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Abstract

This research project is focused on finding the true solution of the exterior Dirichlet problem to determine

the convergence results for the Spherical Quatrefoil using the Galerkin Method. A mathematical model,

based on the Radiosity integral equation will be utilized to investigate the role of incoming light waves for

different surfaces with various emissivity and reflectivity functions. Theoretical and computational details

of the method will provide sufficient information for designing proper lighting of an interior space inside a

habitat that can ultimately be used for future endeavors in Mars exploration.
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1 Introduction

The National Aeronautics Space Administration (NASA) Authorization Act of 2017 was a recent devel-

opment that emphasized getting humanity to Mars by the 2030s. A manned mission to Mars could teach

us about Earth’s history and life in the universe as well as the potential to jump start massive develop-

ments in areas such as recycling, solar energy, food production, and the advancement of medical technol-

ogy. The pace of human missions to Mars is accelerating and it is crucial to plan for the journey of those

astronauts. This research aims to apply the Radiosity integral equation and the Galerkin method to de-

sign illumination on the interior of a manned spacecraft to Mars. Numerical solutions with this Radiosity

Integral equation model has also been done in a study of design parameters for space base and space shut-

tle heat rejection systems [3]. In addition, this method has been used to solve the exterior Dirichlet prob-

lem for the sphere, perturbation of the sphere, ellipsoid, the oval of Cassini in three dimensions, and the

Spherical Rhombus [24]. This research will obtain numerical solutions for different emissivity and reflectiv-

ity functions to simulate brightness inside a newly generated Spherical Quatrefoil space with external and

internal lighting mechanisms.

Proper lighting is one of the most important aspects in construction, architecture, and design work

as it can highly impact human mental states, psychological needs, and physical health [5]. Light exposure

can have numerous effects on the human circadian process through the non-imaging forming system [6].

As human explorers would be required to inhabit the same space for an extended period of time, designing

brightness and illumination inside that space is essential for both ambiance and functionality. This can be

done by extrapolating with the Radiosity integral equation model, current data for space exploration, and

conditions on planet Mars.

It is known that Mars is a terrestrial planet composed of a thin atmosphere; primarily of 95% carbon

dioxide. There are routine oxidized iron dust storms, snow fall in the form of fog composed of carbon diox-

ide, and seasonal changes similar to those experienced on Earth. Unlike the Earth, it does not contain a

global magnetic field to protect from radiation [12]. Due to this difference, there is a higher fraction of so-

lar energy that reaches the surface of the planet. Currently, scientists continue searching and testing the

surface and atmospheric radiation in the Martian environment. One aspect of this endeavor is to under-
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stand how these conditions could affect communication and navigation systems on a spacecraft. Emissivity

on Mars requires further research, but it has been found that Martian surface emissivity is closely related

to its physical temperature. Even more, it was discovered that planet Mars generally has larger surface

emissivity and higher brightness temperatures compared to that of Earth’s [10].

Electromagnetic radiation can be absorbed, transmitted, and scattered by particles in the atmosphere.

Scattering is the redirection of electromagnetic energy by suspended particles. The type and the amount

of scattering that occurs depends on size of the particles and wavelength of the energy. The main types of

scattering that impact incoming solar radiation are Rayleigh scatter, Mie scatter, and non-selective scat-

ter. Humans are most familiar with Rayleigh scattering on Earth’s thick atmosphere. Rayleigh scattering

occurs when radiation (light) interacts with molecules and particles in the atmosphere that are smaller

than the wavelength of the incoming radiation. On Earth, a blue sky appears during the day and an or-

ange sun sets in the evening due to the scattering of sunlight by microscopic particles. The atmosphere on

Mars contains a significant amount of fine particulate. As a result, the scattering effect is nearly the op-

posite; blue light penetrates the atmosphere more efficiently, scatters off the dust, and stays closest to the

direction of the sun. Therefore, a blue tinted sunset can be observed on Mars.

It is known that wavelengths of blue light are relatively shorter and contain higher amounts of energy

compared to others in the visible spectrum. This allows for them to scatter more efficiently by molecules

in the atmosphere. Humans experience the sight of a blue sky daily and the human body has learned to

use blue light from the sun to regulate natural sleep and wake cycles, also known as circadian rhythm.

Blue light has also been found to help humans stay alert by heightening their reaction times, elevating

their moods, and increasing the feeling of overall well being [11]. In our research, we extrapolate with in-

formation of scattering on Earth and emissivity on Mars to direct our simulations using the Radiosity in-

tegral equation model. If there is potential to harness radiation from the Sun, it can be simulated to gen-

erate numerical results; we name this Case 1. In addition to this scenario, we investigate alternative means

of illumination; for instance, an artificial light source within the habitat (Case 2) as fluorescent lamps have

also been reported to be the most appropriate light source for the illumination on the interior of a space-

craft [25].
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2 Methods

2.1 Radiosity Integral Equation Model

The Radiosity Integral equation is the foundation of this research. It is a mathematical model for the

brightness of a collection of one or more surfaces when their reflectivity and emissivity components are

given. The model has been used in studying computer graphics as it provides solutions for more realistic

illumination on the display of surfaces [1]. It simultaneously allows a numerical solution for brightness and

a physical model of indirect diffuse illumination. If S is a closed and bounded surface, P is a point of light,

or P ∈ S, then it can be given by,

u(P )− ρ(P )

π

∫
s

u(Q)G(P,Q)V (P,Q)dSQ = E(P ) (2.1)

Radiosity or the brightness is represented by U(P), emissivity is represented by E(P), reflectivity repre-

sented as ρ(P) with both reflectivity and emissivity values between 0 and 1. The Radiosity model trans-

forms the light transfers into a system of linear equations. In this research we solve for the Dirichlet con-

dition which assumes that all incoming light waves are absorbed by the outer surface, thus U(P) = E(P).

The kernel G(P,Q) is given by,

G(P,Q) =
[(Q− P ) · nP ][(P −Q) · nP ]

|P −Q|4
(2.2)

and it is assumed here that the points P and Q do not intersect the surface at any other point, and so

nP is an inner unit normal to S at P, and V(P,Q)=1 on an unclouded surface. The kernel has the char-

acteristic of being weakly singular, which eliminates and avoids an issue of implosion where there is no

fog or transmission. The exterior boundary problem for the Spherical Quatrefoil is solved using the Gaus-

sian Quadrature Method, in which rotations of the coordinates minimize the inherent singularity that is

present in the fundamental solution. The Dirichelet boundary condition takes into account the absorption

of the incoming light waves and assumes that the surfaces are Lambertian diffuse reflectors. Nevertheless,

brightness of these surfaces are the same regardless of the observer’s angle of view. We will assume that
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the true solution of the Radiosity integral equation model is equal to emissivity (U(P ) = E(P )) and utilize

Galerkin coefficients to calculate the convergence errors between the true solutions and the approximated

solutions in Fortran 77.

2.2 Dirichlet Condition

Boundary conditions are often set on solutions when solving for differential equations. The Dirichlet con-

dition is sufficient for a real-valued, periodic function. Let f be a bounded function that is absolutely inte-

grable with a finite number of maxima and minima within the bounded interval. In addition, f also must

have a finite number of discontinuities. The condition is given by,

∞∑
n=−∞

1

2
(f(x+) + f(x−))

Here, the Fourier series for f converges and is equal to f wherever f is continuous. This approach analyzes

the integral on the boundary and transforms the region to a line integral.

2.3 Integral Equations

There are four basic types of integral equations each involving an unknown function ρ(y) in an integral

with a kernel K(x, y) and all have an input function f(x). Volterra Equation of the first kind,

∫ b

a

K(x, y)ρ(y)dy = f(x)

Volterra equation of the second kind,

ρ(x)−
∫ b

a

K(x, y)ρ(y)dy = f(x)

Fredholm equation of the first kind, ∫ b

a

K(x, y)ρ(y)dy = f(x)

and Fredholm equation of the second kind

ρ(x)−
∫ b

a

K(x, y)ρ(y)dy = f(x).

Equations of the first kind involve the unknown function ρ(y) inside the integral. The Radiosity in-

tegral equation that we use in this research involves ρ(y) outside the integral and can be described as a

nonlinear weakly-singular Fredholm integral equation. These types of equations often arise in practical
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applications such as computing conformal mappings and determining the propagation of waves. The equa-

tion has the general form shown by,

u(t) = f(t) + λ

∫ b

a

K(t, s)φ(s)ds (2.3)

Since our Fredholm integral equation of the second kind is nonlinear and singular, commonly used meth-

ods such as the Modified Decomposition Method, the Adomian Decomposition Method, and the Direct

Computation method fail (See Appendix E, F, and G). The Radiosity integral equation has been studied

for occluded surfaces using a Collocation method. Numerical results on the planar Radiosity integral equa-

tion have been obtained using a matrix-vector multiplication method [1]. In our research, the solutions for

the Radiosity integral equation will be solved using the Galerkin method with weighted residuals.
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2.4 Kernel

In order to solve for brightness u(P ) would integrate u(Q) within a closed bounded surface at an exterior

point with respect to Q. We have G(P,Q) as the kernel in the Radiosity equation. It is given by,

G(P,Q) =
cos(θP ) · cos(θQ)

| P −Q |2
=

[(Q− P ) · nP ][(P −Q) · nQ]

| P −Q |2

where nP and nQ are the inner unit normals to S at P and Q. Here we show that the Kernel is weakly-
singular by letting P = (p1, p2, p3), and Q = q1, q2, q3

nP =
(p1, p2, p3)√
p21 + p22 + p23

, nQ =
(q1, q2, q3)√
q21 + q22 + q23

(Q− P ) = (q1 − p1, q2 − p2, q3 − p3)

(P −Q) = (p1 − q1, p2 − q2, p3 − q3)

we can write,
[(Q− P ) · nP ][(P −Q) · nQ] = [(Q− P ) · (P −Q)][nP · nQ]

thus,
[(q1 − p1, q2 − p2, q3 − p3) · (p1 − q1, p2 − q2, p3 − q3)][nP · nQ]

