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Many studies of Respiratory Syncytial Virus (RSV) have relied on analyses of the 

Major Surface Glycoprotein G gene (G gene). Global transmission patterns have not been 

well studied due to lack of systematic global surveillance efforts. This study used 

phylogenetic analysis of full genome data, categorized by geo-region, to determine the 

sources of RSV A and B infection in Chile and Houston, Texas. Additionally, disease 

severity studies have generally focused on outcomes associated with a single genotype. In 

this study we developed a statistical phylogenetic approach to explore the relationship 

between tree topology and disease severity. Disease severity data included if the patient was 

given oxygen, if they were hospitalized, and if they were admitted to an intensive care unit.  

Global data was downloaded from GenBank, separated into RSV A and RSV B, 

aligned, and manually optimized. The United States and Canada region was overrepresented 

in the publicly available data, so subsampling was conducted to reduce selection bias. 

Starting trees were generated from the subsampled datasets using RAxML. Geographic traits 

and trait state transition rates were jointly estimated in a Bayesian statistical framework using 



BEAST. The global transmission network was estimated using the Bayesian stochastic search 

variable selection and a constant population with a HKY genetic substitution model. Trait 

associations were calculated using BaTS.  

For RSV A, the time to most recent common ancestor (tMRCA) was 1963.40 (95% 

BCI: 1946.15, 1969.60). For RSV B, the tMRCA was 1963.80 (95% BCI: 1959.50, 1967.33).  

Europe and Central Asia was a key source of RSV A and B transmissions for both Chile and 

Houston.  In addition, the Middle East and North Africa and Latin America and the 

Caribbean were sources of RSV transmission into Houston. For the RSV A clinical data, 

there were significant associations between disease severity and tree topology when 

analyzing all three traits together (AI 3.13 p<0.01, PS 22.39 p<0.01) and for oxygen (AI 0.98 

p<0.01, PS 9.32 p<0.01) and hospitalization independently (AI 1.92 p<0.01, PS 11.78 

p<0.01). No significant association was found between tree topology and ICU admission. No 

significant associations were found in the RSV B clinical data, which may be due to the 

small sample size and homogeneous outcomes in this group.  

Improved surveillance systems are needed to gain a better understanding of global 

transmission patterns to complement studies done of local transmission patterns, as global 

introductions play an important role in local outbreaks. Identifying genetic mutations that 

lead to more severe outcomes may help researchers target vaccine development.  

 

 



 
 

TABLE OF CONTENTS 

List of Tables ............................................................................................................................. i 
List of Figures ........................................................................................................................... ii 
List of Appendices ................................................................................................................... iii 
Background ................................................................................................................................1 

Literature Review.................................................................................................................1 
RSV Genome and Genotypes ........................................................................................1 
Epidemiology .................................................................................................................3 
Molecular Epidemiology and Global Transmission ......................................................6 
Patterns in Severity of Disease ......................................................................................8 
Knowledge Gaps ..........................................................................................................11 

Public Health Significance .................................................................................................11 
Specific Aims .....................................................................................................................13 

Methods....................................................................................................................................15 
Study Population & Data Set Compilation ........................................................................15 
Maximum Likelihood Phylogenetic Analysis ...................................................................17 
Bayesian Phylogenetic Analysis ........................................................................................17 
Discrete phylogeographical analysis..................................................................................18 
Bayesian Tip-Association Significance Testing Analysis .................................................20 
Ethics Statement.................................................................................................................21 

Results ......................................................................................................................................22 
Global Transmission Dynamics .........................................................................................22 

Global Distribution of RSV Samples ...........................................................................22 
Bayesian Phylogenetic Analysis ..................................................................................23 
RSV Global Transmission Patterns .............................................................................26 
Markov Jump Counts ...................................................................................................28 

Clinical Severity Analyses .................................................................................................30 
Clinical Data Description .............................................................................................30 
Bayesian Phylogenetic Analysis of Clinical Data .......................................................30 
Clustering Analysis of Clinical Severity......................................................................32 

Discussion ................................................................................................................................35 

Conclusion ...............................................................................................................................41 

Appendices ...............................................................................................................................43 

References ................................................................................................................................46 
 



i 
 

LIST OF TABLES 

Table 1. Number of Cases by Disease Severity Traits for RSV A and RSV B .......................30 

Table 2. Clustering of Disease Severity Traits for RSV A ......................................................33 

Table 3. Clustering of Disease Severity Traits for RSV B ......................................................34 

Table B1. Rates and Level of Support for RSV A Transmission ............................................43 

Table B2. Rates and Level of Support for RSV B Transmission ............................................45 

 
 
 
  



ii 
 

LIST OF FIGURES  

Figure 1. Distribution of Subsampled Sequences by Geo-Region ..........................................23 

Figure 2. Bayesian Maximum Clade Credibility Tree for Global RSV A...............................24 

Figure 3. Bayesian Maximum Clade Credibility Tree for Global RSV B ...............................25 

Figure 4. Map of Global Transmission Rates for RSV A ........................................................26 

Figure 5. Map of Global Transmission Rates for RSV B ........................................................28 

Figure 6. Markov Jump Count Heat Map for RSV A ..............................................................29 

Figure 7. Markov Jump Count Heat Map for RSV B ..............................................................29 

Figure 8. Clinical Maximum Clade Credibility Trees for RSV A ...........................................31 

Figure 9. Clinical Maximum Clade Credibility Trees for RSV B ...........................................32 

Figure A1. Distribution of Sequences by Geo-Region for RSV A(a) and RSV B(b) .............43 

 
 



iii 
 

LIST OF APPENDICES 

Appendix A:  Distribution of Global RSV Samples ................................................................43 

Appendix B:  Transmission Rates for RSV and Level of Support ..........................................43 

 
 
 

  



1 
 

BACKGROUND  

Literature Review  

Respiratory Syncytial Virus (RSV) was first isolated in 1956 in Chimpanzees by Dr. 

J.A. Morris and colleagues (Orga, 2004). It was isolated from humans for the first time later 

that year from two infants, one with pneumonia and one with croup (Chanock, et al., 1962). 

One of the first RSV epidemiological studies in 1962 noted that “RS virus appears to become 

disseminated extensively in the pediatric population every year (Chanock, et al., 1962).” 

Today we have more information on the epidemiology of the disease and its ubiquitous 

nature; it is estimated that almost every child has been infected by the age of two (Bont, et 

al., 2016). In the era of genetic sequencing, efforts to study transmission and severity through 

phylogenetics originally focused on partial sequencing of the G gene, which codes for the 

attachment glycoprotein (Schobel, et al., 2016), but the focus has recently shifted to 

collecting and using full genome data in analyses to better understand transmission dynamics 

not readily apparent in traditional epidemiologic and G gene data. 

RSV Genome and Genotypes 

RSV is an enveloped, negative-sense, single-stranded RNA virus, with a non-

segmented genome that is about 15,000 nucleotides long (Borchers, et al., 2013). Along with 

the mumps virus and parainfluenza, RSV is a member of the Paramyxoviridae family and of 

the genus Pneumovirus. The virus has two major antigenic types, A and B, which are 

classified by differences in reaction to monoclonal antibodies, although there is significant 

genetic variability within each group (Duvvuri, et al., 2015; Orga, 2004).   
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The RSV genome has 10 genes that code for 11 proteins (Schobel, et al., 2016). 

Genes G, F, and SH code respectively for attachment glycoprotein, fusion glycoprotein, and 

small hydrophobic protein, which play roles in viral attachment and entry to host cells 

(McLellan, Ray, & Peeples, 2013; Tan, et al., 2013). The remaining genes code for 

nonstructural proteins (NS1 and NS2), nucleocapsid protein (N), phosphoprotein (P), matrix 

protein (M), transcription regulators (M2-1 and M2-2), and large polymerase (L) (Schobel, et 

al., 2016; Tan, et al., 2013). 

The G gene produces the key surface glycoprotein in viral binding to host cells and is 

often called the attachment protein (McLellan, Ray, & Peeples, 2013). This gene has 

traditionally been the focus of studies on the evolutionary history of RSV because there is a 

hypervariable region at the C-terminus that contains most of the genetic variation in the 

genome (Schobel, et al., 2016). Before whole genome sequencing for RSV was widespread, 

it was easier to base analyses on this section of the gene since it was thought to be the 

location demonstrating most evolutionary signals (Schobel, et al., 2016). It has also been 

suggested that the lack of cross-immunity between types and genotypes is due to variation in 

the G gene (Tan, et al., 2013). Genotypes of RSV are currently classified by this 

hypervariable region in the G gene (Hibino, et al., 2018). There has been disagreement on the 

classification and naming of RSV genotypes, but there are two that are easily identified due 

to insertions in the G gene: RSV A genotype ON1 and RSV B genotype BA.  RSV A 

genotype ON1 has a 72-nucleotide duplication that is not present in other common A 

genotypes, such as NA1 and GA2 (Schobel, et al., 2016). RSV B genotype BA has a similar 

duplication in the same region that is 60-nucleotides long, this duplication is also missing in 
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other genotypes of B (Schobel, et al., 2016). ON1 and BA have been the dominant genotypes 

in recent outbreaks (Cui, et al., 2013; Tabatabai, et al., 2014).  

