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Recent events with recorded low temperature and unusual snow accumulation in the 

United States and Europe have raised the public awareness of the potential health impacts of 

extreme winter weather. Excessive cold was the leading cause of weather-related death during 

2006-2010 in the U.S., accounting for 63% of weather related deaths. Several studies 

worldwide have demonstrated that, in general, mortality rates are higher in winter compared 

to summer. Studies have also shown that the association between cold temperature and death 

vary across cities, regions and countries and is especially relevant with decreasing latitude or 

in regions with mild winter climate. In addition to cold temperatures, higher mortality rates 

may be attributable to cold wave, an extended period of extreme cold temperature. However, 

due to global climate change, attention has focused on current and future heat waves on human 

health rather than cold waves. Despite the fact that climate change is expected to increase the 

intensity of winter storms, only a few studies have investigated cold wave-mortality 

association. Further, the results of these studies are inconsistent. In addition, most studies have 

focused on all-cause and cause-specific mortality, cold-related morbidity was less studied. The 

long-term goal of this study is to improve the understanding of how cold temperature and cold 

wave affect human health and to reduce adverse health effects of future cold events.  



 
 

 

The dissertation used time-series data with Poisson regression model to quantify both 

cold temperature effect and cold wave effect in Texas, one of the most populous and largest 

states that covers a variety of demographical and geographical feature with a general mild 

winter climate as located in the southern USA. Daily counts of deaths/emergency hospital 

admissions were modeled with both temperature and different cold-wave definitions for 12 

major Metropolitan Areas (MSAs). Moreover, considering winter weather patterns are 

anticipated to become more variable with increasing average global temperatures, we used 

downscaled global climate models with population projection to estimate future public health 

burden attributable to cold temperature.  

The study showed that cold weather generally increases health risk significantly in 

Texas ranging from 0.1% to 5.0% for mortality and 0.1% to 3.8% for emergency hospital 

admissions with a 1⁰C decrease in temperature below the cold thresholds. The cold effects vary 

with age groups with highest risk in people over 75-year old.  The strongest cold effects were 

associated with mortality in heart diseases and with emergency hospital admission in 

respiratory diseases. We found although the annual cold- mortality rates reduced with projected 

temperature under climate change, the number of deaths attributable to cold temperature 

increased largely with projected population through the end of the century. 

The findings can improve the understanding of cold-related health impacts in southern 

U.S. regions, and help local governments allocate resources to the areas in greatest need. This 

study can provide evidence for local policy makers to design strategies in reducing future 

public health burden of temperature-related deaths.
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CHAPTER I 

BACKGROUND 

 
Introduction 

Cold weather has been identified as a major cause of weather-related deaths in the U.S.2 

According to the National Health Statistics Reports from the Centers for Disease Control and 

Prevention (CDC), approximately 2,000 U.S. residents died from weather-related causes 

annually during 2006-2010.2 Among these deaths, 63% were due to extreme cold, 31% were 

attributed to extreme heat and approximately 6% were attributed to floods, storms, tornadoes, 

hurricanes or lightning.2 While cold-related mortality has been investigated extensively, 

publications on cold-related morbidity are less well studied. In the U.S., it was estimated that 

15,574 emergency room visits were related to hypothermia and other cold-related morbidity 

during 1995-2004.13  

 

Biological Mechanism 

Exposure to extreme cold can lead to direct effects such as hypothermia, a core body 

temperature below 35 ⁰C, and result in death, or indirect effects such as frostbite and infectious 

diseases.7 Moreover, extreme cold may also exacerbate pre-existing chronic conditions 

(cardiovascular and respiratory diseases) and lead to death.2 The human body has 

thermoregulation system that maintains a constant core body temperature of around 37⁰C.14 A 

series of heat retention and production will be initiated upon cold exposure. First, the body will 

preserve heat by favoring the internal organs. Blood is shunted from the periphery to the 



 
 

2 
 

interior and vasoconstriction occurs at extremities. Involuntary shivering generates heat 

through increased muscle contractions and activity.14 Extreme temperatures have been 

associated with elevated cardiovascular risk; however, the underling mechanisms were not 

fully studied yet.7 Studies show low temperature causes constriction of blood vessels, resulting 

in increased blood pressure (cold-induced hypertension) and increases the risk of 

cardiovascular events.7  Cardiovascular-related events were responsible for half of excess 

winter deaths and usually occurred shortly after exposure to extreme cold.7 Myocardial 

infarction and cardiac arrest were identified as the primary causes of death during extremely 

cold days.15 Bronchoconstriction may occur after inhalation of cold air.7 Respiratory illness 

was estimated to account for half of the remaining excess winter deaths16 and was generally 

associated with longer lags of extreme cold event.7 Respiratory deaths during winter were 

mostly attributed to infectious diseases, such as pneumonia and influenza. 7 

 

Cold Temperature Effect 

Many studies have demonstrated an association between ambient temperature and 

mortality in the U.S.3,4,6,8,15,17,18 and worldwide.1,9-11 In general, higher mortality was observed 

at both high and low temperatures.1,3,4,6,8,11,15,17 Overall, mortality rates are higher in winter 

compared to summer; in fact, winter cold deaths are twice as common as heat deaths in the 

U.S.5,19 

Many studies have shown increased mortality with winter temperature worldwide. Few 

multi-city studies in the U.S. have investigated the cold-mortality/morbidity associations 

(Table 1). The results across studies were difficult to directly compare due to the fact that the 
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measures of the associations have been reported differently, such as relative risk, odds ratio, 

regression coefficient, percent change in mortality and excess mortality during winter. 

Furthermore, Braga et al.17 investigated the lagged structure of temperature-mortality in 12 

U.S. cities and indicated that effects of cold temperature persisted for days while effects of hot 

temperature were more immediate. Different use of lagged days for cold temperature effects 

may also result in different estimates. Xiao et al.20 reported the relative risk of all-cause 

mortality in 13 eastern U.S. cities was 1.012 [1.008-1.016] with 1 ⁰C decrease in cold 

temperature threshold, using lag structure up to 27 days. Anderson and Bell3 found a 4.2% 

[3.2%-5.3%] increase in all-cause mortality risk using relative temperature comparison (1st vs. 

10th percentile temperatures of the studied community) with lags up to 25 days. A stronger 

effect estimate of cold temperature was found in a study of seven U.S. cities  with a 10.1% 

increase in mortality  at -5 ⁰C when compared with 15 ⁰C using a 3-day lag.18 Moreover, the 

effects of cold temperature on mortality varied by geographic location with different 

temperature thresholds6 and some population demographic characteristics.8  

Geographic location is strongly associated with cold weather mortality.7 Studies have 

shown that the association between cold temperature and death may vary across cities, regions 

and countries.3,7,15 Studies conducted in the U.S.,3,8 Europe10 and Asia9 reported increased 

mortality during cold periods and observed a higher cold-related mortality in mild winter 

climate regions or with decreasing latitude.8,9,20 This spatial variation of cold effects indicates 

that the cold-mortality association is specific to one area and may not be fitted to another area.3 

Moreover, these findings implied how different acclimatization of the communities was 

associated to their local weather conditions.8,21 
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In addition to spatial heterogeneity of cold temperature effect, several studies indicated 

that the most vulnerable populations in cold weather are the elderly, black or rural 

residents.3,8,15,18 Age is one of modifiers of the cold temperature effect. The cold-related 

mortality association was stronger in people over age 65 as their ability of thermoregulation 

was impaired.18 African Americans were associated with higher risk of cold related mortality.18 

Difference in susceptibility related to urbanity was also found, and cold-related mortality was 

higher in smaller communities than in larger communities.3 However, socioeconomic 

indicators were not strongly related to mortality.3  

In addition to cold temperature effect, excessive cold-mortality/morbidity may also be 

attributable to cold waves, an extended time period of cold temperature extremes.7 This 

sustained extreme of cold temperature over a number of consecutive days may have additional 

risks of mortality/morbidity due to extra strains on body’s heating systems, and this is be 

defined as cold waves effect.4
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Table 1. Evidence Table Multi-city studies conducted in U.S. investigated cold temperature/cold wave effect on all-cause 
mortality/morbidity. 

Author Year Location Study Period Exposure Outcome Findings 

Xiao et al. 2015 13 US cities 1987–2000 Cold temp 
Morbidity 
Mortality 

RR:1.012 [1.008, 1.016] 

Zanobetti et al. 2013 135 US cities 1985–2006 
Cold temp 
Cold wave 

Medicare deaths 
Precondition of dementia and disorder of the 
peripheral nervous system had a higher risk of 
mortality 

Von Klot et al. 2012 48 US cities 1992-2000 Cold temp 
Cardiac mortality 
morbidity 

1.6% increase in risk with decrease temp (0 vs. -5 ⁰C) 

Barnett et al. 2012 99 US cities 1987-2000 Cold wave mortality No additional cold wave effect 

Anderson and Bell 2009 107 US cities 1987-2000 Cold temp Mortality 
4.2% (3.2%, 5.3%) increase in risk (1st vs. 10th 
percentile) 

Medina-Ramon 
Schwartz 

2007 50 US cities 1989-2000 
Cold temp 
Cold wave 

Mortality 
1.59% (0.56%, 2.63%) increase in risk with extreme 
cold days 

O’Neill et al 2003 7 US cities 1986-1993 Cold temp Mortality 10.1% increase in risk (-5 vs. 15 ⁰C) 

Curriero et al. 2002 11 US cities 1973-1994 Cold temp Mortality 
During the spring and fall, a slight increase in 
mortality risk occurred with colder temperatures 

Larsen 1990 6 State 1921-1985 Cold temp Mortality 
A one degree drop in the mean temp is associated 
with a 3.5% increase in the February crude death rate 
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Cold Wave Effect 

Cold wave effects may lead to a greater increased risk in deaths/illnesses than predicted 

by cold temperature effects alone.4 However, due to global climate change, more of the 

attention has focused on the impact of current and future heat waves on human health compared 

to cold waves.21,22 While the average winter temperatures in U.S. have risen in past decades, 

many areas continue to experience extremely low temperatures.2  

Despite cold extremes continuing to be a significant health problem, only a few studies 

have investigated the cold-mortality associations during cold waves. Medina-Ramon and 

Schwartz15 examined the impact of cold wave on mortality in the 50 U.S. cities for a 12-year 

period and found a significant increase in mortality. Several studies conducted in other 

countries also reported increased mortality risks during cold waves.10,11 In contrast, Barnett et 

al.4 reported no additional cold wave effects above the known increased risk associated with 

cold temperatures in 99 U.S. cities for a 14-year period. This lack of consistency on cold-wave 

mortality may be due to different levels of controlling confounders, such as long term trend, 

seasonal variation, influenza, air pollutions etc. Moreover, effect estimates of cold waves 

depend on the choice of lag structure. Typically, heat-wave mortality is associated with a 

shorter lag (same day and previous day temperature); while cold-wave effect can last longer 

(can be weeks or up to a month).3,7 However, studies conducted prior to 2007 were mostly 

using a shorter lag structure for cold-wave effect.4  

 

Climate Change and Acclimatization 
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Global average temperatures will continue to rise over the next few decades. 

Assessments of the health impacts of climate change worldwide have often concluded that a 

reduction in the severity and length of cold weather due to global warming would substantially 

reduce winter mortality deaths.23 However, the accuracy of these predictions depends on how 

much of this winter mortality is directly dependent on cold temperatures alone. A recent study 

indicated that in UK and other temperate countries, with the greater awareness of the risks of 

cold, improved housing and health care, the link between winter temperature and cold-

mortality may no longer be as strong as before.24 This does not imply winter mortality will fall 

with climate warming, however, the severity of winter may not directly predict the number 

affected in those temperate countries. Projections of the health impact associated  with climate 

change have not been conducted in other climate regions (e.g., subtropical) yet, and previous 

evidence has shown a stronger cold-related mortality in mild winter climate regions or with 

decreasing latitude.8,9,20 Thus, the association between winter temperature and cold mortality 

with future climate projection remain unsure in the Southern U.S.  

 

PUBLIC HEALTH SIGNIFICANCE 

In the U.S., most previous studies were conducted using data before the early 2000s; 

new studies with updated data including recent extreme cold winters should be performed. 

Current literature shows that despite cold extremes continuing to be a significant health 

problem, only a few studies have investigated the cold-mortality relationships during cold 

waves and results are inconsistent. In addition, further information on effect modifiers of the 

temperature and mortality association is needed. While temperature patterns are expected to 

change as a consequence of climate change, cold-mortality/morbidity associations and their 
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geographic variation are likely to be a growing concern. While most cold-related mortality or 

morbidity events are preventable, improving the understanding of how cold temperature and 

cold wave affects human health can provide insights for community leaders and policymakers 

to design better intervention strategies targeted towards reducing adverse health effects of 

future cold temperature events. 

 

SPECIFIC AIMS 

This dissertation is aiming to improve the understanding of cold temperature and cold 

wave association with mortality and morbidity. By looking at MSA level associations, the state 

government or regional leaders would be able to locate areas with excessive mortality and 

morbidity risk and help local governments allocate resources to the areas in greatest need. This 

dissertation also aiming to provide insights to aid community leaders and policymakers in the 

design of better intervention strategies targeted towards reducing adverse health effects of 

future cold events. Specifically, we propose to: 

Aim 1: Investigate the associations between cold weather (cold temperature and 

cold wave) and all-cause/cause-specific mortality (1990-2011) including cardiovascular 

diseases (ischemic heart disease, myocardial infarction and stroke) and respiratory 

diseases (chronic obstructive pulmonary disease and pneumonia) in major Metropolitan 

Statistical Areas (MSAs) in Texas.  

Based on the evidence from previous studies, we hypothesize that higher cold-related 

mortality rates are expected in Texas comparing to high latitude climate winter climate region. 

Distributed lag nonlinear models (DLNMs) will be applied to major MSAs in Texas to examine 

the cold-mortality association for the 22-year period. To determine if an extra cold wave effect 
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exist, models will be tested with and without a cold wave indicator. We will explore potential 

cold wave definitions with different intensity and durations.  

Aim 2: Investigate the associations between cold weather (cold temperature and 

cold wave) and hospital admissions (2004-2013) in major MSAs in Texas.  

We will apply the same research approach in Aim 1 to examine the cold-morbidity 

association for the 10-year period using hospital admission as our main outcome variable. Our 

working hypothesis is that the trend of higher cold-related mortality rates with mild winter 

climate regions will also show in hospital admissions. 

Aim 3: Generate predictive model for future cold-related mortality impacts for 

Texas in the 2000s, 2050s and 2080s, using different global climate models and emission 

scenarios. 

Future warming is expected as the consequence of global climate change, however, 

cold-related health impacts may not correspondently decrease. Along with the consideration 

of population projection, we estimate cold temperature-related deaths under different climate 

models and scenarios in Texas. With this strategy, we will be able to account for climate change 

in temperature-related health impacts for future. 
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CHAPTER II 

 
JOURNAL ARTICLE I: IMPACTS OF COLD WEATHER ON ALL-CAUSE AND 

CAUSE-SPECIFIC MORTALITY IN TEXAS, 1990-2010 

 

Title of Journal Article  

Impacts of cold weather on all-cause and cause-specific mortality in Texas, 1990-2011 

 

Name of Journal Accepted 

Environmental Pollution, 2017 Jun;225:244-251. doi: 10.1016/j.envpol.2017.03.022. Epub 

2017 Apr 5.  
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Abstract 

Cold weather was estimated to account for more than half of weather-related deaths in 

the U.S. during 2006–2010. Studies have shown that cold-related excessive mortality is 

especially relevant with decreasing latitude or in regions with mild winter. However, only 

limited studies have been conducted in the southern U.S. The purpose of our study is to 

examine impacts of cold weather on mortality in 12 major Texas Metropolitan Areas (MSAs) 

for the 22-year period, 1990–2011. Our study used a two-stage approach to examine the cold-

mortality association. We first applied distributed lag non-linear models (DLNM) to 12 major 

MSAs to estimate cold effects for each area. A random effects meta-analysis was then used to 

estimate pooled effects. Age-stratified and cause-specific mortalities were modeled separately 

for each MSA. Most of the MSAs were associated with an increased risk in mortality ranging 

from 0.1% to 5.0% with a 1 °C decrease in temperature below the cold thresholds. Higher 

increased mortality risks were generally observed in MSAs with higher average daily mean 

temperatures and lower latitudes. Pooled effect estimate was 1.58% (95% Confidence Interval 

(CI) [0.81, 2.37]) increase in all-cause mortality risk with a 1 °C decrease in temperature. Cold 

wave effects in Texas were also examined, and several MSAs along the Texas Gulf Coast 

showed statistically significant cold wave-mortality associations. Effects of cold on all-cause 

mortality were highest among people over 75 years old (1.86%, 95% CI [1.09, 2.63]). Pooled 

estimates for cause-specific mortality were strongest in myocardial infarction (4.30%, 95% CI 

[1.18, 7.51]), followed by respiratory diseases (3.17%, 95% CI [0.26, 6.17]) and ischemic heart 

diseases (2.54%, 95% CI [1.08, 4.02]). In conclusion, cold weather generally increases 
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mortality risk significantly in Texas, and the cold effects vary with MSAs, age groups, and 

cause-specific deaths. 

