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Robustness of proxy-based climate field reconstruction methods

Michael E. Mann,1 Scott Rutherford,2 Eugene Wahl,3 and Caspar Ammann4

Received 22 November 2006; revised 30 January 2007; accepted 20 February 2007; published 23 June 2007.

[1] We present results from continued investigations into the fidelity of covariance-based
climate field reconstruction (CFR) approaches used in proxy-based climate reconstruction.
Our experiments employ synthetic ‘‘pseudoproxy’’ data derived from simulations of
forced climate changes over the past millennium. Using networks of these pseudoproxy
data, we investigate the sensitivity of CFR performance to signal-to-noise ratios, the noise
spectrum, the spatial sampling of pseudoproxy locations, the statistical representation of
predictors used, and the diagnostic used to quantify reconstruction skill. Our results
reinforce previous conclusions that CFR methods, correctly implemented and applied to
suitable networks of proxy data, should yield reliable reconstructions of past climate
histories within estimated uncertainties. Our results also demonstrate the deleterious
impact of a linear detrending procedure performed recently in certain CFR studies and
illustrate flaws in some previously proposed metrics of reconstruction skill.

Citation: Mann, M. E., S. Rutherford, E. Wahl, and C. Ammann (2007), Robustness of proxy-based climate field reconstruction

methods, J. Geophys. Res., 112, D12109, doi:10.1029/2006JD008272.

1. Introduction

[2] There is a substantial recent history in the application
of covariance-based climate field reconstruction (CFR)
methods to the problem of climatic and paleoclimatic
reconstruction. Applications include the infilling of the
instrumental surface temperature field [Reynolds and
Smith, 1994; Smith et al., 1996, 1998; Rayner et al.,
1996, 2000, 2003; Kaplan et al., 1997, 1998; Folland et
al., 1999, 2000, 2001; Schneider, 2001; Rutherford et al.,
2003; Smith and Reynolds, 2005] and instrumental sea level
pressure (SLP) field [Kaplan et al., 2000; Zhang and Mann,
2005; Allan and Ansell, 2006; Ansell et al., 2006], and
reconstruction of paleoclimatic fields of surface tempera-
ture, SLP, and continental drought from ‘‘proxy’’ data such
as tree rings, corals, ice cores, and historical documentary
evidence [e.g., Fritts et al., 1971; Cook et al., 1994; Mann
et al., 1998, hereinafter referred to as MBH98; Mann et al.,
1999, hereinafter referred to as MBH99; Luterbacher et al.,
1999, 2002a, 2002b, 2004, 2006; Evans et al., 2002;
Pauling et al., 2003; Mann and Rutherford, 2002, herein-
after referred to as MR02; Xoplaki et al., 2005; Zhang et al.,
2004; Rutherford et al., 2005;Mann et al., 2005; Casty et al.,
2005; Pauling et al., 2006]. Recently developed modifica-
tions of CFR include the separate reconstruction of low- and

high-frequency components of climate fields [Rutherford
et al., 2005, hereinafter referred to as R05; Smith and
Reynolds, 2005; Mann et al., 2005, hereinafter referred to
as M05]. None of the CFR studies mentioned above
employed the controversial procedure [see Wahl et al.,
2006] recently introduced by Von Storch and associates
[Von Storch et al., 2004, hereinafter referred to as VS04;
Burger and Cubasch, 2005, hereinafter referred to as BC05;
Burger et al., 2006, hereinafter referred to as BFC06] in
which data are linearly detrended prior to calibration. We
return to this important point later.
[3] Other statistical methods, such as the simple compos-

iting of multiple proxy series, centered and scaled by the
target instrumental series over the modern interval (the so-
called composite-plus-scale (CPS) approach), can be used to
reconstruct a single time series, such as the Northern
Hemisphere (NH) mean temperature series, from proxy
climate data [e.g., Bradley and Jones, 1993; Overpeck et
al., 1997; Jones et al., 1998; Crowley and Lowery, 2000;
Esper et al., 2002; Mann and Jones, 2003; Cook et al.,
2004; Jones and Mann, 2004; Moberg et al., 2005; Hegerl
et al., 2006, 2007] or individual regional temperature series
[Briffa et al., 2001]. The fidelity of the CPS approach as a
function of proxy signal-to-noise ratio (SNR) was investi-
gated previously by M05.
[4] The CPS approach makes the potentially quite restric-

tive assumption that all proxy data used are local indicators
of the particular climate field (e.g., surface temperature) for
which a reconstruction is sought. The CFR approach avoids
this potentially restrictive assumption, providing a recon-
struction of the entire climate field of interest (e.g., surface
temperature field) from a spatially distributed network of
climate proxy indicators containing a diverse range of
climate signals. The spatial reconstructions can be averaged
to yield, e.g., a hemispheric or regional mean temperature
series. Additionally and more importantly, the spatial infor-
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mation provided by CFR-based reconstructions can provide
better insights into the underlying climate dynamics [e.g.,
MBH98; Mann et al., 2000; Delworth and Mann, 2000;
Shindell et al., 2001, 2003, 2004; Waple et al., 2002;
Braganza et al., 2003; Adams et al., 2003; Luterbacher et
al., 2004; Xoplaki et al., 2005; Casty et al., 2005].
[5] In this study, we follow up on previous investigations

by M05 of the fidelity of CFR-based surface temperature
reconstructions using simulations of forced climate variabil-
ity over the past millennium. As in M05, synthetic ‘‘pseu-
doproxy’’ data derived from the model surface temperature
field are used to test the performance of the method in
reconstructing the actual model surface temperature history.
[6] Like M05, we make use of a simulation of the

National Center for Atmospheric Research (NCAR) Climate
System Model (CSM) 1.4 coupled model forced by esti-
mated natural and anthropogenic forcing changes over the
1150 year period A.D. 850–1999 [Ammann et al., 2007].
The CSM1.4 model simulation was spun-up with preindus-
trial initial conditions, and all important natural and anthro-
pogenic forcings were included. Any potential long-term
drift was removed. As discussed in M05, the simulation
therefore likely provides a more realistic opportunity for
testing CFR approaches than does the uncorrected European
Centre Hamburg Ocean Primitive Equation–G (ECHO-G)
‘‘Erik’’ simulation of the past millennium used in several
other similar recent studies [VS04; Zorita and Von Storch,
2005, hereinafter referred to as ZVS05; BFC06]. The
‘‘Erik’’ simulation was spun-up with modern forcing for a
preindustrial initial state, leading to a large, long-term drift
[Osborn et al., 2006] which is unlikely to have any
counterpart in the true climate history. Furthermore, a key
anthropogenic forcing (tropospheric aerosols) was not in-
cluded, leading to an unrealistically large trend over the
19th–20th centuries [see also Osborn et al., 2006] and
exaggerating the change in mean surface temperatures
between the calibration period and preceding centuries. A
more recent long-term simulation of the ECHO-G model
[Gonzalez-Rouco et al., 2006; Von Storch et al., 2006] still
suffers from the latter problem. For the above reasons, the
CSM simulation likely provides a more realistic opportunity
for testing CFR approaches than the GKSS ‘‘Erik’’ simula-
tion. Nonetheless, it is useful to test CFR approaches using
both (CSM and GKSS ‘‘Erik’’) simulations to better assess
the robustness of methodological performance with respect
to differing possible scenarios for the climate of the past
millennium.
[7] In this study, we employ tests with pseudoproxy data

to examine the sensitivity of reconstruction skill to signal-
to-noise ratios, the spatial extent of the pseudoproxy net-
works, the proxy noise spectrum, and the metrics used to
diagnose skill. We also examine the robustness of the results
with respect to the particular simulation (CSM 1.4 versus
GKSS ‘‘Erik’’) used. While we have focused in this study
on annual mean reconstructions of the large-scale surface
temperature field using temperature proxies, similar con-
clusions are likely to hold for seasonally specific or regional
reconstructions, for the reconstruction of fields other than
surface temperature (e.g., SLP), or for reconstructions that
make use of precipitation or mixed temperature/precipita-
tion proxies. Investigating such alternative situations is the
subject of additional, ongoing investigations.

[8] In section 2, we describe the revised version of the
Regularized Expectation-Maximization (‘‘RegEM’’) that is
employed for CFR in this study. In section 3, we describe
the pseudoproxy experiments used to test the performance
of this method, and in section 4 we describe the results of
these tests.We provide a discussion of the results in section 5,
and summarize with our primary conclusions in section 6.
The actual and reconstructed surface temperatures, pseudo-
proxy data, Matlab codes and associated documentation for
performing all procedures described are provided at http://
www.meteo.psu.edu/�mann/PseudoproxyJGR06. Addi-
tional information is available as Auxiliary Material.1

2. RegEM CFR Method

2.1. Mathematical Description

[9] The ‘‘RegEM’’ algorithm of Schneider [2001] has
been used in several CFR applications by Mann and
collaborators in recent years [MR02; Rutherford et al.,
2003; Zhang et al., 2004; Zhang and Mann, 2005; R05;
M05]. This algorithm is preferable, in terms of its funda-
mental statistical properties, to simple truncated principal
component analysis (PCA)-based approaches used for CFR
in earlier work by MBH98, MBH99 and many other studies.
Relationships with these previous approaches are expanded
upon in section 2.2.
[10] In RegEM, as in the conventional expectation max-

imization (EM) algorithm for normal data [e.g., Little and
Rubin, 1987], a linear regression model relates missing ‘‘m’’
and available ‘‘a’’ values. Each record x (consisting of
missing and available values) is represented as a row vector
within a ‘‘data matrix’’ X that describes the full multivariate
data set. Missing values are related to available values either
within that record or contained in other records, through

xm ¼ mm þ xa � mað ÞBþ e ð1Þ

where B is a matrix of regression coefficients relating
available and missing values within the multivariate data
set, and the residual vector e is a random ‘‘error’’ vector
with mean zero and covariance matrix C to be determined.
The rows x of the data matrix X can be weighted [e.g., R05]
to account for differing area representation of grid box data,
or differing error variances.
[11] In each iteration of equation (1), estimates of the

mean m and of the covariance matrix
PPPP

of the data x are
taken as given, and from these, estimates of the matrix of
regression coefficients B and of the residual covariance
matrix C are computed for each record with missing values.
In the conventional EM algorithm, the estimate of B is the
conditional maximum likelihood estimate given the esti-
mates of m and

