect aims to provide a potential solution to the Asia's financial retirement issues. In the recent decades, the median age of citizens has risen substantially to the point that in 2014 over 11% of Singapore's population was aged 65 or older, yet the support for these citizens has steadily dec reased. Pa ir the declining support for retirees and elderly with the fact that Singapore imports 90% of their food and it becomes a financial crisis. SPARK's homefarm aims to combat these issues by designing a private housing project that incorporates an aqua ponic and soil based agricultural sector. By implementing this into the housing scheme, the residents will have a means of producing their own food which will reduce the financial difficulties faced by the elderly and their families.

PRODUCE COLLECTION
ESCAPE STAIRS
(3) LOGISTIC LIFT / STRETCHER LIFT
(4) RESIDENTS' LIFT
(5) storage
(6) STRUCTURE DIVISION

SPARK looked at the typical living conditions of families living in Singapore and designed the housing to fit those norms. The result is that the Homefarm includes a variety of housing schemes and spaces sized to fit varying number of occupants. SPARK found that the most common living unit type was where the elderly lived with spouse a nd kids, however they also noticed that non-traditional living a rrangements, such as multi-fa mily a nd multi-generational, were becoming increasingly more common.

The focus on housing the elderly and providing them with a financial resource is not an idea independent to the Homefarm project. It a ctually stems from Singapore's Ministerial Committee (MCA) who set out to address the growing concern of financially insecure retirees. They developed a program that focuses on four main ideas, which Homefarm addresses in some way:

Enhance employment and financial security
Enable aging-in-place (with a ba mier-free environment and essential services in the community)
Provide holistic and affordable healthcare and eldercare
Promote active aging (to mainta in physical and mental wellbeing and continue contributing to society)

Homefarm＇s agricultural aspect is approached with multiple techniques：first is a spatially efficient aquaponic vertic al farm，second is a soil－based linearfarm，a nd this is a traditional soil－based farm．The aquaponic farm is a system that has already seen much use in Singapore where it often emerges as a rooftop system．In Homefarm，the aquaponic farm becomes a majorfacade on the interior face of the building．This allows it to be accessible from multiple levels，is highly spacially efficient，and acts as protection from intense solar radiation and heat gain．This system is supplemented by linear soil planters that can be incorporated along exterior walkways an onto the roof to continue to use public space in an efficient and productive way，while also allowing for a broader range of produce．Lastly is the traditional soul based farm which allows for added plant diversity as well asa vital landscape element for the courtyard aesthetic．

The agricultural aspect of Homefarm accomplishes multiple objectives：it first provides financial relief for the elderly in the means of self－sustained food production，it providesthe occupants with an object of social interaction，creates a job a nd service that retirees can still provide without needing to be in the work force，and promotesphysic al and mental health through gardening．These traits make the Homefarm concept a revolutionary approach to housing，financial， social，a nd a gric ultural concems．

HABITAT67
MOSHE SAFDIE - 1967 - MONTREAL, QUEBEC, CANADA

Moshe Safdie's thesis project in 1961 began with the idea of prefabricated living unitsstacked together and connected in order to create a housing complex that combined the nature, open space, and multi-level living of suburban homes, with the economic thought and density of a partment complexes. He sought to combine the best of both typologies and create a housing complex that could exhibit both. His design was experimental for the time and helped to inspire other prefabricated buildings such asthe Nakagin Capsule Tower by Kisho Kurakawa. The design largely explored the ideas of prefabrication as means of producing high-density and reduced cost housing without sacrificing design creativity, as well as the melding of the suburban housing typology with the urban context and structure.

When he began to design it for Expo 67, the design consisted of and entire master plan with shopping centers, a school, a nd up to 1,000 living units. While the design waslargely approved, Safdie was unable to achieve the original scale of the project.

The final design was reduced to 354 identical prefabricated concrete blocks where he created 158 living units by connected between 2-8 of them at a time. Each unit had its own access to a patio, which ranged in size from $\sim 200 \mathrm{sq}$ $\mathrm{ft}-\sim 1,000 \mathrm{sq} \mathrm{ft}$. The stacking technique of the units created a 12 story building that allows for various configurations of interior spaces through the orientation of the blocks, while the negative spaces between the prefabric ated units helps to create unique patio spaces and exteriorviews. The service and parking for the building is located on the ground level with pedestrian paths, comidors, a nd bridgesconnecting the living units.