 

Keywords 

Cold weather; Heart disease; Mortality; Spatial heterogeneity; Temperature  

 

Capsule 

Cold weather generally increases mortality risk significantly in Texas, and the cold effects vary 

with region, age groups and cause-specific deaths. 

 

Highlights 

• Cold weather generally increases mortality risk significantly in Texas. 

• Cold effects vary with geographic locations, age groups and mortality causes. 

• Strong effect estimates were observed in heart diseases. 
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Introduction 

Recent events with recorded extreme low temperature and unusual snow accumulation 

in the U.S. and Europe have raised the public awareness of the potential health impacts of 

extreme cold weather. Cold weather has been linked to significant levels of mortality and 

morbidity (Guo et al. 2014; O’Neill and Ebi 2009; Ye et al. 2012). In the U.S., excessive cold 

was the leading cause of weather-related deaths during 2006-2010, accounting for 63% of 

weather related deaths (Berko et al. 2014). Exposure to extreme cold can lead to direct effects 

such as hypothermia and result in death, moreover, extreme cold can exacerbate preexisting 

chronic conditions (Conlon et al. 2011). Larsen (1990) indicated that unusual cold winter 

temperature has strongest fatal effects on mortality, including deaths from infectious disease, 

heart diseases, cerebrovascular diseases, pneumonia, and influenza. In general, mortality rates 

are 10-20% higher in winter compared to summer (National Vital Statistics System (NVSS) 

2014).  

Studies worldwide have shown that the effects of cold temperature on mortality were 

varied by geographic location and some demographic characteristics of population (Conlon et 

al. 2011; Curriero et al. 2002).  Cold-related excessive mortality is especially relevant with 

decreasing latitude or in mild winter climate region (Curriero et al. 2002; Ma et al. 2014).  

Spatial heterogeneity in cold effects indicates cold-mortality relationships from one 

community may not be applicable to another (Anderson and Bell 2009). Moreover, these 

findings implied how different acclimatization of the communities was associated to their local 

weather conditions (Curriero et al. 2002; Turner et al. 2012). Studies have observed that cold 

weather have a larger impact on health among the elderly compared to younger people (Yu et 
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al. 2012; Conlon et al. 2011). The cold-related mortality had a moderate increased for persons 

aged 15-75, and a substantial increase for person aged 75 and over (Berko et al. 2014). 

In addition to cold temperatures, higher mortality rates may be attributable to cold 

waves. An extended period of extreme cold temperature, cold waves, may have additional risks 

of mortality due to extra strains on body’s thermoregulation. However, due to global climate 

change, attention has focused on current and future heat waves on human health rather than 

cold waves. Few studies have investigated cold wave-mortality association; despite climate 

change is expected to increase the intensity of winter storms (Conlon et al. 2011; Barnett et al. 

2012). Further, the results of these studies were inconsistent (Barnett et al. 2012; Medina-

Ramon and Schwartz 2007; Montero et al. 2010; Huynen et al. 2001). 

Despite cold extremes continuing to be a significant health problem, only a handful of 

multi-city studies have investigated the cold-mortality association in the U.S. (Ye et al. 2012). 

Studies investigated cold wave effects were even less common (Barnett et al. 2012). Moreover, 

detrimental effects of cold are especially profound in regions with mild winter climate. While 

temperature patterns are expected to change as a consequence of climate change, cold–

mortality associations and their geographic variation are likely to be a growing concern. Texas 

covers an area of 267,339 square miles and is the largest of the conterminous states. Texas 

extends from 25⁰50′N to 36⁰30′N latitude and from 93⁰31′W to 106⁰38′W longitude; the 

elevation range is from sea level to 8,751 feet on Guadalupe Mountain. Because of this great 

variation in so many geographical features, it is ideal for studying spatial heterogeneity. In 

light of the spatial variation of cold effects and the lack of studies including recent cold 

extremes, this paper aims to examine impacts of cold weather on mortality in 12 major Texas 

Metropolitan Areas (MSAs) for the 22-year period, 1990-2011. 
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Material and methods 

Study area 

Texas is the largest of the 48 contiguous states and the second most populous state in 

the U.S. As of February 2013, 25 Texas Metropolitan Statistical Areas (MSAs) are delineated 

by the U.S. Office of Management and Budget (OMB) based on the 2010 Census Bureau data 

(U.S. Census 2013). Twelve Texas MSAs were selected based on population sizes that were 

consistently over 200,000 throughout the 22-year study period (1990-2011) and the availability 

of weather and air pollution data. Selected MSAs are shown in Figure 1. The climate of selected 

Texas MSAs varies widely ranging from hot-dry, mixed-dry in the west to hot-humid and 

mixed-humid in the east (U.S. Department of Energy 2010). 

 

Data collection 

Mortality data 

Mortality data were obtained from the Texas Department of State Health Services and 

were aggregated on a daily basis at the MSA level. The International Classification of Disease 

(ICD) Ninth Revision (ICD-9) and Tenth Revision (ICD-10) (World Health Organization 

1975, 1993) were used for diagnosis of primary mortality causes during the periods 1990-1998 

and 1999-2011, respectively. Deaths were divided into all causes, cardiovascular disease 

(CVD, ICD-9 390-429; ICD-10 I01-I52), respiratory disease (RESP, ICD-9 460-519; ICD-10 

J00-J99). We further classified CVDs into subtypes including ischemic heart disease (IHD, 

ICD-9 410-414; ICD-10 I20-I52), myocardial infarction disease (MI, ICD-9 410; ICD-10 I21, 
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I22) and stroke (ICD-9 430-438; ICD-10 I60-I69), and categorized RESPs into chronic 

obstructive pulmonary disease (COPD, ICD-9 490-496 except 493; ICD-10 J40-J44, J47), and 

pneumonia (PNEU, ICD-9 480-486; ICD-10 J12-J18). For age stratification, we used 65 of 

age as the cutoff point and further categorized older population with two subgroups (0-64, 65-

74 and above 75 years old). 

Weather data 

Hourly weather data at weather stations were downloaded from the National Climate 

Data Center (NCDC) through the Integrated Surface Database (ISD) (NCDC 2014). For each 

MSA, we selected one weather station, which was considered the most representative of the 

population exposure at MSA-level (e.g., airport weather station and closest to the most 

populous city in the MSA). Daily mean, minimum, maximum temperatures and dew point 

temperature were then calculated. Previous studies indicated that there is no consensus in ‘the 

best’ temperature measure consistently predicting temperature-mortality association better 

than others (Barnett et al. 2010; Zhang et al. 2014). We used mean temperature as it represents 

the temperature exposure for both day and night (Guo et al. 2014). The ISD weather data have 

been checked for extreme values, consistency between parameters, and continuity between 

observations through a rigorous quality control procedure developed by NCDC (Lott 2004). 

Cold wave definition 

There is no consensus on the definition of cold waves. We explored three percentile-

based cutoff points with two different durations. We first identified cold waves as daily mean 

temperatures below the 1st, 5th, or 10th percentiles of the entire study period of each MSA 

with periods of 2 or more consecutive days. Then we extended each cold wave seven days 
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beyond its last day below the threshold to capture delayed effects as described in Barnett et al. 

(2012). 

 

Statistical analysis 

The multi-city time-series analyses were performed in two stages: MSA-specific 

analysis on cold temperature-mortality association and meta-analysis. In the first stage, a 

Poisson regression allowing for over dispersion model was used to estimate the MSA-specific 

association. In the second stage, the estimated associations were then pooled at the entire state 

using meta-analysis. This two-stage approach is commonly used in multi-city studies (Guo et 

al. 2014; Gasparrini et al. 2012). 

MSA-specific models 

There are two steps in building up MSA-specific models. First, to determine whether a 

cold-temperature threshold exist, the association between temperature and daily count deaths 

was analyzed and plotted using the generalized additive model (GAM) with a spline function 

of temperature for each MSA separately. To account for the delayed effect of cold temperature, 

we used lag 0-25 (average the same day and previous 25 days temperature) as our main 

exposure in the GAM models. Confounding variables including day of the week, day of year 

and mean dew point temperature were also included in the models. Our initial analysis showed 

a V-, U- or hockey-stick shaped non-linear association between temperature and mortality, 

with potential cold thresholds (see Supplemental Figure 1). We decided that there were linear 

relationships below cold thresholds evident through visual inspection. Second, to quantify the 

risks of mortality, we applied single threshold distributed lag non-linear models (DLNMs). 
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Across-basis function can express exposure-response dependencies and delayed effects 

simultaneously. The MSA-specific associations were estimated through a Poisson regression 

model as: 

ሺܧሾ݃݋ܮ ௧ܻሻሿ ൌ ߙ ൅ ܯሺ݉݁ܶ࢈ࢉ ௧ܲ,௟ሻ ൅ ܥࢽ ௧ܹ ൅ ܱܦࢾ ௧ܹ ൅ ܱܦሺݏ	 ௧ܻ, ሻݎܽ݁ݕ/7 ൅ ܹܦሺ݉݁ݏ	 ௧ܲ, 3ሻ [1] 

Where ௧ܻ is the number of deaths on day t; ߙ is the intercept; ܾܿሺ	ሻ is a cross-basis 

function; ݉݁ܶܯ ௧ܲ,௟ represents mean temperature on lag day ݈, and ݈ was up to 25 days with 5 

degree of freedom; 	ܥ ௧ܹ is a dummy variable for cold waves (1 if day ݐ was classified as part 

of a cold wave, 0 otherwise); ܱܦ ௧ܹ is a set of dummy variables for day of the week; ࢽ and 

 ሻ is a smooth function (natural cubic	ሺݏ ;are the vector of regression coefficients ࢾ

spline);	ܱܦ ௧ܻ represents day of year with 7 degrees of freedom per year to account for 

seasonality and long-term trend; ܹ݉݁ܦ ௧ܲ	represents mean dew point temperature with 3 

degrees of freedom. 

Cold thresholds used in equation [1] were determined by minimizing Akaike 

information criterion (Q-AIC) for regression models using quasi-Poisson distribution. We 

reported the estimated mortality relative risk as with a 1 ⁰C decrease in temperature below the 

cold threshold. The associations between mean temperature and age-stratified and cause-

specific mortality were also fitted using the same approach.  

Meta-analysis 

In the second stage, MSA-specific effect estimates obtained from the first-stage were 

then pooled through multivariate meta-analysis. A random effects model was used to obtain 

effect estimates in the entire state. For a set of ݅ = 1…k…12 independent MSA, we assume 



 
 

20 
 

that ߠప෡  denote the observed value of the effect size or outcome measure in the ݄݅ݐ MSA, the 

model can be expressed as follow: 

ప෡ߠ 	~	ܰሺߠ௜, ௜ݒ ൅ ߬ଶሻ [2] 

Where ߠప෡  is the effect estimate in MSA ݅, ݒ௜ is the variance within MSA ݅, ߠ௜ is the true 

effect of cold temperature on mortality and ߬ଶ is the variance of the true effect among MSAs. 

We used restricted maximum likelihood (REML) to estimate the between-MSA variance ߬ଶ in 

our models. In the random-effect model, the k MSA, included in the meta-analysis is assumed 

to be a random selection from a larger population of MSAs. We assume that the true 

effects/outcomes in the population of MSAs are normally distributed with ߠ௜ denoting the 

average true effect/outcome and ߬ଶ denoting the variance of the true effects/outcomes in the 

population. 

All statistical analyses were performed in the R statistical software (R Development 

Core Team; http://R-project.org). GAMs were fitted using the “mgcv” package (version 1.8-

5) (Wood 2006); DLNMs were fitted using “dlnm” package (version 2.0.6) (Gasparrini et al. 

2010); and meta-analysis was performed using “metafor” package (version 1.9-7) (Viechtbauer 

2010). 

 

Sensitivity analysis 

We performed sensitivity analysis to evaluate how effect estimates vary with and 

without adjustment for temperature effects. We compared the MSA-specific associations with 

and without adjustments for cold wave effects. All selected cold wave definitions (five 

percentile-based cutoff points with two different durations) were evaluated. 
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Results 

Table 1 shows the summary of meteorology and population characteristics in the 12 

MSAs, which included 62 Counties in Texas. The population sizes of Texas MSAs are varied. 

As of 2010, Houston-The Woodlands-Sugar Land was the most populous MSA with nearly 6 

million residence followed by Dallas-Fort Worth-Arlington MSA with over 4 million 

population; and Waco was the least populous MSA with approximately 250,000 population 

(U.S. Census 2010). The average daily mean temperatures in Texas MSAs ranged from 16.2 

to 24.3⁰C during the study period. McAllen-Edinburg-Mission and Brownsville-Harlingen 

MSAs located at the southernmost tip of Texas and had higher annual mean temperatures. The 

lowest annual mean temperature was observed in Lubbock MSA, the northernmost MSA 

included in this study. The average daily counts of all-cause deaths ranged from 5 to 77 with 

the highest daily counts observed in Houston-The Woodlands-Sugar Land MSA. There were 

over 2 million deaths between January 1990 and December 2011 with 65% of these deaths 

among elderly (age above 65). Additionally, MSA-specific cold thresholds for all-cause 

mortality varied between 10.6 and 20.0 ⁰C (Table 1). 

Table 2 shows the effect estimates of cold in each MSA using three different models: 

modeling for daily mean temperature only (temperature effects), modeling for cold waves only 

(overall cold wave effects), and modeling for both daily mean temperature (temperature 

effects) and cold waves (additional cold wave effects) simultaneously. The temperature effects 

were estimated with lags days (up to 25 days) in each MSA using single threshold DLNMs. 

All MSAs show statistically significant increase in all-cause mortality risk with a 1⁰C decrease 
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in temperature below the cold threshold except for Lubbock. A 1⁰C decrease in temperature 

below threshold was associated with 0.1-5.0% increase in mortality risk. Highest increased 

mortality risk was observed in McAllen-Edinburg-Mission (5.01% [95% CI: 4.96%, 5.06%]), 

which also had the highest average daily mean temperature (24.3 ⁰C) among other MSAs. The 

cold temperature effects remained statistically significant when we included cold wave terms 

in the models simultaneously and the magnitude of increased mortality risk were similar. 

However, additional cold wave effects were not observed in any of the MSAs. Overall cold 

wave effects were observed in a few MSAs along the Texas Gulf Coast area in cold wave-

mortality association without adjusting for temperature effects. Thus, we present the results of 

temperature effects only in the following paragraphs. 

The pooled effect estimate between daily mean temperature and all-cause mortality was 

statistically significant at state level. A 1 ⁰C decrease in temperature below threshold was 

associated with overall increase in all-cause mortality of 1.58% [95% CI: 0.81%, 2.37%] 

(Figure 2). Age-stratified and cause-specific mortality were performed in each MSA. Figure 3 

shows the pooled age-stratified and cause-specific mortality in the entire state using random 

effects model. The cold temperature effect of all-cause mortality showed an increase trend 

among all age groups, with highest in people over 75 years old (1.86%, 95% CI [1.09, 2.63]). 

The pooled cause-specific mortality showed a 1 °C decrease in temperature below threshold 

was associated with 0.8%–7.0% increased risk across cause-specific mortalities, however, the 

highest association we found in pneumonia was not statistically significant (7.0%, 95% CI 

[−0.85, 15.46]). The statistically significant associations were found highest in MI, followed 

by RESP and IHD. 
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Discussion 

Cold weather has been identified as a major cause of weather-related deaths in the U.S. 

Excessive cold-related mortality is especially relevant with decreasing latitude or in mild 

winter climate regions. In this multi-city time-series study, we examined the impacts of both 

cold temperatures and cold wave effects on all-cause and cause-specific mortality in 12 major 

MSAs in Texas. Our findings showed that cold temperature generally had significant effects 

in Texas and the effects varied with MSAs, age groups, and cause-specific deaths. To the best 

of our knowledge, this may be the first study that examined the association between both cold 

temperature and cold waves and mortality among multiple causes in U.S. general population. 

Excess winter mortality during cold waves variations varied with region and the 

definition of cold waves. We calculated the percentage difference in mortality by comparing 

cold wave days to non-cold wave days using the similar approach described in Dimitriou et al, 

(2016). With the definition of cold waves defined as a period of at least 2 days below 5 

percentile-based cutoff point of temperature then extended 7 days beyond its last day, a state-

wide average in the percentage change of mortality is 12.1% ranging from 10.4% to 14.0%. 

With a stricter definition of cold waves (1st percentile), the average mortality change rate 

increased slightly. In general, our results showed a similar magnitude of percentage difference 

compared to a previous study conducted in UK (Dimitriou et al., 2016). 