PPPP
. In RegEM, the conditional maximum

likelihood estimate of B is replaced by a regularized
estimate, which is necessary in typical CFR applications
in which the covariance matrix

PPPP
may be rank-deficient or

ill-conditioned. The regression model (1) with estimates of
the regression coefficients B is then used to estimate
missing values given the available values, and using the
estimated missing values and an estimate of the residual

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/jd/
2006jd008272. Other auxiliary material files are in the HTML.
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covariance matrix C, the estimates of m and
P

are updated.
It should be noted that

P
in this context contains not just

the sample covariance matrix of the completed data set, but
also, consistent with the model (equation (1)), a contribution
due to the residual covariance matrix C. The above steps are
iterated until convergence. Because the algorithm is iterative
in nature, it is nonlinear, and cannot be described in terms of
a single linear operator acting upon the data matrix.
[12] In applications of RegEM to proxy-based CFR

[MR02; Rutherford et al., 2003, 2005; M05] the rows x
of the data matrix X represent either the standardized proxy
(‘‘predictor’’) or instrumental (‘‘predictand’’) data. The
covariances both within and between the proxy and instru-
mental data series are simultaneously estimated through
application of equation (1) to the augmented (proxy +
instrumental) data matrix X. Statistical reconstruction of
the climatic field of interest (e.g., surface temperature) is
defined as the estimation of the missing values of the rows
of X corresponding to the instrumental series, prior to the
modern period during which instrumental data are available.
By analogy with standard regression approaches to paleo-
climate reconstruction [see, e.g., Jones and Mann, 2004],
one can define a ‘‘calibration’’ interval as either a full or
partial interval of overlap between the proxy and instru-
mental data. If a partial interval is used, the remaining
interval of overlap can be used to independently compare
the reconstruction against the actual withheld instrumental
data. Such an interval can thus be defined as a ‘‘verifica-
tion’’ or ‘‘validation’’ interval.
[13] An important feature of RegEM in the context of

proxy-based CFR is that variance estimates are derived in
addition to expected values. Statistical proxy-based climate
reconstructions are estimates of expected values of the
missing climate data (e.g., surface temperature series) prior
to the calibration period, conditioned on the information
available in the proxy data. As such, the sample variance of
the reconstructed series will necessarily underestimate the
true variance since variations about the expected values that
are not reflected in the reconstructed time series are a
component of the true variance of the (unknown) time
series. In RegEM, unlike many other estimates, this contri-
bution is taken into account in estimating the variances in
estimated quantities.
[14] Our recent applications favor a hybrid variant of the

RegEM approach [see R05; M05] wherein low-frequency
(>20 year period) and high-frequency (�20 year period)
variations are processed separately, and then subsequently
combined. In practice, whether or not the hybrid procedure
is used appears to lead to only very modest differences in
skill (see R05 and M05, and also experiments discussed
later in section 4.6), but it is necessary in real-world
applications where, for example, one wishes to make use
of decadally resolved as well as annually resolved records.

2.2. Regularization

[15] As explained by Schneider [2001], under normality
assumptions, the conventional EM algorithm without regu-
larization converges to the maximum likelihood estimates of
the mean values, covariance matrices and missing values,
which thus enjoy the optimality properties common to
maximum likelihood estimates [Little and Rubin, 1987].
In the limit of no regularization, as Schneider [2001] further

explains, the RegEM algorithm reduces to the conventional
EM algorithm and thus enjoys the same optimality proper-
ties. While the regularization process introduces a bias in
the estimated missing values as the price for a reduced
variance (the bias/variance trade-off common to all regular-
ized regression approaches), it is advisable in the potentially
ill-posed problems common to CFR. Unlike other current
CFR methods, RegEM offers the theoretical advantage that
its properties are demonstrably optimal in the limit of no
regularization.
[16] There are a number of possible ways to regularize the

EM algorithm, including principal component (PC) regres-
sion, truncated total least squares regression (TTLS [Fierro
et al., 1997]), and ridge regression [Tikhonov and Arsenin,
1977;Hoerl and Kennard, 1970a, 1970b]. Both ridge regres-
sion and TTLS account for observational error in available
data (i.e., represent ‘‘errors-in-variables’’ approaches), and
regularize a total least squares regression under the assump-
tion that relative observational errors are homogeneous
[Golub et al., 2000]. In our previous applications to CFR
[MR02; Rutherford et al., 2003, 2005; M05], we used the
ridge regression procedure as described by Schneider
[2001]. In this case, regularization is accomplished through
use of a ridge parameter h which specifies the degree of
inflation (1 + h2) of the main diagonal of the covariance
matrix

PPPP
, and therefore determines the degree of smooth-

ing of the estimated missing values. In TTLS, by contrast,
regression coefficients are computed in a truncated basis of
principal components of the overall covariance matrix

PPPP

and regularization is accomplished through a choice of the
truncation parameter K.
[17] The continuous regularization parameter of ridge

regression, Schneider [2001] speculates, might offer advan-
tages over TTLS, particularly when there is only a small
choice of possible truncation parameters. However, we have
found that the estimation of optimal ridge parameters is
poorly constrained at decadal and longer timescales in our
tests with pseudoproxy data, and we have learned that
earlier results using ridge regression (e.g., M05) are conse-
quently sensitive to, e.g., the manner in which data are
standardized over the calibration period (see discussion
below in section 2.3). We have found TTLS to provide
more robust results with respect to these considerations.
TTLS moreover is considerably more parsimonious in terms
of the number of estimated parameters (TTLS requires one
truncation parameter per iteration, while ridge regression
requires one ridge parameter iteration per record), and thus
is far less computationally intensive (typically requiring a
factor of ten or more less time for convergence than using
ridge regression). For these reasons, we employ TTLS
rather than ridge regression in the analyses described in
this study.
[18] There are a number of alternative possible objective

criteria for choosing the TTLS truncation parameter K. We
have found that a conservative choice that works well in
practice is to estimate K as corresponding to the number of
leading eigenvalues of the calibration period data matrix
that lie above the estimated noise continuum. The noise
continuum is estimated by a linear fit to the log eigenvalue
spectrum. In the low-frequency band, for which there are
typically roughly a dozen or less nonzero eigenvalues of the
calibration interval data matrix, such a linear fit is not well
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constrained. In this case, we found that an even simpler
criterion (retaining the first K eigenvalues which resolve
50% of the data variance) works well in practice. While
these criteria proved effective and robust throughout our
tests, they appeared slightly too conservative at very high
signal-to-noise ratios. The investigation of alternative ob-
jective criteria for selecting K (e.g., cross validation) repre-
sents a worthwhile topic for further investigation.
[19] To further insure regularization of the procedure, the

predictand (in the current study, the annual mean ‘‘instru-
mental’’ surface temperature grid box data which are tem-
porally complete over the calibration interval but entirely
missing prior that interval) is represented in the data matrix
X by its leading M PC time series, where M is small
compared to the total number of nonzero eigenvalues of
the calibration period covariance matrix. This step is per-
formed only once, at initiation of the RegEM procedure.
M represents the number of distinct modes of variance
resolvable from noise, and is objectively determined by the
eigenvalue-based noise/signal separation procedure de-
scribed earlier, applied to the predictor data set over the
calibration interval at the initiation of the RegEM proce-
dure. The predictand in the end is then reconstructed
through the appropriate eigenvector expansion, using the
M reconstructed PC series. In the context of surface tem-
perature reconstructions, the most conservative possible
choice M = 1 closely approximates the ‘‘index only’’
approach discussed in section 2.3, wherein a single quantity
(e.g., the hemispheric mean temperatures), rather than a
spatial field (e.g., the surface temperature field) is targeted
for reconstruction. M = 1 in general yields a near optimal
hemispheric or global mean reconstruction, but optimal
reconstructions of the underlying spatial patterns are gen-
erally achieved for a choice M > 1 as dictated by the
objective criterion discussed above.
[20] There is some resemblance between the procedure

described above, and the truncated PCA approach originally
used in MBH98. The original MBH98 procedure can be
seen as an approximation to the present procedure wherein
(1) the iterative Expectation-Maximization procedure is
replaced by a single estimation of data covariances between
available proxy and instrumental data and (2) simple inverse
regression, rather than TTLS, is used to relate the informa-
tion in the proxy and instrumental data.

2.3. Assumptions

[21] An important assumption implicit in RegEM and
other statistical imputation techniques that do not explicitly
model the mechanism responsible for missing values is that
data are missing at random, which means that the fact that a
value is missing does not depend on the missing data
values; it does not mean that data must be missing in a
spatially or temporally random fashion. The validity of this
assumption may face a challenge in CFR where certain
series are often selectively missing during earlier periods
that are characterized by different mean values from the
later periods. The analyses described in the present study
(where the ‘‘instrumental data’’ are selectively missing
during the precalibration interval), as previous experiments
with climate model simulation data [Rutherford et al., 2003;
M05], show no evidence that this assumption leads to any
significant bias in practice.

