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Abstract 

Background and Objectives: The population health care delivery model uses phenotype 

algorithms in the electronic health record (EHR) system to identify patient cohorts 

targeted for clinical interventions such as laboratory tests, and procedures. The standard 

terminology used to identify disease cohorts may contribute to significant variation in 

error rates for patient inclusion or exclusion. The United States requires EHR systems to 

support two diagnosis terminologies, the International Classification of Disease (ICD) 

and the Systematized Nomenclature of Medicine (SNOMED). Terminology mapping 

enables the retrieval of diagnosis data using either terminology. There are no standards of 

practice by which to evaluate and report the operational characteristics of ICD and 

SNOMED value sets used to select patient groups for population health interventions. 

Establishing a best practice for terminology selection is a step forward in ensuring that 

the right patients receive the right intervention at the right time. The research question 

is, “How does the diagnosis retrieval terminology (ICD vs SNOMED) and 

terminology map maintenance impact population health cohorts?” Aim 1 and 2 

explore this question, and Aim 3 informs practice and policy for population health 

programs. 

Methods 

Aim 1: Quantify impact of terminology choice (ICD vs SNOMED) 

ICD and SNOMED phenotype algorithms for diabetes, chronic kidney disease (CKD), 

and heart failure were developed using matched sets of codes from the Value Set 
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Authority Center. The performance of the diagnosis-only phenotypes was compared to 

published reference standard that included diagnosis codes, laboratory results, 

procedures, and medications. 

Aim 2: Measure terminology maintenance impact on SNOMED cohorts 

For each disease state, the performance of a single SNOMED algorithm before and after 

terminology updates was evaluated in comparison to a reference standard to identify and 

quantify cohort changes introduced by terminology maintenance. 

Aim 3: Recommend methods for improving population health interventions 

The socio-technical model for studying health information technology was used to inform 

best practice for the use of population health interventions. 

Results   

Aim 1: ICD-10 value sets had better sensitivity than SNOMED for diabetes (.829, .662) 

and CKD (.242, .225) (N=201,713, p <= .001).  ICD-10 had worse specificity than 

SNOMED for diabetes (.972, .975), but the same for CKD (p <= .001). Heart failure 

cohorts had no significant differences between ICD and SNOMED. 

Aim 2: Following terminology maintenance the SNOMED algorithm for diabetes 

increased in sensitivity from (.662 to .683 (p <=0.001)). No change was observed in the 

performance of CKD and heart failure algorithms. Those cohorts were unaffected. 

 Aim 3: Based on observed social and technical challenges to population health 

programs, including and in addition to the development and measurement of phenotypes, 

a practical method was proposed for population health intervention development and 

reporting. 
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Discussion 

As a measure of overall performance, the F score for ICD phenotypes for diabetes, CKD 

and heart failure equal to or better than SNOMED. Standardized testing and reporting 

practices for population health algorithms will inform local and national practice for 

management of population health cohorts. 
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Key Terms 

Coding System Any terminological system that uses codes for designating concepts. 

(de Keizer, Abu-Hanna, & Zwetsloot-Schonk, 2000) 

 

Cohort Any designated group followed or traced over a period of time.  

(cohort) 

 

Classification A classification uses more general “is-member-of” relationship. 

(de Keizer et al., 2000) 

Gold standard Gold standard refers to the method by which a reference standard is 

generated by two or more independent reviewers with adjudication 

to obtain agreement.  

 

High-

throughput 

clinical 

phenotyping 

 

High-throughput clinical phenotyping executes an algorithm against 

already existing data within an EHR system to rapidly obtain a large 

pool of eligible study subjects. (Wei et al., 2012) 

 

Phenotyping Phenotyping is the action of applying an algorithm to select a cohort 

within an EHR system for a defined purpose, including case–control 

cohorts for genome-wide association studies, clinical trials, quality 

metrics, and clinical decision support. (Pathak et al., 2013) 

 

Population 

health 

Use of the EHR system to identify patient cohorts in need of 

evidence-based interventions, and to facilitate action to address care 

gaps. 

 

Population 

health registry 

An EHR-based registry for the purpose of driving clinical 

interventions is also called a population health registry.  This 

registry subtype identifies care gaps and triggers bulk ordering and 

secure bulk messaging as well as clinic outreach phone calls. 

(Berkovich, 2016); (Sitapati, 2016)   

 

Reference 

standard  

 

A reference standard is the list of positive and negative case findings 

against which the performance of a phenotype algorithm is 

evaluated. Manual generation of a reference standard can be grouped 

into three levels: Gold standard, Trained standard and Regular 

practice. (Stanfill, Williams, Fenton, Jenders, & Hersh, 2010)  
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Automated forms of developing reference standards show promise. 

(Agarwal et al. (2016)   

 

Terminology A list of terms related to concepts is a “terminology”.  In this sense, 

both ICD and SNOMED CT® are terminologies in the domain of 

clinical findings and diagnoses. 

 

Thesaurus An ordered terminology that includes synonyms 

(de Keizer et al., 2000) 

Value Set Numerical values (codes) and human-readable names (terms), drawn 

from standard vocabularies such as SNOMED CT® , RxNorm, 

LOINC and ICD-10-CM, which are used to define clinical concepts. 

For example, a value set may contain any number of codes across 

terminologies that represent a clinical concept such as a patient with 

myocardial infarction. These clinical concepts can then be used in 

constructing algorithms for quality measures, or population health 

identification rules. (U.S. National Library of Medicine) 

 

Vocabulary Terminology or Thesaurus that includes concept definitions. 

(de Keizer et al., 2000) 
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Chapter 1: Introduction 

The goal of population health programs for chronic care is to improve the quality and 

while reducing unnecessary utilization such as emergency visits and hospitalizations 

(Altavela, Dorward, Sorrento, Diehl, & Wyman, 2017). Chronic disease management 

aims to avert morbidity and prioritize clinical interventions that can reduce risk for poor 

outcomes (McClatchey, 2001). Population health registries are a pivotal tool to support 

the delivery of this kind of evidence-based care (Lyon & Slawson, 2011). The clinicians 

using population health registries depend on accurate groups, or cohorts of individuals 

who share a characteristic and who are then followed forward in time. Grouping patients, 

with diabetes for example, is a phenotyping task which is conceptualized in Figure 1.   

 

 

Figure 1. Disease phenotyping with standard terminologies 
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Diagnostic terms and their associated codes are applied to the patient records in the 

problem list, encounter diagnoses, and other locations within the EHR system depending 

on the nature and setting of the patient care. A phenotyping algorithm uses diagnosis 

codes to separate patients into cohorts, those with the specific code(s) associated with 

them. The algorithm matches patient diagnosis codes from the EHR data to a value set of 

codes that define a disease concept in a standard medical terminology.  The International 

Classification of Diseases (ICD) and the Systematized Nomenclature of Medicine – 

Clinical Terms (SNOMED CT) are two of these terminologies. Both have mandates 

requiring their support in certified EHR systems. When a cohort is selected from a pool 

of patients, one way of measuring the accuracy of the assignment to a disease group is by 

comparing each patient in the cohort to a reference standard of patients known to have 

the disease. 

Terminology maps allow patients to be identified for diagnosis groups using either ICD 

or SNOMED values sets. As terminologies evolve, the maps must be maintained to 

incorporate new codes or remove codes that are no longer in use.  

The research question is, “How does the value set terminology (ICD vs SNOMED) 

and terminology map maintenance impact population health registries?” 

Specific Aim 1 Quantify impact of terminology choice (ICD vs SNOMED) 

Specific Aim 2 Measure the impact of terminology maintenance on SNOMED 

cohorts  

Specific Aim 3 Recommend methods for improving population health 

interventions 
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This research will evaluate key risks related to terminology mapping as well as possible 

approaches to improve the visibility of terminology shifts that occur over time and 

mapping changes in the EHR that apply those terminology changes to the system. 

1.1 Population Health in Practice 

The Health Information Technology for Economic and Clinical Health (HITECH) Act of 

2009 gave legislative authority to CMS to develop quality measures to help drive the 

development and the adoption of health information technologies. Since then, the number 

of incentivized quality measures at local, state and national levels has continued to 

increase. In addition to the Merit-based Incentive Payment System (MIPS) and Advanced 

Alternative Payment Models (APMs), CMS 1115(a) demonstration waivers are 

designating billions of dollars to states for Medicaid reform, a large portion of which will 

be tied to quality indicators. California’s five-year Medi-Cal 2020 Demonstration 

program includes $6.2 billion of initial federal funding to transform and improve 

the quality of care, access, and efficiency of health care services for 12.8 million member 

(Mcleod, 2016).  Roughly half of this sum is allocated to Public Hospital Redesign and 

Incentives in Medi-Cal (PRIME) which offers incentives public hospitals for 

performance measures for quality and efficiency. As value-based care models create a 

financial imperative in many organizations to qualify for government quality incentives, 

and benefit from shared risk programs, pressure to “meet the measures” is intensifying. In 

this environment, population health has become a preferred care delivery paradigm to 

drive health care quality and quality measures.  
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The Agency for Healthcare Research and Quality (AHRQ) National Measures 

Clearinghouse maintains a broad set of quality measures sponsored by diverse 

organizations that cover many disease states. Healthcare providers demonstrate their 

adherence to evidence-based guidelines through a suite of quality measures. Table 1 

provides examples of Meaningful Use quality measures for diabetes (eCQM 122-Percent 

of patients with hemoglobin A1C (HbA1C) levels > 9%, and 134- Percent of patients with 

a screening for nephropathy), End Stage Renal Disease (Percent of patients with mean 

hemoglobin value greater than 12 g/dL), and heart failure (eCQM 135-Percent of 

Patients with heart failure (Left ventricular ejection fraction LVEF < 40%) who were 

prescribed ACE inhibitor or ARB therapy).   

Population health tools embedded within the EHR continue to be developed and refined 

to ensure that evidence-based interventions for chronic care management are routinely 

and reliably provided to patients as demonstrated by quality performance measures. 

Errors in the patient groups may negatively impact the quality and efficiency of patient 

care. The risk and cost of discovery errors (false positives) and omission errors (false 

negatives) are determined by the type of intervention and the number of patients in the 

population served. Table 1 also provides examples of the possible impact of discovery 

and omission errors. For patients in chronic care management programs, discovery errors 

may result in unnecessary messages and lab orders, wasted outreach costs, and possible 

drug-drug interactions. For these same groups of patients, omission errors may increase 

the risk and cost of disease complications, and put patients at higher risk of death. 

Misattribution of patients to population health cohorts may lower performance on quality 

measures as well, because the indicated interventions are not appropriate. 
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Table 1. Meaningful Use quality measures for diabetes, end-stage renal disease and 

heart failure 

Meaningful Use Quality Measures 

 

Discovery Error 

(False Positive) 

 

Omission Error 

(False Negative) 

 

Diabetes 

 

HbA1c level  > 9.0% Unnecessary 

messages and 

lab orders 

 

Increased  risk/cost  of 

complications 

End-stage 

renal 

disease 

Mean hemoglobin value  

greater than 12g/dL 

 

Wasted outreach  Miss patients and put at 

higher risk of death 

Heart 

failure 

 

Heart failure   

(LVEF < 40%)  who 

were prescribed ACE 

inhibitor or ARB 

therapy  

Possible  

adverse drug 

reactions 

Increased risk of death 

or re-admission 

 

The Centers for Disease Control and Prevention (2017) estimates 23 million adults in the 

U.S. have a diagnosis of diabetes. Small errors in discovery or omission of patients in a 

chronic disease cohort are magnified when applied across a large population. In quality 

reporting a 1% error rate may be well within acceptable limits.  However, when applied 

to actual clinical interventions, a false omission rate of 1% in a population of 23 million 

could put over 200,000 patients at risk for missing diabetes follow-up care. At that same 

rate of error, false discovery may cause another 200,000 to be targeted for diabetes 

interventions that were not appropriate.  
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The cost of treatment increases dramatically as patients move from a single disease state 

to multiple chronic diseases.   The United States Renal Data System (2016) reports a 

2014 fee-for-service expenditure of $254.4 billion on Medicare beneficiaries age 65 and 

older with diabetes, CKD and/or heart failure.  The breakdown by disease category in 

Table 2 identifies 5.9 million beneficiaries with diabetes (with or without CKD and/or 

heart failure) comprising 24.02% of the Medicare population and utilizing 35.12% of the 

costs. The per person per year (PPPY) cost for diabetes alone ($12,116) increases 

significantly when diabetes is treated with CKD and/or heart disease ($16,003). As a 

percentage of the beneficiary population, CKD (10.77%) and heart failure (8.89%) utilize 

double the percentage of total budget than their numbers would suggest (CKD 20.77%, 

heart failure 20.60%). The goal of population health programs is to identify and manage 

chronic disease to keep patients healthier and reduce the burden of these diseases on the 

health system. 

 

Table 2. Medicare spending for beneficiaries aged 65 and older 2014 

 

Count 

  

Medicare 

Population 

% 

 

Cost  

% 

 

PPPY Cost  

1 Condition  

 

PPPY Cost  

2 or more 

Conditions 

 

Total 

Costs 

(millions) 

 

All Diabetes  

 

5.9 m 24.02 35.12 $12,116 $16,003 $89,327 

All CKD  

 

2.6 m 10.77 20.77 $15,673 $21,857 $52,819 

All Heart failure  

 

2.1 m 8.89 20.60 $20,733 $26,975 $52,409 
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Note. The data reported here have been supplied by the United States Renal Data System (USRDS). 

The interpretation and reporting of these data are the responsibility of the author(s) and in no way 

should be seen as an official policy or interpretation of the U.S. government. 

1.2 Population Health Registries 

Within a health system, population health programs utilize registries to ensure that 

patients sharing a common chronic disease receive the standard of care defined in an 

evidence-based protocol (Drawz et al., 2015). Regardless of etiology, chronic care 

management programs face the common challenge of monitoring a cohort of patients to 

ensure they are reevaluated at regular intervals, and that treatments are effective based on 

quantitative measures. The use of registries enables the identification of a group of 

patients at risk for multiple adverse outcomes, and creates the opportunity for efficient 

and directed intervention when there is a care gap between the patient’s current treatment 

state and the protocol. A population health registry integrally embedded in an EHR 

system enables bulk orders, and secure bulk messaging via the EHR patient portal 

(Berkovich, 2016; Sitapati, 2016). Due to the very real impact on human resources, 

patients, and payers, inclusion in these registries requires the same high level of accuracy 

that has typically been associated with clinical decision support.  