In general, the effect estimates of cold temperature on all-cause mortality were 

generally statistically significant in Texas. The strongest cold effect estimate was found in the 

McAllen-Edinburg-Mission MSA, where the average daily mean temperature during the study 

period was the highest (24.3 °C). We also found that the risk of all-cause mortality increased 
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as the MSAs’ year-round average mean temperature increase (coefficient = 0.53, 95% CI 

[0.28, 0.78]), and the all-cause mortality increased as the latitude decrease (coefficient = −0.49, 

95% CI [-0.70, −0.28]). Our findings were consistent with two previous studies. Curriero et al, 

(2002) reported the cold effect slope was steeper for the southern cities compared to the 

northern cities, and Gasparrini et al, (2012) showed the effect of cold temperature was larger 

in lower latitude cities. On the contrary, Braga et al, (2001) reported that no significant cold 

effects on deaths were found in hot cities (including Houston). The authors explained that the 

lack of association between cold temperature and mortality may be due to less chance of being 

exposed to extreme low temperatures. However, the study was conducted from 1986 through 

1993, the global climate temperature patterns have been changed that extreme weather (winter 

storms) are expected to increase in intensity in the future (Conlon et al., 2011). 

The random effects meta-analysis showed a statistically significant association 

between cold temperature and all-cause mortality (1.58%, 95%CI [0.81%, 2.37%]). The 

finding was consistent with many other previous studies. For example, Anderson and Bell 

(2009) reported a 4.2% (95%CI [3.2%, 5.3%]) increase in mortality risk when comparing the 

1st and 10th percentile temperatures for the community while O'Neill et al. (2003) showed a 

10.1% increase in total mortality when compared with absolute temperatures (−5 °C to 15 °C). 

The pooled estimates showed cold effect estimates were strongest in MI, followed by 

RESP and IHD. CVDs have been reported to be the most common mortality causes among 

excess winter mortality. CVDs include a range of conditions involving heart and blood vessels. 

Thus, the associations between temperature and mortality may vary by subtypes of CVDs. 

Myocardial infarction and cardiac arrest were consistently reported as the primary causes of 

death during extreme cold days. The underlying mechanisms of increased cardiovascular 
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diseases during winter have been postulated (Schneider et al., 2008). As a result of exposures 

to cold, the body tries to reduce heat loss by decreasing peripheral blood circulation, which 

may increase systolic and diastolic blood pressure, blood viscosity, vasoconstriction, plasma 

cholesterol and plasma fibrinogen. These changes could trigger an acute cardiac event (Giang 

et al., 2014). 

Similar to previous studies, cold weather is associated with increased risk of respiratory 

diseases. Respiratory diseases have long been accounted for nearly half of the remaining excess 

cold mortality other than CVDs (The Eurowinter Group, 1997) and are generally associated 

with longer lags of extreme cold events (Ebi and Mills, 2013). Our results were based on daily 

mortality counts that included deaths attributed to influenza while some studies controlled for 

influenza events. Pneumonia and influenza are commonly combined as an endpoint because 

many influenza-associated deaths occur from secondary complications when influenza viruses 

are no longer detectable (Davis et al., 2012). Many winter respiratory deaths are reported due 

to influenza (Thompson, 2010; Conlon et al., 2011). Although cold temperature can be linked 

to suppress mucociliary defenses and resulting in inflammation, cold temperature alone may 

not explain the infection rates. Influenza epidemic may play an important role in the winter 

mortality that mortality was significantly higher in season dominated by influenza A (H2N2) 

and A (H3N2) (Ebi and Mills, 2013). 

Among the studies conducted in U.S., the effects of cold are more pronounced in 

elderly populations (Curriero et al., 2002, O'Neill et al., 2003). Cold effects were found 

strongest in people age above 75 as their ability to thermoregulation can be impaired (Conlon 

et al., 2011). Severe cold weather and mortality due to ischemic heart diseases were reported 

highest among males aged 35–49 years whereas females aged 65 and older experienced 
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increased mortality due to respiratory and cerebrovascular diseases (Gorjanc et al., 1999). 

Moreover, cardiac mortality among people over 55 years of age has been shown to have 

significant negative association with daily average temperature (Cagle and Hubbard, 2005). 

Our study did not observe additional cold wave effects in Texas. Barnett et al. (2012) 

reported no additional cold wave effects above the known increased risk associated with cold 

temperatures in 99 U.S. cities for a 14-year period. In contrast, Medina-Ramon and Schwartz 

(2007) examined the impact of cold waves on mortality in the 50 U.S. cities for a 12-year 

period and found a significant increase in all-cause mortality. Several studies conducted in 

other countries also reported increased mortality risks during cold waves (Montero et al., 2010, 

Huynen et al., 2001). This inconsistence may be due to different levels of controlling 

confounders, such as long-term trends, seasonal variation, influenza, air pollution. Moreover, 

as cold temperature effect, the choice of lag structure for cold wave effect may differ in the 

results. Typically, heat-wave mortality is associated with a shorter lag (same day and previous 

day temperature), while cold-wave effect can last longer (can be weeks or up to a month) 

(Anderson and Bell, 2009, Conlon et al., 2011). However, studies conducted prior to 2007 were 

mostly using a shorter lag structure for cold-wave effect (Barnett et al., 2012). Although we 

did not observe additional cold wave effects in our study, it does not necessarily mean that cold 

waves did not increase mortality risks in Texas area. 

Our sensitivity analysis indicated increasing risks of mortality among coastal MSAs 

when comparing cold wave days and non-cold wave days without adjusting temperatures 

(5.2%–12.1% or 2.8%–7.8% increase risk varied by cold wave definitions) (see Supplemental 

Table 1). 
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This study has two major limitations. The first limitation of this research is exposure 

misclassification. We assigned temperature exposures from a single weather station per MSA 

rather than using personal exposures. It is usually impractical for population-based 

epidemiological studies using personal exposure due to cost and logistic reasons. Another 

major limitation is ecologic fallacy (or aggregation bias). We did not explore individual 

characteristics such as social economic status (SES), education level, tobacco/alcohol use, 

housing quality and characteristics (heating/AC status), which may modify associations 

between cold temperature and health. Differences in thresholds, cold and cold-wave effects are 

likely explained by individual-level factors (e.g., elderly and acclimatization), neighborhood- 

and even regional-level factors (e.g., the prevalence of heating system). The contribution of 

these factors requires further studies to incorporate such information into data analysis. This 

will be examined in future studies beyond the scope of this work. However, we did consider 

age in our study as it is crucial indicator of vulnerable population. 

Strengths of this study include the use of a population-based registry that covered all-

age cases throughout the state of Texas for over two decades. Previous studies conducted in 

the U.S. primarily examined elderly or used data before the early 2000s. Our study not only 

included all age groups but also included more recent cold events. This appears to be the first 

multi-city study of the association between cold weather (cold temperature and cold waves) 

and mortality with over 20 years of study period in a mild winter region. 

 

Conclusions 
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Cold weather has been the leading cause of the weather-related deaths in the U.S. 

Excessive cold mortality is especially relevant in mild climate regions. However, only limited 

studies have been conducted in the southern U.S. Our study showed that cold weather generally 

increases mortality risk significantly in Texas ranging from 0.1% to 5.0% with a 1⁰C decrease 

in temperature below the cold thresholds. The cold effects vary with age groups (highest in 

people over 75-year old) and cause-specific deaths (highest in pneumonia followed by MI and 

ISD). 

Cold-related deaths and illnesses can be fatal but also preventable. People can easily 

reduce their risk of developing cold-related adverse health outcomes by keeping body warm 

(wearing clothes, stay indoors). Our findings can improve the understanding of cold 

temperature effect on mortality in southern regions, and help local governments allocate 

resources to the areas in greatest need. This study can provide insight for community leaders 

and policymakers to design better intervention strategies targeted towards reducing adverse 

health effects of future cold wave events. 
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Table 1:  Summary of the mean temperature distribution, daily count of all-cause deaths, population sizes and selected cold thresholds 
in 12 major Texas Metropolitan Areas, 1990-2011. 

MSA 
Daily mean 

temperature(⁰C)a 
Daily all-cause 

death Population 
sizeb 

Cold 
thresholds 

(⁰C) 

Percentage 
difference in 

mortality (%)c Mean (Min, Max) Mean (Min, Max) 
Austin-Round Rock 20.4 (-6.4, 34.4) 18 (2, 40) 1,716,289 18.4 14.0 
Beaumont-Port Arthur 20.8 (-2.2, 32.8) 11 (1, 26) 403,190 14.5 11.9 
Brownsville-Harlingen 23.7 (0.0, 33.1) 5 (0, 17) 406,220 17.0 13.2 
Corpus Christi 22.5 (-1.9, 33.1) 9 (0, 21) 428,185 16.7 10.7 
Dallas-Fort Worth-Arlington 19.4 (-9.4, 36.7) 62 (28, 108) 4,230,520 20.0 11.0 
El Paso 18.6 (-12.5, 36.4) 11 (0, 27) 804,123 10.6 13.5 
Houston-The Woodlands-Sugar Land 21.0 (-3.1, 34.7) 77 (40, 137) 5,920,416 20.0 11.0 
Killeen-Temple 20.2 (-8.6, 36.9) 6 (0, 19) 405,300 19.4 11.6 
Lubbock 16.2 (-13.6, 35.6) 6 (0, 18) 290,805 20.0 10.4 
McAllen-Edinburg-Mission 24.3 (-7.5, 35.0) 8 (0, 22) 774,769 12.0 14.0 
San Antonio-New Braunfels 21.0 (-4.4, 35.6) 34 (7, 64) 2,142,508 20.0 12.3 
Waco 19.7 (-8.3, 35.8) 6 (0, 35) 252,772 20.0 11.7 

aAverage daily mean temperature throughout the study period. bBased on 2010 U.S. Census data. c Percentage difference in mortality by 
comparing cold wave days to non-cold wave days.  
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Table 2. Estimates of cold effects using three different models in 12 Major Texas Metropolitan Areas, 1990-2011. 
  

Texas MSA Temperature modela Cold wave modelb 
Temperature and Cold wave modelc 

Temperature Cold wave 

Austin-Round Rock 1.31 (1.30, 1.32)* 1.21 (-2.54, 5.12) 1.43 (1.42, 1.44)* -2.39 (-6.37, 1.77) 

Beaumont-Port Arthur 1.65 (1.63, 1.67)* 7.75 (2.66, 13.10)* 1.36 (1.34, 1.38)* 3.30 (-2.31, 9.24) 

Brownsville-Harlingen 3.34 (3.31, 3.37)* 7.58 (0.32, 15.36)* 3.09 (3.06, 3.13)* 2.30 (-5.79, 11.09) 

Corpus Christi 1.92 (1.90, 1.94)* 0.52 (-4.88, 6.22) 1.96 (1.94, 1.98)* -0.59 (-6.63, 5.83) 

Dallas-Fort Worth-Arlington 0.61 (0.61, 0.62)* 2.77 (0.83, 4.75)* 0.58 (0.58, 0.59)* 0.73 (-1.33, 2.83) 

El Paso 1.33 (1.31, 1.35)* 3.11 (-1.67, 8.11) 1.12 (1.10, 1.13)* 2.35 (-3.23, 8.25) 

Houston-The Woodlands-Sugar Land 1.56 (1.56, 1.56)* 4.08 (2.02, 6.17)* 1.54 (1.54, 1.55)* 0.43 (-1.68, 2.59) 

Killeen-Temple 0.06 (0.05, 0.07)* 4.13 (-2.34, 11.02) -0.04 (-0.05, -0.03) 2.17 (-4.81, 9.66) 

Lubbock -0.01 (-0.02, 0.00) -0.93 (-7.69, 6.32) 0.04 (0.03, 0.05)* -2.22 (-9.32, 5.44) 

McAllen-Edinburg-Mission 5.01 (4.96, 5.06)* 7.27 (1.73, 13.10)* 4.43 (4.37, 4.49)* 2.07 (-5.45, 10.19) 

San Antonio-New Braunfels 0.98 (0.97, 0.98)* 2.06 (-0.75, 4.96) 1.07 (1.06, 1.07)* -1.79 (-4.77, 1.27) 

Waco 1.37 (1.36, 1.38)* 1.65 (-4.72, 8.45) 1.46 (1.45, 1.48)* -2.49 (-9.06, 4.55) 
a Model included a cross-basis function of daily mean temperature and did not include a cold wave indicator. b Model included a cold wave 
indicator and did not included daily men temperature term. c Model included a cross-basis function of daily mean temperature and a cold wave 
indicator. * Statistically significant. 
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Figure 1. Twelve Texas Metropolitan Statistical Areas (MSAs) in the study. MSAs were 
selected based on the size of population and availability of weather and air pollution data 
during the 22-year study period. 
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Figure 2. Meta-analysis for cold effects on all-cause mortality at lag 0-25 in 12 major Texas 
MSAs during 1990-2011. 

 

Figure 3. Pooled estimations of cold effect to age-stratified and cause-specific mortality at 
State-level in Texas. 
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Appendices 

Appendix A:  Journal Article I Supplemental Materials 

Supplemental Table 1. Overall cold wave effects (modeling for cold wave only) using different cold wave definition for each MSA. 
Duration 2 daysa  Extended 7 daysb 

MSA                Cut off percentile 1st 5th 10th 1st 5th 10th 

Austin-Round Rock 
4.05 

(-2.65, 11.20) 
-0.90 

(-3.97, 2.26) 
0.33 

(-2.23, 2.96) 
1.21 

(-2.54, 5.12) 
2.23 

(0.00, 4.51) 
2.70 

(0.49, 4.96)* 

Beaumont-Port Arthur 
8.82 

(0.10, 18.31)* 
0.33 

(-4.02, 4.87) 
1.06 

(-2.37, 4.62) 
7.75 

(2.66, 13.10)* 
1.25 

(-1.70, 4.29) 
2.88 

(0.21, 5.62)* 

Brownsville-Harlingen 
11.39 

(-1.67, 26.19) 
4.29 

(-1.67, 10.60) 
3.80 

(-1.13, 8.97) 
7.58 

(0.32, 15.36)* 
4.39 

(0.60, 8.31)* 
2.26 

(-1.48, 6.14) 

Corpus Christi 
-1.04 

(-10.18, 9.03) 
-2.30 

(-6.65, 2.25) 
-4.12 

(-7.56, -0.54) 
0.52 

(-4.88, 6.22) 
1.37 

(-1.59, 4.42) 
0.10 

(-2.73, 3.01) 

Dallas-Fort Worth-Arlington 
1.98 

(-1.48, 5.56) 
-0.84 

(-2.59, 0.95) 
-0.25 

(-1.58, 1.10) 
2.77 

(0.83, 4.75)* 
1.47 

(0.23, 2.73)* 
1.48 

(0.35, 2.62)* 

El Paso 
2.17 

(-5.28, 10.22) 
-1.14 

(-4.76, 2.62) 
-2.93 

(-5.75, -0.03) 
3.11 

(-1.67, 8.11) 
0.18 

(-2.66, 3.09) 
1.89 

(-0.94, 4.81) 
Houston-The Woodlands-Sugar 
Land 

5.19 
(1.71, 8.79)* 

-0.37 
(-1.98, 1.27) 

-0.72 
(-1.98, 0.56) 

4.08 
(2.02, 6.17)* 

2.98 
(1.90, 4.08)* 

2.13 
(1.11, 3.17)* 

Killeen-Temple 
-4.91 

(-15.23, 6.65) 
3.15 

(-2.09, 8.68) 
-2.94 

(-6.80, 1.08) 
4.13 

(-2.34, 11.02) 
0.80 

(-2.77, 4.51) 
-0.30 

(-3.63, 3.15) 

Lubbock 
-6.24 

(-17.54, 6.59) 
-2.66 

(-7.59, 2.53) 
-4.00 

(-7.64, -0.21) 
-0.93 

(-7.69, 6.32) 
-0.09 

(-3.58, 3.53) 
1.89 

(-1.55, 5.45) 

McAllen-Edinburg-Mission 
12.12 

(2.00, 23.24)* 
4.78 

(0.00, 9.78) 
-0.48 

(-4.07, 3.24) 
7.27 

(1.73, 13.1)* 
2.14 

(-1.03, 5.41) 
0.42 

(-2.49, 3.41) 

San Antonio-New Braunfels 
-0.16 

(-4.92, 4.84) 
0.29 

(-1.93, 2.56) 
-0.01 

(-1.77, 1.78) 
2.06 

(-0.75, 4.96) 
2.30 

(0.76, 3.87)* 
2.55 

(1.03, 4.09)* 

Waco 
-10.73 

(-20.69, 0.48) 
0.07 

(-5.35, 5.79) 
1.01 

(-3.30, 5.51) 
1.65 

(-4.72, 8.45) 
3.18 

(-0.66, 7.16) 
4.37 

(0.83, 8.04)* 
a Cold wave duration defined as daily mean temperature below the cut off percentile for 2 or more consecutive days. b Cold wave duration 
defined as daily mean temperature below the cut off percentile for 2 or more consecutive days plus an extended 7 days beyond its last day 
below the threshold (Barnet et al. 2012). 
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Supplemental Figure 1. The MSA-specific linear-threshold exposure-response relationships. Relative risk of all-cause mortality 
was examined with daily mean temperature using single threshold distributed lag non-linear with lag up to 25 days. 
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Abstract 

Cold weather has been identified as a major cause of weather-related deaths in the U.S. 