[22] As in other errors-in-variables methods such as
‘‘total least squares’’ (TLS) which has been used in proxy
reconstruction studies [Hegerl et al., 2006, 2007], the
RegEM method accommodates the existence of errors in
both the ‘‘predictors’’ (proxy data) and ‘‘predictand’’ (in-
strumental surface temperatures). Indeed, if an ‘‘index
only’’ approach is taken wherein the predictand is repre-
sented by a single index (e.g., the NH mean temperature
series) rather then a multivariate (e.g., surface temperature)
field, then the RegEM method reduces to a regularized
multivariate regression for that index. In this case, the
regularized TLS reconstruction approach used by Hegerl
et al. [2006, 2007] to reconstruct NH mean surface tem-
perature from proxy data can be thought of as a single
iteration of a RegEM-like algorithm.
[23] In applications involving the infilling of missing

values in instrumental climate fields [e.g., Schneider, 2001;
Rutherford et al., 2003; Zhang and Mann, 2005], it is
appropriate to use the original unscaled (e.g., actual surface
temperature) series as the records x in equation (1), as they
have common dimensions (e.g., �C) and absolute errors can
reasonably be assumed approximately uniform. In paleo-
climate applications where the different records x may
represent series with different dimensions (e.g., either an
instrumental temperature series in units of �C or a proxy
time series with arbitrary units), it is necessary to first
standardize (i.e., normalize and center) all records over
some common period. When all records have been stan-
dardized prior to the analysis without any further weighting,
it is implicitly assumed that relative errors are homogenous,
i.e., approximately uniform among all records. In applica-
tions to proxy-based climate reconstruction, this assumption
is unlikely to be strictly valid, as the signal-to-noise ratios
for the instrumental and proxy series are different. Explicitly
accommodating differing levels of relative error variance in
the two constituent data sets, however, makes little differ-
ence in practice (Auxiliary Material, section 1).
[24] In M05, all data (pseudoproxy and surface temper-

ature grid box series) were first standardized using their true
long-term mean and standard deviations, and all data were
centered at each iteration of the RegEM procedure relative
to the mean over all data prior to the calibration interval.
However, in real world proxy-based reconstructions, the
statistics of the surface temperature data themselves are
available only over the calibration interval. A fair criticism
of the convention adopted by M05 (T. Lee, personal
communication, 2006) is that these long-term statistics
should thus not be used in standardizing the surface
temperature data when testing paleoclimate reconstruction
methods. Instead, the standardization of all data (proxy and
surface temperature) should, as in the current study, be
performed over the calibration interval. When, as in most
studies, data are standardized over the calibration period,
however, the fidelity of the reconstructions is diminished
when employing ridge regression in the RegEM procedure
as in M05 (in particular, amplitudes are potentially under-
estimated; see Auxiliary Material, section 2). However, the
revised approach used in the present study, where TTLS is
used in place of ridge regression in the RegEM procedure,
proves robust with respect to the standardization interval
used, and excellent results are achieved standardizing data
over the calibration period (Auxiliary Material, section 2).
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Implications of these considerations for previous RegEM
proxy reconstructions using ridge regression are discussed
further in section 2.5.

2.4. RegEM in the Context of Previous Criticisms
of CFR

[25] It is worth considering the attributes of the RegEM
methodology in the context of previous criticisms that have
been published of CFR approaches to paleoclimate recon-
struction. BC05 have criticized the truncated PCA-based
CFR approach used by MBH98 (and many other studies)
for a putative absence of either a ‘‘sound mathematical
derivation of the model error’’ or ‘‘sophisticated regulari-
zation schemes that can keep this [model] error small.’’
These criticisms do not apply to the RegEM method used in
more recent work [MR02; Rutherford et al., 2003, 2005;
Zhang et al., 2004; M05]. As is clear from the discussion in
sections 2.1–2.3, RegEM both employs an objective regu-
larization scheme, and an explicit statistical modeling of
errors.
[26] BC05 argue that truncated PCA-based CFR involves

a number of potentially subjective procedural choices. One
of the ‘‘choices’’ they argue for, detrending the predictand
prior to calibration, is simply inappropriate, as discussed in
more detail later. The other ‘‘choices’’ argued are irrelevant,
however, in the context of RegEM-based CFR. Any moti-
vation for using a subset of PC summaries in representing
proxy data networks (the ‘‘PCR’’ choice in BC05) is
eliminated in RegEM, because any potential colinearity
among predictors is accounted for in the regularization
process. The issue of how proxy data networks might first
be standardized in the estimation of PCs (the ‘‘CNT’’ choice
in BC05; the two conventions considered involve whether
one standardizes with respect to the long-term or calibration
period statistics of the proxy series prior to PCA) is
therefore rendered irrelevant as well. The use of PCs to
reduce the predictor set in RegEM in such a case merely
acts to eliminate potentially useful information, and is likely
to degrade reconstruction skill in general. Nonetheless, PC
summaries of proxy networks can be used in RegEM, and
whether or not this is done has a minimal influence on the
resulting reconstruction, as shown in R05 for the case of the
MBH98 proxy data, and as demonstrated in the present
study in analyses described in more detail below. The
rescaling step (the ‘‘RSC’’ choice in BC05) is not appro-
priate since regression coefficients are objectively deter-
mined through equation (1). Finally, the distinction between
inverse and direct regression approaches (the ‘‘INV’’ choice
in BC05) is inapplicable since in our applications to
paleoclimate reconstruction RegEM represents an errors-
in-variables method (albeit one with certain specific vari-
ance assumptions; see section 2.2), and can be described
neither as pure direct nor pure inverse regression.
[27] As demonstrated below, the RegEM algorithm for

proxy-based CFR as implemented in the manner described
above, performs remarkably well for a wide range of signal-
to-noise ratios, a variety of proxy noise assumptions, a
range of proxy network sizes and spatial distributions,
differing choices of the modern calibration interval, and
using two entirely different climate model simulations. As
discussed above, we nonetheless believe that aspects of the
algorithm (in particular the relatively simple objective

selection rules developed) could be further optimized. We
welcome future efforts in this direction by other researchers.

2.5. RegEM Reconstructions With Actual Proxy Data

[28] The considerations discussed in section 2.2 suggest
that previous RegEM applications to proxy-based climate
reconstruction employing ridge regression for regulariza-
tion, such as R05, are susceptible to a potential underesti-
mation of reconstruction amplitudes. To investigate this
further, we have performed surface temperature reconstruc-
tions with RegEM using the same two proxy data sets used
in that R05 (the ‘‘multiproxy’’ data set of MBH98, and the
gridded ‘‘MXD’’ tree ring latewood density data set of
Osborn and coworkers), but incorporating the revised
RegEM methodology of this study, which employs TTLS
in place of ridge regression. Figure 1 shows the NH annual
mean reconstruction using the MBH98 data set, including
the ‘‘PC/proxy’’ version of the proxy network in which
dense networks of tree ring data are represented in the data
matrix X by their leading PCs (Figure 1a), and the ‘‘all
proxy’’ version in which all proxy series are represented
individually in the data matrix X (Figure 1b). In both cases,
the amplitude of the resulting NH mean reconstruction is
slightly enhanced relative to what is shown in R05, but
remains well within the uncertainties of the results shown in
R05 and in MBH989. A similar conclusion holds for recon-
structions based on the ‘‘MXD’’ tree ring proxy network also
used in R05 (see Auxiliary Material, section 3). While the
results shown previously in MBH98 and R05 therefore
appear relatively robust with respect to methodological
considerations, our current analyses (e.g., AuxiliaryMaterial,
section 2) show that this need not be true more generally.
There is therefore good reason to favor the RegEM imple-
mentation described in this study over the previously used
implementation in proxy-based CFR.
[29] The similarity between reconstructions based on the

‘‘PC/proxy’’ and ‘‘all proxy’’ versions of the MBH98
network, as an aside, reinforces other recent findings [Wahl
and Ammann, 2007; Huybers, 2005; Von Storch and Zorita,
2005] rejecting the claim made elsewhere [McIntyre and
McKitrick, 2005, hereinafter referred to as MM05] that use
of PC summaries to represent proxy data has any significant
influence on the MBH98/MBH99 reconstructions.

3. Pseudoproxy Experiments

3.1. Surface Temperature Field

[30] Surface temperature grid box data were available
over the interval A.D. 850–1999 interval from the NCAR
CSM 1.4 simulation and over the interval A.D. 1000–1989
for the GKSS ‘‘Erik’’ simulation. We regridded the model
surface temperature field from both simulations to 5� latitude
by longitude grid cells, commensurate with the resolution of
gridded observational surface temperature data. We further-
more confined the surface temperature fields to the region
over which nearly continuous annual observations are
available in the real world from the mid 19th–20th century
[see M05]. Application of this criterion to the real world
surface temperature data leads to a set of 1312 global
temperature land air/sea surface temperature grid boxes
which have <30% missing data over the interval 1856–
1998, and no single gaps >6 months (Figure 2; see M05 for
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further details). In our experiments here, the model surface
temperature field is complete (i.e., there are no temporal
gaps) for all 1312 grid boxes used. Temperatures are
expressed as anomalies relative to the mean over the
1900–1980 period. The NH mean was defined as the
areally weighted mean of all available grid boxes north of
the equator, while the Niño3 index was defined as the
areally weighted mean over all available grid boxes in the
Niño3 region of the tropical Pacific (5�N–5�S, 90–150�W).
The difference between the model NH mean calculated over
the restricted subdomain spanned by the 1312 grid boxes
versus the full model NH mean (i.e., based on averaging
over all model grid boxes north of the equator) is relatively
small (see Auxiliary Material, section 4). However, use of
the restricted grid box region provides a more faithful
representation of real-world reconstructions which use the
actual available surface temperature records.

3.2. Pseudoproxy Networks

[31] We employed four different spatial networks of
pseudoproxies (‘‘A,’’ ‘‘B,’’ ‘‘C,’’ and ‘‘D,’’ see Figure 2).

