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AN INTRODUCTION TO POPULATION CODES 

As many other powerful systems in the nature, the power of the brain emerges from the 

orchestration of its many elements (Bonabeau, Eric; Dorigo, Marco; Theraulaz 1999). 

The brain ‘divides and conquers’ the hardest problems in the world, such as pattern 

recognition and prediction. Therefore, these processes will not be completely understood 

without dissecting the processes accomplished by individual neurons, then recombining 

these neuronal interactions to complete the picture (Anderson 1972). Understanding 

brain processes in sub-micron resolution is receiving more and more attention around 

the world as a way of studying human mind and its dysfunctions(Alivisatos et al. 2012; 

Markram 2006). Moreover, modern computing owes its advances to distributed 

computing systems inspired by the brain and other biological systems (Patterson 1996). 

In recent years, a new wave of artificial neural networks, known as deep networks, have 

solved unique problems in big data analysis(Goodfellow, Bengio, and Courville 2016).   

One of the goals of studying the brain is to understand and predict behavior. Classically, 

behavior is studied using psychology which assumes that the mind is a black box with 

inputs that are five senses and outputs that are action. In this sense, psychology is using 

the classical paradigm of control theory in which you study the dynamics of a system’s 

output by finding its relationship to the inputs. As control theory has shifted from the 

input-output black-box paradigm to understanding components and internal states of a 

system, the study of behavior has also shifted toward understanding the structure of the 

brain and the function of its building blocks. Revealing the mechanisms through which 

the brain controls and shapes behavior would not be possible unless the contributing 

components and their interactions are studied together.  
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The precursor to study the population of brain neurons are is the tools to record activities 

of many neurons independently. Simultaneous multi-site recording is continually gaining 

popularity due to new insights it has brought to information coding.  

Population codes 
Multiple mechanisms have been proposed to conceptualize how populations of neurons 

encode information (Figure 0-1):  

- Linear rate coding which is basically the weighted sum of neural activity. 

Essentially, this mechanism assumes that all neurons in the population contribute 

to a hypothetical latent neuron and each neuron’s contribution is proportional to 

its synaptic weight. Conceptually, the information is represented in a sub-space 

in the multi-dimensional space of neural activity (Cunningham and Yu 2014; 

Kobak et al. 2016)(Figure 0-1, left). The subspace might be found using 

dimension reduction methods (Bishop C.M. 2006).  

- Non-linear rate coding takes into account the interaction among the neurons 

within the population as well (Figure 0-1, right). One result of these interactions is 

the correlated variability (Averbeck, Latham, and Pouget 2006). The correlated 

variability was first considered a limiting factor on the information capacity of the 

network (Zohary, Shadlen, and Newsome 1994). However, later studies showed 

that correlations can either limit or improve the information coding (Averbeck, 

Latham, and Pouget 2006).    

- Temporal coding takes advantage of the precise timing of the action potential 

rather than the slow fluctuations in the spike count. In population coding, the 

relative timing between spikes of pairs of neurons has been measured (Riehle 

1997; Vaadia et al. 1995) as a way of inferring the direction of information flow 
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(Takeuchi et al. 2011b) or the degree to which action potentials converge 

(Zandvakili and Kohn 2015).   

 

Figure 0-1 Population coding has been studies in two major ways: Finding sub-spaces of the multi-dimensional 
neural activity that is informative about a particular aspect of external world or internal processes (left) and 

Estimating the functional connectivity between individual or groups of neurons and its modulation with internal 
and external processes. 

 

The majority of studies on information coding in cortical populations focus spike rate 

rather than spike timing. The spike rate codes, at the level of individual neurons or 

population, examine the modulation of the number of spikes within a window of time that 

is normally in the range of tens or hundreds of milliseconds. However, this timing 

resolution is orders of magnitudes coarser that the timing of synaptic computation which 

is faster than a millisecond. A cortical neuron, for example pyramidal neurons in layer 5 

of cortex, is able to detect co-incidence of incoming spikes that were generated by two 

different neurons and modulate its output accordingly (Larkum 2013). This phenomenon 

is an example of temporal integration in cortical populations which would be obsolete if 

rate coding is the only information coding mechanism in cortex.  

From theoretical perspective, a network that is capable of performing temporal coding 

has higher information capacity compared to a network with rate coding. However, this 

advantage comes with a cost. The neuronal mechanisms for spike generation and 

transmission are probabilistic which means that under the same circumstances, a 

population of neuron does not necessarily generate the same pattern of spikes. Although 
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this uncertainty affects both spike count and spike timing, the rate coding lowers the 

variability by average the spike counts over tens of milliseconds. Therefore, rate coding 

is more robust to noisy variations compared to temporal coding. To summarize, there is 

a trade-off between information capacity and noise robustness in coding mechanisms 

(Figure 0-2).  

 

Figure 0-2 Spectrum of information coding. Temporal and rate coding offer distinct advantages that typically come 
with trade-off: While temporal codes offer more capacity for information coding, the uncertainty of spike timing 
makes them unreliable. On the other hand, rate coding is robust to noise but requires orders of magnitudes more 

spikes as well as longer processing time, compared to the temporal coding, to convey the message. 

In this dissertation, we explore different coding mechanisms in cortical populations, and 

their possible roles in perception and decision making.    

 

Outline of this dissertation 

 

PART I: NEURAL CORRELATES OF PERCEPTUAL ACCURACY  

The central hypothesis here, is that the spike count codes and spike time 

coordination play distinct roles in perceptual processing. We provide evidence for 

this hypothesis in four chapters:  

- Chapter I: Approach and experimental setup. 