1.3 History of ICD and SNOMED  

Both ICD and SNOMED CT® are standard medical terminologies in the domain of 

clinical findings and diagnoses. They support the input and retrieval of information from 

a clinical system (Brown & Sonksen, 2000). ICD codes have long been used by CMS to 

process claims for hospitals, clinics, and other professional services. In 2016, $366 billion 

in healthcare reimbursements was processed using ICD-10-CM codes to define the 

diagnoses covered by the Medicare Fee for Service Program (Centers for Medicare & 
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Medicaid Services (CMS), 2016).  The Code of Federal Regulations 45 CFR 162.1002 

designates ICD-10-CM as the medical data code set for medical problems for the period 

on or after October 1, 2015 (Code of Federal Regulations (annual edition), 2015). The 

Department of Health and Human Services maintains and distributes ICD-10-CM for the 

following conditions: (i) Diseases, (ii) Injuries; (iii) Impairments; (iv) Other health 

problems and their manifestations. (v) Causes of injury, disease, impairment, or other 

health problems (Code of Federal Regulations (annual edition), 2015). 

Bowman (2005), Director of Coding Policy and Compliance for the American Health 

Information Management Association (AHIMA), described ICD as a “Classification 

system” that functions optimally for aggregating patient groups for claims processing and 

quality programs outputs. Classification systems were not intended or designed as the 

primary documentation for clinical care, yet they are the most common source of clinical 

data today, due to their necessity for claims processing (Bowman, 2005). The 

terminology has developed into an international standard for diagnostic classification in 

epidemiology, health management and clinical purposes (Fung & Xu, 2012). 

From its inception, the necessity of revision based on scientific discovery was 

recognized, with the original ICD update cycle set at 10 years. ICD-9 was introduced to 

the public domain in 1977, formatted with 4-digit categories and optional 5 digit 

subdivisions (Hirsch et al., 2016). ICD-9-Clinical Modification (CM) was the U.S. 

extension developed by the National Center for Health Statistics to support diagnostic 

coding in the inpatient and outpatient settings (Hirsch et al., 2016).  ICD-10 was first 

published in 1992 (World Health Organization).  Figure 2 illustrates the differences 

between ICD-9 and 10 code formats. 
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Figure 2. Sample of ICD-9-CM and ICD-10-CM billing codes 

 

SNOMED CT® is also legislated for use in U.S. EHR systems as a vocabulary standard 

for representing electronic health information about medical problems per 45 CFR 

170.207 (Code of Federal Regulations (annual edition), 2015).  The International Health 

Terminology Standards Development Organization (IHTSDO) maintains and distributes 

SNOMED CT® “to facilitate the accurate recording and sharing of clinical and related 

health information and the semantic interoperability of health records” (Randorff Hojen 

& Kuropatwa, 2014). SNOMED CT® is considered the most comprehensive, 

multilingual clinical terminology in the world (Fung & Xu, 2012).  It has a 

polyhierarchical logic model, and serves as a thesaurus, nomenclature, taxonomy, 

ontology, and coding system of clinical concepts (Saitwal et al., 2012). Despite these 

advantages for clinical documentation, SNOMED’s size, complex hierarchies and lack of 

reporting rules render it impractical for patient reimbursement and regulatory reporting 
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(Bowman, 2005). A survey of EHR vendors by Giannangelo and Fenton (2008) found a 

lack of incentives or drivers in the industry was a barrier to SNOMED CT 

implementation within their products. Subsequent legislation mandating the use of 

SNOMED CT in EHR systems, and the selection of SNOMED as the reporting 

terminology for the CMS Merit-based Incentive Payment System (MIPS) have 

introduced these drivers and incentives into the industry. A 2013 article in the Journal of 

Biomedical Informatics finds that although it is reported to be used in over 50 countries, 

there is still much work ahead to bring SNOMED CT into routine clinical use (Lee, 

Cornet, Lau, & De Keizer, 2013). Quality challenges reported by this study included 

content coverage, hierarchical relationships, ambiguity of terms and syntactic 

consistency. 

 Bowman (2005) describes SNOMED-CT® as a “Reference terminology” designed to 

codify clinical information captured in an EHR during the course of patient care. As an 

input terminology, the semantic and contextual meanings of the clinical terms are 

paramount. The conceptual diagram of a SNOMED concept browser in Figure 3 

illustrates that concepts exist within a hierarchy of parent-child relationships. For 

example, SNOMED concept 84114007 Heart Failure has a parent concept called 

Disorder of cardiac function and 26 child concepts including Acute Heart Failure 

56675007, Cardiorenal syndrome 445236007, and Chronic heart failure 48447003. 

SNOMED CT concept hierarchies support retrieval of diagnosis data at various levels of 

granularity, and one SNOMED concept may be mapped to just one, or potentially 

thousands of ICD codes. 
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Figure 3. Conceptual diagram of a SNOMED CT® concept browser 

 

The Journal of the American Medical Informatics Association (JAMIA) reported how 

three professional coding companies applied SNOMED concepts to the same clinical 

findings (Andrews, Richesson, & Krischer, 2007). In this small study, SNOMED codes 

for a vascular exam were selected to describe the finding, body structure and a qualifier. 

No significant correlation was found between the assigned codes. In fact, all three agreed 

on the core concept only 33% of the time, and 23% of the time there was no agreement at 

all,  Andrews et al. (2007) raise the question, if coders can’t agree on how to code a 

finding, what impact will that have on the retrieval? 

1.4 Cross-terminology Mapping  

Cross-terminology mapping in the EHR is essential because there is no single diagnosis 

terminology standard (Foley, Hall, Perron, & D Andrea, 2007). A 2005 White Paper by 

the American Health Information Management Association (AHIMA) described how 

ICD and SNOMED should be used together with mapping linking the two (Bowman, 

2005). Figure 4 is an adaptation of the terminology mapping concept by which the 

SNOMED reference terminology is the input for clinical terms, and ICD is the output 
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classification system used for claims processing and quality reporting (Bowman, 2005). 

A terminology map is sometimes referred to as a crosswalk, implying a 1 to 1 

relationship. In fact, because terminologies have different structures and intended uses, 

relationships can be: 1 to many; many to 1; many to many; or complex. Hussain et al. 

(2014) describe how erroneous mapping can be unintentionally created when two 

unrelated concepts (A1 and A2) are mapped to common concept (B). Although this logic 

applies in algebraic relationships (If A1 = B and A2 = B, then A1 = A2), this construct 

does not always hold up when applied to hierarchical terminological constructs. It is also 

incorrect to assume that if A1 equals B that all dependents of A1 in a hierarchical concept 

tree also equal B. Reich, Ryan, Stang, and Rocca (2012) describe cases where no 

mapping is possible such as when a code does not have a corresponding code in the 

destination terminology. The size and structure of the ICD and SNOMED terminologies 

present significant challenges to those creating and maintaining terminology maps (Boyd 

et al., 2015).  

In the era of paper medical records, a workforce of coders was responsible for applying 

billing codes based on free text evidence in the health record. In EHR systems of today 

clinicians routinely perform a text search that returns a list of possible diagnosis terms 

from which one is selected to be applied to the patient record. 
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Figure 4. Conceptual diagram of terminology mapping (adapted from Bowman, S. E., 

2005). 

 

A conceptual diagram of the application of diagnosis codes to patient records is in Figure 

5. The clinician selects one of many clinical terms supplied by the third party 

terminology vendor.  The local diagnosis code associated with the selected term is 

applied to the patient problem list or encounter diagnosis. The code mappings link the 

local codes to the standard terminologies, ICD and SNOMED.  

 



14 

 

 

Figure 5. Conceptual diagram of the application of diagnosis codes to patient records 

 

Intelligent Medical Objects, Inc. (IMO®) offers a terminology solution that maps medical 

terms commonly used by clinicians to ICD and SNOMED. Epic, Cerner, NextGen, and 

several other EHR systems incorporate IMO terms in their software. (Kottke & Baechler, 

2013) Apelon Distributed Terminology System (DTS) is an open source solution. As a 

licensee of IHTSDO, the U.S. National Library of Medicine (NLM) is the single public 

source of SNOMED CT data in the United States (U.S. National Library of Medicine, 

2011). The internal mapping relationships between local and standard diagnosis 

terminologies support the output, retrieval and aggregation of patient cohorts using ICD-

9-CM, ICD-10-CM or SNOMED CT (Figure 6). Terminology middle-ware functions as 

an interface terminology employing internal mappings to shield users from the need to 

assign standard terminologies such as ICD and SNOMED codes directly. A survey of 

SNOMED users found, “In most cases SNOMED CT had been so seamlessly integrated 
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that that users were unaware that they were using SNOMED CT through and interface 

terminology,”  (Lee et al., 2013). 

 

 

Figure 6. Conceptual diagram of terminology mapping circa 2017 

Challenges encountered when mapping International Classification for Nursing Practice 

(ICNP) to SNOMED-CT included inconsistencies, redundancies, and deficiencies of 

SNOMED CT concepts (Kim, 2016). The consequence of attendant errors are 

acknowledged in the American Health Information Management Association publication, 

Data Mapping and its Impact on Data Integrity.  

…poorly designed or out-of-date mappings create significant data integrity 

problems in health information systems. Undetected errors in data maps have the 

potential to introduce many problems including the filing of false claims to 

insurers, delivering the wrong information for patient care and/or quality 
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measures, or causing a breach in patient privacy (Hyde, Rihanek, Santana-

Johnson, & al, 2013). 

The most serious problems may actually derive from delivery of the wrong care to a 

patient or the failure to deliver intended interventions. 

1.5 Maintenance of Terminologies and Maps  

Terminology maintenance is a necessary and expected activity in the domain of health 

information technology (HIT) due to rapid evolution of the evidence base, regulation, 

clinical and administrative practices (Cimino, Clayton, Hripcsak, & Johnson, 1994). 

Saitwal et al. (2012) state  “… all mappings must be maintained and updated as errors 

are found and corrected, and as the source and target terminologies change.”  

Terminology updates and correlated cross-terminology mapping revisions occur in all 

modern EHR systems, and yet there is no standardized way to identify and measure the 

impact of this activity on downstream uses of the diagnosis codes. Even when a cross-

terminology map has demonstrated good performance, it must be maintained to stay 

current if concepts and terms are added, removed, or the meaning of a code changes, so 

as to continue to produce consistent results (Rea et al., 2012).  Codes may also be 

deprecated, meaning they are no longer active to be newly applied to patient records, but 

remain in the EHR for backward compatibility. An important finding by the Strategic 

Health IT Advanced Research Projects Area 4 Consortium is that, “The SHARPn 

demonstration did not deal with multiple versions of terminologies or updates to 

terminologies, but it became apparent that any robust data normalization effort will need 

to do so,”  (Rea et al., 2012). 
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When the U.S. transitioned from ICD-9 to ICD-10 for cause of death reporting, the CDC 

provided preliminary comparability ratios to indicate the extent of discontinuities 

resulting from the coding changes (Anderson, Miniño, Hoyert, & Rosenberg, 2001).  

Bridge-coding studies are designed to measure the effects of new terminology revisions 

using duel coded datasets. According to Fenton and Benigni (2014), “Longitudinal data 

comparisons can only be reliable if they use comparability ratios or factors which have 

been calculated using records coded in both classification systems.” However, it’s 

important to recognize that the comparability statistic only describes the net change in the 

resulting cohorts, and thus lacks detail as to which patients were added and deleted as a 

result of the terminology changes. Figure 7 illustrates various methods for evaluating 

shifts caused by terminology mapping. Comparison of the overlap of terms only as in 

diagram A will provide an indication of the terms added and dropped from a phenotype 

definition due to terminology mapping, but the effect of those changes on the patient 

population depends on the prevalence of the codes, and can therefore not be established 

by this method. Diagram B shows the method of instantiation whereby the mapping 

difference may be stated by comparing the cohorts of disease positive patients found by 

each diagnosis terminology.  A drawback of this method is that although the difference 

can be ascertained, there is no way to determine if the change is better or worse. The 

method in diagram C uses a reference standard as a common comparator from which to 

find true positives and establish a rate of error. Comparison of the phenotype 

performance to the reference standard provides a quantitative method by which to 

establish which terminology performs better.  
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Figure 7. Evaluating the difference between diagnosis terminologies 

 

Fluctuations of membership in a population health CKD registry have been observed 

following terminology updates to the EHR system. The January 28-31, 2016 EHR 

terminology map maintenance at a university health system that applied SNOMED 

updates to the EHR system resulted in the decrease of the CKD registry population by 

2,065 patients, roughly one third of its members. This unexpected change was caused 

when the EHR internal mapping from ICD-9-CM 585 Chronic Kidney Disease (CKD) to 

SNOMED 433146000 Chronic kidney disease stage 5 was inactivated. A data integrity 

process monitoring the number of patients in this registry identified the unintended 

consequence of this update, and the problem was resolved by changing the inclusion rule 

to ICD-10-CM coding exclusively.  
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Due to the size and complexity of the current clinical terminologies, maps are likely to 

have some errors. Terminology maintenance creates a dynamic setting in which the 

adjustment of a map or the failure to do so may introduce errors into the phenotype 

algorithms that rely on mappings. This effect was reported when ICD-9-CM diagnosis 

codes for acute liver failure were mapped from ICD to SNOMED CT (Reich et al., 2012). 

The acute renal failure cohort was less than 10 patients, and the resulting shift of 1 patient 

was too small to detect the true rate of change. 

1.6 Registry Membership is a Phenotyping Task 

In order to measure the properties of a phenotype algorithm, the true state of each patient 

must be established using a reference standard. The generalized 2 X 2 contingency table 

with experimental results True positive, False Positive, True Negative, and False 

Negative can be used to calculate a number of additional summary statistics (Table 3). 

Sensitivity, specificity, and positive predictive values (PPV) are commonly reported 

measures of phenotype performance. When selecting the best version of a phenotype 

algorithm, there is typically a trade-off between finding all of the patients expected to 

benefit from an intervention and excluding patients who won’t benefit or may be harmed 

by an intervention.  The false discovery rate (FDR) and the false omission rate (FOR) are 

of particular concern because these statistics predict the number of patients 

inappropriately included or exclude from intervention group in error.  The review of the 

literature provided deeper insight into the use of these statistics in the phenotyping 

literature. 
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Table 3. Summary statistics derived from a 2 X 2 contingency table 



21 

 

 

 

Chapter 2: Literature Review 

A PubMed literature review was conducted May 11-22, 2016 with the help of a research 

librarian at the University of California, San Diego (Mary Wickline). The search strategy 

was designed to target articles about electronic phenotype studies (ICD or SNOMED) for 

diabetes, CKD or heart disease (Figure 8). The final combination of search terms yielded 

222 abstracts that were evaluated on the following inclusion criteria:  

 data source is observational clinical data and coding terminology is ICD-9-CM, 

ICD-10-CM or SNOMED-CT 

 diagnosis phenotype accuracy is reported 

 use case was chronic disease management or quality measures for diabetes, 

CKD, or heart disease 

 article in English and full text available 

The full text articles meeting the criteria (91) were coded for references to ICD and 

SNOMED terminologies (54 unique articles), electronic phenotyping methods (61 

unique articles) and disease classification (44 unique articles). Appendix A contains 

the details of the search terms. 
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Figure 8. Literature search strategy 
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2.1 Current Uses of ICD and SNOMED Medical Terminologies 

The articles about ICD and SNOMED were reviewed to glean information on the 

frequency and context of the diagnosis coding options. Of these 54 articles, 49 (74%) 

used ICD-9-CM, 12 (22%) used SNOMED CT and 6 (11%) used ICD-10-CM. Several 

articles compared terminologies, and included more than one. 