Network A, which we adopt as our standard case, corre-
sponds to the 104 model grid boxes associated with the 104
unique sites of the full MBH98 network of proxy indicators.
This network was used in the M05 pseudoproxy experi-
ments. Networks B and C correspond to reduced networks of
unique sites used byMBH98 back to A.D. 1400 (18 locations)
and by MBH99 back to A.D. 1000 (11 locations), respec-
tively. Network D consists of twice as many (208) grid
boxes as network A, including the 104 grid boxes of
network A and a set of 104 additional randomly selected
grid boxes restricted to the surface temperature domain
shown in Figure 2. To simplify the intercomparison of
results, we restricted the network B–D experiments to a
smaller number of sensitivity analyses than for the standard
network A.
[32] As in M05, pseudoproxy time series were formed

through summing the annual model grid box temperature
series at a given location with an independent realization of
noise. The use of independent noise realizations for each
location reflects the assumption, in the absence of evidence

Figure 1. Comparison between the NH annual mean reconstructions of Rutherford et al. [2005] with
reconstructions that result from using same (MBH) proxy data sets, but incorporating the revised version
of the RegEM method discussed in the text. Shading indicated 95% confidence intervals calculated from
verification residuals. (a) Comparison of reconstructions using the ‘‘PC/proxy’’ representation of the
MBH98 multiproxy network. (b) Comparison of reconstructions using the ‘‘all proxy’’ representation of
the MBH98 multiproxy network.
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to the contrary, that the noise processes degrading proxy
climate signals (e.g., vital effects in the case of corals,
microclimate influences on snow accumulation in the case
of ice cores, or forest-level competition dynamics in the
case of tree ring measurements) can be assumed to be
specific to the proxy record, and not correlated over large
spatial scales. An independent set of noise realizations were
used in each experiment, unless explicitly noted otherwise.

3.3. Signal Versus Noise Characteristics

[33] Our experiments allowed for various relative noise
amplitudes. As in previous work [MR02 and M05] we
defined SNR values by the ratio of the amplitudes (in �C)
of the grid box temperature ‘‘signal’’ and the added
‘‘noise.’’ Experiments were performed for five different
values of SNR: 0.25, 0.4 0.5, 1.0 and 1 (i.e., no added
noise). (Note that these SNR values represent broadband
(i.e., spectrally averaged) properties. When the spectrum of
the underlying climate field is ‘‘red’’ (as with surface
temperatures), however, SNR will in general increase with
decreasing frequency. This feature is indeed observed
for the MBH98 proxy network (see Auxiliary Material,
section 5)). Relating SNR to the associated root-mean-
square correlation between proxies and their associated
local climate signal through r = SNR/(1 + SNR2)1/2 gives r =
0.24, 0.37, 0.45, 0.71, and 1.0, respectively, for the five
SNR values considered. In the terminology of VS04 and
BFC06 who express signal versus noise attributes in terms
of the ‘‘% noise’’ (defined as the fraction of the variance
in the pseudoproxy series accounted for by the noise
component alone) these SNR values correspond to 94%,
86%, 80%, 50%, and 0% noise, respectively. We adopted
as our ‘‘standard’’ case SNR = 0.4 (86% noise, r = 0.37)
which represents a signal-to-noise ratio than is either
roughly equal to or lower than that estimated for actual
proxy networks (e.g., the MXD or MBH98 proxy net-
works; see Auxiliary Material, section 5), making it an

appropriately conservative standard for evaluating real-
world proxy reconstructions.
[34] Previous studies such as VS04 and M05 have as-

sumed ‘‘white’’ proxy noise, consistent with the assumption
that the level of random degradation of climate information
recorded by proxies is equal across timescales. However, it
is plausible that some proxies, such as certain tree ring data,
do possess selective losses of low-frequency variance.
Under such conditions, the noise must instead be modeled
as a first-order autoregressive ‘‘red noise’’ process with
autocorrelation coefficient r (see MR02). The ratio of the
lowest (i.e., in this case, centennial-scale) and broadband
(i.e., frequency-averaged) noise variance is given by the
factor (1 + r)/(1 � r) [e.g., Gilman et al., 1963]. The
amplitude ratio is correspondingly given by b = [(1 + r)/
(1 � r)]1/2. Note that b = 1 for white noise pseudoproxies
(r = 0) as in VS04 and M05.
[35] Under the assumption of moderate or low signal-to-

noise ratios (e.g., lower than about SNR 	 0.5 or ‘‘80%
noise’’), which holds for the MBH98 proxy network as
noted earlier, the value of r for the ‘‘noise’’ closely
approximates that for the ‘‘proxy’’ (which represents a
combination of signal and noise components). We verified
this with our pseudoproxy networks. For example, for
SNR = 0.4 and imposed noise autocorrelations of r = 0.32
and 0.71 we estimated r = 0.31 and r = 0.65, respectively,
from our pseudoproxy networks over the interval A.D.
850–1980. Calculating the average value of r for the full
network of 112 proxy multiproxy indicators used by
MBH98, we determined r = 0.29 with standard error
±0.03, indicating r = 0.32 to be a conservative (i.e., likely
‘‘redder’’ than in reality) estimate for the MBH98 network.
[36] We investigated the influence of red proxy noise

using noise autocorrelations ranging from the approximate
estimate for the actual MBH98 network (r = 0.32), to the
unrealistically high value (r = 0.71) recently employed by
Von Storch et al. [2006]. The corresponding low-frequency
noise amplitude inflation factors are b 	 1.4 and b 	 2.4,

Figure 2. Distribution of data used in study, including model surface temperature field domain used
(indicated by gray shading; Niño3 region of eastern tropical Pacific indicated by rectangle). Pseudoproxy
locations that correspond with MBH98/99 proxy locations extending back to at 1820 (network A) are
shown by circles, those that extend back to A.D. 1400 (network B, 18 locations) are indicated by
triangles, and proxies that are available back to A.D. 1000 (network C, 11 locations) are shown by stars.
The 208 sites used in pseudoproxy network D correspond to the 104 MBH98/99 sites (circles) and the
additional 104 locations indicated by the diamonds.
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respectively, while the variance inflation factors are b2 	
2.0 and b2 	 5.8, respectively. In other words, for the r =
0.32 value that approximates the actual MBH98 proxy
network, the centennial-timescale noise has about twice as
much variance as ‘‘white noise’’ proxies with the same
overall SNR value, while for the much higher value r =
0.71 used by Von Storch et al. [2006], it has almost six times
as much variance.

3.4. Validation and Skill Estimation

[37] For both short (1900–1980) and long (1856–1980)
calibration interval choices (corresponding roughly to the
calibration intervals used by MBH98 and R05, respectively),
the range of temperature variation over the preceding cen-
turies is considerably greater than that observed over the
calibration interval in both the NCAR and GKSS simula-
tions. This insures that our analyses provide a rigorous test
of the performance of the RegEM CFR method. For the
long calibration experiments, we used the entire available
precalibration interval (A.D. 850–1855) for statistical val-
idation or ‘‘verification.’’ For the short calibration experi-
ments, we alternatively used the long A.D. 850–1855
verification interval, as well as a shorter (A.D. 1856–1899)
validation interval.
[38] The ‘‘true’’ long-term skill of the reconstructions can

only be diagnosed from the long verification intervals, in
which case the skill diagnostics measure the actual long-
term goodness-of-fit of the reconstruction. Nonetheless, the
more uncertain estimates of skill provided by the short
verification intervals, with their greater sampling fluctua-
tions, more realistically reflect verification estimates avail-
able in actual proxy reconstruction studies such as MBH98,
MBH99 and R05, where the true (instrumental) climate
history is only known for the relatively recent past, e.g.,
since the mid 19th century. For this reason, uncertainties
were evaluated as in M05, as the square root of the
unresolved verification period temperature variance using
the short (1856–1899) validation interval of the short
(1900–1980) calibration. We tested the reliability of these
uncertainty estimates by performing experiments that were
identical in all respects except the particular noise realiza-
tion used to generate the pseudoproxy network. The result-
ing reconstructions were found to lie within the originally
estimated uncertainties in these cases (Auxiliary Material,
section 6).
[39] We evaluated statistical reconstruction skill for all

reconstructions using the same three verification skill met-
rics RE, CE, and r2 (the ‘‘reduction of error,’’ ‘‘coefficient of
efficiency,’’ and squared Pearson product-moment correla-
tion coefficient, respectively), as M05. Uncertainties were
diagnosed from the variance of the verification residuals as
in M05. For reasons discussed in R05 and M05 [see also
Wahl and Ammann, 2007], RE is the preferred measure of
resolved variance for diagnosing skill in statistical recon-
structions of fields, such as surface temperature which
exhibit nonstationary behavior marked by potential changes
in mean and variance outside the calibration interval. The
alternative CE statistic rewards successful prediction of
changes in variance but not mean, thus emphasizing high-
frequency variability when a short verification interval is
used. r2 rewards neither changes in mean nor variance and
is in these respects a flawed metric of reconstruction skill.

We nonetheless provide results from r2 for comparison with
the other skill metrics. Expanding on M05, we employed
three different alternative diagnostics of statistical skill,
using measures of resolved variance in the NH mean, the
underlying multivariate spatial field (‘‘mult’’), and the
Niño3 index, representative of variability associated with
the model’s approximation to the ENSO phenomenon. For
comparison with M05, we diagnosed reconstruction skill
and statistical uncertainties for NH (and Niño3) at decadal
resolution. For ‘‘mult’’ we diagnosed reconstruction skill at
annual resolution.