The F gene, which is sometimes analyzed in conjunction with the G gene, codes for 

another surface glycoprotein that is key to viral entry to host cells (Schobel, et al., 2016). 

This protein has a pre-fusion form and a post-fusion form, and critical antigenic sites in the 

protein have been used in vaccine design (Hause, et al., 2017). Compared to G gene, the F 

gene is well-conserved across all genotypes of both RSV A and B (McLellan, Ray, and 

Peeples, 2013). A study conducted by Hause and colleagues found more genetic variability 

than previously thought, especially in the pre-fusion antigenic sites, and more variations in 

RSV B sequences than RSV A sequences (2017). Another gene that plays a role in viral entry 

and is often not included in epidemiologic analyses is the SH gene. SH codes for the small 

hydrophobic protein that changes the permeability of the host membrane and aids in viral 

entry to host cells, although it is not necessary for entry (Tan, et al., 2013).  

Epidemiology 

In temperate climates, RSV circulation shows seasonal patterns similar to seasonal 

influenza, with peaks in the winter months and fewer infections in the summer. In the 

Northern Hemisphere, the season normally starts in October or November and ends in March 

or April, with an epidemic peak occurring between December and February (Bont, et al., 

2016). Like influenza, RSV can spread through aerosolized droplets generated by coughs or 

sneezes, and the virus is able to live on hard surfaces for several hours (CDC, 2017). 

According to the US Centers for Disease Control and Prevention (CDC), children are most 

often exposed to the virus at school or day-care and then cause household transmission 
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(CDC, 2017). Historical data are largely focused on the United States, although more recent 

studies on the epidemiology of RSV have been conducted in a large number of countries 

around the world. Increasing the number of countries and regions represented in the publicly 

available dataset makes it possible to study the larger patterns of disease transmission. 

RSV infections usually cause mild, cold-like signs and symptoms, but high-risk 

populations can develop more severe complications, including bronchiolitis, pneumonia, 

and/or death. RSV “has a propensity for causing bronchiolitis,” and often produces a form of 

the disease that is longer in duration and more severe than bronchiolitis from other causes 

(Pickles & DeVincenzo, 2017). High-risk populations listed by the CDC include infants 

under 6 months of age, infants born prematurely, especially if the infant has chronic lung or 

heart disease, children with reduced immune function, and adults over the age of 65, 

especially those with weakened immune system or chronic heart or lung disease (CDC, 

2017). Although the risk of severe complication requiring hospitalization is higher in infants 

with chronic diseases and premature birth at the individual level, the majority of admissions 

occur in children who are not high-risk (Bont, et al., 2016). Over 70% of pediatric hospital 

admissions for RSV have no underlying medical conditions, so although their individual risk 

is lower, previously healthy children make up the majority of cases (Bont, et al., 2016).  

A meta-analysis of all available epidemiologic studies on RSV to determine its global 

impacts, conducted by Shi and colleagues, found that 22% of all severe cases of acute lower 

respiratory infections were due to RSV in children under the age of 5, resulting in around 3.2 

million hospitalizations and 59,600 deaths in hospitals (2017). Almost half of the 

hospitalizations and deaths, 1.4 million and 27,300 respectively, occurred in children under 
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six months of age (Shi, et al., 2017). The original Global Burden of Disease Study estimated 

that 6.7% of all deaths in children 1 month to 1 year old were due to RSV, as were 1.6% of 

all deaths in children ages 1 to 4 (Lozano, et al., 2012). The rate of hospitalization and case 

fatality rates within hospitals varied by the country’s income level as defined by the World 

Bank. Lower hospitalization rates were found in low income countries and rates increased as 

the economic situation of the country improved (Shi, et al., 2017). Two reasons for this 

discrepancy is poor access to care in resource constrained locations, and poor care-seeking 

behavior, although Shi and colleagues do not state whether this is due to a family’s inability 

to pay or mistrust of the medical system (2017). Case fatality rates trended in the opposite 

direction; death rates were higher in low income countries and the rates decreased as income 

status increased (Shi, et al., 2017).   

To date, the Shi study has been one of the most comprehensive reviews of the burden 

of RSV globally, although it is likely that the true burden of the disease has been 

underestimated because the study only counted cases that were admitted to the hospital. In 

places where access to medical care is limited, patients may not be able to go the hospital and 

those cases would go unreported and unaccounted for in this burden analysis. The 

underestimation is compounded by gaps in the data, as there are many areas of the world 

where data on RSV have not been collected (Shi, et al., 2017). To address this problem, the 

World Health Organization launched the Global RSV Surveillance pilot, which “aims to test 

the feasibility of leveraging the Global Influenza Surveillance and Response System platform 

for RSV surveillance without adversely affecting the well-established surveillance of 

influenza (WHO, 2017).” More data on the distribution of RSV and its molecular 
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epidemiology will aid efforts to better understand the transmission patterns and determinants 

of disease in order to better control its spread, and eventually to design effective RSV 

vaccines (WHO, 2017). 

Molecular Epidemiology and Global Transmission 

Many studies have focused on local circulation patterns of RSV genotypes across 

seasons or within a single season using local surveillance data (Hibino, et al., 2018; de-Paris, 

et al., 2014; Esposito, et al., 2015; Tran, et al., 2013; Panayiotou, et al., 2014). The dominant 

type can alternate between A and B across seasons, and the dominant genotypes can also 

change across seasons. For example, RSV A genotype NA1 was the dominant type in Japan 

before the introduction of ON1, which then became the dominant genotype (Hibino, et al., 

2018). Multiple genotypes from both RSV A and B types can circulate concurrently within a 

single season, increasing the complexity of circulation patterns. (Schobel, et al., 2016). Many 

studies conducted on the distribution of RSV focus on identifying the dominant and co-

circulating genotypes in one location and provide limited analysis of the geographic 

transmission (Hibino, et al., 2018; de-Paris, et al., 2014; Esposito, et al., 2015; Tran, et al., 

2013). Very few studies connect this local data to publicly available global data to place local 

outbreaks in the context of the larger phylogenic tree, which would allow investigators to 

make inferences about the source of the disease in their country or locality and about global 

transmission patterns.   

Global transmission patterns have not been well studied due to lack of systematic 

global surveillance efforts and the resulting large gaps in the information available to 

investigators (Duvvuri, et al., 2015; Zou, et al., 2016). One of the few studies to take the 
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global view, focused only on the distribution of the ON1 genotypes, as defined by the G gene 

(Duvvuri, et al., 2015). They estimated that ON1 emerged in 2007 or 2008 in Ontario, 

Canada, and by the time the study was conducted it had been detected on every continent 

(Duvvuri, et al., 2015). The phylogenic tree produced in the study did not appear to show a 

strong association between clade and geography, although this could be due to the limited 

amount of data available (Duvvuri, et al., 2015). Duvvuri and colleagues suggested that 

irregular clusters, such as one including Canada, United States, Thailand, and Italy, could be 

due to patterns in travel (2015). One limitation of this study is that they used data only on the 

second hypervariable region of the G gene, instead of using a whole genome approach to 

infer global patterns (Duvvuri, et al., 2015). 

Another study analyzing sequences from Guangdong, China, in conjunction with 

sequences from publicly available strains indicated the dominant strains GA2 and ON1 

originated in the Americas before spreading to other regions (Zou, et al., 2016). The 

investigators noted that this result could be due to bias in the dataset, since most early 

samples are from the United States and much of the available data is also from this country 

(Zou, et al., 2016). In the phylogenetic tree generated by the study, they found that many 

clades contained viral strains from multiple geographic areas, but several clades represented 

only Guangdong (Zou, et al., 2016). This indicates that there were introductions of RSV from 

other regions, but seasonal epidemics may also have been seeded by locally persistent strains 

of the virus (Zou, et al., 2016). However, analyses are biased towards identifying local 

persistence because of a lack of information from other regions (Zou, et al., 2016).  
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The Zou study had two main limitations: their analysis relied on just G gene 

sequences, similar to many other molecular epidemiologic studies; and their geographic 

analyses relied on four large regions, which limits the utility of the findings (Zou, et al., 

2016). Reliance on the G gene does not present the whole evolutionary history of the virus, 

but RSV whole genome analyses are rare. One study conducted by Bose and colleagues 

found a similar pattern to Zou (2016). Their analysis found several genotypes were 

circulating simultaneous across the globe, but that some rarer genotypes were only found 

within one area; which is probably due to inconsistent surveillance around the world as these 

rare genotypes were found in areas with more data (Bose, et al., 2015). Unlike the Zou study, 

Bose and colleagues did not note a strong relationship between geographic location and 

clades on the phylogenic tree, which indicates that RSV is not evolving independently and 

separately in one locale and there is interaction between regions (Bose, et al., 2015).  

