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PREFACE 

This dissertation explored the system-wide effect of information technology on population 

health outcomes among sovereign countries of Africa. It was a perfect research topic choice for 

me because it touches on several issues that relate to my career interests including: health system 

strengthening, information science, global health, impact evaluation, and global policy and 

advocacy 

I embarked on the PhD program because I sought to increase my knowledge of population 

health. I sought to acquire professional competence on health policy and management, advance 

my analytical skills in health systems and policy research, and build networks that I could leverage 

in addressing problems among global health systems, especially those African nations in dire need 

of competent leadership in the healthcare sector. I am glad to say that I have accomplished these 

aims to a satisfactory level and feel ready to launch into the field to apply the knowledge and skills 

I have acquired at the University of Texas School of Public Health, Houston, Texas, USA. 

Thank you everyone who has contributed in several ways to the realization of this dream. 

This achievement means a lot to me, and I promise to reward your kind gestures by making sure 

that I put to good use the opportunities that come with this achievement.  
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This study used health analytics approach to evaluate the association between population 

health outcomes and Information and Communication Technology (ICT) infrastructures at a 

country level. This study used aggregate data obtained from the World Bank database, and the 

International Telecommunication Union (ITU) database for 53 African countries for the periods 

2000 to 2016, and quantitatively explored the impact of ICT infrastructures’ diffusion on 

population health outcomes.  

ICT data was obtained from the ITU database. Similarly, population health attributes were 

retrieved from the World Bank database. ICT infrastructure variables used in this study include: 

internet access, mobile phone use, and fixed telephone subscriptions. However, population health 

outcome variables for this study include: HIV prevalence, access to antiretroviral therapy, 

Tuberculosis incidence, and mortality rates. 

Econometric study methodology involved a Dynamic Panel Model (DPM). Study findings 

showed that promoting ICT use among the public has opportunities for improving Tuberculosis 

(TB) and HIV health outcomes. However, the impact of each ICT infrastructures on improving 

TB and HIV health outcomes differed, which this study inferred to be as a result of different 

functionalities of the ICT infrastructures, as well as the peculiar features of the health outcomes 

studied.  



This study also did an Exploratory Spatial Data Analysis (ESDA) of TB treatment 

completion rates among health systems in Africa to help visualize trends and identify patterns, 

clusters and outliers. It evaluated spatial relationships between mobile phone use and TB treatment 

completion rates using differential local Moran’s I and bivariate Moran’s I techniques. Study result 

identified statistically significant positive autocorrelation values for the periods evaluated, as well 

as varying cluster patterns in TB treatment completion rates. The cluster patterns increased across 

the three-time periods among geographically referenced data evaluated in this study. This study 

also identified a direct relationship between mobile phone use and TB treatment completion rates 

among relevant African countries studied.   

Thereby, necessitating the need to strengthen national policies that promote TB and HIV 

medication adherence and completion using eHealth strategies among African health systems.   

Another important policy implication of this study for African governments is that investing in 

eHealth, including educating the masses on ICT use, could be an alternative policy to improve 

population health. 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................................... i 

LIST OF FIGURES ........................................................................................................................ ii 

LIST OF APPENDICES ................................................................................................................ iii 

Introduction/Study Motivation........................................................................................................ 4 

Research Aims and Hypotheses ................................................................................................................ 7 

Literature Review............................................................................................................................ 9 

African Health Systems: An Overview....................................................................................................... 9 

ICT and Health Systems ........................................................................................................................... 11 

ICT adoption and penetration ................................................................................................................. 13 

ICT Infrastructures and Healthcare Quality Improvements .................................................................... 18 

Challenges involved in ICT adoption and diffusion ................................................................................. 20 

Public Health Significance ............................................................................................................ 22 

Theoretical and Empirical Background ........................................................................................ 24 

Cybernetic conceptual modelling framework......................................................................................... 24 

Diffusion of Innovation Theory ............................................................................................................... 25 

Methods......................................................................................................................................... 28 

Study Design ........................................................................................................................................... 31 

Econometric Data Analyses .................................................................................................................... 32 

Geospatial Data Analyses ........................................................................................................................ 34 

Power Estimation .................................................................................................................................... 35 

Variable Descriptions: Dependent Variables .......................................................................................... 35 

Variable Descriptions: ICT Independent Variables ................................................................................. 37 

Variable Descriptions: Independent Variables (Covariates) ................................................................... 37 

Ethical Considerations ............................................................................................................................. 41 

RESULTS ..................................................................................................................................... 42 

JOURNAL ARTICLE 1 ................................................................................................................................ 43 

JOURNAL ARTICLE 2 ................................................................................................................................ 63 

JOURNAL ARTICLE 3 ................................................................................................................................ 94 

CONCLUSION ........................................................................................................................... 117 

APPENDIX ................................................................................................................................. 120 

REFERENCES ........................................................................................................................... 120 



 

i 
 

LIST OF TABLES 

Table 1: Selected ICT indicators ............................................................................................................. 16 

Table 2: Measurement Matrix: TB Study Aim 1A ................................................................................ 38 

Table 3: Measurement Matrix: TB Study Aim 1B ................................................................................ 39 

Table 4: Measurement Matrix: HIV Study Aim 3A .............................................................................. 40 

Table 5: Measurement Matrix: HIV Study Aim 3B .............................................................................. 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ii 
 

LIST OF FIGURES 

Figure 1:The Cybernetic Framework ........................................................................................................ 255 

Figure 2: Diffusion of Innovation Framework .......................................................................................... 266 

Figure 3: Study Model .............................................................................................................................. 277 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

LIST OF APPENDICES 

I. Countries Included in Study Analysis………………………………………………................120 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

4 
 

INTRODUCTION/STUDY MOTIVATION 

Discussions regarding the impact of Information and Communication Technology (ICT) 

on health outcomes have continued to gain traction over the past decades. According to the World 

Bank, ICT is defined as a group of activities that involves the capturing, processing, storing, 

transmitting and displaying of information by electronic means. Common devices used in ICT 

include fixed-telephone lines, computers, wireless electronic gadgets (mobile phones), and internet 

access among others (World Bank, 2003; Leena et al, 2005; Chinn and Fairlie, 2010; Gagnon et 

al, 2012). This study focused on mobile phone use, fixed-telephone subscription, and internet 

access. 

Driven by the belief that ICT has opportunities for improving health and healthcare 

qualities of life, international organizations including developmental agencies have encouraged 

the use of ICT infrastructures in the health sector (World Bank, 2003; Shehata, 2016; Lee et al, 

2016). The World Health Organization (WHO) in 2014 proposed the eHealth strategy in an 

mHealth publication titled- New Horizons for Health through Mobile Technologies’, with the goal 

of improving processes of healthcare, including infectious disease care coordination (WHO, 2011). 

Further, in October 2017, the WHO African Region signed a partnership agreement with the 

International Telecommunication Union (ITU), with the aim of building platforms to scale digital 

health, building a resilient health sector workforce to effectively use ICT infrastructures, and to 

strengthening stakeholders’ partnership for sustainable eHealth adoption and implementation 

among African health systems (WHO, 2016; WHO, 2017).  

For this study, ICT diffusion is defined as the proportion of the continent of Africa 

population with access to ICT infrastructures specifically mobile phone use, fixed-telephone 

subscriptions and internet access. Ideally, the number of individuals utilizing ICT infrastructures 
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for receiving health information would have been used as the independent variable in this study. 

However, such data are not available for Africa. Thus, individuals with a mobile phone, a landline 

phone and internet access were used as proxy variables, as they represent the potential for impact 

on health with utilization of ICT to send/receive health information. In addition, some ICT-related 

variables could also have been included in this study including households with a computer and 

households with an internet access at home. However, data on these variables were only available 

at the continental-level but not at the country level. In addition, ICT-related variables such as, the 

number of households with a computer and the number of households with an internet access, 

could have been included in this study. However, data on these variables were only available at 

the continental-level, not at the country level (ITU, 2017). 

Theoretically, ICT use can enhance communication and dissemination of information 

during patient care. It boosts health literacy among individuals with access to ICT infrastructures, 

thereby empowering users to lead a healthy lifestyle (World Bank, 2003; McNamara, 2007; 

Ratzan, 2011; Xie, 2011; Lee et al, 2016). One unique feature of the health sector which frequently 

leads to inefficient patient management and poor outcomes is information asymmetry. ICT use in 

the health sector addresses this issue by improving patient access to health-related information, 

thereby enhancing care coordination and efficiency of care (Lewis, 2006). Byrne and Gregory 

(2007) documented how community-based information systems empowered physicians to reduce 

mortality associated with childhood illnesses among the KwaZulu-Natal natives of South Africa. 

Information system adoption in this community facilitated processes of care by enhancing distant 

consultations to pediatric cases, thereby overcoming geographic barriers (Byrne and Gregory, 

2007).  
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ICT infrastructure diffusion has opportunities for improving public health (Raghupathi and 

Raghupathi, 2013). The internet has become a feasible platform to publicly discuss public affairs, 

thereby making government more accountable and transparent in governance (Lewis, 2006; Shim 

and Eom, 2008). More so, the diffusion of ICT infrastructures may have opportunities for 

improving health care resource allocation and utilization. This translates to improved healthcare 

cost savings, and may have a positive impact on healthcare quality, performance and outcome 

(Berwick et al, 2008). However, ICT diffusion could also be linked with worse health outcomes.  

Numerous studies have identified negative externalities associated with ICT use and 

addiction (Adam and Wood, 1999; Ramli, 2001; Leena et al, 2005; Niemz et al, 2005). Kim et al. 

(2010) did a study on the effects of internet addiction on the lifestyle and dietary behavior of 

Korean adolescents. They found that internet addiction may change dietary habits and reduce 

physical activities among addicts, thereby increasing their health risks (Kim et al, 2010). In 

addition, access to immoral and illegal materials through ICT becomes a threat to health, safety 

and freedom (Niemz et al, 2005; Ramli, 2011; Lee et al, 2016). It also leads to an increase in health 

compromising behaviors among users (Leena et al, 2005; Niemz et al, 2005). Internet use may 

provide an indecent medium for sexual contacts through the social media, with an increased risk 

of sexually transmitted diseases (Garofalo et al, 2007, Sowell and Phillips, 2010; Lee et al, 2016).  

While multiple studies have documented the effect of ICT adoption and health outcomes 

for specific cases, it is not immediately clear how ICT infrastructure diffusion impacts health 

outcomes for entire African countries. Therefore, this study aimed to answer the question- Does 

ICT infrastructure diffusion have a significant impact on population health outcomes among 

African countries? To answer this question, the study conducted empirical tests using aggregate 

data obtained from the World Bank and ITU databases on 53 African sovereign countries for the 
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period 2000 to 2016 (see Appendix). This study focused on the African population because of the 

presence of a large and diverse population of HIV and Tuberculosis patients. Also, notable access 

to free antiretroviral medications commenced in 2000 among African health systems (WHO, 2003) 

and data has been consistently captured for the 53 African countries since 2000.  

A major challenge when quantitatively estimating how ICT diffusion impacts health is to 

isolate the ICT-health relationship from other factors, including observed and unobserved factors, 

without having biased estimates from such relationships. To address this issue and overcome the 

difficulty involved in empirical testing, this study used the Dynamic Panel Model (DPM) with 

Generalized Methods of Moments (GMM) in all estimations. Findings from this study should 

increase the understanding of how ICT infrastructures impact health outcomes among African 

countries, and therefore act as reference for other researchers, developmental organizations and 

policy-makers. It also has opportunities to inform African policy makers on healthcare priority 

setting and resources allocation. 

Research Aims and Hypotheses 

Aim 1(A&B): Determine if ICT infrastructure use has a significant impact on Tuberculosis 

incidence and/ or mortality rates. 

Consideration of Aim 1 involved evaluating the association between ICT infrastructures’ 

diffusion and TB incidence and mortality rates among African health systems. Health remains one 

of the core dimensions of the international development agenda. The United Nations (UN) 

projected the Millennium Development Goals (MDGs) in the year 2000, with the aim of promoting 

health among individuals, and hoped to achieve these goals by 2015. Three among the eight major 

goals are related to health including reduce child mortality, improve maternal health, and combat 

HIV/AIDS, malaria and other diseases including TB (Bloom et al, 2004; WHO, 2005). 
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Hypothesis: There is notable reductions in TB incidence and mortality rates following ICT 

infrastructure diffusion among African health systems.  

Aim 2: Determine spatial relationships between mobile phone use and Tuberculosis treatment 

completion rate. 

This was a longitudinal retrospective study conducted to analyze geospatial patterns of 

Tuberculosis treatment completion rates among health systems in Africa. Evaluating the geospatial 

relationships between mobile phone use and TB treatment completion rates among African health 

systems becomes imperative for intervention mapping, resource allocation and policy-making. 

Hypothesis: There is positive spatial autocorrelation, as well as significant cluster patterns, in TB 

treatment completion rates following increase use of mobile phones in TB treatment protocols.  

 

Aim 3(A&B): Determine if ICT infrastructure use has a significant impact on HIV prevalence, 

and/ or antiretroviral therapy coverage rates among the total number of individuals living with 

HIV in Africa.  

Consideration of Aim 3 involved evaluating the association between ICT infrastructures 

diffusion and HIV prevalence among African health systems. The association between ICT tools 

and antiretroviral therapy coverage rates among the total number of individuals living with HIV 

was also investigated. Health sector ICT use among African health systems proffers smart, cost-

effective innovations and solutions by harnessing Africa’s digital revolution to strengthen national 

health systems. These include health service delivery, and providing information to communities 

through Information, Communication and Education (WHO, 2015; WHO, 2017). Thus, ICT 

infrastructure use among health systems has opportunities to contribute to the actualization of the 

Sustainable Development Goals (SDGs), especially SDG-3 which focuses on good health and 

wellbeing. In addition, ICT infrastructure also has the potential to facilitates the Universal Health 
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Coverage mandate among African health systems by increasing antiretroviral therapy coverage 

(WHO, 2017).   

Hypothesis: There is notable improvements in antiretroviral therapy coverage rates following 

ICT infrastructure diffusion among African health systems.  

LITERATURE REVIEW 

African Health Systems: An Overview 

Globally, health systems are a complex adaptive system, with opportunities for 

improvements. The Sub-Saharan African nations are not left out on this issue. Even with current 

global advancement in medicine and technology, health indices have remained poor among 

African countries (WHO, 2014). Most countries of the Sub-Saharan Africa have suffered 

protracted political instability, military dictatorship and institutionalized corruption. The transition 

from military to civilian regime had been slow and retrogressive in most African nations. This has 

led to system failure across boards and has impeded infrastructural development. Thus, most 

African countries have remained perpetually poor and underdeveloped (Tito et al, 2008; WHO, 

2014; Bankole and Mimbi, 2016; Shehata, 2016). Even with the current evolution and spread of 

orthodox medical practice in Africa, the dearth of contemporary medical infrastructures and 

technologies remain a threat to the practice of orthodox medicine especially among rural 

communities. This has contributed substantially to the current status quo among African health 

systems (Pierce, 2006). 

However, describing a rural community in Africa would be to describe a settlement 

comprising huts built out of corn stalks. A place with limited access to water, toilets, electricity, 

schools and nearby clinics. Indisputably every day in such an environment is a struggle between 

life and death, particularly for children and women. Thus, poor health outcomes in rural African 
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community could be linked to poverty cycles. According to Wagstaff (2002), poverty and ill-health 

are intertwined, and reflects causality in both directions. Individuals are caught in a vicious circle, 

as poverty breeds ill health, and ill health preserves poverty (Cameron, 2007). Consequently, there 

is need to take healthcare closer to the people. Community care should be expanded especially 

among underserved populations. This lends credence to the mandate by the WHO, on the need to 

improve African health systems (WHO, 2014). The WHO in its 2014 report maintained that the 

African continent is behind in economic, development and health standards due to inherent 

systems challenges.  

An estimated 45 percent out of 330 million individuals in Africa live on less than one 

United States (US) dollar per day (WHO, 2014). This status quo is worsened by the deplorable 

state of healthcare infrastructures, paucity of healthcare professionals and recurring political 

instability to mention a few. These translate to poor health outcomes (WHO, 2014). For example, 

life expectancy in Africa is 52 years compared to the global median of 66, and physician to patient 

ratio is 2.3 in Africa compared to the global average of 14.0 (WHO, 2014). Studies have shown 

that lack of knowledge, information system and health services are among the major drivers of 

poor health outcomes among African health systems (Wagstaff, 2002; UNICEF, 2009). Thus, ICT 

infrastructure use has shown to have opportunities in addressing these issues by bridging the gap 

in information availability and exchange using mobile phones and the internet between caregivers 

and patients. Consequently, the use of ICT infrastructures including mobile phones, internets and 

household telephone connections becomes imperative in empowering individuals, while reducing 

chronic infectious diseases including HIV/AIDS and Tuberculosis amongst others.  

For instance, South Africa is one of the nations with the highest Tuberculosis infection 

rates. Medically, to treat TB effectively, patients must be strictly compliant to medical treatment. 
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Ideally, this involves taking four tablets of anti-tuberculosis medications five times per week, for 

six months. Patients could easily forget to take these medications, which will lead to treatment 

failure. However, in 2002 the South African health systems introduced the use of ICT 

infrastructures including mobile phones, Short Message Services (SMS) and computer database to 

facilitate TB treatments. Every half hour, the computerized database automatically lists TB 

patients who are due to take their TB medications, and an automatic SMS reminder sent to them 

via their mobile phones. Study shows that among 138 TB patients treated this way, all but one 

patient successfully completed their treatment schedule (Kahn, 2004). 

ICT and Health Systems 

The 21st century healthcare sector is driven by an important mission and a committed sense 

of purpose. This is evident even in advancements of ICT proliferations and penetrations among 

global health systems. From a global perspective, improved ICT adoption translates to better 

healthcare services provisions (Qureshi et al, 2015). This has led to the speculation that ICT has 

opportunities for improving health systems across boards including developing countries using 

eHealth and mHealth strategies (Kwankam, 2004; Mars and Scott, 2015). eHealth involves the use 

of ICT infrastructures among healthcare facilities to enhance healthcare services and processes 

(Kwankam, 2004). ICT can be used for various care purposes including clinical, administrative, 

educational and research purposes irrespective of geographic locations and settings (Mars and 

Scott, 2015). mHealth is a subset of eHealth (Marin et al, 2016). It extends the accuracy and 

efficiency of an established health system through such devices as mobile telephone networks and 

Personal Digital Assistants (PDA) to enhance functions like reporting procedures among health 

systems.  
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Consequently, ICT becomes a feasible tool to transform the health paradigm, as it shifts 

the provider-patient configuration (Lucas, 2008). Healthcare services can be extended to 

underserved populations through electronic telecommunication infrastructures including video 

chats, healthcare telephone hotlines and automated reminders among others. This arrangement 

eases patient access to health facilities, improve service utilization and optimize clinical outcomes 

(Lucas, 2008; Shaqrah, 2010; Durrani et al, 2012). Therefore, eHealth has potential to transform 

national health systems, by incorporating the delivery of health-related information and trainings 

through electronic means. For instance, information regarding vaccination campaigns can be 

disseminated through mobile phones. More so, the internet can provide distant learning, facilitate 

unrestricted health information access and help individuals acquire knowledge and insights that 

could impact their health positively (Klasnja and Pratt, 2012; Qureshi et al, 2015).  

mHealth is provided mainly through mobile provision of healthcare services. This occurs 

basically through the integration of mobile healthcare delivery system with wireless mobile 

telecommunications and multimedia technologies (Kwankam, 2004). mHealth has evolved over 

time and has been used to address issues related to access, quality, cost and cultural norms among 

others in the healthcare industry (Istepanian and Lacal, 2003; Qiang et al, 2012). As a network, 

mHealth integrates people and products using digital technologies, for a purposeful outcome. A 

typical example can be seen in the WHO report of 2014, where health workers in Botswana use 

mobile phones to educate network members on HIV/AIDS, offer anonymous counselling and link 

patients to services. Thus, healthcare information systems have the potential of enhancing health 

systems and need to be evaluated further.  