3.5. Statistical Significance Estimation

[40] Statistical significance of verification skill for single
series (NH and Niño3) was determined through Monte
Carlo simulations as in M05. This procedure involves the
generation of 1000 surrogate random reconstructions with
the same lag-one autocorrelation structure, variance and
mean as the actual grid box temperature series over the
calibration interval. For each noise realization, we project an
AR(1) noise process back in time over the validation
interval from the first year of the calibration interval. The
skill scores resulting for these random reconstructions are
tabulated to form a null distribution consistent with AR(1)
red noise reconstructions (see Auxiliary Material, section 7,
for an example of 10 random AR(1) NH reconstructions
compared against the actual NH series using a 1900–1980
calibration and 1856–1899 validation interval). To evaluate
full-field verification scores, we employed a spatiotemporal
AR(1) red noise model that preserves the actual spatial
correlation structure of the surface temperature field. This is
accomplished by fitting an AR(1) process to each grid box
series over the calibration interval, diagnosing the sequence
of innovation terms (that is, the white noise forcing terms),
and tabulating the spatial patterns of the innovation term for
each year. We then temporally permute the innovations in a
spatially coherent manner (by applying the same permuta-
tion for all grid boxes in parallel) to generate ensembles of a
spatiotemporal AR(1) red noise process that preserves the
actual spatial correlation structure within the temperature
field.

4. Results

[41] Experiments were performed using the NCAR CSM
1.4 model simulation and the standard pseudoproxy net-
work A for all SNR values (0.25, 0.4, 0.5, 1.0, and 1) and
both short (1900–1980) and long (1856–1980) calibration
intervals. Additional experiments were performed for pseu-
doproxy networks B, C, and D using the standard value
SNR = 0.4 (and additionally SNR = 1 for network D) and
‘‘short’’ calibration interval. A small number of parallel
experiments were performed using the GKSS ECHO-G
‘‘Erik’’ simulation employed by VS04 in tests of (1) the
influence of red proxy noise (section 4.5) and (2) the
detrending data during calibration (section 4.7).
[42] The results of our experiments are summarized

below. Validation statistics are provided (Table 1) for all
experiments based on each of the skill metrics (RE, CE, and
r2) and diagnostics (NH, ‘‘mult,’’ and Niño3). The param-
eter choices resulting from application of the selection
criteria outlined in section 2.2 are provided in Auxiliary
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Material (section 8). The NH mean reconstructions are
shown for each experiment. The Niño3 reconstructions are
shown as Auxiliary Material (section 9).

4.1. Perfect Proxies

[43] We examine first the results of pseudoproxy experi-
ments using SNR = 1 (i.e., ‘‘perfect’’ pseudoproxies, with
no added noise; Figure 3a). In this case, the imperfect nature
of the reconstruction results purely from the incomplete
spatial sampling of the field. In each of the scenarios
explored, the reconstructions of NH mean temperature over
the reconstructed (A.D. 850–1855) interval closely follow
the true histories, and the actual series lie within the
estimated uncertainties of the reconstructions. Note that

even with ‘‘perfect proxies’’ there is tendency for greater
underestimation of the short-term cooling response to ex-
plosive volcanic forcing events. As discussed by M05, this
appears to arise from the lack of analogs, e.g., the very large
explosive eruptions of 1258, 1453, 1601, and 1815, over the
relatively volcanically quiescent calibration interval.
[44] With a network of 104 ‘‘MBH98’’ location pseudo-

proxies (network A), the CFR reconstruction resolves a
substantial fraction of variance in surface temperature
(Table 1, experiments a–c). RE, our primary metric of
resolved variance, indicates that 96% (RE = 0.96) and
97% (RE = 0.97) of the variance in the true NH mean
series is resolved depending on whether a short (1900–
1980) or long (1856–1980) calibration period was used,

Table 1. Verification Skill Diagnostics for RegEM CFR Experiments Discussed in Texta

Experiment Network SNR % r Calibration Period

NH Mean Multivariate Niño3

RE CE r2 RE CE r2 RE CE r2

a A 1 0 0 1856–1980 0.96 0.74 0.87 0.51 0.28 0.30 0.90 0.44 0.61
b A 1 0 0 1900–1980 0.97 0.81 0.82 0.39 0.09 0.22 0.78 0.17 0.53

A 1 0 0 1900–1980b 0.94 0.62 0.71 0.27 0.03 0.19 0.69 0.20 0.28
c D 1 0 0 1856–1980 0.97 0.80 0.89 0.56 0.30 0.27 0.94 0.60 0.79
d A 1 0 0 1856–1980 0.96 0.74 0.87 0.51 0.28 0.30 0.90 0.44 0.61
e A 1.0 50 0 1856–1980 0.96 0.71 0.86 0.46 0.21 0.23 0.89 0.30 0.53
f A 0.5 80 0 1856–1980 0.93 0.65 0.83 0.45 0.18 0.19 0.84 0.22 0.47
g A 0.4 86 0 1856–1980 0.95 0.67 0.74 0.37 0.07 0.14 0.90 0.26 0.55
h A 0.25 94 0 1856–1980 0.88 0.17 0.34 0.32 �0.02 0.06 0.81 �0.08 0.17
i A 0.4 86 0 1900–1980 0.95 0.67 0.71 0.36 0.04 0.14 0.80 0.11 0.53

A 0.4 86 0 1900–1980b 0.95 0.66 0.82 0.22 �0.03 0.13 0.74 �0.12 0.19
j B 0.4 86 0 1900–1980 0.86 0.01 0.31 0.26 �0.11 0.04 0.71 �0.43 0.20

B 0.4 86 0 1900–1980b 0.75 �0.79 0.04 0.08 �0.21 0.03 0.51 �0.81 0.00
k C 0.4 86 0 1900–1980 0.85 �0.05 0.33 0.25 �0.12 0.04 0.78 �0.04 0.28

C 0.4 86 0 1900–1980b 0.77 �0.66 0.39 0.11 �0.18 0.03 0.63 �0.16 0.09
l A 0.4 86 0 1856–1980 0.95 0.67 0.74 0.37 0.07 0.14 0.90 0.26 0.55
m A 0.4 86 0 1900–1980 0.95 0.67 0.71 0.36 0.04 0.14 0.80 0.11 0.53

A 0.4 86 0 1900–1980b 0.95 0.66 0.82 0.22 �0.03 0.13 0.74 �0.12 0.19
n D 0.4 86 0 1856–1980 0.95 0.66 0.69 0.40 0.15 0.22 0.92 0.45 0.71
o D 0.4 86 0 1900–1980 0.93 0.58 0.67 0.34 0.07 0.18 0.82 0.28 0.67

D 0.4 86 0 1900–1980b 0.93 0.46 0.64 0.19 �0.07 0.16 0.84 0.37 0.85
p A 1.0 50 0.32 1856–1980 0.94 0.60 0.85 0.45 0.18 0.22 0.91 0.46 0.63
q A 1.0 50 0.32 1900–1980 0.92 0.44 0.77 0.28 0.08 0.19 0.83 0.14 0.40

A 1.0 50 0.32 1900–1980b 0.90 0.31 0.61 0.16 �0.11 0.18 0.79 0.15 0.24
r A 0.4 86 0.32 1856–1980 0.94 0.63 0.66 0.31 �0.03 0.15 0.86 0.01 0.45
s A 0.4 86 0.32 1900–1980 0.93 0.56 0.70 0.35 0.03 0.14 0.82 0.13 0.41

A 0.4 86 0.32 1900–1980b 0.96 0.69 0.81 0.23 �0.02 0.12 0.64 0.16 0.00
t (GK) A 1.0 50 0.32 1856–1980 0.99 0.97 0.98 0.75 0.57 0.64 0.88 0.83 0.91
u (GK) A 1.0 50 0.32 1900–1980 0.97 0.92 0.96 0.65 0.41 0.54 0.87 0.74 0.90

A 1.0 50 0.32 1900–1980b 0.97 0.64 0.85 0.58 0.13 0.34 0.92 0.62 0.62
v (GK) A 0.4 86 0.32 1856–1980 0.97 0.91 0.93 0.69 0.48 0.57 0.86 0.75 0.85
w (GK) A 0.4 86 0.32 1900–1980 0.96 0.90 0.91 0.62 0.36 0.46 0.80 0.55 0.78

A 0.4 86 0.32 1900–1980b 0.96 0.47 0.67 0.55 0.08 0.24 0.82 0.22 0.30
x A 0.4 86 0 1900–1980D 0.37 �3.60 0.17 0.13 �0.30 0.05 0.32 �1.03 0.04

A 0.4 86 0 1900–1980Db 0.55 �2.29 0.09 �0.02 �0.35 0.06 0.29 �1.01 0.02
y (GK) A 0.4 86 0 1900–1980 0.94 0.93 0.95 0.68 0.46 0.57 0.91 0.80 0.91

A 0.4 86 0 1900–1980b 0.97 0.67 0.79 0.61 0.19 0.41 0.95 0.70 0.91
z (GK) A 0.4 86 0 1900–1980D �0.08 �1.79 0.37 �0.03 �0.75 0.27 �0.03 �0.11 0.44

A 0.4 86 0 1900–1980Db 0.00 �10.8 0.49 0.03 �0.97 0.34 0.02 �0.78 0.64
aUnless otherwise indicated, the NCAR CSM 1.4 simulation was used. Unless otherwise indicated, an 850–1855 validation interval has been used.