Although the effects of cold weather on mortality has been investigated extensively, studies on 

how cold weather affects hospital admissions are limited particularly in the Southern United 

States. This study aimed to examine impacts of cold weather on emergency hospital admissions 

(EHA) in 12 major Texas metropolitan statistical areas (MSAs) for the 10-year period, 2004-

2013. A two-stage approach was employed to examine the associations between cold weather 

and EHA. First, the cold effects on each MSA were estimated using distributed lag non-linear 

models (DLNM). Then a random effects meta-analysis was applied to estimate pooled effects 

across all 12 MSAs. Percent increase in risk and corresponding 95% confidence intervals (CIs) 

were estimated as with a 1 degree Celsius (°C) decrease in temperature below a MSA-specific 

threshold for cold effects. Age-stratified and cause-specific EHA were modeled separately. 

The majority of the 12 Texas MSAs were associated with an increased risk in EHA ranging 

from 0.1% to 3.8% with a 1⁰C decrease below cold thresholds. The pooled effect estimate was 

1.6% (95% CI: 0.9%, 2.2%) increase in all-cause EHA risk with 1 ⁰C decrease in temperature. 

Cold wave effects were also observed in most eastern and southern Texas MSAs. Effects of 

cold on all-cause EHA were highest in the very elderly (2.4%, 95% CI: 1.2%, 3.6%). Pooled 

estimates for cause-specific EHA association were strongest in pneumonia (3.3%, 95% CI: 

2.8%, 3.9%), followed by chronic obstructive pulmonary disease (3.3%, 95% CI: 2.1%, 4.5%) 

and respiratory diseases (2.8%, 95% CI: 1.9%, 3.7%). Cold weather generally increases EHA 

risk significantly in Texas, especially in respiratory diseases, and cold effects estimates 

increased by elderly population (aged over 75 years). Our findings provide insight into better 
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intervention strategy to reduce adverse health effects of cold weather among targeted 

vulnerable populations. 

 

Keywords 

Cold wave; Cold weather; Emergency hospital admission; Heart disease; Temperature 
 
 
 
Highlights 

• Cold weather generally increased hospital admission risk significantly in Texas. 

• Strong effect estimates were observed in respiratory diseases. 

• Cold effect estimates increased by elderly population. 
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1. Introduction 

Extreme cold events in the U.S. have become a public health concern. The number of 

severe snowstorms that occurred in the eastern two-thirds of the contiguous U.S. was 

approximately twice in the second half of the twentieth century than the first (Kunkel et al. 

2013). Cold weather has been identified as a major cause of weather-related deaths in the U.S., 

and during 2006-2010, over 60% of weather-related deaths were estimated to be attributable 

to cold weather (Berko et al. 2014). Numerous epidemiological studies have demonstrated 

there is an association between cold temperature and mortality which varied by geographic 

locations, regional climates, and demographic characteristics (Song et al. 2017; Conlon et al. 

2011). However, while cold-related mortality has been investigated extensively, studies on 

cold-related morbidity such as hospital admissions or emergency room visits were less well 

studied.  

Compared with other emergency department (ED) visits, cold-related morbidity ED 

visits have been reported to be more resource intensive. These cold-related morbidity patients 

are often admitted to the critical care units and require more medical attentions or transferring 

to other facilities (Baumgartner et al. 2008). However, few efforts have been made to examine 

the impact of cold temperature on patients admitted to hospital through ED, with most 

conducted outside the U.S. (Ye et al. 2012). One of the few cold-morbidity studies conducted 

in the U.S. estimated that 15,574 emergency room visits during 1995-2004 were related to 

hypothermia and external causes of reduced temperature (Baumgartner et al. 2008). However, 

exposure to cold weather can lead to not only direct effects such as hypothermia and frostbite, 

but also indirect effects such as pneumonia, and influenza (Conlon et al. 2011). Moreover, 
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under such circumstances, pre-existing chronic conditions could be exacerbated, which then 

are often coded as non- thermal-related causes in primary diagnoses (de Freitas and Grigorieva 

2015). Thus, when the indirect effects are considered, the incidence of cold weather-related 

morbidity is likely to be tremendously higher. A systematic review reported 1 degree Celsius 

(⁰C) decrease in temperature was associated with 6.89% and 4.96% increased risk of 

pneumonia and respiratory morbidity respectively in the elderly population (Bunker et al. 

2016). Review studies on cold-related cardiovascular hospitalizations reported an elevated risk 

in the general population (2.8%, 95% CI: 2.1%, 3.5%) (Phung et al. 2016), but increased 

morbidity risk was not observed in studies focusing in the elderly population (0%, 95% CI: -

0.67%, -0.66%) (Bunker et al. 2016). However, previous studies have suggested that cold 

effects were most pronounced in the elderly due to their often impaired thermoregulation 

ability (Conlon et al. 2011). Given the different findings, it is necessary to assess cold effects 

on cause-specific morbidity in different age groups (Liu et al. 2015). 

Few multi-city studies have shown cold-related adverse health impacts is especially 

relevant with decreasing latitude or in warmer winter climate regions (Curriero et al. 2002; Ma 

et al. 2014; Medina-Ramon and Schwartz 2007). This spatial variation of cold weather effects 

implies different acclimatization to communities’ local weather conditions (Curriero et al. 

2002; Medina-Ramon and Schwartz 2007). In other words, residents in warmer climate regions 

are well-adapted to heat but have less physical, social, and behavioral adaptions to cold 

temperature. Texas, one of the most populous and diverse states, is located in the Southern 

Central region of the U.S. and generally has a mild winter. Additionally, Texas encompasses 

different climates varying from arid desert in the west to humid subtropical in the east. The 

wide range of climate, geographical and demographic features in Texas makes it well suited to 
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investigate the strength of the association between cold weather and morbidity. Despite 

evidence has shown that cold weather is related to significant levels of mortality in Texas, and 

the effects varied with cities, age groups, and cause-specific deaths (Chen et al. 2017), 

information on cold-morbidity in Texas is still lacking. In addition to cold temperature, cold 

waves, prolonged periods of extreme cold temperature may pose an extra risk of adverse health 

outcomes. Therefore, this paper aimed to evaluate the impacts of cold weather (both cold 

temperature and cold wave effects) on emergency hospital admissions (EHA) for a 10-year 

period, 2004-2013, in 12 major Texas Metropolitan Areas (MSAs). 

 

2. Material and methods 

2.1. Study area 

Texas is the largest of the 48 contiguous states and one of the most populous state in 

the U.S. Based on the 2010 Census Bureau data, twenty-five Texas MSAs were delineated by 

the U.S. Office of Management and Budget (OMB) (U.S. Census 2013). In order to assure 

enough sample size for our data analysis, we selected twelve Texas MSAs for the present study 

based on quality and availability of the weather data and the population sizes that were 

constantly over 200,000 during the study period (Figure 1).  

 



 
 

47 
 

Figure 1. Twelve Texas Metropolitan Statistical Areas (MSAs) in the study. MSAs were 
selected based on the size of population and availability of weather and air pollution data 
during the 10-year study period. 

 

2.2. Data sources 

2.2.1. Emergency hospital admissions data 

Emergency hospital admissions (EHA) data were obtained from the Texas Department 

of State Health Services (DSHS). We defined cases as inpatients with emergency admission 

and identified based on the type of admission. The number of patients admitted in to the 

hospital for care were aggregated daily totaling 3653 observations for the period 2004-2013 in 

each of 12 MSAs in Texas. As defined by the International Classification of Disease, Ninth 

Revision, Clinical Modification (ICD-9-CM), diagnosis of primary EHA from all causes (ICD-
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9-CM 000-999, E and V codes), cardiovascular disease (CVD, ICD-9-CM 390-429), 

respiratory disease (RESP, ICD-9-CM 460-519), and stroke (ICD-9-CM 430-438) during the 

study period of 2004-2013 were compiled and used for analysis. We further looked into CVD 

subtypes including ischemic heart disease (IHD, ICD-9-CM 410-414), and myocardial 

infarction disease (MI, ICD-9-CM 410), and categorized RESPs into chronic obstructive 

pulmonary disease (COPD, ICD-9-CM 490-496 except 493) and pneumonia (PNEU, ICD-9-

CM 480-486). Cause-specific outcomes were selected based on previous studies showing 

increased risk of cold-related morbidity (Bunker et al. 2016; Phung et al. 2016).  

2.2.2. Weather data 

Hourly weather data at weather stations in Texas were obtained from the National 

Climate Data Center (NCDC) through the Integrated Surface Database (ISD) (NCDC 2014). 

For each MSA, one weather station that could best represent its population exposure was 

selected (e.g., airport weather station which is closest to the most populous city in the MSA). 

Daily mean, minimum, and maximum temperature and dew point temperature were then 

calculated. We primarily used mean temperature as it represents the temperature exposure for 

both day and night (Guo et al. 2014). A rigorous quality control procedure, developed by the 

NCDC, to check for internal consistency and extreme values were applied to the ISD weather 

data (Lott 2004). 

 

2.3. Statistical analysis 

We performed a two-stage approach in the analysis. In the first stage, counts of daily 

EHA were modeled as a function of temperature separately for each MSA using Poisson 
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regression. In the second stage, the estimated associations from each MSA were combined at 

state level through a meta-analysis. This two-stage approach has been widely used in multi-

city studies of daily deaths and HAs (Guo et al. 2014; Gasparrini et al. 2012; Schwartz et al. 

2004). 

2.3.1. MSA-specific models 

There are two steps in building up the MSA-specific models. The associations between 

temperature and daily count EHA were first explored using distributed lag non-linear models 

(DLNMs). In order to account for the delayed effect of cold temperature, a “cross-basis” 

function embedded in generalized linear models (GLM) was constructed to express exposure-

response dependencies and delayed effects simultaneously. In brief, we applied a natural cubic 

spline with 5 degrees of freedom (df) for the lag dimensions and 4 df for the temperature 

change dimension. To capture the overall cold temperature effect, we used lags up to 25 days. 

Confounding variables such as day of the week, day of the year and mean dew point 

temperature were also included in the models. 

Unlike previous studies conducted in the Northern US or European counties that the 

relationship between temperature and morbidity is usually V-, U- or J-shaped with the 

optimum temperature corresponding to the lowest point or range in the curve (Ye et al. 2012), 

our initial analysis indicated that although the amplitude of the fluctuations showed some 

variations across MSAs, the association between temperature and EHA were generally linear 

with increased risk of EHA only at lower temperatures (Supplemental Figure A1). 

Secondly, to quantify the excess risks of EHA attributable to cold weather, we applied 

single threshold DLNMs assuming the effect of cold temperature was linear below cold 
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thresholds. A number of covariates were also incorporated through Poisson regression model 

as follow: 

ሺܧሾ݃݋ܮ ௧ܻሻሿ ൌ ߙ ൅ ܯሺ݉݁ܶ࢈ࢉ ௧ܲ,௟ሻ ൅ ܥࢼ ௧ܹ ൅ ܱܦࢽ ௧ܹ ൅ ܱܦሺݏ	 ௧ܻ, ሻݎܽ݁ݕ/7 ൅ ܹܦሺ݉݁ݏ	 ௧ܲ, 3ሻ [1] 

Where ௧ܻ is the counts of EHA on day t; ߙ is the intercept; ܾܿሺ݉݁ܶܯ ௧ܲ,௟ሻ is a cross-

basis with threshold-type function in predictor dimension, which describes the log-linear 

increase in EHA for a unit decrease in lag 0-25 mean temperature below the threshold; 	ܥ ௧ܹ 

is a binary variable for cold waves (1 if day ݐ was classified as part of a cold wave, 0 

otherwise); ܱܦ ௧ܹ represents day of the week which modelled with six indicator variables 

through a dummy parameterization; ࢼ and ࢽ are the vectors of regression coefficients; ݏሺ	ሻ is 

a smooth function;	ܱܦ ௧ܻ represents day of year specified through a natural cubic spline with 7 

df per year to account for seasonality and long-term trends; ݉ ܹܦ݁ ௧ܲ	represents the mean dew 

point temperature with 3 degrees of freedom to account for the amount of moisture in the air. 

The Akaike information criterion (AIC) was commonly utilized in model selection. In 

general, a lower AIC value reflects a better fit of the model. Cold thresholds used in equation 

[1] were determined by minimizing quasi-Akaike information criterion (Q-AIC) for regression 

models using quasi-Poisson distribution. Specifically, we decided potential cold thresholds can 

be identified between 10 to 25 ⁰C (visually observed from the preliminary DLNM results, 

Supplemental Figure A1.) and repeated the model presented in equation [1] with potential cold 

thresholds from 10 to 25 by 0.1 ⁰C for each MSA. The temperature corresponding to the model 

with the minimum Q-AIC was chosen as the threshold temperature for each MSA. We reported 

the estimated EHA relative risk as with a 1 ⁰C decrease in temperature below the cold 

threshold. The results are presented as the percentage increase in Relative Risks (RR), which 
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is derived as (RR-1)ൈ100. Stratified analyses were performed by causes of EHA and age 

groups. For age stratification, we used age 65 as the cutoff point (0-64) and further divided the 

older population into two subgroups: the elderly (65-74), and the very elderly (above 75 years 

old). 

We also examined the effects of cold waves on EHA. Currently, there is no universal 

operational definition of cold waves. For the purpose of this study, we defined cold waves as 

two or more consecutive days with daily mean temperatures below the 1st or 3rd percentiles of 

the local mean temperature of the study period. Furthermore, previous studies reported that the 

impact of cold temperature on mortality had a longer lagged effect (Anderson and Bell 2009). 

In order to capture the potential lagged effects, we then extended each cold wave event with 7 

days beyond its last day as described by Barnett et al. in 2012. 

2.3.2. Meta-analysis 

In the second stage, MSA-specific effect estimates obtained from the first-stage were 

then combined through a multivariate meta-analysis. The multivariate meta-analysis was fitted 

using a random-effect model by maximum likelihood and was applied at the state level. 

Variables at MSA level, such as latitude, population size, percentage of population below 

poverty, percentage of elderly population, percentage of Hispanic population, and percentage 

of black population were further included as a single meta-predictor. Potential effect 

modification was examined by predicting the cold temperature-EHA association at two levels 

of the meta-variables (25th and 75th percentile) and assessed through a Wald test. This method 

has been described previously by Gasparrini et al. in 2012. The Cochran Q-test and 

heterogeneity statistic I2 were used to evaluate the extent of heterogeneity between MSAs. All 
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statistical analyses were performed in the R statistical software (version 3.3.3; R Development 

Core Team; http://R-project.org). DLNMs were fitted using ‘dlnm’ package (version 2.0.6) 

(Gasparrini et al. 2010); and meta-analysis was performed using ‘mvmeta’ package (version 

0.4.11) (Gasparrini et al. 2012) and ‘metafor’ package (version 1.9-7) (Viechtbauer 2010).  

2.3.3. Sensitivity-analysis 

Sensitivity analyses were carried out to evaluate how the choice of lag days affected 

cold effects estimates. The choice of lag days varies with studies. In general, heat-related 

mortality/morbidity was most associated with shorter lags (0-1 to 0-3 days) while cold-related 

mortality/morbidity was most associated with longer lags (up to 30 days) (Bunker et al. 2016; 

Anderson and Bell 2009). We used maximum lags for 5, 10, 15, 20 to 25 days for the DLNMs 

among all-cause, cause-specific and age stratified EHAs. 

 

3. Results 

Table 1 summarizes the meteorology and population characteristics in the 12 MSAs, 

which consist of 62 counties in Texas. The population sizes of Texas MSAs varied. As of 2010, 

Dallas-Fort Worth-Arlington was the most populous MSA with nearly 6.5 million residences 

followed by Houston-The Woodlands-Sugar Land MSA with nearly 6 million population; and 

Waco was the least populous MSA with approximately 250,000 population (U.S. Census 

2010). Overall, approximately 90% of the Texas MSAs population (80% of the Texas state 

population) were included in the study. During 2004-2013, there were nearly 12 million 

emergency hospital admissions. The average daily mean temperatures in Texas MSAs ranged 

from 16.4⁰C to 24.6⁰C during the study period. The lowest annual mean temperature was 
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observed in Lubbock MSA and the highest in McAllen-Edinburg-Mission, and these two 

MSAs are the northernmost and the southernmost MSA respectively included in this study. 

The average daily counts of all-cause EHA ranged from 42 to 1,058 with the highest daily 

counts observed in Dallas-Fort Worth-Arlington and the lowest in Waco MSA. Additionally, 

MSA-specific cold thresholds for all-cause EHA were identified between 10.0 ⁰C and 25.0 ⁰C 

(Table 1). 
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Table 1. Summary of mean temperatures, daily counts of all-cause, cause-specific and age-stratified emergency hospital admissions, 
population sizes, cold wave days and selected cold thresholds in 12 major Texas Metropolitan Areas, 2004-2013. 