In a related study, Siika et al. (2005) evaluated healthcare utilization scores following the 

introduction of automated reminders in an infectious disease unit. This study was carried out 
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among HIV patients receiving ambulatory care in Kenya. The study demonstrated that the use of 

the electronic reminders led to a two-fold increase in patient turn-out for routine CD4 count 

investigation, and antiretroviral medication refills. This study demonstrated that information 

systems use in this facility led to improvements in care coordination across facilities involved in 

the management of HIV/AIDS patients. Their study showed positive associations between ICT 

use and improvements in medication adherence, compliance to treatment protocols, and the overall 

healthcare service utilization (Siika et al, 2005). That notwithstanding, Hoffman et al. (2010) 

evaluated a novel Mobile Direct Observation Treatment (MDOT) protocol for TB treatment that 

was newly introduced at the Mbagathi District Hospital, Nairobi, Kenya. The MDOT is a home 

video therapy innovation that involves making videos. Treatment supporters make short videos 

using mobile phones where TB patients take their medications. Patient submit these video clips to 

healthcare professionals for confirmation and are encouraged to watch motivational and educating 

TB health videos. This method replaces the routine in-person Direct Observational Treatment 

(DOT) where patients must go to DOT centers to take such medications in front of healthcare 

workers. Study researchers found that MDOT was technically feasible, and empowered both 

patients and caregivers to communicate effectively, thereby improving medication adherence and 

completion (Hoffman et al, 2010).    

ICT adoption and penetration 

The healthcare sector is driven by an important mission and a committed sense of purpose 

(Berwick et al, 2008). However, errors and wastes in the system interfere with the quality of 

services provided by healthcare givers; necessitating the need for the adoption of robust 

information systems and networks in the healthcare sector (Graban, 2012). Effective adoption of 

ICT in the health industry is strategic in fostering quality into the health system. Health sector ICT 
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adoption is multidimensional and involves all training activities needed to operationalize this 

technology within the healthcare sector (Nowinski et al, 2007; Gagnon et al, 2012). This involves 

learning of the information system configuration content specifics, delivery of the ICT learning 

content in a user-friendly manner, and the consumption of the learning content on users preferred 

devices (Dixon, 2007; Karsten and Laine, 2007).  

Enablement activities including training is critical in achieving adoption, and it is often 

neglected in most adoption and implementation plans. A plan for in-depth training must be a part 

of larger implementation plan to achieve mastery. Such plan should be tailored towards patients’ 

needs and expectations and should ensure compliance to a myriad of regulations. All training 

activities for healthcare workers should be delivered with clear terminology related to job 

responsibilities and be made readily available on electronic mobile applications (Bang, and 

Timpka, 2007; Gagnon et al, 2012). In addition, training can be used to address inherent challenges 

peculiar to the new information system. Such trainings may help identify affected users and roles, 

map roles to users’ needs, and identify touch-points beyond the IT software (Dixon, 2007; 

Garavand et al, 2016).  

The adoption phase entails learning content-engaging expertise and advanced skills to 

accomplish skill efficiently using new innovations. Organizing system content by mastery level 

enables users to progress easily when ready (Nowinski et al, 2007). While understanding and 

proficiency are parts of IT training activities, adoption entails executing series of activities 

alongside training. These include communication, post-go-live support, and adoption 

measurement (Kyhlback and Sutter, 2007; Fickenscher and Bakeman, 2011).  

Levy et al. (2010) recognize that effective communication is invaluable in disseminating 

the impacts, effects and benefits of a newly introduced information system. Effective 
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communication encourages questions and feedback needed for health system quality 

improvements and validates organizational teams’ readiness to put skills to work (Levy et al, 

2010). The post-go-live support summarizes a set of activities that are critical to prevent workflow 

stoppage and correct system errors peculiar with the facility. These support mechanisms include 

roaming support, in-application guidance, and context-sensitive help among others (Karsten and 

Laine, 2007; Bang and Timpka, 2007). In effect, they provide guidance and help when needed, 

and attempt to minimize time lag between training need and system content delivery. Thereby 

improving the functionality, compliance and operational status of the electronic system. Thus, full 

adoption of ICT-driven healthcare practice is prerequisite to achieving full benefits expected from 

this technology. It also offers an opportunity to maximize the benefits from its implementation 

(Karsten and Laine, 2007; Levy et al, 2010). 

Overall, ICT drive transformational changes in national developments and the economy 

and becomes a feasible tool in all population health campaigns against poverty (Shehata, 2016). 

For instance, ICT was adopted as a tool to drive the Millennium Development Goals (MDGs) and 

the Sustainable Development Goals (SDGs) among nations of the world. Consequently, many 

countries have made substantial progress with respect to ICT infrastructural acquisition, 

installation and adoption to achieve these goals (ITU, 2011; ICSU & ISSC, 2015; ITU, 2015). 

The World Bank bulletin of 2017 reported global mobile cellular use at 98 per 100 people; 

fixed telephone subscriptions at 14 per 100 individuals; fixed broadband subscriptions at 12 per 

100 people, and individuals’ use of the internet at 44 percent of global population (World Bank, 

2017). However, a recent Mobile Economy African study done in 2016 recorded a more than 50% 

data traffic growth among providers, and an overall increase in mobile internet subscriptions 

among African countries. This study demonstrated that by the end of 2015, the number of Africans 
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that subscribed to the mobile internet had tripled in the past 5 years to over 300 million and is 

expected to increase by an additional 250 million new subscribers by 2020. More than half a billion 

individuals translating to 46% of the Sub-Saharan African population had subscribed to the mobile 

services by the end of 2015. It is projected that over the next 5 years, an estimated 168 million 

more individuals across Africa will subscribe to the mobile services, and 725 million new 

subscribers by 2020 (Mobile Economy Africa, 2016).  

Mobile broadband appears to be the dominant technology among African nations owing to 

network rollouts, data strategies and mobile operator device. By the end of 2015, the mobile 

broadband accounted for a quarter of all connections and will rise to approximately two-thirds by 

2020. At the end of the 2015 fiscal year, the penetration rate for mobile broadband and the internet 

was 17.4 and 20 percent respectively. Although the newly launched 4G mobile broadband is 

gaining traction among African nations, however 3G is expected to remain the main broadband 

technology over the next 5 years (Mobile Economy Africa, 2016). Compared to America and 

Europe, Africa still lags in ICT adoption and diffusion (Table-1). Currently, one person in every 

five persons use the internet among Africans (ITU, 2011; ITU, 2015). 

Table 1: Selected ICT indicators 

Indicator Africa America Europe Year 

Percentage of household with 

Internet access 
10.7 60.0 82.1 2015 

Percentage of individuals using 

the Internet 
20.7 66.0 77.6 2015 

Mobile broadband subscriptions 

per 100 inhabitants 
17.4 77.6 78.2 2015 

  

World leaders at the G-8 summit of 2001 in Genoa, Italy, considered the need for the use 

of ICT as fundamental tool to drive economic growth among poor and developing countries. In 
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addition, international agencies including the World Bank, International Monetary Fund (IMF), 

World Health Organization (WHO) and the Organization for Economic Co-operation and 

Development (OECD) have reiterated and expressed an optimistic view on ICT infrastructures 

being a triggering factor for national economic development (Piotti and Macome, 2007; WHO, 

2014). Consequently, there has been notable increment on ICT uptake among African systems, 

with a positive impact on population health (Bankole and Mimbi, 2016; Shehata, 2016). The ICT 

ecosystem had made a substantial contribution to the African economy especially with regards to 

job creation, economic growth and public funding. In 2015, mobile revenues accrue by 3.8% on a 

yearly basis to $53.5 billion primarily driven by data revenues (Mobile Economy Africa, 2016). 

However, the adoption of any new technology will involve a thorough appraisal of the technology, 

and a consideration of other factors in the context where its being integrated.  

Historically, technology has expanded rapidly over the past 200 years, and many 

philosophers have studied the relationship between technology, science and mankind. Findings 

from such studies have corroborated one another, as they maintain that this interaction has the 

power and ability to drive societal developments (Smith, 1994; Piotti and Macome, 2007). The 

relevance of technology is encompassing. It is critical for the living things including biological 

lives, genetic manipulations, the physical environment, and the world around us. Thus, the social 

and technical attributes of mankind shape and sustain technology vice-versa (MacKenzie and 

Wajcman, 1999; Coiera, 2007; Piotti and Macome, 2007). Consequently, information systems are 

social systems with a technical component. The social and technical components are inseparable. 

ICT infrastructures are not on their own pure equipment (Coiera, 2007). However, it is advocated 

that a long period of time be allowed during ICT infrastructure adoption and implementation. This 

allows new users of this technology time to master and operate the innovation to suit local needs. 
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This also becomes necessary as the relationship between organizational ICT processes and 

functions are mutually inclusive (Coiera, 2007; Piotti and Macome, 2007).  

ICT Infrastructures and Healthcare Quality Improvements 

Health sector information systems use improves the quality and process of care for optimal 

patient outcomes. It facilitates patient engagement in all lines of care. Thus, it provides a platform 

where caregivers and patients are on the same page about accessing and sharing patient information 

(Chiasson et al, 2007; Ellingsen and Obstfelder, 2007). ICT promotes patients’ engagement by 

facilitating patient participation, health promotion, and improvements in health information and 

knowledge (Sands, 2015). Patient engagement includes cultures that collaborates patients’ 

decisions related to healthcare. Such collaborations involve unrestricted communication among 

stakeholders involved in patient management. This could be exemplified in HIV management and 

includes mutual respect and shared decision-making between HIV patients and healthcare givers, 

as well as total transparency in information sharing and communication (Marin et al, 2016). 

Mobile phones are exceptional tools in infectious disease management including 

HIV/AIDS control (Lester and Karanja, 2015). Healthcare workers at the Pumwani clinic, Kenya, 

demonstrated how a weekly SMS text messages to patients on Antiretroviral Treatments (ART) 

facilitated care coordination among these patients. The use of mobile phone use in coordinating 

care has also facilitated health service delivery with the farthest possible reach; and have also 

improved clinical effectiveness. Through such SMS, health workers inquire on the wellbeing of 

their patient, then triage their responses according to individual needs. This boosted medication 

adherence, increased follow-up visit, led to viral load reduction among patients, and improved the 

overall quality of life of patients evidenced by increased productivity (Lester and Karanja, 2008). 

Furthermore, Barnighausen et al. (2011) did a systematic review to evaluate interventions that 
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target to increase antiretroviral adherence among sub-Saharan African HIV patients. They 

reviewed 26 relevant studies done between 2003 and 2010 across Africa. After analyses, they 

identified treatment supporters, directly observed therapy and use of mobile cellular text messages 

as top factors that improved adherence to antiretroviral treatment (Barnighausen et al, 2011). Thus, 

electronic sharing of patient-level data among physicians mitigates redundancy and removes waste 

in care management. ICT infrastructure help in monitoring patients’ adherence and response to 

medications. Therefore, ICT infrastructure use is rewarding to both patients and physicians and 

may lead to better disease management and outcomes (Balka et al, 2007; Green et al, 2008).  

The fight against HIV/AIDS, TB, and other diseases are important components of the 

Millennium Development Goals. The Sub-Saharan Africa has an alarming burden of infectious 

diseases including HIV/AIDS and TB (ICSU & ISSC, 2015). Multiple studies have demonstrated 

positive associations between ICT and infectious disease management (Micevska, 2005; Chinn 

and Fairlie, 2010; Lee et al, 2016; Shehata, 2016). Recent study by Chadha et al. (2017) 

demonstrated how the ComCare mobile application was used to coordinate Tuberculosis referrals 

among patients in Khunti District, India. The newly introduced mobile technology increased 

provider accountability to patients and led to an overall improved coordinated TB patient referrals 

and care among their networks (Chadha et al, 2017), which corroborated findings from the 

WelTelKenyal study. The WelTelKenyal study was a Randomized Controlled Trial (RCT) among 

HIV patients in Kenya that explored patients’ engagement using mobile phone. This study found 

that an interactive mobile phone SMS messaging intervention has opportunities for improving 

medication adherence that translates to viral load suppression among HIV patient. Thus, it was 

concluded that patient engagement through mobile phones and other ICT infrastructures are crucial 

to achieving the full benefits of ART among HIV patients (Smillie, 2014).  
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In addition, it was also discovered that ICT use in the health sector has opportunities for 

coordinating networking among physicians and other caregivers. This helps to optimize quality 

and efficiency of care delivery among health systems (IOM, 2001; Nowinski et al, 2007). Verbeke 

et al. (2013) demonstrated the impact levels between ICT use and health service delivery among 

hospitals in the Sub-Saharan Africa. The result of this study showed an overall improved patient 

identification, robust financial management and a structured reporting system following ICT 

adoption at these facilities. Nonetheless, related study carried out in the United States (US) also 

found that information systems have positive impacts on health systems process of care. 

Randomized Controlled Trial (RCT) studies by Hashim et al. (2001) on the effectiveness of 

telephone reminders in improving rate of hospital follow-up visit was innovative. This study was 

done in an urban family residency practice clinic in the US. Study showed that the use of such 

electronic reminders was accompanied by a relative increase in patients’ appointment 

cancellations. It was noted that such cancellations provided opportunities for scheduling other 

patients on the waiting list. This led to increased revenue returns in the system that was channeled 

for other Quality Improvement (QI) projects (Hashim et al, 2001). Thus, health sector information 

system use has opportunities of helping health systems to achieve the Institute for Health 

Improvements’ (IHI) triple aim of care including improving patients experience of care, improving 

population health and reducing per capita cost of care (Berwick et al, 2008).   

Challenges involved in ICT adoption and diffusion  

While some innovations in the health sector have been well adopted and diffused 

successfully among developed countries, there are still cases where innovations of varied 

complexity have been poorly adopted among developing countries including the Sub-Saharan 

Africa. The reasons that are frequently cited in literature for such slow adoption and diffusions 
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include the way individuals perceive the issue which the innovation is intended to address, the 

institution within health systems adopting the innovation, the contextual and complexity of the 

health system, including the broad context (Eldredge et al, 2016; Atun, 2012). Further challenges 

associated with ICT adoption and implementation, especially among third world countries include 

but not limited to the direct cost involved in innovation purchase, implementation and 

maintenance, too many competing priorities, and minimal physician motivation and engagement. 

Others include behavioral adaptations to ICT among patients, physicians and the organization 

(Wetter, 2007; IOM, 2011; Garavand et al, 2016). The result is gross dissatisfaction among users, 

leading to a decrease in productivity and efficiency among health systems especially at the early 

phases of implementation (Hroscikoski et al, 2006).  

That notwithstanding, national surveys by Friedberg et al. (2013), highlighted some of the 

factors that limit the effectiveness of use of ICT infrastructures among health systems to include- 

poor technology usability, patient information entry difficulties, degraded clinical documentations 

and inability to share patient-information among different facilities to mention a few. They 

reported that these factors may reduce the quality of care available for patients; which may account 

for poor outcomes seen among various health systems (Wetter, 2007; Friedberg et al, 2013; 

Garavand et al, 2016). Nonetheless, studies by Christianson et al. (2014) reported a loss of half a 

million dollars, not including the cost of the system itself. This precipitated discouragements 

among health systems in their uptake and advancement of health information technology. Such 

facilities claim that beside the direct cost of installations, funds are also needed for quality 

improvements, performance measurements, and for software procurement, installation and updates 

(Christianson et al, 2014; Garavand et al, 2016). Consequently, there is a decline in ICT adoption 

and implementation among hospitals based on cost. This is worse among not-for-profit health 
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facilities, compared to their for-profit counterparts (Zhivan and Diana, 2012). It translates to better 

quality of care and health outcome from the for-profit hospitals, compared to their not-for-profit 

counterparts (Zhivan and Diana, 2012; Perna, 2013). 

Nevertheless, the dearth in the infrastructural development of African nations, especially 

the incessant supply of power, as well as the paucity of manpower expertise to run this innovation 

continues to hinder the penetration of ICT among African countries (Awokola et al, 2013). Studies 

show that lack of ICT skills, poor strategies and skepticism among physicians (Wetter, 2007; Khan 

et al, 2012); as well as poor infrastructures, lack of technical expertise and increasing prevalence 

of notorious online hawkers impede ICT adoption among African health systems. Thereby, making 

quality of care and health outcomes sloppy in the contemporary African healthcare sector (Mugo 

and Nzuki, 2014; Garavand et al, 2016).  

PUBLIC HEALTH SIGNIFICANCE 

This dissertation research sought to improve the understanding of how ICT infrastructures 

impact population health and healthcare delivery among African countries. Generally, little 

empirical study has been done on this topic among African health systems. This dissertation was 

a pioneer study to jointly investigate population health outcomes among Africans using three ICT 

infrastructures – Mobile phone use, Internet access, and Fixed-telephone subscriptions as key 

independent variables. Previous studies have mostly evaluated this association using either a unit 

ICT infrastructure or specific African country. Only a few recent studies investigated the 

association between ICT infrastructures and health outcome variables from a global perspective 

(Gagnon et al, 2012; Raghupathi and Raghupathi, 2013; Lee et al, 2016; Shehata, 2016). However, 

at the continent level (Africa), similar studies evaluated this association using specific ICT 

infrastructures with specific health outcome measures (Kallander et al, 2013; Deidda et al, 2014; 
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Bankole and Mimbi, 2016). Other researchers also explored this association for specific countries 

in Africa (Piotti and Macome, 2007; Byrne and Gregory, 2007; Ruxwana et al, 2010; Jimoh et al, 

2012; Leon et al, 2012). However, in comparison to these studies, this dissertation explored the 

association between multiple ICT infrastructures and population health outcomes at the continent 

level. This study aims to fill this important research gap by evaluating the impact of ICT 

infrastructure on population health outcomes among Sub-Saharan African countries. If there is any 

significant association, then the system will strengthen the eHealth practice including care 

coordination and health service delivery using ICT infrastructures. 

Results from this study will help policy-makers and other key players better understand the 

impact of ICT infrastructures on population health. This will help them identify opportunities for 

improving national health systems and saving cost. Clear priorities drive health sector reform and 

ensures that the best value for money is pursued in the most transparent and accountable means 

(Ham and Coulter, 2001). Thus, the relevance of good leadership in this regard is invaluable. 

Furthermore, study results will assist healthcare leaders and policy-makers in all processes of 

healthcare priority setting and resource allocation, so that health gain maximization is optimal 

given the limited available resources (WHO, 2012). Government and policy-makers can either 

encourage investments or disinvestments in ICT-driven healthcare practice in the coming years, 

especially in the face of austerity hitting most African countries. This research may also serve to 

inform governments across Africa regarding if investments in ICT tools, and the perception of the 

use of ICT as an alternative to health improvement is worth it or not. Furthermore, this study may 

contribute to the identification of an ICT-driven medical practice and guidelines which facilitate 

clinical practice, improve performance and reduce cost; thereby achieving the Institute for 

Healthcare Improvement’s triple aims of care (Berwick et al, 2008). Achieving the triple aim of 
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care among African health systems could translate to improved patients’ outcomes (Cramp and 

Carson, 2001). However, to actualize this concept, the health sector needs a system approach with 

robust information system and expertise in place– A combination of ICT-driven healthcare 

practice with trained professionals who can utilize information systems to deliver healthcare 

services effectively and efficiently (Atun, 2012). The introduction of such information systems has 

proven potentials to facilitate and improve quality healthcare, and at a reduced cost (Piotti and 

Macome, 2007; Berwick et al, 2008).  

THEORETICAL AND EMPIRICAL BACKGROUND  

This first section gives a brief description of the cybernetic conceptual framework, which 

served as the conceptual foundation for this study. Subsequently, the diffusion of innovation theory 

will be used to explain the transition from a primitive society to a modern society in terms of 

technology and infrastructural development and penetration, and how they affect health. This will 

be followed by an explanation of theoretical bases for this study’s main constructs – population 

health outcomes and ICT infrastructure diffusion. Finally, the two aims of the study and their 

corresponding hypotheses will be summarized appropriately. 