As more whole genome data has become available and more advanced 

phylogeographic methods are developed, global transmission patterns of RSV can be better 

explored. Understanding both local and global dynamics using a phylogeographic approach 

will reveal the relative importance of international introductions in these seasonal epidemics 

and inform surveillance programs and control measures in the future.  

Patterns in Severity of Disease 

Although much attention has been paid to the severity of RSV infection in relation to 

host factors, such as immunosuppression or chronic health conditions, many studies indicate 

that severity is related to more than just host factors. Some viral genome characteristics can 

also be important determinants of viral pathogenicity, resulting in different levels of disease 
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severity. However, viral genetic characteristics and RSV pathogenicity have not been well 

connected. Most studies focus on the relationship between disease severity and RSV 

genotype with inconsistent results. One such study conducted over three epidemic seasons in 

Japan found that 35.6% of those infected with ON1 were hospitalized, indicating more severe 

disease, and this proportion was greater than all other measured genotype hospitalization 

rates (Hibino, et al., 2018). The odds ratio of hospitalization for those infected with ON1 to 

those infected with NA1 was 6.92:1, and there was no significant difference in the odds of 

hospitalization between NA1, BA9, and BA10 infections (Hibino, et al., 2018). Yoshihara 

and colleagues found similar results in Vietnam, where the risk of lower respiratory tract 

infections was 2.26 times higher in those with ON1 compared to those with NA1 (2016). 

This is opposed by results from a study in Northern Italy, in which NA1 was more likely to 

cause upper respiratory tract infections and require hospitalizations than ON1 (Esposito, et 

al., 2015). In a population where ON1 was not detected, Luchsinger and colleagues found 

that infection with NA1 was more likely to cause hospitalization and severe disease than two 

RSV B genotypes (2014). In Cyprus, researchers found that RSV A genotype GA2 and RSV 

B genotype BA both caused more severe disease than ON1 (Panayiotou, et al., 2014). They 

also found that a larger proportion of those infected with BA required oxygen, suggesting BA 

causes severe outcomes more frequently than other genotypes, in contrast to common results 

indicating that RSV A is more likely to cause severe disease (Panayiotou, et al., 2014). 

Espinosa and colleagues also looked for a relationship between genotype and disease severity 

in Chile but did not find any significant interaction between viral type or genotype and 

disease severity (2017). 
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Since multiple studies have yielded mixed results, the links between genetic 

characteristics of RSV and disease severity are equivocal. Many studies have focused on 

relating genotype to severity, but these studies have been inconclusive due to limited sample 

size and the large variations within genotypes. The reliance on just the G gene in genotyping 

may also play a role in the muddled findings, since other genes inducing host immune 

responses are ignored. These other genes, especially the F gene, may have important genetic 

differences that lead to differences in disease severity, but these characteristics have not yet 

been identified because a genomic approach has rarely been applied in these analyses.   

A few studies on differences of disease severity among RSV strains have been 

conducted in vitro, which reported different levels of cytokine activation across strains, but 

not across genotypes. Levitz and colleagues (2012) studied the effects of different strains 

collected from patients to produce varying inflammatory cytokine (IL-6) responses. An 

increase in IL-6 production is part of the body’s immune response to RSV infection. Their 

analysis focused on RSV A, genotypes GA2, GA3, GA4, and RSV B and found that the level 

of IL-6, an inflammatory cytokine, varied greatly across strains within the same genotype, 

between RSVA and B, and by genotypes at the same level (Levitz, et al., 2012). A similar 

study by Thompson and colleagues (2015) observed disease severity in patients and 

compared severity with in vitro cytokine induction for four cytokines (IL-1α, IL-6, IL-8 and 

RANTES). There was no significant difference between strains in IL-6 levels, which differs 

from the results of the Levitz study, but instead there were significant differences between 

strains in the production of two other inflammatory cytokines, IL-8 and RANTES (Levitz, 

2012; Thompson, et al., 2015). There were no significant trends in activation of cytokines 
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across RSV types and genotypes, in contrast to many studies on disease severity which focus 

on genotyping discussed above (Thompson, et al., 2015; Hibino, et al., 2018; Esposito, et al., 

2015; Panayiotou, et al., 2014). These data support the use of full genome data when 

investigating the connection between disease severity and the strain of RSV, since few trends 

were seen across genotypes, which indicates that the genetic predictor of disease severity 

could be located in another part of the genome. 

Knowledge Gaps  

In summary, we have identified two major gaps in the literature on RSV transmission 

and disease severity: 1) RSV whole genome data has not been used for inferring global 

transmission patterns, and current studies rely solely on the G gene, so incomplete lineage 

sorting could be a confounding variable in relationships proposed by most of these studies; 2) 

RSV disease severity has been mostly studied at the genotype level, but strain-specific 

genetic characteristics have not been explored. These two gaps are critical to understanding 

the epidemiology and burden of RSV. A better understanding of RSV transmission patterns 

will help inform prevention strategies, and genetic characteristics related to disease severity 

could provide valuable information for antiviral drug and vaccine design.  

 
Public Health Significance 

RSV is important to public health because of its ubiquitous nature and the potential 

for severe complications in high-risk populations, including children under the age of 5 and 

adults over the age of 65. Assessments of the impact of RSV have focused on young 

children, so the burden of disease in the elderly often has been overlooked. It is estimated 
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that close to 60,000 hospitalizations each year in the United States could be attributed to RSV 

in children 5 years old and younger, and half a million emergency room visits every year 

(Breese Hall, et al., 2009). The number of hospitalizations of those over the age of 64 was 

estimated to be 180,000 per year in the United States, close to three times the number in 

children (Falsey, et al., 2005). A review of insurance claims data showed that the expense of 

hospital stays related to RSV was significantly higher than the cost for non-RSV controls 

across all age categories except for patients ages 5 to 17 (Amand, et al., 2018). The highest 

discrepancy in cost occurred in those ages 75 to 84, where an average of $17,211 was spent 

on non-RSV controls and an average of $40,405 was spent on RSV cases (Amand, et al., 

2018). These estimates do not include outpatient costs or lost productivity, so there is a large 

economic impact in addition to the burden on healthcare utilization (Amand, et al., 2018; 

Falsey, et al., 2005). 

It is estimated that almost everyone has been infected by the age of two, but this 

history of infection does not induce lifelong immunity (Brochers, et al., 2013). Since no 

vaccine currently exists, although there are several in various clinical stages of development, 

it is especially important to understand global and local transmission dynamics to inform 

infection control measures. In this study, we propose to explore the RSV strains from Chile 

and Houston, Texas, in the context of global transmission patterns inferred from publicly 

available full genome data to identify potential sources of infection during seasonal 

outbreaks. Chile and Houston were selected due to collaboration agreements between 

investigators at Baylor College of Medicine, University of Chile College of Medicine, and 
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Dr. Bahl at the University of Texas Health Sciences Center. These data will facilitate further 

exploration of transmission paths between geo-regions and inform prevention strategies.  

Viral genetic information paired with patient outcome information can elucidate the 

relation between the genetic characteristics of RSV and disease severity to target vaccine 

development on strains with the highest contributions to the burden of disease.  Although 

host factors, viral dose, and region of the lung infected all play important roles in the severity 

of disease, it is equally important to understand strain specific responses and severity since 

previous in vitro and epidemiological studies have investigated the link between RSV 

genotype and disease severity. The strains collected from Chile and Houston include 

information on patient outcomes (if the patient needed oxygen and admission to a hospital or 

intensive care unit), so clusters or specific genetic characteristics that are associated with 

high disease severity can be identified.  

 
Specific Aims  

Previously, much attention has been paid to local patterns of RSV infection and 

disease severity by genotype because local transmission was not well understood. Many of 

these studies indicate that dominant genotypes that were not previously present in their area 

were introduced from an outside source. As the understanding of local dynamics has 

improved and the amount of global data have increased, it has become possible to investigate 

transmission dynamics on a larger scale. Studies on these global patterns indicate that there is 

a mixture of local persistence and global introduction of RSV based on the G gene only, but 

no studies so far have tried to apply a source-sink model with RSV full genome data to infer 



14 
 

the global transmission pattern. Studies of disease severity have also focused on identifying 

the genotypes that caused the largest number of most severe cases, which has led to 

inconsistent conclusions due to the diversity within each genotype, and no studies have been 

conducted to investigate the relationships between strain-specific genetic characteristics and 

disease severity via the phylogenetic approach. With publicly available full-genome data 

from around the world, the samples from Chile and Houston, Texas, and detailed data of 

disease severity, we want to answer the questions: 1) What is the RSV global transmission 

pattern? 2) What are the sources of RSV samples collected in Chile and Houston, Texas 

between 1987 and 2014? 3) Are certain viral genetic characteristics associated with 

hospitalization and ICU admission in Chile and Houston? This information can help inform 

surveillance strategies, similar to what has been done with influenza, and help target vaccine 

development to protect against genetic characteristics associated with more severe outcomes.  