 

MSA 

Average 
daily mean 
temp (⁰C)a 

Mean  
(Min, Max) 

Average 
daily all-

cause EHAb 
Mean  

(Min, Max) 

Average daily all-cause EHA  
by age group 

Mean (Min, Max) 

Average daily EHA 
by disease  

Mean (Min, Max) 
Total 

counts 
EHAc 

Cold 
wave 
days 

Population 
sized 

Cold 
thresholds 

(⁰C) 
0-64 65-74 75+ CVDe RESPf 

Austin-Round Rock 
20.3 

(-5.0, 34.2) 
211 

(5, 439) 
142.4 

(4, 338) 
24.9 

(0, 62) 
43.4 

(1, 87) 
23.2 

(0, 49) 
22.4 

(2, 69) 
769,664 256 1,716,289 10.0 

Beaumont-Port Arthur 
20.9 

(-2.2, 32.5) 
63 

(0, 100) 
35.5 

(0, 65) 
9.8 

(0, 24) 
17.4 

(0, 36) 
9.5 

(0, 25) 
9.0 

(0, 27) 
228,880 298 403,190 25.0 

Brownsville-Harlingen 
24.0 

(0.0, 33.6) 
71 

(0, 167) 
44.3 

(0, 85) 
9.8 

(0, 29) 
16.7 

(0, 53) 
8.2 

(0, 22) 
9.0 

(0, 35) 
258,964 303 406,220 15.6 

Corpus Christi 
22.8 

(-1.9, 35.0) 
93 

(2, 156) 
60.2 

(1, 106) 
12.3 

(0, 34) 
20.7 

(1, 44) 
10.8 

(0, 27) 
11.1 

(0, 32) 
340,606 293 428,185 11.9 

Dallas-Fort Worth-
Arlington 

19.9 
(-8.6, 36.7) 

1,058 
(38, 1478) 

721.3 
(29, 983) 

132.8 
(5, 240) 

203.7 
(4, 376) 

117.4 
(6, 190) 

113.1 
(8, 310) 

3,864,102 310 6,426,214 10.0 

El Paso 
18.8 

(-12.5, 34.2) 
159 

(6, 256) 
105.6 

(4, 200) 
20.0 

(1, 42) 
33.6 

(1, 63) 
13.9 

(0, 32) 
16.2 

(0, 60) 
581,584 268 804,123 25.0 

Houston-The 
Woodlands-Sugar Land 

21.4 
(-2.5, 34.7) 

993 
(19, 1401) 

697.7 
(11, 988) 

120.1 
(6, 204) 

175.4 
(2, 303) 

111.0 
(1, 173) 

97.9 
(3, 222) 

3,628,070 251 5,920,416 11.2 

Killeen-Temple 
20.4 

(-6.1, 35.0) 
54 

(2, 106) 
34.0 

(2, 73) 
7.7 

(0, 28) 
12.4 

(0, 32) 
7.2 

(0, 19) 
7.1 

(0, 30) 
197,727 262 405,300 21.1 

Lubbock 
16.4 

(-13.6, 34.7) 
72 

(2, 123) 
47.3 

(2, 84) 
9.5 

(0, 28) 
15.2 

(0, 38) 
9.0 

(0, 27) 
7.8 

(0, 28) 
263,212 273 290,805 25.0 

McAllen-Edinburg-
Mission 

24.6 
(-7.5, 35.0) 

128 
(5, 243) 

85.7 
(3, 158) 

15.6 
(0, 37) 

27.1 
(1, 62) 

14.0 
(0, 38) 

13.8 
(0, 52) 

469,050 258 774,769 24.6 

San Antonio-New 
Braunfels 

21.4 
(-4.4, 35.6) 

306 
(3, 451) 

202.9 
(3, 332) 

37.9 
(0, 72) 

65.4 
(0, 116) 

34.2 
(0, 61) 

31.7 
(0, 86) 

1,118,559 269 2,142,508 12.5 

Waco 
19.9 

(-6.9, 35.8) 
42 

(2, 74) 
27.2 

(2, 58) 
5.2 

(0, 14) 
9.8 

(0, 23) 
5.1 

(0, 15) 
5.1 

(0, 19) 154,046 274 252,772 10.5 

aAverage daily mean temperature throughout the study period. bEmergency hospital admissions. cTotal counts of EHA throughout the study 
period. dBased on 2010 U.S. Census data. eCardiovascular disease. fRespiratory diseases. 
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Figure 2 shows all MSAs had a statistically significant increase in all-cause EHA risk 

ranging from 0.1% to 3.8% with a 1⁰C decrease in temperature below the cold threshold, 

except for Killeen-Temple MSA (-0.03%). The estimated increase in EHA associated with 

cold temperature was highest in Corpus Christi MSA (3.8%), followed by Waco MSA (3.3%) 

and Austin-Round Rock MSA (2.1%). The effect estimates for overall Texas showed a 1 ⁰C 

decrease in temperature below the threshold was associated with 1.6% [95%CI: 0.9%, 2.2%] 

increase in all-cause EHA. The pooled age-stratified analysis showed an increased all-cause 

EHA risk among all age groups with the highest risk for people over 75 years old (2.4% 

[95%CI: 1.2%, 3.6%]) (Figure 3). The pooled estimates of cause-specific EHA risk were 

generally higher in respiratory diseases than in cardiovascular diseases. The pooled cause-

specific EHA association was highest in pneumonia (3.3% [95%CI: 2.8%, 4.0%]), followed 

by chronic obstructive pulmonary disease (3.3% [95%CI: 2.1%, 4.5%]) and respiratory 

diseases (2.8% [95%CI: 1.9%, 3.7%]). Increased EHA risks were also observed in CVDs 

(1.1% [95%CI: 0.4%, 1.8%]), stroke (2.3% [95%CI: -0.3%, 4.9%]), CVD subgroups (IHD 

1.7% [95%CI: -0.1%, 3.6%], and MI 0.3% [95%CI: -3.5%, 4.2%]), although the increased risk 

of stroke, IHD and MI were not statistically significant. 

The significant heterogeneity between MSAs was found in all-cause, elderly, and very 

elderly EHAs with percentage of total variation across MSA were high (89.8%, 87.5% and 

89.5%, respectively; See Supplemental Table A1a). We further extended meta-regression 

models with MSA-level meta-predictors (See Supplemental Table A1b) to characterize 

differences of temperature-EHA associations between MSAs, and the heterogeneity statistic 

values remained high. The percent of variability due to heterogeneity between MSAs was low 

and not statistically significant for CVD, IHD, Stroke and COPD. Moderate heterogeneity 
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across MSAs was found for age group 0-64, MI, RESP and PNEU. This I2 statistic values were 

generally higher for the all-cause analysis compared to cause-specific analysis, and this was 

partially due to the fact that I2 values tend to increase as the number of sample size increases 

(Rücker et al. 2008). Latitude seems to explain part of heterogeneity in age group 0-64 and MI 

but the test for residual heterogeneity still significant. On the other hand, latitude explained a 

substantial part of heterogeneity between-MSA for RESP and PNEU with I2 of 2.9% and 

10.3% compared to 65.3% and 40.1% without predictor in models (Supplemental Table A1a).  

 
Figure 2. Meta-analysis for cold effects on all-cause emergency hospital admissions at lag 0-
25 in 12 major Texas MSAs during 2004-2013. 

  

  

Random-Effects Model for All MSAs

-1 0 1 2 3 4

 % Increase Risk

Waco
San Antonio-New Braunfels
McAllen-Edinburg-Mission
Lubbock
Killeen-Temple
Houston-The Woodlands-Sugar
El Paso
Dallas-Fort Worth-Arlington
Corpus Christi
Brownsville-Harlingen
Beaumont-Port Arthur
Austin-Round Rock

 3.29 [ 3.27,  3.31]
 1.86 [ 1.85,  1.87]
 1.10 [ 1.09,  1.10]
 0.08 [ 0.07,  0.09]
-0.03 [-0.04, -0.02]
 1.94 [ 1.93,  1.96]
 0.69 [ 0.68,  0.70]
 1.40 [ 1.40,  1.41]
 3.77 [ 3.74,  3.80]
 1.49 [ 1.46,  1.51]
 0.90 [ 0.89,  0.91]
 2.13 [ 2.12,  2.14]

 1.55 [ 0.90,  2.20]

Texas MSA % Increase Risk  [   95% CI  ]
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Figure 3. Pooled estimations of cold effect to age-stratified and cause-specific emergency 
hospital admissions at State-level in Texas. 

-4 -2 0 2 5

 % Increase Risk

Chronic Obstructive Pulmonary Disease
Pneumonia
Respiratory disease
Stroke
Myocardial Infarction
Ischemic Heart Disease
Cardiovascular Disease

Age 75+
Age 65-75
Age 0-65

All-Cause

3.27 [ 2.08, 4.47]
3.34 [ 2.75, 3.93]
2.81 [ 1.90, 3.74]
2.27 [-0.27, 4.88]
0.29 [-3.46, 4.17]
1.74 [-0.07, 3.57]
1.12 [ 0.44, 1.80]

2.37 [ 1.19, 3.57]
1.84 [ 0.76, 2.92]
1.50 [ 0.99, 2.02]

1.55 [ 0.90, 2.20]

Age

Cause-specific
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Table 2. Estimates of cold wave effects on emergency hospital admissions using two different models in 12 Major Texas 
Metropolitan Areas, 2004-2013. 

 
Texas MSA 

Cold wave modela  Temperature and Cold wave modelb 

Below 1st 
percentile  
Cold wave 

Below 3rd 
percentile 
Cold wave 

 Temperature 
Below 1st 
percentile 
Cold wave 

Temperature 
Below 3rd 
percentile 
Cold wave 

Austin-Round Rock 
2.57  

(0.74, 4.43)* 
3.73  

(2.31, 5.17)* 
 2.13  

(2.12, 2.15)* 
-0.01  

(-2.28, 2.31) 
1.65  

(1.63, 1.66)* 
2.37  

(0.47, 4.29)* 

Beaumont-Port Arthur 
3.30  

(-0.34, 7.06) 
3.54  

(1.07, 6.08)* 
 0.86  

(0.85, 0.87)* 
-1.18  

(-2.57, 5.08) 
0.75  

(0.74, 0.76)* 
2.56  

(-0.17, 5.36) 

Brownsville-Harlingen 
4.00  

(0.33, 7.80)* 
2.78  

(0.69, 4.92)* 
 1.37  

(1.35, 1.40)* 
0.89  

(-3.61, 5.60) 
1.43  

(1.40, 1.46)* 
0.21  

(-2.75, 3.26) 

Corpus Christi 
4.39  

(1.23, 7.64)* 
2.70  

(0.79, 4.64)* 
 3.69  

(3.66, 3.73)* 
0..41  

(-3.58, 4.55) 
3.74  

(3.71, 3.77)* 
0.12  

(-2.48, 2.78) 

Dallas-Fort Worth-Arlington 
1.25  

(-0.17, 2.69) 
1.99  

(1.00, 2.99)* 
 1.59  

(1.59, 1.60)* 
-1.91  

(-3.50, -0.30) 
1.46  

(1.45, 1.47)* 
-0.36  

(-1.67, 0.98) 

El Paso 
-0.88  

(-3.24, 1.53) 
0.76  

(-0.90, 2.45) 
 0.77  

(0.76, 0.78)* 
-1.77  

(-4.28, 0.82) 
0.65  

(0.64, 0.66)* 
0.56  

(-1.35, 2.50) 

Houston-The Woodlands-Sugar Land 
1.86  

(0.23, 3.52)* 
1.64  

(0.50, 2.80)* 
 2.08  

(2.06, 2.09)* 
-1.02  

(-2.90, 0.90) 
2.23  

(2.21, 2.24)* 
-1.34  

(-2.81, 0.14) 

Killeen-Temple 
2.65  

(-0.98, 6.40) 
1.26  

(-1.01, 3.57) 
 -0.15  

(-0.16, -0.14) 
2.49  

(-1.55, 6.70) 
-0.18  

(-0.19, -0.17) 
2.00  

(-0.78, 4.86) 

Lubbock 
-0.77  

(-4.15, 2.72) 
-0.06  

(-2.09, 2.00) 
 0.08  

(0.07, 0.09)* 
-0.04  

(-3.57, 3.62) 
0.07  

(0.06, 0.07)* 
0.27  

(-2.04, 2.64) 

McAllen-Edinburg-Mission 
2.36  

(-0.09, 4.88) 
1.76  

(0.11, 3.43)* 
 1.03  

(1.02, 1.04)* 
1.39  

(-1.44, 4.30) 
1.14  

(1.13, 1.15)* 
-0.35  

(-2.40, 1.75) 

San Antonio-New Braunfels 
0.94  

(-0.93, 2.84) 
1.23  

(0.04, 2.43)* 
 1.84  

(1.83, 1.85)* 
0.31  

(-1.84, 2.50) 
1.98  

(1.96, 1.99)* 
-0.59  

(-2.17, 1.02) 

Waco 
2.71  

(-1.26, 6.84) 
6.44  

(3.81, 9.13)* 
 3.57  

(3.55, 3.59)* 
-3.64  

(-7.94, 0.87) 
2.92  

(2.90, 2.94)* 
2.27  

(-1.21, 5.87) 
aModels included a cold wave indicator and did not include daily mean temperature term. bModels included a cross-basis function of daily 
mean temperature and a cold wave indicator. *Statistically significant at p value less than 0.05. 
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Potential cold wave effects were examined using two different models: modeling for 

cold wave only (overall cold wave effects) and modeling for daily mean temperature and cold 

waves simultaneously (additional cold wave effects). The selected effect estimates of cold 

wave on EHA were shown in Table 2. Overall cold wave effects were observed in most coastal 

MSAs when using daily mean temperature below 1st percentile of the annual mean temperature 

for two or more consecutive days with an extended 7 days period as the definition of cold 

wave. With a less intense cold wave definition (below 3rd percentile), overall cold wave effects 

were found in more MSAs except three: the far west MSA- El Paso, the northernmost MSA- 

Lubbock and the Killeen-Temple MSA. Additional cold wave effect was only observed in the 

Austin-Round Rock MSA when using a less intense cold wave definition with a prolonged 7-

day period. 

The sensitivity analysis shows that our results were robust with lag selection (See 

Supplemental Tables A2, A3, and A4). Similar cold thresholds and cold effect estimates were 

identified for each MSA when using similar lag ranges. For example, cold thresholds for all-

cause EHAs in Houston-The Woodlands-Sugar land with lag days 0-15, 0-20 and 0-25, were 

identified at 11.1, 11.2, and 11.1⁰C with estimated excess risk of 1.83%, 2.03%, and 1.95%, 

respectively (See Supplemental Table A2). Our sensitivity analysis also demonstrates that cold 

effects were more prominent with longer lag days (0-15, 0-20, and 0-25 days) among all-cause, 

CVD, RESP, PNEU, COPD, STROKE, and all age groups EHAs with similar estimates. The 

cold effects for IHD and MI were associate with relatively shorter lag days. Overall, the 

strongest cold effects were mostly found with 0-25 lag days although the lag effects vary by 

MSAs and by cause-specific diseases. 
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4. Discussion 

In this study, we depicted the impacts of cold weather (both cold temperature and cold 

wave effects) on all-cause and cause-specific EHA using distributed lag non-linear models for 

12 major MSAs in Texas. Our findings showed that cold temperature generally had significant 

effects on emergency HA at the state and MSA levels, and the risks were generally higher in 

respiratory diseases than in cardiovascular diseases. To the best of our knowledge, this appears 

to be the first study that examined the associations between cold weather and cause-specific 

emergency hospital admissions among the general population in Texas. 

In general, cold temperature showed statistically significant impacts on all-cause EHA 

in Texas. However, there was no clear spatial pattern of the association between cold and EHA 

that is associated with latitude as we have seen in mortality (coefficient= -0.15, 95% CI[-0.47, 

0.17]).  Previous cold-mortality study conducted in Texas have found that with a 1⁰C decrease 

in temperature below the cold threshold, the scale of the increased risk of all-cause mortality 

was positively associated with MSAs’ year-round average mean temperature (coefficient= 

0.53, 95% CI[0.28, 0.78]) and negatively associated with the MSAs’ latitudes (coefficient= -

0.49, 95% CI[-0.70, -0.28]) (Chen et al. 2017). However, in the present study, the strongest 

cold effect estimate among all-cause EHA was found in the Corpus Christi MSA (3.8%) and 

the weakest in the Killeen-Temple MSA (-0.03%) where both MSAs are neither the 

northernmost or southernmost MSA. Although multi-city studies conducted in other parts of 

the world observed the trend that the effect of cold temperature on all-cause morbidity was 

greater in southern areas (Zhao et al. 2017), geographic location is unlikely to be the primary 

cause of heterogeneity in Texas. Our results also showed with latitude and other MSA-
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indicators included in the models as a single meta-predictor, the heterogeneity across MSAs’ 

cold - all-cause EHA associations remained high. However, these geographic characteristics 

or sociodemographic factors may have modified cold and cause-specific EHA associations. 

For example, higher cold effects among RESP and PNEU occured in northern MSAs, although 

no significant effect modification were observed (See Supplemental Figure A2). Future studies 

are needed to further explore potential modifying predictors.  

Our findings showed that cold temperature generally had greater impact on EHA 

related to respiratory diseases than cardiovascular diseases (2.8 % vs. 1.1%), with the strongest 

impact on pneumonia (3.3%) and COPD (3.3%). Studies conducted in European countries also 

showed the hospital admissions of respiratory diseases were particularly elevated by cold 

temperature with the greatest impact on COPD (8.53%, 95% CI: 7.71%, 9.36%) (Hajat et al. 