[(Q− P ) · nP ][(P −Q) · nQ] = −[(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2][nP · nQ]

where nP · nQ is the dot product and so it would give a constant.

nP · nQ =
(p1, p2, p3)√
p21 + p22 + p23

· (q1, q2, q3)√
q21 + q22 + q23

=
(p1q1 + p2q2 + p3q3)√

(p21 + p22 + p23)(q21 + q22 + q23)

| P −Q |=
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2

| P −Q |4= [
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2]2

[(Q− P ) · nP ][(P −Q) · nQ]

| P −Q |4
=
−[(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2][nP · nQ]

[(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2]2

[(Q− P ) · nP ][(P −Q) · nQ]

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2

From the kernel, u(Q) is eliminated in the integration process and so the Kernel is proved to be weakly-

singular. This prevents the direct integration to find brightness, u(P ), from the Radiosity integral equa-

tion. It is thus necessary that the solution to this equation be numerically approximated.
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2.5 Finite Element Method

Our research method encompasses important theories and formulations of a numerical approximation meth-

ods. This integral equation approach is widely recognized as an efficient approach for solving exterior bound-

ary value problems such as the Radiosity equation. The Finite Element Method (FEM) divides a three-

dimensional structure into several elements, reconnects them with nodes to result in a set of a system of

algebraic equations. Each element is composed of interior and exterior nodes where the latter are defined

by the boundary conditions. In connecting the individual elements, the entire field quantity becomes in-

terpolated over the entire structure in a piecewise manner [7]. Moreover, this method can minimize inte-

grals and bound them by differentiable functions that satisfy certain boundary conditions. The Galerkin

method using weighted residuals that is used in this research is derived from the FEM.

2.6 Galerkin Method of Weighted Residuals

Weighted Residual methods (WRM) analytically approximate solutions in a piecewise manner. Generally,

the solution of a partial differential equation can be expressed using a base set of functions (basis) where

the coefficients can be determined using a chosen method. The Galerkin method of Weighted Residuals is

a subclass of Weighted Residual methods which can be used to solve differential equations and to derive

the element equations for the FEM. This method will allow for different nodes and various distances in

evaluating over spherical surfaces [14]. Nonetheless, it can be used to approximate the solutions for spheri-

cal shapes such as the one featured in this research.The solution in Galerkin’s method is given by,

ûN =
d∑
j=1

αj (2.4)

αi(hi, hi)−
d∑
j=1

αj(Ĝhj , hi) = (Ê, hi) (2.5)

where ûN is Radiosity, G is the kernel term, and E is emissivity. The coefficients (Ĝhj , hi) are fourfould

integrals with a singular integrand. To calculate Ĝhj , the surface S is rotated such that P is not a singu-

lar point internal to the integration region. Therefore, the Galerkin coefficients only rely on the surface S.

In this method, weight functions are chosen to be identical to the base functions. For simulations in For-
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tran 77, let NINTI denote the interior nodes needed for calculating Ĝhj , NINTE denote the exterior nodes

needed for calculating (Ĝhj , hi), and NDEG denote the approximating degree of spherical harmonics.

2.7 Gaussian Quadrature

In order to apply the aforementioned method, it is necessary to define the boundary and the basis func-

tion. Using a numerical quadrature by interpolating associated polynomials is a basic method in approxi-

mating an integral when there is no explicit anti-derivative for the function (See Appendix L). The numer-

ical approximation of the definite integral is usually stated as a weighted sum of function values at speci-

fied points within the domain of integration. The nodes or roots X1, X2, X3...Xn in [a, b] and coefficients

C1, C2, C3...Cn, are chosen to minimize expected error obtained in the approximation.

∫ b

a

f(x)dx ≈
n∑
i−1

Cif(Xi) (2.6)

If X1...Xn are the roots of the nth Legendre polynomial Pn(x), then

Ci =

∫ 1

−1

n∏
j=1

(X −Xj

Xi −Xj

)
dx (2.7)

Since the method is defined in [−1, 1], the integral’s interval [a, b] or
∫ b
a
f(x)dx must be converted using a

change of variables equation:

t =
2x− a− b
b− a

(2.8)

The method can then be applied on [a, b].

∫ b

a

f(x)dx =

∫ 1

−1
f
( (b− a)t+ (b− a)

2

)( (b− a)

2

)
dt (2.9)

Since the region consists of unequal step sizes, it is advantageous that this method chooses the points for

evaluation in an optimal rather than an equally spaced way. For our research, we have chosen the spher-

ical harmonic function as the basis function. More specifically, Legendre Polynomials and its associated

functions define our subspaces (See Appendix I).
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2.8 Green’s Theorem

In order to find the true solution of the exterior Dirichlet problem for the Radiosity equation, the general

equations governing a sphere can be used to derive a form that is closed, bounded, and simply-connected.

These are the conditions prescribed by Green’s Theorem. Fulfilling these conditions allows for the analysis

of the integral over a boundary. Given a smooth and simply connected region S, the double integral over S

can be transformed into a line integral given by,

∫ ∫
S

(∂Q
∂x
− ∂P

∂y

)
dA =

∮
∂S

(Pdx+Qdy) (2.10)

In order to solve the Radiosity integral equation, it is necessary to abide by Green’s Theorem as to allow

differentiability along a shape’s boundaries.

2.9 Spherical Quatrefoil

The Spherical Quatrefoil form was generated using Maple software and the general equations governing a

sphere [17]. In two dimensions, the Quatrefoil is a carved ornament having four foils or leaflets arranged

around a common center. It is a well-adapted motif seen in architecture work of the Gothic and Renais-

sance eras. In three dimensions, the Spherical Quatrefoil can be defined in a spherical coordinate system

with a radius defined as,

ρ = 0.002 + 0.003 cos(2θ)2

and three parametric equations given by,

x = (0.95)ρ sin θ cosφ (2.11)

y = (2.07)ρ sin θ sinφ

z = (0.99)ρ cos θ

for the boundaries,
0 < θ < π 0 < φ < 2π 0 ≤ cos 2θ ≤ 1

where θ is the polar angle from the positive z-axis and φ is the angle from the x-axis in the xy-plane.
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Figure 1: Maple software rendering of the smooth, continuous, simply-connected, and bounded Spherical Quatre-
foil.

The Spherical Quatrefoil is a bilaterally symmetrical shape having a long horizontal elliptical body

with vertical nodes protruding from above and below its base. The surface area of the smooth and spher-

ical shape is irregular, but can be approximated using oblate and prolate spheroid surface area formulas.

The quantity of the space enclosed by the shape can be solved by deriving a volume integral using its

parametric equations (See Appendix B).

2.10 Emissivity and Reflectivity

Reflectivity is the physical property that measures a material surface’s ability to reflect light rays. It is

characterized as a ratio with values ranging between 0 and 1 to define the amount of reflected solar radi-

ation flux to the incident flux. Reflection that occurs off of smooth surfaces are called specular reflection

while that of which occurs off of rough surfaces are known as diffuse reflection (Figure 2). Reflectivity de-

pends on the energy of the wavelength, the geometry of the surface, and the surface material. Differences

in reflectivity have been identified for many different materials by analysis of spectral reflectance curves as

a function of wavelengths. These reflectivity values will be used in creating our model for simulation. In

reality, most of the surfaces on earth are neither perfectly specular or diffuse reflectors, but their charac-

teristics are a combination of the two types. For our purposes of parametrization, we will idealize that all

surfaces are diffuse or Lambertian reflectors and that they reflect uniformly in all directions.

Figure 2: Ambient or incident and reflecting beams interacting on a smooth surface with uniform reflectivity.
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Emissivity is a surface property that measures a material surface’s thermal emittance or the ability

to release absorbed heat. It has also been defined as a value between 0 and 1 in order to express the radia-

tion of absorbed energy.

1 = E(P ) + ρ(P )

In the equation shown above, both properties exhibit an inversely proportional relationship due to the fact

that most objects exhibit low transmission of infrared energy. There have been published emissivity and

reflectivity values for metal alloys and manufactured carbon-based fibers which could be used as inputs

for the Radiosity integral equation model [8]. The emissivity of materials appropriate for space travel were

identified. Simulations then account interactions of materials and light waves inside the structure. To in-

vestigate brightness, various boundary functions and weighted averages for reflectivity were used to gener-

ate convergence data (Table 1).

Table 1: Weighted emissivity and reflectivity values in accordance with proportions of interior space.

Material Emissivity Reflectivity

Space Gray SPIREX SP102 0.490 0.02
Quartz/Rough/Fused 0.167 0.015
Black Velvet Coating 9560 Series Optical 0.168 0.01
Zinc Oxide/White Coating 0.095 0.05
Weighted Average 0.490 0.02
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2.11 Fortran 77

Various formulas and values will be used as either functions or inputs into the Fortran 77 program to sim-

ulate scenarios in which the Spherical Quatrefoil is inhabited by human explorers while docked on planet

Mars. Parameters will be assumed based on published research and laboratory tested reports of commer-

cial spacecrafts. Constraints and different boundary conditions will be tested and investigated to generate

convergence results with the most accuracy and the smallest absolute error. It should be noted that For-

tran 77 absolute error is generated with double precision.

Figure 3: Programmed subroutine syntax using parametric equations (Equation 2.11) in Fortran 77 to generate
absolute convergence error for the Spherical Quatrefoil.