 Specific Aims:   

1. To understand where the isolates from Chile and Houston are located in the global 

tree and identify global transmission patterns using phylodynamic source-sink 

modeling. 

2. To explore the correlation between viral genetic characteristics and severe 

outcomes with clustering analyses. 
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METHODS 

Study Population & Data Set Compilation 

All publicly available RSV sequences with over 5,000 nucleotides were downloaded 

from GenBank (https://www.ncbi.nlm.nih.gov/genbank/). The accession numbers for each 

sequence were downloaded manually. Geographic and collection date information was 

abstracted from the textual and tabular contents of full-text publications by employing 

GeoBoost, which is a Java program to extract and normalize the location of infected host of 

viruses from the metadata files and related published records (Tahsin, et al., 2017). The 

associated metadata, including the date of collection and geographic data was matched with 

sequence data from GenBank via its unique accession number.  

The G, F, and SH gene data with detailed information on disease severity from Chile 

and Houston was shared by the collaborating investigators in Houston and Chile. Data from 

Houston were collected from children with lower respiratory infections between 1987 and 

2005. These samples have been used previously to study the genetic variability of the G, F, 

and SH genes (Tapia, et al., 2014). The data from Santiago de Chile were collected as part of 

a study investigating the effect of sequence variation of the G, F, and SH genes on immune 

response and disease severity (Tapia, et al., 2012). Older sequences from Chile are from 1990 

to 2010 and were sampled from the biorepository at the University of Chile. Strains from 

2010 to 2014 were taken from a cohort of RSV infected infants at Hospital Roberto del Rio 

during these outbreaks. Tapia and colleagues also conducted a chart review to abstract 

information on the patient’s age, sex, and disease severity. Disease severity was evaluated 
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with three dichotomous variables: given oxygen therapy, hospitalization, and admission to 

the intensive care unit (ICU). 

The full dataset from publicly available data and from collaborators was then 

separated into RSV A and RSV B for alignment and manual optimization. The data were 

aligned using MUSCLE v3.8.31 (Edgar, 2004). The aligned data were reviewed and cleaned 

using BioEdit (Hall, 2005). Manual optimization of the alignment was then conducted to 

correct artificial gaps inserted into the data by strains with non-base insertions (N instead of 

A, T, C, or G).  Strains without geographic information or the year of collection were 

removed. If no day information was available then the strain was assigned to the 15th of that 

month; if day and month information was missing then the strain was assigned to the first of 

July of that year. Duplicate strains were removed in RAxML and the oldest strain was 

retained (Stamatakis, 2014). TempEst (http://tree.bio.ed.ac.uk/software/tempest/) was used to 

identify outliers and investigate the temporal structure or signals of molecular clock in the 

dataset (Rambaut, et al., 2016). 

After outliers were removed from the dataset, the temporal and geographic 

distributions of RSV A and RSV B were analyzed in Tableau (https://www.tableau.com/) and 

it was determined that subsampling was necessary. Across several years, some countries 

were overrepresented in the data, which were then selected for subsampling. We defined 

overrepresentation as having more than 25 strains for RSV A and more than 20 strains for 

RSV B from one country in any given year. The selection of strains to be included in the 

subsample was conducted by randomly selecting accession numbers from the 

overrepresented groups to get the sample sizes above. Two subsampled datasets were 

http://tree.bio.ed.ac.uk/software/tempest/)
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generated for both RSV A and B for the purpose of sensitivity analysis and quality control. 

Strains that were not selected were excluded from further analysis to reduce sampling bias in 

the dataset. 

Maximum Likelihood Phylogenetic Analysis 

A maximum likelihood (ML) tree to preliminarily explore the phylogeny in the full 

dataset was generated in RAxML using the General Time Reversible (GTR) nucleotide 

substitution model with GAMMA distribution of rate heterogeneity among sites. The two 

subsampled datasets were also run through RAxML using the same substitution model. The 

resulting ML trees estimated the time to most recent common ancestor (tMRCAs) and the 

substitution rates were compared to each other and to the full dataset, in order to check the 

quality of the subsampling strategy. To evaluate the reliability of tree topologies, 

bootstrapping analyses were conducted with the extended majority rule consensus tree 

criterion (that is, autoMRE option in RAxML) which automatically determines the sufficient 

bootstrap replicates for getting stable support values. Trees rooted with mid-point root were 

visualized and colored in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). 

Bootstrapping values were shown on the tree nodes.  

Bayesian Phylogenetic Analysis 

The phylogeny of the subsampled datasets was reconstructed using Bayesian Markov 

chain Monte Carlo (MCMC) methods in the Bayesian Evolutionary Analysis by Sampling 

Trees (BEAST) v1.8.4 with the ML trees as starting trees (Drummond, et al., 2012). The tree 

topology, the evolutionary rates and tMRCAs were co-estimated. HKY nucleotide 

substitution model with GAMMA distribution of rate heterogeneity among sites was used to 

http://tree.bio.ed.ac.uk/software/figtree/
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depict the pattern of nucleotide changes (Hasegawa, Kishino, & Yano, 1985). The 

uncorrelated log-normal relaxed clock model was used to calibrate time information on tree 

branches (Drummond, et al., 2006). Due to computing constraints, a constant coalescent prior 

was used for the global datasets (Drummond, et al., 2002). To generate a set of empirical 

trees, two independent MCMC analyses with chain length of 150 million were run until 

reaching good convergence, with sampling every 15,000th generation and resulting in 10,000 

states or trees output in log and tree files, respectively. The empirical trees for RSV A and 

RSV B were then used for the global transmission analysis. Tracer v1.7 was then used to 

visualize and assess how well these runs have converged; the convergence of combined 

chains from two runs was determined to be acceptable when the estimated effective sample 

size (ESS) > 200 after removing the burn-in (Rambaut, et al., 2018). With well-converged 

runs, log and tree files from these runs were combined in BEAST LogCombiner. Then 

BEAST TreeAnnotator was used to annotate one maximum clade credibility (MCC) tree 

from the combined tree file. Uncertainty from Bayesian analysis was indicated by 95% 

highest posterior density (95% HPD) also called the 95% Bayesian Credible Interval. The 

estimated tMRCA and evolutionary rate were reported with mean value and 95% HPD, 

respectively.  

Discrete phylogeographical analysis   

To make inferences about global transmission dynamics and to guarantee sufficient 

samples in each geographic discrete trait, collection location (country) of each sequence was 

coded into six regions defined by the World Bank: East Asia and Pacific (EAP), Europe and 

Central Asia (ECA), Latin America and Caribbean (LAC), Middle East and North Africa 
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(MEN), South Asia (SA), Sub-Saharan Africa (AF) (World Bank Group, 2018). High income 

countries, which are not categorized by the World Bank, were added to the nearest region. In 

the results, Western Europe was categorized as a part of ECA, and Australia was in EAP. 

The United States and Canada (UC) region was created as an additional region. Houston and 

Chile were categorized as additional regions to assess transmission into and out of these 

locations, resulting in a total of nine regions as the discrete geographic traits. With the same 

substitution model, molecular clock and coalescent models from the previous section 

(“Bayesian Phylogenetic Analyses”), the Bayesian stochastic search variable selection 

(BSSVS) approach was applied to the sets of empirical trees generated above to find a 

parsimonious set of rates explaining the geographic diffusions in the phylogeny. Three runs 

with a chain length of 100 million were conducted. The process for checking convergence 

and combining the runs was similar to the procedure outlined above.  

 The BSSVS approach enabled us to construct a Bayes factor (BF) test to identify 

significant diffusion processes between discrete geographic traits (Lemey, et al., 2009). The 

criteria for significance of the BFs were in accordance with Kass and Raffery’s definition: 

BF≥3 is considered significant (1995). We further categorized the level of support into five 

groups: 3≤BF<6 as weak supported, 6≤BF<10 as substantial support, 10≤BF<30 as strong 

support, 30≤BF<100 as very strong support, and BF≥100 as decisive support (Bahl, et al., 

2013). Transmission pattern and BF results were visualized using SpreaD3 (Bielejec, et al., 

2016). 
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Furthermore, to quantify how many times the transmissions occurred between geo-

regions, Markov jump counts for each node of the ancestral reconstruction were assessed 

based on the global tree (Minin & Suchard, 2008). A non-reversible model was used to 

determine the directionality of the transmission, so that an asymmetric matrix was 

constructed to assess source-sink dynamics among the sampled geo-regions. Heat maps to 

represent the estimated jump counts between two locations were used to show the 

connections of geo-regions.   