ICD-9-CM was primarily developed for billing and administrative applications and does 

not necessarily imply a well-defined robust and logical hierarchy for the codes. (Pathak, 

Kiefer, Bielinski, & Chute, 2012)  However, clinical researchers often use ICD billing 

diagnosis codes for phenotyping because these codes are mandated for payment within 

the U.S. healthcare system, and the disease, signs and symptoms in ICD terms are often 

used as a surrogate for the disease phenotype (Pathak et al., 2013); (Schildcrout et al., 

2010).  ICD-9 was used as a primary phenotype rule in studies diabetes, (Fort, Wilcox, & 

Weng, 2014) (Klompas et al., 2013) (Meyers, Candrilli, & Kovacs, 2011) (Nag et al., 

2007) (Wilke et al., 2007) (Zhong et al., 2016) kidney disease (Ferris et al., 2009[ 

[Brieler, 2016 #1397) (Navaneethan et al., 2011) (Murff et al., 2011) (Cipparone et al., 

2015) and  heart disease (Baker et al., 2007) (Broberg et al., 2015) (Floyd, Blondon, 

Moore, Boyko, & Smith, 2016) (Kleinberg & Elhadad, 2013) (Hoang et al., 2014) (Udris 

et al., 2001) These articles, dated 2001-2016 use relatively simple ICD-9 algorithms, 

using the character X to denote a place holder for any digit, for example “Diabetes 

250.X0, 250.X2” (Brieler, Lustman, Scherrer, Salas, & Schneider, 2016; Broberg et al., 

2015); (Andrade et al., 2011). 
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Recent adoption of ICD-10-CM in October 2015 helps explain the low number of articles 

retrieved in May of 2016 as compared to ICD-9-CM and SNOMED.  The mandated 

coding standard had yet to be fully explored in the literature at the time of the search.  

Canada adopted ICD-10 in 2001, well before the United States. So, Evans, and Quan 

(2006) compared the performance of ICD-9 and ICD-10 in the retrieval of nine AMI 

comorbidities, and found similar sensitivity, specificity, positive predictive value and 

negative predictive value. This study included 193 patients with known AMI as 

confirmed by chart review, and also considered prevalence and mortality in a Canadian 

province from 1994-2004. So et al. (2006) concluded that ICD-10 coding algorithms 

performed similarly to ICD-9.  Although ICD-10 was first published over a decade ago, 

the ICD-10-CM U.S. extension has over 3 times the codes of its ICD-10 parent 

terminology. It will take time to collect longitudinal ICD-10-CM data, and to develop and 

validate new ICD-10-CM coding algorithms.  

SNOMED CT has an ontological structure that was more frequently correlated with 

natural language processing phenotyping. de Keizer et al. (2000) define an ontology as “a 

specification of concepts, relations and functions for a domain”. The relations convey 

lexical relationships (shared meaning) between terms that are semantically different, for 

example “kidney disease” and “renal failure”. Liaw et al. (2014) conclude that integrating 

multiple data elements with an EHR using ontology-based case-finding algorithms can 

improve the accuracy of a Type 2 Diabetes Mellitus registry. SNOMED CT-AU was the 

domain ontology used in this Australian study. Although it’s true that data fragmentation 

and inaccuracy can negatively impact the quality of phenotype results, (Wei, Leibson, 

Ransom, Kho, & Chute, 2013) (Jolly et al., 2014) the Liaw study does not separate the 
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effects the ontology versus the effects of the inclusion of additional discrete items in a 

discrete rule-based approach. 

A case has been made that SNOMED© CT simplifies querying of clinical data to the 

extent that knowledge of clinical medicine, coding schemes and database structure is no 

longer required (Lieberman, Ricciardi, Masarie, & Spackman, 2003). It may seem so 

when myocardial infarction, coronary artery disease, heart failure and hypertension can 

each be mapped to a single SNOMED concept. This study was conducted without the use 

of a reference standard, and ICD-9 codes were assumed to designate the “true” state. The 

reported Recall rate for Type II Diabetes Mellitus was 0.987 and Heart Failure was 0.921. 

However, lack of detail about the methods of SNOMED mapping and failure to compare 

against a reference standard lead to questions about the reproducibility of the results. A 

concerning finding was that the concept of ‘insulin dependent diabetes mellitus’ was not 

included under the type I diabetes hierarchy in SNOMED which explained the recall rate 

of 0.741 for Type I Diabetes Mellitus (Lieberman et al., 2003). It is precisely these types 

of mapping decisions that must be studied across a wide range of disease states.  

Ultimately, the use of SNOMED CT in CMS quality programs will likely be the most 

significant driver of adoption. The Meaningful Use Stage 2 rule identifies SNOMED CT 

as a clinical terminology standard of certified EHR systems. Therefore, it is critical to 

understand the principles and implications of using SNOMED CT and other clinical 

standards for knowledge representation within EHR systems (Monsen et al., 2014). 

2.2 Electronic Phenotyping Methods 

The review of 61 articles on phenotyping methods revealed that a nearly three quarters 

(74%) used discrete data, as compared to free text data (18%) or hybrid techniques (8%).  
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Some argue that a gold standard is required to evaluate the retrieval performance of a 

terminology (Brown & Sonksen, 2000). Rubbo, Fitzpatrick, Denaxas and colleagues 

contend that a major problem in evaluating studies of EHR-derived diagnoses is the 

implementation of a "gold standard" (Rubbo et al., 2015).  The method is time intensive, 

and depending on the use case, some suggest that any baseline standard will suffice as a 

comparator (Agarwal et al., 2016).  Agarwal, Podchiyska, Banda and colleagues are 

among the growing number of researchers who are developing improved automation for 

the creation of gold standards from clinical sources, and they have found value in the use 

of a semi-automated “silver standard” for labeling training sets for phenotype models. 

Stanfill et al. (2010) reported, literature evaluating automated coding and classification 

systems only reports this step in approximately 50% of studies comparing performance of 

a coding terminology to a gold standard. 

To achieve the high levels of accuracy required to drive prospective chronic disease care, 

population health registries must look beyond the readily available discrete diagnosis 

codes, and include diagnosis, lab values, procedure results, and so on (Wei et al., 2016). 

Since population health interventions trigger actionable intervention on real patients, the 

registry inclusion rule (functioning as a phenotype algorithm) routinely filters out 

deceased patients and those with no medical visits or acute care in the last 3 years.  

Active patients are grouped according to diagnoses for chronic disease management.  

Navaneethan and colleagues from Cleveland Clinic implemented an EHR-based CKD 

registry using an inclusion rule based on one face-to-face encounter, two encounter 

diagnoses for CKD, and/or two estimated (eGFR) values indicating CKD stage 5 or 

higher (Navaneethan et al., 2011).  The CKD inclusion rule was approved following a 
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chart review of 20 randomly selected charts by three reviewers, and the resulting registry 

of over 57,000 patients has become a valuable research for tool for studying CKD 

comorbidities (Navaneethan et al., 2011).  

Studies using discrete data most frequently reported sensitivity, specificity, and positive 

predictive value (PPV). Data mining techniques reported precision and recall. Despite the 

different naming conventions precision and recall formulas are the same as PPV and 

sensitivity. These two statistics were reported by more than 50% of the articles and 

specificity by about 30%. Other statistics were reported less than 20% of the time 

including; negative predictive value, 2 x 2 contingency table (or text equivalent), 

accuracy, area under the curve (AUC), receiver operating curve (ROC), Chi square, and 

percent match (Figure 9). Overall, there was little consistency in the published evaluation 

methods or performance measurements for phenotypes. Appendix B Electronic 

Phenotyping Evaluaton Methods lists the reviewed articles referencing each statistic.   

   

 

Figure 9. Statistical methods used in 61 phenotyping articles from literature search 
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Reich et al. (2012) explored the impact of terminology changes on queries of the 

Observational Medical Outcomes Partnership research network data.  Reich’s results 

clearly show the number of patient records lost or gained as compared to the original 

ICD-9-CM cohort when mapped to SNOMED and MedDRA definitions. Of course, 

inclusion of the 2x2 contingency table in published results would support the calculation 

of all the summary statistics listed in Table 5 including Sensitivity, Specificity, and PPV, 

but only 15% of the articles provided this information. True Positive, False Positive, True 

Negative, and False Negative values provide valuable information even when presented 

in non-standard formats. Garvin et al. (2013) reported these values in a single table 

combined with sensitivity, specificity and PPV. 

2.3 Disease classification for Diabetes, Chronic Kidney Disease and Heart Failure 

My review of the literature found additional information about the significance and 

interrelatedness of diabetes, CKD and heart failure. Of the 44 phenotype articles 

mentioning a disease condition of interest, diabetes was by far the most heavily reported 

(30, 68%) followed by CKD (12, 27%) and heart failure (9, 20%).  

Diabetes has been rapidly increasing in prevalence in recent years. CDC estimates 1.7 

million new adult cases of Type 2 diabetes are diagnosed each year (Centers for Disease 

Control and Prevention, 2015). If the trend continues 438 million adults are estimated to 

develop diabetes by the year 2030 (Pathak et al., 2012; Rathmann W & Giani G, 2004). 

Type 2 diabetes accounts for 90-95% of all new diabetes cases in the U.S. People with 

diabetes typically experience healthcare costs 2.3 times higher than non-diabetics.   

Approximately 40% of CKD cases are attributable to diabetes (Huopaniemi et al., 2014; 

Meyers et al., 2011; Nadkarni et al., 2014). The prevalence of CKD in the U.S. is 
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estimated to be 13% (Navaneethan et al., 2011). CKD is a precursor to End Stage Renal 

Disease (ESRD) that warrants dialysis or transplantation (Navaneethan et al., 2013; 

Schroeder et al., 2015). Even small degrees of renal impairment are associated with 

increased cardiovascular disease risk, cardiovascular mortality, and health care costs. The 

status of kidney function is based upon a calculation that includes a laboratory value from 

routine metabolic profile called serum creatinine. This value is used in the calculation of 

eGFR which is used to assess the severity of the condition (Levey & Coresh, 2012). 

Table 4 shows the eGFR ranges for Chronic Kidney Disease Stages 1 through 5. Stage 5 

is the most severe kidney disease which can only be treated by dialysis or transplantation, 

and is also known as End Stage Renal Disease (ESRD).  Note that ESRD is often equated 

with and typically commences in Stage 5, but only refers to patients starting or receiving 

dialysis or transplantation (United States Renal Data System, 2017). 

 

Table 4. Chronic Kidney Disease staging 2014 USRDS Annual Data Report 

Stage 1  eGFR ≥ 90 mL/min per 1.73 m² 

Stage 2  eGFR 60–89 mL/min per 1.73 m² 

Stage 3  eGFR 30–59 mL/min per 1.73 m² 

Stage 4  eGFR 15–29 mL/min per 1.73 m² 

Stage 5  eGFR < 15 mL/min per 1.73 m² 

 

 

Heart failure causes shortness of breath, weight gain and tiredness when the heart is 

unable to supply sufficient blood flow to the body. The primary diagnostic test is cardiac 
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ejection fraction also known as Left Ventricular Ejection Fraction (Bielinski et al., 2014).  

A LVEF measure less than 40 is the established clinical definition of heart failure which 

can be either chronic or acute. Agarwal et al. (2016) warns that guidelines and quality 

measures for heart failure will need to account for multiple measures of LVEF that may 

change over time, with a patient moving across the threshold for heart failure in both 

directions.  About half of the people who develop heart failure die within 5 years of 

diagnosis. (Mozaffarian D et al.)  
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Chapter 3: Aim 1. Quantify impact of terminology choice (ICD vs SNOMED) 

3.1 Introduction   

The statistical analysis of sensitivity and specificity is dependent on the population, and 

cannot be assumed to be consistent across multiple EHR instances or disease states. It is 

therefore fundamental to establish a methodology by which the retrieval properties of a 

phenotype rule are established locally to inform clinical and financial decision making.  

Terminology maps supplied by third-party middleware providers enable rule-based 

retrieval of patient diagnoses coded in ICD and SNOMED terminology. The Value Set 

Authority Center (VSAC) provided matched sets of chronic disease value sets coded in 

ICD and SNOMED which were used to isolate the effect of terminology choice in the 

retrieval of diabetes, CKD and heart disease. As a licensee of IHTSDO, the U.S. National 

Library of Medicine (NLM) is the single public source of SNOMED CT data in the 

United States (U.S. National Library of Medicine, 2011). VSAC is the repository for 

official versions of diagnosis value sets for regulatory quality programs such as 

Meaningful Use and Clinical Quality Measures. The value sets are maintained by the 

National Library of Medicine (NLM), in collaboration with the Office of the National 

Coordinator for Health Information Technology (ONC) and CMS (Bodenreider et al., 

2013). When the VSAC value sets are used in a phenotype algorithm, the selection of a 

patient cohort is like a binomial diagnostic test, rendering a positive or negative result for 

each disease state. When both ICD and SNOMED phenotype algorithms “test” the same 

patient population, the study design is paired, and McNamar’s test for dependent 
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proportions is recommended for these conditions (Zhou, Obuchowski, & McClish, 

2011b). 

3.2 Methodology 

The null hypotheses for Aim 1, H0DM, states that for diabetes, CKD and heart disease, the 

sensitivity and specificity of phenotype algorithms using ICD-10-CM and SNOMED will 

be the same (Equation 1A). The alternative hypothesis, HADM, states that for each disease, 

the sensitivity and specificity of phenotype algorithms using ICD-10-CM and SNOMED 

exclusively will be different (Equation 1B).  

 

Equation 1. Aim 1 hypotheses for comparison of ICD and SNOMED value sets 

A. Null hypothesis  

𝐻0𝐷𝑀: 𝜃𝑖𝑗 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝐼𝐶𝐷) =  𝜃𝑖𝑗𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑆𝑁𝑂𝑀𝐸𝐷)   

B. Alternative hypothesis 

𝐻𝐴𝐷𝑀: 𝜃𝑖𝑗 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝐼𝐶𝐷) ≠  𝜃𝑖𝑗𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑆𝑁𝑂𝑀𝐸𝐷)    

Where 𝜃𝑖𝑗 is the true summary measure of the ith Disease Di, i=1-3 

 and jth Summary Measure Mj, j=1-2 for each phenotype algorithm.  