Cybernetic conceptual modelling framework 

The complex and interdisciplinary method of providing health care often requires several 

changes across many departments. A systemic model-based framework to this study involved the 

use of a cybernetic paradigm (Figure-1) to show how diverse units interconnect for a quality 

framework in a regulatory feedback fashion. Skiadas et al. (2002) used the cybernetic theory to 

model telemedicine hemodialysis systems occurring at four European locations. Their study was 

designed by using the systems approach and a feedback mechanism to evaluate preliminary clinical 
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trials involving 29 patients and 305 hemodialysis sessions.  Overall, study results showed that the 

telemedicine systems methodology had inherent capabilities to satisfy formative evaluations 

contributed by various system elements in a regulatory feedback fashion (Skiadas et al, 2002).   

Figure 1: The Cybernetic Framework                                                                                    

 

Culled from Cramp and Carson, 2001 

 

The cybernetic model (systems theory) as described by Atun (2012) examines complex 

adaptive systems with interlinked and dynamic interactions involving contexts, institutions and 

systems which interact within the contexts of health systems. Interdependent and interconnected 

elements within systems create network of feedback loops that operate in a cause-and-effect 

pattern to maintain system equilibrium. Such nonlinear system elements interactions create a 

dynamic complexity that leads to system response (Atun, 2012; Willis et al, 2012).  

Diffusion of Innovation Theory  

The Diffusion of Innovation (DOI) theory attempts to explain how innovations are taken 

up in the contemporary society. It is a model that seek to describe change categories involved in 

technology advancement and adoption, which are critical for health improvements (Figure-2). Any 
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healthcare related innovation, for instance the use of SMS/email to communicate with patient must 

be easy to use, understood and communicated. It should easily be adopted with minimal 

investments of time, risk and commitment before usage (Glanz et al, 2002; Eldredge et al, 2016). 

Innovations are critical for improving population health outcomes among developed countries 

(Cutler, 2001), and developing countries for optimal health outcomes (Howitt et al, 2012). 

According to Atun (2012), health systems innovation includes new ideas, medicines, health 

technologies, diagnostics, practices objects, practices or organizational activities perceived as 

novel by any unit of adoption– an individual or institution. Historically, the DOI theory has been 

widely used in various disciplines. In the academia, schools have used it to investigate the 

dissemination of AIDS education curricula, and the adoption of safe sex practices. Healthcare 

professionals have also used it to understand the use and penetration of new tests, programs and 

technologies (Glanz et al, 2002).  

Figure 2: Diffusion of Innovation Framework                                                                      

 

Culled from Glanz et al, 2002 
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Components of this model interact in a bidirectional fashion to create complex adaptive 

and dynamic health systems. It fosters systems thinking, as it considers key elements of a complex 

adaptive system that interact to impact innovation adoption and diffusion. Thus, approaches that 

encourage systems thinking are invaluable while planning health system innovations adoption, to 

enhance system performance (Atun, 2012; Atun et al, 2010). 

Figure 3: Study Model 

 

 

 

Consequently, a hybrid of the cybernetic conceptual framework alongside the diffusion of 

innovation theory was used to structure an assessment of ICT infrastructure diffusion within the 

larger contextual healthcare environment. These frameworks work to conceptualize the 

interconnectedness of health system characteristics and ICT infrastructures, which have an 

inherent ability to improve health outcomes. The Ottawa declaration of 1986 emphasized the need 

for the re-orientation of healthcare services. This includes basic communication theories and those 

involving the adoption of new technologies for the enhancement of healthcare effectiveness 
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(Kickbusch, 2003). Importantly, this model describes a causal connectivity among relevant 

variables and highlights relevant change directions (Cramp and Carson, 2001; Fahey et al, 2003). 

The target population was assessed at the base level with respect to perceived health needs, which 

could be influenced by a myriad of factors including HIV prevalence, TB incidence, prevalence of 

undernourishment and unemployment rate among others (Figure-3). In addition, population 

demographic factors including population density, dependency ratio and aged-population density 

impact population health needs within any specified healthcare system (Lichter and Brown, 2011). 

The loop on the left arm of this model represents health system management and financial factors 

including healthcare expenditures, external aid to the health sector, and corruption index among 

others. This loop is being influenced by community demographic factors and population need 

factors (Figure-3). This together with other inherent population factors drive change within the 

population and are pointers for healthcare needs which could be facilitated using ICT 

infrastructures including mobile phone, internet and fixed telephone (Nowinski et al, 2007; 

Chiasson et al, 2007). Improvements at this point have opportunities for improving health 

outcomes including HIV and tuberculosis health outcomes. 

METHODS 

The objective of this study is to investigate how ICT infrastructures diffusion impact 

population health outcomes among African health systems. This is important as countries look to 

justify investing in ICT-driven healthcare practice in Africa. Country-level ICT data was obtained 

from two different sources: The ITU for the ICT infrastructure variables, and the World Bank 

database for the population health variables including TB and HIV measures. Relevant studies 

have used data from these sources for related ICT-health research (Raghupathi and Raghupathi, 

2013; Bankole, F., Mimbi, 2016; Lee et al, 2016). Specifically, ICT variables for 53 African 
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countries was obtained from the ICT indicator database (http://www.itu.int/en/ITU-

D/Statistics/Pages/stat/default.aspx) for the years 2000 – 2016. ITU data has been consistently 

captured for 53 African countries since 2000 for the telecommunication sector.  

The International Telecommunication Union (ITU) is one of the United Nations (UN) 

groups and has reliable data on ICT infrastructures in the ICT sector. Data are collected annually 

through an online-questionnaire sampling of government agencies (Ministries and regulatory 

authorities) in control of ICT. Non-responded questionnaires are imputed by getting data from 

governments’ web sites and annual reports (ITU, 2015). ICT statistics are gathered for 

approximately 200 economies. The ITU database contains time series annual data for the years 

1975 – 2016 for approximately 140 ICT indicator statistics (ITU, 2015). However, ICT variables 

analyzed in this study were mobile phone use, fixed-telephone subscription, and internet access 

(Tables 2 – 5). 

Similarly, data for health outcomes was obtained from the World Bank Database 

(http://data.worldbank.org/), for the period 2000 to 2016 to match the available ICT data. The 

World Bank is also one of the UN groups concerned with public health on the international scale, 

and it provides data on health situations across the globe. Health outcome variables for our study 

was accessed from the World Development Indicators (WDI) database which is a subset of the 

World Bank database and includes healthcare outcomes data for the 53 African countries which 

were the study population for our study. The health outcomes analyzed in this study include the 

following: antiretroviral therapy coverage rates, TB treatment completion rate, TB mortality rate, 

TB incidence and HIV prevalence. Relevant covariates needed for this study (Tables 2 – 5) were 

also obtained from the World Bank Database for the periods 2000 – 2016 and include: primary 

http://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
http://data.worldbank.org/
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school enrolment rate, population density, percentage of population over 65 (aged-population), 

age dependency ratio, health expenditures, external aids to the health sector, and corruption index.  

Datasets for ICT and health outcomes were merged using the unique identification of 

country name (or code). This study used variables with less missing values. Thus, using 

econometric analyses, this study identified relationships between ICT diffusion and health 

outcomes. Specifically, analytics was used to describe the relationship between the diffusion of 

mobile phone, internet, and fixed telephone with health outcome indicators. Ideally, the number 

of ICT users receiving health informatics via ICT would have been used as the independent 

variable in this study, however, such data was not available for Africa. Thus, those with a mobile 

phone, a landline phone and internet access were used as proxy variables as they represented the 

potential for impact on health with utilization of ICT to send/receive health information. In 

addition, some ICT-related variables could also have been included in this study including 

households with a computer at home and households with an internet access at home. However, 

data on these variables were only available at the continental-level but not at the country level 

(ITU, 2017). 

Conceptually, this study assumed that increases in mobile cellular and internet 

subscriptions infers a broader access to healthcare services including antiretroviral and TB 

medications. Furthermore, it was believed that the likelihood of access to healthcare services 

increases with higher access to ICT infrastructures. Consequently, digital health advocacy among 

African health systems had opportunities to promote and disseminate healthcare knowledge 

through Information, Communication and Education (Lee et al, 2016; Shehata, 2016).  

Importantly, this study also derived an aggregate variable for ICT using three ICT 

elements, and computing a common factor score of the three ICT variables using the Principal 
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Component Analysis (PCA). Mathematically, the PCA takes data matrix of n-objects by p-

variables, which may be correlated, and summarizes them by uncorrelated axes. The result is a 

linear combination of the original p-variables denoting principal component. Geometrically, the 

PCA rigidly rotate the p-dimensional axis to new positions called ‘principal axis’, which has 

unique features of having the highest variance and a zero covariance (uncorrelation). The first 

principal component was used to produce fitted values, which served as the derived ICT common 

score variable denoted as ictfac (Abdi and Williams, 2010; Bro and Smilde, 2014). The new 

variable represents the overall ICT diffusion in the entire African continent.  

Study Design 

This was a retrospective longitudinal study that involved investigating the impact ICT 

diffusion had on HIV and TB health outcomes among the entire African countries between the 

periods 2000 to 2016. Study design involved retrospective time-series data analyses using the 

Dynamic Panel Model (DPM). However, certain variables were only available for some nations 

and with limited years. This study did not include countries with incomplete data. Thus, data for 

53 countries were available and complete, and was used in all econometric analyses. We believed 

that this sample was a good representative of the African continent and ideal for econometric 

analyses. A major problem when quantitatively estimating how ICT diffusion impacts health 

would be how to isolate ICT-health relationships from other observed and unobserved factors, 

without having biased estimates from such relationships. For instance, the general socio-economic 

development of any country could affect people’s health condition as well as ICT diffusion rates. 

More developed nations are inclined to have better health conditions as well as higher ICT 

diffusion rates (ITU, 2011; ITU, 2015). Thus, positive correlation between ICT and health 

measures obtained from basic econometric analyses may be because of developmental 
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advancements among sampled nations, without any pointers on the impact of ICT diffusion on 

health (Lee et al, 2016; Shehata et al, 2016).   

In addition, some unobserved qualities of nations could also impact both individuals’ health 

conditions and ICT diffusion levels. A typical example of such unobserved characteristics would 

be the preferences and ideologies of government (leaders) of any nation. Countries with protracted 

political instability, military dictatorship and institutionalized autocratic political system may 

prioritize national defense over socio-economic and infrastructural developments (Okogbule, 

2007). This would lead to poor health conditions and poor health outcomes, and an overall decrease 

in ICT penetration (Okogbule, 2007; Lee et al, 2016). Thus, in this regard, positive associations 

between health and ICT variables from basic econometric analytics is driven by the values, beliefs 

and views of the political elites, and not suggestive of a causal relationship between health and 

ICT diffusion. This may introduce simultaneity problems and may bias the estimates obtained from 

such econometric analyses (Terza et al, 2008; Wooldridge, 2009; Shehata et al, 2016).  

Econometric Data Analyses 

Overall, to overcome the rigors in estimation, the Dynamic Panel Model (DPM) and the 

Generalized Method of Moments (GMM) were used in all econometric analyses. The choice of 

this model stemmed from its ability to absolve inherent endogeneity issues that may arise from 

unobserved variables. It does this by utilizing the dynamic features of the data to generate good 

Instrumental Variables (IV). IVs are variables included in models to address endogeneity 

problems. Their use becomes necessary when an independent variable is correlated with the error 

term in any model. Thus, the chosen IVs should correlate substantially with the endogenous 

regressor and should not be correlated with the error term. It must be relevant and exogenous 

(Greenland, 2000). For this study, the GMM estimator proposed by Holtz-Eakin et al. (1988) and 
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developed by Blundell and Bond (1998) was used in estimating the study model (Equation 1). 

Conceptually, the GMM estimator absolves endogeneity problems by using the lagged values of 

the endogenous explanatory variables as IVs. These lagged independent variables are valid IVs as 

they are uncorrelated with the error term and are only partially correlated with the endogenous 

explanatory variables (Terza, 2008; Wooldridge, 2009; Shehata, 2016). Consequently, the GMM 

model has an inherent ability to address endogeneity issues that may arise from simultaneity, 

omitted variables or measurement error. Overall, the idea behind the GMM method is to put a 

slope equation in the form of a DPM, and then take the first difference of the model variables and 

use their lagged values for the levels of the regressors as IVs (Arellano and Bond, 1991). In 

addition, to address the issue of autocorrelation in the GMM system, the lagged dependent variable 

is instrumented using its past values (Arellano and Bond, 1991; Roodman, 2009).  

Therefore, to estimate model-1 as shown below (Equation 1), identified instruments must 

be valid. This means that they must be exogenous and relevant. Furthermore, to test the relevance 

of the instruments their associated F-statistics for the first-stage regression involving all 

endogenous variables on the instrument must be greater than 10. This ensures that bias in the 

estimation is smaller than the OLS estimation bias. Next, the over-identification test must be 

statistically significant. The J-statistic test confirms or refutes the hypothesis that instruments are 

exogenous. Thus, if we fail to reject the null hypothesis, then the instruments are exogenous (Terza 

et al, 2008; Shehata, 2016).  

Specific health indices of interest for this study were obtained from the World Bank 

database. This database contains information on economic and social indicators, which allows this 

study to include them as relevant covariates representative of national development. These 
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covariates were included to help control for the effect of progress of development of any nation, 

and as well help to isolate and capture the impact of ICT diffusion on health.  

Healthit = β0 +β1.Healthi, t-1 + β2ICTit +δZit + µi + ɛit   ………… ... …………………………(Equation 1) 

Where t represents year, and i represents the country. Z represents sets of covariates, and µi 

represents country fixed effects, and ɛit represents the error term with an assumed zero mean. The 

dependent variable is Healthit, which includes antiretroviral therapy coverage rates and TB 

mortality rates. The lagged of the dependent variable Healthit-1 was also included in this model as 

an independent variable to account for the possibility of the persistence of these health conditions 

in these countries. Conceptually, chronic disease conditions including chronic environmental 

features may lead to rather slow changes in the health conditions and outcomes of any nation. 

Thus, health indices in time t likely depend on the health indices in time t-1. Overall model 

significance was assessed using the maximum-likelihood test while parameter level tests of 

significance used the z-statistic based on parameter standard error. 

Geospatial Data Analyses  

The statistical software tools used for study data analyses was STATA version 14. Stata is 

a general purpose statistical software package that was created in 1985 by StataCorp. Word Office 

2013 package was also used to prepare this dissertation document, and Excel Office used to 

organize study data for tables. In addition, PowerPoint Office 2013 was used in presenting study 

findings. That notwithstanding, the Geographic Information System (GIS) software including the 

ArcGIS and GeoDa software were used to identify spatial relationships between TB health 

outcomes and mobile phone use among African health systems. Specifically, the GeoDa software 

was used to generate clusters/hotspots using differential local Moran’s I analyses techniques 

(Anselin, 1995). The Moran’s I is a geospatial analytic technique that measures spatial 
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autocorrelation. Ideally, what this test does is to explore if a variable change over time in any 

location is statistically related to its neighbors or not. Thus, the differential Moran’s I test identifies 

hotspots or clusters among African countries in relation to neighboring countries (Kraak, 2004; 

Anselin, 2013). 

Power Estimation 

Altogether, there were 53 countries and 16 variables in this study. Thus, the number of 

observations was 53*16 = 848. To estimate the power of this study the conventional formula below 

was used (Aday and Cornelius, 2006). 

Power = ES * α * √n/σ  

Expected Power (1 – β) =?  

Effect Size = 0.51 (Lee et al, 2016) 

Alpha (α) = 0.05 

Sample size (n) = 848 

Standard Error (σ) = 0.86 (Lee et al, 2016) 

Therefore, Power = 0.51 * 0.05 * √ (848/0.86) 

Power = 0.80.  

Thus, with 848 study observations, alpha (α) of 0.05, and effect size of 0.51, the power of this 

study was computed to be 80%.  We believed that this is an appropriate power to detect any 

important effect if it exists. 

Variable Descriptions: Dependent Variables 

To measure health variables, this study referenced the United Nations MDG. The United 

Nations proposed the MDG in 2000 with the aim of promoting health among individuals and hoped 
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to achieve these goals by 2015. Three amongst the eight major goals are directly related to health 

and include: reduce child mortality, improve maternal health, and combat HIV/AIDS, malaria and 

other diseases including Tuberculosis (ICSU and ISSC, 2015). The World Bank database has data 

representing these variables, which have been used for multiple studies in the past (Raghupathi 

and Raghupathi, 2013; Lee et al, 2016; Shehata, 2016). This study used variables to represent 

aspects of health, for which population health outcome indicators were inclusive. Accordingly, 

this study has three aims, which measured population health outcomes. Each aim has distinct 

dependent variables, including antiretroviral coverage rates, TB mortality rates and TB treatment 

completion rates.  

 

Antiretroviral therapy coverage rate: This variable was used as one of the indicators of 

population’s health outcome. Data for this variable was accessed from the World Bank database. 

Antiretroviral coverage rate represents the percentage of all people living with HIV in Africa who 

were receiving Antiretroviral Therapy (ART). 

TB mortality rate: This variable was also used as an indicator of the population’s health outcome 

in this study. It represents TB death rate (per 100,000 people). The data for this variable was also 

accessed from the World Bank database. 

TB treatment completion rate: This variable served as one of the indicators of the population’s 

health for this study. It represents TB treatment success/completion rate (% of new cases of TB 

identified). The data for this variable was obtained from the World Bank database. 
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Variable Descriptions: ICT Independent Variables  

ICT infrastructures were the main independent variables for this study and represents ICT diffusion 

in any nation. Three variables were used by this study to measure ICT including mobile phone use, 

fixed-telephone subscription, and internet access.  

Internet Subscription: This variable represents the percentage of individuals using the internet at 

the country-level. This variable was obtained from the International Telecommunication Union 

and was available for 53 African nations except South Sudan.  

Mobile-cellular telephone subscriptions: This variable represents the number of mobile-cellular 

telephone subscriptions per 100 inhabitants. This variable was obtained from the International 

Telecommunication Union and was available for 53 African nations except South Sudan. 

Fixed-telephone subscriptions: This variable denotes the number of fixed-telephone 

subscriptions per 100 inhabitants. The variable was obtained from the International 

Telecommunication Union and was available for 53 African nations except South Sudan. 

Variable Descriptions: Independent Variables (Covariates) 

The parameter labeled Z in the study model (equation 1) represents a set of covariates. 

Relevant variables that were representative of national development were included as covariates 

to control for their impact, and to isolate such impact from ICT-related impact on health conditions. 