Bayesian Tip-Association Significance Testing Analysis 

To explore the correlation between viral genetic characteristics and disease severity, 

the subset of data from Houston and Chile during 2010-2014 with disease severity 

information was used to conduct clustering analysis. G, F and SH genes were linked and 

analyzed as one set in the BEAST phylogenetic analysis. The uncorrelated log-normal 

relaxed clock model and HKY nucleotide substitution model with GAMMA distribution 

were used for the analysis of the local data (Hasegawa, Kishino, & Yano, 1985; Drummond, 

et al, 2006). For the local data, the GMRF Bayesian Skyride with time-aware smoothing 

process was used as the coalescent prior to accommodate changes in the effective population 

size (Minim, Bloomquist, & Suchard, 2008; Drummond, et al., 2002). The chain length was 

set to 100 million with sampling every 10,000th generation, and three runs were conducted. 

LogCombiner and BEAST TreeAnnotator were used to combine the log files and create one 

MCC tree.   

The MCC tree generated in BEAST for the data from Chile and Houston was 

analyzed further in Bayesian Tip-association Significance testing (BaTS) to determine if 
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there is a relationship between disease severity and tree topology (Parker, Rambaut, & Pybus, 

2008). Disease severity traits, analyzed as dichotomous variables, included if oxygen therapy 

was needed, if they were admitted to the hospital, and if they had to be admitted to an 

intensive care unit (ICU). These traits were analyzed together, and also separately to identify 

the association between single disease severity trait and genetic characteristics. A single 

configuration was run in the BaTS program, where an Association Index (AI), Finch’s 

parsimony score (PS), and a monophyletic clade (MC) size statistic were calculated to 

determine the strength of association. The AI tests for the consistency of a trait across 

internal nodes of the tree, and a lower number represents a stronger relationship between tree 

topology and the trait of interest. The PS takes into account the number of trait changes 

beyond each ancestral node, where the score is reported as an integer and lower numbers 

indicate a stronger relationship between the trait and tree structure. The MC statistic assumes 

that if a clade is monophyletic for the trait of interest, then the MC value is high and the 

relationship between tree topology is strong. Clusters that are significantly correlated with 

high disease severity were reported with the corresponding p-value.  

Ethics Statement 

All data used in this study were de-identified before we received the datasets from 

Chile and Houston. No further medical or demographic information was collected from these 

patients, and we did not have access to their medical records. The original data collection in 

Chile and Houston was carried out with IRB approval. Publicly available data from GenBank 

does not include protected health information or personal identifiers of patients from which 
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the samples were isolated. The protocol for this secondary data analysis was submitted for 

IRB approval within the University of Texas Health system and determined to be exempt.  

 
RESULTS 

Global Transmission Dynamics  

Global Distribution of RSV Samples 

 Originally, 1,186 RSV A sequences were downloaded from GenBank and 143 

samples came from collaborators in Chile and Houston. For RSV B, 486 sequences were 

downloaded from GenBank and 107 came from study collaborators. After removing 

duplicates, lab strains, and outliers, there were 1,123 RSV A sequences and 568 RSV B 

sequences (see Figures A1a and A1b for global distribution of these samples). After 

subsampling, there were 739 RSV A sequences and 474 RSV B sequences included in the 

analyses. Of 739 RSV A sequences, 54 were from Chile and 67 were from Houston. Of the 

474 RSV B sequences, 44 taxa were from Chile and 37 were from Houston. By geo-region, 

the vast majority of RSV A sequences were from the UC region (n=284), as were the 

majority of RSV B sequences (n=178). EAP (n=115) was the second most common region in 

the RSV A dataset, and ECA (n=74) was the second most common region among the RSV B 

samples. SA was the least common region; only two RSV A sequences came from SA, and 

no RSV B sequences came from this region (see Figures 1a and 1b for the distribution of 

sequences by geo-region). 
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Figure 1. Distribution of Subsampled Sequences by Geo-Region  

 

 
The number of RSV A (a) and B (b) sequences from each of the adapted World Bank regions included in the 
subsampled dataset for further analyses. 
 
  

Bayesian Phylogenetic Analysis  

 The MCC trees for RSV A and B were generated and coded by geo-region to make 

inferences about global transmission dynamics. The MCC tree for RSV A (Figure 2) has two 

large clusters that have been co-evolving and co-circulating. One cluster is largely made up 

of sequences from the UC region, with some small clusters from Houston, ECA, and LAC. 

The other large cluster was less dominated by the UC region and contained clusters from 

EAP, LAC, and AF. There were also smaller clusters from the MEN, Houston, and Chile. 

The tree shows two major lineages with bushy leaves in the more recent time period, which 

indicates intense sampling efforts in more recent times. Multiple lineages co-circulate over 

time suggesting a higher standing genetic diversity than observed in other RNA viruses 

causing respiratory disease, such as Influenza A virus. The longer branches on the older part 
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of the tree indicate that there was missing information, probably due to a lack of RSV 

surveillance, which increases the uncertainty of the tMRCA estimation. The RSV A tMRCA 

for the sample of publicly available data and the clinical data from Chile and Houston was 

estimated to be 1963.40 (95% BCI: 1946.15, 1969.60), with a mean substitution rate of 

7.43x10-4 substitutions/site/year. This is a relatively wide Bayesian credible interval, 

indicating the uncertainty of the estimation is increased by missing data at early stages of 

RSV surveillance.   

Figure 2. Bayesian Maximum Clade Credibility Tree for Global RSV A  

 
The MCC tree for RSV A color coded by geo- region. High income countries were added to the closest region, 
and the United States and Canada was added as another region.  
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The RSV B MCC tree (Figure 3) has a pronounced ladder shaped phylogeny with 

bushy leaves. Similar to the RSV A tree, there has been intensive surveillance in more recent 

times. In contrast, all co-circulating RSV B lineages have a more recent common ancestor 

from 2000.90 (95% BCI: 2000.88, 2001.93). The RSV B tree also has some long branches, 

which indicates that data is missing from the globally available dataset. The older clusters are 

mostly from the UC. The more recent clusters are mainly composed of strains from ECA, 

with smaller clusters from Chile, AF, EAP, and the UC. The RSV B tMRCA was 1963.80 

(95% BCI: 1959.50, 1967.33) with a mean substitution rate of 8.34x10-4 

substitutions/site/year. The Bayesian credible interval is relatively smaller, so this estimate 

has less uncertainty.  

Figure 3. Bayesian Maximum Clade Credibility Tree for Global RSV B 
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The MCC tree for RSV B color coded by geo-region. High income countries were added to the closest region, 
and the United States and Canada was added as another region. 

 

RSV Global Transmission Patterns 

The transmission rates and Bayes factors were generated to identify potentially 

important transmission routes on the global level. The key transmission routes for RSV A 

(Figure 4 and Table B1) were from ECA to LAC, EAP, AF, and EAP to MEN. These routes 

had the highest transmission rates (2.666, 2.086, 1.343, and 1.678 transitions per year, 

respectively) and had decisive statistical support (BF>100). ECA to the UC also had one of 

the highest transmission rates (2.523) but was not supported (BF<3).  

Figure 4. Map of Global Transmission Rates for RSV A 

 
Map of global transmission patterns for RSV A. Only transmissions with BF≥3 are shown. The color of the line 
indicates the level of support, and the weight of the line indicates the rate of transmission with thicker lines 
indicating a higher rate. Arrowheads indicate the direction of transmission. UC is the United States and Canada 
region, LAC is Latin America and the Caribbean, ECA is Europe and Central Asia, MEN is the Middle East and 
North Africa, AF is Sub-Saharan Africa, SA is South Asia, and EAP is East Asia and the Pacific. 
 

Transmission from LAC into Houston was weakly supported (3≤BF<6) and the rate 

was low (0.584 transitions per year). There was substantial support (6≤BF<10) for Houston 
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as a sink for EAP at a rate of 0.515 transitions per year. MEN and AF were strongly 

supported (10≤BF<30) sources of virus for Houston (0.841 and 0.425 transitions per year, 

respectively). Transmission routes from SA and ECA to Houston had decisive support 

(BF≥100), although the rate from SA (0.289 transitions per year) was much lower than the 

one from ECA (1.438 transitions per year). Houston was a very strongly supported 

(30≤BF<100) source of infection to MEN (0.787 transitions per year).  

Transmission from Chile to SA and from Chile to EAP is weakly supported 

(3≤BF<6), and rates for these transmissions were low (0.192 and 0.767 transitions per year, 

respectively). ECA was a substantially supported source of infection for Chile, at a rate of 

0.666 transitions per year, and EAP into Chile was strongly supported at a rate of 0.711 

transitions per year. There was decisive support for SA and LAC as sources of infection for 

Chile. The rate of transmission from LAC into Chile was 1.500 transitions per year, the 

highest rate of all transmissions involving Chile, and the rate from SA was very low (0.269 

transitions per year). Chile was a very strongly supported source of infection for ECA, with a 

rate of 1.476 transitions per year.  