Disease D= {diabetes, CKD, heart failure} 

Summary Measure M= {Sensitivity, Specificity} 

 

Study data included retrospective observational data collected in an Epic® EHR during 

care delivery. The study included alive patients age 18 or older as of September 30, 2013 

with at least one arrived or completed office visit encounter between October 1, 2013 and 

September 30, 2016. The office visit criterion was to limit the study to patients who were 
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seen in the ambulatory setting, and are therefore candidates for chronic care management. 

Study datasets for each disease state were extracted from the Epic® Clarity reporting 

database, and contained demographics, diagnoses, laboratory results, and procedure 

results to inform the reference standard phenotypes for diabetes, chronic kidney disease 

and heart failure. The population represents the actual distribution of ethnic and racial 

backgrounds, and gender served by UCSDH as no exclusion was made on the basis of 

gender, race or ethnicity, pregnancy status, or sexual orientation. The study population 

contained women of child-bearing potential, but the pregnancy status for individual 

patients was not ascertained. Prisoners who received care at UCSDH were included, but 

the investigators had no way of identifying which subjects were prisoners. Cancer 

patients were also included, but cancer diagnoses codes were not relevant to the study, 

and were not captured in the study data. 

3.2.1 Phenotypes. Three types of phenotype rules for each disease were 

implemented as SQL queries to extract patient cohorts from the research data: ICD 

diagnosis only; SNOMED diagnosis only; and a reference standard based on research 

phenotypes (Figure 10).  
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Figure 10. Aim 1 Patient cohorts for ICD, SNOMED, reference standard phenotypes 

 

VSAC value sets for VSAC Value Sets for Diabetes, Chronic Kidney Disease, Stage 5, 

and Heart Failure were retrieved on May 22, 2016. See Appendix C Value Set Authority 

Center Downloads for details.  The Grouper Editor is the EHR activity for creating and 

editing value sets within EpicCare Ambulatory 2015®. An embedded utility in the 

Grouper editor was used to resolve the standard ICD and SNOMED terminology codes 

into value sets of local diagnosis codes. Each local code has its own mapping to ICD-9-

CM, ICD-10-CM, and SNOMED CT. Hence, the internal terminology map was 

externalized. Patient cohorts were identified when the local diagnosis ID matched a local 

diagnosis in a patient’s problem list or office visit encounter history. The VSAC diabetes 

value set contained 146 ICD-10-CM codes that mapped to 9,328 local codes.  The utility 

converted 36 SNOMED codes for diabetes to 7,118 local codes. Diabetes has the largest 
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number of local codes of the diseases studies, but it not uncommon for value sets to 

include thousands of local codes.  

Table 5 provides examples of some of the complicating conditions encountered with the 

code mappings. 1) Diabetes mellitus complicating pregnancy is a temporary condition 

generally excluded from chronic care management. 2) Diabetes mellitus with HbA1C 

goal between 7 and 8 blurs the distinction between controlled and uncontrolled by setting 

an explicit goal. 3) Type 1 diabetes mellitus with peripheral angiopathy without gangrene 

is mapped to two SNOMED CODES, 127014009 and 46635009. 4) Local code for Non-

insulin dependent diabetes mellitus has no ICD-10-CM mapping. 5) Insulin dependent 

type 2 diabetes mellitus, controlled is an example of why diabetic laboratory results can’t 

be used to determine the type of diabetes. The term, “controlled” implies that the diabetic 

patient would have normal readings on glucose and HgbA1c tests.  6,7,8) Depending on 

the phenotype use case, granular descriptions of diabetes complications may or may not 

be meaningful. If a clinician judges a term to be inappropriate for the intended use of the 

data, it may be difficult to remove an individual term. For instance dropping ICD-10-CM 

code E11.9 will remove 2) Diabetes mellitus with HbA1C goal between 7 and 8 and 5) 

Insulin dependent type 2 diabetes mellitus, controlled. 

Note that clinicians may not have visibility of all of these local code choices. Some are 

marked as clinically inactive and some have never been applied to patient records. 

However phenotyping algorithms routinely test whether any of the resolved local codes 

appear on patient records.  
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Table 5. Local diabetes code mapping examples 

Local 

Code 

 

Term 

 

ICD-9 

 

ICD-10 

 

SNOMED CT 

 

Example     
1 

 

 

Diabetes mellitus complicating 

pregnancy 

 

648.00 

250.00 

 

O24.919 

 

 

609496007 

 

 

2 

 

 

Diabetes mellitus with HbA1C goal 

between 7 and 8 

 

250.00 

 

 

E11.9 

 

 

365845005 

 

 

3 

 

 

 

Type 1 diabetes mellitus with 

peripheral angiopathy without 

gangrene 

 

250.71 

443.81 

 

 

E10.51 

 

 

 

127014009 

 

 

 

4 

 

 

Non-insulin dependent diabetes 

mellitus 

 

250.00 

 

  

44054006 

 

 

5 

 

 

Insulin dependent type 2 diabetes 

mellitus, controlled  

 

250.00 

V58.67 

 

E11.9 

Z79.4 

 

237599002 

 

 

6 

 

 

Type 2 diabetes mellitus with left 

diabetic foot ulcer  

 

250.80 

707.15 

 

E11.621 

L97.529 

 

1521000119100 

 

 

7 

 

 

Type 2 diabetes mellitus with 

diabetic cataract 

 

366.41 

 

  

420756003 

 

 

8 

 

Type 2 DM w establish diabetic 

nephropathy 

250.40 

  

420279001 

 

 

 

Public research phenotypes with established high sensitivity and specificity were adapted 

for use as a reference standard for diabetes and chronic kidney disease. These algorithms 

used discrete quantitative values in the medical record to define a disease state, such as 

diagnoses, medications, laboratory values, and/or procedure findings. Although the 

development of a reference standard was a necessary step in this study methodology, 
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defining the best methods for reference standard development is outside the scope of this 

research.  

The Type 2 Diabetes Mellitus phenotype developed by the eMERGE network was used 

as the reference standard with limited modifications (Pacheco, 2012).  

This algorithm had 98.2%-100% Positive Predictive Value (PPV) when applied across 

institutions (Northwestern University, Vanderbilt University, Marshfield Clinic) (Kho et 

al., 2012). Based on the reported data from Kho’s table 3, I calculated sensitivity (.995) 

and specificity (.986) of the algorithm over the 3 sites combined (N=350).  

A number of challenges were discovered in adapting the research algorithm for use in the 

population health context which are reported in Appendix D: Reference Standard for 

Diabetes.  

 

Table 6. eMERGE Diabetes Type 2 Case Inclusion Rules  

eMerge 

Phenotype 

Rule 

Type 1 

diabetes  

DX 

Type 2 

diabetes 

DX 

Type 1 

diabetes 

Med 

Type 2 

diabetes 

Med 

Type 2 Med  

prescribed before 

Type 1 Med  

Abnormal 

diabetes 

 Labs 

 

1 No Yes Yes Yes Yes  

2 No Yes  Yes   

3 No Yes    Yes 

4 No   Yes  Yes 

5 No  Yes Yes    

 

Note. Patient was included in diabetes reference standard cohort if any rule was met  
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An eMERGE network phenotype was also selected for the CKD population. Nadkarni et 

al. (2014) have reported a phenotype algorithm for CKD with a Positive Predictive Value 

of 95.95 (CI 90.85-95.08) and a Negative Predictive Value of 93.25 (CI 90.85-95.08).  

CKD patients were selected based on a diagnosis of CKD, kidney transplant, or other 

kidney disease including renal failure and dialysis. Alternatively two laboratory measures 

of GFR less than or equal to 60 over a period of 90 days or more confirmed a CKD 

diagnosis. All CKD patients identified by diagnosis or lab, were then subject to a final 

test of eGFR less than 15 to limit selection to CKD Stage 5.  

The reference standard for heart failure identifies patients with ICD-9-CM or ICD-10-

CM code for heart failure in one active problem list diagnosis or two encounter diagnoses 

or evidence of LVEF less than or equal to 40%.   

3.2.2 Statistical Analysis. In order to fully understand how terminology mapping 

affects cohorts, the coded diagnosis terms must be instantiated, i.e., programmatically 

matched to EHR data. The unique study IDs of the ICD cohort were compared with 

patient IDs in the reference standard, likewise the SNOMED cohort was compared to the 

reference standard. The resulting True Positive, False Positive, True Negative and False 

Negative values were recorded in 2x2 contingency tables as shown conceptually in 

Figure 11. These values were used to derive the sensitivity and specificity of the ICD and 

SNOMED diagnosis phenotypes for each disease. 
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Figure 11. Conceptual diagram of the transformation of ICD, SNOMED and Reference 

Standard Cohorts into 2x2 contingency tables. 

 

The null hypothesis states that the sensitivity and specificity of the chronic disease 

phenotype algorithms would be the same whether an ICD or SNOMED value set is used. 

The McNamar’s test statistic, χ2 for sensitivity was calculated from the set of patients 

with reference standard positive. Using Zhou et al. (2011b) notation, m111 is the number 

of patients with both tests positive and m101 is the number with the first test negative and 

the second test positive. The χ2 statistic for specificity is calculated from the set of 

patients with reference standard negative. These values must be calculated directly from 

the test data, and cannot be derived from a 2x2 contingency table. McNamar’s test for 

dependent proportions was performed using SPSS version 24 (IBM, 2016) to evaluate the 

statistical significance between the sensitivity and specificity of ICD and SNOMED 

diagnosis phenotypes.   

 

Equation 2. McNamar's χ2 statistics used to establish the significance of differences in 
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sensitivity and specificity between ICD and SNOMED phenotype algorithms. 

Sensitivity: for patients with          

positive Reference Standard  

Specificity: for patients with         

negative Reference Standard 

χ2 =  
(𝑚110 − 𝑚101)2

𝑚110 + 𝑚101

 χ2 =  
(𝑚010 − 𝑚001)2

𝑚010 + 𝑚001

 

 

  

3.3 Findings  

The study population included 201,917 patients age 18 or older with at least one office 

visit during the study period. The demographics in Table 7 Age and sex of study 

population represent the actual EHR population at that time. Percent of patients in each 

age bracket was evenly distributed from 18-49 (18-29, 16.9%; 30-39, 16.3%; 40-49, 

15.6%). The age distribution peaked between age 50-70 (50-59, 19.7%; 60-69, 17.0%), 

the rapidly dropped off over age 80 (80-89, 4.1%; 90+, 0.7%).  Gender was skewed 

toward female (57.5 female vs 42.5% male). The missing information on sex was not 

significant. 
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Table 7. Age and sex of study population 

Age 

 

Frequency 

 

Percent 

 

 18-29 34,112 16.9 

30-39 32,918 16.3 

40-49 31,598 15.6 

 50-59 39,759 19.7 

60-69 34,397 17.0 

70-79 19,567 9.7 

80-89 8,234 4.1 

90+ 1,332 0.7 

    

Sex 

 

Frequency 

 

                  

Percent 

 

Female 116,035 57.5 

Male 85,880 42.5 

Missing 2  

 

Total N= 

 

201,917 

 

 

 

Table 8 Race and ethnicity of study population was predominately white (61.0%). A 

majority (76.5%) reported their ethnicity as “not Hispanic or Latino.”  Legacy ethnicity 

data of “African American” (306), “American Indian/Eskimo (18) “Asian/Pacific 

Islander” (414), and “Caucasian” (3,014) were included in the count of “not Hispanic or 

Latino”. The count of Unknown included Multi-Racial (971). There were 81 missing 

values which were not significant. 
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Table 8. Race and ethnicity of study population 

Race 

 

                                                              Frequency    

 

  Percent 

 

American Indian or Alaska Native 905 .4 

Asian 19,398 9.6 

Black or African American 8,558 4.2 

Native Hawaiian or Other Pacific Islander 828 .4 

Missing 1,428 .7 

Other Race or Mixed Race 36,305 18.0 

Unknown (Patient cannot or refuses to declare race) 11,348 5.6 

White 123,147 61.0 

   

Ethnicity 

 

Frequency 

 

                  

Percent 

 

Not Hispanic or Latino 154,369 76.5 

Hispanic or Latino 32,860 16.3 

Unknown 14,607 7.2 

Missing 81 0.0 

 

Total 

 

201,917 

 

 

 

 

The details of the study population are for informational purposes only. Specific clinical 

findings cannot be generalized to other populations, but the techniques for quantifying 

phenotype performance are generalizable to the extent that they can be applied to any 

population. 

For diabetes, Table 9 shows the VSAC ICD and SNOMED value set phenotype 

performance. ICD-10-CM outperformed SNOMED CT with higher true positives (9,345, 

7471), lower false negative (1,934, 3808). ICD-10-CM was worse than SNOMED CT 

with lower true negatives (185,285, 185,926), and higher false positives (5,349, 4,708). 
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Overall, ICD-10-CM had greater sensitivity, and worse specificity. For diabetes, 

McNamar’s χ2 (1,541.357) is greater than the critical value for sensitivity, and the null 

hypothesis is rejected.  McNamar’s χ2 (149.653) is also greater than the critical values, 

and the null hypothesis is rejected for specificity. For the VSAC diabetes value sets, the 

difference in sensitivity and specificity is significantly different for ICD-10 versus 

SNOMED (p=0.001). ICD-10-CM sensitivity was better than SNOMED by 16.7%, and 

the sensitivity was worse than SNOMED by 0.3%. 