Relevant covariates included were: Health expenditure as a percentage of GDP; Country 

population density; Age-related dependency ratio– Percentage of the population age 65 and above; 

Prevalence of undernourishment; Incidence of tuberculosis; Prevalence of HIV; Country-level 

unemployment rate; Net primary school enrollment rate among the population; Percentile rank of 

corruption control, and Net official development assistance and official aid received from 

international bodies/agencies.  
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Table 2: Measurement Matrix: TB Study Aim 1A 

Variable Description Variable 

Type 
Variable 

Source 
Dependent Variable 

Incidence of TB Incidence of tuberculosis (per 100,000 people) 

Continuous World Bank 

Database 
Independent Variables 
Internet Access Percentage of individuals using the Internet Continuous ITU Database 
Mobile Phone Use Mobile-cellular telephone subscriptions per 100 

inhabitants. 
Continuous ITU Database 

Fixed-telephone 

Subscription  Fixed-telephone subscriptions per 100 inhabitants 
Continuous ITU Database 

ICT Common Factor 
ICT common factor score representing overall 

diffusion of ICT 
Continuous Derived using 

PCA 
Covariates 
Population Needs Factors 
Primary Sch. Enrolment 

Rate 
School enrollment, primary (% net) Continuous World Bank 

Database 

Unemployment Rate 
The density of the labor force that is without work 

but available for and seeking employment 
Continuous World Bank 

Database 
Demographic Factors 
Prevalence of 

undernourishment Prevalence of undernourishment (% of population). 
Continuous World Bank 

Database 
Population Density 

Country total Population, total 
Continuous World Bank 

Database 

Aged Population  Population ages 65 and above (% of total) 
Continuous World Bank 

Database 

Age Dependency Ratio  
Age dependency ratio (% of working-age 

population) 
Continuous World Bank 

Database 
Health System Financial Factors 
Health Expenditure (% 

of GDP) Health expenditure, total (% of GDP). 
Continuous World Bank 

Database 
External Aids Net official development assistance and official aid 

received (current US$). 
Continuous World Bank 

Database 
Corruption Index Control of Corruption: Percentile Rank Continuous World Bank 

Database 

Sources: WHO, 2017; ITU, 2017 
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Table 3: Measurement Matrix: TB Study Aim 1B 

Variable Description Variable 

Type 
Variable 

Source 
Dependent Variable 

TB Mortality Rate TB death rate (per 100,000 people) 

Continuous World Bank 

Database 
Independent Variables 
Internet Access Percentage of individuals using the Internet Continuous ITU Database 
Mobile Phone Use Mobile-cellular telephone subscriptions per 100 

inhabitants. 
Continuous ITU Database 

Fixed-telephone 

Subscription  Fixed-telephone subscriptions per 100 inhabitants 
Continuous ITU Database 

ICT Common Factor 
ICT common factor score representing overall 

diffusion of ICT 
Continuous Derived using 

PCA 
Covariates 
Population Needs Factors 
Primary Sch. Enrolment 

Rate 
School enrollment, primary (% net) Continuous World Bank 

Database 

Unemployment Rate 
The density of the labor force that is without work 

but available for and seeking employment 
Continuous World Bank 

Database 
Demographic Factors 
Prevalence of 

undernourishment Prevalence of undernourishment (% of population). 
Continuous World Bank 

Database 
Population Density 

Country total Population, total 
Continuous World Bank 

Database 

Aged Population  Population ages 65 and above (% of total) 
Continuous World Bank 

Database 

Age Dependency Ratio  
Age dependency ratio (% of working-age 

population) 
Continuous World Bank 

Database 
Health System Financial Factors 
Health Expenditure (% 

of GDP) Health expenditure, total (% of GDP). 
Continuous World Bank 

Database 
External Aids Net official development assistance and official aid 

received (current US$). 
Continuous World Bank 

Database 
Corruption Index Control of Corruption: Percentile Rank Continuous World Bank 

Database 

Sources: WHO, 2017; ITU, 2017 
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Table 4: Measurement Matrix: HIV Study Aim 3A 

Variable Description Variable 

Type 
Variable 

Source 
Dependent Variable 

   

Prevalence of HIV 
Prevalence of HIV, total (% of population ages 15-

49) 
Continuous World Bank 

Database 
Independent Variables 
Internet Access Percentage of individuals using the Internet Continuous ITU Database 
Mobile Phone Use Mobile-cellular telephone subscriptions per 100 

inhabitants. 
Continuous ITU Database 

Fixed-telephone 

Subscription  Fixed-telephone subscriptions per 100 inhabitants 
Continuous ITU Database 

ICT Common Factor 
ICT common factor score representing overall 

diffusion of ICT 
Continuous Derived using 

PCA 
Covariates 
Population Needs Factors 
Primary Sch. Enrolment 

Rate 
School enrollment, primary (% net) Continuous World Bank 

Database 

Unemployment Rate 
The density of the labor force that is without work 

but available for and seeking employment 
Continuous World Bank 

Database 
Prevalence of 

undernourishment Prevalence of undernourishment (% of population). 
Continuous World Bank 

Database 
Demographic Factors 
Population Density 

Country total Population, total 
Continuous World Bank 

Database 

Aged Population  Population ages 65 and above (% of total) 
Continuous World Bank 

Database 

Age Dependency Ratio  
Age dependency ratio (% of working-age 

population) 
Continuous World Bank 

Database 
Health System Financial Factors 
Health Expenditure (% 

of GDP) Health expenditure, total (% of GDP). 
Continuous World Bank 

Database 
External Aids Net official development assistance and official aid 

received (current US$). 
Continuous World Bank 

Database 
Corruption Index Control of Corruption: Percentile Rank Continuous World Bank 

Database 

Sources: WHO, 2017; ITU, 2017 
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Table 5: Measurement Matrix: HIV Study Aim 3B 

Variable Description Variable 

Type 
Variable 

Source 
Dependent Variable 

   

Antiretroviral Therapy 

Coverage Rate 
The percentage of all people living with HIV who 

are receiving antiretroviral therapy. 
Continuous World Bank 

Database 
Independent Variables 
Internet Access Percentage of individuals using the Internet Continuous ITU Database 
Mobile Phone Use Mobile-cellular telephone subscriptions per 100 

inhabitants. 
Continuous ITU Database 

Fixed-telephone 

Subscription  Fixed-telephone subscriptions per 100 inhabitants 
Continuous ITU Database 

ICT Common Factor 
ICT common factor score representing overall 

diffusion of ICT 
Continuous Derived using 

PCA 
Covariates 
Population Needs Factors 
Primary Sch. Enrolment 

Rate 
School enrollment, primary (% net) Continuous World Bank 

Database 

Unemployment Rate 
The density of the labor force that is without work 

but available for and seeking employment 
Continuous World Bank 

Database 
Prevalence of 

undernourishment 
Prevalence of undernourishment (% of 

population). 
Continuous World Bank 

Database 
Demographic Factors 
Population Density 

Country total Population, total 
Continuous World Bank 

Database 

Aged Population  Population ages 65 and above (% of total) 
Continuous World Bank 

Database 

Age Dependency Ratio  
Age dependency ratio (% of working-age 

population) 
Continuous World Bank 

Database 
Health System Financial Factors 
Health Expenditure (% of 

GDP) Health expenditure, total (% of GDP). 
Continuous World Bank 

Database 
External Aids Net official development assistance and official 

aid received (current US$). 
Continuous World Bank 

Database 
Corruption Index Control of Corruption: Percentile Rank Continuous World Bank 

Database 

Sources: WHO, 2017; ITU, 2017 

 

Ethical Considerations 

This study involved analyzing secondary data, which was publicly available online, and 

omitted personal identifiers and patient-level information. Therefore, this study qualifies as 

minimum risk, given that it did not violate the rights or impose any risk on human subjects (Gostin, 

2008). Expedited review was obtained from the University of Texas School of Public Health 

Institutional Review Board (IRB). After this approval from the University review board, relevant 
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data was downloaded from the World Bank and ITU databases. Though these were de-identified 

variables, the downloaded dataset was cleaned and stored on password protected computers. All 

analyses were completed in January 2018. 

RESULTS 

The results of the econometric and geospatial analyses are presented in the form of three journal 

articles. 
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JOURNAL ARTICLE 1 

Impact of Technology on Improving Tuberculosis Health Outcomes among African Countries 

Journal: International Journal of Healthcare Information Systems and Informatics 

 

INTRODUCTION 

Tuberculosis remains a significant public health issue. One fourth of the world’s population 

is infected with tuberculosis. In 2016, 10.4 million people across the globe became infected with 

tuberculosis, and 1.7 million tuberculosis-related deaths were recorded (CDC, 2017). The burden 

of TB is highest in Sub-Sahara Africa and South-East Asia, where it is fueled by HIV co-infection 

and other conditions associated with poverty and deprivation (WHO, 2017). Thereby, necessitating 

innovative system-wide approaches for coordinated TB care and control using eHealth strategies. 

The World Health Organization (WHO) in 2014 proposed the eHealth strategy in an 

mHealth publication titled- ‘New Horizons for Health through Mobile Technologies’, with the goal 

of improving processes of healthcare using information systems including ICT infrastructures 

(WHO, 2011). Health sector use of ICT tools has been instrumental in advancing population 

health. Driven by the belief that ICT have opportunities for improving health and healthcare 

qualities of life, international organizations including developmental agencies have recommended 

the use of ICT infrastructures in the health sector (Lee et al, 2016; Shehata, 2016; Choun et al, 

2017). Thus, ICT infrastructure use in TB management has opportunities to integrate vital statistics 

registries, disease surveillance data, and program monitoring data with workforce, financial and 

management data to inform planning, decision-making and resource distribution. 

For this study, ICT diffusion is defined as the proportion of the continent of Africa 

population with access to ICT infrastructures specifically mobile phones, fixed-telephone 

subscriptions and internet access. Ideally, the number of individuals utilizing ICT infrastructures 
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in receiving health informatics via ICT would have been used as the independent variable in this 

study. However, such data are not available for Africa. Thus, those with a mobile phone, a landline 

phone and internet access were used as proxy variables, as they represent the potential for impact 

on health with utilization of ICT to send/receive health information. In addition, some ICT-related 

variables could also have been included in this study including households with a computer and 

households with an internet access at home. However, data on these variables were only available 

at the continental-level but not at the country level (ITU, 2017). 

Theoretically, ICT use can enhance communication and dissemination of information 

during patient care. It boosts health literacy among individuals with access to ICT infrastructures, 

thereby empowering users to lead a healthy lifestyle (Ratzan, 2011; Choun et al, 2017). In addition, 

a unique feature of the health sector which often leads to inefficient patient management and poor 

outcomes is information asymmetry. Thus, ICT use in the health sector addresses this issue by 

improving patient access to health-related information. For instance, information regarding 

vaccination and other preventive health services can be disseminated electronically through mobile 

phones and other related information systems. Study by Kaplan (2006) identified mobile phones 

with internet access as feasible ICT tools for advancing healthcare preventive services including 

TB vaccination campaigns. That notwithstanding, Choun et al. (2017) also demonstrated how 

mobile phones were used in facilitating TB diagnosis, referrals and treatment completion among 

patients at the Sihanouk Hospital Center of Hope (SHCH) in Cambodia. Their study identified a 

remarkable decrease in mortality rates among TB patients following implementation of this 

strategy (Choun et al, 2017). 

Consequently, ICT becomes a feasible tool to transform the health paradigm, as it shifts 

the provider-patient configuration (Chinn and Fairlie, 2010). Health sector ICT adoption proffers 
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integrated health information systems that has capacity to effectively manage different information 

systems and networks from diverse centers for an improved functional health system. Hoffman et 

al. (2010) evaluated a novel Mobile Direct Observation Treatment (MDOT) protocol for TB 

patients that was newly introduced at the Mbagathi District Hospital, Nairobi, Kenya. The MDOT 

was a home video-therapy innovation that involved making videos. Treatment supporters make 

short videos using mobile phones where TB patients take their medications. Patient submit these 

video clips to healthcare professionals for confirmation and are encouraged to watch motivational 

and educating TB-related health videos. This method replaced the routine in-person Direct 

Observational Treatment (DOT) where patients must go to DOT centers to take such medications 

before healthcare workers. The MDOT strategy was found to be technically feasible. It empowered 

both patients and caregivers to communicate effectively, thereby improving medication adherence 

and completion rates (Hoffman et al, 2010). This was akin to study by Ngwatu et al. (2018), who 

did a systematic study to evaluate the relevance of various digital TB treatment strategies including 

Short Message Services (SMS), Medication Monitors, and Video-Observed Therapy (VOT) over 

the conventional in-person DOT strategy. Their study showed that while Medication Monitors 

increased the probability of cure, SMS had no added significant advantage on treatment 

completion over DOT. However, VOT had a comparable treatment completion rate compared with 

DOT strategies (Ngwatu et a, 2018). 

Despite the inherent benefits associated with ICT use, various system-level factors have 

limited its effectiveness in improving outcomes among African health systems. Multiple studies 

identified lack of knowledge, dearth in information system adoption and poor service delivery as 

major drivers of poor health outcomes among African health systems (Wagstaff, 2012; WHO, 

2014; WHO, 2015). Compared to international standards, ICT penetration among African nations 
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is poor and more efforts required. Mobile broadband penetration level was 17.4 percent in 2015. 

One in five individuals use the internet among Africans, translating to a 20 percent penetration 

levels (ITU, 2017). This status quo is further worsened by deplorable healthcare infrastructures, 

paucity of healthcare workers and recurring political instability among African countries. 

Therefore, poor health outcomes among African communities could be linked to poverty cycles. 

Poverty and ill-health are intertwined and reflects causality in both directions. Individuals who are 

poor are caught in a vicious circle, as poverty breeds ill health, and ill health preserves poverty 

(Wagstaff, 2002). An estimated 45 percent of the 330 million individuals in the Sub-Saharan 

Africa live on less than one United States (US) dollar per day (WHO, 2014). These translate to 

poor health outcomes. For example, latest statistics identified the following– life expectancy in 

Africa was 54 years compared to the global mean of 66. Physician to patient ratio was 2.3 in Africa 

compared to the global mean of 14.0; and the burden of new cases of TB was 281 cases per 100, 

000 individuals, compared to the global mean of 133 cases per 100,000 population (WHO, 2015). 

Conceptually, ICT infrastructures have abilities to address these issues by bridging the gap 

in information availability and exchange using information systems. For instance, South Africa is 

one of the nations with the highest burden of global new cases of TB infections (WHO, 2017). 

Medically, to effectively treat TB, patients must be compliant to medical treatment. This involves 

taking four pills of anti-tuberculosis medications five times per week, for a period of six months 

(WHO, 2010). Patients could easily forget to take these medications, which could lead to treatment 

failure. However, in 2002 the South African government introduced an eHealth system in TB 

management. This involved the use of ICT infrastructures including mobile cellular applications 

(SMS) and computer database to facilitate TB treatments. Every half hour, the computerized 

database automatically lists patients who are due for TB medications, and an automatic SMS 
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reminder sent to their mobile phones. This approach was novel, and improved treatment adherence 

and completion rates. This study indicated that among the 138 TB patients managed this way, all 

but one patient successfully completed their treatment (Kahn, 2004). 

While multiple researches have documented the effect of ICT adoption and health 

outcomes for specific cases, it is not immediately clear how ICT infrastructures’ diffusion 

influence population health outcomes for entire African countries. Consequently, this study 

provides insights to the question: does ICT infrastructure use have any impact on TB incidence 

and mortality rates among African health systems? To answer these questions, this study 

conducted empirical tests using aggregate data obtained from the World Bank and ITU databases 

on 53 African sovereign countries for the period 2000 to 2016 as listed in the appendix (Exhibit 

A). We chose the Sub-Saharan African population because of data availability, including the 

presence of a large and diverse TB populations.  

Thus, our objective is to quantify the impact of ICT infrastructures on tuberculosis health 

measures among the African populations. Specifically, we explored how TB incidence and 

mortality rates were impacted by mobile phone use, fixed-telephone subscriptions, and Internet 

access. Most prior studies focused on evaluating this association using either a unit ICT 

infrastructure or specific African country (Kahn, 2004; Kallander et al, 2013; Raghupathi and 

Raghupathi, 2013). One study reported that mobile phone use and internet access had significant 

impact on tuberculosis case detection rates. In a recent study, Lee et al. (2016) from a global 

perspective explored the effect of ICT infrastructures diffusion on TB prevalence and mortality 

rates. However, the need to explore this in the Sub-Saharan African context cannot be over-

emphasized. If there is any significant association, then the system will strengthen eHealth practice 

in service delivery among African health systems (Raghupathi and Raghupathi, 2013). 
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Consequently, using analytics, this study identified relationships between ICT diffusion 

and TB health outcomes. Findings from this study hopefully will increase the understanding of 

how ICT infrastructures impact health outcomes among African countries, and therefore act as 

reference for other researchers, developmental organizations and policy-makers. This study 

provides a timely insight into the identification of an ICT-driven medical practice and guidelines 

to ease clinical practice, improve service delivery, and reduce healthcare cost. Study results have 

opportunities to inform policy-makers on healthcare priority setting and resources allocation. Thus, 

government and policy-makers can either encourage investments or disinvestments in ICT-driven 

healthcare practice in the coming years, especially in the face of current austerity in most African 

countries.  

Materials and Methods 

Data used for this study was obtained from the World Bank and ITU databases for the 

periods 2000 through 2016. Ideally, collated information is de-identified and aggregated per 

country and published at the end of each year. Thus, this study qualifies for an Institutional Review 

Board (IRB) exempt, as it did not violate the rights or impose any risk on human subjects. 

However, certain variables were only available for some nations and with limited years. Thus, data 

for 53 countries were available and complete was used in all econometric analyses, which was 

completed in May 2018. We believed that this sample was a good representative of the African 

continent, and ideal for econometric analyses.  

A major issue when quantitatively estimating how ICT diffusion impacts health would be 

how to isolate the ICT-health relationship from other observed and unobserved factors, without 

having biased estimates from such relationships. For instance, the general socio-economic 

development of any country could affect people’s health condition as well as ICT diffusion. More 
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developed countries tend to have better health condition as well as higher ICT diffusion standards 

(ITU, 2017). Thus, positive correlation between ICT and health variables obtained from basic 

econometric analyses may be because of developmental progress among sampled nations, without 

any pointers on the effect of ICT diffusion on health (Lee et al, 2016; Shehata et al, 2016).   

Overall, to overcome the rigors in estimation, the Dynamic Panel Model (DPM) and the 

Generalized Method of Moments (GMM) were used in all econometric analyses. The choice of 

this model stemmed from its ability to absolve inherent endogeneity issues caused by unobserved 

variables. It does this by utilizing the dynamic qualities of the data to produce good Instrumental 

Variables (IV). Thus, the GMM estimator proposed by Holtz-Eakin et al. (1988) and developed 

by Blundell and Bond (1998) was used in estimating our study model (Equation 1). Conceptually, 

the GMM estimator absolve endogeneity problems using the lagged values of the endogenous 

explanatory variables as IVs. The lagged independent variables are valid IVs as they are 

uncorrelated with the error term and are partially correlated with the endogenous explanatory 

variables (Terza et al, 2008; Shehata, 2016). The idea behind the GMM method is to put a slope 

equation in the form of a DPM, and then taking the first difference of the model variables and 

using their lagged values for the levels of the regressors as IVs (Arellano and Bond, 1991). In 

addition, to address the issue of autocorrelation in the GMM system, the lagged dependent variable 

is instrumented using its past values (Arellano and Bond, 1991; Rodman 2009). 

Specific health indices of interest for this study were obtained from the World Bank 

database. This database contains numerous information on economic and social indicators, which 

allowed this study to include them as covariates representative of national development. Relevant 

covariates were included to help control for the effect of progress of development of any nation, 
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as well as to isolate and capture the impact ICT diffusion has on health measures. Consequently, 

this study relied on several analytic methods including:  

Healthit = β0 +β1.Healthi, t-1 + β2.ICTit +δZit +µi +ɛit ………………………………….(Equation 1) 

Where t represents year, and i represents the country. Z represents sets of covariates, and µi 

represents country fixed effects, and ɛit represents the error term with an assumed zero mean. The 

dependent variable is Healthit, which includes TB incidence and TB mortality rates. The lagged of 

the dependent variable Healthit-1 was included in this model as an independent variable to account 

for the possibility of the persistence of these health outcomes in these countries. Theoretically, 

chronic disease conditions including chronic environmental features may lead to rather slow 

changes in the health conditions and outcomes of any nation (Lee et al, 2016). Thus, health indices 

in time ‘t’ most likely might depend on the health indices in time ‘t-1’. Overall model significance 

was assessed using the maximum-likelihood test; and parameter level tests of significance used 

the z-statistics based on parameter standard error. 

Importantly, this study also derived an aggregate variable for ICT using three ICT 

elements, and computing a common factor score of the three ICT variables using the Principal 

Component Analysis (PCA). Mathematically, the PCA takes data matrix of n-objects by p-

variables, which may be correlated, and summarizes them by uncorrelated axes. The result is a 

linear combination of the original p-variables denoting principal component (Abdi and Williams, 

2010). The new variable (ictfac) represents the overall ICT diffusion in the entire African continent 

and was included in the study model as one of the primary predictors. 

Conceptually, this study assumed that increases in mobile cellular and internet 

subscriptions implies a broader access to healthcare services. Furthermore, we assumed that the 
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likelihood of access to healthcare services increases with higher access to ICT infrastructures, 

which have opportunities to reduce TB incidence and mortality rates.  