Indicated for each experiment are network, signal-to-noise (SNR) amplitude ratio (associated ‘‘% noise’’ variance also indicated), and noise characteristic
(white with r = 0.0 or red with r = 0.32). Results using three different skill metrics (NH mean, full multivariate field, and Niño3 region) are provided.
Statistical significance from Monte Carlo simulations exceeds p = 0.05 level unless otherwise indicated (italics indicate significant at 0.10 > p > 0.05;
boldface indicates not significant at p = 0.10 level). Note that certain lines are repeated for organizational clarity (e.g., a and d; i and m, and g and l). The
‘‘multivariate’’ scores represent sums over all Northern Hemisphere grid box series shown in Figure 2. Scores based on summing over both Southern and
Northern hemisphere grid boxes and separate low- and high-frequency SNR characteristics of the pseudoproxy networks are provided in the Auxiliary
Material (sections 15 and 16, respectively). ‘‘D’’ indicates that predictand (surface temperature field) was linearly detrended prior to calibration. ‘‘GK’’
indicates that GKSS ‘‘Erik’’ simulation was used.

bAn 1856–1899 verification interval was used in indicated experiment.
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respectively. Slightly lower scores are indicated using the
alternative metrics CE (0.74 and 0.81, respectively) and
r2 (0.87 and 0.82, respectively). A more modest fraction of
variance is resolved in the Niño3 series and the full annual
surface temperature field, and the level of resolved variance
is significantly more dependent on the length of the cali-
bration interval in both cases. For Niño3, we have RE =
0.90, CE = 0.44, and r2 = 0.61 for the long calibration
interval, but RE = 0.78, CE = 0.17, and r2 = 0.53 for the
short calibration. For ‘‘mult,’’ we have RE = 0.51, CE =

0.28, and r2 = 0.30 for the long calibration interval, but RE =
0.39,CE = 0.09, and r2 = 0.22 for the short calibration. These
results suggest, as further demonstrated in other experi-
ments described below that, while hemispheric mean esti-
mates seem relatively insensitive to the calibration interval
length in RegEM, use of a longer calibration interval (e.g.,
1856–1980) appears to provide significant improvement in
reconstruction skill at regional scales. This finding is
consistent with the observation that a larger number of
degrees of freedom are generally retained in the regulariza-

Figure 3. Comparisons of RegEM NH reconstructions (NCAR CSM 1.4 simulation). Here as in all
similar plots below, anomalies are expressed relative to 1900–1980 mean (denoted by horizontal line)
series have been decadally smoothed using a low-pass filter with cutoff frequency f = 0.1 cycle/year (see
M05 for details), shading is used to indicate 95% confidence interval for decadally smoothed series based
on short validation period residuals, and the actual model NH mean series (black) is shown for
comparison. (a) Comparison of reconstructions using an infinite signal-to-noise ratio (no noise; Table 1,
experiments a–c) with short and long calibration periods, and both the ‘‘MBH98’’ network of 104 sites
(network A) and a network of double that size (208 random sites, network D). Uncertainties diagnosed
from experiment b. (b) Comparison of reconstructions using long (1856–1980) calibration period
and varying SNR values (Table 1, experiments d–h). Uncertainties diagnosed from experiment b.
(c) Comparison of reconstructions using SNR = 0.4, short calibration period, with the full 1820 network
(network A) and the sparser A.D. 1400 (network B) and A.D. 1000 (network C) networks of MBH98
(Table 1, experiments i–k). Uncertainties diagnosed from experiment k. (d) Comparison of
reconstructions using SNR = 0.4 and both short (1900–1980) and long (1856–1980) calibration
periods, using both the MBH98 network of 104 sites (network A), and a network of double that size
(208 random sites, network D) (Table 1, experiments l–o). Uncertainties diagnosed from experiment m.
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tion process in the long calibration experiments than in
parallel short calibration experiments (see Auxiliary Material,
section 8).
[45] It is noteworthy that while doubling the number of

pseudoproxies to 208 (i.e., network D experiment) leads to
only a very minor (1%) increase in the NH RE score, it leads
to more pronounced increases in reconstruction skill at
regional scales, with increases of 5% and 4% in the ‘‘mult’’
and Niño3 RE scores, respectively. Note finally from exper-
iment b, that the skill estimates derived from the short (A.D.
1856–1899) validation interval tend to underestimate the
true long-term skill as measured by the long validation
interval (A.D. 850–1855). This proves to be a more general
pattern in the additional experiments discussed below, indi-
cating that skill estimates (and uncertainties) diagnosed from
short validation intervals are very likely to be conservative.

4.2. Impact of Varying SNR

[46] We next consider the results of experiments using the
standard network (A) and long (1856–1980) calibration
period, but varying the SNR level. For all SNR values
(including the SNR = 0.25 or ‘‘94% noise,’’ which is almost
certainly lower than in actual proxy networks such as those
used by MBH98 and R05), we find that the RegEM CFR
method faithfully reconstructs the true long-term model NH
history (Figure 3b), with the true NH series lying well
within the estimated uncertainties of the reconstructed NH
series, and with no evidence of any systematic bias in the
reconstructed long-term histories. Even for the lowest value
SNR = 0.25, a large fraction (88%) of the true long-term
NH mean variance is resolved (Table 1, experiments d–h),
and a substantial 32% of the total annual variance is
resolved in the full surface temperature field. Long-term
CE scores are, as expected, substantially lower than the
corresponding RE scores in all experiments, but they remain
statistically significant in all cases, and positive in all cases
except for the ‘‘mult’’ and Niño3 scores for the SNR = 0.25
experiment.

4.3. Impact of Increasing Proxy Sparseness Back in
Time

[47] Using the standard SNR = 0.4 and a short (1900–
1980) calibration period (as in MBH98), we next explore
the impact of decreases in the size of the pseudoproxy
network back in time (as in the MBH98 reconstruction). We
compare results for the ‘‘full’’ MBH98 network (A) with
104 unique locations, to the sparser ‘‘A.D. 1400’’ network B
with 18 unique locations and the even sparser ‘‘A.D. 1000’’
network C with 11 unique locations. In each case, the main
long-term features of the NH mean series (Figure 3c) are
captured by the reconstructions. Even for the sparsest
network (C), a large (85%) fraction of the true long-term
variance is resolved by the NH mean series. Statistically
significant skill scores are evident in all experiments, for all
metrics and diagnostics, with the exception of r2 in the short
validation experiments (Table 1, experiments i–k). The
shortcomings of the r2 statistic in this context are discussed
further in section 5 below.

4.4. Impacts of Calibration Interval Length

[48] Using again the standard SNR = 0.4 value we next
explore the impact of varying the length (short 1900–1980

versus long 1856–1980) of the calibration interval. We use
the same noise realizations for both the long and short
calibration experiments, to insure that differences in skill
are associated purely with varying the length of the calibra-
tion interval. Experiments are performed for both proxy
network A with its 104 predictors and network D with its
208 predictors.
[49] Relatively little sensitivity to the calibration interval

is observed for the NH series, and the main features of the
long-term series are resolved well for either calibration
period for both networks tested (Figure 3d). Long-term
validation statistics for all three skill metrics are nearly
identical for both short and long calibration intervals for
both networks, for the NH series. Significantly more skillful
results are obtained for ‘‘mult’’ and Niño3, however using a
longer calibration interval (Table 1, experiments l–o). This
is especially true using the expanded proxy network D for
‘‘mult,’’ where scores improve from RE = 0.34 to RE = 0.40
(and from CE = 0.07 to CE = 0.15). Accordingly, as in the
‘‘perfect proxy case’’ SNR = 1 case, use of the long
calibration period leads to a visually clear improvement in
the fidelity of the Niño3 reconstructions (see Auxiliary
Material, section 9).

4.5. Impact of ‘‘Redness’’ of Proxy Noise

[50] We examined the impact of ‘‘red’’ pseudoproxy
noise, modeling the proxy noise series as an AR(1) process
using a noise autocorrelation level (r = 0.32) consistent
with estimates for the actual MBH98 proxy network (see
section 3.3). Experiments were performed with both the
NCAR CSM 1.4 and GKSS ‘‘Erik’’ simulations, using the
standard pseudoproxy network A, two different (SNR = 1.0
and SNR = 0.4) noise levels, and both long and short
calibration periods. In each case, the long-term NH history
was found to be skillfully resolved, with the reconstructed
NH series well within the estimated uncertainties of the true
NH series for both simulations, both SNR values, and both
calibration interval choices (Figure 4). Validation results
(Table 1, experiments p–s, NCAR; experiments t–w,
GKSS) indicate modest decreases in skill relative to the
parallel white proxy noise experiments (compare, e.g.,
experiments s and i in Table 1). An additional test of the
‘‘sparse’’ pseudoproxy network C yielded similar conclu-
sions (Auxiliary Material, section 10). We found no evi-
dence to support the claim by ZVS05 that realistic ‘‘red’’
pseudoproxy noise leads to any substantial underestimate of
low-frequency variability even for the short 1900–1980
calibration interval, using the RegEM approach employed
here. Similar results were obtained using higher noise
autocorrelation values. Only for the unrealistically high
value r = 0.71 used by Von Storch et al. [2006], do we
find any notable degradation of reconstruction skill, and
here only for the lower SNR = 0.4 value, the shorter (1900–
1980) calibration interval, and only one of the two simu-
lations (the NCAR simulation; see Auxiliary Material,
section 11). The fact that CFR performance appears largely
independent of the proxy noise spectrum in our experiments
is consistent with the observation that the signal and noise
in question are readily distinguishable by their distinct
spatial characteristics, regardless of spectral attributes. The
underlying climate signals exhibit large-scale coherence,
while the proxy noise realization, as discussed earlier, can,
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as is implicit in our experiments, be assumed to be specific
to that proxy.