In RSV B (Figure 5 and table B2), transmission routes from ECA to UC and to EAP 

had the highest rates (2.854 and 2.815 transitions per year, respectively), and these routes had 

decisive support (BF>100). Routes from ECA to AF, Chile, LAC, and MEN all have 

decisive support as well, although the rates are lower (0.500, 1.270, 1.620, and 1.398 

transitions per year, respectively). Transmission from MEN has strong support to Houston. 

Transmissions from LAC and ECA to Houston are very strongly supported. There is decisive 

support for transmission from the UC to Houston at a rate of 0.628 transitions per year and to 
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Chile at a rate of 1.27 transitions per year, and from Houston to the UC at a rate of 1.58 

transitions per year.  

Figure 5. Map of Global Transmission Rates for RSV B 

 
Map of global transmission patterns for RSV B. Only transmissions with BF≥3 are shown. The color of the line 
indicates the level of support, and the weight of the line indicates the rate of transmission with thicker lines 
indicating a higher rate. Arrowheads indicate the direction of transmission. UC is the United States and Canada 
region, LAC is Latin America and the Caribbean, ECA is Europe and Central Asia, MEN is the Middle East and 
North Africa, AF is Sub-Saharan Africa, and EAP is East Asia and the Pacific. 
 

Markov Jump Counts 

The complete history of the Markov jump counts was reconstructed to quantify jump 

events in a source-sink model. For global RSV A (Figure 6), the average number of 

transmissions between regions (“jump counts”) were highest from ECA to LAC (19.90), 

from ECA to the UC (18.62), and from the UC to Chile (17.94). AF, Houston, MEN, SA 

were the least common sources of transmissions. ECA was the most common source but not 

a major sink for any region. The most common source of transmission to Chile was the UC 

region. Chile was the most common source of transmission for ECA at an average of 5.93 
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jumps. ECA and the UC were the most common sources of transmission for Houston, at 9.96 

and 7.76 jumps, respectively. Houston was not a common source for any of the geo-regions.   

Figure 6. Markov Jump Count Heat Map for RSV A 

 
Darker colors indicate a higher average number of jumps from the source location (origin of transmission) to 
the sink location (destination of the transmission). A red star by the average number of jumps indicates that the 
transmission route has a BF≥3 meaning that it is supported.  
 

For the global RSV B (Figure 7), we observed that ECA was the most common 

source of transmission, with the average number of jumps being highest to the UC (32.63), to 

EAP (32.39), and to LAC (18.16). AF, Chile, EAP, LAC, and MEN were rarely the source of 

transmissions. The UC was the most common sink. The UC and ECA were the most 

common sources of transmission for Chile, with average jump counts of 16.49 and 6.39, 

respectively. Chile was not a major source of transmission for any of the geo-regions. The 

main sources of transmission into Houston were the same as those for Chile. Houston was a 

source of transmission for the UC (8.95), although it was not the major source for UC.  

Figure 7. Markov Jump Count Heat Map for RSV B  
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 Darker colors indicate a higher average number of jumps from the source location (origin of transmission) to 
the sink location (destination of the transmission). A red star by the average number of jumps indicates that the 
transmission route has a BF≥3 meaning that it is supported.  
 

 
Clinical Severity Analyses 

Clinical Data Description 

Clinical data from Chile and Houston was used to explore associations between viral 

genetic characteristics and disease severity. After cleaning the data, for RSV A, 60 taxa with 

clinical data from Chile and Houston were used. Twenty-three of the sequences were from 

Chile and 37 were from Houston. For RSV B severity, 41 taxa were from Chile and Houston. 

Thirty-one of the sequences were from Chile and 10 were from Houston. Detailed 

distribution and disease severity traits are in Table 1.  

Table 1. Number of Cases by Disease Severity Traits for RSV A and RSV B  
Disease Severity Traits Number of RSV A 

Cases 
Number of RSV B 
Cases 

Oxygen, Hospitalized, Admitted to ICU 7 4 
Oxygen, Hospitalized, Not Admitted to ICU 24 30 
No Oxygen, Hospitalized, Admitted to ICU 2 0 
No Oxygen, Hospitalized, Not Admitted to ICU 11 4 
No Oxygen, Not Hospitalized, Not Admitted to 
ICU 

16 3 

 

Bayesian Phylogenetic Analysis of Clinical Data 

In order to analyze the association between topologies and clinical traits in BaTS to 

identify clustering patterns, MCC trees were generated using BEAST. The trees for the RSV 

A and RSV B (Figures 8 and 9) clinical data do not exhibit the same ladder shape as the 

global trees, but both have bushy leaves, indicating intensive sampling for outbreaks at each 

location. Both trees have long branches, which indicates that missing data exist. The clades 
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of the RSV A tree are closely tied to the geographic origin, with two clades from Houston 

and one clade from Chile. The geographic origins are more interspersed in the RSV B tree, 

but there are very few sequences from Houston, where the unrepresented samples may 

explain the mixing. The RSV A clade from Chile is dominated by the “oxygen, hospitalized, 

not admitted to the ICU” severity traits. While the clades from Houston have a mixture of 

severity traits, with the “no oxygen, not hospitalized, not admitted to the ICU” trait making 

up the majority of cases. The estimated tMRCA for the clinical RSV A tree was 2007.78 

(95% BCI: 2006.54, 2009.05) with a mean substitution rate 1.493x10-3 

substitutions/site/year. The Bayesian credible interval is relatively narrow, so the tMRCA 

estimate is more certain.  

Figure 8. Clinical Maximum Clade Credibility Trees for RSV A  

 
The MCC tree for RSV A from Chile and Houston color coded by severity traits: whether the patient was given 
oxygen therapy, whether they were hospitalized, and whether they were admitted to the intensive care unit. 
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Figure 9. Clinical Maximum Clade Credibility Trees for RSV B 

 
The MCC tree for RSV B from Chile and Houston color coded by severity traits: whether the patient was given 
oxygen therapy, whether they were hospitalized, and whether they were admitted to the intensive care unit. 
 

For the RSV B clinical data the tMRCA was estimated to be 2001.35 (95% BCI: 

1995.01, 2006.41) with a mean substitution rate of 9.562x10-4
 substitutions/site/year. Unlike 

the RSV A Bayesian credible interval, the RSV B interval is quite wide so there is a large 

degree of uncertainty in the tMRCA estimate, which is probably due to missing data. The 

vast majority of sequences in the RSV B had the “oxygen, hospitalized, not admitted to the 

ICU” trait and they tended to be within the same cluster. The other severity traits were rare 

and were interspersed throughout the clades of the tree.  

Clustering Analysis of Clinical Severity 

Using BaTS, an analysis of the association between disease severity traits and viral 

genetic characteristics was conducted. For the RSV A samples, the BaTS analysis yielded a 
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significant association between the clinical traits and the phylogeny of the tree when all three 

traits were combined (needed oxygen, hospitalized, and admitted to the ICU). The cluster 

analysis yielded significant results when oxygen therapy and hospitalization were analyzed 

separately. There were no significant associations between clinical traits and the tree 

phylogeny for ICU admittance in RSV A. The RSV A AI and PS statistics, which assess all 

traits, were significant (Table 2). The significant AI statistic indicates that the traits are 

consistent across the internal nodes of the tree, and the significant PS indicates that the 

number of trait changes through the ancestral nodes is small. However, not all of the MC 

statistics, where each variant of the trait is assessed individually, were significant. The MC 

statistic was significant for the “oxygen, hospitalized, not admitted to the ICU” trait and the 

“no oxygen, not hospitalized, not admitted to the ICU”, indicating that these traits have larger 

monophyletic clades and therefore are associated with the phylogeny of the tree but the other 

traits are not.  

Table 2. Clustering of Disease Severity Traits for RSV A 
RSV A Combined Clinical Traits 

Statistic Observed Mean Significance 
AI 3.127 <0.01* 
PS 22.392 <0.01* 
MC (Oxygen, Hospitalized, No ICU) 5.593 0.02* 
MC (Oxygen, Hospitalized, ICU) 1.601 1 
MC (No Oxygen, Hospitalized, No ICU) 1.679 0.13 
MC (No Oxygen, Not Hospitalized, No ICU) 3.444 0.01* 
MC (Oxygen, Hospitalized, ICU) 1 1 

Oxygen Therapy 
AI 0.983 0.00* 
PS 9.318 0.00* 
MC (Oxygen) 6.259 0.02* 
MC (No Oxygen) 7.464 0.03* 
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Hospitalized 
AI 1.917 0.01* 
PS 11.784 0.01* 
MC (Hospitalized) 19.210 0.01* 
MC (Not Hospitalized) 3.444 0.03* 

Admitted to ICU 
AI 1.567 0.32 
PS 8.116 0.13 
MC (No ICU) 8.985 0.47 
MC (ICU) 1.651 0.05 
*indicates the null hypothesis can be rejected at a significance level of 0.05. 