Results 

This study used unbalanced panel data for 53 African countries over the period 2000 - 2016 

accessed from the World Bank and ITU databases and analyzed in January 2018. Descriptive study 

summary statistics are shown in Table 1 below. On the average, the incidence of TB per 100,000 

of population was 289.73, and the mean TB mortality rate was 35 deaths per 100,000 individuals. 

The mean percentage of individuals using the internet was 8.4 percent. The mean mobile phone 

subscription was 41.4 per 100 population, while mean fixed telephone subscription was 3.6 per 

100 inhabitants. This study also performed the Hansen test, to test for over-identification of the 

Dynamic Panel Model estimates. The Hansen test chi-squared statistics (Tables 2&3) were non-

significant, indicating no over-identification in the models.   
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Table 1: Variable Descriptive Statistics 

Variables Definitions Mean Standard 

Deviation 

Min Max 

ICT variables 

Internet Percentage of individuals using the 

Internet 

8.380 11.749 0.006 58.270 

Mobile phone 
Mobile-cellular telephone 

subscriptions per 100 inhabitants. 

41.440 41.068 0 176.686 

Fixed 

telephone 

Fixed-telephone subscriptions per 

100 inhabitants 

3.615 5..923 0 31.067 

ictfac ICT common factor score 

representing overall diffusion of ICT 

0 1.468 -1.365 6.106 

Control variables 

TB_inc Incidence of tuberculosis (per 

100,000 people) 

289.731 262.835 7.5 1354 

MortalityTB TB death rate (per 100,000 people) 35.015 27.439 0 157 

healthexp Health expenditure, total (% of 

GDP). 

5.578 2.152 0.260 14.390 

educ School enrollment, primary (% net) 75.102 18.186 0.060 99.634 

undernourish Prevalence of undernourishment (% 

of population) 

22.031 13.450 5 60.600 

ext_aids Net official development assistance 

and official aid received (current 

US$) 

19.566 1.399 13.162 23.160 
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Table 2: Estimation results of TB incidence 

  Note: FD = First Difference; DPM = Dynamic Panel Model. Significance level: *p<0.1; **p<0.05; ***p<0.01 

 

Table 2 above represents the effect of overall ICT diffusion on TB incidence. The 

coefficient of the lagged TB incidence was positive, statistically significant and close to one, 

indicating the persistence of tuberculosis among African countries over time. The coefficients on 

the aggregate ICT score and other ICT variables were all negative and significant but for fixed 

telephone (Model 4). 

 

 

 

Variables 

Model 1 

N=312 

Model 2 

N=318 

Model 3 

N=316 

Model 4 

N=314 

DPM 

β(p-value) 

DPM 

β(p-value) 

DPM 

β(p-value) 

DPM 

β(p-value) 

TB_Inc (t-1) 0.849 (0.000)*** 0.852 

(0.000)*** 

0.836 (0.000)*** 0.874 (0.000)*** 

ICT common 

factor score 

-11.084 

(0.000)*** 

   

Internet  -0.830 

(0.004)*** 

  

Mobile phone   -0.374 (0.000)***  

Fixed telephone    0.246 (0.892) 

Healthcare 

expenditure 

-9.013 

(0.000)*** 

-9.877 

(0.000)*** 

-8.123 (0.000)*** 

 

-10.116 (0.000)*** 

Education -0.393 (0.230) -0.479 (0.129) -0.337 

(0.278) 

-0.736 (0.024)** 

External aids 

(log) 

-11.777 (0.000) 

*** 

-13.123 

(0.000)*** 

-9.916 (0.000)*** -14.533 (0.000)*** 

Under 

nourishment  

-2.445 

(0.000)*** 

-2.300 

(0.000)*** 

-2.544 (0.000)*** -2.113 (0.000)*** 

AR(2) test z = 0.27 z = 0.27 z = 0.28 z = 0.33 

Hansen test chi2(90) = 283 chi2(90) = 289 chi2(90) = 275 chi2(90) = 289 
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Table 3: Estimation result of TB mortality rate. 

 Note: FD = First Difference; DPM = Dynamic Panel Model. Significance level: *p<0.1; **p<0.05; ***p<0.01 

 

Table 3 represents the effect of overall ICT diffusion on TB mortality rate. The coefficient 

of the lagged TB mortality rates was positive, statistically significant and close to one, indicating 

the persistence of TB-related deaths over time among African countries. The coefficients on the 

aggregate ICT score and other ICT variables were all negative but for fixed telephone (Model 8). 

 

 

 

 

Variables 

Model 5 

N=312 

Model 6 

N=318 

Model 7 

N=316 

Model 8 

N=314 

DPM 

β(p-value) 

DPM 

β(p-value) 

DPM 

β(p-value) 

DPM 

β(p-value) 

Mort_TB (t-1) 0.537 (0.000)*** 0.639 (0.000)*** 0.639 (0.000)*** 0.548 

(0.000)*** 

ICT common factor 

score 

-0.178 (0.723)    

Internet  -0.034 (0.587)   

Mobile phone   -0.005 (0.721)  

Fixed telephone    0.614 (0.091)* 

Healthcare expenditure -0.196 (0.525) -0.048 

(0.886)*** 

0.010 (0.976) -0.218 (0.477) 

Education -0.170 (0.013)** -0.209 

(0.005)*** 

-0.187 (0.012)** -0.194 

(0.005)*** 

External aids (log) -1.301 (0.025)** -1.433 (0.022)** -1.352 (0.034)** -1.331 

(0.023)** 

Under nourishment  0.192 (0.123) 0.213 (0.112) 0.182 (0.181) 0.219 (0.079)* 

AR(2) test z = 0.08 z = 0.09 z = 0.08 Z = 0.09 

Hansen test chi2(90) = 181 chi2(90) = 167 chi2(90) = 166 chi2(90) = 178 
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Discussion 

The coefficients of the lagged TB incidence and TB mortality rates were both positive, 

statistically significant and close to one, indicating the persistence of tuberculosis and TB-related 

deaths over time among related African nations. The coefficients on the aggregate ICT score and 

other ICT variables were all negative and significant but for fixed telephone (Model 4). A plausible 

explanation could be that individuals with access to other ICT tools other than cellular phones and 

the internet might not use them for TB health-related activities. Thus, analytical results (Table 2) 

showed that overall ICT diffusion, the use of mobile phones and internet access had significant 

impact on decreasing the incidence of Tuberculosis among Africans. This finding supports 

previous study that health sector ICT use reduces TB incidence (Lee et al, 2016); and could 

probably be linked to the use of ICT infrastructures in disseminating information regarding TB 

preventive services and programs. As identified by Kaplan (2006), information regarding TB 

vaccination campaigns disseminated through mobile phones, facilitated increased vaccine uptake, 

while reducing the incidence of tuberculosis in the society (Kaplan, 2006). Thus, policy should be 

reviewed with the view of strengthening strategies that promote ICT infrastructure use in 

promoting TB vaccination campaigns among African health systems.  

More so, as shown in Table 3, the coefficients on aggregate ICT variable (ictfac), internet 

access and mobile phone use, were negative except for fixed telephone (Model 8). These 

coefficients were statistically insignificant throughout the models. This finding corroborates 

studies by Shehata (2016), which showed that ICT indicator variables lose their significance as 

control variables are being added to any model during econometric analysis, especially the DPM. 

That notwithstanding, findings from this study lend credence to findings documented in the 

bulletin of the World Health Organization and provide rationale for ICT use in healthcare delivery 

to reduce TB morbidity and mortality rates. These are linked to the role ICT tools play in 
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coordinating TB management including referral mechanisms, treatment initiations and case 

monitoring to ensure treatment adherence and completion (Kaplan, 2006). It corroborates study by 

Choun et al. (2017) who demonstrated how mobile phones with internet access were used in 

facilitating TB diagnosis, referrals and treatment monitoring among patients at the Sihanouk 

Hospital Center of Hope (SHCH) in Cambodia that resulted in reductions in mortality rates among 

registered TB patients. 

In addition, findings from this study also support the study by Kahn (2004), which 

identifies mobile phones as important tool in TB management. To effectively treat TB, patients 

must be strictly compliant to TB medications protocol – four pills of anti-tuberculosis medications, 

five times per week for a period of six months (WHO, 2010). Thus, possession of a mobile phone 

with an internet access has opportunities to improve TB management and reduce morbidity. SMS 

technology and other treatment-reminder protocols can be harnessed by TB patients, thereby 

facilitating treatment adherence and completion, and reducing mortality (Kahn, 2004; Lee et al, 

2016). Consequently, it is recommended that African governments at all levels review policies in 

view of consolidating an ICT-driven medical practice and guidelines to ease clinical practice, 

improve performance and reduce TB-related morbidities and mortalities.   

That notwithstanding, results from analytics for the control variables indicated that country 

health standard was associated with economic and socio-demographic factors. Education, health 

expenditures and the net external official aid to the health sector had positive associations with 

study health outcomes. There associations led to a reduction in TB incidence and mortality rates. 

These findings corroborate findings from study by Gupta et al. (2002) which identified positive 

associations between population health measures and economic factors. However, 

undernourishment had significant negative effects on study health outcomes (Table 2). This could 
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be linked to the fact that undernutrition negatively impacts immunity especially among 

immunocompromised individuals like TB patients. Undernutrition breeds malnutrition and 

exacerbates TB morbidity and mortality (Cegielski and McMurray, 2004). Nonetheless, of note is 

the fact that the coefficient on health expenditure was positive (Model 7). A plausible explanation 

to this is the misallocation of resources and mismanagement of funds meted for the health sector 

leading to waste of resources and poor health outcomes (Gupta et al, 2002). Thereby, justifying 

the need for an efficient health sector resource allocation and management.  

However, it must be noted that this study had some inherent limitations. For instance, this 

study found that mobile phone and internet use had significant impact on TB health outcomes. 

Therefore, we infer this result because of the superior communication functionalities associated 

with mobile phone and internet use in easing communication and absolving misconceptions related 

with TB. In addition, the study methodology involved the use of secondary data which may not 

have been collected under standard procedures. The validity of this data could affect the robustness 

of our study findings and may affect the transferability of study findings to other population 

groups. Consequently, future studies, particularly granular small-scale studies, will be required to 

further explore and validate this study’s interpretations.  

In recent times phones with internet access are increasingly available, making it difficult 

to differentiate between mobile phone users and internet users. Thus, in view of this, a new variable 

should be defined, and its impact on health outcome attributes evaluated in future studies. Besides, 

this study evaluated data from 2000 until 2016, in this era of big data. Future studies could involve 

the use of analytics to search through larger volume of rich data across a wider time span to conduct 

a detailed longitudinal retrospective study, to identify more trends, patterns and associations.  
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Conclusion and Policy Implications 

Overall, study findings showed that promoting ICT use among the public has opportunities 

for improving tuberculosis incidence and mortality rates. However, the impact of individual ICT 

infrastructures on improving TB health outcomes are different. This study inferred these 

differences to be a result of the different functionalities embedded within different ICT 

infrastructures, and the peculiar features of the health outcomes studied.  

Important policy implications of the study findings for the African government and the 

global community is that ICT use improves health outcomes. In addition to allocating resources to 

specific health projects or interventions to improve population health, investing in ICT 

infrastructures, as well as educating the population on the use of ICT tools could be an alternative 

policy to improve population health. Thus, with efficient guidance, enlightenment and access to 

ICT infrastructures, individuals could be empowered to become active and independent agents to 

explore, and benefit from information technology complementing government efforts to improve 

public health.  

 

Appendix  

Exhibit A  

Countries used in this analysis as listed by the World Health Organization. Available at: 

http://www.who.int/countries/en/ accessed May 20, 2017. 

African region:  Algeria, Burundi, Burkina Faso, Benin, Angola, Cameroon, Botswana, Cape 

Verde, Central African Republic, Comoros, Chad, Congo, Democratic Republic of Congo, Cote 

d'Ivoire, Djibouti, Equatorial Guinea, Egypt, Eritrea, Ethiopia, Gabon, Ghana, Guinea-Bissau, 

Lesotho, Gambia, Guinea, Kenya, Liberia, Libya, Malawi, Mauritania, Mali, Madagascar, 

http://www.who.int/countries/en/
http://www.who.int/countries/en/
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Mauritius, Mozambique, Morocco, Nigeria, Namibia, Niger, Sao Tome and Principe, Seychelles, 

Rwanda, Senegal, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, Togo, 

Uganda, Tunisia, Tanzania, Zambia, Zimbabwe. 
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JOURNAL ARTICLE 2 

Mobile Phone Use and Tuberculosis Health Outcomes among African Health Systems: A 

Geospatial Analytic Approach 

Journal: International Journal of Infectious Diseases 

BACKGROUND 

Mobile phones are increasingly becoming available and accessible globally. An 

approximated 6.8 billion mobile phones were in use in 2013 compared to 1 billion in 2002 across 

the globe, corresponding to a 96% penetration rates. This translates to about 128% and 89% 

penetration rates among developed and developing countries respectively (ICT, 2013). The 

estimated mobile phones penetration rates among Sub-Saharan Africa was 63% in 2013 and was 

projected to rise greater than 70% by 2015 (Deloitte, 2012). Many people who could not access 

traditional fixed-telephones for telecommunication now use mobile phones on daily basis. 

Compared to the wired information technology, the wireless technology is less expensive and are 

readily available for individuals in many developing countries. Thus, the wireless technology has 

opportunities to facilitate communication exchange in remote and impoverished communities 

(Clifford and Clifton, 2012), and could be harnessed to improve population health.   

Information Technology (IT) drive transformational changes in national developments and 

the economy and becomes a feasible tool in all population health improvement campaigns 

http://www.who.int/tb/publications/GTBcorporate_factsheet.pdf
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(Shehata, 2016). World leaders and notable United Nation agencies had reiterated the need for the 

use of IT to drive economic growth, empower rural communities and improve population health 

among developing countries. In addition, reputable agencies including the World Bank, the 

Organization for Economic Co-operation and Development (OECD) and the International 

Telecommunication Union (ITU) among others have also expressed optimism on the use of 

information system strategies to promote population health (WHO, 2014; ITU, 2015).  

According to World Bank, common devices used in Information and Communication 

Technology (ICT) include fixed-telephone lines, computers, wireless cellular phones, and the 

internet to mention a few (World Bank, 2003; Leena et al, 2005; Chinn and Fairlie, 2010; Gagnon 

et al, 2012). However, this study focused on mobile phone use, and its impact on TB health 

outcomes. Mobile phones facilitate information exchange and transfer without spatial barriers at 

high efficiency and low cost (Shade, 2004; Shehata, 2016). With the advent of smart phones with 

internets, people can easily access health information and services. Individuals especially those in 

rural communities have access to mobile phones than computers and are inclined to use them to 

access health information beside making and receiving calls (Shade et al, 2012).  

Numerous studies have shown that increases in smartphones access have a direct 

relationship with the scope of health information and service provisions and exchange between 

patients and providers (Micevska, 2005; Chinn and Fairlie, 2010; Lee et al, 2016). Smart phones 

with internet access facilitates easy browsing of health reliable websites for medical and health-

related information. Thus, users can search for information regarding any ailment including 

available treatment options, medications-related side effects, and treatment specialists. Doctors 

can also search health-related information in view of learning, research and development. National 

surveys conducted among 250 women in India, Uganda, Egypt and Guinea Bissau in 2012, showed 
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that an approximate 84% of the women sampled desired to receive healthcare-related information. 

However, 39% of these women wished to receive such information through their mobile phones 

than any other ICT tool (AUSAID & USAID, 2012).      

Consequently, ICT becomes a feasible tool to transform the health paradigm, as it shifts 

the provider-patient configuration (Lucas, 2008). Health sector ICT adoption proffers integrated 

health information systems that has capacity to effectively manage different information systems 

and networks from diverse centers for an improved functional health system. ICT applications 

enhance the operational efficiency among medical institutions, research institutions and healthcare 

centers. For instance, Micevska (2005) discovered that in Peru, Bangladesh, and Laos, basic 

information systems (telephone services) proffers an opportunity for the real-time transmission of 

patient-related information. Thus, health personnel and supervisors can track and monitor patients’ 

symptoms through fixed telephones or cellular phones, collate and input data into a central 

database accessible to other health personnel. Consequently, by updating patients’ medical 

information on this portal in a timely fashion, personnel at medical institutions can track and 

monitor infection of communicable diseases in hard-to-reach areas, and effectively allocate 

medical supplies and drugs. This approach enabled healthcare personnel to make better treatment 

decisions for optimal outcomes (Micevska, 2005). 

Mobile phone brought new opportunities to the Sub-Saharan Africa. It links people to 

people, information and services. In Nigeria, people can call friends over 500 kilometers away 

with ease. In Niger, artisans can call their contacts in Cameroon to explore job opportunities 

without making the $100 journey; and in Kenya, tuberculosis patients can receive text messages 

on daily basis, reminding them to take their anti-tuberculosis medications as scheduled. Therefore, 

with most of African population in the rural areas, mobile phone use becomes invaluable in 
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facilitating health information and services availability and exchange (ITU, 2003; Shehata, 2016). 

Doctors irrespective of geographical locations can diagnose and recommend management 

promptly through conversations over the phone. In Mozambique, mobile health treatment 

intervention was introduced to enhance communications between patients and healthcare 

supervisors. The goal was to use the mHealth strategy to facilitate treatment retention and 

completion among patients receiving anti-tuberculosis medications in Mozambique. This model 

resulted in higher treatment completion rates among study participants. It improved medication 

refills, reduced missed-appointments, and improved care coordination among relevant health 

systems evaluated. Overall, this approach became novel and successful, and served as a model for 

other health centers regarding TB management (Nhavoto et al, 2017).  

Theoretically, mobile phone use in TB control has opportunities to integrate surveillance 

data with case-management data to improve service provisions. In Vietnam, mHealth strategy was 

used to curb the incidence of multidrug-resistant TB (MDR-TB). Vietnam is a country with 

significant burden of TB and has about 90 percent treatment success rates of TB across board. 

However, an estimated 25 percent of those treated recur as MDR-TB. Thus, with support from 

Global Fund and Vietnamese government, PATH (an international non-governmental 

organization) intervened by harnessing the power inherent in mobile technology to keep patients 

and healthcare workers updated on treatment schedules. They introduced the use of a cellular 

phone-based system in the Ba Ria-Vung Province of Vietnam to improve TB treatment adherence 

and completion. Mobile messages were sent to patients to keep them on track on when to attend 

sputum tests, take TB medications, and come for medication refills. Treatment supervisors at the 

various health facilities also had access to this digital network. They monitor patients’ information 

including sputum results, treatment regimens, medication side effects and missed-appointments 
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among others. This model resulted in drastic reductions in MDR-TB cases in Vietnam and 

provided the justification for the inclusion of this strategy into the Vietnamese National 

Tuberculosis Control Program (PATH, 2017).  

That notwithstanding, Chadha and colleague demonstrated how the ComCare mobile 

application was used to coordinate TB referrals among patients in the Khunti District of India. 

This study evaluated the impact of a newly introduced mHealth strategy in TB management. Study 

result showed that this mobile technology increased provider accountability to patients and led to 

an overall improved coordinated TB patient referral, and care among their networks (Chadha et al, 

2017). Findings from this study corroborated study by Khan (2004); who demonstrated how 

mobile phones were used to efficiently coordinate TB management in South Africa.  

Conceptually, to effectively treat TB, patients must take four pills of anti-tuberculosis 

medications five times per week, for a period of 6 months (WHO, 2010). It is very easy for this 

treatment to fail because patients could easily forget to take their medications. Therefore, in 2002, 

the South African health system introduced the use of health information systems including 

cellular phones, SMS technology, and computer databases, to support patients adhere to treatment 

protocols. Every half hour, facility database will automatically list the patients who are due for 

their medications, and an automatic reminder Short Messages Services (SMS) sent to their mobile 

phones. This model enhanced TB treatment adherent and completion rates among patients included 

in this treatment program. 