"The prefabrication process of the 90 -ton boxestook place on-site. The basic modularshape was molded in a reinforced steel cage, which measured 38×17 feet. Once cured, the concrete box wastransferred to an assembly line for the insertion of electrical and mechanical systems, as well as insulation and windows. To finalize the production, modular kitchens and bathrooms were installed, and finally a crane lifted each unit to its designated position."
-From ArchDaily
While prefabrication was intended to reduce cost, and in modem construction achievesthis, the scale of the project prevented the economic advantage from coming into play. In tum this then limited further expansion of the building, as Safdie had hoped that this was phase 1 of the design.

Safdie's design helped to generate many new ideas regarding prefabricated construction and housing design; however, it unfortunately did not achieve all of the original goals. The idea of prefabrication as a means of designing more economically considerate build ingswas strong, however it was limited by the scale of the project aswell asthe technology at hand. The disc ussion of cost also comes into play with the price of the units themselves. Part of the design intention was that the units would be able to have reduced prices, likely as a result of the construction methods, unfortunately the building has not preserved that idea. The units now range in price from $\$ 200,000$ to recent price submissions of $\$ 1,000,000$. While Safdie had not intended for the building to be public or affordable housing, it is unlikely that he was designing such a dense housing system for the upper classes.

COMPOSTING

GREENHOUSES

7- TEC HNICAL REPORT

ROOTCELAR

Root cellars are an efficient means of food storage that do not require modern refrigeration technologies. Historically, root cellars have been used on small scales in the basements of homes, buried into hillsides, a nd even as independent structures. Root cellars tend to be low maintenance, require little energy to operate, and can be built and managed by the average homeowner.
Root cellars require control of four elements: Temperature, Humidity, Ventilation, and Light

Setting Up a Simple Root Cellar

TEMPERATURE

Temperature for the process is ideal at a $32^{\circ}-40^{\circ}$ system, this can usually be reached at ten feet below grade. The entire space needs to be insulated in order to mainta in a constant temperature throughout the year. Packed earth or concrete flooring are standard for root cellars

HUMIDITY

Root Cellar Humidity is ideal at a range of $85 \%-95 \%$ in order to prevent moisture loss in the produce through evaporation. One method of maintaining moisture in produce is to pack the produce in bins filled with wet leaves, which can be replaced every year and composted.

VENTILATION

In orderto prevent food from spoiling, there should be proper ventilation to allow fresh a ir into the cellar, aswell as to reduce the buildup of ethylene gasthat is released by the produce.
Therefore fresh air should be brought in at the base of the room, and exhaust should be located at the top of the room. Fruits tend to produce larger quantities of ethylene a nd should be separated from vegetables

UGHT

Root cellars should be enclosed to be dark the majonty of the time as light allows produce to spoil orcontinue growing. Typically there is only artificial light for when someone is present in the room, and designs avoid allowing natural light into the space.

COMPOSTING

Composting is a waste disposal process that hasgrown traction in both single family homes as well as urban centers. The process has found purpose as a efficient way of disposing of organic waste which is then turned into compost that can be sold for a profit. The composting process has become more efficient since this realization and therefore has become a staple forwaste disposal. Composting is an aerobic process that utilizes micro-organisms such as bacteria and fungito break down organic matter using carbon, nitrogen, water, and oxygen. The process will ultimately yield a compost that can be used for a variety of agric ultural a nd gardening purposes.

The process is begun by gathering waste matter of varying particle sizes and organizing it into large pilesso that the mic ro-organismscan begin to break down the material. At this stage, it is important to control many conditions of the composting piles such asits shape, height, pH level, particle sizes, nutrient levels, and to tum and mix the piles frequently. The retention time, which is the amount of time needed until a pile producescompost, typically depends on six factors: nutrients involved, moisture content, oxygen available, pH level, surface area of the pile, and temperature. Composting occurs the fastest with proper water content, carbon to nitrogen ratio, a nd frequent aeration are provided. Active composting can take between 2 weeks to 9 months depending on the conditions, and curing can take another one to four months.