2016). This greater impact on respiratory diseases than cardiovascular diseases phenomenon 

was found even more exaggerated in outpatient study. Study conducted in other subtropical 

area, Taiwan, reported the risk of outpatient in respiratory diseases increased ranging from 

18% to 31%, but no effects on outpatient of cardiovascular diseases were observed by 

comparing with the Z score (a standardized values) of the lowest risk (Lin et al. 2013). 

Furthermore, our finding of elevated CVD emergency hospital admissions is similar with a 

study conducted in Hong Kong, which reported 2.1% increased risk of CVD hospital admission 

for every 1°C decreased in temperature within the 8.2–26.9°C range (Chan et al. 2013).  

Compared with the cold-mortality associations in Texas in our previous study (Chen et 

al. 2017), similar trends were observed that in general, cold temperature has significant impact 

on overall respiratory diseases and to a lesser extent on overall cardiovascular diseases (3.17% 

vs. 1.85%). The highest increased mortality risk was also observed in pneumonia although the 
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effect was not statistically significant (7.0%, 95%CI: -0.9%, 15.46%). However, in the cause-

specific disease subtypes analysis, even though the impact of cold temperature on mortality 

was more pronounced in MI (4.30% [95%CI: 1.18%, 7.51%]) and IHD (2.54% [95%CI: 

1.08%, 4.02%]) compared with diseases in the respiratory category (Chen et al. 2017), the 

impact on emergency HA of diseases subtypes was observed with an opposite trend. In the 

present study, the increased risks of EHA were found in overall CVDs (1.12%, 95% CI: 0.44%; 

1.80%) and CVD subtypes, however, the associations were not statistically significant (IHD, 

1.74% [95%CI: -0.07%; 3.57%]; MI, 0.29% [95% CI: -3.46%; 4.17%]).  

A plausible explanation for this difference between cause-specific mortality and EHA 

may be due to a potential harvesting effect. For example, MI, commonly known as a heart 

attack, is a life-threatening condition with blocked blood flow to the heart and is often 

fatal within a short time. It is possible that the cold-induced MI led to a patient’s death 

immediately and left no time for the patient to be admitted to hospitals, which is reflected in a 

higher impact of cold on MI mortality and a relatively lower or no impact of cold on MI EHA. 

However, this explanation is speculative, since we were limited in our outcome measures to 

either deaths or hospital admissions rather than the occurrence (both fatal and non-fatal 

including outpatients, emergency room visits etc.). On the other hand, Madrigano et al. (2013) 

examined the association of temperature with occurrence of acute MI as well as post-discharge 

mortality in Boston and found that exposure to cold increase the risk for the occurrence of MI 

on the same day but not for mortality. Their findings seem to contradict our results, however, 

this disagreement may have caused by the different lag day used in the analysis (lagged 6 days 

vs. up to 25 days in our study). Moreover, Wolf et al. (2009) reported an inverse association 

between cold temperature and MI occurrence in Germany where a 10°C decrease in 5-day 
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average temperature was associated with a 10% risk increase (95% CI: 4%–15%). Bhaskaran 

et al. (2010) reported a statistically significant short-term increased risk of MI hospital 

admissions in England and Wales at lower temperatures. These findings implied that instead 

of long-term lagged cold effects, the impact of cold temperature on MI may be more 

pronounced for short-term effects. Our sensitivity analysis results confirm that when modeled 

the association between cold temperature and MI with cumulative RR up to 5 days, the short-

term association was captured with an increased risk ranging from 0.17% to 4.6% varied by 

MSAs (pooled estimates: 1.0% [95% CI: 0.2%, 1.8%]). Therefore, future studies on disease 

occurrence (both fatal and non-fatal event) with different length of lagged effects are needed 

to provide more comprehensive understanding of the association between cold temperature 

and adverse health impacts. 

Increased risks of cold temperature on all-cause EHA were observed in our study in all 

age groups, and the risk was greatest for the very elderly (aged over 75 years, 2.4% [95% CI: 

1.2%, 3.6%]). This finding is consistent with previous study conducted in England that the 

very elderly is the most vulnerable to cold temperature (Hajat et al. 2016). However, there have 

been debates regarding the associations between cardiovascular morbidity and cold exposure 

in the general population and in the elderly population (Song et al. 2017). A review on cold-

related cardiovascular showed an elevated morbidity risk in general population (2.8%, 95% 

CI: 2.1%, 3.5%) (Phung et al. 2016), interestingly, increased morbidity risk was not observed 

in the elderly population (0%, 95% CI: -0.67%, -0.66%) (Bunker et al. 2016). Specifically, 

Bunker et al. (2016) showed the direction and magnitude of cold-related morbidity in CVDs 

widely varied by disease causes in the elderly population despite that the associations were not 

statistically significant. The wide variation and inconsistency of the associations between cold 
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temperature and CVD causes suggest assessing the cold effects on cause-specific morbidities 

and in different age groups is necessary for future studies in order to have a more effective 

prevention strategy could be provided for the vulnerable population. Furthermore, previous 

studies have detected a stronger association between cold temperature or cold wave and sudden 

cardiac death in patients without history of coronary heart disease (CHD) than those with a 

prior CHD (Gerber et al. 2006; Ryti et al. 2017). This finding implied healthy individuals might 

expose themselves more to cold weather whereas coronary patients might have been advised 

to avoid outdoor cold stress. This may also partially explain the weaker or absence of cold-HA 

risk of CVDs in the elderly population that they may stay indoors and not engaging in activities 

that may lead to adverse health events (Bobb et al. 2017).  

Cold wave effects on all-cause EHAs were observed in most eastern and southern 

Texas MSAs as overall effects. Although it sees that the overall cold wave effects in Texas 

MSAs were observed more during less intensive cold waves (daily mean temperature below 

3st percentile of the annual mean temperature for two or more consecutive days with an 

extended 7 days period) compared to intense cold waves (below 1rd percentile), the magnitude 

of the effects were similar, only a wider confidence interval reported for the later ones (Table 

2). This finding may be a reflection of the difference in sample size that low number of 

intensive cold wave events limited the power to detect cold wave effects. Furthermore, these 

effects were largely diminished when including the daily mean temperature term, suggesting 

in little or no evidence of additional cold wave effects. 

There are several limitations to this study. One limitation is the lack of control for air 

pollution. Airborne particles have been reported to be the most influenced pollutant on CVD 

hospital admissions (Schwartz et al. 2004) and were suggested in some but not all studies (Basu 
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et al. 2008). However, the air born particles data, such as PM2.5, were measured in every 6 

days, and not available for all our studied MSAs (data not available in the Killeen-Temple 

MSA). Thus, air pollutions were not included in this study. Also, we analyzed the cold 

temperature -EHA associations using data from fixed meteorological stations rather than the 

individual-level exposure which introduced measurement bias. Furthermore, there are some 

debates over the relative importance of indoor cold stress versus outdoor cold stress with regard 

to winter mortality. The uncertainty of individual behavior was not taken into accounted in this 

study. For example, some people may tend to stay indoors during cold days, this will then 

introduce more error into our exposure measure when temperature drops. While the present 

study emphasized the ambient temperature, there is evidence that the indoor cold temperature 

could also play a contributory role on the impact of health events (Eurowinter Group, 1997). 

Connecting our understanding with this potential behavioral change may improve our ability 

to accurately estimate the impacts of cold weather and inform decisions about mitigating future 

adverse health events.  

 

5. Conclusions 

In general, cold temperature showed statistically significant impacts on all-cause 

emergency hospital admissions in Texas. However, unlike mortality which depends on 

latitude, there was no clear spatial pattern of the association between cold and EHA. The 

pooled estimates of cause-specific EHA risk were generally higher for respiratory diseases 

than in cardiovascular diseases. Future research should address cause-specific morbidity 

outcomes such as hospital admissions in respiratory and cardiovascular subtypes for different 
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age group populations to make predictions more optimally for the corresponding vulnerable 

populations. 
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Appendices 

Appendix B:  Journal Article II Supplemental Materials 

Supplemental Figure A1. The association between temperature and the risk of emergency hospital admission in 12 major Texas 
MSAs (2004-2013) using distributed lag non-linear models: (a) Overall RR; (b) Lag-specific RR with reference at 10 to 18 degree 
Celsius, varied by MSAs. 
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Supplemental Figure A2. Pooled temperature - emergency hospital admission association by causes or age and by MSA-specific 
variables in 12 major Texas MSAs (2004-2013). Two levels of the meta-variables: 25th and 75th percentiles were predicted and 
showed in solid red line and dashed blue line, respectively. Selected meta-variables were latitude, percent of population below 
poverty, percent of elderly population, percent of Hispanic population and percent of black population. Wald test results suggest no 
effect modification were significant. 
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Supplemental Figure A2. (continued) 
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Supplemental Figure A2. (continued) 
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Supplemental Figure A2. (continued) 

 

 

 
 



 
 

 
 

78 

Supplemental Table A1a. Cochran Q-test, I2 of multivariate meta-analysis models for age stratified, cause-specific emergency 
hospital admissions by specific covariates. 

  Overall Latitude % Below Poverty % Elderly (aged 65+) % Hispanic % Black Population 

 Qa P-valb I2c Q P-val I2 Q P-val I2 Q P-val I2 Q P-val I2 Q P-val I2 Q P-val I2 

All-Cause 79.9 <0.00 89.8 71.3 <0.00 89.3 79.5 <0.00 90.5 79.8 <0.00 90.7 79.6 <0.00 90.5 79.9 <0.00 90.6 63.9 <0.00 89.7 

Age 0-64 29.1 0.002 65.0 22.1 0.015 57.2 25.5 0.005 66.3 26.6 0.003 66.6 28.3 0.002 66.8 27.6 0.002 67.8 25.5 0.005 65.5 

Age 65-74 43.3 <0.00 87.5 37.0 <0.00 85.6 42.5 <0.00 88.5 41.5 <0.00 87.3 40.1 <0.00 87.9 42.5 <0.00 88.2 43.3 <0.00 87.3 

Age 75+ 56.7 <0.00 89.5 39.8 <0.00 83.7 55.1 <0.00 89.6 53.6 <0.00 89.3 54.5 <0.00 89.0 56.1 <0.00 89.3 56.2 <0.00 87.1 

CVDd 10.0 0.531 16.5 8.7 0.561 8.8 9.9 0.452 22.8 9.9 0.453 0.0 8.6 0.568 13.0 10.0 0.445 0.3 9.5 0.488 20.1 

IHDe 15.7 0.151 0.0 15.4 0.117 2.0 15.4 0.118 1.6 15.7 0.110 1.7 15.5 0.114 0.1 15.0 0.131 0.1 15.7 0.109 1.0 

MIf 23.5 0.015 57.7 21.5 0.018 48.5 22.2 0.014 60.2 20.6 0.024 45.4 23.4 0.010 67.1 23.2 0.010 67.9 22.6 0.012 65.8 

Stroke 17.6 0.091 23.9 17.4 0.066 30.0 16.3 0.092 19.4 15.7 0.108 16.7 15.9 0.103 15.9 17.2 0.069 28.2 14.1 0.170 2.4 

RESPg 27.9 0.003 65.3 13.8 0.184 2.9 26.4 0.003 67.7 26.9 0.003 69.7 26.6 0.003 68.4 27.9 0.002 69.3 27.7 0.002 68.6 

PNEUh 18.3 0.074 40.1 10.8 0.372 10.3 14.7 0.145 32.4 10.5 0.397 14.3 14.4 0.156 29.4 15.7 0.108 34.5 12.2 0.271 14.4 

COPDi 11.3 0.418 12.2 5.3 0.870 0.0 9.8 0.455 8.3 10.0 0.44 7.5 7.2 0.711 0.0 9.1 0.523 1.5 9.7 0.467 0.0 
a Cochran Q-test for heterogeneity; b Q-test P-value; c I2 heterogeneity index (%); d Cardiovascular diseases; e Ischemic heart disease; f 
Myocardial fraction; g Respiratory disease; h Pneumonia; i Chronic obstructive pulmonary disease. 
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Supplemental Table A1b. MSA-level variables used in meta-regression models. 

MSA Black Hispanic Poverty Elderly 
Total 

Population Latitude 
Austin-Round Rock 7% 33% 14% 17% 1,990,437 30.18 
Beaumont-Port Arthur 24% 15% 18% 27% 417,449 29.95 
Brownsville-Harlingen 0% 89% 34% 29% 449,166 25.91 
Corpus Christi 3% 60% 18% 27% 449,323 27.77 
Dallas-Fort Worth-Arlington 15% 30% 15% 20% 7,117,896 32.90 
El Paso 2% 84% 23% 25% 877,248 31.81 
Houston-The Woodlands-Sugar 17% 38% 16% 20% 6,622,047 29.98 
Killeen-Temple 18% 22% 15% 20% 454,994 31.07 
Lubbock 7% 35% 19% 23% 307,992 33.67 
McAllen-Edinburg-Mission 0% 91% 34% 25% 883,903 26.18 
San Antonio-New Braunfels 6% 56% 16% 24% 2,380,005 29.54 
Waco 15% 26% 22% 26% 263,208 31.62 

*U.S. Census Bureau 2010. 
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Supplemental Table A2. Sensitivity analysis of estimating association between cold temperatures and all-cause, cause-specific 
emergency hospital admissions by changing maximum lag for mean temperature. 

 



 
 

81 
 

 

Supplemental Table A3. Sensitivity analysis of estimating association between cold temperatures and cause-specific emergency 
hospital admissions by changing maximum lag for mean temperature. 
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Supplemental Table A4. Sensitivity analysis of estimating association between cold 
temperatures and age-stratified emergency hospital admissions by changing maximum lag for 
mean temperature. 
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Abstract 

While future warming may be expected as the consequence of global climate change, 

however, cold-related health impacts may not correspondently decrease. Previous studies have 

examined the impact of shifted temperature distribution at regional or global trends. However, 

an effective adaptation plan should be provided at a finer scale. Our studies have shown that 

cold weather is related to significant levels of mortality in Texas. In order to provide actionable 

evidence to inform local adaptation plan, we estimated cold temperature-related deaths using 

9 climate models with a total of 53 runs under 3 different emission scenarios to address climate 

uncertainties through the end of the century in 12 Texas Metropolitan Areas (MSAs). 

Population projection was also considered in the projection of public health burdens 

attributable to cold temperatures in the 2050s and 2080s. Our results showed that the projected 

future temperatures were associated with lower cold-mortality rate. However, with population 

projection, the annual deaths attributable to cold increased largely in several major MSAs. The 

Houston-Woodlands-Sugar Land areas were projected to experience 1690 deaths a year in 

2050s and 1275 deaths a year in 2080s under climate change. Although not all of the MSAs 

were projected with an increase in annual cold-related death counts by the end of the century, 

the total number of cold-related deaths during the baseline (1990-2011), 2050s (2046-2065) 

and 2080s (2081-2099) was estimated to be over 300,000 deaths. Cold-related deaths remain 

as an important public health burden through the end of the century in Texas. Hence, by looking 

at MSA level estimates, the state government or community leaders would be able to locate 

areas with excessive cold burdens and help local governments allocate resources to the areas 

in greatest need.  
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1. Introduction 

Global average temperatures will continue to rise over the next few decades. Researchs 

of the health impacts of climate change worldwide have often concluded that mitigated winter 

due to global warming would substantially reduce winter mortality, which may offset the 

increased heat-related mortality partially or entirely. However, the magnitude and degree of 

uncertainty of the net change in the temperature-related deaths is expected to vary by location, 

depending on the shape of the temperature-mortality association curves (Gasparrini et al. 2017; 

Weinberger et al. 2017). Furthermore, fewer studies have accounted for population growth 

scenarios when estimating future temperature-related health burden. Therefore, whether the 

changing climate will be harmful or beneficial to temperature-related health burden in the 

future remains debatable.  

Previous studies have shown that the association between ambient temperature and the 

risk of death is usually V-, U- or J-shaped with risks increasing progressively once the 

temperatures drop or above specific thresholds (Guo et al. 2014; Medina-Ramon M, Schwartz 

J. 2007; Ye et al. 2012). These thresholds were often referred to the lowest point or range in 

the exposure-response curve as an optimal temperature or minimum mortality temperature 

(MMT) and also vary considerably by locations (Ye et al. 2012). Several studies projected a 

substantial increase of heat-related mortality and a lower rate of cold-related mortality under 

the impact of climate change through the end of the century (Gasparrini et al. 2017; Hajat et 

al. 2013). However, the accuracy of these predictions depends on how much of these 

mortalities are directly dependent on temperatures alone. With increasing awareness of the risk 

of non-optimal temperature, increased prevalence of HVACs, improved housing and health 
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care, the link between temperature and mortality may not remain the same as before. Potential 

adaptation was not being considered, despite previous evidence has suggested that an increase 

in mean summer temperature was associated with a decrease in heat-related mortality, 

implying potential adaptation (Nordio et al. 2015). Although cold adaptation modified by mean 

winter temperature remains unsure, evidence has shown a stronger cold-related mortality 

observed in mild winter climate regions or in regions with decreasing latitude, suggesting that  

acclimatization exists (Curriero et al. 2002; Medina-Ramon and Schwartz 2007). Therefore, 

while climate change is considered as the biggest threat of the globe in the 21st century, 

providing comprehensive information at local level is crucial to reduce potential temperature-

related mortality burden requires action by local policymakers and government officials.  