 

For RSV B, no significant associations between clinical traits and phylogeny were 

found when analyzing all three traits together and each independently (Table 3).  

Table 3. Clustering of Disease Severity Traits for RSV B  

RSV B Combined Clinical Traits 
Statistic Observed Mean Significance 
AI 1.613 0.06 
PS 10.722 1 
MC (Oxygen, Hospitalized, No ICU) 5.795 0.46 
MC (No Oxygen, Hospitalized, No ICU) 1 1 
MC (Oxygen, Hospitalized, ICU) 1 1 
MC (No Oxygen, Not Hospitalized, No ICU) 1.154 1 

Oxygen Therapy 
AI 1.038 0.16 
PS 6.735 1 
MC (Oxygen) 6.473 0.58 
MC (No Oxygen) 1.154 1 

Hospitalized 
AI 1.038 0.18 
PS 6.735 1 
MC (Hospitalized) 6.473 0.57 
MC (Not Hospitalized) 1.154 1 

Admitted to ICU 
AI 0.819 0.49 
PS 4 1 
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MC (No ICU) 6.327 0.98 
MC (ICU) 1 1 
*indicates the null hypothesis can be rejected at a significance level of 0.05 

 
 

DISCUSSION 

Although RSV usually presents with mild, flu-like symptoms, it can cause severe 

disease outcomes for infants, especially premature infants, and adults over the age of 65. In 

the absence of an FDA-approved vaccine that is widely available, outbreak prevention and 

control relies on a firm understanding of transmission patterns and dynamics. Since vaccine 

candidates and antiviral treatment are being developed, it is important to identify viral 

genetic characteristics that can predict disease severity and be better targets. The aim of this 

study was to use RSV full-genome sequence data to gain a better understanding of the global 

transmission patterns, the transmission of RSV into and out of Houston and Chile and to 

preliminarily test if there are viral characteristics within the F, G, and SH genes associated 

with higher severity of disease. To our knowledge, this is the first study to use full genome 

data to model and identify RSV global transmission patterns. While other studies have 

implied that global transmission dynamics are important for regional and local outbreaks, 

very few have tried to elucidate those dynamics, and those studies have relied on solely on 

the short sequences of the G gene (Hibino, et al., 2018; Giallonardo, et al., 2018). This is also 

the first effort to link characteristics of the three surface proteins to patient outcomes, as 

previous studies have focused on RSV genotypes or patient characteristics (Hibino, et al., 

2016; Yoshihara, et al., 2016; Panayiotou, et al., 2014). 
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With the estimation from phylogenetic modeling, we estimated that the tMRCA of 

RSV A was 1963.40 and the mean substitution rate was 7.43x10-4 substitutions/site/year. Zou 

and colleagues reported the tMRCA for the GA2 and GA7 genotypes, which they estimated 

to be 1965 (95% HPD: 1970-1975) with a substitution rate of 2.3x10-3 (Zou, et al., 2016). 

The phylogenetic tree generated by Zou and colleagues appears to have a similar shape to the 

tree we generated for RSV A. The tree shape for RSV A is also similar to the phylogenetic 

trees generated in the Elawar, Schobel, and Agoti studies (Elawar, et al., 2017; Schobel, et 

al., 2016; Agoti, et al., 2017). The tMRCA from the Zou tree appears to be around 1965, 

which is within our 95% BCI (1946.15, 1969.60). The huge differences in the substitution 

rates may be due to the differences in the data examined. Zou and colleagues just looked at G 

gene data, which is shorter and includes a hypervariable region, while our study looked at all 

the currently available full genome data, which may result in a more accurate substitution 

rate over the full length of the genome. Agoti and colleagues found a substitution rate of 

4.95x10-3 in their study of household transmission dynamics when looking at full genome 

data (Agoti, et al., 2017). A study conducted by Giallonardo and colleagues (2018) also 

looked at full sequence data, and their estimate of the substitution rate using BEAST was 

7.48x10-4 substitutions/site/year for RSV A and 7.39x10-4 substitutions/site/year for RSV B. 

Their estimate for RSV A is very similar to the one we have reported here. Since few studies 

have focused on RSV B, this study, in addition to the Giallonardo study, provides 

preliminary estimates of the evolutionary dynamics of RSV B with tMRCA estimated as 

1963.80 and the mean substitution rate as 8.34x10-4 substitutions/site/year.  
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The results from the global transmission modeling showed that for both RSV A and 

B, ECA was an important source of transmission events for many regions, including Houston 

and Chile. Although the rate of transmissions from ECA to UC was high for RSV A, it was 

not found to be significant for RSV A. This may be due to the scarce samples from ECA over 

years, resulting in insufficient statistical power to detect the significance, though the 

transmission rates showed the potential close relationships between these two locations. For 

Houston, LAC and MEN were also important sources of RSV A and B transmission. A 

potential mechanism for RSV global introductions is air travel, which provides pathogens a 

quick way to reach all corners of the globe. RSV is mainly transmitted through fomites and 

droplets (Kutter, et al., 2018). Although RSV does not spread as efficiently as an aerosol 

(e.g., influenza), transmission could still occur in a small, enclosed space, such as an 

airplane. In 2017, 54.2 million people flew into Houston area airports, and of these 

passengers, 11.2 million came from international airports (Houston Airport System, 2018). 

Houston is the fourth largest city in the United States and is a key business center for the 

global oil and gas industry. At Nuevo Paudahuel, the main airport for Santiago, Chile, close 

to 50% of the 1.23 million passengers are from international origins (Aeropuerto de Santiago, 

2015). The large number of people travelling from around the globe facilitates many 

potential RSV introductions.  

 Studies of influenza have indicated that air travel patterns paired with information on 

seasonal peaks of influenza outbreak help explain its global transmission patterns (Kenah, et 

al., 2011). A similar phenomenon could be happening with RSV. The peak of RSV in Texas 

is usually in December or January, with the number of cases starting to increase in September 
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or October (Texas Department of State Health Services, 2018). This peak season overlaps 

with peaks in the ECA and MEN regions, which may explain why these transmission routes 

are supported (Hendaus, et al., 2018; Sricharoenchai, Palla, & Sanicas, 2016). The peak in 

LAC varies since the region includes countries in the northern and southern hemisphere with 

both temperate and tropical climates. Within the region, RSV peaks in Mexico would overlap 

with the peaks in Houston, but the peaks for Peru, Chile, and Argentina would occur in June, 

July, and August (Rodriguez-Auad, et al., 2012; Sricharoenchai, Palla, & Sanicas, 2016), 

while the tropical locations in LAC with year-round outbreak may facilitate the seasonality 

of both hemispheres. Peaks in Brazil occur over a wide range of time periods that correspond 

to the rainy season, with slight overlap with the peaks in Texas (Sricharoenchai, Palla, & 

Sanicas, 2016). The peak season overlap does not fully explain transmission from ECA to 

Chile since they have opposite peak seasons, but the intermediate links in the tropical areas 

may contribute the transmission between LAC and Houston. Further studies are needed to 

investigate this connection. 

Many studies have taken a genotype-specific approach to RSV phylogeny and focus 

on the evolution of each genotype. Zou and colleagues were one of the first to try to 

determine the global transmission of RSV A, but they did not investigate transmission routes 

(Zou, et al., 2016). Their analysis from genotypes GA2 and GA7 supported the potential of 

substantial international movement of RSV lineages although it was not detected in their 

current dataset. Our results of RSV global transmission patterns, which focus on the 

evolution of all genotypes, support the idea from Zou and Elawar, as well as studies of local 

transmissions (Zou, et al., 2016; Elawar, et al., 2017). Therefore, our study with a more 
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complete RSV global dataset adds more evidence to the hypothesis that international 

transmission events are key to RSV transmission patterns as many routes are statistically 

supported in our study. 

With the clinical disease severity data from Houston and Chile, we identified a 

significant association between the RSV A tree topologies and disease severity. We did not 

identify any significant associations in RSV B, which may be due to the small sample size of 

the clinical dataset. It is important to note that the clinical RSV dataset only includes the 

main circulating genotypes (two RSV A genotypes: GA2 and ON, and one RSV B genotype: 

BA), so it may not represent the complete picture of RSV epidemics. Although we did not 

analyze the data by genotype, the clusters associated with more severe outcomes are in the 

ON clade for RSV A. This association between the ON genotype and increased severity was 

also reported in the Hibino and Yoshihara studies, although both of these studies compared 

ON to NA1, and not to GA2. Since we had only one genotype of RSV B, we cannot compare 

it to the studies that took a genotypic approach.  