While multiple studies have documented the impact of mobile phone use on TB health 

outcomes for varied settings, it is not immediately clear if there are geospatial autocorrelation in 

TB treatment completions rates among African countries. Consequently, this study provides 

insights to the cluster patterns in TB treatment completion rates among African countries. It also 
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investigated geospatial relationships between mobile phone use and TB treatment completion rates 

among African health systems. To answer these questions, this study conducted geospatial 

analyses using aggregate data obtained from the World Bank database on 53 African sovereign 

countries for the periods 2000 through 2015. We focused on Sub-Saharan African population 

because of data availability, presence of a large and diverse TB populations, and the need to justify 

the use of mobile phones in TB programs.   

Previous studies have focused on evaluating TB medication access using geospatial 

disaggregated datasets of population characteristics (Aker and Mbiti, 2010). Hassarangsee et al. 

(2015) investigated the spatial detection and management of Tuberculosis using information 

systems in Si Sa Ket Province, Thailand. Thus, the need to explore TB treatment completion cluster 

patterns among African health systems cannot be over-emphasized. Consequently, this study 

aimed to fill this important research gap by investigating geospatial autocorrelation levels, evaluate 

patterns of treatment completion clusters among patients on TB medications, and ascertain the 

spatial relationships between mobile phone use and TB treatment completion rates among African 

health systems. If there is any significant association, then the system will strengthen policies 

supporting mHealth strategies in view of TB management. Findings from this study hopefully will 

increase the understanding of spatial TB treatment outcomes among African countries, and 

therefore act as reference for other researchers,   

This study focused on the use ArcGIS and GeoDa to determine geospatial relationships 

between mobile phone use and TB treatment completion rates using Exploratory Spatial Data 

Analysis (EDSA). In addition, geospatial analytic approach was used to assess spatial 

autocorrelation and to generate hotspots for TB treatment completion rates among the Sub-Saharan 

African countries. Such geospatial population health analyses have opportunities to support 
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monitoring in many aspects of development, healthcare and resource allocation; and could provide 

frameworks for policy making. This study provides a timely insight on spatial TB treatment 

analyses, provides rationale for intervention mapping and reduce healthcare cost. Results from this 

study will help policy-makers and other key players better understand TB treatment completion 

cluster patterns among African health systems. This has opportunities for improving national 

health systems by informing policy-makers on healthcare priority setting and resources allocation.  

Materials & Methods  

Description of Study Area 

According to the CIA World Factbook (2016), Africa is a continent surrounded by water 

bodies. It is bounded to the West by the Atlantic Ocean, to the south by the Southern Ocean, to the 

East by the Indian Ocean, and to the North by the Mediterranean Sea and the Red sea. It has a land 

area of 28,489,869 sq. km, a tropical climate, and terrain from rolling coastal plains to low 

mountains. As at July 2016, the African population was estimates to be 1,119,307,147, and the 

population is distributed throughout 54 countries. While the highest point in Africa is Mount 

Kilimanjaro, the lowest point is Lake Assal (CIA, 2016). 

Data Sources 

The base map of Africa (Figure 1) was obtained from ArcGIS (ArcGIS, 2017). Data for 

TB treatment completion rates among African countries was obtained from the World Bank 

database for the periods 2000 through 2015. However, this was only available for some countries 

and with limited years. Therefore, this study did not include countries with incomplete data. 

Altogether, data from 53 countries of Africa was used for this study analyses. We believe that this 

sample was a good representative of the African continent and suitable for geospatial analyses. 

Population health outcome data for these countries are usually collated, de-identified and 
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aggregated per country and published at the end of each year by World Bank. Thus, this qualifies 

as a minimum risk given that it did not violate the rights or impose any risk on human subjects. 

Thereby, making this study qualify for an Institutional Review Board (IRB) exempt (Gostin, 

2008). 

Comparative Statistical Analyses  

The ArcGIS and GeoDa statistical software were used in all spatial analyses which was 

done in three stages and was completed in February 2018. In GeoDa, a univariate local Moran’s I 

and a global Moran’s I were run on TB treatment completion rates separately, followed by a 

differential local Moran’s I analyses to ascertain differential cluster patterns for different periods. 

Finally, spatial relationships between mobile phone use and TB treatment completion rates was 

evaluated using bivariate Moran’s I technique (Kraak, 2004). 

To investigate the pattern of clusters in TB treatment completion rates among African 

countries, spatial and tabular data were uploaded into ArcGIS 10.5.1. After data cleaning in Excel, 

geographically referenced data for mobile phone use and TB treatment completion rates for four 

time-periods (2000, 2005, 2010, 2015) were extracted for each country. The table representing 

these two variables were added and joined to the African map by country shapefile. The cumulative 

percentage of mobile phone use and that of TB treatment completion rates was summed for each 

country and shaded by these values. Study dataset was further analyzed using an Exploratory 

Spatial Data Analyses (EDSA) approach to reveal and visualize patterns and identify trends among 

geographically referenced data. 

There are several analytical approaches to EDSA. To measure spatial autocorrelation, 

Moran’s I is classically used (Moran, 1950; Kraak, 2004). Conceptually, the Moran’s I measure 

spatial autocorrelation by exploring if a variable change over time in any location is statistically 
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related to its neighboring locale. The global Moran’s I statistic gives an overall measure of spatial 

autocorrelation (Highfield, 2013). Theoretically, spatial autocorrelation represents a measure of 

the degree of data dependency in space and is akin to the Pearson correlation coefficient (Anselin, 

2000; Highfield, 2013). The Local Indicator of Spatial Association (LISA) represents the localized 

equivalent of the global Moran’s I (Anselin, 2003). Thus, for any location on the map, the LISA 

statistic measures and statistically tests the similarity of the geographically referenced data for that 

location (e.g., TB treatment completion rates at the source country tract) with the values of its 

corresponding local neighbors in space (surrounding country tracts). Local Differential Moran’s I 

(LDMI) statistic measures if a variable change in space over time is related to its neighbors. The 

principle behind the LDMI is that this measure determines spatial autocorrelation on change over 

time (yt – yt-1). Thus, for this study, Differential cluster patterns were evaluated between the base 

time 0 (year 2000) and time 1 (year 2005), time 2 (year 2010) and time 3 (year 2015) respectively. 

The trend in clusters generated were evaluated in view of TB treatment completion rate outcomes 

among different African countries and empirical inferences drawn.  

Bivariate Local Moran’s I Statistic 

This study also used a geographically based measure of spatial correlation analytic 

approach (BiLISA). The rationale for using BiLISA was based on the areal nature of TB data. 

BiLISA has an inherent ability to account for areal data during spatial autocorrelation assessment 

using contiguity matrix that assess neighboring values. The formula for calculating the Bivariate 

Local Moran’s I statistic is shown below: 

 

Where l and k represent mobile phone use and TB treatment completion rates for country tracts i 

and neighboring tract j, respectively. Zl and Zk represent standardized Z-scores of the l and k 
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variables respectively. Overall, for each variable, the standardized Z-score values are calculated 

as the observed rate (e.g., TB treatment completion rate) at location i minus the mean rate of the 

surrounding neighbors j (e.g., mean TB treatment completion rates for all neighbors) divided by 

the standard deviation. Wij represents the geospatial matrix which is a binary contiguity matrix. 

This matrix provides geospatial structures for all locations included while calculating the Local 

Moran’s I statistic. Conventionally, under the queen first order principle, contiguity geospatial 

neighbors with common boarders and vertex have weights equals to one. Thus, observations that 

share common boarders have weights equals to one, else the weights are equals to zero (Anselin, 

2003; Highfield, 2013). 

The bivariate Moran’s I statistic which is also known as bivariate LISA (BiLISA) and 

evaluates the degree of linear association (negative or positive) between y variable (e.g., TB 

treatment completion rate) at any given location and the average of the x variable (e.g., mobile 

phone use) at any given geographic location in space (Anselin, 2003). Comparable to LISA 

measures, the BiLISA statistic generates two spatial distinguishable clusters – Positive and 

Negative autocorrelation clusters. While positive spatial autocorrelation is placed into two 

categories including High-High and Low-Low clusters; the negative autocorrelation is placed into 

two categories of outliers including High-Low and Low-High cluster patterns. While High-High 

clusters denotes above-average values of the core countries/regions compared to neighboring 

regions; Low-Low means below average values of the countries/regions compared to neighboring 

countries or regions. Low-High clusters would mean small changes in the core countries versus 

high changes in the surrounding neighbors. Conversely, High-Low cluster patterns means high 

changes in the core countries/regions versus small changes in the neighbors. Thus, while 

interpreting the outliers, the focus would be on the magnitude of changes among core countries 
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compared to their neighbors (Anselin, 2003). Therefore, inferences for Moran’s I statistics is based 

on permutation tests, sensitivity analyses (Monte Carlo Simulation) and significance levels. 

Ideally, a geographically referenced distribution is computed for spatial randomness, and 

compared with observed data over numerous iterations (Anselin, 1995; Highfield, 2013). For this 

study, a randomization of 999 permutations was used prior to result interpretations, and his study 

only analyzed observations with neighbors.   

The objective of this study was to identify countries in Africa with low TB treatment 

completion rates and those with reduced use of mobile phones in coordinating TB programs among 

the geographically referenced data. Using the ESDA approach to identify these countries would 

be the first step towards addressing issues related to access and penetration of ICT infrastructures. 

Thus, the ESDA geospatial model could identify countries with the highest need for intervention 

in the face of limited resources.   

Findings 

The study uses geospatial data for 53 African countries (Figure 1) over the period 2000 – 2015 

accessed from the World Bank database listed in the appendix section (Exhibit A).  
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Figure 1: Map of Africa highlighting countries.  

 

African shapefile culled from ArcGIS, (2017) 
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Results for Univariate global Moran’s I analyses 

Univariate global Moran’s I values and associated pseudo p-values are as shown in Table 

1. The scatterplot outputs associated with the univariate Moran’s I are also provided in the 

appendix section (Exhibit B).  

Table 1: Univariate global Moran’s I result for the years 2000 – 2015.  

 Variables Moran’s I value Pseudo p-value 

Univariate TB Rate Year 2000 0.0190 0.021 

 TB Rate Year 2005 0.0177 0.032 

 TB Rate Year 2010 0.0196 0.025 

 TB Rate Year 2015 0.0179 0.031 

    

  Figure 2: Clusters and significance levels of TB treatment completion rates in year 2000 

 

Figure 2 shows the clusters and significance levels of TB treatment completion rates in the 

year 2000. LISA analytic approach generated thirteen countries with statistically significant spatial 

autocorrelation cluster patterns at different p-values (0.001, 0.01, 0.05). Two different cluster 

patterns (High-Low and Low-Low) were generated.  
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Figure 3: Clusters and significance levels of TB treatment completion rates in year 2005 

 

Figure 3 shows the clusters and significance levels of TB treatment completion rates in the 

year 2005. Nine countries had significant cluster patterns at different p-values (0.001, 0.01, 0.05). 

Two different cluster patterns (High-Low and Low-Low) were generated using LISA analytic 

approach (Anselin, 2003).  

Figure 4: Clusters and significance levels of TB treatment completion rates in year 2010 

 

The clusters and significance levels of TB treatment completion rates maps for the year 

2010 are shown in figure 4. Eight countries had significant clusters at different p-values (0.001, 

0.01, 0.05). Low-Low and High-Low cluster patterns were generated After LISA analyses 

(Anselin, 2003). 
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Figure 5: Clusters and significance levels of TB treatment completion rates in year 2015 

 

The clusters patterns and significance levels of TB treatment completion rates for the year 

2015 are highlighted in figure 5. Overall, eight countries had significant clusters at different p-

values (Anselin, 2003).  

Results for Differential Local Moran’s I analyses 

That notwithstanding, results from the differential local Moran’s I tests are shown in Table 

2. The differential local Moran’s estimation was done to ascertain how the pattern of clusters 

between the base time-0 (year 2000) compares with the other time-periods evaluated in this study 

including: Time-1 (year 2005), Time-2 (year 2010) and Time-3 (year 2015) respectively. Table 2a 

gives the result for differential Local Moran’s I estimations between time 0 and time 1. 

Table 2a: Clusters and significance levels of TB treatment completion rates from 

differential Local Moran’s I estimations between time 0 (2000) and time 1 (2005) 

 

Variable Countries Cluster Type Pseudo p-value 

 Algeria High-Low <0.05 

TB_2000 & 2005 Burkina Faso Low-Low <0.05 

 Senegal Low-Low <0.001 
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Three countries had significant spatial autocorrelation clusters including Algeria, Burkina Faso 

and Senegal at different p-values. 

Table 2b: Clusters and significance levels of TB treatment completion rates from 

differential Local Moran’s I estimations between time 0 (2000) and time 2 (2010) 

Variable Countries Cluster Type Pseudo p-value 

 Niger Low-Low <0.05 

 Senegal Low-Low <0.001 

 Gambia Low-Low <0.001 

TB_2000 & 2010 Namibia Low-High <0.05 

 Lesotho Low-High <0.05 

 Djibouti Low-High <0.05 

 Algeria High-Low <0.05 

 Cameroon High-Low <0.05 

 South Africa High-Low <0.05 

 Dem Rep Congo High-High <0.05 

 Kenya High-High <0.05 

 Sierra Leone High-High <0.05 

 

12 countries had significant spatial autocorrelation clusters at different p-values including 

Niger, Senegal, Gambia, Namibia, Lesotho, Djibouti, Algeria, Cameroon, South Africa, 

Democratic Republic of Congo, Kenya, and Sierra Leone. There were four cluster patterns that 

were significant at varying p-values as shown in the maps in the appendix section (Exhibit C). 

Three countries had Low-Low cluster patterns; three countries had Low-High cluster patterns; 
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three countries had High-Low cluster patterns, and an additional three countries had High-High 

cluster patterns.  

Table 2c: Clusters and significance levels of TB treatment completion rates from 

differential Local Moran’s I estimations between time 0 (2000) and time 3 (2015) 

Variable Countries Cluster Type Pseudo p-value 

 Niger Low-Low <0.01 

 Burkina Faso Low-Low <0.01 

TB_2000 & 2015 Senegal Low-Low <0.001 

 South Africa Low-Low <0.05 

 Algeria High-Low <0.05 

 Cameroon High-Low <0.05 

 Dem Rep Congo High-High <0.05 

 

From the output above, seven countries had significant spatial autocorrelation clusters 

including Niger, Burkina Faso, Senegal, South Africa, Algeria, Cameroon, and Democratic 

Republic of Congo. There were three different cluster patterns that were significant at different p-

values as shown in the maps in the appendix section (Exhibit C). Four countries had Low-Low 

cluster patterns; two countries had High-Low cluster patterns, and an additional one country had 

High-High cluster patterns.  

Results for Bivariate Moran’s I Analyses 

Bivariate Moran’s I evaluation between mobile phone use and TB treatment completion rates was 

done to ascertain spatial correlation levels between these two population health variables among 

African health systems.  
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Figure 6: Bivariate Moran’s I evaluation result between Mobile Phone and TB treatment 

Completion Rates 

 

 

 

Discussion & Policy Implications 

Exploratory spatial data analyses identified statistically significant clusters in TB treatment 

completion rates among some countries of Africa. Results from the univariate global Moran’s I 

identified positive spatial autocorrelation, represented by significant clusters among relevant 

African countries (Figures 2 – 5). Ideally, what this test does is to explore if a variable change over 

time in any location is statistically related to its neighbors or not. Thus, spatial autocorrelation 

patterns generated across the four periods of study analyses were consistent with Low-Low and 

High-Low cluster patterns and were significant at different p-values (Figures 2 – 5). Most countries 

in Africa except those in the Southern region of African had significant clusters (Figures 2 – 5). 

Majority of the African countries were overrepresented in low-low cluster tracts (14 countries) and 
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high-low cluster tracts (10 countries).  Low-Low clusters implies that TB treatment completion 

rates between 2000 – 2015 were below-average changes in these countries and its neighbors. 

Similarly, High-Low clusters translate to high changes in the core countries versus low changes in 

their neighbors (Anselin, 1995; Anselin, 2000). For instance, in 2000, Algeria located in the 

Northern African region had a “high-low” cluster tract (Figure 2). This implies that the treatment 

completion rate for TB in Algeria in 2000 is high compared to low rates among her neighboring 

countries. Similarly, Sudan located in East African had a “low-low” cluster tract – implying that 

TB treatment completion rates in Sudan in 2005 was below average compared to her spatial 

neighbors (Figure 3). Congo located in the Central African region also had a “low-low” cluster 

tract in 2010. This means that TB treatment completion rates in Congo in 2010 was below average 

compared to her spatial neighbors (Figure 4). These findings were consistent with the pattern of 

TB medication access and adherence among African countries (WHO, 2017), and have 

opportunities to inform intervention mapping, resource allocation and policy formulation. 

Study results also indicated that only a few countries had complete treatment for TB across 

Africa within the period of this study analyses. Only 13 countries out of 54 had significant TB 

treatment completion rates in 2000 (Figure 2), nine countries in 2005 (Figure 3), eight countries in 

2010 (Figure 4), and eight countries in 2015 (Figure 5). These findings may probably be attributed 

to the continuous paucity of healthcare professionals, fund mismanagement and health system 

infrastructural decay that perpetrates African health systems. Thereby, corroborating WHO reports 

on poor standards among African health systems (Okogbule, 2007; WHO, 2014). It was also noted 

that a downward trend existed in TB treatment completion rates between 2000 – 2015 (Figures 2 

– 5), with fewer countries having TB treatment completion from 2000 through 2015, necessitating 

immediate review to understand the cause of this negative trend, and possible interventions by 
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relevant stakeholders. Thus, future research could be directed at investigating the cause of this 

trend, and necessary recommendations made to inform policy.  

Furthermore, differential Moran’s I cluster maps identified hotspots among African 

countries, with greater cluster changes occurring across the periods between 2000 and 2015. The 

base-case analysis identified three countries with significant clusters including Algeria, Burkina 

Faso and Senegal (Figures 7 – 9). However, as listed in the appendix section (Exhibit C), the cluster 

patterns in Burkina Faso and Senegal were Low-Low cluster tracts. Low-Low cluster patterns 

associated with Burkina Faso and Senegal implies that TB treatment completion rates was below 

average changes in this country compared to her neighbors. Conversely, Algeria was 

overrepresented with high-low cluster patterns which translates to high changes in TB treatment 

completion rates in Algeria versus low changes in her neighbors (Figures 7 – 9; Exhibit C).  

While the time-period 2 analysis identified 12 countries with positive clusters (Figure 8; 

Exhibit C); the time-period 3 analysis identified eight countries with significant clusters (Figure 9; 

Exhibit C). Altogether, two countries including Algeria and Senegal had significant clusters across 

the three time-periods of study evaluation (Figures 7 – 9; Exhibit C). This finding could plausibly 

be attributed to the relative political stability and substantial infrastructural developments which 

have been existent in these two countries since their independence. Studies show that socio-

economic stability and development have opportunities to facilitate service delivery and improve 

health indices (Tito et al, 2008; WHO, 2014).  

However, many countries including Democratic Republic of Congo, Niger, South Africa 

and Cameroon among others also had significant clusters at least in two time-periods (Figures 7 – 

9; Exhibit C). These findings could possibly be attributed to improvements in infrastructural and 

developmental policies in these nations. For example, the WHO regional office for Africa is 
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located at the Republic of Congo. WHO formulates TB treatment guidelines and policies and takes 

the lead in its implementation. Thus, explaining the persistent high clusters in TB completion rates 

in Republic of Congo compared to their neighboring countries (Figures 7 – 8; Exhibit C). However, 

despite significant clusters found in Congo by this study, Linguissi et al. (2017) maintained that 

the burden of TB remains high. Their study identified Republic of Congo as one of the countries 

documented by WHO with high burden of TB (Linguissi et al, 2017). Thus, even though the 

Republic of Congo had significant clusters in TB treatment completion rate compared to 

neighboring countries, there is need to reinforce strategies and interventions to fight TB to keep 

its incidence down. This means that identifying significant clusters in TB treatment completion 

rates in any country does not translate to that country being TB free. We propose future studies to 

be done in this regard, with the view to evaluate the cause of this high TB burden in Congo 

Republic despite having significant clusters in TB treatment completion rates. 