With an area of 267,339 square miles, Texas covers a variety of demographical and 

geographical feature with a general mild winter climate as located in the southern USA. 

Although evidence has shown that cold weather is related to significant levels of mortality in 

Texas (Chen et al. 2017), a complete description of future mortality attributable to cold weather 

is still lacking. In addition, as one of the most populous and diverse states in the U.S., Texas 

encompasses three of the top five largest population gains city and 7 of the 15 with fastest-

growing rate city in the U.S. (US Census 2018). This rapid growing in population should be 

considered and incorporated into the projections of cold-related mortality when interpreting 

the future public health burden of cold-related deaths. Therefore, with the aim of providing 

credible and actionable evidence for local policymakers to design strategies in reducing future 

public health burden of temperature-related deaths, we projected cold–mortality using 9 bias-

corrected downscaled global climate models under three difference greenhouse gas scenarios 
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(with a total of 53 runs) and estimated cold-related health burdens by incorporating projected 

populations in 2050s and 2080s for 12 major Texas Metropolitan Areas (MSAs). 

 

2. Material and methods 

We estimated future cold-related mortality associated with climate change in two steps. 

First we performed epidemiological modeling using observed weather and mortality data to 

estimate MSA-specific association. Second, we conducted risk assessment using cold effect 

estimates from epidemiological modeling and temperature projections from climate models. 

Population projections were also considered.  

2.1. Data sources and study domain 

2.1.1. Historical data 

Twelve Texas MSAs delineated by the U.S. Office of Management and Budget (OMB) 

in 2013 (U.S. Census 2013) were included in the study based on the weather data availability 

and the population sizes. Daily mortality data during the period of 1990-2011 were obtained 

from the Texas Department of State Health Services (DSHS) and were aggregated at the MSA 

level. All causes of deaths, including external causes, were included and identified by the 

International Classification of Disease (ICD) Ninth Revision (ICD-9) codes 001-897 and Tenth 

Revision (ICD-10) codes A00-R99, V01 and W00 (World Health Organization 1975, 1993).  

Observed weather data were downloaded from the National Climate Data Center 

(NCDC) through the Integrated Surface Database (ISD) (NCDC 2014). Each MSA had a 

corresponding weather station, which is the closest to the most populous city in the MSA, to 
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represent its population exposure. Daily mean temperature and dew point temperature were 

calculated totaling 8035 observations for the period 1990-2011 in each of 12 MSAs in Texas. 

2.1.2. Climate Model Projections 

Future temperature projections were obtained for three Special Report on Emissions 

Scenarios (SRES) greenhouse gas emissions (GHG) scenarios (A1B, A2 and B1) based on 

global climate projections from the World Climate Research Programme's (WCRP's) Coupled 

Model Inter-comparison Project phase 3 (CMIP3) multi-model dataset referenced in the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. (IPCC 2007). 

SRES represent different assumptions of future demographic, socioeconomic, energy 

technological patterns and land-use. The SRES A2 represents relatively high GHG, describes 

a very heterogeneous world. The assumption is that population growth will be high but the 

sharing of technology and economic growth will be limited, which resulted in more disparate 

between countries and regions and the energy use will be high. The SRES B1 represents 

relatively low GHG, describes a convergent world. The assumption is that the global 

population growth remained but assumes a high level of environmental and social 

consciousness, which leads to sustainable development, high technological advancement, and 

low energy use. The A1B scenario describes a future world of rapid economic growth with 

global population peaks in mid-century and declines thereafter, but more emphasized on new 

and efficient technologies (IPCC 2000). 

Specifically, future time series temperature for each SRES were generated from daily 

bias-correction and constructed analogs (BCCA) climate projections, which has also been 

downscaled to reflect local climatological features (spatial resolutions at 1/8 degree (⁰)). We 
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included projections from 9 global scale general circulation models climate models (GCMs) 

with a total of 17 to 18 runs in each GHG scenarios (table 1) which were developed and made 

available by the “Downscaled CMIP3 and CMIP5 Climate and Hydrology projections”, 

archived at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ (DCHP).  

Finally, the daily BCCA CMIP3 provided daily maximum temperature and daily 

minimum temperature in three time slices: 1961-2000, 2046-2065, and 2081-2099. We 

extracted the projected temperatures for each MSA using the coordinates of MSA 

corresponding weather station where we obtained the historical weather data and calculated 

daily mean temperature by averaging the maximum and minimum temperature to represent 

climates in 2050s (2046-2065) and 2080s (2081-2099). 

2.1.3. Population Projections 

Texas population projections were obtained from the “Texas Population Estimates and 

Projections program” (TPEPP) website (http://osd.texas.gov/Data/TPEPP/) prepared by Office 

of State Demographer, Texas State Data Center. Briefly, the projections were completed using 

a cohort-component projection technique, meaning the projections were made from separate 

cohorts (single years of age by gender by racial groups) and then sum up these cohorts as 

projected total population. Special populations, fertility rates, mortality rates, and residual 

migration rates were incorporated into the population projection model. The projections were 

based on the 2010 census population and projected for each year from 2010 through 2050.  

Three projection scenarios were available assuming different degree of net migration, derived 

from 2000-2010 patterns, which were one of the expansive growth in the Texas economy and 

population. The scenarios are referred as the zero migration (0.0) scenario, the one-half 2000-
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2010 (0.5) scenario, and the 2000-2010 (1.0) scenario. We chose the (0.5) scenario which 

assumes a continued growth but at reduced levels, and is also suggested for long-term 

projection by the TPEPP. For the population beyond 2050, we assume the population will be 

held constant after 2050s. 

 
2.2. Epidemiology modeling 

MSA-specific association between cold temperature and daily counts of death was 

developed using single threshold distributed lag non-linear models (DLNMs) with an quasi-

Poisson family, as previously described (Chen et al. 2017). This method was constructed to 

express exposure-response dependencies and delayed effects simultaneously, which was 

developed by Gasparrini et al. (2012). In brief, we modeled historical daily mean temperature 

using the bi-dimensional spline function with a natural cubic spline with 5 degrees of freedom 

(df) for the lag dimensions and 4 df for the temperature change dimension. Lags were used up 

to 25 days to capture the long lagged effects of cold temperature. A number of confounding 

variables including day of the week, day of the year (natural cubic spline with 7 df per year) 

and mean dew point temperature (natural cubic spline with 3 df) were incorporated in the 

models.  

As stated above, the temperature-mortality association curves in Texas were generally 

linear with increased risk of mortality only evident in lower temperatures (see Supplemental 

Figure 1), unlike studies conducted in a colder winter region where curves are usually V-, U- 

or J-shaped (Ye et al. 2012). Instead of using minimum mortality temperature (MMT) or the 

optimum temperature corresponding to the lowest point or range in the curve, we used the 

temperature values corresponding to the model with the minimum Q-AIC as the cold threshold 
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temperature for each MSA. We reported the estimated mortality relative risk (RR) as with a 1 

⁰C decrease in temperature below the cold threshold. The MSA-specific effect estimates were 

then pooled through meta-analysis using a random-effect model to obtain an overall effect 

estimate at the state level. 

2.3. Risk assessment  

We estimated future health impacts based on the historical data (1990-2011, hereafter 

referred to as “baseline”). From there, we calculated the annual temperature-related mortality 

rate (deaths per 100,000 people) in 2050s (2046-2065) and 2080s (2081-2099) for each SRES 

in each MSA. Projected mortality impacts were estimated using modeled daily mean 

temperatures incorporated with MSA specific models. For any day in each MSA with mean 

temperature lower than the MSA’s cold threshold, the additional deaths due to cold 

temperature were calculated relative to the cold threshold. Daily additional deaths were 

estimated as 

ݕݐ݈݅ܽݐݎ݋ܯ∆ ൌ ܱܲܲ ൈ ଴ܻ ൈ  (1)                                                              ܨܣ

Where ∆ݕݐ݈݅ܽݐݎ݋ܯ represents daily temperature-related additional deaths; POP is the 

MSA population; ଴ܻ is the baseline averaged daily mortality rate; ܨܣ is the attributable risk 

fraction, which was proposed by Steenland and Armstrong in 2006 and defined as “the fraction 

of cases or deaths from a specific disease that would not have occurred in the absence of 

exposure to a specific risk factor either in the exposed population or the population as a whole.” 

(Steenland and Armstrong 2006). A general definition of the AF can be provided using relative 

risks (RR) as 

ܨܣ ൌ ሺܴܴ െ 1ሻ/ܴܴ	                                                                    (2) 
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In order to incorporate our results from linear exposure-response association, the RR 

was calculated as  

 ܴܴ ൌ ߚሺ݌ݔ݁ ൈ ∆ܶሻ                                                                      (3) 

Where ߚ is the cold temperature-mortality coefficient, quantified from the first stage 

of epidemiology modeling;  ∆ܶ is the temperature difference between the day and MSA 

specific threshold. We calculated the mortality rate attributable to cold temperature (per 

100,000) and summed up the contributions from the days with temperatures lower than the 

cold threshold as the total excess deaths attributed to cold temperature for each year in the 

baseline (1990s) and future time periods (2050s and 2080s). 

All statistical analyses were performed using SAS (version 9.4, SAS Institute, Cary 

NC, USA) and the RStudio Desktop (version 1.1.456 RStudio, Inc.Boston, MA; 

http://www.rstudio.com) (RStudio Team 2016). DLNMs were fitted using “dlnm” package 

(version 2.3.6) (Gasparrini et al. 2010); meta-analysis was performed using ‘mvmeta’ package 

(version 0.4.11) (Gasparrini et al. 2012) and figures were rendered using ‘plotly’ package 

(version 2.0) (Plotly Techologies Inc 2015). 

 

3. Results 

Table 1 shows the population and meteorology characteristics in the 12 TX MSAs for 

each study time period. At baseline, the estimated cold effects on mortality were generally 

significant (RR ranged from 1.01 to 1.05 with 1⁰C below the cold threshold), with the highest 

in McAllen-Edinburg-Mission, followed by Brownsville-Harlingen, two of the southernmost 

MSAs in Texas. The pooled effect estimate between daily mean temperature and all-cause 
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mortality showed that a 1 ⁰C decrease in temperature below threshold was associated with 

overall increase in all-cause mortality of 1.58% [95% CI: 0.81%, 2.37%] (data now showed). 

Cold thresholds were found ranging from 12 to 20 ⁰C. The average daily mortality rates ranged 

from 1.2 to 2.7 per 100,000 people with the highest in Beaumont-Port Arthur and lowest in 

Dallas-Fort Worth-Arlington. As of 2010, Dallas-Fort Worth-Arlington was the most populous 

MSA in the Texas and was projected continuing to be by the end of the century. The population 

increase rates were highest in McAllen-Edinburg-Mission, followed by Austin-Round Rock 

and Brownsville-Harlingen with lowest in Beaumont-Port Arthur. The average daily mean 

temperatures in Texas MSAs during baseline period ranged from 16.2⁰C to 24.3⁰C. It was 

projected that the temperature will increase on average 1⁰C (ranged from 0.2 to 1.8⁰C) for the 

best case scenario (SRES B1) and 1.6⁰C (0.8 to 2.4⁰C) for the worst case scenario (SRES A2) 

in 2050s; and 1.7⁰C (0.9 to 2.6⁰C) and 3.4⁰C (2.6 to 4.3⁰C) increase in 2080s for the best and 

worst scenarios, respectively. By the end of the century, the largest projected temperature 

increase was found in Austin-Round Rock with the smallest temperature increase in Killeen-

Temple (under SRES B1) and McAllen-Edinburg-Mission (under SRES A2). A graphical 

representation of the overall temperature trends in Texas is also provided in Figure 1. In the 

middle of the century, the projected temperature increase was the highest under SRES A1B, 

but a steep increase is consistently projected throughout the study period under SRES A2.  

Table 2 summarized annual excessive cold days and excessive mortality attributable to 

cold temperature over time in each MSA. The average cold days was 123 (range: 17-216 days) 

a year during baseline and inclined to 101 (range: 12-188 days) a year under SRES B1 and 85 

(range: 8-167 days) a year under SRES A2 in 2080s. The average annual attributable cold 
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mortality rate was 13.1 per 100,000 (range: -0.5-44.9 per 100,000) at baseline and reduced to 

9.4 per 100,000 (range:  -0.4-35.0 per 100,000) under SRES B1 and 7.2 per 100,000 (range: -

0.3-28.3 per 100,000) under SRES A2 in 2080s. The average annual excessive deaths 

attributable to cold temperature were 205.9 deaths at baseline and increased to 347.5 deaths 

under SRES B1 and 317.8 deaths under SRES A2 in 2050s, and slightly decreased to 306.7 

and 241.3 deaths under SRES B1 and A2 in 2080s, respectively. A pooled estimated cold 

temperature impact at the state level is shown as a bar-line chart in Figure 2. Average annual 

cold-related mortality rates were estimated to be 22.7, 18.3 and 15.3 per 100,000 at baseline, 

2050s and 2080s, respectively. Estimated excess cold-related death counts were shown as bars 

with an average of 3742, 6105 and 5119 deaths annually during baseline, 2050s and 2080s 

respectively. A set of detailed projection is provided in Supplemental Figure 1 with graphical 

representation depicting the excess cold-related mortality and death counts overtime under 

different greenhouse gases scenarios in each MSA (Supplemental Figure 2).   

 

4. Discussion 

In this study, we depicted future cold-related health burden using a total of 53 

projections under three different emission scenarios incorporating with projected population 

throughout the 21 century for 12 major MSAs in Texas. Our results showed that although the 

pooled and MSA-specific estimated cold-mortality rate decreased largely by the end of the 

century, the estimated number of deaths attributable to cold temperature increased sustainably 

as compared to the baseline in Texas. This study may be particularly useful to inform local 

adaptation plans in areas with mild winter climate. 
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Several general trends emerged from the pooled and 12 MSA-specific projection 

patterns. The attributable mortality rate decreased gradually overtime, with a flatter slop 

observed under SRES B1 and steeper slop observed under SRES A2. The difference of 

attributable mortality rates was not distinct between SRES A1B and A2 in the 2050s and 

became more separately in the 2080s. This may be due to the storyline of SRES A1 and A2 

that the underlying assumption of global population were both continuously increasing in 

2050s, and the population growth under SRES A1B then declines thereafter. This pattern was 

observed crossed all MSAs except McAllen-Edinburg-Mission. The cold-mortality rates were 

quite similar and no particular emission scenario stand consistently stand out throughout the 

projected period. Although it seems that the cold-mortality rate was not impacted by different 

GHG, McAllen-Edinburg-Mission also reported with the least number of annual cold days (8-

17 days). This finding may be a reflection of the smaller sample size limiting the interpretation 

difference under different scenarios. Also, due to the fact that we were unable to identify the 

lowest point as our optimal temperature for our threshold definition, we choose the best fit of 

model with minim AIC and used the corresponding temperature as our cold threshold. Hence, 

the results should be interpreted with caution. 

Furthermore, although the cold-mortality rates were generally higher at baseline, they 

fluctuated widely with peaks around 1997, 2002 and 2010. During these years, two of them 

were corresponding to cold waves in the US: the 1997 Northern plains cold air outbreak and 

the 2010 Deep South cold wave. Our previous study has shown the overall cold wave effects 

were only observed in some coast MSAs in Texas (Chen et al. 2017). However, studies 

projecting the effect of cold waves on mortality were scarce. Wang et al. (2016) projected a 

slightly increase of attributable mortality in the Southwest US. Although cold waves are 
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projected with a decrease in the frequency, duration and intensity, additional studies are needed 

to provide more evidence to draw the conclusion. 

In addition to the cold-mortality rate, we reported the annual cold-related death counts 

at the state and MSA levels to illustrate the health burden for public health planning efforts. 

Houston-The Woodlands-Sugar Land areas were estimated with the highest number of deaths 

attributable to cold, with annual estimate of 1105 deaths, followed by Dallas-Fort Worth-

Arlington areas with annual estimate of 529 death at baseline. With population projection, 

annual cold-related deaths counts were almost doubled for both MSA with 1848 and 1030 

deaths in Houston and Dallas under SRESB1 and with 1690 and 956 deaths under SRESA2 in 

2050s. The annual cold-related death counts were then slightly decreased to 1631 and 930 

deaths in Houston and Dallas under SRESB1 and with 1275 and 763 deaths in Dallas under 

SRESA2 in 2080s. This large increase in deaths in 2050s and slight decrease in 2080s were 

partially driven by the population projection which assumed a growing population until 2050s 

the hold constant thereafter. Our results were similar to the study for the estimated number of 

deaths attributable to cold in 2050 and 2090 under two representation concentration pathways 

(RCP4.5 and RCP8.5) defined in the updated IPCC report for 10 large US MSAs (Weingerger 

et al. 2017). Weingerger et al. (2017) reported the projected number of cold-related deaths 

accounting for projected population growth were 1713 and 965 deaths in Houston and Dallas 

under RCP4.5 and 1623 and 910 deaths in Houston and Dallas under RCP8.5.  