 

Table 9. Diabetes: VSAC ICD and SNOMED value set phenotype performance 

Diabetes Value Sets Reference Standard 
   

    
Yes 

 

           No 

 

   Total 

 

Sensitivity Specificity 

 

 ICD-10-CM 

Yes 9,345 5,349  14,694 0.829 0.972 

No 1,934 185,285 187,219  

 SNOMED-CT 

Yes 7,471 4,708   12,179 0.662 0.975 

No 3,808 185,926 189,734   

    Total  11,279 190,634 201,913   

 (McNamar’s test statistic χ2) 

 Critical value 10.827  

 df=1, level .001 

  1,541.357 149.653 

 

Note that ICD-10-CM overall false positive and negative errors (7,283) were fewer than 

SNOMED (8,516), and that the number of total errors were significantly higher than was 

indicated by the change in the cohort census due to ICD-10-CM and SNOMED-CT value 

sets performance (2,515).  
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Table 10. CKD: VSAC ICD and SNOMED value set phenotype performance 

CKD Value Sets Reference Standard    

    
Yes 

 

No 

 

   Total 

 

Sensitivity 

 

  Specificity 

 

  ICD-10-CM 

Yes 357 220 577 0.242 0.999 

No 1,121 200,219 201,340  

SNOMED-CT 

Yes 333 217 550 0.225  0.999 

No 1,145 200,222 201,367   

     Total  1,478 200,439 201,917   

(McNamar’s test statistic χ2) 

Critical value 10.827  

df=1, level .001 

 12.250             0 

       

For CKD, McNamar’s χ2 (12.250) is greater than the critical value for sensitivity, and the 

null hypothesis is rejected.  McNamar’s χ2 (0) is less than the critical values, and the null 

hypothesis is accepted for specificity. For CKD, the difference in sensitivity is 

statistically significant, but specificity is the same for ICD-10 versus SNOMED.  
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Table 11. Heart Failure: VSAC ICD and SNOMED value set phenotype performance 

Heart Failure Value Sets Reference Standard 
   

    Yes            No    Total Sensitivity Specificity 

     ICD-10-CM 

Yes 3,675 0 3,675 0.926 

 

1.000 

No 295 197,943 198,238  

     SNOMED-CT 

Yes 3,678 35 3,713 0.926 1.000 

No 292 197,908 198,200   

     Total  3,970 197,943 201,913   

(McNamar’s test statistic χ2) 

Critical value 10.827  

df=1, level .001 

0             0 

       

For heart failure, McNamar’s χ2 (0) is greater than the critical value for sensitivity, and 

the null hypothesis is accepted.  The sensitivity and specificity were the same. 

3.4 Discussion and Recommendations  

The inclusion rules selected to create specific chronic care cohorts are highly complex 

and dynamic in clinically active electronic health records. The type of terminology 

selected, such as ICD or SNOMED, may significantly impact cohort attribution.  

The evidence shows that in the setting of diabetes, choice of diagnosis terminology does 

make a statistically significant difference in the phenotype performance whereas this was 

not shown to be true for heart failure. CKD showed improvement in sensitivity, but not 

specificity.  
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A more nuanced interpretation of the results can be made in the context of population 

health use cases. If the objective is to find and effectively treat patients with uncontrolled 

Type 2 diabetes, as in eCQM 122 Percent with HbA1c level  > 9.0%, then errors of false 

omission from the diabetes cohort will prevent the identification of uncontrolled patients. 

Error rates can be read directly from the 2x2 contingency tables (Tables 9-11), and ICD 

had 2575 fewer false omissions for diabetes than SNOMED. ICD also had fewer errors 

overall than SNOMED for diabetes (7283, 8516), CKD (1341, 1362) and heart failure 

(295, 327).   

There are reasons to believe that this pattern may persist across other disease states. 

The mapping error rate of ICD is likely to be lower than SNOMED because version ICD-

9 was originally developed in 1975 (Moriyama IM, Loy RM, & AHT, 2011), and has 

decades of use and governance behind it. It’s universal, and ingrained in our medical 

practice.  SNOMED-CT’s low interrater reliability, would imply that phenotyping results 

using SNOMED would likely be inconsistent, as the codes used to define a common 

finding can be (Andrews et al., 2007). 
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Chapter 4: Aim 2. Measure terminology maintenance impact on SNOMED cohorts 

4.1 Introduction  

Regulatory updates to address evolving terminology needs must be applied twice yearly 

in a process that modifies diagnosis terms and maps between ICD and SNOMED. This 

EHR terminology maintenance can produce secondary changes to cohorts coded in ICD 

and retrieved by phenotype algorithms using SNOMED CT value sets. This Aim was 

designed to capture quantitative evidence of the effect of the October 1, 2016 IMO 

regulatory update on population health cohorts for diabetes, CKD and heart failure. 

Like Aim 1, the Epic® 2015 Grouper editor utility was used to create the secondary value 

set of the local diagnosis codes mapped to VSAC value sets thereby externalizing the 

mapping of local codes to standard diagnosis terminologies. The resolved versions of 

VSAC value sets were captured before (May 22, 2016) and after the terminology 

maintenance (November 6, 2016).  

4.2 Methodology 

The null hypotheses for Aim 2, H0DM, states that for diabetes, CKD and heart disease, the 

sensitivity and specificity of phenotype algorithms using SNOMED exclusively will be 

the same before and after terminology maintenance  (Equation 2A). The alternative 

hypothesis, HADM, states that for each disease, the sensitivity and specificity of phenotype 

algorithms using SNOMED exclusively will be different before and after terminology 

maintenance (Equation 2B).  
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Equation 3. Aim 2 Hypotheses for comparison of SNOMED value sets before and after 

terminology maintenance 

A) Null hypothesis  𝐻0𝐷𝑀: 𝜃𝑖𝑗𝑘 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒{𝑆𝑁𝑂𝑀𝐸𝐷, 𝑇1} =

 𝜃𝑖𝑗𝑘𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒{𝑆𝑁𝑂𝑀𝐸𝐷, 𝑇2}   

B) Alt hypothesis 𝐻𝐴𝐷𝑀: 𝜃𝑖𝑗𝑘 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒{𝑆𝑁𝑂𝑀𝐸𝐷, 𝑇1} ≠

 𝜃𝑖𝑗𝑘𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒{𝑆𝑁𝑂𝑀𝐸𝐷, 𝑇2}      

Where 𝜃𝑖𝑗𝑘 is the true summary measure of the ith Disease Di, i={1,2,…n} 

 and jth Summary Measure Mj, j={1,2} at Time Tk j={Before, After} for each phenotype algorithm 

Disease D= { DM, CKD, HF } 

Summary Measure M= {Sensitivity, Specificity} 

 

The shaded cohort in Figure 12 represents the VSAC SNOMED cohort at Time 2. The 

same SNOMED and reference standard cohorts described in Aim 1 were also used in 

Aim 2. 

 

 

Figure 12. Aim 2 cohorts (before terminology maintenance, after maintenance, and 

reference standard) 
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The resulting True Positive, False Positive, True Negative and False Negative values 

were recorded in 2x2 contingency tables as shown conceptually in Figure 13. These 

values were used to derive the sensitivity and specificity of the SNOMED diagnosis 

phenotypes for each disease before and after terminology maintenance. 

 

Figure 13. Comparison of VSAC SNOMED cohorts to a reference standard 

 

4.3 Findings  

Table 12. Diabetes: VSAC SNOMED phenotype performance before and after 

terminology maintenance 

Diabetes Value Sets Reference Standard 
   

    Yes            No    Total Sensitivity Specificity 

SNOMED-CT  Yes 7,471 4,708 12,179      0.662      0.975 

Before No 3,808 185,926 189,734  

SNOMED-CT Yes 7,708 4,844 12,552 0.683 0.975 

After No 3,571 185,790 189,361   

     Total  11,279 190,634 201,913   

(McNamar’s test statistic χ2) 

Critical value 10.827  df=1, level.001 
174.596      99.049 
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McNamar’s  χ2 test statistics for diabetes sensitivity (174.596) and specificity (99.049) 

exceed the critical value of 10.827, and the null hypothesis is rejected for diabetes. 

Differences in sensitivity and specificity between ICD and SNOMED algorithms are 

statistically significant (p = 0.001). Although the value set had not changed, the local 

EMR terminology maintenance on October 1, 2016 resulted in increased sensitivity from 

0.662 to 0.683 (p <=0.001). The census change in the cohort (237) does not reflect the 

true magnitude of the change (319) with 278 patients added and 41 patients excluded. 

 

Table 13. CKD: VSAC SNOMED phenotype performance before and after terminology 

maintenance 

CKD Value Sets Reference Standard 
   

    Yes            No    Total Sensitivity Specificity 

SNOMED-CT  Yes 333 217 550      0.225      0.999 

Before No 1,145 200,222 201,367  

SNOMED-CT Yes 334 217 551 0.226 0.999 

After No 1,144 200,222 201,366   

     Total  1,478 200,439 201,917   

(McNamar’s test statistic χ2) 

Critical value 10.827  

df=1, level .001 

0 0 

       

McNamar’s statistic (0) was less than the critical value (10.827) for both sensitivity and 

specificity.  The null hypothesis is accepted. There was no change for CKD and heart 
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failure as a result of the terminology maintenance It is important to note that findings 

may vary by disease state due to the unique features of the lexicon of disease diagnoses. 

 

Table 14. Heart failure: VSAC SNOMED phenotype performance before and after 

terminology maintenance 

Heart Failure Value Sets Reference Standard 
   

    Yes            No    Total Sensitivity Specificity 

SNOMED-CT  Yes 3,678 35 3,713      0.926      1.000 

Before No 292 197,908 198,200  

SNOMED-CT Yes 3,678 35 3,713 0.926 1.000 

After No 292 197,908 198,200   

     Total  3,970 197,943 201,913   

(McNamar’s test statistic χ2) 

Critical value 10.827  

df=1, level .001 

0 0 

 

McNamar’s statistic (0) was less than the critical value (10.827) for both sensitivity and 

specificity.  The null hypothesis is accepted. There was no change for CKD and heart 

failure as a result of the terminology maintenance It is important to note that findings 

may vary by disease state due to the unique features of the lexicon of disease diagnoses. 

4.4 Discussion and Recommendations  

The performance of SNOMED value sets can change over time even if the value set itself 

remains unchanged. Changes in a cohort census may not reflect the true magnitude of the 

change because patients added and excluded offset each other. Unexpected changes in 
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cohort membership require clinical validation to determine if the change is good, bad, or 

irrelevant. This study demonstrates that periodic EHR maintenance to apply terminology 

updates may cause discontinuities in the size of chronic disease cohorts. This is not the 

only cause for unexpected shifts in population health registries census. Technical 

problems related to the nightly load of registry data marts, EHR application upgrades, 

and customization activity have been known to affect registry census in dramatic ways. 

The first step in addressing these problems is to detect them. The development of EHR 

registry systems that automatically monitor their own performance would remove burden 

from the IT staff, making it more likely that anomalies are detected. 

Recommendation: Best practice for maintenance of EHR registries requires longitudinal 

monitoring of daily census. 

Diagnosis terminology maintenance may cause unpredictable, but potentially large 

changes in the census of SNOMED-CT cohorts. The development of novel phenotype in 

SNOMED terminology is easier and less time-consuming because many ICD codes can 

be represented by a single SNOMED concept. (Lieberman et al., 2003)  However, this 

same characteristic increases the probability of large changes in SNOMED cohorts due to 

terminology maintenance.  

Recommendation: ICD is the preferred terminology for population health cohort 

algorithms. 

Testing can mitigate the impact of terminology maintenance on population health 

cohorts. Phenotype algorithms using SNOMED value sets should be retested with each 

terminology update. If significant performance degradation is found, the inclusion rules 

can be adjusted as necessary, and retested under the new mapping conditions. 
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Recommendation: Best practice for SNOMED value sets requires retesting of algorithm 

performance when terminology updates are applied. Adjustments to the code sets can 

then be applied as needed. 
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Chapter 5: Aim 3. Recommend methods for improving population health 

interventions 

5.1 Introduction  

The development of phenotypes for population health cohorts is embedded within the 

larger context of deploying technology-aided clinical workflows. A body of work has 

informed the importance of the socio-technical dimension of EHR implementations, and 

Aim 3 applies the socio-technical model developed by Sittig and Singh (2010) for 

studying health information technology in complex adaptive healthcare systems.  

5.2 Methodology 

The eight dimensions of the socio-technical model all relate in some way to the 

interaction of patients, the healthcare workers who serve them, and the computer systems 

that initiate care alerts and track the data collected during the delivery of healthcare. The 

social perspective, or the human side of this interaction is concerned primarily with the 

dimensions of People, Workflow and Communication, Internal Organizational Policies, 

Procedures and Culture and External Rules, Regulations and Pressures. The technical 

perspective addresses the Hardware and Software Computing Infrastructure, Clinical 

Content, Human Computer Interface, and System Measurement and Monitoring.   

Observations across these domains were informed by literature research and experiential 

knowledge gained over a five year period during which the author was responsible for 

design, development, implementation and support of a population health registry 

infrastructure at an academic medical center.  
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5.3 Findings 

The findings are organized by social and technical domains, and informed the practical 

methodology for improving population health interventions. 

5.3.1 Social Domains. People refers to anyone who engages in the population 

health program in some way. Workflow and Communication involves the recognition and 

treatment of chronic disease in population health programs. Internal Organizational 

Policies, Procedures and Culture and External Rules set standards of practice for 

managing clinical data.  All of the domains are impacted by Regulations and Pressures 

driving the adoption of population health care delivery model.. 

The dimension of People as defined in this study includes the humans directly involved 

in population health programs. Three subcategories were explored: 1) patients; 2) 

clinicians 3) information technology (IT) workers.  

Patients contribute clinical data points used to form disease cohorts, yet each group is 

comprised of individual patients with unique histories, disease manifestations, and 

choices.  Study participants were weighted toward mature female adults. Two thirds of 

patients were age 40 or over and 57.5% were female. The prevalence of chronic disease 

and comorbidity increase with age. Therefore, population health programs can apply 

lessons learned about communication and treatment preferences for this age group. 

Recent findings imply that assumptions about the use of communication technology by 

older adults may be breaking down. Ruppel, Blight, Cherney, and Fylling (2016) found 

evidence that the text-based format of e-mail might help older adults compensate for 

hearing impairment of communicative difficulties.   
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The challenge of chronic disease is to diagnose and treat patients before disease 

progression permanently damages body systems. Perhaps the greatest opportunities for 

promoting wellness healthy lifestyles will occur in the 18-40 year old population. This 

age group is more likely to be comfortable with the online platforms of patient portal. 

Patient-centered display of clinical markers of disease as well as plans for care help 

engage the patient in the management of a chronic condition. The portals provide a 

secure messaging interface to report errors in the data or plans, and patients will likely 

have a growing role in monitoring and improving their own health care data. To address 

individual needs, population health intervention triggers must be designed with a 

personalization feature to turn them off when recommendations have been made in error 

or an intervention is otherwise contraindicated or refused. Historically, patient advisory 

boards have had little or no role to date in the design of the patient portal interface for the 

chronic disease management interfaces, but certainly could be leveraged to provide 

feedback that would inform improvements in usability and effectiveness. 