The data generated will depend mainly on the constraints set on the different inputs for emissivity, values

for reflectivity, the number of interior (NINTI) integration nodes, the number of exterior (NINTE) inte-

gration nodes, the various oscillation functions for emissivity, and the degree of boundary functions used.
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2.12 Emissivity Functions

It is known that surface reflectivity and emissivity have a radio frequency dependence. The concepts of

Rayleigh scattering and periodic functions to model light interactions allow for emissivity functions as in-

puts of the Radiosity integral equation model. For testing this scenario, a second-order linear partial dif-

ferential wave equation was used to model the interaction between light components such as wavelength

(λ), frequency (v), angular frequency (ω), wave number (k), time in seconds (t), and amplitude (A).

y = A sin(kx− ωt) (2.12)

2.13 Case 1: Brightness from External Light Source

The first scenario we call Case 1 describes the potential to harness external lighting from the Sun for il-

lumination at the time that humans are stationed on planet Mars. The precise color of the Martian sky

has been measured and analyzed at the pathfinder landing sites and researchers have been able to mea-

sure scattered light from the sky. With visual imaging from the intel of rovers, the Martian sky has been

described to be a butterscotch color at midday on the planet. For the naked human eye, the sunlight that

shines onto Mars renders a warm red-orange appearance partly due to the presence of the iron(III) oxide

dust [18].

Figure 4: The Martian sky at non imaged by Mars Pathfinder in June of 1999. This image was taken near local
noon on Sol 10. A calibrated output device was required to accurately reproduce the correct color image [16].

When light radiates from the Sun and shines onto Mars, the sky appears to be orange in color. The

wavelength and frequency values will be derived from orange visible light on the electromagnetic spectrum.

In using the wavelength of orange visible light as the input of both the functions, it is necessary to ob-

tain an optimal range of varying amplitude. Amplitude of a light wave is important in understanding the

brightness or intensity of the light as it measures the amount of energy carried. Since there have not yet
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been specific amplitude values reported from planet Mars, ranges will be obtained according to conver-

gence results with the smallest absolute error for the sine function and its cofunction.

Convergence results for both oscillatory functions in low energy conditions were generated. For our

purposes, numerical solutions were generated with large distance due to the way external lighting would

be located far away relative to the spacecraft or habitat. The points used in these simulations have a scal-

able distance of 374.167 units and are illustrative of penetrating light beams.

Figure 5: Plotted sinusoidal and cosinusoidal periodic functions as the true emissivity function in Case 1.

2.14 Limitations

There are inevitable limitations to using convergence results generated using the Radiosity Integral equa-

tion. For example, it has been known that there are storms that kick up oxidized iron dust that are capa-

ble of blanketing large areas of the planet Mars’ surface. These occurrences were not accounted for in the

selective absorption and scattering of light for the true emissivity functions in Case 1. In this case, Mars

explorers’ would not be able to rely on the Sun for an external light source and would consequently need

at least an artificial light source in their spacecraft.

Another concern is that while the lack of a global magnetic field on Mars allows for a higher fraction

of solar energy to reach the planet’s surface and could be advantageous in providing illumination, it elim-

inates a source of protection from harmful radiation. Energetic particles can cause radiation sickness and

the risk for cancer given by waves and sub-atomic particles. On Earth, the atmosphere naturally protects

humans by blocking most of these particles from ever reaching the surface. NASA is currently conducting

studies and research on various methods and materials such as electrical hardware to protect astronauts

from space radiation. Significant development in these technologies would be required in order to apply
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Case 1’s mode of illumination. Meanwhile, we investigate alternative modes of illumination to optimize

brightness.

2.15 Case 2: Brightness from an Internal Light Source

A second scenario we call Case 2 models the illumination inside the Spherical Quatrefoil with an internal

artificial light source. In order to maintain the mathematical integrity of our model, the Spherical Qua-

trefoil can be made into the form of a room within a larger spacecraft. In this way, the conditions of our

exterior boundary problem is still fulfilled and Radiosity can be accounted for. Since these simulations im-

plement a light source at a closer distance in proximity to the interior space and the surfaces inside, it is

necessary to have a more perceptive understanding of the the room’s arrangement. More specifically, the

positioning of the light and the type of light should be investigated. While the former can be designed us-

ing the numerical results that are found, the latter requires some intuition and literature mining.

Research data has made it evident that colors have the ability to affect human psychology, biology,

and physiological [2]. Research has reported that short-wavelength blue light can be greatly efficient in

maintaining synchronized circadian rhythms. The stresses of spaceflight can lead to poor sleep quality and

result impair alertness, reaction time, and cognition. Studies have shown that light treatment have the

ability to correct those impairments. There are researchers who aim to develop in-flight lighting to en-

hance alertness in astronauts as well as NASA’s ground crew. Research on human behavioral health and

performance by individuals at the Jefferson Medical College of Thomas Jefferson University are studying

the efficacy of blue-enriched polychromatic solid-state light for acutely enhancing alertness and cognitive

performance during spaceflight [4]. The effectiveness of blue light LED lights are being tested for possible

use in the International Space Station as well as vehicles and habitats being developed for future space

missions [4]. Case 2 models the illumination inside the spacecraft just outside the Spherical Quatrefoil

with an internal artificial a short-wavelength blue light source. In maintaining the mathematical condi-

tions to our exterior boundary problem, a practical concept for illumination implies smaller distances in

our simulations. In addition, wavelength and frequency values on the visible light spectrum (blue light)

can be integrated into our emissivity functions.
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3 Results

3.1 Spherical Quatrefoil and Simulation Parameters

The absolute convergence error between true solutions and numerical approximations were generated in

Fortran 77. When approximating solutions in numerical analysis, a convergence error less than or equal

to 10−5 is sufficient and acceptable. These convergence results can be used to compare and optimize the

shape of the Spherical Quatrefoil for varying degrees of boundary functions (NDEG), interior nodes (NINTI),

exterior nodes (NINTE), and points (X,Y, Z). More specifically, n =< 3, 5, 7 >;NINTI =< 16, 32 >

;NINTE =< 8, 16, 20 > in combination with exterior points which vary in distance and direction. For

the purposes of these simulations the units of distance are constant and arbitrary. The following results il-

lustrate this process. These convergence error results indicate that setting a degree of 5 produces smaller

absolute error to two decimal places in comparison to that of degree 7 and 3. It is evident that both un-

derestimating and overestimating the degree of boundary function affects our convergence error results.

Table 2: Convergence errors were calculated for different directions and increasing distances, a reflectivity value of
ρ = 0.004, NINTI = 32, and NINTE = 20. Various degrees of the boundary function were tested to find optimal
convergence.

Degree Distance Points (X,Y,Z) Absolute Error

9.899495 3,5,8 3.0723900010D-04
13.747727 -5,8,10 3.0723899844D-04
53.851648 20,-30,40 3.0723899998D-04

3

728.010989 100,400,600 3.0723898504D-04

9.899495 3,5,8 9.3177835865D-06
13.747727 -5,8,10 9.3177822218D-06
53.851648 20,-30,40 9.3177863608D-06

5

728.010989 100,400,600 9.3177989215D-06

9.899495 3,5,8 1.3685226805D-04
13.747727 -5,8,10 1.3685226898D-047
53.851648 20,-30,40 1.3685226565D-04
728.010989 100,400,600 1.3685225275D-04

Table 3 displays simulations with absolute error tolerance for various interior and exterior node combi-

nations. We note that 32 interior nodes and 8 exterior nodes produce the smallest absolute errors which

we can use to generate convergence results for solving the Radiosity integral equation using the Galerkin

Method.
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Table 3: Convergence errors were calculated for different directions and increasing distances, a reflectivity value of
ρ = 0.004, and boundary function degree n = 5. Various combinations of interior nodes and exterior nodes were
tested for optimal convergence error.

Exterior Nodes Interior Nodes Points (X,Y,Z) Absolute Error

3,5,8 2.3916801559D-05
-5,8,10 2.3916799758D-05

20,-30,40 2.3916804622D-05
8 16

100,400,600 2.3916816881D-05

3,5,8 1.0482505537D-05
-5,8,10 1.0482504145D-05

20,-30,40 1.0482508334D-05
16 32

100,400,600 1.0482508334D-05

3,5,8 9.3177835865D-06
-5,8,10 9.3177822218D-06

20,-30,40 9.3177863608D-06
8 32

100,400,600 9.3177989215D-06

Table 4: Convergence errors were calculated for different directions and constant distance, a reflectivity value of
ρ = 0.004, a boundary function degree NDEG = 5, NINTE = 8, and NINTI = 32. Various Spherical Quatrefoil
ratios were tested for optimal convergence error

Coefficient Ratio Points (X,Y,Z) Absolute Error
-5,0,10 3.2607636949D-03
0,-5,10 3.2607716800D-03
5,10,0 3.2607473179D-03

1:1.5:1

-10,5,0 3.2606268804D-03

-5,0,10 1.9237180072D-04
0,-5,10 1.9237844223D-04
5,10,0 1.9235549188D-04

1:2:1

-10,5,0 1.9219861537D-04

-5,0,10 1.3786293525D-03
0,-5,10 1.3786236565D-031:2.5:1
5,10,0 1.3786464465D-03
-10,5,0 1.3788404698D-03

In addition to the parameters of approximating the solution of the Radiosity integral equation for the

Spherical Quatrefoil, it is also possible to optimize the coefficients of the shape. As seen in the parametric

equation of the Spherical Quatrefoil, the original shape has a coefficient ratio of 1:1:1. Changing this ratio

alters the form of the Spherical Quatrefoil. Maple software was used to visualize the form to show that co-

efficients altered not only the dimensions of the shape, but that it also altered the shape’s boundaries. For

the reason of maintaining continuity and simply-connectedness, only the coefficient of the second paramet-

ric equation was altered. Table 4 shows a new set of simulations that allowed for optimizing coefficients of

the Spherical Quatrefoil to a 1:2:1 ratio which is used for the proceeding simulations. A different set of ar-

17



bitrary points were used to show that a ratio diverging from a 1:2:1 ratio results in larger absolute errors.

For the purposes of optimizing the parameters of the program, distance and reflectivity are arbitrary.