Our preliminary analysis on disease severity provides some insights on data 

collection and future directions. It would be ideal to collect a larger number of samples for 

both RSVA and B from patients on both ends of the severity spectrum, those who did not go 

to the hospital and those who had to be admitted to the ICU. It would also be better to have 

multiple genotypes represented within the sample for easier comparison to previous studies 

that related RSV genotype to disease severity. In our analysis, we did not include data on 

patient characteristics and other confounding variables that could impact outcome severity 

(e.g., patient age or whether they have co-morbidities) or the patients’ viral loads. While this 
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preliminary analysis indicates that there are genetic characteristics associated with disease 

severity, further analyses should take viral load and patient characteristics into account to 

control for these potential confounders. Further studies should also conduct a scan of the 

genomes for clades significantly associated with severe outcomes to determine what 

variations are associated with more severe outcomes. Identifying critical mutations that lead 

to more severe outcomes, and determining how these outcomes are correlated with patient 

genetics, can help inform antiviral medication and vaccine development. 

This study has some limitations. First, the global data have obvious sampling biases. 

The United States and Canada (UC) region are heavily overrepresented in the dataset, while 

other regions may only have very scarce samples over countries or over years. For example, 

data from Latin American and the Caribbean (LAC) and Sub-Saharan Africa (AF) represent 

only one or two countries within that region, data from Europe and Central Asia (ECA) 

mainly have samples only for a few years, and South Asia (SA) is not represented at all in the 

RSV B dataset. The US in general is heavily overrepresented across both datasets and across 

all years, although a large portion of the data from the US comes for a few cohort studies 

conducted in localized areas, and so may not be representative of the US as a whole. To 

reduce the selection bias in the data, we have subsampled the data by country and year and 

conducted sensitivity analysis with multiple subsampled datasets. Another key limitation is 

related to using geo-regions to infer transmission dynamics. World Bank regions may be 

represented by only one or two countries within that region, so the data may not reflect the 

true dynamics of transmission; that is, we cannot determine if the routes are direct, neither 

can we determine the intermediate stops within each of those regions. However, inferences 
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drawn from using geo-regions may help us identify key regions where surveillance efforts 

need to be increased. Furthermore, some of the disease severity data may not be accurate. For 

example, it is unlikely that someone was admitted to the hospital and the ICU for a 

respiratory infection but was not given oxygen, but a few of these cases were reported. 

Without direct access to patient records, it is impossible to verify the medical treatments 

required by each patient. Another limitation of the severity data is the small sample size for 

RSV B, which means we are likely underpowered to detect an association between disease 

severity and tree topology if an association does exist. Further studies, with more data are 

needed to determine if the associations for RSV B are similar to RSV A.  

Better surveillance systems to routinely collect global representative samples are 

needed in many parts of the world in order to gain an unbiased understanding of global 

transmission dynamics. A system proposed by the WHO would help collect more complete 

datasets that are more representative of the viral variation around the world (WHO, 2017). 

This in turn would lead to more robust inferences on transmission dynamics to determine the 

importance of within region persistence and global transmission routes. Further studies of 

global transmission dynamics with a more representative dataset could be improved with 

more sophisticated population coalescent models. For disease severity, studies need to be 

conducted with sequence scans to identify key mutations associated with increased severity.  

 

CONCLUSION 

In summary, though data limitations exist, with rigorous subsampling strategy, 

phylodynamic modeling and clustering analysis, we were able to depict the global 
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transmission patterns of RSV. The ECA region was an important source of RSV A and B 

transmission for Chile and Houston, so increased surveillance in this region may help predict 

the main genotype of seasonal outbreaks in Chile and Houston, and eventually help guide 

vaccine design. Even before a vaccine is available, information about transmission dynamics 

can be used to help control the spread of the disease. There was an association between tree 

topology and disease severity for RSV A. More data and further studies are needed to 

identify which genetic variants are associated with this increased severity.   
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APPENDICES 

Appendix A:  Distribution of Global RSV Samples  

Figure A1. Distribution of Sequences by Geo-Region for RSV A(a) and RSV B(b) 

 

 
The number of RSV A (a) and B (b) sequences from each of the adapted World Bank regions included in the 
full dataset. 
 
 
Appendix B:  Transmission Rates for RSV and Level of Support 

Table B1. Rates and Level of Support for RSV A Transmission  

From To 
Mean 
Rate* 

Median 
Rate 

HPD 
lower 

HPD 
upper 

Bayes 
Factor 

Europe & Central 
Asia 

Latin America & the 
Caribbean 2.666 2.554 1.211 4.362 >100 

East Asia & the 
Pacific 

United States & 
Canada 2.556 2.460 1.061 4.399 >100 

Europe & Central 
Asia 

East Asia & the 
Pacific 2.086 1.983 0.644 3.486 >100 

East Asia & the 
Pacific 

Middle East & North 
Africa 1.678 1.578 0.567 3.036 >100 

Latin America & the 
Caribbean Chile 1.500 1.387 0.345 2.860 >100 

Chile 
Europe & Central 
Asia 1.476 1.395 0.072 2.915 38.003 

Europe & Central 
Asia Houston 1.438 1.366 0.427 2.597 >100 
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Europe & Central 
Asia Sub-Saharan Africa 1.343 1.276 0.473 2.319 >100 
Europe & Central 
Asia 

Middle East & North 
Africa 0.972 0.915 0.110 1.878 53.576 

Middle East & North 
Africa Houston 0.841 0.746 0.044 1.786 34.560 
Middle East & North 
Africa 

East Asia & the 
Pacific 0.832 0.708 0.051 1.877 71.613 

Houston 
Middle East & North 
Africa 0.787 0.651 0.005 1.896 35.657 

Chile 
East Asia & the 
Pacific 0.767 0.679 0.008 1.736 5.120 

East Asia & the 
Pacific Chile 0.711 0.623 0.054 1.570 13.105 
Europe & Central 
Asia Chile 0.666 0.599 0.026 1.473 8.213 
Middle East & North 
Africa 

Latin America & the 
Caribbean 0.616 0.510 0.007 1.556 5.250 

Latin America & the 
Caribbean Houston 0.584 0.485 0.011 1.487 4.499 
East Asia & the 
Pacific Houston 0.515 0.425 0.019 1.252 7.493 
East Asia & the 
Pacific 

Latin America & the 
Caribbean 0.497 0.420 0.010 1.178 6.512 

East Asia & the 
Pacific South Asia 0.468 0.405 0.034 1.063 >100 
Sub-Saharan Africa Houston 0.425 0.338 0.011 1.034 75.713 

South Asia 
East Asia & the 
Pacific 0.345 0.230 0.001 0.945 10.678 

South Asia 
Latin America & the 
Caribbean 0.296 0.184 0.000 0.933 23.900 

South Asia Houston 0.289 0.202 0.000 0.858 >100 
South Asia Chile 0.269 0.201 0.000 0.809 >100 

South Asia 
Europe & Central 
Asia 0.256 0.187 0.001 0.746 5.626 

Latin America & the 
Caribbean South Asia 0.192 0.116 0.002 0.827 18.069 
Chile South Asia 0.192 0.155 0.001 0.710 3.867 
Europe & Central 
Asia South Asia 0.187 0.174 0.031 0.437 >100 
*Ordered by the value of rates.  
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Table B2. Rates and Level of Support for RSV B Transmission 

From To 
Mean 
Rate* 

Median 
rate 

HPD 
lower 

HPD 
upper 

BAYES_FA
CTOR 

Europe & Central 
Asia 

United States & 
Canada 2.854 2.745 1.272 4.618 >100 

Europe & Central 
Asia 

East Asia & the 
Pacific 2.815 2.723 1.204 4.547 >100 

Europe & Central 
Asia 

Latin America & the 
Caribbean 1.620 1.553 0.619 2.685 >100 

Houston 
United States & 
Canada 1.584 1.484 0.343 2.979 >100 

Europe & Central 
Asia 

Middle East & North 
Africa 1.398 1.323 0.515 2.439 >100 

United States & 
Canada Chile 1.270 1.195 0.452 2.262 >100 
Middle East & North 
Africa Houston 0.751 0.661 0.017 1.608 23.435 
Europe & Central 
Asia Houston 0.652 0.586 0.045 1.353 89.947 
East Asia & the 
Pacific 

United States & 
Canada 0.642 0.538 0.000 1.618 3.947 

Europe & Central 
Asia Chile 0.632 0.592 0.092 1.260 >100 
United States & 
Canada Houston 0.628 0.562 0.107 1.324 >100 
Latin America & the 
Caribbean Houston 0.571 0.491 0.029 1.321 41.055 
Europe & Central 
Asia Sub-Saharan Africa 0.500 0.452 0.072 1.023 >100 
United States & 
Canada 

Europe & Central 
Asia 0.454 0.408 0.050 0.950 21.471 

*Ordered by the value of rates. 
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