Clinicians bear the responsibility for applying the clinical diagnoses. Historically, the 

diagnosis would have been written in free text in a physician note, but this type of 

information has been a challenge for computers to capture and process. A widespread 

approach to solving this problem is to have the doctor perform a text search on a 

diagnosis term, and choose the best match from a drop-down list. The EHR used in this 

study maps thousands of diagnosis terms between four terminologies, the local diagnosis 

codes and three standard diagnosis terminologies, in a complex web of many to many 

relationships. The goal and promise of the terminology vendor is to make it as easy as 

possible for a provider to find a clinical term (diagnosis) on the list of available terms. A 
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surplus of synonymous terms may actually impede the selection of the “correct” code, 

and the mapping adds complexity and fuzziness to the retrieval of these codes. Operating 

in a time-constrained care delivery system, the clinical collects historical, symptom, 

exam, laboratory, procedural and genetic information over time to accurately select the 

right diagnosis. In comparison, the phenotype algorithms being used to group patients for 

care interventions contain relatively few data points. The patient with chronic disease is 

also on a dynamic path of disease progression in which age, lifestyle, comorbidities and 

medication can influence quantitative laboratory measures of a disease state.  

Resnik, Niv, Nossal, Kapit, and Toren (2008) made an early study of trade-offs between 

structured input and unrestricted free text clinical notes, and in fact both formats exist 

side by side in current EHR. As natural language processing (NLP) systems develop, 

computer assisted coding in clinical care delivery may develop with similar features to 

systems currently supporting administrative coding used for billing. However a recent 

systematic review of NLP systems for capturing unstructured clinical information reports 

continuing challenges with extraction of temporal information and normalization of 

concepts to standard terminologies (Kreimeyer et al., 2017). 

It should be noted that clinicians engaged in population health programs are often 

supported by nurses, care managers or health coaches in a team-based care model. Due to 

the wide variety of licensed and unlicensed healthcare workers and team models, this 

group of population health practitioners was deemed to be out of scope for this general 

review. 

Information technology (IT) workers recruited into the emerging practice of population 

health often lack the training and knowledge to navigate complex terminology decision 
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and implement statistical measurement of phenotypes. There is currently no professional 

or academic program specific to the development and application of population health 

interventions, and the content is complex and rapidly changing. The knowledge and 

practice of population health medicine should be encapsulated in training/certification 

programs for practitioners. The population health IT analyst performs best in a 

multidisciplinary team that also includes clinical subject matter experts, clinical 

operations leaders, data and financial analysts that report to executive leadership.   

A challenge in the Workflow and Communication dimension relates to the recognition 

and communication of diagnoses. Undiagnosed illness prevents patients from benefiting 

from treatment, and raises the risk of complications. CDC estimates that there are 30.3 

million people with diabetes in the U.S., 7.2 million of those are undiagnosed (Centers 

for Disease Control and Prevention, 2017). Accurate clinical phenotypes can identify 

patients with missed diagnosis of chronic disease and inform prognostic prediction 

models that predict the risk of developing a disease, a comorbid condition, or mortality at 

a specific point in the future (Hsieh, 2017). New clinical workflows will be necessary to 

identify, verify, and inform patients that meet a disease phenotype without a 

corresponding diagnosis. When computer algorithms detect what appears to be a “missed 

diagnosis” clinical staff need a plan for verifying the diagnosis and sharing this 

information with the patient. This type of outreach can begin to address the issue of the 

undiagnosed chronically ill. 

The domain of Organizational policies and procedures includes the important topic of 

governance. There continues to be sizable local variation in the collection and storage of 

clinical data. Data governance structures within an organization can lead decision making 
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related to what data to collect, how to code it, and where to store it.  Without health 

system governance, choices regarding the collection and storage of data may proceed in 

an ad hoc fashion, complicating the retrieval and analysis of data for population health 

and quality reporting.   

The domain of External rules, regulations and pressures encompasses the forces driving 

the adoption of population health care delivery model.  These include technological 

advances, emphasis on evidence-based care, shift to outpatient care, change to value-

based reimbursement and shared risk structures with payers (FitzGerald, 2017). 

CMS national quality programs create de facto standards for quality measurement, and 

incentivize the use of population health interventions. Improvement in the clinical 

validity of chronic disease value sets by CMS would be an important step toward 

reducing the national burden of value set development and maintenance. For instance a 

quality measure about statin therapy for cardiovascular disease should not have a 

congenital anomaly (not appropriate for statin treatment) included in the diagnosis value 

sets. 

5.3.2 Technical Domain. The technical perspective addresses the Hardware and 

Software Computing Infrastructure, Clinical Content, Human Computer Interface, and 

System Measurement and Monitoring.    

The Hardware and software domain is dominated by EHR systems. The existence of 

registry functionality within the EHR system is relatively new. The term Sustainable, 

Timely, Operational Registries in the EHR (STORE) has been suggested to differentiate 

this type of registry from traditional registries that are external to the EHR and unable to 

trigger delivery of clinical care or patient communication (Berkovich, 2016). EHR 
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registries hold the promise to drive down the cost of care through efficiencies of scale, 

and are becoming an essential tool in the ambulatory setting for delivering high quality 

care as defined by evidence-based practice and national quality measurement programs. 

However, the application tools to develop, validate and manage the clinical interventions 

in a scientific manner are still evolving. New temporal measures like persistence of 

abnormal lab results over a 90 day period should come standard in the registry metric 

calculation toolbox as well as tools to better identify, validate, and quantify and visualize 

phenotype performance. 

The Clinical content domain is dependent upon standards. The sharing of diagnosis 

algorithms and by extension, phenotypes requires adherence to content standards such as 

LOINC, RXNORM, REAL (Race, Ethnicity, and Language), etc. As was discovered in 

the implementation of the eMERGE diabetes reference standard, the ability to use a 

standard does not equate with effective use. The Meaningful Use quality program did 

effectively require the identification of patient phenotypes by ICD codes, and MACRA 

MIPS will require reporting of SNOMED codes in 2018. CMS could speed the adoption 

of standard lab results and medications terminologies by requiring quality measures to be 

reported using LOINC and RXNORM codes, respectively.  

Computer assisted coding (CAC) systems must have a well-defined basis for evaluating 

their own correctness. To answer the question, “How does the system know it’s right?” 

Resnik offers a generalized formula for sensitivity to quantify the performance of CAC 

(Jiang, Nossal, & Resnik, 2006). 

Equation 4. Resnik’s formula: How does the system know it’s right?  

Pr( choice C is correct | evidence).  
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To achieve high levels of sensitivity and specificity, previous studies have concluded that 

ICD-9 codes are not sufficient for identifying patient cohorts (Shivade et al., 2014). In 

addition to laboratory reports, procedure results, medications, and demographics used in 

the eMERGE reference standards, phenotypes algorithms may need to include novel data 

items such as geo codes, social determinants, patient reported data, calculated data such 

as average blood pressure, and risk scores. Free text evidence in the EHR not routinely 

recognized by EHR registry inclusion rules could provide additional evidence on which 

to base phenotyping choices. External data such as public death records may be used in 

the future to prevent outreach to deceased patients. 

The future development of the inclusion algorithms must account for the signal strength 

of each element. For instance, an encounter diagnosis that appears 24 times in a patient 

record is more reliable than another that may appear once. Diagnosis codes are also found 

in Medical History, and billing codes, and free text notes. 

The dimension of the Human-computer interface has been well studied when applied to 

the use of an operational EHR application, but less so in the study of the tools used to 

develop and maintain population health applications. The task of creating and assessing 

value sets as practiced today is highly complex, and introduces numerous opportunities 

for human error. The number of codes in diagnosis value sets may be trivial for a 

computer, but can seem large in human terms. For example the VSAC ICD-10 value set 

for diabetes had 146 codes and SNOMED had 36 codes. Due to the hierarchical nature 

concepts, SNOMED CT value sets typically have fewer codes than ICD. Humans 

manually entering value sets may have a natural bias toward SNOMED CT because it 

appears to be quicker and easier.  This bias does not take into account the retrieval 
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properties of SNOMED that appear to have lower performance scores and are known to 

cause unpredictable shifts in some patient cohorts as a result of terminology maintenance. 

Best practice would dictate that value set editors should display both the computer 

readable code and the human readable term side by side, but this is not currently a 

requirement of certified EHR systems. A direct method for importing national value sets 

into the EHR would also ease the burden of value set creation. Although EHR systems 

allow a great deal of flexibility in designing an algorithm, the tools to assess the 

performance of one value set as compared to another or against a reference standard are 

limited. The addition of statistical analytics and visualizations to phenotyping toolkits 

would increase the availability of comparative data upon which to make scientifically 

based phenotype decisions. 

The domain of System measurement and monitoring is garnering greater attention due in 

part to patient safety studies on clinical decision support systems (Wright et al., 2017). 

The choices in the Value Set Authority Center for common diseases exceeds human 

capacity to select and compare. Searchable ratings indicating a range of value set 

performance like sensitivity, specificity, false discovery rate, false omission rate in 

multiple settings should be reported for value sets maintained within its library.  

VSAC contains value sets, but the development of accurate phenotypes will require 

multiple terminologies within a single phenotype. These algorithms should be evaluated 

against standard EHR implementations and published with measures of performance. 

Similar to national quality metric definitions, national disease phenotypes should be 

published that include multiple clinical domains like diagnoses, labs, procedures, etc. 
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Computer Assisted Coding (CAC) systems scans medical records and supports human 

coders by suggesting ICD billing codes supported by clinical documentation. This model 

could be used for augmented diagnosis tools that would suggest codes based on clinical 

evidence, risk factors and local prevalence. Resnik suggests quality measures for CAC 

systems should address completeness, correctness, and non-redundancy. Resnik discusses 

a similar process as applied to Computer Assisted Coding. 

When evaluating a system intended to match human expert performance, issues to 

address include defining test data, selecting performance measures, determining 

what responses the system should produce, and deciding whether particular levels 

of performance are “good enough, ”(Jiang et al., 2006) 

Hripcsak and Heitjan (2002) addressed the problem of assessing the performance of a 

decision support system when there is no definitive way to know the true state of the 

patient..  Their study also compiled results in a two-by-two contingency table, and then 

compared the statistics of observed agreement, specific agreement, and Kappa. Kappa is 

defined in terms of the observed agreement and agreement expected by chance (Hripcsak 

& Heitjan, 2002).  The specific recommendation for dichotomous data concludes that 

showing the two-by-two contingency table with its marginal totals is probably as 

informative as any measure.  

Studies comparing overlapping sets may provide formulas that may useful for measuring 

how much similarity and difference between two phenotype rules run against the same 

population. The use of Venn Diagrams in visualization may be a cognitive aid to help 

analysts understand and communicate the difference between the test rule and the 

reference standard or two versions of the same rule.  
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5.4 Discussion and Recommendations 

The population health care delivery model exists within a socio-technical system, and 

will need both workflow and technology changes to succeed.  The socio-technical model 

provides a framework from which to study health IT interventions within a complex 

adaptive health care system (Sittig & Singh, 2010). A Socio-Technical Approach to 

Population Health Programs is outlined in Table 8. This practical method was 

synthesized from findings in this study, direct experience and published literature 

(Shivade et al., 2014).  

 

Table 15. Socio-Technical Approach to Population Health Programs 

Task Description 

Begin with defined goals National quality programs are often the starting point 

for Population Health. Consider available resources to 

carry out planned interventions 

 

Form the team  Health IT analysts need clinical oversight, operational 

and executive support 

 

Build a reference standard Start with a research phenotype or diagnostic tests 

 

Design and test the inclusion 

rule   

Rapid iteration and refinement of the inclusion rule 

using quantitative phenotype scores will lead to the 

best inclusion rule 

 

Report phenotype 

performance including error 

rates 

 

Report 2x2 contingency table, Sensitivity, Specificity, 

Error Rates and F score 

Implement the population 

health plan 

 

Find the most efficient and effective outreach methods  

Measure success Collect baseline data, and track progress toward goal 
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5.4.1 Begin with defined goals. Goals, resource constraints, error limits, and 

measures of success will all contribute to design decisions when developing a new 

population health intervention. Many organizations set a goal of “building a registry” or 

“doing population health” without being specific about the parameters of the project. 

Regulatory quality measures have pre-defined processes and performance targets. There 

may also be a strong financial motive to deliver value-based care and earn incentives 

payments based on quality performance. Population health systems provide a framework 

to support and measure health interventions, but ultimately the project should 

demonstrate meaningful results. Health outcomes that matter to patients, providers and 

payers include reduction in development of new disease, health complications, 

emergency or hospital visits, and mortality. Health systems may also be financially 

incentivized or penalized for performance on quality measures. The work queues and 

intervention alerts must be scaled to the staff available to process the work, therefore 

resource constraints must be considered in algorithm design. For example, it’s 

counterproductive to refer 1,000 patients to a health coaching resource that can only serve 

500. In the setting of capitated payments or value-based care, the size of the patient 

cohort will inform the costs and resources required to carry out the intervention, whereas 

medical complexity, multimorbidity and social determinants will impact the intervention 

design and likelihood of success. The inclusion and exclusion error rates are associated 

with their own risks and costs, and should be considered when making terminology 

selections. Resnik discusses a similar process as applied to Computer Assisted Coding. 

When evaluating a system intended to match human expert performance, issues to 

address include defining test data, selecting performance measures, determining 
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what responses the system should produce, and deciding whether particular levels 

of performance are “good enough.” (Jiang et al., 2006) 

5.4.2 Form the team.  Population health is a type of surveillance system used to 

ensure that patients receive the appropriate standards of care. The requirements for 

population-level response for patient safety incidents as described by Hibbert et al. 

(2016) can easily be adapted to population health.   A multidisciplinary team that includes 

clinical subject matter experts, clinical operations leaders, IT and financial analysts, and 

data scientists will provide the right skillset for a successful population health program. 

Executive sponsorship and support is generally required within a large organization to 

direct resources and budget to population health activities. Smaller practices may choose 

to procure third-party population health services or hire consultants to help them with the 

task. Patient advisory boards increasingly pivotal in guiding the timing and approach of 

messaging and patient portal interfaces for chronic disease management. 

5.4.3 Build a reference standard. Statistics that compare phenotoype performance to 

a reference standards are much more informative than those that just compare differences 

between cohorts. In the latter, positive and negative changes to patient cohorts can offset 

one another to mask the true number of differences. Validated clinical phenotypes may be 

found in the medical literature and at PheKB.org a phenotype knowledge based 

developed the Electronic Medical Records and Genomics (eMERGE) network. Perhaps 

in the future, open source data sets will support reference standard development. 

5.4.4 Design and test the inclusion rule.  Organizations committed to the 

development of a population health program to drive a quality measure to its goal may be 

tempted to use the quality measure definitions of numerator and denominator as specific 
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design criteria. However, as demonstrated, the value sets supplied by a quality program 

may not be optimized for delivery of clinical care. Although national value sets may be a 

good starting point, clinicians may recommend refinements to remove patients with 

contraindications or temporary conditions. After diagnosis criteria has been optimized, 

additional clinical indicators of disease should be iteratively added and tested to drive the 

performance of the inclusion rule toward the level of the reference standard itself. One 

may wonder why the reference standard is not implemented directly as the inclusion rule. 