It should be noted that for all these simulations, different directions and varying or constant distances had

little impact on the consistency of the convergence results. This could be attributed to the fact that the

Spherical Quatrefoil is bilaterally symmetrical and does not prescribe a specific orientation. We will need

to investigate reflectivity values in more detail. These results determine the parameters for simulation in

Case 1 and 2 where NDEG = 5, NINTE = 8, NINTI = 32, and a Spherical Quatrefoil ratio of 1 : 2 : 1

are used.

3.2 Numerical Results for Case 1

The following data are numerical results generated for the harnessing of sunlight, an external source at a

distance to the Spherical Quatrefoil. Arbitrary points which are far from the boundary of the Spherical

Quatrefoil were chosen to simulate these conditions.

True functions were calculated with wavelength values ranging from 625 nm to 659 nm on the visible

light spectrum to produce 2.18× 10−15 as wave number and 3.92× 10−6 as angular frequency. Reflectivity

was chosen arbitrarily small and distance can be classified in kilometers since this scenario focused on a far

away light source. Both sine and cosine were used to create emissivity functions and varying amplitudes

were chosen to optimize convergence results. Amplitude values were used to detect the smallest absolute

error. Varying points with the same distance but different directions were chosen. Amplitude ranges were

narrowed down for each emissivity function. Absolute error as small as 10−6 was consistently generated in

the program. Table 5 displays optimal amplitudes found for true functions in Case 1. The true emissivity

functions tested are as follows,

U1 =3cos(2.18× 10−15X + 3.92× 10−6Y )

U2 =3.05cos(2.18× 10−15X + 3.92× 10−6Y )

U3 =0.0003sin(2.18× 10−15X + 3.92× 10−6Y )

U4 =0.00003sin(2.18× 10−15X + 3.92× 10−6Y )
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The plotted convergence results for smallest absolute error of sinusoidal and cosinusoidal oscillating true

functions are displayed in figure 6-9. While the four different points measure the same distance, their signs

indicate various directions from the origin of the Spherical Quatrefoil. It is evident that the change in di-

rection has a minor effect on the convergence results. The lower amplitude bound cosine and sine true

functions (U1 and U4) generate a similar pattern with absolute errors identical to the tenths place. The

upper amplitude bound of the cosine true function (U2) is shown to be the most optimal result for Case

1. The plotted points of the sine true function’s absolute error oscillate more than that of the cosine true

Table 5: Optimal amplitudes of different points for the true functions with wavelengths ranging from 625 nm to
659 nm of visible light. 2.18 × 10−15 as the wave number and 3.92 × 10−6 as the angular frequency, ρ = 0.10,
NDEG = 5, NINTI = 32, NINTE = 8, and the coefficient ratio of 1:2:1 for the Spherical Quatrefoil.

Emissivity Function Amplitude Points (X,Y,Z) Absolute Error

-100,-200,300 4.8864749194D-06
100,-200,-300 4.8867038855D-06
-100,-200,-300 4.8863347009D-06

cosine 3.05

100,200,-300 4.8866866051D-06

-100,-200,300 5.5883259517D-06
100,-200,-300 5.5883259514D-06
-100,-200,-300 5.5883259519D-06

sine 0.00003

100,200,-300 6.0587259168D-06

function. The upper amplitude bound of the sine function suggests a decreasing linear pattern for the ar-

bitrarily chosen points. The optimal range of amplitude for the sine function model is between [0.0003-

0.00003] (Table 5). Thus, this function produces the best convergence when the light waves have small

amplitudes, which occurs when there is low energy. On the contrary, the optimal range of amplitude for

the cosine function model is between [3-3.05] (Table 5). In other words, results are better when light waves

are more intense at higher amplitudes. Input of amplitudes outside of these ranges give significantly worse

convergence results.

19



Figure 6: Convergence results for different points for the true function of U1 = 3cos(2.18×10−15X+3.92×10−6Y ).
A wave number 2.18× 10−15, an angular frequency 3.92× 10−6, ρ = 0.10, NDEG = 5, NINTI = 32, NINTE = 8,
and a coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil was used.

Figure 7: Convergence results for different points for the true function of U2 = 3.05cos(2.18 × 10−15X + 3.92 ×
10−6Y ). A wave number 2.18 × 10−15, an angular frequency was 3.92x10−6, ρ = 0.10, NDEG = 5, NINTI = 32,
NINTE = 8, and a coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil was used.

20



Figure 8: Convergence results for different points for the true function of U3 = 0.0003sin(2.18 × 10−15X + 3.92 ×
10−6Y ). A wave number 2.18 × 10−15, an angular frequency was 3.92 × 10−6, ρ = 0.10, NDEG = 5, NINTI = 32,
NINTE = 8, and a coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil was used.

Figure 9: Convergence results for different points for the true function of U4 = 0.00003sin(2.18 × 10−15X + 3.92 ×
10−6Y ). The wave number was 2.18 × 10−15, the angular frequency was 3.92 × 10−6, ρ = 0.10, NDEG = 5,
NINTI = 32, NINTE = 8, and a coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil was used.

The above graphs are plotted equidistant from the Spherical Quatrefoil. Even with these various observed

trends, the amplitude (energy level) of the emissivity function has a small effect on overall convergence

results using our standards of error tolerance. This implies that the direction of the sunlight would have a

small impact on overall numerical convergence.
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3.3 Numerical Results for Case 2

This section presents numerical results generated for brightness derived from an internal artificial light

source. The light source must technically reside on the exterior of the Spherical Quatrefoil in order for us

to hold the integrity of our Radiosity Integral Equation model and its prescribed conditions. In this case,

we use points that measure smaller distances and classify our units in terms of meters. The dimensions

taken from the mapping of the Spherical Quatrefoil will denote the minimum distance that we will run

simulations with. True functions were calculated with wavelength values ranging from 455 nm to 492 nm

on the visible light spectrum to produce 1.58 × 10−15 as a wave number and 4.72 × 10−21 as angular fre-

quency. Firstly, various amplitude values were tested with arbitrarily small reflectivity values.

Table 6: Convergence results for blue emissivity sine function. Emissivity was given by U = Asin(1.58×10−15X−
4.72 × 10−21Y ). A coefficient ratio of 1:2:1 for the Spherical Quatrefoil and ρ = 0.004 was used. NDEG=5,
NINTI=32, and NINTE=8. From 4 different directions, 4 different amplitudes (1,2,5 and 10) were tested and 1
and 10 showed to be the most viable.

Amplitude (A) Distance Points (X,Y,Z) Absolute Error
11.18034 0,5,10 9.3177830568D-06
12.529964 0,6,11 9.3177830515D-06
13.892444 0,7,12 9.3177830515D-06

1

15.264338 0,8,13 9.3177830515D-06

11.18034 0,5,10 9.3177828362D-06
12.529964 0,6,11 9.3177828309D-06
13.892444 0,7,12 9.3177828305D-06

10

15.264338 0,8,13 9.3177828302D-06

With varying energy levels used as inputs for the program, differences in absolute error are extremely

small and do not occur until the last five decimal places. Comparing these different absolute errors show

that higher amplitudes result in more optimal convergence.

We next observe the differences in emissivity true functions using sine and cosine functions. The plot-

ted convergence results present mirrored directional patterns at the same points (Figure 11). It was found

that the sine emissivity true function ultimately produces lower absolute error (Figure 10).
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Figure 10: Convergence results for blue emissivity sine function. Emissivity given by U = sin(1.58 × 10−15X −
4.72 × 10−21Y ). A coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil and ρ = 0.004 was used. NDEG = 5,
NINTI = 32, and NINTE = 8. Four different directions of the same distance were used.

Figure 11: Convergence results for blue emissivity sine function. Emissivity given by U = cos(1.58 × 10−15X −
4.72 × 10−21Y ). A coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil and ρ = 0.004 was used. NDEG = 5,
NINTI = 32, and NINTE = 8. Four different directions of the same distance were used.

23



Figure 12: Optimal convergence results for blue light emissivity function of a sine function for various points us-
ing an amplitude of 10; emissivity given by U5 = 10sin(1.58 × 10−15 − 4.72 × 10−21Y ), ρ = 0.004, and a coefficient
ratio of 1 : 2 : 1 for the Spherical Quatrefoil was used. NDEG = 5, NINTI = 32, and NINTE = 8. Four differ-
ent points with increasing distance from the boundary of the shape were used. Values of absolute error have been
truncated for scaling of identifying differences.

For out next simulation we incorporate both the sine function and a high amplitude into the emis-

sivity true function. Points further away from the boundary converge with less error than those which are

closer to the boundary. This could be attributed to the fact that the integrand is mathematically more

singular at points near the boundary. In other words, optimal solutions are found as the point of light

source is positioned further away from the Spherical Quatrefoil away from the boundary.

A closer light source entailed a more detailed understanding of the space and its reflectivity. The

Spherical Quatrefoil in Case 2 will be thought of as a module that only contains a work station and seats.

We have simplified the structure to build a network of weighted emissivity averages to optimize overall re-

flectivity. Using the emissivity sine true function from the previous simulations, the convergence results

of various reflectivities (ρ) are generated and presented in Table 7. Weighted averages of various compo-

nents were used as preliminary guides for testing reflectivity. These weighted averages accounted for pub-

lished emissivity values of materials and the percentage of the total area (Table 1). The inverse relation-

ship between emissivity and reflectivity was then used to find the relative reflectivity for the entirety of

the Spherical Quatrefoil. Figure 13 illustrates the effects of increasing diffuse reflection for the minimum

distance for optimal brightness. Convergence results reveal that absolute error increases with higher dif-
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fuse reflection. In solving the Radiosity Integral Equation for the Galerkin Method, one of our assump-

tions is that we use Lambertian diffuse reflectors. These results confirm that unequal luminance from dif-

ferent directions cause worse convergence results.