4.6. Additional Methodological Considerations

[51] A number of additional sensitivity analyses were
performed using the NCAR CSM simulation (see Auxiliary
Material, section 12, for results and analysis details), based
on the standard case SNR = 0.4. These analyses included
(1) use of the nonhybrid version of the RegEM procedure.
The nonhybrid reconstruction is found to yield a skillful
long-term reconstruction that lies within estimated uncer-
tainties, but the skill estimates are slightly lower than for the
hybrid version of the procedure. This is more pronounced
using ‘‘red’’ proxy noise.
[52] We then tested the possible real-world complication

wherein proxy quality is variable within a given set of proxy
data by (2) allowing the signal-to-noise ratio to vary over
the pseudoproxy data set (from SNR = 0.1 to 0.7) for a
given (SNR = 0.4) average noise level. In this case, it is
worth noting that many pseudoproxies are nearly pure (e.g.,

98–99% by variance) noise. We also investigated (3) the
sensitivity to area weighting of temperature grid box data,
testing both variance and amplitude-based area weighting
conventions, alternatively weighting instrumental records in
equation (1) by cos81/2 and cos8, respectively, where 8 is
the central latitude of the grid box). We further investigated
(4) the impact of using an ‘‘index only’’ approach (see
section 2.3) where only the NH mean temperature series,
rather than the entire spatial surface temperature field, is
targeted for reconstruction.
[53] Complementary to the ‘‘red’’ proxy noise analyses

of section 4.5, we additionally investigated the impact of
(5) ‘‘blue’’ proxy noise (using an AR(1) noise model with
r = �0.32) wherein the pseudoproxies have selectively
greater noise amplitude at increasingly short, rather than
increasingly long, timescales (as might be the case due, e.g.,
to biological persistence that in some cases suppresses the
sensitivity of tree ring indicators to high-frequency climate
forcing). In each of the above tests (2–5), results qualita-
tively similar to those shown in the main manuscript were

Figure 4. Comparison of NH mean reconstructions using both NCAR CSM 1.4 and GKSS ‘‘Erik’’
simulations, based on network A, ‘‘red’’ proxy noise with r = 0.32, and two different SNR levels (0.4 and
1.0) (Table 1, experiments p–s for NCAR; experiments t–w for GKSS). (a) NCAR long (1856–1980)
calibration, (b) NCAR short (1900–1980) calibration, (c) GKSS long (1856–1980) calibration, and (d)
GKSS short (1900–1980) calibration. Uncertainties diagnosed from experiment s for NCAR and
experiment w for GKSS.
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obtained, suggesting that the RegEM methodology used in
the study is robust with respect to a number of potential
methodological considerations.
[54] We investigated (6) the impact of using subsets of PC

summaries in representing proxy networks rather than the
individual proxy records themselves. We considered both
(calibration period and long-term) possible standardization
conventions discussed in section 2.3. These experiments
employed network D with its larger (208) number of
pseudoproxy series, retaining as predictors the leading PCs
of the pseudoproxy network identified as statistically signif-
icant on the basis of the procedure described in section 2.4.
These analyses show that use of PCA to reduce the
dimensionality of the predictor set yields a similar recon-
struction to using all predictors individually, regardless of

which of the two standardization conventions are used.
Moreover, while use of PC summaries is observed to lead
to similar levels of the skill in the NH mean reconstructions,
it leads to a significant decrease in the level of regional
reconstruction skill, as measured by the ‘‘mult’’ and Niño3
skill diagnostics. This finding is expected for reasons
discussed previously (section 2.6). The primary motivation
for using a PC subset representation of the predictor net-
works is dealing with potential colinearity of predictors.
However, since the regularization process in RegEM meth-
od already accounts for colinearity, the use of a subset of PC
summaries simply amounts to throwing away potential
useful information that is available in the full data.
[55] Finally, we investigated two additional real-world

considerations. We examined (7) the impact of significantly
shortening the reconstruction interval. We found that if the
reconstruction is performed back to a starting point that is
only slightly earlier than the beginning of the calibration
interval (e.g., back to A.D. 1800 using a 1900–1980
calibration), the fidelity of the low-frequency component
of the reconstruction is inferior in comparison with recon-
structions that extend back at least to A.D. 1600. We
attribute this finding to the fact that RegEM can make use
of considerably greater low-frequency information regard-
ing the covariance structure between predictors if the
calibration interval extends back several centuries. While
this factor must be weighted against the decreased avail-
ability of proxy data further back in time one encounters
with real world proxy reconstructions, it suggests that the
low-frequency component of reconstructions using less than
a few centuries of data are likely to be less reliable than
those which make use of a longer reconstruction interval.
We also found that (8) ‘‘late’’ short validation experiments
(e.g., experiments in which the calibration interval extends
from 1856–1936, and the reconstruction over the subse-
quent interval 1937–1999 is used for validation) yielded
inferior results relative to our standard ‘‘early’’ short vali-
dation experiments (in which a calibration interval of 1900–
1980 is used, and the reconstruction over the prior interval
A.D. 1856–1899 is used for validation).

4.7. Impact of Detrending Data Prior to Calibration

[56] In our final series of experiments, we tested the
impact of a procedure similar to that used by VS04,
BC05, and BFC06 wherein the predictand (i.e., the surface
temperature field) is linearly detrended over the calibration
interval prior to application of the CFR method (similar
results are obtained if both predictand and predictors, i.e.,
the surface temperature field and pseudoproxies, are both
detrended over the calibration interval; see Auxiliary Ma-
terial, section 13). The experiments were performed for
pseudoproxy network A using both the NCAR CSM1.4 and
GKSS ‘‘Erik’’ simulations, the standard case SNR = 0.4,
and short (1900–1980) calibration interval. While applica-
tion of the standard RegEM procedure (experiment i,
NCAR; experiment y, GKSS) yielded faithful reconstruc-
tions for both simulations, use of the detrended calibration
procedure fails to capture essentially any of the true low-
frequency variability for the GKSS simulation and very
little for the NCAR simulation (Figure 5) leading to failure
of statistical validation (Table 1, experiment x, NCAR;

Figure 5. Comparison of NH mean reconstructions using
both NCAR CSM 1.4 and GKSS ‘‘Erik’’ simulations, SNR =
0.4 and short (1900–1980) calibration interval, contrasting
standard RegEM procedure (Table 1, experiments i and y
for NCAR and GKSS, respectively) and ‘‘detrended’’
calibration procedure discussed in text (Table 1, experiments
x and z for NCAR and GKSS, respectively). (a) NCAR
(uncertainties for detrended calibration diagnosed from
experiment x) and (b) GKSS (uncertainties for detrended
calibration diagnosed from experiment z).
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experiments y and z, GKSS), with certain exceptions dis-
cussed further below in section 5.

4.8. Spatial Patterns

[57] Finally, we examine the spatial patterns of tempera-
ture over selected time intervals. Themost distinctive decadal

event in the NH mean series is the prolonged cooling
following the Tambora eruption of 1815 and a sequence
of subsequent smaller eruptions. We thus focus on the
spatial pattern of this event in both the actual model surface
temperature field and in the pseudoproxy reconstructions
thereof (Figure 6), based on the standard pseudoproxy

Figure 6. Comparison of actual and reconstructed spatial surface temperature anomaly pattern for
decade (1816–1825) following 1815 Tambora eruption (NCAR CSM 1.4 simulation). Shown are results
based on long (1856–1980) calibration with pseudoproxy network A and both SNR = 1 and SNR = 0.4
(i.e., experiments d and g).
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network A and long calibration interval. The 1816–1825
decadal mean temperature pattern (expressed as anomalies
relative to the 1900–1980 mean) shows widespread cooling
as expected, with a roughly 0.5�C cooling over the tropics
but closer to a full degree C cooling over large parts of the
extratropical Northern Hemisphere and western Pacific. By
contrast, a moderate (<0.5�C) warm anomaly is observed
over north central Eurasia. The reconstructions for both
perfect proxies (SNR = 1; experiment d) and our standard
proxy noise case (SNR = 0.4; experiment g) reconstruct the
main spatial features, including the overall global-scale
cooling, and the enhanced cooling in large parts of the
extratropical Northern Hemisphere and the western Pacific.
Certain smaller-scale details (e.g., the north central Eurasian
warm anomaly) are not resolved for the noisy (SNR = 0.4)
pseudoproxy case, but are resolved for the noise-free
(SNR = 1) case. The level of unresolved spatial detail is
qualitatively consistent with the verification estimates of
resolved multivariate variance (Table 1): 51% and 37% for
SNR = 1 and 0.4, respectively, based on the long-term
RE validation scores. The corresponding spatial pattern of
the RE statistic (Auxiliary Material, section 14) indicates
broad skill in both cases across most of the domain, with the
exception of certain regions in the southern ocean.

5. Discussion

[58] The RegEM results presented in this study directly
address a number of recently published criticisms of CFR
methods and results. Our present results, for example, refute
the claims made in certain previous studies that CFR
methods intrinsically underestimate low-frequency variabil-
ity [VS04; ZVS05] or yield nonrobust results [BC05, and
BFC06]. As the RegEM approach described in this study is
governed by the objective methodology detailed in section 2,
it moreover cannot be considered subject to ad hoc and
subjective procedural choices such as those used in BC05
and BFC06. It is additionally noteworthy that nearly iden-
tical results to those of the MBH98 proxy-based CFR study
are reproduced here by applying the RegEM method to the
same proxy data set, whether proxy data are used individ-
ually, or represented by PC summaries. This result (as well
as the separate study by Wahl and Ammann [2007]) thus
refutes the previously made claim by MM05 that the
features of the MBH98 reconstruction are somehow an
artifact arising from the use of PC summaries to represent
proxy data.
[59] Our findings furthermore support criticisms [e.g.,

Wahl et al., 2006] of certain recent temperature reconstruc-
tion studies such as VS04, BC05, and BFC06 that employed
a controversial procedure in which the predictand and/or
predictors were linearly detrended prior to calibration. Wahl
et al. [2006] argue that such a procedure inappropriately
removes the primary pattern of coherent large-scale temper-
ature variation from the data, hindering the reconstruction of
long-term trends. In the present study, we have corroborated
this assertion, demonstrating that application of this proce-
dure produces reconstructions which underestimate long-
term trends and fail standard verification metrics where
correct implementation of the RegEM CFR procedure
readily yields skillful reconstructions.