CONDITIONS

There are a variety of types of composting techniques, though one of the common ones are windrows. Windrows are an system that uses long, na rrow piles of regularly tumed compost. They works best for yard and agric ultural waste and can produce compost in three weeks with proper management. Windrows can be hundreds, and are typic ally three to twelve feet tall, and ten to twelve feet wide. Tuming is done with special machinery and frequency is dependent on the qualities of the compost. The piles need to be turned twice a day for the first week, then every three to five days afterwards. While windrows require maintenance, they generally do not take lots of resources to manage and can generate compost in respective time frames.

Composting facilities usually require a $2-4 \%$ slope for drainage, minimal paving, and retaining walls for the piles. It is also vital to have planned areasfor the raw material storage, processing, composting, curing, compost storage, and blending of the end product. The area is usually surrounded by perimeter bems as well asfoliage to act as a site screen.

Controlling the conditions of the compositing process is important asimproper management may lead to the piles giving off unpleasant odors and a decelerated retention time. Ingredients such as sawdust, leaves, crop residue, and fresh bedded manure typic ally do not generate foul odors and it is important to store these raw materials for as small an a mount of time as possible. In addition, the piles should be ma inta ined at approximately four-a nd-a-ha If feet tall, kept at 55% moisture, and turned about two times a week. Proper maintenance of the piles will prevent them from giving off foul odor.

GREENHOUSES

Greenhousesare a means of food production that allow for a greatervariety of produce to be grown yearround by creating a controlled climate in an enclosed area. Typic ally insulated glass enclosures, greenhouses principally operate by trapping heat into a growing space, thus generating a warm climate even during cold seasons. Historically, greenhouses have been used for hundreds of years and have been built at small a nd large scales.

For a greenhouse to work, it needs to be planned ahead with consideration of crop selection, growing periods, planting types (pots, beds, hydroponic, troughs), growing medium, growing system, and annual production. Larger scale greenhouses typically require approximately two acres of land for the appropriate facilities, should have a $1-2 \%$ slope fordrainage and solar conditions, and have soil conditions suitable for crop growth. Associated facilities for the building a re frequently interior and exteriorstorage, equipment storage, a maintenance shop, head house, and germination room.

Two types of greenhouses are common forlarger scale operations: free standing a nd gutter connected. Free standing greenhouses are usually the least expensive option and designed in a quonset style with widths up to 34 feet, though certain gable style designs have the potential to span up to 60 feet. These types of facilities usually work best for facilities intended to be less than 10,000 square feet and are on sloped sites in locationswith heavy snowfall. Gutter connected designs utilize similar design strategies, but use them at larger scales, typic ally greater than 10,000 square feet. These designs are spatially efficient as they can be constructed up to lengths of 300 feet and share adjoining walls. They also tend to be economically efficient, energy efficient, and are relatively easy to construct.

TECHNICAL

Glazing selection is an important aspect to consider asit has a direct impact on the performance of the greenhouse. Common glazing solutions are double poly, which is the most affordable option but sacrifices longevity, polycarbonate, which has longer life and better performance at a higherprice, and wide pane, which has a higher initial cost but is suitable to designs requiring greater a mounts of light.

In a greenhouse it is important to control three conditions, light, heat, and cooling. Natural light is the typical design consideration and is resolved by the greenhouses itself, though at times it is a lso important to implement supplemental artificial light such as high pressure sodium fixtures with at least a 900 foot candle capacity. Heating is usually provided by water boilers which can provide varying amount of heat to specific bays of the greenhouse as a response to crop need. Greenhouses are usually under-floor heated for uniform room temperature and to prevent drying of the plants the water temp usually does not exceed $110^{\circ} \mathrm{F}$. Lastly, cooling is sometimes required in a greenhouse, though ventilation is often a sufficient solution. Natural ventilation is usually preferable as long as wind conditions and climates support it. Otherwise typical fan-based systems include a horizontal airflow system, a fan/louver system, or evaporative systems suffice.

"Of all the kinds of a rchitecture in the world, it is house and home that we relate to most easily and generously. At heart we know that a house is much more than a machine for living. It has an emotional charge and depth, and it is a place of refuge and escape aswell asa day-to-day experience."