Table 7: Convergence results for blue emissivity sine function. Emissivity was given by U5 = 10sin(1.58 ×
10−15X − 4.72 × 10−21Y ). A coefficient ratio of 1:2:1 for the Spherical Quatrefoil, NDEG = 5, NINTI = 32,
and NINTE = 8 were used. Various diffuse reflectivity values were tested. Points are listed and their distances are
11.18034, 12.569805, 44.877611, and 134.632834 respectively.

Reflectivity Diffuse Reflection Points (X,Y,Z) Absolute Error
0,5,10 9.8210003324D-06
1,6,11 9.8211583726D-06
5,30,33 9.8217905567D-06

0.016125 0.01

15,90,99 9.8233705558D-06

0,5,10 2.8879371616D-05
1,6,11 2.8879529964D-05
5,30,33 2.8880163557D-05

0.047417 0.06

15,90,99 2.8881741475D-05

0,5,10 8.2983843048D-06
1,6,11 8.2983859136D-06
5,30,33 8.2983923651D-06

0.013625 0.005

15,90,99 8.2984081647D-06

Figure 13: Convergence results for blue emissivity sine function. Emissivity given by U = 10sin(1.58 × 10−15X −
4.72 × 10−21Y ), and a coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil and a distance of 11.8034 was used.
NDEG = 5, NINTI = 32, and NINTE = 8. Various diffuse reflectance values were used in the calculation of
reflectivity.
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Table 8: Convergence results for blue emissivity sine function. Emissivity given by U = 10sin(1.58 × 10−15X −
4.72 × 10−21Y ). A coefficient ratio of 1 : 2 : 1 for the Spherical Quatrefoil and a ρ = 0.013625 was used. NDEG=5,
NINTI=32, and NINTE=20. Various points with increasing distance were used to evaluate optimal location of
light source relative to the exterior boundary.

Direction Points (X,Y,Z) Absolute Error

0,0,5 8.2983843177D-06
0,0,10 8.2983843126D-06
0,0,30 8.2983843160D-06

Top

0,0,200 8.2983843175D-06

0,5,0 8.2983843193D-06
0,10,0 8.2983843198D-06
0,30,0 8.2983843197D-06

Left

0,200,0 8.2983843196D-06

0,0,-5 8.2983843206D-06
0,0,-10 8.2983843256D-06
0,0,-30 8.2983843223D-06

Bottom

0,0,-200 8.2983843208D-06

0,5,10 8.2983910873D-06
1,6,11 8.2983997726D-06
5,30,33 8.2984036455D-06

In Between

15,90,99 8.2983927978D-06

For reflectivity, the simulation using ρ = 0.013625 consistently produced the lowest absolute error. With

the proper emissivity and reflectivity function it was possible to investigate the direction for Case 2. Keep-

ing the same distances, we varied the direction of the points (Table 8). Overall, convergence results show

very small absolute error for all different directions (top, left, bottom, and in between). There is no prede-

termined orientation of the Spherical Quatrefoil.

In comparing all decimal places, a light source from the top vertical node of the Spherical Quatrefoil

seems not only practical, but also renders the best convergence results. This will allow for maximum illu-

mination as the light would propagate directly onto the workstation and all around to the perimeter of the

horizontal node of the space capsule.
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Figure 14: Convergence results for blue emissivity sine function. Emissivity given by U = 10sin(1.58 × 10−15X −
4.72 × 10−21Y ), ρ = 0.013625, and a coefficient ratio of 0.95 : 2.07 : 1 for the Spherical Quatrefoil was used.
NDEG = 5, NINTI = 32, and NINTE = 8. This simulation utilizes optimal amplitude, diffuse reflectivity,
various points with increasing distance with the source positioned from the top relative to the exterior boundary.

Case 2 prescribes that we have an artificial light source that is close to the boundary of the surface.

It is evident that the first increment of increasing distance shows the most change in absolute error. There-

fore if there is a way to alter the circumstance of the light source’s location, then even better convergence

results could be rendered. This may entail a scenario different from Case 1 and Case 2.

In the process of running simulations for case 2, it was necessary to simultaneously optimize param-

eters within the program. For example, the ratio of the Spherical Quatrefoil was slightly changed from

1 : 2 : 1 to 0.95 : 2.07 : 1 to render better convergence results. This shows that the model is very sensitive

to slight changes in both parameters and inputs of the program. The nature of numerical analysis allows

for the identification of those sensitivities. These are important notions in understanding the various fac-

tors involved in the Radiosity Integral Equation model as well as implications for its application.

All calculations of absolute error came from Fortran 77. We conclude that convergence results or er-

ror is affected by the boundary, boundary data, emissivity, reflectivity, and the position of the light source.

In these cases we believe that we found the optimal solutions for the number of integration nodes that

were used in calculating Galerkin coefficients (hi, K̂hj).
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4 Discussion

This research was conducted in an effort to provide insight on brightness and illumination for spacecraft

designs using mathematical models and computational simulations. Optimizing Radiosity contributes to a

higher quality of living and supports human productivity. Appropriate structure and resultant brightness

are critical elements for future long-term manned missions beyond Earth.

Overall, an exterior light source far from the boundary of the Spherical Quatrefoil for the Radiosity

integral equation model results in small absolute errors. Convergence results generated for various combi-

nations of interior reflectivity and emissivity were found to be viable in this case of harnessing light from

the sun. This allowed for several ideas in designing the interior of the Spherical Quatrefoil. If the structure

were to be scaled large enough, there could be enough room for a control systems, work stations, and even

recreation. While space capsules are typically smaller than 5 meters there is no engineering limit to larger

sizes. In our research, the interior design was first simplified to investigate a volumetrically efficient and

structurally strong design encapsulating brightness and Radiosity.

The Spherical Quatrefoil was investigated with the intentions to contain and transport humans for

some duration of a Mars mission. In theory, crew members would spend time both working and resting

in the spacecraft. The habitat could be similar to the Orion Multi-Purpose Crew Vehicle (Orion MPCV)

which is intended to carry a crew of four astronauts both to and beyond the low Earth orbit. NASA used

a separate vehicle called the Deep Space Habitat which is designed to support long-duration deep space

missions. This habitat would contain life support, propulsion, thermal protection, and avionics systems

[15]. Fiurthermore, the Spherical Quatrefoil could potentially serve as either a habitat or a vehicle.
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Figure 15: A preliminary sketch of the Spherical Quatrefoil and its interior configuration with its original ratio of
1:1:1.

4.1 Thermal Control

Since reflectivity is an optical property that depends on emissivity, the potential effects of what materials

used within the interior of the spacecraft need to be considered if humans are to inhabit it. In addition,

it is necessary to have a system of thermal control suitable for human habitation. The temperature in-

side the International Space Station (ISS) without thermal controls, would vary from 121 C to -157 C de-

pending on whether the station is facing the sun or not. Within the ISS, a highly reflective material called

Multi-Layer Insulation (MLI) made of Mylar and Dacron shields the space station from radiation while

also preventing the extremely cold temperatures of space from penetrating the station. In addition to in-

sulation, engineers, and designers of the ISS created the Active Thermal Control System (ATCS), which

allows for excess heat within the spacecraft to be released. Excess heat is removed through cold plates and

heat exchangers which cool and dehumidify the internal atmosphere of the spacecraft. There is also the

Environmental Control and Life Support System (ECLSS) that controls the air quality and flow within the

station [19]. This is needed in the orbiting free-fall conditions of outer space, however it may be adjusted

or modified for habitation on Mars considering the existence of gravity on Mars. Furthermore, there are

many designs and engineering systems that have been created in efforts to help create comfortable habit-

able conditions within the ISS, and they can thus be used for a habitat on Mars.
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4.2 Design of Spherical Quatrefoil

Radiosity varies with the type of materials that are used and a surface’s micro structure defines both re-

flectivity and emissivity. In these simulations, the Dirichlet condition for the Radiosity integral equation is

applied and it is assumed that only Lambertian surfaces are involved. Case 2 incorporates matte surfaces

with high emissivities to compute weighted averages between all the surfaces. For the purposes of our re-

search, we tested for various ranges to optimize convergence absolute error results.

Figure 16: Updated layout of interior space capsule consisting of basic workstation panels and controlling system
consoles on both ends surrounding four seats mapped and drawn out.

Preliminary calculations of the Spherical Quatrefoil’s dimensions allowed for a design with consid-

erations for individuals to occupy the space for a long period of time. The habitat has been drawn out

with the consideration that there could be enough room to sustain the habitual lifestyle of four crew mem-

bers. There are necessities such as beds, showers, restrooms, a kitchen area, a workstation, and amenities.

In accordance with the goal to model lighting inside the space, it needed to be simple and manageable in

diagramming and calculating emissivity. The most basic components with calculable emissivity and re-

flectivity indexes; walls, floors, ceilings, couches, workstation, kitchen, and dining were taken. The units

of each of these components have been measured in correspondence to real-life dimensions of walls, and

furniture pieces. The projected room for empty space is maximized for comfort and psychological consid-

eration. The materials that have been chosen for the construction of each of the components are based on

purpose and efficiency while having been laboratory-tested and authorized by NASA.

30



Figure 17: Perspective of interior arrangement from a stored point of view with mocked Martian sky and blue
light flooring.

Exploring Case 2 lead to modifications of the original arrangement inside the Spherical Quatrefoil.

Instead of an independent spacecraft, this scenario posits that the form is an interior space within a larger

spacecraft. The composition of the interior was designed to maintain principles of balance and symmetry.

The space has been drawn out with the consideration that there could be enough room to sustain the life

of four crew members (Figure 16). As a only a workstation with minimal amenities, the room could be

similar to the prototypes of space ascent vehicles. It should be noted that Case 1 assumes that sunlight

could be harnessed most practically from the uppermost vertical node of the Spherical Quatrefoil. Gener-

ating convergence results from Case 2 confirmed that this position of an artificial light source would pro-

vide maximum brightness and light exposure to and from all other parts within the habitat. It was also

found that the symmetrical nature of the Spherical Quatrefoil allows for arbitrary light positions and di-

rections, and thus orientation. This is important because it implies that the Spherical Quatrefoil form

shows a range of versatility and the ability to be scaled and modified accordingly.