Furthermore, South Africa is one of the nations with the most coordinated TB programs in 

Africa (WHO, 2014). Findings from this study corroborates this status quo (Tables 2a-c). South 

Africa had significant high TB treatment completion rates compared to her neighboring countries 

(Figures 8 – 9; Exhibit C). This finding could be attributed to the coordinated TB control initiative 

introduced in 2010 by the South Africa government. This model improved TB treatment adherence 

and completion rates in South Africa across board (Khan, 2014), and could plausibly explain why 

significant clusters existed only in 2010 and 2015, and not in 2000 prior to this mHealth strategy 

implementation (Figures 7 – 9; Exhibit C).  

However, despite government efforts to curb the incidence of TB in South Africa, latest 

study by the WHO (2017) identified South Africa to be one of the seven countries that accounted 

for 64% of global new cases of TB infections. Other countries include Nigeria, India, China, 
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Indonesia, Pakistan and Philippines (WHO, 2017). Thus, notwithstanding significant TB treatment 

completion clusters identified by this study, the burden of TB in South Africa remains high. 

Justifying the need to further explore this disparity by future studies and necessary 

recommendations made to inform policy.   

Exploratory spatial data analyses identified a statistically significant association between mobile 

phone use and TB treatment completion rates. As mobile phone use increased, TB treatment 

completion rates increased overall. However, dissecting this association with a local level 

geographical data revealed different cluster patterns including “high-high, high-low, low-high and 

low-low” cluster tracts (Figure 6). This study is exploratory in nature. It assesses correlation and 

not causation and becomes the first step in assessing the relationship between TB health outcomes 

and potential impacts of information systems, such as mobile phone use in TB programs among 

African health systems. Thus, bivariate local Moran’s I evaluation identified positive spatial 

autocorrelation, and significant hotspots (Figure 6). This means that the use of mobile phones in 

facilitating TB treatment adherence and completion rates among TB patients varied among 

countries as identified by this study. Relevant countries had varied cluster patterns in view of these 

two attributes (Figure 6). Altogether, ten countries including Mauritania, Sierra Leone, Equatorial 

Guinea, Gabon, Tunisia, Sudan, Eritrea, Djibouti, Somalia and South Africa had significant cluster 

tracts in view of these two attributes compared to their neighboring countries. This could probably 

be attributed to variations in infrastructural and developmental levels among African countries. 

Identified countries had advanced mobile phone penetration levels (WHO, 2014; ITU, 2017). 

Intuitively, high TB treatment completion rates are related to advanced mobile phone adoption 

levels, which translates to significant clusters compared to neighboring countries. This finding 

lends credence to studies by Chadha et al. (2017) which found that higher levels of health sector 



 

85 
 

information system use translates to better health outcomes. Their study identified health sector 

ICT tools as a cost-effective approach towards consolidating TB control and management (Chadha 

et al, 2017). Thus, policy should be reviewed with the view of strengthening eHealth and mHealth 

strategies to foster TB medication adherence and completion among African health systems.  

As indicated in reviewed literature, TB patients must be strictly compliant to medical 

treatment to effectively treat TB. This involves taking four pills of anti-tuberculosis medications 

five times per week, for a period of six months (WHO, 2010). Such adherence could be facilitated 

by removing barriers to access and utilization. A plausible approach would be utilization of 

information systems among health systems in all TB programs as documented by Aker and Mbiti, 

(2010). Consequently, possession of a mobile phone with an internet access can provide platforms 

through which SMS technology and other treatment-reminder protocols can be harnessed by TB 

patients, thereby improving efficiency in TB treatment processes. This study serve as baseline 

resource for future studies on spatial TB treatment cluster patterns as little work has been done in 

this area so far. Consequently, findings from this study could act as reference for other researchers, 

developmental organizations and policy-makers. Study findings also has opportunities to inform 

policy makers on healthcare priority setting, intervention mapping and resources allocation.  

However, it must be noted that this study had some limitations. It utilized secondary data 

in its analyses which may not have been collected under standard procedures. The validity of this 

data could affect the robustness of our study findings and may affect the transferability of study 

findings to other population groups. More so, this study did not control for the presence or absence 

of factors that could influence access and utilization of healthcare services, which could also 

impact the generalizability of study findings to other settings. In addition, there were some inherent 

limitations in the datasets used for this study analyses. First, geographical data for cases from the 
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WHO and ITU were at the country level only. More detailed and granular spatial relationships 

could have been used and would have revealed if case locations were at a finer resolution or not. 

Thus, future studies should focus on using granular data for similar geospatial analyses. More so, 

some variables in the dataset lacked country information, and were not included in this study 

analyses. Finally, most data were compiled by patient caregivers, who could have been in difficult 

conditions. These could bias the validity of study results, thereby limiting the generalizability of 

study findings. 

Conclusion 

Exploratory spatial data analyses identified positive spatial autocorrelation for the periods 

evaluated, as well as varying cluster patterns in TB treatment completion rates across the periods 

of study evaluation. There was also a direct relationship between mobile phone use and TB 

treatment completion rates among relevant African countries. Thereby, necessitating the need to 

strengthen national policies that promote TB medication adherence and completion using eHealth 

strategies among African health systems.    

Exhibit A  

Countries used in this analysis as listed by the World Health Organization. Available at: 

http://www.who.int/countries/en/ accessed May 20, 2017. 

African region:  Algeria, Burundi, Burkina Faso, Benin, Angola, Cameroon, Botswana, Cape 

Verde, Central African Republic, Comoros, Chad, Congo, Democratic Republic of Congo, Cote 

d'Ivoire, Djibouti, Equatorial Guinea, Egypt, Eritrea, Ethiopia, Gabon, Ghana, Guinea-Bissau, 

Lesotho, Gambia, Guinea, Kenya, Liberia, Libya, Malawi, Mauritania, Mali, Madagascar, 

Mauritius, Mozambique, Morocco, Nigeria, Namibia, Niger, Sao Tome and Principe, Seychelles, 

http://www.who.int/countries/en/
http://www.who.int/countries/en/
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Rwanda, Senegal, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, Togo, 

Uganda, Tunisia, Tanzania, Zambia, Zimbabwe.  

Exhibit B 

From top to bottom- scatter plots for the univariate global Moran’s I test for the four time-

periods evaluated in this study. 
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Exhibit C 

Figure 7: Clusters and significance levels of TB treatment completion rates from 

differential Local Moran’s I estimations between time 0 (2000) and time 1 (2005) 

 

Figure 8: Clusters and significance levels of TB treatment completion rates from 

differential Local Moran’s I estimations between time 0 (2000) and time 2 (2010) 

 

Figure 9: Clusters and significance levels of TB treatment completion rates from 

differential Local Moran’s I estimations between time 0 (2000) and time 3 (2015) 
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JOURNAL ARTICLE 3 

Journal: Bulletin of the World Health Organization 

The impact of Information and Communication Technology Infrastructures on HIV Health 

Outcomes among African Countries. 

Introduction/Background 

Discussions regarding eHealth in infectious disease management is well documented, and 

HIV/AIDS acknowledged as an important public health issue. Globally, new HIV infections 

dropped from 3.5 million to 2.1 million cases between 2000 and 2013. However, there was a 

remarkable increase in access to Antiretroviral Therapy (ART) over this period (United Nations, 

2015). By June 2014, an estimated 13.6 million People Living with HIV (PLWHIV) had access to 

ART compared to 2.1 million in 2000. Thereby preventing 7.6 million AIDS-related deaths 

between 1995 and 2013 (United Nations, 2015). This success had been attributed to innovations 

among global health systems including advancements in information systems among others 

(World Bank, 2007).  

Despite the success and achievements made so far, studies show that gaps still exist in 

global ART coverage rates, especially among developing countries. These differences become 

significant between the rich and the poor. Most impoverished and vulnerable communities are 

frequently affected – only an approximate 36 percent of the 31.5 million PLWHIV in the 

developing parts of the world received ART in 2013 (United Nations, 2015). Thereby leaving 

significant gaps in ART coverage rates and necessitating coordinated HIV care using eHealth 

strategies. 

This study seeks to investigate the effect of Information and Communication Technology 

(ICT) infrastructures’ diffusion on HIV health outcomes among Sub-Saharan African countries. If 
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there is any significant association, then the system will strengthen the eHealth practice including 

care coordination and service delivery using ICT tools. For this study, ICT diffusion was defined 

as the proportion of the continent of Africa population with access to ICT infrastructures precisely 

mobile phones use, internet access and fixed-telephone subscription. Ideally, the number of 

individuals utilizing ICT tools in receiving health informatics through ICT would have been used 

as the independent variable in this study. However, such data was not available for Africa on the 

international scale. Thus, those with a mobile phone, a landline phone and internet access were 

used as proxy variables, as they represent the potential for impact on health with utilization of ICT 

to access health information. In addition, some ICT-related variables could also have been included 

in this study including households with a computer and households with an internet access at home. 

However, data on these variables were only available at the continental-level but not at the country 

level 

Conceptually, ICT use among African health systems proffers smart, cost-effective 

innovations and solutions by harnessing Africa’s digital revolution to strengthen national health 

systems. These include health information and service delivery to individuals through Information, 

Communication and Education (ICE). Health sector ICT use has opportunities to contribute to the 

actualization of the Sustainable Development Goals (SDGs), mainly SDG-3 on good health and 

wellbeing. In addition, it helps consolidate the Universal Health Coverage mandate among African 

health systems, including improvements in antiretroviral therapy coverage among others (WHO, 

2015).   

That notwithstanding, the use of ICT in the health sector also has opportunities for 

advancing population health strategies (Raghupathi and Raghupathi, 2013). Theoretically, ICT 

enhances communication and dissemination of information during patient care. It improves patient 
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access to health-related information and services, thereby enhancing patient care coordination, and 

efficiency of care (Lewis, 2006). Siika et al. (2005) evaluated healthcare service utilization scores 

among HIV patients receiving ambulatory care in Kenya following the introduction of automated 

reminders in an infectious disease unit. Their study demonstrated that the use of the electronic 

reminders led to a two-fold increase in patient turn-out for routine CD4 count investigation, 

antiretroviral medication refills, and overall service utilization scores (Siika et al, 2005). 

Furthermore, health sector ICT use also improves the quality and process of care for 

optimal patient outcomes (Kallander et al, 2013; Deidda et al, 2014). It facilitates patient 

engagement in all lines of care by providing platforms where caregivers and patients are on the 

same page about accessing and sharing patient information (Marin et al, 2016). Common ICT tools 

including mobile phones and internet access promote patients’ engagement during care by 

facilitating patient participation in health promotion, information and improvement strategies 

(Sands, 2015). Patient engagement includes cultures that collaborates patients’ decisions related 

to healthcare. Such collaborations involve unrestricted communication among stakeholders 

involved in patient management. This could be operationalized in HIV management and includes 

mutual respect and shared decision-making between HIV patients and healthcare givers, as well 

as total transparency in information sharing and communication (Marin et al, 2016). 

Mobile phones are exceptional tools in HIV prevention, control and treatment (Lester and 

Karanja, 2015). Healthcare workers at the Pumwani clinic, Kenya, demonstrated how a weekly 

Short Message Services (SMS) text messages to patients on Antiretroviral Therapy (ART) 

facilitated care coordination among relevant patients. The use of mobile phone use in coordinating 

care has also facilitated health service delivery with the farthest possible reach; and have also 

improved clinical effectiveness. Through such SMS, health workers inquire on the wellbeing of 
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their patient, then triage their responses according to individual needs. This boosted medication 

adherence, increased patient follow-up visit, and led to marked reductions in patients’ viral load 

(Lester and Karanja, 2008).  

Nonetheless, electronic sharing of patient-level data among physicians also mitigates 

redundancy and removes waste in care management. Information systems become useful in 

monitoring patients’ adherence and response to medications (Balka et al, 2007; Green et al, 2008). 

Barnighausen et al. (2011) did a systematic review to evaluate interventions that target to increase 

antiretroviral medications adherence among HIV patients in sub-Saharan African countries. They 

reviewed 26 relevant studies done between 2003 and 2010, and identified treatment supporters, 

Directly Observed Treatment, and use of mobile phone text message reminders as top factors that 

improved antiretroviral medication adherence. Other health system factors identified include 

robust health sector funding and presence of financial support from donor agencies (Barnighausen 

et al, 2011).  

While multiple researches have documented the impact of ICT adoption and health 

outcome for specific cases, it is not clear how the overall ICT infrastructures’ diffusion influence 

HIV health outcomes for the entire African countries. Numerous studies have described the 

association between health sector ICT use and health outcomes (Khan, 2004; Raghupathi and 

Raghupathi, 2013; Bankole and Mimbi, 2016). Few others investigated the association between 

specific ICT infrastructure and HIV health outcomes among African health systems (Lester and 

Karanja, 2008; Barnighausen et al, 2011). However, the focus of this study is to evaluate how three 

ICT tools (mobile phone, internet and fixed telephone) altogether impact HIV health outcomes 

among the entire African health systems. If there is any association, then the system will 

consolidate and strengthen eHealth practice. Thus, this study provides insight to the question: does 
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ICT infrastructure use have any significant impact on the prevalence HIV? As well as on ART 

coverage rates among African health systems? We constructed a conceptual model to test the 

hypothesis that there are notable improvements in antiretroviral therapy coverage rates following 

ICT infrastructures diffusion among African health systems.  

To answer these research questions, this study conducted empirical tests using aggregate 

data obtained from the World Bank and the International Telecommunication Union (ITU) 

databases on 53 Sub-Saharan African nations for the periods 2000 through 2016 (see exhibit-A). 

This study focused on Africa, because of data availability, including the presence of a large and 

diverse HIV population. Thus, using analytics, this study investigated the relationships between 

ICT diffusion and HIV health outcomes. A major challenge when quantitatively estimating how 

ICT diffusion impacts health would be how to isolate the ICT-health relationship from other 

observed and unobserved factors, without having biased estimates from such relationships. 

However, to address this issue and overcome the difficulty involved in empirical testing, this study 

used the Dynamic Panel Model (DPM) and First Difference (FD) in all estimations.  

Findings from this study hopefully will increase the understanding of how ICT 

infrastructures impact HIV health outcomes among African countries, and therefore could act as 

reference for policy-makers, academic researchers, and developmental organizations. Study 

findings have opportunities to help policy-makers identify opportunities for improving national 

health systems, by providing frameworks for healthcare priority setting and resource allocation. 

Thus, African governments can either encourage investments or disinvestments in ICT-driven 

healthcare practice in the coming years. In addition, findings from this also have opportunities to 

facilitate the identification of an ICT-driven medical practice and guidelines to ease clinical 

practice, improve access and reduce healthcare cost.  
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Conceptual Framework 

A hybrid of the cybernetic paradigm and Diffusion of Innovation (DOI) theory was used 

as a systemic model-based framework for this study. The cybernetic model demonstrates how 

diverse units interconnect for a quality framework in a regulatory feedback mechanism. The 

cybernetic model (systems theory) examines complex adaptive systems with interlinked and 

dynamic interactions involving contexts, institutions and systems which interact within the 

contexts of health systems (Atun, 2012). Interdependent and interconnected elements within 

systems create network of feedback loops that operate in a cause-and-effect pattern to maintain 

system equilibrium. Such nonlinear system elements’ interactions create a dynamic complexity 

that leads to system response (Atun, 2012; Willis et al, 2012). 

The diffusion of innovation theory gives an insight on how innovations are taken up in the 

contemporary society. It is a model that describes change categories involved in technology 

advancement and adoption, which are critical to health. Healthcare-related innovations, for 

instance the use of SMS or emails to communicate with patient must be easy to use, understood 

and communicated. They should be easily adopted with minimal investments of time, risk and 

commitment before usage (Glanz et al, 2002; Eldredge et al, 2016). Innovations are critical for 

improving population health outcomes among developed countries (Cutler, 2001), and developing 

countries for optimal health outcomes (Howitt et al, 2012). According to Atun (2012), health 

systems innovation includes new ideas, medicines, health technologies, diagnostics, practices 

objects, practices or organizational practices perceived as novel by any unit of adoption – an 

individual or institution. Historically, the DOI theory has been widely used in various disciplines. 

In the academia, schools have used it to investigate the dissemination of AIDS education curricula, 



 

100 
 

and the adoption of safe sex practices. Healthcare professionals have also used it to understand the 

use and penetration of new tests, programs and technologies (Glanz et al, 2002).  

Components of this model interact in a bidirectional fashion to create complex adaptive 

and dynamic health systems. It fosters systems thinking, as it considers key elements of a complex 

adaptive system that interact to impact innovation adoption and diffusion. Thus, approaches that 

encourage systems thinking are invaluable when planning health system innovations adoption, to 

enhance system performance and improve service delivery (Atun, et al. 2010; Atun, 2012). 

 

 

 

 

 

 

 

 

 

 

Consequently, a hybrid of the cybernetic conceptual framework alongside the diffusion of 

innovation theory was used to structure an assessment of ICT infrastructure diffusion within the 

larger contextual healthcare environment. These frameworks work to conceptualize the 

interconnectedness of health system characteristics and ICT infrastructures, which have an 

inherent ability to improve health outcomes. The Ottawa declaration of 1986 emphasized the need 
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for the re-orientation of healthcare services. This includes basic communication theories and those 

involving the adoption of new technologies for the enhancement of healthcare effectiveness 

(Kickbusch, 2003). Importantly, this model describes a causal connectivity among relevant 

variables and highlights relevant change directions (Cramp and Carson, 2001; Fahey et al, 2003). 

Target population was assessed at the base level with respect to perceived health needs, 

which could be influenced by myriad factors exemplified by prevalence of undernourishment 

(figure 1). In addition, population demographic factors typified by population density impact 

population health needs within any specified healthcare system (Lichter and Brown, 2011). The 

loop on the left arm of this model represents health system management and financial factors 

including healthcare expenditures and external aid to the health sector. This loop is being 

influenced by community demographic factors and population need factors (Figure 1). This 

together with other inherent population factors drive change within the population and are pointers 

for healthcare needs which could be facilitated using ICT infrastructures including mobile phone, 

internet and fixed telephone (Cramp and Carson, 2001). Improvements at this point have 

opportunities for improving health outcomes including prevalence of HIV and antiretroviral 

therapy coverage rates. 

Data & Methods 

This was a retrospective longitudinal study involving use of secondary data obtained from 

the World Bank and ITU databases for the periods 2000 through 2016. Ideally, collated 

information is de-identified and aggregated per country and published at the end of each year. 

Thus, this study qualifies for an Institutional Review Board (IRB) exempt, as it did not violate the 

rights or impose any risk on human subjects (Gostin 2008). However, certain variables were only 

available for some nations and with limited years. Therefore, this study did not include countries 
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with incomplete data. Thus, data for 53 countries were available and complete, and was used in all 

econometric analyses. We assumed this sample to be a good representative of the African continent 

and ideal for econometric analyses.  

A major issue when quantitatively estimating how ICT diffusion impacts health would be 

how to isolate the ICT-health relationship from other observed and unobserved factors, without 

having biased estimates from such relationships. For instance, the general socio-economic 

development of any country could impact individuals’ health condition as well as ICT diffusion. 

More advanced countries tend to have better health outcomes as well as higher ICT diffusion (ITU, 

2011; ITU, 2017). Therefore, positive correlation between ICT and health variables obtained from 

basic econometric estimation may be related to developmental progress among sampled nations, 

without any pointers on the influence of ICT diffusion on health (Lee et al, 2016; Shehata et al, 

2016).   

However, to overcome the rigors in estimation, the Dynamic Panel Model (DPM) and the 

Generalized Method of Moments (GMM) were used in all econometric analyses. The choice of 

this model stemmed from its ability to absolve inherent endogeneity issues caused by unobserved 

variables. It does this by utilizing the dynamic properties of the data to produce good Instrumental 

Variables (IV). Consequently, the GMM estimator proposed by Holtz-Eakin et al. (1988) and 

developed by Blundell and Bond (1998) was used in estimating study model (Equation I). 