Dominic Bradbury

CROPTYPE

Com 6,200 141.5
Tomato (x3)..11,000 512.6
Onion. (x3)..19,000 4,500
Peppers. (x3)..6,900 632.8
Beans (Snap) 4,600 72 .6
Beets. .10,800 300.9
Broccoli. 7,300 304
Cabbage .13,200 714 .6
Carrots. 19,400 503.6
Cauliflower .10,800 592.9
Cucumber. .8,400 267.5
Lettuce .9,100 627
Pea 2,200 57.4
Spinach (x2)..11,000 2,779
Squash. 17,0002,147
TOTAL AGRICULTURALAREA. 22.4 ACRES $(975,744)$ TOTAL WEIGHTOF PRODUCE 142,300 LBS
TOTAL VOLUME OF PRODUCE

RAWFEEDSTOCK WEGHT

142,300 lbs of Produce

X 0.5\% Factor (Inedible Plant Estimate)
71,150 lbs of Compostable Agric ultural byproduct
4751 bs of compostable waste per family yearly
X 400 Units
190,000 lbs of Yearly Compostable Waste

YEARLY FEEDSTOCK VOLUME

$71,150 \mathrm{lbs}$ of byproduct
$\div 1,000$ lbs per Yard 3
71.5 yards $^{3} /$ year of compostable material

190,000 lbs of byproduct
$\div 1,000$ lbs per Yard ${ }^{3}$
190 yards ${ }^{3}$ / year of compostable material
190 yards 3 /year compostable waste
+71.5 yards 3 /year compostable byproduct
261.5 yards $^{3} /$ year of c ompostable material

ACTIVE PAD DIMENSIONS

12 ft Window Width
X (2) 20 ft workpath width
$X(2) 10 \mathrm{ft}$ additional width
72' active workpad width
120 ft Windrow Length
X (2) 20 ft workpath length
$16 \mathbf{0}^{\prime}$ active workpad length
72 ft active pad width
X 160 ft active pad length
$11,520 \mathrm{ft}^{2}$ active workpad area

YEARLY COMPOSTYIELD VOLUME

261.5 yards ${ }^{3} /$ year

X 0.4% Volume reduction
104.6 yards $^{3} /$ year of Finished Compost

CURING PAD DIMENSIONS
Curing windrow length is a pproximately
$1 / 2$ the size of composting wind rows:
$60^{\prime} \times 6^{\prime} \times 12^{\prime}$ dimensions
60' Length
$\times 6$ ' Height
$\times 12^{\prime}$ Width
4,320 ft^{2} Curing pad area
PROGRAM SQ FT
400 Units @ 40x20 sf. 320,000
1 Parking space per unit 160,000
Tennis Courts. 4 @ 28,800
Ba sketballC ourts. 4 @ 20,000
Pool 2 @ 13,454
Interior Fitness Space 2 @ 11,520
Facilities management offices
Individual offices 5 @ 400
Open office (15 desks) 1,000
Public Lounge 12 @ 5,760
Greenhouse 90,000
Greenhouse equipment storage 2 @ 7,680
Composting equipment storage 2 @ 7,680
J a nitor Closet 4 @ 100
Mechanical Space 4 @ 250
Rootcellar 4 @ 9,600
Active composting pad 11,520
Compost curing pad 4,320
NETSQUARE FOOTAGE 493,628 FI 2
x 1.4 GROSS SF FACTOR
GROSS SQUARE FOOTAGE 691,079 FT^{2}
Total Site Area 1,219,871 sq ft
PERCENTSITE COVERAGE 56.7\%
Site coverage of farmable land 22.4 acres
975,774 sf
Agricultural Percent Site Coverage 80\%

UVING UNIT

- LOUNGE
\square POOL

ROOTCEШAR

ACTIVECOMPOSTPAD

EQ UIPMENTSTORAGE

CURING PAD
BASKEIBALL
TENNIS COURT
GREENHOUSE

PROGRAMMATIC SUMMARY

The program is driven by a desire for the building to serve the community a smuch as it serves itself. Given its size and central location within O'Donnell Heights, it is vital for the building to become a part of the neighborhood rather than an privitized zone within it. Forthis reason, many of the programmatic spaces in the building are developed aselements that are open to the public aswell as the denizens of the building. The goal is to create a site that acts as a meeting point within the city where people can walk through the greenhouses, or meet for a game of tennis. By doing this, the community receives more than a new housing facility: they get an center of activity. In addition, the size of the site and the organization can allow for an altemate pedestrain path thus prioritizing the walking to busstops or the apartment of a friend. By developing the bulding and site in this manner, a more complex urban fabric can be created that facilitates a more united community. People constantly coming and going to and through the site create a much more vibrant form of city living and create more opportunities for interactions between neighbors, a feature of living that modem soc iety has set aside.