Through simulations for convergence error of various points from the boundary and outside of the

boundary, it was found that positioning a light source from any direction generated absolute error less

than 10−5. For our design, the light source is positioned directly above the center in the top protruding

node as humans to emulate what humans are accustomed to on planet Earth. The layout of the worksta-

tion surrounding the seats were inverted so that brightness would be concentrated on those panels and
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consoles for the purposes of working. Reviewed literature informed our decision to model Case 2 with re-

flectivity and emissivity indexes of blue light. It has been found that color is a element that has the ability

to affect the melatonin production of the brain which has the ability to influence alertness and sleepiness.

More specifically, research has reported that blue light has strong impacts on dinoflagellates and can be

greatly efficient in maintaining synchronized circadian rhythms [11]. Our numerical convergence results

support our design for an internal artificial light source along with the selected materials and the arrange-

ment within the Spherical Quatrefoil.

The habitat’s parametric quantities provide conditions for theoretical designs. Published data on ma-

terial surfaces enable detailed simulations on illumination and brightness within the habitat.. Laboratory-

tested structures and materials with reported total emissivity measurements for metals, non-metals and

common building materials were used to select reflectivity inputs for simulations of brightness. Since emis-

sivity of materials vary as functions of temperature, it will be necessary to derive functions that model the

oscillation of light waves on the interior of the Spherical Quatrefoil using emissivity functions rather than

constant values. Various emissivity functions, reflectivity inputs, degrees of boundary functions, interior

and exterior integration nodes, designated distance points chosen within the Radiosity equation model and

their compatibility with the Spherical Quatrefoil will be simulated. Methods that model and generate low

absolute error or successful convergence results gave rise to specific designs for proper illumination of a

habitat that can ultimately be used for future endeavors in Mars exploration.
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4.3 Rendering of Visual Model

Lighting is a very complex aspect in the rendering process. There has not yet been a ”perfect” simulation

of rendering for use in real-time or non-real-time graphics for every material. Sweet home 3D is an inte-

rior design application with an interface allowing for a floor plan and a 3D preview of the Spherical Qua-

trefoil’s interior space [23]. This application was used to create model images of how the interior of the

Spherical Quatrefoil might look. In addition, a 3-D printed model of the Spherical Quatrefoil was consid-

ered. However, this research is focused on modeling the illumination of an interior space. Truly visualiz-

ing the results of our simulations require a mock-up of that interior space on a larger scale than a printed

form.

Fortunately, there are Industrial design students at the Rhode Island School of Design who have cre-

ated full-scale mock-ups of Mars Ascent Vehicles (MAV). They have generously donated one of their mock-

ups for the purpose of a visual aid in this research. The MAV while is not in the form of the Spherical

Quatrefoil provides an opportunity to visualize the resulting design of an interior space. The mock-up it-

self exists in the form of a spherical pod. It was necessary to install certain characteristics that resonate

with our model. For instance, being simply-connected and smooth on the exterior is one of the essential

reasons why the solution to the Radiosity integral equation model can be numerically approximated. Of

all the materials considered for this task, paper was the most malleable and cost-effective in achieving

a smooth and continuous surface. This process was done over the course of several stages and was docu-

mented in Figure 19.
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Figure 18: Phases I-IV of MAV Case 1 and Case 2 installations over the course of 65 hours.

In addition to fulfilling Green’s Theorem, it was necessary to model the resulting details of Case 2 with an

artificial blue light source among colors and materials of the furniture on the inside. Blue gel shades were

installed in addition to remote blue LED lights to create our light source. The walls and furniture were

painted to simulate the convergence results found from investigating Case 2 (Figure 20).

Figure 19: Interior of MAV simulates design for numerical results of Case 2 Brightness from an internal artificial
light source.
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4.4 Future Direction

Throughout the investigation of Case 1 and 2, NDEG = 5 was found to be optimal and used throughout

this research. This degree was achieved with a program running on 26 sets of nodes and weights. Recently,

the Keisan Online Calculator service provided by Casio Computer Co., Ltd., which carries out high accu-

racy calculations for up to 100 sets of nodes and weights of Gaussian Quadrature, was discovered [13]. The

calculator uses the method of Legendre polynomials given by,

∫ 1

−1
f(x)dx '

n∑
i=1

wif(xi)

where nodes xi : the i-th zeros of Pn(x) and weights are

wi =
2(1− x2i )

[nPn−1(xi)]2
=

2

P 1
n(xi)]2

.

The implementation of these nodes and weights required diagnostic and troubleshooting simulations. The

program is sensitive and so it was necessary to ensure that simulation results were generated from the

newly inputted nodes or weights and not from coding errors.

It was hypothesized that increasing Gaussian Quadrature nodes and weights in the program would

allow for approximating the double integral with double sums more efficiently than before. Increasing the

amount of nodes and weights permit smaller horizontal and vertical subdivisions of the Spherical Quatre-

foil for better precision and accuracy in generating absolute errors and convergence results. After adding

14 more sets of nodes and weights, the program was run for NDEG = 7, 11, 13. Convergence results were

generated with arbitrary points and resulted in an accuracy as small as 10−7 as seen in Table 9. This indi-

cates that increasing the number of subdivisions allows for better approximations of the double integral by

double sums. Future work in adding the available 60 sets of Gaussian Quadrature nodes and weights could

render even more impressive accuracy.

These simulations were carried out for rho = 0.013625 and the emissivity function found from Case

2. Increasing the boundary value degree to NDEG = 13 shows a worse absolute error than NDEG = 11

which might suggest that NDEG = 11 is the most optimal for this particular emissivity function and
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reflectivity condition. However, it is also possible that there are limitations with the emissivity function

and the reflectivity condition found by investigating an internal artificial light source. In order to optimize

overall brightness, future work could aim to use this higher boundary value degree to optimize reflectivity

and emissivity for a different interior arrangement. Changing this parameter could affect the type of light

source, its direction, the materials of the surfaces, and the overall design. Not only this, but the improve-

ment of the boundary value degree also implies that the shape of the interior Spherical Quatrefoil space

can be altered and fine-tuned for optimal Radiosity.

Table 9: Convergence results for various degrees with NINTI=32, NINTE=8, and a ρ = 0.013625. Arbitrary
points were used to show the effect of increasing NDEG to 7, 11, and 13.

Degree (NDEG) Points (X,Y,Z) Absolute Error

1,2,3 8.8330654665D-05
2,3,4 8.8330655205D-05
3,4,5 8.8330654365D-05

7

4,5,6 8.8330657500D-05

1,2,3 6.5446272548D-07
2,3,4 6.5446132045D-07
3,4,5 6.5445980151D-07

11

4,5,6 6.5445826212D-07

1,2,3 6.4055174268D-05
2,3,4 6.4055173051D-05
3,4,5 6.4055171598D-05

13

4,5,6 6.4055170825D-05

Aside from further simulations with the Radiosity Integral equation model for the Dirichlet condi-

tion, future work will aim to incorporate other viable mathematical boundary conditions for the Spherical

Quatrefoil. For instance, there is the Neumann boundary condition which assumes that all incoming light

waves are reflected by the outer surface. There is also the Robin boundary condition which entails por-

tions of light waves being absorbed and others being reflected. Improvements in mathematical boundary

conditions and programmed simulation methods would consequently validate designs for human missions

to planet Mars.
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Appendices

A Surface Area
The surface area of smooth spherical surfaces such as the Spherical Quatrefoil can be evaluated using their
representation as parametric surfaces. Due to the irregular nature of the Spherical Quatrefoil, formulas of
the surface areas for oblate and prolate spheroid surfaces will be used in approximation. The general triax-
ial ellipsoid is a quadratic surface where the semi-axes are lengths a, b, and c. In spherical coordinates:

r2 cos2 θ sin2 φ

a2
+
r2 sin2 θ sin2 φ

b2
+
r2 cos2 φ

c2
= 1

Lengths of two axes of an ellipsoid are assumed to be the same in classification of a spheroid. Then de-
pending on whether c < a or c > a, the ellipsoid can be considered either an oblate spheroid or a prolate
spheroid. For the horizontal spherical body component of the Spherical Quatrefoil, the oblate spheroid will
be used to approximate its surface area. The ellipticity of an oblate spheroid is defined by,

eoblate =

√
1− c2

a2

The surface area of an oblate spheroid can be computed as a surface of revolution about the z-axis, with a
radius as a function of z given by,

S = 2π

∫
r(z)
√

1 + [r′(z)]2dz,

r(z) = a

√
1− z

c

2

The simple form is given by,

S = 2πa2 + π
c2

e
ln

(1 + e)

(1− e)

Thus for the spherical component at hand, a=0.02, b=0.01, and c can be calculated using c2 = a2 + b2

which when solved, c = 0.0173205081. To find e we calculate the following,

e =

√
1− 0.01732050812

0.022
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Solving for e and substituting this value into the previous equation, the surface area of the horizontal part
was solved to be S = 0.0092283489π = 0.0289917132. For the vertical spherical component of the Spherical
Quatrefoil, the prolate spheroid will be used to approximate its surface area. All calculations follow the
previously outlined steps except that the ellipticity of the prolate spheroid is defined by,

eprolate =

√
1− a2

c2

In addition, the inner part of the Spherical Quatrefoil overlaps with the x component and subtraction of
this part is necessary as to not count it twice. In other words, for this part, a = 0.04, b = 0.007, and thus,
c = 0.0080622577. Using the formula for a surface area with e calculated, we find that S = 3.459603087 ×
10−4. The approximated values in these calculations have no assigned units which allows for appropriate
extrapolation and scaling.