[60] The experiments performed in this study also provide
insights into the relative merit of alternative reconstruction
skill diagnostics. The standard verification skill diagnostic
RE evaluated over the extended (A.D. 850–1855) valida-
tion interval affords an accurate measure of the long-term
fidelity of the synthetic reconstructions produced. Use of
these ‘‘long validation’’ RE scores indicates skill (i.e., a
level of agreement with the actual series that is statistically
significant relative to the null hypothesis of red noise) for all
experiments which correctly implement the RegEM method
(Table 1, experiments a–w and y). These metrics, moreover,
demonstrate as discussed above a lack of skill in those
experiments which incorrectly implement the RegEM meth-
od, through use of the detrended calibration procedure of
VS04, BC05, and BFC06 (Table 1, experiments x and z).
These statistical inferences simply confirm the conclusions
from visual inspection, that all experiments using the correct
RegEM procedure (Figures 3 and 4) produce a skillful
reconstruction (i.e., one that agrees with the true series
within estimated uncertainties), while those using the
detrended calibration procedure (Figure 5) do not. In the
latter case (that is, experiments x and z), however, the r2

metric evaluated over the extended interval fails to reject the
reconstructions because of its focus on the relative tracking
of the two series at the highest frequency. This is just one
example of the errors in statistical inference, discussed
further below, that result from using r2 as a diagnostic of
statistical skill in cases where means and variances change
over time.
[61] Such extended validation intervals are unfortunately

absent in the real world, as widespread instrumental climate
data do not extend further back than the mid 19th century.
The results from short validation period (e.g., 1856–1899
using a 1900–1980 calibration) are thus more appropriate
for gauging the statistical sampling properties of verification
scores calculated in actual proxy-reconstruction studies
where short validation intervals are used to validate long-
term reconstructions. Comparisons of the approximate
(short validation) and true (long-term validation) skill
metrics for the same reconstruction (e.g., experiments b, i,
j, k, o, q, s, u, w, x, y, and z in Table 1) therefore provide
insights into the reliability of the various skill metrics using
the short available real-world validation intervals. These
comparisons demonstrate a general tendency for the short
validation tests to yield lower skill scores, even when the
long-term fidelity of the reconstruction is excellent both
visually and as inferred from the long-term validation scores.
These lowered scores result simply from the sampling
variations associated with a short (i.e., less than 50 year)
validation interval, and nonetheless are statistically sig-
nificant for all skillful reconstructions (i.e., experiments
a–w and y in Table 1) with the notable exception of r2

scores.
[62] Focusing on the short validation skill scores for the

NH series, both RE and CE are seen to perform well from
the point of view of both type I and type II errors of
statistical inference. In all experiments using the correctly
implemented RegEM method and yielding skillful recon-
structions (i.e., experiments a–w and y in Table 1), the
short validation RE and CE scores correctly identify the
reconstruction as skillful (i.e., passing at the a = 0.05
significance level). This outcome contrasts with the results
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for experiments that use the inappropriate procedure of
detrending prior to calibration (experiments x and z in
Table 1). The short validation RE and CE scores correctly
reject the reconstruction for GKSS simulation experiment
z, which captures essentially none of the low-frequency
variability and consequently, none of the precalibration
interval cooling. The reconstruction from the corresponding
NCAR simulation experiment x, does capture some of the
low-frequency variability, including some of the 19th century
cooling prior to the calibration interval (this feature results
from the greater residual low-frequency variability relative
to the linear trend during the 20th century calibration period
for the NCAR simulation, which provides some limited
low-frequency information in the calibration process, see
Figure 5). The short validation experiments consequently
yield statistically significant RE and CE scores in this case,
though the unusually large negative value CE = �2.29
nonetheless implies a poor reconstruction.
[63] The generally reliable performance of RE and CE as

skill diagnostics using short validation periods when inap-
propriate detrending is avoided contrasts sharply with the
clear failure of r2 in this context. Use of the short validation
r2 produces examples indicating unacceptable type II errors,
incorrectly discarding (i.e., not rejecting the null hypothesis
of no skill at even the a = 0.1 level) the skillful NH mean
reconstructions produced in experiments j and k. In the
former case, the short validation r2 score is nearly zero (r2 =
0.04) despite the fact that the reconstruction clearly captures
much of the true low-frequency variability (see Figure 3c).
The performance of r2 is similarly unacceptable from the
perspective of type I errors, incorrectly accepting (i.e.,
passing at the a = 0.1 level) the poorest NH reconstruction
in all of our experiments, the detrended GKSS calibration
experiment z. As discussed above, this reconstruction dra-
matically fails validation based on the other two metrics (RE
and CE). The inappropriate acceptance by r2 derives from
the fact that the high-frequency variability in the recon-
structed and actual series is highly correlated. Yet the
overall quality of the reconstruction is clearly poor from a
visual inspection (compare Figure 5b), highlighting the
inappropriateness of using r2 as a measure of the overall
fidelity of a reconstruction.
[64] Our analyses thus expose a fundamental weakness in

the use of r2 as a metric of reconstruction skill [cf. MM05].
Wahl and Ammann [2007] note that because r2 does not
account for possible changes in either mean or variance
relative to the calibration interval, its use as skill metric can
lead to an unacceptably high probability of a type II error
(i.e., the false rejection of a skillful reconstruction). Our
results confirm and amplify this observation, demonstrating,
as discussed above, a pattern wherein skillful long-term
reconstructions are erroneously rejected on the basis of an
insignificant r2 statistic diagnosed over a short validation
interval. Equally problematic, clearly unskillful reconstruc-
tions (i.e., those which reconstruct essentially none of the
true low-frequency variability) are erroneously accepted on
the basis of an apparently significant r2 statistic. No such
pattern is evident for either RE or CE. It is consequently
apparent that MM05 employed flawed statistical reasoning
when they argued for the rejection of reconstructions
established as skillful in short validation experiments using
a conventional metric (RE), based instead on the use of a

metric (r2) that is overly prone to both type I and type II
errors.

6. Summary and Conclusions

[65] Using the RegEM CFR procedure favored by Mann
and collaborators [e.g., MR02; R03; Zhang et al., 2004;
R05; M05] with the regularization scheme described in this
study, we have demonstrated that CFR methods used in
long-term large-scale paleoclimate reconstruction can pro-
duce skillful reconstructions with no evident systematic
bias. These findings are based on our use of synthetic
‘‘pseudoproxy’’ data with realistic signal-versus-noise prop-
erties that are derived from two entirely independent sim-
ulations of the climate of the past millennium, both of which
exhibits sizable long-term variations prior to the modern
(19th/20th century) calibration intervals used. The actual
long-term model histories are skillfully reconstructed, and
lie within estimated uncertainties, in all of our experiments
employing the correct CFR procedure. Moreover, meaning-
ful reconstructions are not achieved when adopting the
detrending procedure used in certain recent studies [VS04,
BC05 and BFC06].
[66] The above conclusions are shown to hold for experi-

ments using pseudoproxy networks with substantially lower
SNR values (e.g., SNR = 0.25) and significantly redder
noise spectra than is evident for actual proxy data networks
used in paleoclimate reconstructions such as MBH98 and
R05. These conclusions are insensitive to whether all
proxies are individually used as predictors, or are repre-
sented by PC summaries using either of two possible
standardization conventions explored in past work, though
we find that the use of PC summaries to represent proxy
networks is neither necessary nor beneficial in the context
of the RegEM method, as potential colinearity of predictors
is implicitly dealt with in the regularization process used in
RegEM.
[67] Consistent with other recent studies [Wahl and

Ammann, 2007; Wahl et al., 2006] we conclude that the
original MBH98 and MBH99 reconstructions are robust
with respect to methodological considerations. Recently
published criticisms of CFR methods are demonstrated
not to hold up to independent scrutiny in the context of
our experiments with the RegEM method. These previous
criticisms instead appear to result from flawed implemen-
tation of statistical procedures or errors of statistical infer-
ence as detailed above. Comparison of skill diagnostics for
the same experiments based on long (A.D. 850–1855) and
short (A.D. 1856–1899) validation intervals indicate that
the short validation intervals used in actual proxy climate
reconstruction studies such as MBH98 and R05 are likely to
provide conservative estimates of reconstruction skill and
statistical uncertainties.
[68] Nearly a decade later, more than a dozen studies using

alternative proxy data and reconstruction methods have,
moreover, independently reaffirmed earlier studies such as
MBH98, producing millennial or longer hemispheric tem-
perature reconstructions which agree with the those recon-
structions within estimated uncertainties. These additional
studies support the key conclusion that late 20th century/
early 21st century warmth is anomalous not only in the
context of the past millennium, but apparently at least the
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past 1.5 or 2 millennia [see Jones and Mann, 2004; Moberg
et al., 2005; Hegerl et al., 2007].
[69] As highlighted by MBH99 and other related studies,

current reconstructions rely on an increasingly sparse data-
base of high-quality available proxy data back in time.
Analyses of model climate simulation results can help guide
strategies for paleoclimate proxy network design by identi-
fying key potential regions (e.g., in the tropics or Southern
Hemisphere) from where additional long-term proxy
records might best contribute toward decreasing current
uncertainties.
[70] We note that the continued emphasis only on hemi-

spheric mean temperature series in many recent studies
[e.g., VS04, MM05, BC05, BFC06], is likely to provide
only limited physical or dynamical insight into the workings
of the climate system. We thus encourage greater future
focus on the reconstruction of spatial patterns of climate
variability, and on key climate phenomena such as ENSO.
We encourage expanded investigations of the issues ex-
plored in this study. We invite other researchers to download
the source codes (and data) we have provided at http://
www.meteo.psu.edu/�mann/PseudoproxyJGR06, and to
further explore CFR performance using either the CSM1.4
simulation results, or other appropriately chosen climate
model simulation results, using either surface temperatures
or other fields (such as precipitation or sea level pressure),
and using pseudoproxies such as those used in this study, or
generalized to represent possible nonlocal teleconnected
and/or nonlinear relationships between proxies and climate.
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