PROGRAM DESCRIPIION

UVING UNITS

The $40^{\prime} \times 20^{\prime}$ 'living units are uniformly sized and offer a full range of amenities including 1 bedroom, 1 bath, a full kitchen, and a living room. These units are sized to accommodate youngergenerations that would likely lead more active lifestyles, as well as elderly couples that have more free time to work with the agricultural element of the building. The uniformity of the units a llows a consistent structure and organization to be developed throughout the building. The size of the units is intended to be efficient and responsible in an urban scale without being aggressively limiting the space of the occupant. As perzoning regulations, 1 parking space will be provided forevery 2 living units. These spaces will be coved by the build ing structure.

ATHLEIC FACIUTIES

Athletic facilities are incorporated into the building as a means of creating a meeting point for the surrounding area. Presently, there are not many public facilities in the O'Donnell Heights area and by integrating this type of program a more cohesive neighborhood can form. The basketball courts and tennis courts are regulation sizes which are $98^{\prime} \times 50^{\prime}$ are $120^{\prime} \times 60^{\prime}$ respectively. The pool size is $80^{\prime} \times 160^{\prime}$ in to accomodate the public realm and match regular public sizes.

PUBUC LOUNGES

Because the livign units have become privitized and supply less room for public gatherings and activity, there will be open spaces for the occupants that allow for largergatherings of people. These spaces include larger living rooms with couches and televisions, outdoor barbecue areas, and game rooms complete with billiards and other table games. Some of rooms can be reserved forspecial events while other will remain open for use by any of the buildings occupants. Again, the hope is that these types of spaces will not only counteract the reduction of space of the living units, but also encourage a greater sense of community for the residents.

fINESS CENTER

On site fitness centers have become an important element in many modern housing facilities. In consideration of the intended demographic of younger occupants, the inclusion of a fitness center is necessary to work with the current standards. The facility houses a full cardio zone, free weights, machines, and enclosed roomsforexercise classes. One of these centers will be open to public as another response to public need, and to once again make the site a meeting point in the urban context. both gyms will have adjacent locker rooms to serve the gyms. The public locker rooms will also be able to serve the athletic program.

FACILTIES MANAGEMENTOATES

Offices for the building will be split into two catagories: building management, and landscape management. There will be 2 private offices and 5 open office desks for the building management offices which organize the support system for the housing units and interior public areas. The landscape management offices will be in charge of operating the composting process, root cellars, greenhouses, and crops. There will be more landscape offices as a response to the more intense needs of site management as opposed to building management, therefore there are 4 private offices and 8 open office desks as well as a lounge area.

GRENHOUSES

The greenhouses are gutter-connected with operable windows fortemperature control in the summer. The greenhouses will span between and below the housing units and act asone unit that is subdivided where necessary. Various climate zones will be created and enclosed in response to the climatic needs of the produce source. The majority of dividers will be glass so as not to create visual boundaries. Greenhouses will be public ly accessible during daylight hours and also serve asgardens for the public. Once again, the intent of the public zone is to create an aesthetic ally pleasing gathering space for the surrounding neighborhood that also provides a utilitarian service. The athletic facilities embedded in the greenhouse zones will have their own demarcated areas in orderto prevent damage to the greenhouses and allow for climate control.

CODE SUMMARY

BALTIMORE CITY CODE - ARIICLE 32: ZONING

TITLE 9 - SUBTITLE 2 - R-5 TRADITIO NAL RESIDENTIAL DISTRICT

BUILDING CODE- NPA 101 - Uæ \& SAFIY

CHAPTER 4-GENERAL
CHAPTER 7 - MEANS OF EGRESS
CHAPTER 32 - NEW RESIDENTIAL BOARD AND CARE OCCUPANCIES

REIEVANTZONING SECTIONS

6-204-R-5: Rowhouse and Multi-Family Residential Zoning District 9-201-R-5: Transitional Residential District

(a): Neighborhoods: The R-5 Transitional Residential Zoning District is intended for those areas that facilita te a transition from prima rily single-fa mily neighborhoods to neighborhoods that conta in a wider mix of housing types
(b): Housing Types: The R-5 District is meant to accommodate single-family unites in both detached and semi detached dwellings, rowhouse developments, and limited low-rise multi-family garden apartment developments of moderate density.