B Volume

The quantity of the space enclosed by the Spherical Quatrefoil can be approximated by integral calculus.
The volume integral in spherical coordinates has the form,

V =

∫ 2π

0

∫ π

0

∫ 0.005

0.002

f(ρ, θ, φ)ρ2 sin θdρdθdφ

The equation for outer edge of a sphere when radius is given as,

a =
√
x2 + y2 + z2

We then derive the volume integral f(ρ, θ, φ) from x, y, and z.

(0.002 + 0.003 cos2 2θ)

√
sin2 θ cos2 θ(1 + 3 sin2 φ

Thus, we can find the volume by evaluating the triple integral below.

V =

∫ 2π

0

∫ π

0

∫ 0.005

0.002

(0.002 + 0.003 cos2 2θ)

√
sin2 θ cos2 θ(1 + 3 sin2 φρ2 sin θdρdθdφ

SciPy, an open source Python library used for scientific computing and technical computing, was used for
numerical evaluation of this triple integral. The Spherical Quatrefoil was computed to have a volume of
2.162863 × 10−9. There are no particular units assigned which allows for appropriate extrapolation and
scaling.

Figure 20: Snapshot of triple integral to approximate volume in Python.
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C Maxwell Equations

A set of equation that describe the way electric and magnetic fields propagate, interact, and how they can
be influenced by objects. These equations show that separated charges can give rise to both electric and
magnetic fields.

∇ ·D = ρv

∇ ·B = 0

∇xE = −∂B
∂t

∇xH = −∂D
∂t

+ J

D Volterra Integral Equations

The bases of the Volterra integral equation approach is a universal method for calculating and modeling
sorption kinetics of fluid multi-component mixtures in porous media. It can be divided into the first and
second kind. A linear one is represented below

f(t) =

∫ t

a

K(t, s)x(s)ds

where f is a given function and x is an unknown function to be solved for. A linear Volterra equation of
the second kind is

x(t) = f(t) +

∫ t

a

K(t, s)x(s)ds

The application of these equations are also important in the area of probabilistic analysis. We known that
Fredholm type equations behave more or less like boundary value problems. In comparison, Volterra equa-
tions behave more like initial value problems. Nonhomogenous Volterra integral equations of the second
kind of the form

u(x) = f(x) + λ

∫ x

0

K(x, t)u(t)dt

where K(x, t) is the kernel of the integral equation, and λ is a parameter. The limits of integration for the
Volterra integral equations are functions of x and not constants as in Fredholm integral equations. Here,
integration ranges from some fixed lower limit. In the Volterra equations, the upper limit of integration is
the variable x, while in the Fredholm equations, the upper limit of integration is a fixed constant. Solving
the following Volterra integral equations by using the Adomian decomposition method: Example. Con-
sider the Volterra integral Equation

u(x) = 1 +

∫ x

0

u(t)dt

Here, f(x) = 1, λ = 1,K(x, t) = 1. Using the decomposition series solution and the recursive scheme to
determine the components un, n ≥ 0, we find,

u0(x) = 1

u1(x) =

∫ x

0

u0(t)dt =

∫ x

0

dt = x

u2(x) =

∫ x

0

u1(t)dt =

∫ x

0

tdt =
1

2!
x2

and so on. Noting that,
u(x) = u0(x) + u1(x) + u2(x) + ...,

40



we can easily obtain the solution in a series form given by,

u(x) = 1 + x+
1

2!
x2

and this converges to the closed form solution

u(x) = ex

obtained upon using the Taylor expansion for ex Example 2.

u(x) = x+

∫ x

0

(t− x)u(t)dt

We can also set,
u0(x) = x

u1(x) =

∫ x

0

(t− x)u0(t)dt =

∫ x

0

t(t− x)dt =
1

3!
x3,

u2(x) =

∫ x

0

(t− x)u1(t)dt =

∫ x

0

− 1

3!
t3(t− x)dt =

1

5!
x5.

Consequently, the solution in a series form is given by,

u(x) = x− 1

3!
x3 +

1

5!
x5 + ...

and in a closed form by, u(x) = sinx obtained by using the Taylor expansion of sinx. Example 3. We
consider here the Volterra integral equation

u(x) = 6x− x3 +
1

2

∫ x

0

tu(t)dt

Applying the decomposition technique we find,

u0(x) = 6x− x3u1(x) =
1

2

∫ x

0

tu0(t)dt =
1

2

∫ x

0

t(6t− t3)dt = x3 − 1

10
x5,

u2(x) =
1

2

∫ x

0

tu1(t)dt =
1

2

∫ x

0

t(t3 − 1

10
t5)dt =

1

10
x5 − 1

140
x7

Consequently, the solution in series form is given by,

u(x) = (6x− x3) + (x3 − 1

10
x5) + (

1

10
x5 − 1

140
x7) + ...,

where we can easily obtain the solution in a closed form given by

u(x) = 6x.
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E The Modified Decomposition Method

If we have nonlinear weakly-singular Fredholm Integral Equations in the form,

u(x) = f(x) +

∫ 1

0

1√
(|x− t|)

F (u(t))dt, x ∈ [0, 1],

and is generalized by the form,

u(x) = f(x) +

∫ 1

0

1√
[(|g(x)− g(t)|]α

F (u(t))dt, 0 < α < 1, x ∈ [0, 1]

where F (u(t)) is a nonlinear function of u(t), such as u2(x), u3(x), eu(x), etc, This method introduces a
slight change in the recurrence relation suggested by the Adomian method. It decomposes the data func-
tion f(x) into two components f0(x) and f1(x), where only f0(x) is assigned to the zeroth solution com-
ponent u0(x), and the f1(x) is added to the first component u1(x) in addition to the other terms assigned
by using the standard Adomian Decomposition method. The modified decomposition method proposes a
modified recurrence relation given as u0(x) = f0(x),

u1(x) = f1(x) +

∫ b

a

K(x, t)A0(t)dt

un+t(x) = f1(x) +

∫ b

z

K(x, t)An(t)dt, n ≥ 1

For example,

u(x) =
√

cosx+ 2
√
|x− 1| − d

√
sin |x|+

∫ π/2

0

u2(t)√
| sinx− sin t|

dt

f(x) is decomposed into two parts,

f0(x) =
√

cosx, f1(x) = 2
√

sin |x− 1| − 2
√

sin |x|

The modified recurrence relation is,

u0(x) =
√

cosx

u1(x) = 2
√

sin |x− 1| − 2
√

sin |x|+
∫ π/2

0

A0(t)√
| sinx− sin t|dt = 0

u(x) =
√
| cosx|

42



F The Adomian Decomposition Method

The solution u(x) of an integral equation is expressed in a series form. The components of the u(x) func-
tion can be determined in a recurrent manner. We use,

u0(x) = f(x)

and

un+1(x) = λ

∫
K(x, t)un(t)dt, n ≥ 0

Consider the Fredholm integral equation,

u(x) = ex − 1 +

∫
tu(t)dt.

It is clear that,
f(x) = ex − 1, λ = 1,K = (x, t) = t

To evaluate these components, u0(x), u1(x), u2(x), ... of the series solution, we use the recursive scheme to
find,

u0(x) = ex − 1

U1(X) =

∫
tu0(t)dt =

∫
(et − 1)dt =

1

2

u2(x) =

∫
tu1(t)dt =

∫
1

2
tdt =

1

4

and so on. We note that,
u(x) = u0(x) + u1(x) + u2(x) + ...,

we can easily obtain the solution in a series form given by,

u(x) = ex − 1 +
1

2
(1 +

1

2
+

1

4
+ ...),

The solution can be written in a closed form given by, u(x) = ex by evaluating the sum of the infinite
geometric series.
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G The Direct Computation Method

An efficient traditional method for solving Fredholm integral equations of the second kind is called the
direct computational method. Separable or degenerate kernels K(x, t) expressed will be the focus here.
Without loss of generality, it may be assumed that the kernel can be expressed as,

K(x, t) = g(x)h(t)

Accordingly, the equation becomes

u(x) = f(x) + λg(x)

∫ b

a

h(t)u(t)dt

The definite integral in the above equation reveals that the integrand depends on one variable, namely t.
This means that the definite integral is equivalent to a numerical value α, where α is a constant. In other
words,

α =

∫
h(t)tu(t)dt

It follows that the becomes,
u(x) = f(x) + λαg(x)

It is clear that the solution is completely determined by the above equation upon evaluating the constant
α. This can be done by substitution. It is worth noting that the direct computation method determines
the exact solution in a closed form, rather than a series form, provided that the constant α is evaluated.
In addition, this method usually gives rise to a system of algebraic equations depending on the structure
of the kernel.For example, there could be more than one constant. For linear Fredholm integral equations,
we obtain one value for alpha and the linear equation has a unique solution. For example,

u(x) = x2 − 25

12
x+ 1 +

∫
xu(t)dt

We define constant, α

α =

∫
tu(t)dt

Write the constant in terms of the original function,

α = x2 − 25

12
x+ 1 + α

Write the function in terms of variable t,

u(t) = t2 − 25

12
t+ 1 + α

Substitute alpha back into the function,

α =

∫
t(t2

25

12
t+ 1 + α)dt

Integrate from [0, 1] to solve for α,

α =

∫ 1

0

t3 − 25

12
t2 + t+ α+ αtdt

α = 4
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H Finite Difference Method

The method can be used for elliptic partial differential equations. It is a numerical method that only does
rectangular regions which leaves a margin for error in approximation. It is given by,

2
[(h
k

)2
+ 1
]
Wij − (Wi+1,j +Wi−1,j)−

(h
k

)2
(Wi,j+1 +Wi,j−1) = −h2f(Xi, Yi)

where h are horizontal subdivisions, k are vertical subdivisions, and w are weights, and i = 1...n − 1 and
j = 1...m− 1. along with boundary conditions as follows,

W0j = g(X0, Yj) and Wnj = g(Xn, Yj) for j = 0...m

Wi0 = g(Xi, Y0) and Wim = g(Xi, Ym) for i = 1...n− 1

For example, determining the steady state heat distribution in a thin square metal plane with dimensions
0.5mx0.5m using the Finite Difference method for n = m = 4. The adjacent boundaries held at 0◦ and
heat on other boundary increases linearly for 0◦ from one corner to 100◦ where sides meet. We have a ho-
mogeneous, second-order, partial, differential equation.