Some registry platforms are limited to the logical constructs or data types that can be 

implemented as inclusion rules. For example, the persistence measure for elapsed days 

between abnormal lab results may not be implemented in the EHR such that it can be 

utilized as a registry inclusion rule. Work-arounds may exist, but may not be practical 

with the constraints of budget, skills, and implementation schedules. If the phenotype 

query captures and reports the data underlying the decision variables the validation time 

will be significantly reduced. 

There is a natural trade-off between sensitivity and specificity which are both 

measures of intrinsic diagnostic accuracy unaffected by the prevalence of the condition 

(Zhou, Obuchowski, & McClish, 2011a). Quantitative measurement of the algorithms 

helps with design decisions. The F score is a convenient single statistic to compare any 

number of similar algorithms while balancing sensitivity and specificity. 

5.4.5 Report phenotype performance including error rates. 

From the perspective of cohort development, simplification within and clear separation 

between cohorts are of high importance. Although phenotyping techniques have 

improved over the past few years, there is still room for improvement (Shivade et al., 
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2014).  There is now also a need for EMR phenotype algorithms that can perform well 

across populations where the patient characteristics may vary (Liao et al., 2015). Too 

often, the same task is being repeated at multiple institutions (Shivade et al., 2014).  Yet, 

“incomplete reporting has been identified as a major source of avoidable waste in 

biomedical research,” (Bossuyt et al., 2015). The use Standards for Reporting of 

Diagnostic Accuracy Studies (STARD), or a derivative of those standards for use in 

population health studies will ensure that essential items are reported in phenotyping 

studies. Statistics of particular importance for population health are the 2 x 2 contingency 

table from which one can calculate the False Omission Rate, False Discovery Rate, 

Sensitivity, Specificity and the F Score. 

5.4.6 Implement the Population health plan.  Lessons learned from the 

implementation of Health IT systems can inform the practice of population health. The 

ten guidelines for HIT Design for Chronic Disease Care provide a useful list to consider. 

(Unertl, Weinger, Johnson, & Lorenzi, 2009) 

5.4.7 Measure your success and share lessons learned.  

Healthcare reform in the U.S. focused on providing value for the patient in terms of 

health outcomes achieved per dollar spent. Measurement and dissemination of health 

outcomes will become universally mandated. (Porter 2009)  Population health programs 

should be able to demonstrate that they are providing anticipated outcomes.  Collect 

baseline data, and track progress toward the defined goals.  
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Chapter 6: Synthesis and Summarization 

 

This research confirms that terminology mapping considerations are important in 

managing population health cohorts. This is a formidable challenge because mapping 

local data to standard terminologies and between terminologies impacts every EHR 

system. Additionally, medical terminology systems are complex, and are continuously 

evolving. Maps between large terminologies and ontologies can introduce phenotype 

errors, and work is needed to better understand how value sets and mappings shape 

population health cohorts and affect quality measurement. Although research continues 

on automating the mapping process, there is still a degree of judgement and imperfection 

introduced as humans develop terminology maps, apply codes to the patient health 

record, and retrieve chronic care cohorts. 

The terminology vendor, by providing maps from local terms to national standards 

delivers middleware functions as its own coded terminology. Certified EHRs actually 

support and cross-map four terminologies (local/vendor supplied, ICD-9, ICD-10, and 

SNOMED). When a clinician searches an EHR for a diagnosis term that fits a patient’s 

presenting condition, a local code is displayed that maps the clinical term supplied by the 

vendor to an ICD-10 code. When Brown declared in 2005 that ICD-9 was an obsolete 

coding system, she was reinforcing the belief that ICD, designed as classification system, 

could not provide the necessary granularity to capture the clinical language and nuance 

used by physicians. ICD-9, has not been fully retired, but continues to be applied to 
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patient records through the terminology mapping process, mainly for research purposes. 

ICD-11 is under development, and will be finalized in 2018. (World Health Organization) 

Population health systems must be continually reviewed and maintained to stay in sync 

with the changes. 

6.1 Conclusion and Recommendations 

Population Health is growing in importance as a care delivery model as national value-

based care programs seek to contain cost and improve outcomes. In the setting of 

capitated payments and the value-based care paradigm, patient cohort attribution can 

impact the costs, resources, and interventions. Phenotype inclusion errors raise the risk of 

patients receiving inappropriate care and exclusion errors raise the risk of missing 

standard care interventions, and the failure to implement population health programs with 

little attention to socio-technical dimensions can result in sub-optimal results. CMS is in a 

unique position to develop and require new scientific methods to assign and evaluate 

chronic disease cohorts.  

 In some cases, tools and value sets developed for quality reporting programs are being 

applied in a clinical context they were not designed to support. As required levels of 

compliance on some measures approach 100% and sizable incentives and penalties 

impact individual doctors and health systems alike, there is a new imperative to 

quantitatively and scientifically evaluate population health cohorts with high levels of 

precision.  

This limited study suggests that ICD should be the preferred terminology for population 

health cohorts in the absence of data to the contrary. Research has shown diagnosis 

phenotypes using ICD alone are not sufficient, and diverse data sources are being utilized 
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to improved phenotype results (Shivade et al., 2014). The set of national value sets for 

identifying chronic disease cohorts will need to develop into a library of national 

phenotypes that include ICD values sets, and also look beyond readily available diagnosis 

codes to include other evidence of disease such as labs, procedures, medications, 

questionnaires, and medical devices. These phenotypes will include multiple 

terminologies standards (LOINC, RXNORM, etc), and health systems should be required 

to produce quality reports using those standards. The use of SNOMED terminology in the 

MIPS quality program promises to generate valuable data in 2018 and beyond.   

Lack of portability and restrictions on data sharing have left the development of clinical 

cohorts largely isolated within each health system, and it’s a herculean task. Within each 

local instance of an EHR, efficient and accurate data capture and governance is 

paramount, for this data both drives the delivery of care and collects raw material for Big 

Data systems. While Big Data may be part of the solution, federated research networks 

have, by design, added another layer of mapping that masks the operating characteristics 

of the local EHR.  Phenotyping studies in a Big Data network may inform the overall 

design of phenotype logic, but there is currently no established method for distributing 

phenotypes across EHR systems. Decentralized local development and common sharing 

of methods and results may be the only way forward in the near future. Common 

standards for reporting methods and de-identified aggregated results would be required 

for this approach to be effective. STARD (Standards for Reporting Diagnostic Accuracy), 

which is currently used for diagnostic studies provides a relevant model. 

Although the focus on population health programs is often centered on the technology, 

the social aspects of system development implementation and measurement equally 
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apply. Local health systems need multidisciplinary teams who are trained to improve 

phenotype testing and refine diagnostic algorithms using quantitative scientific methods. 

Data governance bodies within the health system are needed to inform decisions on what 

data to collect, how to code it, and where to store it. As national, state, professional, and 

local quality programs continue to mandate the reporting of quality measurements, it is a 

shared responsibility of the medical community to ensure that the data, itself, is high 

quality. 

Terminology mappings within an EHR can be very difficult to discern by clinicians and 

application analysts. Population health platforms, whether they exist within an EHR or a 

third party provider should deliver tools for monitoring and reporting fluctuations in 

registry census. Without this feature, unexpected changes to patient cohorts may be go 

undetected, but should be evaluated by a clinician. A summary of these recommendations 

may be found in Appendix E. Recommendations for Quality and Population Health 

Programs. 

6.2 Limitations  

This study was limited to one organization, but the inclusion of the entire population of 

nearly 200,000 patients enabled the calculation of the phenotype performance with high 

precision (p=0.001). Nevertheless, it is the methodology and practice of population health 

phenotyping that this work seeks to inform. Only one EHR platform was studied, but the 

platform is one of the top six, and used by 55% of the customer base selected to 

implement population health systems within their local EHR. According to HIMSS, “less 

than a third U.S. hospitals surveyed are using a solution from their vendor for population 

health,” (FitzGerald, 2017). The single terminology product included in the study is 
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incorporated into several of the leading EHR systems, and is nearly universal within the 

industry.  Alternative terminology resources are U.S. National Library of Medicine 

(NLM) for SNOMED CT, and the Department of Health and Human Services for ICD-

10. Apelon® also offers an open source terminology product that supports HL7’s FHIR® 

Terminology Service. The value sets were drawn from a single source, the Value Set 

Authority Center, the repository for official versions of diagnosis value sets for 

regulatory quality programs such as Meaningful Use and Clinical Quality Measure. It is 

the only source of publicly available SNOMED value sets. 

Only three disease states were considered. Nevertheless, this study clearly demonstrates 

that each disease condition has its own unique challenges and characteristics. Diabetes is 

the sentinel disease in the phenotypes studied. Numerous studies have linked diabetes to 

CKD and heart failure, including United Kingdom Prospective Diabetes Study. UKPDS 

developed a model to estimate the lifetime health outcomes of patients with Type 2 

Diabetes based on their likelihood of developing renal failure, heart failure, ischemic 

heart disease, myocardial infarction, stroke, amputation, or blindness (Clarke, 2013). The 

prevention and treatment of CKD is a key priority of the Healthy People 2020 initiative 

coordinated by the U.S. Department of Health and Human Services. To that end Healthy 

People 2020 goals include increased testing of microalbumin levels in persons diagnosed 

with diabetes, and increased testing of serum creatinine, lipid, and microalbumin in 

persons with CKD (United States Renal Data System, 2017). CKD has been targeted as a 

model for improving chronic disease through electronic health records because the 

disease is common, and objective laboratory data is used for diagnosis and monitoring of 

disease progression (Drawz et al., 2015) (Navaneethan et al., 2013). The heart failure 



74 

 

algorithm was only designed to detect systolic failure, which lowers the LVEF. Diastolic 

failure was not included in the phenotype. 

Evidence in the reference standard was based on a limited dataset of discrete data. For 

example, diagnosis information was evaluated in problem lists and ambulatory encounter 

diagnoses. More evidence of disease state could be found in free text notes, scanned PDF 

files, external data records, and other discrete locations for diagnosis codes such as 

inpatient diagnoses or billing records. Information on patient deaths and change of health 

care provider impact cohort size as well, but this information is not routinely entered into 

the clinical record because these patients no longer have an active patient relationship 

within the health system. More data, however, does not necessarily mean better data. 

Each new data source for each disease state needs to be evaluated at the local level in 

isolation to avoid adding data that will introduce more uncertainty and noise than 

valuable insight. Associations between data could also be used as to improve phenotype 

performance. For example, in CAC systems, the computer can use a crosswalk table to 

determine which ICD diagnosis codes and CPT procedure codes can be used together 

(Jiang et al., 2006).  A recent review of published phenotype studies show that 

probabilistic methods and NLP techniques have been gaining popularity as compared to 

rule-based systems (Shivade et al., 2014). 

 

6.3 Future Work 

As value-based care becomes more prominent both as a care paradigm and a 

reimbursement philosophy, the number of organizations engaged in population health 

interventions is on a steep growth curve. A HIMSS Analytics survey of 104 IT leaders in 
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U.S. hospitals found that the number of organizations with population health programs 

has grown from 67% to 76 % from 2015-2016 (FitzGerald, 2017). Key challenges 

reported focused on technology, data and resources. To achieve improvements in 

analytics, performance measurement, and care coordination, population health tools must 

continue to develop in sophistication, while also becoming easier to use. There is a 

knowledge gap about what needs to be done, and proper implementation and roll out of 

programs (FitzGerald, 2017).  

As health care providers strive deliver quality care and meet measurement targets, 

dynamic registries in the EHR that automatically refresh in near real-time are 

fundamental building blocks for the delivery of population health interventions.  

 

“Population Health adopters averaged lower acute occupancy rates than non-

adopters. Hospitals with 501+ beds that adopted population health average 36% 

lower occupancy rates than non-adopters,” (FitzGerald, 2017)   

 
Well implemented population health programs will underpin the success of the transition 

to value-based care, and ultimately to the reduction of the burden of chronic disease. 

However the current trajectory is challenged by high levels of complexity with regard to 

patient diagnosis. To meet the demands of quality measures and regulatory reporting, a 

move away from complex custom development to scalable, agile methods could provide 

the best path forward. Kannan et al. (2017) were able to accelerate the deployment of 

population registries using a finite set of core principles and a re-usable technology 

toolkit. Although the development of accurate population health phenotypes will 
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continue, perhaps an improved short-term solution would be to build population health 

interventions based on a common treatment plans instead of a specific diagnosis.  

 

 

Figure 14.  Process drives outcome: transformation of individual care to population 

impact (Sitapati, A. M., Berkovich B., 2017) 

 

Recurring process cycles applied individuals are at the core of the population health 

model as shown in Figure 14 Process drives outcome: transformation of individual care 

to population impact.  Chronic care treatment plans frequently follow similar patterns of 

clinic visits, lab tests, and medication adjustments. When the right cohort receives the 

right care, and achieves the right impact, the population effects reduce adverse events, 

costs, and newly diagnosed cases.  Population health interventions of the future may rely 

more heavily on computer-based recommendations to assist clinicians in optimizing 

complex long-term chronic care planning. Yet there are ample opportunities for 

population health programs of today to effectively and efficiently deliver personalized 

plans to benefit of the whole patient population. 
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Appendix A: Literature Review Search Terms 

 

Table 16. Literature search terms and results 

 

 Search Intent Articles returned  

1 (("Heart Diseases"(Zheng, Yarzebski, Ramesh, 

Goldberg, & Yu) OR heart disease(Zwinderman et al.) 