Conceptually, the GMM estimator absolve endogeneity problems by using the lagged values of 

the endogenous explanatory variables as IVs. These lagged independent variables are valid IVs. 

They are uncorrelated with the error term and are only partially correlated with the endogenous 

explanatory variables (Terza, 2008; Shehata, 2016). The idea behind the GMM method is to put a 

slope equation in the form of a DPM, and then taking the first difference of the model variables 
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and using their lagged values for the levels of the regressors as IVs (Arellano and Bond, 1991). In 

addition, to address the issue of autocorrelation in the GMM system, the lagged dependent variable 

is instrumented using its past values (Arellano and Bond, 1991; Roodman, 2009). Consequently, 

to estimate study model (Equation I), identified instruments must be valid. This means that 

instruments must be exogenous and relevant. It also ensures that bias in this estimation is smaller 

than the OLS estimation bias. In addition, the overidentification test must also be statistically 

significant. Thus, if we fail to reject the null hypothesis, then the instruments are exogenous (Terza 

et al, 2008).  

Specific health indices of interest for this study were obtained from the World Bank 

database. This database contains numerous information on economic and social indicators, which 

allowed this study to include them as relevant covariates representative of national development. 

These cofactors were included to control for the impact of progress of development of any nation, 

and as well to isolate and capture the impact ICT infrastructures have on health. Consequently, 

this study relied on several analytic methods including:  

Healthit = β0 +β1.Healthi, t-1 + β2ICTit +δZit +µi +ɛit …………………………………….……(Equation 1) 

Where t represents year, and i represents the country. Z represents sets of covariates, and µi 

represents country fixed effects, and ɛit represents the error term with an assumed zero mean. The 

dependent variable is Healthit, which includes HIV prevalence and antiretroviral therapy coverage 

rate. The lagged of the dependent variable Healthit-1 was included in this model as an independent 

variable to account for the possibility of the persistence of these health outcomes in these countries. 

Conceptually, chronic disease conditions including chronic environmental features may 

lead to rather slow changes in the health conditions and outcomes of any nation (Lee et al, 2016). 

Thus, health indices in time ‘t’ most likely may depend on the health indices in time ‘t-1’. Overall, 
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model significance was assessed using the maximum-likelihood test, and parameter level tests of 

significance used the z-statistics based on parameter standard error. 

Importantly, this study also derived an aggregate variable for ICT using three ICT 

elements, and computing a common factor score of the three ICT variables using the Principal 

Component Analysis (PCA). Mathematically, the PCA takes data matrix of n-objects by p-

variables, which may be correlated, and summarizes them by uncorrelated axes. The result is a 

linear combination of the original p-variables denoting principal component (Abdi and Williams, 

2010; Bro and Smilde, 2014). The new variable denoted as ictfac represents the overall ICT 

diffusion in the entire African continent and was included in the study model as one of the primary 

predictor variables.  

Conceptually, this study assumed that an increase in mobile phone use and internet 

subscriptions among African populations implies a broader access to healthcare services. 

Furthermore, it was believed that the likelihood of access to healthcare services increases with 

higher access to ICT infrastructures. Thus, such increases in mobile phones and internets use have 

opportunities to reduce HIV prevalence, while improving ART coverage rates among African 

health systems.  

Based on reviewed literature, mobile phone use and internet subscriptions are expected to 

have a positive impact on HIV health outcomes. While it is expected that presence of external aids 

to the health sector will have a positive impact on HIV health outcomes, population density is 

expected to have a negative impact on it. However, the impact of health expenditure on HIV health 

outcome is somewhat ambiguous. Thus, the sign on this variable may not be predicted in advance. 
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Findings 

The study used unbalanced panel data for 53 African nations over the periods 2000 through 

2016 accessed from the World Bank and ITU databases and analyzed in March 2018. Table 1 

represents study descriptive summary statistics. On the average, the prevalence of HIV per 100,000 

of population was 5.44 and mean antiretroviral therapy coverage was approximately 14 patients 

per 100,000 people living with HIV. The mean percentage of individuals using the internet was 

8.4 percent. The mean mobile phone subscription was 41.4 per 100 population, while mean fixed 

telephone subscription was 3.6 per 100 population. This study also performed the Hansen test to 

test for over-identification on the Dynamic Panel Model estimates. The Hansen test chi-squared 

statistics (Tables 2&3) were non-significant, indicating no over-identification in the models.  
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Table 1: Variable Descriptive Statistics 

Variables Definition Mean Std. 

Dev 

Min Max 

ICT variables 

Internet Percentage of individuals using the 

Internet 

8.380 11.749 0.006 58.270 

Mobile 

phone Mobile-cellular telephone subscriptions 

per 100 inhabitants. 

41.440 41.068 0 176.686 

Fixedtele Fixed-telephone subscriptions per 100 

inhabitants 

3.615 5..923 0 31.067 

Ictfac ICT common factor score representing 

overall diffusion of ICT 

0 1.468 -1.365 6.106 

Control Variables 

ART_acc Antiretroviral therapy coverage (% of 

people living with HIV) 

14.341 16.505 0 77 

HIVPrev Prevalence of HIV, total (% of 

population ages 15-49) 

5.435 6.927 0.1 28.8 

healthexp Health expenditure, total (% of GDP). 5.578 2.152 0.260 14.390 

Popldens Country Population, total 15.821 1.582 11.304 19.041 

undernourish Prevalence of undernourishment (% of 

population) 

22.031 13.450 5 60.600 

ext_aids Net official development assistance and 

official aid received (current US$) 

19.566 1.399 13.162 23.160 
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Table 2: ICT and HIV Prevalence Estimation Results 

Variables Model 1 Model2 Model 3 Model 4 

DPD (p-value) DPD (p-value) DPD (p-value) DPD (p-value) 

HIVPre (t-1) 0.843 

(0.000)*** 

0.844 

(0.000)*** 

0.849 

(0.000)*** 

 

0.837 (0.000)*** 

ICT Common  

factor score 

-0.006 (0.567)    

Mobile phone  -0.001 

(0.031)** 

  

Internet   0.001 (0.513)  

Fixed telephone    -0.004 (0.499) 

External aids (log) -0.036 

(0.000)*** 

-0.031 

(0.001)*** 

-0.038 

(0.000)*** 

-0.032 (0.000)*** 

Health expenditure -0.039 

(0.000)*** 

-0.036 

(0.000)*** 

-0.038 

(0.000)*** 

-0.040 (0.000)*** 

Undernourishment -0.004 

(0.010)*** 

-0.004 

(0.008)*** 

-0.004 (0.017)** -0.005 (0.003)*** 

Population density (log) -0.428 

(0.000)*** 

-0.267 

(0.017)** 

-0.493 

(0.000)*** 

-0.490 (0.000)*** 

AR(2) test z = 3.03 z = 2.92 z = 3.07 z = 3.01 

Hansen test chi2(90) = 962 chi2(90) = 1006 chi2(90) = 992 chi2(90) = 1013 

Obs  510 511 507 

Note: FD = First Difference; DPM = Dynamic Panel Model. Significance level: *p<0.1; **p<0.05; 

***p<0.01 

Table 2 shows the effect of overall ICT diffusion on HIV prevalence. The coefficient of 

the lagged HIV prevalence was positive, statistically significant and close to one, indicating the 

persistence of HIV among African countries over time (Table 2). The coefficients on the aggregate 

ICT scores and other ICT variables were all negative but for internet subscription (Model 3).     
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Table 3: ICT and ART Access Rate Estimation Results 

Variables Model 5 Model 6 Model 7 Model 8 

DPD (p-value) DPD (p-value) DPD (p-value) DPD (p-value) 

ART_acc (t-1) 0.901 (0.000)*** 0.923 (0.000)*** 0.903 (0.000)*** 0.924 (0.000)*** 

ICT common  

Factor score 

0.352 (0.305)    

Mobile phone  0.001 (0.997)   

Internet   0.034 (0.213)  

Fixed telephone    0.093 (0.565) 

External aids (log) 0.004 (0.987) 0.053 (0.841) 0.023 (0.929) 0.055 (0.831) 

Health Expenditure -0.051 (0.763) 0.013 (0.937) -0.035 (0.829) 0.007 (0.966) 

Undernourishment 0.012 (0.821) 0.015 (0.772) 0.015 (0.769) 0.021 (0.694) 

Population 

Density (log) 

19.183 

(0.000)*** 

19.062 

(0.000)*** 

19.250 

(0.000)*** 

18.979 (0.000)*** 

AR(2) test z = 1.02 z = 1.01 Z = 1.05 Z = 0.99 

Hansen test chi2(77) = 128 chi2(77) = 129 chi2(77) = 130 chi2(77) = 128 

Obs 527 538 539 535 

 Note: FD = First Difference; DPM = Dynamic Panel Model. Significance level: *p<0.1; **p<0.05; ***p<0.01 

 

 

Table 3 shows the effect of overall ICT diffusion on ART therapy access rate. The 

coefficient of the lagged ART access rate was positive, statistically significant and close to one, 

indicating the persistence of this health outcome among African countries over time. The 

coefficients on the aggregate ICT score and other ICT variables were all positive.
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Discussion 

Study result showed that ICT infrastructure diffusion had a positive impact on HIV 

outcome among African countries. Analytical results indicated that the coefficients on the 

aggregate ICT score and other related ICT variables were all negative but for internet subscription 

(Model 3). Though the coefficient on internet subscription on model 3 was negative, however it 

was not statistically significant. A plausible explanation to this could be that individuals with 

access to ICT infrastructures other than mobile phones and fixed landlines might rarely use them 

in HIV health-related activities. Therefore, analytical results from DPM models (Table 2) 

demonstrated that overall ICT diffusion including the use of mobile phones and fixed telephones 

had significant impact on decreasing the prevalence of HIV among PLWHIV in Africa.  

This finding supports previous study that demonstrated how health sector ICT use reduced 

HIV prevalence on a global scale (Lee et al. 2016); and probably could be linked to the use of ICT 

infrastructures in promoting campaigns against HIV spread. As identified in the WHO bulletin, 

health sector ICT use among African health systems facilitates health promotion campaigns 

through Information, Communication and Education (WHO, 2017). Thus, PLWHIV are 

enlightened on practices that reduce the spread of HIV, and the need for early medical consultation 

and pharmacotherapy. In view of this, policy should be reviewed with the view of strengthening 

strategies that promote ICT infrastructure use in HIV enlightenment campaigns among African 

health systems.  

In addition, study analytical result (Table 3) indicated that ICT indices including the 

aggregate ICT variable score (ictfac), internet access, mobile phone use, and fixed telephone 

subscriptions had positive impact on ART therapy access rate among PLWHIV in Africa. Though 

estimation results showed positive associations, however the coefficients on the DPM models were 
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unexpectedly statistically insignificant throughout the models. This finding corroborates a study 

by Shehata (2016), which showed that ICT indicator variables lose their significance as control 

variables are added to any model during econometric analytics, especially the DPM. Also, as 

identified in the literature review section, ICT use promotes ART medication adherence and uptake 

(Lester and Karanja, 2008). Thus, findings from this study lend credence to findings by Siika et 

al. (2005) who demonstrated how ICT use improved ART medication access and uptake among 

HIV patients receiving ambulatory care in Kenya. Through electronic reminders, patients’ turnout 

for ART medication refills was increased. This also corroborates the fact that ICT support patients’ 

treatment, foster anonymous counselling, and links patients to available services (Clifford and 

Clifton, 2012). By linking patients to services, their likelihood of accessing ART is higher leading 

to improved outcomes. Thus, in view of this, policy should be reviewed with the view of 

consolidating an ICT-driven medical practice among HIV programs in Africa to improve access. 

That notwithstanding, analytics results for the control variables indicated that county health 

standards were associated with economic and socio-demographic factors. Health expenditures and 

net external official aids to the health sector had positive associations with ART access rates (table 

3). These findings corroborate study findings by Gupta et al. (2002) which established that 

economic factors are positively related to population health outcomes. Robust financing and 

efficient management of healthcare resources positively impact population health measures (Gupta 

et al. 2002; Gupta et al. 2003). However, of note is the fact that the coefficient on health 

expenditure and the net external official aids to the health sector were negatively related to the 

prevalence of HIV in most models (Tables 2&3). A possible explanation to this is the misallocation 

of resources and mismanagement of funds meted for the health sector leading to waste of resources 

in the health sector. Most African health sectors have institutionalized corruption and fund 
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misappropriation in their systems that translate to poor outcomes (Tito et al. 2008; Pierce, 2006). 

Thereby, justifying the need for an efficient resource allocation, transparent fund management and 

explicit rationing among African health systems. Nonetheless, population density had some 

negative effects on study health outcomes (Table 2). This probably could be linked to the fact that 

most African communities are densely populated and are at risk of deprivation and poverty (WHO, 

2014). Rural African communities are hard to reach per health service delivery, leading to 

substantial gaps in ART coverage rates, especially among impoverish and remote African 

communities (United Nations, 2015). 

However, it must be noted that this study had some inherent limitations. For instance, this 

study found that mobile phone and internet use had significant impact on HIV health outcomes. 

Thus, we infer this result because of the superior communication functionalities related with 

mobile phones with internet use in easing communication and absolving misconceptions 

associated with HIV. Thus, future studies should collect granular data through small-scale case 

studies to further explore this study’s interpretations.  

Besides, with the advent of phones with internet applications, it becomes difficult to isolate 

effects of mobile phones and internet on population health measures. In view of this, future studies 

should define a new variable that considers these two ICT tools, and its impact on health outcome 

evaluated.  In addition, this study analyzed data between 2000 and 2016. Thus, in this era of big 

data, future researches should focus on the use of detailed longitudinal retrospective research 

methods to search through larger volume of rich data to capture robust trends, patterns and 

associations.  

 

 



 

112 
 

Conclusions 

The impact of individual ICT infrastructures on improving HIV health outcomes differed, which 

this study believed to be as a result of different functionalities of the ICT tools, and the peculiar 

features of the health outcomes investigated. Empirical results from econometric analyses 

indicated that ICT factors were positively related with some population health factors. Study 

analytics showed that the overall diffusion of ICT tools including mobile phones, internet access 

and fixed-telephone subscriptions were associated with a decrease in the prevalence of HIV. 

However, there was a significant increase in antiretroviral therapy access mainly in the FD models, 

following increased diffusion of ICT infrastructures among African health systems.  

Thus, study findings provide systematic evidence and justification to inform African 

government and the global community that beside allocating resources to health projects and 

interventions targeting to improve public health, investing in ICT-driven healthcare practice, and 

educating individuals on the use of ICT can be an alternative strategy to improve population health. 

Exhibit-A 

Countries used in this analysis as listed by the World Health Organization. Available at: 

http://www.who.int/countries/en/ accessed May 20, 2017. 

African region:  Algeria, Burundi, Burkina Faso, Benin, Angola, Cameroon, Botswana, Cape 

Verde, Central African Republic, Comoros, Chad, Congo, Democratic Republic of Congo, Cote 

d'Ivoire, Djibouti, Equatorial Guinea, Egypt, Eritrea, Ethiopia, Gabon, Ghana, Guinea-Bissau, 

Lesotho, Gambia, Guinea, Kenya, Liberia, Libya, Malawi, Mauritania, Mali, Madagascar, 

Mauritius, Mozambique, Morocco, Nigeria, Namibia, Niger, Sao Tome and Principe, Seychelles, 

Rwanda, Senegal, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, Togo, 

Uganda, Tunisia, Tanzania, Zambia, Zimbabwe. 

http://www.who.int/countries/en/
http://www.who.int/countries/en/
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have a significant impact on HIV and tuberculosis health outcomes among African health systems. 
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medical practice, in order to improve population health, an issue that gets little or no attention in 

traditional governance in Africa.  

 Analytics of secondary data obtained from the World Bank and ITU databases using the 

DPM demonstrated that ICT infrastructures use had opportunities for improving TB and HIV 

health outcomes. They support treatment, foster information dissemination, facilitate anonymous 

counselling, and link patients to available services.  However, the impact of individual ICT 

infrastructures on improving TB and HIV health outcomes differed, which this study inferred to 

be a result of different functionalities of the ICT infrastructures, and the peculiar features of the 

health outcomes studied. 

 This study also investigated geospatial patterns of TB treatment completion rates among 

health systems in Africa. It evaluated spatial relationships between mobile phone use and TB 

treatment completion rates using differential local Moran’s I and bivariate Moran’s I techniques 

to help visualize cluster patterns and trends. Study result identified statistically significant positive 

autocorrelation values for the periods evaluated, as well as varying cluster patterns in TB treatment 

completion rates. The cluster patterns increased across the three-time periods of study evaluations 

among geographically referenced data. That notwithstanding, this study also identified a direct 

relationship between mobile phone use and TB treatment completion rates among relevant African 

countries. Thereby, necessitating the need to strengthen national policies that promote TB 

medication adherence and completion using mHealth strategies among African health systems.    

 This study has many strengths, including mixed analytic approaches to make a reasonable 

attempt at addressing complex policy questions. Study data was robust and came from a reliable 

source. The World Bank and ITU databases are reputable in collecting accurate data on the 

international scale. These databases were a good way to get enough sample size that was 
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representative of the African population. In addition, there is a need to routinely evaluate data 

obtained from these sources per ICT impact on health outcomes, which this study addressed and 

added to the body of knowledge on this subject. Another strength of this study is the study design. 

The DPM and GMM models are sound methodologies in determining the effect of the introduction 

of an intervention and policy at a population level, over a defined period of time, that target 

population-level health outcomes. More so, time series study designs proffers the strongest, quasi-

experimental designs to estimate intervention effects in nonrandomized settings. Besides, the use 

of geospatial analytic approach brought to light the role of contextual and geographic factors in 

understanding the impact of ICT infrastructures’ use on population health outcomes among 

African health systems.   

However, this study assumed that increases in mobile cellular and internet subscriptions 

implies broader access to healthcare services. It was believed that the likelihood of access to 

healthcare services increases with higher access to ICT infrastructures. Ideally, the number of 

individuals utilizing ICT infrastructures in receiving health informatics via ICT would have been 

used as study primary predictor variables. However, such data was not available for Africa. Thus, 

those with a mobile phone, a landline phone, and internet access were used as proxy variables, as 

they represent the potential for impact on health with utilization of ICT to send/receive health 

information. In addition, some ICT-related variables could also have been included in this study 

including households with a computer and households with an internet access at home. However, 

data on these variables were only available at the continental-level but not at the country level. 

Consequently, follow up assessment should be done to evaluate the impact of these variables on 

population health outcomes. Besides, with the advent of smartphones with internet applications, it 

becomes difficult to isolate effects of mobile phones and internet on population health measures. 
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In view of this, future studies should define a new variable that considers these two ICT tools, and 

its impact on health outcome evaluated.  In addition, this study analyzed data between 2000 and 

2016. Thus, in this era of big data, future studies should focus on the use of detailed longitudinal 

retrospective research methods to search through larger volume of rich data to capture trends, 

patterns and associations.  

 

APPENDIX 

Countries used in this analysis as listed by the World Health Organization. Available at: 

http://www.who.int/countries/en/ accessed May 20, 2017. 

African region:  Algeria, Burundi, Burkina Faso, Benin, Angola, Cameroon, Botswana, Cape 

Verde, Central African Republic, Comoros, Chad, Congo, Democratic Republic of Congo, Cote 

d'Ivoire, Djibouti, Equatorial Guinea, Egypt, Eritrea, Ethiopia, Gabon, Ghana, Guinea-Bissau, 

Lesotho, Gambia, Guinea, Kenya, Liberia, Libya, Malawi, Mauritania, Mali, Madagascar, 

Mauritius, Mozambique, Morocco, Nigeria, Namibia, Niger, Sao Tome and Principe, Seychelles, 

Rwanda, Senegal, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, Togo, 

Uganda, Tunisia, Tanzania, Zambia, Zimbabwe. 
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