12-1001 - Applicability:
(a): In general: A Rowhouse Mixed-Use Overlay District may be applied to rowhouse dwellings in the R-5, R-6, R-7, R-8, R-9, R-10, and OR Districts. This Overla y District allows the rowhouse dwelling to be used for 1 of the non-residential uses listed in § 12-1003 \{"Use regulations" \} of this subtitle.
(b): Initial conversion requires BMZA a pproval: A rowhouse dwelling's initial conversion from a residential use to a non-residential use listed in § 12-1003 \{"Use regulations"\} of this subtitle requires conditional-use approval by the Board of Municipal and Zoning Appeals.

12-202 - General requirements

(a) Common ownership or unified control.
(1) The site of the planned unit development must be under common ownership or unified control.
(2) If there are 2 or more owners, the application for approval of a planned unit development orfor approval of an amendment to an approved planned unit development must be jointly filed by all owners.
(b) Minimum areas. Planned unit developments must meet the following minimum areas:
(1) at least 5 acres in the R-1A, R-1B, R-1C, R-1D, R-1E, R-1, R-2, R-3, R-4, R-5, OIC, and BSC Districts;...
(c) Exceptions. Exceptions to the regulations conta ined in this Code, including use, bulk, yard, parking, and sign regulations, may be granted through the planned unit development process, as may be desirable to achieve the objectives of the proposed planned unit development, aslong asthe exceptions are fully consistent with and authorized by this title.

16-602. Required off-street parking
(1) in the R-5 and R-6 Districts, no more than 1 parking space need be provided forevery

2 units...

RELEVANTBUILDING CODES

4.5.3.1- NUMBER OF MEANS OF EGRESS- Two means of egress, a s a minimum, shall be provided in every build ing or structure, section, and a rea where size occupancy, and a rangement endanger occupants attempting to use a single means of egress that is blocked by fire or smoke. The two means of egress shall be a rranged to minimize the possibility that both might be rendered impassable by the same emergency condition.
4.6.3- STORIES IN HEIGHT - Unless otherwise specified in another provision of this Code, the stories in height of a building shall be determined as follows:
(1): the stories in height shall be counted starting with the level of exit discharge and ending with the highest occupiable story conta ining the occupancy considered.
(2): Stories below the level of exit disc harge shall not be counted as stories.
(3): Interstitial spaces used solely for build ing or process systems directly related to the level above or below shall not be considered a separate story.
(4): A mezzanine shall not be counted as a story for the purpose of determining the allowable stories in height.
(5): For purposes of a pplic ation of the requirements for occupancies other than assembly, health care, detention and correctional, a nd a mbulatory health care, where a maximum one-story above grade parking structure, enclosed, open, or a combination thereof, of Type I or Type II (222) construction or open Type IV construction, with grade entrance, is provided under a building, the number of stories shall be permitted to be measured from the floor above such a parking area.
4.6.15 - GRADE PLANE - The grade plane shall be established by calculating the average of the finished ground level adjoining the building at all exterior walls. Where the finished ground level slopes down from the exterior walls, the grade plane shall be established by the lowest points within the area between the building and the lot line or, where the lot line is more than $6 \mathrm{ft}(1.8 \mathrm{~m})$ from the building, between the building and a point $6 \mathrm{ft}(1.8 \mathrm{~m})$ form the building.
7.1.3.1 - EXITACCESS CORRIDORS - Comidors used a sexit access a nd serving an area having an occupant load exceeding 30 shall be separated from other paits of the building by walls having not less than a 1-hour fire resistance rating in accordance with Section 8.3, unless otherwise permitted by one of the following.
(1): This requirement shall not apply to existing buildings, provided that the occupancy classification does not change.
(2): This requirement shall not apply where otherwise provided in Chapters 11 through 43
7.3.1.2 -OCCUPANTLOAD FACTOR- The occupant load in any building portion thereof shall be not less than the number of persons determined by dividing the floor area assigned to that use by the occupant load factor for that use as specified in Table 7.3.1.2, Figure 7.3.1.2(a), and Figure 7.3.1.2(b). Where both gross and net area figures are given for the same occupancy, calculations shall be made by applying the gross area figure gross area of the portion of the building devoted to the use for which the gross area figure is specified and by applying the net area figure to the net area of the portion of the building devoted to the use for which the net area figure is specified.
7.5.1.3.2 - EGRESS ACCESS - Where two exits, exit accesses, or exit disc ha rges a re required, they shall be located at a distance from one a nother not less than one-half the length of the maximum overall diagonal dimension of the building or area to be served, measured in a straight line between the nearest edge of the exits, exit accesses, or exit disc harges, unless otherwise provided in 7.5.1.3.3 through 7.5.1.3.5.
32.3.2.2.9-ALTERNATING TREAD DEVICES - Altemating tread devic es complying with 7.2 .11 shall be permitted.
32.3.2.3.3 - WDTH OF MEANS OF EGRESS - The width of corridors shall be sufficient for the occupant load served but shall be not less than 60in.
32.3.2.4.1 - NUMBER OF MEANS OF EGRESS - Mea ns of egress sha ll c omply with the following except as otherwise permitted by 32.3.2.4.2:
(1): the number of means of egress shall be in accordance with Section 7.4.
(2): Not less tha n two separate exits shall be provided on every story.
(3): Not less than two separate exits shall be accessible from every part of every story.
32.3.2.5.2 - COMMON PATHS OF TRAVEL- Common paths of tra vel shall not exceed $75 \mathrm{ft}(23 \mathrm{~m})$.
32.3.2.5.4 - DEAD END CORRIDORS - Dead - end coridors shall not exceed 30ft (9.1m).
32.3.2.5.5 - ROOM EGRESS - Any room, or any suite of rooms, exceeding $2,000 \mathrm{ft}^{2}\left(185 \mathrm{~m}^{2}\right)$ shall be provided with not less than two exit access doors located remotely from each other.
32.3.2.6 - TRAVEL DISIANCE TO EXITS - Travel distance from any point in a room to the nearest exit, measured in accordance with Section 7.6 , shall not exceed $250 \mathrm{ft}(76 \mathrm{~m})$.