OR cardiovascular disease[tw]) OR  

("Diabetes Mellitus"[Mesh] OR "Diabetes 

Insipidus"[Mesh] OR Diabetes[tw]) OR  ("Renal 

Insufficiency, Chronic"[Mesh] OR chronic kidney 

disease[tw])  

 

To identify a set of articles addressing the 

treatment of Diabetes,  Chronic Kidney 

Disease, or Heart Disease 

 

1,594,280   

2 "Quality Indicators, Health Care"[Mesh] OR 

"value sets"[Title/Abstract] OR Quality 

Indicators[Title/Abstract] 

 

To identify a set of articles addressing 

quality indicators for health care or “value 

sets” 

18,103 

 

3 "Vocabulary, Controlled"[Mesh] OR "Systematized 

Nomenclature of Medicine" OR "SNOMED" OR 

 "International Classification of Diseases" OR  

Phenotype OR phenotyping 

 

To identify a set of articles about use of a 

controlled vocabulary like SNOMED or the 

International Classification of Diseases for 

phenotyping 

458,707 
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 Search Intent Articles returned  

4 ("Electronic Health Records"[Mesh] OR "Electronic 

Health Record"[Text Word] OR Electronic Medical 

Record [Text Word] OR "EPIC"[Text Word] OR 

"Medical Records Systems, Computerized"[Mesh]) 

To identify a set of articles about Electronic 

Health Records or alternate terms for EHRs 

 

 

35,930  

5 ("Vocabulary, Controlled"[Mesh] OR 

"Phenotype"[Mesh] OR  

"Systematized Nomenclature of Medicine" OR 

"SNOMED" OR 

 "International Classification of Diseases" OR "ICD" 

OR  Phenotype OR phenotyping) 

 

To identify a set of articles about use of a 

controlled vocabulary or Phenotype such as 

SNOMED or ICD  

 

477,503   

6 #1 AND #2 AND #3 Articles discussing Quality Indicators or Value 

Sets for Phenotyping in SNOMED or 

International Classification of Disease in the 

setting of Heart Disease, Diabetes, or Chronic 

Kidney Disease 

 

 

34  publications 

7 #1 AND #4 AND #5  Articles discussing Electronic Health Records 

using or phenotyping or controlled vocabularies 

like SNOMED or ICD the setting of Heart 

Disease, Diabetes, or  Chronic Kidney Disease   

 

193 publications 
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Appendix B: Electronic Phenotyping Evaluation Methods 

 Table 17. Methods used to evaluate electronic phenotypes (from literature search) 

 

 

Statistical 

Method 

Coded Terminology 

n=54 

Text Mining 

n=11 

Hybrid  

n=5 

Sensitivity 

25 

Anderson 2016 

Asao 2015 

Bagheri 2009 

Baker 2007 

Broberg 2015 

Coleman 2015 

Ferris 2009 

Floyd 2016 

Fort 2014 

Garvin 2013 

Kleinberg 2013 

Lawrence 2013 

Liaw 2011 

Navaneethan 2011 

Onofrei 2004 

Rosenman 2013 

So 2006 

Thiru 2003 AMIA 

Symp 

Thiru 2009 

Udris 2001 

Wei… Chute 2011 

Zhong 2015 

 

 

 

 

Brown & 

Sonksen, 2000  

Garvin 2013  

Liao 2015  

Murff 2011 

2x2 contingency 

table 

9 

Garvin 2013 

Kleinberg 2013 

Lawrence 2013 

Liaw 2011 

Onofrei 2004 

Wei… Chute 2011 

Wilke 2007  

 Brown 2000  

Nadkarni 2014 
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Appendix B: Electronic Phenotyping studies (cont.) 

 

 

 

Statistical 

Method 

Coded Terminology Text Mining Hybrid (both) 

Specificity 

18 

Anderson 2016 

Asao 2015 

Broberg 2015 

Coleman 2015 

Ferris 2009 

Floyd 2016 

Fort 2014 

Garvin 2013 

Lawrence 2013 

Liaw 2011 

Navaneethan 2011 

Onofrei 2004 

So 2006 

Udris 2001 

Wei… Chute 2011 

Zhong 2015 

 

 

 Liao 2015 

Murff 2011 

Recall 

6 

Lieberman 2003 

Thiru 2003  

Thiru 2009  

Abhyankar 2014 

Wei… Chute 2010 

Zheng 2014 

 

Precision 

6 

Lieberman 2003  Abhyankar 2014 

Bromuri 2013 

Wei… Chute 2010 

Zheng 2014 

 

Agarwal 2016 

 

 

Accuracy 

6 

Anderson 2016 

Broberg 2015 

Lawrence 2013 

Liaw 2011 

Udris 2001 

 Agarwal 2016 
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Appendix B: Electronic Phenotyping studies (cont.) 

 

 

  

Statistical 

Method 

Coded 

Terminology 

Text Mining Hybrid  

PPV 

29 
Anderson 2016 

Andrade 2011 

Bagheri 2009 

Bobo 2011 

Borzecki 

Coleman 2015 

Ferris 2009 

Floyd 2016 

Fort 2014 

Garvin 2013 

Kleinberg 2013 

Lawrence 2013 

Liaw 2011 

Navaneethan 2011 

Onofrei 2004 

Rosenman 2013 

So 2006 

Thiru 2003 

Thiru 2009 

Udris 2001 

Wei… Chute 2011 

Wei… Chute 2013 

Wei…Denny 2015 

Zhong 2015 

 

 

  

NPV 

10 

Anderson 2016 

Floyd 2016 

Lawrence 2013 

Liaw 2011 

Navaneethan 2011 

Onofrei 2004 

So 2006 

Udris 2001 

 Liao 2015 

Nadkarni 2014 
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Appendix B: Electronic Phenotyping studies (cont.) 

 

 

  

  

Statistical 

Method 

Coded Terminology Text Mining Hybrid (both) 

AUC/ROC 

5 

Lawrence 2013 

Thiru 2003  

Thiru 2009 

Wei…Denny 2015  

 

 

 Murff 2011 

Simple % match 

2 

Meyers 2011 Hulse 2013  

Odds Ratio 

1 

  Liao 2015 

Coverage 

1 

  Bromuri 2014   

Predicted 

Prevalence Ratio 

1 

Asao 2015 

  

Bayes theorem 

1 

   Abhyankar 2014 

Hamming loss/ 

Ranking loss 

1 

  Bromuri 2014  

Total 

N=61 unique   54 11 5 
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Appendix C: Value Set Authority Center Downloads 

 

Table 18. VSAC Value Sets for Diabetes, Chronic Kidney Disease, Stage 5, and Heart 

Failure 

Diabetes 

OID   

2.16.840.1.113883.3.464.1003.103.11.1001 Diabetes ICD-9-CM 

2.16.840.1.113883.3.464.1003.103.11.1002 Diabetes ICD-10 

2.16.840.1.113883.3.464.1003.103.11.1003 Diabetes SNOMED 

Chronic Kidney Disease, Stage 5 

OID   

2.16.840.1.113883.3.526.2.1035 Chronic Kidney 

Disease, Stage 5 

 

ICD-9-CM 

2.16.840.1.113883.3.526.2.1036 Chronic Kidney 

Disease, Stage 5 

 

ICD-10-CM  

 

2.16.840.1.113883.3.526.2.1037 Chronic Kidney 

Disease, Stage 5 

 

SNOMED CT 

 

Heart Failure 

OID   

2.16.840.1.113883.3.526.2.23 Heart Failure 

 

ICD-9-CM 

2.16.840.1.113883.3.526.2.24  Heart Failure 

 

ICD-10-CM  

 

2.16.840.1.113883.3.526.2.25 Heart Failure 

 

SNOMED CT 
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Appendix D: Reference Standard for Diabetes 

 

The Type 2 Diabetes Mellitus phenotype developed by the eMERGE network was used 

as the reference standard with limited modifications (Pacheco, 2012).  This research 

phenotypes presented some challenges when applied to the context of population health 

cohorts. It’s design as a research phenotype used positive and negative case selection 

algorithms to find highly specific cases and controls in a sampling methodology. 

Population health programs require that every patient in an active patient population be 

included or excluded from a disease cohort. Detailed analysis of patient inclusion and 

exclusion as it occurred for each rule revealed logic errors, missing or undetected data, 

contradictory or ambiguous data, and the unavailability of standard LOINC (laboratory 

codes). Table 19 eMerge diabetes reference standard findings N= 201,913 details the 

numbers of patients selected for inclusion based on each of the five phenotype rules.  

Each row of the table represents a rule. The phenotype algorithm identified 11,278 

patients with diabetes in study population of 201,913. Of those, 914 patient had a 

diagnosis of Type 2 diabetes and had taken Type 2 diabetes medications before starting 

Type 1 diabetes medications. Another 6,619 patients had a diagnosis of Type 2 diabetes 

and had taken Type 2 diabetes medications (with no evidence for Type 1 diabetes 

medications). 1,483 patients had a diagnosis of Type 2 diabetes and abnormal diabetes 

lab results. 1,129 patients had Type 2 diabetes medication and abnormal diabetes lab, but 
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no diabetes diagnosis. 1,133 had a two or more Type 2 diabetes diagnosis and Type 1 

diabetes medication (no evidence of Type 2 diabetes medication).  

 

Table 19. eMerge diabetes reference standard findings N= 201,913 

eMerge 

Phenotype 

Rule 

Count 

of 

patients 

 

Type 2 

diabetes 

DX 

Type 1 

diabetes 

Med 

Type 2 

diabetes 

Med 

Type 2 Med  

prescribed before 

Type 1 Med  

Abnormal 

diabetes 

 Labs 

 

1 914 Yes Yes Yes Yes  

2 6,619 Yes  Yes   

3 1,483 Yes    Yes 

4 1,129   Yes  Yes 

5 1,133 Yes Yes    

Total 11,278      

 

Logic errors 

This algorithm requires that a type 2 diabetes diagnosis or medication is found in the 

patient record before evaluating the diabetes labs (random glucose, fasting glucose or 

Hemoglobin A1c). Further analysis of the study data revealed that 1385 patients excluded 

from the Type 2 diabetes cohort had two A1C results greater than 6.5 at least 90 day 

apart.  The concept of persistence, i.e. abnormal test results that persist over a period of 

time can be used in phenotyping to reduce the likelihood that a test results was reported 

in error or is related to a temporary condition that would not benefit from chronic care 

management.  
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Therefore, phenotype algorithms that make diagnoses a precondition for evaluating 

laboratory test may be inadvertently excluding true diabetics. Since diabetic patients 

receiving effective treatment may have normal glucose and A1c lab results, it may also 

be overly restrictive for a diabetes phenotype algorithm to require abnormal lab results 

before searching for a diabetes diagnosis or medications. 

Missing or undetected data 

In the operationalization of the diabetes reference standard phenotype, the problem list, 

and ambulatory encounter diagnoses were searched for matching diagnosis codes. There 

are a number of other locations within the electronic health record where diagnosis data is 

stored. Discrete diagnosis data is also captured as medical history, inpatient diagnoses, 

billed diagnoses. Free-text clinical notes have diagnosis information that is largely 

inaccessible to rule-based algorithms that depend on discrete data.  

Contradictory or ambiguous data 

Of the 1,385 patients had persistent abnormal A1c (two labs greater than 6.5 over a 

period greater than 90 days). Further analysis of the data revealed that 715 patients had 

both Type 1 and Type 2 diabetes definitions. Of those 209 had only a single Type 1 

diagnosis and Type 2 diagnosis counts ranging from 1-82. 

Challenges with the implementation of LOINC laboratory codes 

The eMERGE algorithm specified LOINC terminology codes to identify labs used for 

diabetic patients. Since lab results in the test EHR did not uniformly capture LOINC 

codes, local laboratory codes were substituted. This demonstrates that although certified 

EHR systems must support LOINC standards, the implementation of interfaces and 

workflows to capture this data may not be implemented at the local level. Table 20 Local   
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diabetes lab result component names used in lieu of LOINC codes details the local names 

used for each component. 

Table 19. Local diabetes lab result component names used in lieu of LOINC codes 

Laboratory Test Component Name 

Hemoglobin A1C Glyco HG (A1C) 

 HEMOGLOBIN A1C-MEDCOM 

 HEMOGLOBIN A1C-QUEST 

 HEMOGLOBIN A1C-LABCORP 

 HEMOGLOBIN A1C (POCT) 

 HEMOGLOBIN A1C / HEMOGLOBIN TOTAL –LABCORP 

  

Glucose GLUCOSE 

 GLUCOSE (POCT) 

 GLUCOSE-QUEST 

 GLUCOSE-LABCORP 

  

Fasting glucose GLUCOSE, FASTING -LABCORP 

 GTT FASTING-QUEST 

 GTT 0-MIN 

 GTT 30-MIN 

 GTT 1-HOUR 

 GTT 2-HOUR 
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Appendix E: Recommendations for Population Health Programs 

 

Table 21. Recommendations for population health programs 

Observation Recommendation Goal 

 

1 

 

Current versions of national 

value sets for diagnosis cohorts 

were not designed for, and may 

not be sufficiently accurate to 

drive clinical interventions. 

 

Quality dashboards for 

clinicians are being developed 

in parallel with quality 

dashboards for reporting. 

 

 

 

The value set model should 

be expanded to a phenotype 

model. Population health 

programs need to look 

beyond readily available 

diagnosis codes to deliver 

patient cohort definitions 

designed for actionable 

interventions. 

 

 

National phenotypes 

will increase the 

efficiency of population 

health programs by 

sharing the burden for 

phenotype development 

for clinical 

interventions and 

quality reporting 

2 EHR systems that use 

terminology vendors to map 

local codes and proprietary 

terms to ICD-9, ICD-10 and 

SNOMED are widely used.   

VSAC chronic disease value 

sets that are purportedly 

synonymous may have 

significant variation based on 

the choice of ICD or SNOMED 

terminology. There was little 

variation between ICD-9 and 

ICD-10 value sets in the 

conditions tested. 

ICD should be the preferred 

diagnosis coding 

terminology for the retrieval 

of population health cohorts 

in national value sets.  

 

The hierarchical structure of 

the SNOMED concepts, 

coupled with the low 

interrater reliability for 

SNOMED coding combine 

to make the retrieval of 

SNOMED cohorts more 

subject to unanticipated 

variability. 

A clinically relevant 

and consistent set of 

national value sets and 

phenotype rules will 

improve the accuracy 

and consistency of 

reported quality 

measures 

 

NOTE: This 

recommendation would 

not apply to EHR 

systems that apply 

diagnoses in Native 

SNOMED CT 
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Table 21. Recommendations for population health programs (cont.) 

 Observation  Recommendation 

 

Goal 

3 VSAC value sets are published 

without any quantitative 

measurement or rating of 

performance 

STARD (Standards for 

Reporting Diagnostic 

Accuracy) should inform 

the essential list of items to 

report in a study of 

population health value sets 

and phenotypes. 

 

 

Reporting standards for 

population phenotype 

studies will facilitate 

comparisons between 

different approaches. 

 

 

4 

 

Although the focus on 

population health programs is 

often centered on the 

technology, the social aspects of 

system development 

implementation and 

measurement apply 

 

 

 

Multidisciplinary teams 

improve the likelihood of 

success for population 

health programs. 

 

ROI on population 

health IT will be 

increase with the use of 

good implementation 

and monitoring 

processes  

 

5 

 

Use of existing standards such 

as LOINC and  RXNORM are 

not fully implemented and new 

standards such as visit types, 

common definitions of active 

patients, outcomes such as 

hemorraghic events are needed.  

 

 

Quality programs should 

increase demands for the 

use of standard 

terminologies in quality 

reporting.  

 

Where national value sets 

are not yet mandated, the 

reporting of value sets used 

in report cohorts would 

provide a valuable raw data 

set with which to inform 

future phenotype research 

 

 

Health system 

interoperability and the 

foundations of the 

Learning Health system 

require the use of 

standardized 

terminologies. 
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