However, not all the MSAs were projected with an increase in annual cold-related death 

counts by the end of the century. Beaumont-Port Arthur, Brownsville-Harlingen, Corpus 

Christi and El Paso will experience a decrease of total number of cold-mortality under climate 

change. With that being said, there are still over 300,000 deaths attributable to cold 
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temperatures for the study time slice. Even if the decreasing cold-related mortality rate can 

offset partially the increased heat-related mortality, it does not necessarily mean the overall 

temperature-related mortality can benefit from the climate change, especially these 300,000 

deaths could be preventable with well-planned public health strategies, such as wearing 

adequate clothing and gears or stay indoors. 

There are some strengths and limitations in this study. First, our estimates are affected 

by considerable uncertainties and need to be interpreted with caution. Due to the complexity 

of modeling and different assumptions used to derive the location-specific temperature-

mortality association, it is difficult to compare results between studies quantitatively. However, 

our findings were consistent with previous studies in overlapping cities in terms of the direction 

and magnitudes. Second, we did not include the impact of hot temperatures in our study. We 

did not observe increased risk in hot temperatures as reported in other studies. This might be 

resulted from the different modelling approaches used between studies. However, as our goal 

was aiming to provide evidence for the development of adaptation plan, it would be appropriate 

to separate hot and cold temperature burdens in the discussion. Combining heat- and cold–

mortality and reported in net change may be misleading if not interpreted carefully.  Moreover, 

assuming the same mortality curve and extrapolate the log-linear beyond the observed 

temperature range will introduce uncertainties and would underestimate the heat-related 

impacts for the future. Third, we assessed future cold-related mortality in the absence of 

adaptation. Evidence has suggested that an increase in mean summer temperature was 

associated with a decrease in heat-related mortality (Nordio et al. 2015). Moreover, study 

examining long-term temperature-mortality association reported an attenuation in heat-related 

health impacts (Gasparrini et al. 2015), possibly reflecting adaptation. However, the adaptation 
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in cold temperatures remain unsure. Future studies are needed to explore potential effect 

modifier in cold-mortality association. Lastly, we incorporated population projections 

accounting for demographic changes in future projections which contribute greatly to future 

cold-mortality burdens. However, due to the data availability limitation, we only have the 

projected population through 2050 and assumed the population will be constant thereafter. 

Therefore, our estimates may be relatively conservative for future mortality effects after 2050s. 

 

5. Conclusions 

In general, Texas experiences a substantial mortality burden attributable to cold 

temperature annually with current weather patterns. With MSA-specific temperature-mortality 

associations and 9 climate models temperature projections under three emission scenarios, we 

found that, although the annual cold- mortality rates reduced with projected temperature under 

climate change, the number of deaths attributable to cold temperature increased largely with 

projected population through the end of the century. This study provides evidence in the 

development of adaptation plan for local policy.   
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Figure 1. Distribution of baseline and projected temperatures in Texas in the 2000s, 2050s and 
2080s from 9 climate models under three greenhouse gas scenarios (A1B, A2 and B1). 
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Figure 2 Estimated deaths attributable to cold temperaturesin baseline (1990-2011), 2050s 
(2046-2065) and 2080s (2081-2099) under three emissions scenarios (SRESB1, SRESA1B 
and SRESA2), incorperating population projection in Texas. Death counts in each timeslice is 
differeniated by bar chart colors . 
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Table 1. Descriptive statistics of climate and population for 12 major Texas Metropolitan Areas in 2000s (baseline), 2050s and 
2080s. 

MSA 
Cold 

hreshold 
Daily 

mortality RRa 
Baselineb 

population 

Projected Population 
Baseline 
meTmpd 

Projected Temperature Increase  
vs. Baseline 

2050s 2080s 
2050s 2080s 

B1e A1B A2 B1 A1B A2 
Austinf 18.4 1.4 1.013 1,716,289  2,475,934  3,255,574  20.4 1.8 2.5 2.4 2.6 3.6 4.3 
Beaumontg 14.5 2.7 1.017        403,190         452,983         498,736  20.8 1.2 1.9 1.8 1.9 2.9 3.6 
Brownsvilleh 17 1.6 1.033        406,220         566,018         728,518  23.7 0.9 1.5 1.4 1.5 2.4 3.0 
Corpus Christi 16.7 2.1 1.019        428,185         496,051         545,602  22.5 1.2 1.7 1.7 1.8 2.8 3.4 
Dallasi 20 1.2 1.006 6,426,214  8,590,287    10,838,399  19.4 0.6 1.3 1.2 1.4 2.5 3.2 
El Paso 10.6 1.5 1.013        804,123  1,053,491  1,277,950  18.6 0.5 1.2 1.1 1.2 2.3 2.9 
Houstonj 20 1.6 1.016 5,920,416  7,986,256    10,004,950  21.0 1.2 1.8 1.7 1.9 2.9 3.6 
Killeen-Temple 19.4 1.7 1.001        405,300         552,879         696,115  20.2 0.2 0.9 0.8 0.9 2.0 2.7 
Lubbock 20 2.1 0.999        290,805         352,125         410,896  16.2 1.6 2.3 2.2 2.4 3.5 4.2 
McAllenk 12 1.3 1.050        774,769  1,159,407  1,553,142  24.3 0.4 1.0 0.9 1.1 2.0 2.6 
San Antoniol 20 1.9 1.010 2,142,508  2,801,937  3,387,802  21.0 1.1 1.8 1.7 1.8 2.8 3.5 
Waco 20 2.6 1.014        252,772         291,035         325,432  19.7 1.2 1.9 1.8 2.0 3.0 3.7 

a Relative risk; b2010 US Census data; cDaily mean temperature; eEmission Scenario (IPCC 2000); fAustin-Round Rock; gBeaumont-Port 
Arthur; hBrownsville-Harlingen; iDallas-Fort Worth-Arlington; jHouston-The Woodlands-Sugar Land; kMcAllen-Edinburg-Mission; lSan 
Antonio-New Braunfels. 
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Table 2. Summary of projected cold-related mortality estimates in 12 major Texas Metropolitan Areas under different emission 
scenarios in 2000s (baseline), 2050s and 2080s. 

  Annual Cold days Annual Excessive Cold Deaths (counts) Annual Attributable Mortality Ratec  

 Baseline 
2050s 2080s 

Baseline 
2050s 2080s 

Baseline 
2050s 2080s 

 B1 A2 B1 A2 B1 A2 B1 A2 B1 A2 B1 A2 
Austind 142.2 113.8 106.2 103.3 85.0 205.1 366.5 330.4 316.4 241.5 15.5 11.3 10.2 9.7 7.4 
Beaumonte 80.8 64.2 58.2 55.7 42.7 58.1 56.8 50.4 47.5 34.0 14.7 11.4 10.1 9.5 6.8 
Brownsvillef 55.2 42.6 38.1 36.7 27.1 32.7 50.5 43.8 41.5 29.2 9.6 7.0 6.1 5.7 4.0 
Corpus Christi 75.3 61.0 55.4 53.0 41.0 51.2 52.5 46.0 43.8 31.5 12.7 9.6 8.5 8.0 5.8 
Dallasg 178.3 169.9 162.5 160.0 139.0 528.8 1029.5 955.9 929.6 763.7 10.0 9.6 8.9 8.6 7.0 
El Paso 82.1 75.1 68.7 65.0 47.4 41.6 67.9 59.2 55.4 36.4 5.9 5.3 4.7 4.3 2.8 
Houstonh 148.2 130.3 122.8 120.1 100.2 1105.2 1848.4 1690.1 1630.8 1275.1 22.8 18.6 17.0 16.3 12.7 
Killeen-Temple 155.2 153.8 146.3 143.6 123.3 3.7 7.5 6.8 6.6 5.3 1.1 1.1 1.0 1.0 0.8 
Lubbock 215.9 196.1 189.7 187.7 167.2 -1.3 -1.8 -1.7 -1.6 -1.4 -0.5 -0.4 -0.4 -0.4 -0.3 
McAlleni 17.4 14.2 12.0 11.5 7.9 16.5 35.5 30.0 28.1 18.3 2.7 2.3 1.9 1.8 1.2 
San Antonioj 151.0 135.1 128.3 125.7 106.4 324.6 529.6 485.5 468.0 369.3 18.3 15.7 14.4 13.8 10.9 
Waco 173.5 158.6 151.5 148.8 128.6 104.5 127.1 117.6 113.8 92.2 44.9 39.2 36.2 35.0 28.3 
Overall average 122.9 109.5 103.3 100.9 84.6 205.9 347.5 317.8 306.7 241.3 13.1 10.9 9.9 9.4 7.3 

aBaseline referred to 1990-2000; bEmission Scenario (IPCC 2000); cAnnual attributable mortality rate number per 100,000; dAustin-Round 
Rock; eBeaumont-Port Arthur; fBrownsville-Harlingen; gDallas-Fort Worth-Arlington; hHouston-The Woodlands-Sugar Land; iMcAllen-
Edinburg-Mission; jSan Antonio-New Braunfels.
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Appendices 

Appendix C:  Journal Article III Supplemental Materials 

Supplemental Figure 1. The MSA-specific linear-threshold exposure-response relationships. 
Relative risk (RR) of all-cause mortality was examined with daily mean temperature using 
single threshold distributed lag non-linear with lag up to 25 days. RR with reference at 12 to 
20 degree Celsius, varied by MSAs. 
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Supplemental Figure 2 Estimated mortality impacts attributable to cold temperatures in 
baseline (1990-2011), 2050s (2046-2065) and 2080s (2081-2099) under three emissions 
scenarios (SRESB1, SRESA1B and SRESA2), in corperating population projection in 12 
Texas metropolitan areas. 
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Supplemental Figure 2 (continued) 
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Supplemental Table 1. List of BCCA CMIP3 projection ensembles used in the study with number of runs under each emission 
scenario defined in IPCC 2000.  

WCRP CMIP3 Climate Modeling Group 
WCRP CMIP3 Climate 

Model ID 
SRESA2 SRESA1B SRES B1 

Canadian Centre for Climate Modeling and Analysis, 
Canada 

CGCM3.1 (T47) 1-3 1-3 1-3 

Meteo-France/Centre National de Recherches 
Meteorologiques, France 

CNRM-CM3 1 1 1 

U.S. Dept. of Commerce/NOAA/ Geophysical Fluid 
Dynamics Laboratory, USA 

GFDL CM2.0 1 1 1 

U.S. Dept. of Commerce/NOAA/ Geophysical Fluid 
Dynamics Laboratory, USA 

GFDL CM2.1 1 1 1 

Institut Pierre Simon Laplace, France IPSL-CM4 1 1 1 

Center for Climate System Research (The University 
of Tokyo), National Institute for Environmental 
Studies, and Frontier Research Center for Global 
Change, Japan 

MIROC3.2 (medres) 1-2 1-2 1-2 

Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of the Korean 
Meteorological Association, Germany/Korea 

ECHO-G 1-3 1-3 1-3 

Max Planck Institute for Meteorology, Germany ECHAM5/ MPI-OM  1 1 

Meteorological Research Institute, Japan MRI CGCM2.3.2 1-5 1-5 1-5 

Number of BCCA Climate Projections = 53 17 18 18 
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CHAPTER V 

SYNTHESIS 

Summary of Conclusions from Previous Chapters 

This dissertation shows that cold weather generally increases health risks significantly 

in Texas and the cold effects varied with MSAs, age groups and cause-specific diseases. As 

we hypothesized, we found the risk of cold-mortality increased as the latitude decrease. 

However, there was no clear spatial pattern of the association between cold and EHA that is 

associated with latitude as we have seen in mortality. With that being said, latitude explained 

a substantial part of heterogeneity between-MSA for respiratory diseases and pneumonia, 

although no significant effect modification were observed. The very elderly population (aged 

75 and older) was the most vulnerable population in both cold-mortality and EHA associations. 

The strongest cold effect was found in the mortality risk for heart diseases and EHA risk for 

respiratory diseases. Cold effects were generally more prominent with longer lag days (up to 

25 days) among all-cause and cause-specific mortality/EHAs except EHAs for IHD and MI, 

which were associate with relatively shorter lag days. We found although the annual cold-

mortality rates reduced with projected temperature under climate change, the number of deaths 

attributable to cold temperature increased largely with projected population through the end of 

the century.  In general, Texas experiences a substantial mortality burden attributable to cold 

temperature annually with current weather patterns. Public health planning to reduce cold 

impacts will remain important in Texas. This is the first multi-city study of the association 

between cold weather (cold temperature and cold wave) and health outcomes (mortality and 

morbidity) with over 20 years of study period in the southern U.S. 
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Strengths and Limitations 

There are some limitations must be acknowledged. The primary limitation of this 

dissertation research is potential exposure misclassification. We used the temperature exposure 

from a single weather station per MSA rather than using personal exposures. It is usually 

impractical for population-based epidemiological studies using personal exposure due to cost 

and logistic reasons. We used spatial-temporal kriging interpolation for exposure at a finer 

scale, however, this may introduce more uncertainties due to the relatively small sample size 

of weather stations in Texas.  

Another major limitation is ecologic fallacy (or aggregation bias), that we did not use 

individual-level characteristics, instead we included MSA-level predictors (e.g., percentage of 

population living in poverty, percentage of black population, percentage of Hispanic 

population, etc.) in the meta-analysis to explore the potential effect modifications. However, 

we did considered age in this study as it is a crucial indicator of vulnerable population.  

Furthermore, we assume the temperature-mortality curve will remain the same through 

then end of the century and did not include future adaptation in our projected estimates. The 

prevalence of HVACs, severe weather alert system, as well as gradual physiological adaptation 

could ameliorate the exposure to temperature stress. However, the distribution of HVACs may 

reflect socioeconomic status and increase reliance of HVACs may imply an exacerbated 

energy consumption. The direction of effect modification on cold-related mortality from these 

adaptations remained unsure. Future studies are needed to be done with the consideration with 

adaptation.  
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The last limitation is the population projection for Texas beyond 2050s is assumed to 

be constant throughout 2080s. Texas was reported to be the largest numeric increase in 

population states according to the latest U.S. Census Bureau estimates, however the nation’s 

overall growth rate is now at its lowest point since the 1940s.37,38 Although the bias direction 

of future population projection remains unsure, we believe this study can still provide a 

comprehensive picture of future cold weather related health impacts under climate change.  

Some strengths of this study include the use of a population-based data that covered 

all-age cases throughout the state of Texas for over a decade study period. Previous studies 

conducted in the U.S. mostly focus at elderly or using data before the early 2000s. Our study 

includes more recent cold events and perform future projection under climate change. 

Furthermore, the climate change projection of temperature-related health outcomes were more 

focused on regional or global trends using cluster analysis, however, with the aim of providing 

actionable evidence to local policymakers, we provided detail assessment in each studied 

MSAs, as the public health burdens varied widely across MSA. Also, to address uncertainty 

related to climate, we included all 9 climate models with a total of 53 runs under three 

greenhouse gas scenarios to account for the variability in projected temperatures. This is the 

most comprehensive cold-related mortality and morbidity study with future public health 

burden projected in Texas. 
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Recommendations for Future Studies 

There are many possible extensions to this dissertation. First, projections of cause-

specific and age-stratified mortality, morbidity should be performed. Cold effects were varied 

by cause-specific and age groups, thus projections on cause-specific health outcomes such as 

hospital admissions in respiratory and cardiovascular subtypes for different age group 

populations to make predictions more optimally for the corresponding vulnerable populations.  

Second, projections of the cold wave effect should be measured for mortality and 

morbidity. Cold waves were defined using percentile based definitions instead of using 

absolute cut off thresholds, moreover, with a lingering period of cold waves (extended seven 

days from the last cold wave day), projected cold wave days may not necessarily decreased 

over the century. Nevertheless, the cold wave effects under future climate scenarios remain 

poorly understand.  

Third, future studies may consider using different forms of temperature data to better 

characterize the exposures.  As mentioned above, one of the major limitations in investigating 

the association between temperature and health outcomes were exposure misclassification. A 

considerable increase in the availability of remote sensing data in the past decade has gaining 

popularity in the fields of meteorology and climatology as a tool to calculate land surface 

temperature (LST), which can provide increased spatial coverage compare to paucity of in-situ 

weather stations.39 

Last but not least, potential cold effect modifying predictors should be further explored 

and adaptation should be included for projections of future cold-related health impacts. 
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Currently, considerations for how populations will adapt to the climate change in the near or 

far future are often not included in the studies.40 The prevalence of HVAC, health care, urban 

infrastructure etc., may play an important role in future adaptation to climate change. In 

addition, a range of new “pathways”, shared socioeconomic pathways (SSPs), examine how 

societal choices will affect greenhouse gas emission are feeding into the latest climate models 

for the IPCC sixth assessment report. These SSPs include socioeconomic and environmental 

conditions as affected by both climate change and climate policy and could be used for 

adjustments to human adaptation for public health burden projections. 

 

 

HUMAN SUBJECTS CONSIDERATIONS 

This research is a secondary data analysis using existing, de-identified data from Texas 

Department of State Health Service. No individuals were contacted nor there any primary data 

collection. This dissertation is part of two parent studies previously approved by the Committee 

for the Protection of Human Subjects (CPHS) of The University of Texas Health Science 

Center at Houston (HSC#: HSC-SPH-14-0240 and HSC-SPH-14-0783). 
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