REFERENCES

Admin. "Selecting and Building a Commercial Greenhouse." Center for Agriculture, Food and the Environment. N.p., 04 Apr. 2017. Web. 22 J une 2017.

Aisenstark, Avery. Baltimore City Department of Legislative Reference. Baltimore: Baltimore City Department of Legislative Referencez, 2017. Baltimorec ity.gov. Web. 22 J une 2017.

Almanac, Old Farmer's. "How to Build a Root Cellar." Old Farmer's Almanac. N.p., n.d. Web. 22 J une 2017.
"Antinori Winery / Archea Associati." ArchDaily. N.p., 12 May 2013. Web. 07 Feb. 2017.
"Average Summer Humidity by USA Sta te." Average Summer Humid ity by USA State - Current Results. N.p., n.d. Web. 22 J une 2017.

Ba Itimore County Buildng Code. J uly: Baltimore County Council, 2015. Web. 22 J une 2017.
"SPARK Proposes Vertical Farming Hybrid to House Singapore's Aging Population." ArchDaily. N.p., 30 Nov. 2014. Web. 22 J une 2017.
"AD Classics: Habitat 67 / Safdie Architects." ArchDaily. N.p., 20 July 2013. Web. 22 June 2017."AD Classics: Nakagin Capsule Tower / Kisho Kurokawa." ArchDaily. N.p., 08 Feb. 2011. Web. 16 Feb. 2017.
"Burlington, VT: Recognized by the United Nations as a Model of Susta inability." NRDC. N.p., 15 Dec. 2016. Web. 02 Feb. 2017.
"Commercial and Large Scale Horticulture." The Living Rainforest. N.p., n.d. Web. 22 J une 2017.
Cortesia Sanctuary, C. Forrest McDowell, PhD and Tricia Clark-McDowell. How to Compost Food Scraps. N.p., n.d. Web. 22 J une 2017.

Crop Yield Verification. N.p., n.d. Web. 22 June 2017.
CV Compost - ComposTex Covers - compost fleece. N.p., n.d. Web. 22 June 2017.
"Education and Consulting." Black Earth Compost. N.p., n.d. Web. 22 J une 2017.
"Favela." Wikipedia. Wikimedia Foundation, 04 Feb. 2017. Web. 15 Feb. 2017
"Food Weight to Volume conversions." Online Food Calculator. Food Weight to Volume Conversions. N.p., n.d. Web. 22 J une 2017.
"From Bath to Barcelona... and More." From Bath to Barcelona... and More. N.p., n.d. Web. 07 Feb. 2017.
Government, Baltimore County. Current Building and Fire Codes - Baltimore County. N.p., 04 Apr. 2017. Web. 22 June 2017.
"Grown in Detroit -." Keep Growing Detroit. N.p., n.d. Web. 02 Feb. 2017
Hazan, J eremy. "What A \$1,000,000 Apartment Looks Like In Montreal’s Habitat ‘67." MTL Blog. MTL Blog, 05 Oct. 2015. Web. 22 J une 2017.