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0

where 0 < x < 0.5 and 0 < y < 0.5 and the given boundary conditions are: u(0, y) = 0, u(x, 0.5) = 200x,
u(x, 0) = 0, and u(0.5, y) = 200y.

2
[(4

4

)2
+ 1
]
Wij − (Wi+1,j +Wi−1,j)−

(4

4

)2
(Wi,j+1 +Wi,j−1) = −h2f(Xi, Yi)

where i = 1...3 and j = 1...3

Wij =
Wi+1,j +Wi− 1, j +Wi,j+1 +Wi,j−1

4

To find the weights:
W0j = W01 = W02 = W03 = 0

Wi0 = W10 = W20 = W30 = 0

Wnj = W41 = W14 = 200(0.125) = 25

Wnj = W24 = W42 = 200(0.25) = 50

Wnj = W34 = W43 = 200(0.375) = 75

Taking the points that surround each intersection on the grid made by vertical and horizontal subdivi-
sions, we create a system of equations as follows.

P1 : 4W1 −W2 −W4 = 25

P2 : 4W2 −W1 −W3 −W5 = 50

P3 : 4W3 −W2 = 150

P4 : 4W4 −W1 −W5 −W7 = 0

P5 : 4W5 −W2 −W4 −W6 −W8 = 0

P6 : 4W6 −W3 −W5 −W9 = 50

P7 : 4W7 −W4 −W8 = 0

P8 : 4W8 −W5 −W7 −W9 = 0
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P9 : 4W9 −W6 −W8 = 25

Putting the above equations into a matrix, we obtain the weights Wn which approximate the heat distri-
bution at the 9 points on the metal plate with the provided boundary conditions. W1 = 18.75, W2 = 37.5,
W3 = 56.25, W4 = 12.5, W5 = 25, W6 = 37.5, W7 = 6..25, W8 = 12.5, and W9 = 18.75.

I Legendre Polynomials

∫ 1

−1 P (x)Pn(x) = 0 wherever P(x) is a polynomial of degree less than n and is characteristically orthogo-
nal. The first few Legendre Polynomials as roots are listed below:

P0(x) = 1

P1(x) = x

P2(x) = x2 − 1

3

P3(x) = X3 − 3

5
x

P4(x) = X4 − 6

7
x2 +

3

35

If X1...Xn are the roots of the nth Legendre polynomial Pn(x), then the coefficients can be found using:

Ci =

∫ 1

−1

n∏
j=1

(X −Xj

Xi −Xj

)
dx

For example, for n = 3 we have the following:

Ci =

∫ 1

−1

(X −X1

Xi −X1

)(X −X2

Xi −X2

)
dx

We approximate by sums with, ∫ 1

−1
P (x)dx ≈

n∏
i=1

C1f(Xi)

∫ 1

−1
f(x)dx ≈ C1f(X1) + C2f(x2) + C3f(x3)

∫ 1

−1
P (x)dx ≈

∫ 1

−1
(a0 + a1X + a2x

2 + a3x
3 + a4x

4 + a5x
5)dx

Therefore,

C1f(x1) + c2f(x2) ≈ a0
∫ 1

−1
1dx+ a1

∫ 1

−1
xdx+ a2

∫ 1

−1
x2dx+ a3

∫ 1

−1
x3dx+ a4

∫ 1

−1
x4dx+ a5

∫ 1

−1
x5dx

After equating the coefficients and integrating, we find a system of 4 equations and can thereafter solve for
both roots and coefficients using Mathematica. The system is as follows,

C1 + C2 + C3 = 2

C1X1 + C2x2 + C3x3 = 0

C1X
2
1 + C2x

2
2 + C3x

2
3 =

2

3

C1X
3
1 + C2x

3
2 + C3x

3
3 = 0
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C1X
4
1 + C2x

4
2 + C3x

4
3 =

2

5

C1X
5
1 + C2x

5
2 + C3x

5
3 = 0

where we have a simultaenous system of 6 nonlinear equations and we solve for all coefficients Cn and
roots xn.

Figure 21: Screen capture of system solved using Wolfram Mathematica 11.

An alternative method to finding the roots entails first obtaining the coefficients. This can be done using
the Legendre polynomials listed at the beginning. The set of polynomial functions P0, P1, ...Pn defined in
the following way is orthogonal on [a, b] with respect to a weight function of one. These polynomials are
recursive by nature where P0(x) = 1, P1(x) = x− b for x ∈ a, b where,∫ b

a
x[P (x)]2dx∫ b

a
[P0(x)]2dx

and when k ≥ 2,
Pk(x) = (x−Bk)Pk−1(x)− CkPk−2(x)

where Bk and Ck can be found using,

Bk =

∫ b
a
x[Pk−1(x)]2dx∫ b
a

[Pk−1(x)]2dx

Ck =

∫ b
a
xPk−1(x)Pk−2(x)dx∫ b
a

[Pk−2(x)]2dx

For example, to find the Legendre polynomial of degree 5 we use the above formulas to find,

P5(x) = (x−B5)P5−1(x)− C5P5−2(x)

P5(x) = (x−B5)
(
X4 − 6

7
x2 +

3

35

)
− C5

(
x3 − 3x

5

)
We have to find B5 and C5 using equations 51 and 52.

Bk =

∫ 1

−1 x[P4(x)]2dx∫ 1

−1[P4(x)(x)]2dx

Integrating this equation we get Bk = 1 and we solve for C5

C5 =

∫ 1

−1 xP4(x)P3(x)dx∫ 1

−1[P3(x)]2dx
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In which we also integrate and substitute back into equation 54 to get,

P5(x) =
1

8
(63x5 − 70x3 + 15x)

We can use this polynomial to find the roots by setting the polynomial to zero. This will give the root val-
ues seen in the table for n=5.

Figure 22: Solving for roots of the Legendre polynomial of degree 5.

Using these roots and setting up a system of equations as seen with n=3 we get a system that looks like
this:

C1 + C2 + C3 + C4 + C5 = 2

C1X1 + C2X2 + C3X3 + C4X4 + C5X5 = 0

C1X
2
1 + C2X

2
2 + C3X

2
3 + C4X

2
4 + C5X

2
5 =

2

3

C1X
3
1 + C2X

3
2 + C3X

3
3 + C4X

3
4 + C5X

3
5 = 0

C1X
4
1 + C2X

4
2 + C3X

4
3 + C4X

4
4 + C5X

4
5 =

2

5
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Figure 23: 26 sets of high accuracy Gaussian Quadrature nodes and weights from the Keisan Online Calculator
service provided by Casio ComputerCo., Ltd.

49



J Runge-Kutta Methods

Runge-Kutta methods are single-steps with multiple stages per step. They depend on Taylor methods of
the specific Initial Value Problem (IVP). They are among the most popular Ordinary Differential Equa-
tions (ODE) solvers. The family of Runge-Kutta Methods can be defined generally as a collocation method

Fi = f(yn + h
s∑
j=1

aijFj), i = 1, ..., s, yn+1 = yn + h
s∑
i=1

bif(Yi)

Here, s is termed the number of stages of the Runge-Kutta method, the bi, i = 1, ..., s are the weights,
and the aij re the internal coefficients. Each Runge-Kutta method generates an approximation of the flow
map. Each Yi in the above equation can be viewed as

yn+1 = yn + h
s∑
i=1

bif(Yi(yn.h))

The most famous Runge-Kutta method has four stages

Y1 = yn

Y2 = yn +
h

2
f(Y1)

Y3 = yn +
h

2
f(Y2)

Y4 = yn + hf(Y3)

yn+1 = yn + h(
1

6
f(Y1) +

1

3
f(Y2) +

1

3
f(Y3) +

1

6
f(Y4))

The accuracy of the method in terms of its approximation of a numerical solution over one timestep.
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K Gaussian Quadrature Example
To examine the accuracy of this method we can solve this integral whose real answer we already know to
be 1.483803256. ∫ 1.5

1

∫ x

0

(x2 +
√
y)dydx

We must convert the interval of the integral on the inside to [-1,1],

y =
(x− 0)t+ x+ 0

2
=
x(t+ 1)

2

The formula is used for a change of variables to give,∫ 1

−1
x2 +

√
x(t+ 1)

2

x

2
dt

wherein t is substituted for roots and we approximate by a sum.

≈ x

2

[
x2 +

√
x

2
(
√

1 + 0.5773502692
]

+
x

2

[
x2 +

√
x

2
(t+ 1)(

√
1− 0.5773502692

]
≈ x3 + x

3
2 (0.6738873387)

We substitute this into the integral on the outside to give,∫ 1.5

1

x3 + x
3
2 (0.6738873387)dx

and convert the interval to [-1,1].

x =
(b− a)t+ b+ c

2
=
t

2
+

5

4

After another change of variables we have,∫ 1

−1

1

4

( t
2

+
5

4

)3
+
( t

2
+

5

4

) 3
2
)

(0.6738873387)dt

wherein t is substituted for roots and we approximate by a sum.

≈ 1

4

( (0.5773502692)

2
+

5

4

)3
+
( (0.5773502692)

2
+

5

4

) 3
2
)

(0.6738873387)

+
1

4

( (−0.5773502692)

2
+

5

4

)3
+
( (−0.5773502692)

2
+

5

4

) 3
2
)

(0.6738873387)

This gives an numerical approximation of 1.488874528 which has two decimal places of accuracy com-
pared to our real answer. Nonetheless, the Gaussian Quadrature method is very robust and can be used
for many different shapes.
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