Held, Stephanie. "10 Detroit Urban Fa ms Rooting Goodness Into The City." Daily Detroit. N.p., 06 J uly 2015. Web. 02 Feb. 2017.

Historic al Maps of Baltimore. N.p., n.d. Web. 22 J une 2017.
Hohenadel, Kristin. "The Best Ta ll Building in 2015 Is Covered in Trees." Slate Magazine. N.p., 17 Nov. 2015. Web. 22 J une 2017.
"Homefarm." Spark Architects. N.p., n.d. Web. 22 J une 2017.
"Large-Scale Composting." NC State Extension News. N.p., n.d. Web. 22 J une 2017.
"Large-Scale Organic Materials Composting." NC State Extension Publications. N.p., n.d. Web. 22 J une 2017.
McSweeney, J ames. Tumed Windrow Composting: Sizing Your Composting Pad. Montpelier. Vermont Agency of Natural Resources, 2014. Print.

Meyer, Hannes. "On Building" in Conrads, in Ulrich. Programs and Manifestos of 20th Century Architecture pp. 59-62 \& 117-120

Mlevy. Natural Disasters- Baltimore County. N.p., 26 Aug. 2016. Web. 22 J une 2017.
"Mountain Dwellings / PLOT = BIG + JDS." ArchDaily. N.p., 10 Mar. 2009. Web. 02 Feb. 2017.
"Municipal Solid Waste." EPA. Environmental Protection Agency, n.d. Web. 22 J une 2017.

Neverman, La urie. "Root Cellars 101- Root Cellar Design, Use and Mistakes to Avoid." Common Sense Homesteading. N.p., 22 J an. 2017. Web. 22 J une 2017.
"NFPA 101." NFPA 101: Life Sa fety Code®. N.p., n.d. Web. 22 J une 2017.
Online Conversion - Weight to Volume Cooking Conversion. N.p., n.d. Web. 22 J une 2017.
Pa iement, Genevieve. "Habitat 67, Montreal's'failed dream' - a history of cities in 50 buildings, day 35." The Guardian. Guardian News and Media, 13 May 2015. Web. 22 J une 2017.
"Person of Interest: Ken Yeang - gb\&d." Gb\&d magazine. N.p., 18 Sept. 2014. Web. 22 June 2017.
"Planned Agric ultural Communities-Village Homes." Modem Fa mer. N.p., 10 May 2016. Web. 22 J une 2017.
"Project Update: A large, low-energy root cellar • Endeavour Sustainable \& Natural Building Education." Endeavour Sustainable \& Natural Building Education. N.p., 04 Apr. 2014. Web. 22 June 2017.

So il Survey of City of Baltimore, Maryla nd. Rep. Baltimore: USDA, 1988. Print.
"Transit Maps." Transit Maps| Ma ryla nd Transit Administration. N.p., n.d. Web. 22 J une 2017.
"United States Department of Agriculture." USDA Plant Hardiness Zone Map. N.p., n.d. Web. 22 J une 2017.
Urban Famer. N.p., n.d. Web. 22 J une 2017.
User, Super. "What is BaltimoreLink?" Ma ryland Transit Administration. N.p., n.d. Web. 22 J une 2017.
Walker, Nolan. Antinori winery / Archea Associati. ArchDaily, 13 May 2013. Web. 16 Feb. 2017.
Web Soil Survey. N.p., n.d. Web. 22 J une 2017.
"Wine Flights and Seasonal Food in Portland, Oregon." Noble Rot Wine Bar. N.p., n.d. Web. 15 Feb. 2017
"U.S. a nd World Population Clock Tell UsWhat You Think." Population Clock. N.p., n.d. Web. 12 Dec. 2016.
Zeballos, Carlos. "TOYO ITO, KENGO KUMA, ETC: SHINONOME CANAL COURT." MY ARCHITECTURAL MOLESKINE®. N.p., 01 Jan. 1970. Web. 15 Feb. 2017.