- Chapter II: Decoding visual information from firing rates of population activity. 

- Chapter III: The idea of temporal coordination, statistical methods to find 

temporal coordination, their occurrence in neural population and their role in 

perception. 
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- Chapter IV: Summary of the results, alternative hypothesis and possible 

implications of our hypothesis.   

PART II: RULE ENCODING IN PREFRONTAL CORTEX 

The central hypothesis here, is that the prefrontal cortical areas construct an 

internal model of the world to be able to predict the outcomes of one’s actions. 

We explore this idea in four chapters:  

- Chapter V: An introduction to foraging and our novel experimental paradigm. 

- Chapter VI: Analysis of the behavioral strategy and prediction of actions 

- Chapter VII: Neural correlates of reward expectation 

- Chapter VIII: Dissecting the components of the neural activity 

- Chapter VIII: Discussion and future directions. 
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PART I                                NEURAL CORRELATES OF 

PERCEPTUAL ACCURACY 

 

ABSTRACT_The accurate transmission of electrical signals within neocortex is central to 

sensory perception and cognition. Theoretical studies have long proposed that the 

temporal coordination of cortical spiking activity controls signal transmission and 

cognitive function. In reality, whether and how the precise temporal coordination in 

neuronal populations during wakefulness influences perception remains a mystery. 

Here, we simultaneously recorded populations of neurons in early and mid-level visual 

cortex (areas V1 and V4) to discover that the precise temporal coordination between the 

spikes of three or more neurons carries information about perceptual reports in the 

absence of firing rate modulation. Perceptual accuracy was correlated with higher-order 

spiking coordination within V4, but not V1, and with the feedforward coordination 

between V1 and V4 activity. Our results indicate that while stimulus encoding is related 

to the discharge rates of neurons, perceptual accuracy is correlated with the precise 

spiking coordination within visual cortical populations.  
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CHAPTER I     INTRODUCTION AND THE EXPERIMENTAL 

DESIGN 

Perception relies on successive transformations of sensory inputs in the context of local 

and long-range networks. In primates, which share common pathways of visual 

processing, the central hypothesis is that cortical processing of visual inputs starts in 

primary visual cortex (V1) with extraction of fundamental features such as contrast and 

orientation from the structure of the visual scene. The processing then feeds into midway 

visual areas, V2-V5 as each area specializes and advances the feature extraction. 

Although the common belief is that higher order cortical areas are organized into two 

dorsal and ventral pathways, the extent of common processing and interactions between 

these areas may show otherwise. However, the evidence that the area V4 in the midway 

of ventral pathway, is essentially in charge of the static information such as shapes and 

colors is undoubtable. V4’s upstream input is mainly from V2 and its output is to other 

visual areas in posterior infero-temporal cortex. However, V1 and V4 have reciprocal 

direct connections as well (Ungerleider et al. 2008). For all mentioned characteristics, V1 

and V4 are ideal candidates to study the perception of detailed changes in the natural 

scenes.  

We simultaneously recorded across two visual areas V1 and V4 while monkeys 

discriminated between natural scenes that were only slightly different. Then, we 

analyzed the spike patterns of populations to find out where and when the stimulus 

information was encoded, and what determined the perceptual accuracy.   
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Hypothesis 

We hypothesized that stimulus information is encoded in firing rates while the 

interactions between neurons affects the accuracy of information transfer between 

networks of neurons.  

Aim1. Decoding the stimulus from activity of population of neurons in each cortical area 

when the discrimination was performed accurately as well as when the behavioral report 

was incorrect. 

Aim 2. Estimating the strength of interactions within the population of neurons in each 

cortical area for both cases of the behavioral outcome.  

Aim 3. Estimating the strength of interactions between two areas considering reciprocal 

connections of various time delays.     

The behavioral task 

We trained monkeys to perform visual discrimination in a delayed-match-to-sample task 

(Figure I-1). Two monkeys (Macaca mulatta) were required to hold fixation within a 

window with diameter of 1° throughout stimulus presentation. Eye movement was 

monitored throughout a recording session using an eye tracking system (EyeLink II, SR 

Research) at a 1 kHz sampling rate. Microsaccades were analyzed using the same 

method described by (Engbert and Kliegl 2003). Once the animal achieved stable 

fixation for 200 ms, the target visual stimulus was presented followed by 500-1200 ms of 

delay period with blank screen and then the test stimulus. Stimuli were presented at 

parafoveal locations (4-6° eccentricity and away from the vertical/horizontal meridians) 

and consisted of circular monochromic natural scene with the diameter of 8-10°. The 

scene may vary between experimental sessions but were kept the same during a 

session. The test stimulus was the same as the target stimulus in match trials and was 
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tilted 3° for monkey C and 5° for monkey W in non-match trials. The orientation 

difference was selected so that the performance of the monkeys in non-match condition 

is around 75% (Figure I-2; left). However, the performance of both monkeys on the 

match trials were higher (Figure I-2; right), compared to the non-match trials which 

implies that the monkeys might be reporting matching stimuli when they are uncertain 

about the condition. The fixation was required to be held for 200 ms after the offset of 

the test stimulus for the trial to be considered valid. After that, the monkeys were cued to 

respond by changing the color of the fixation point. The correct response was to release 

the bar for match trials and keep holding it for 1 more second for non-match trials. The 

response was detected using an impedance detector (Crist instrument response box). If 

the monkey responded correctly he was rewarded by 5 drops of diluted apple juice 

automatically (Crist instrument rewarding system). The next trial starts after a 1 second 

inter-trial time. A total of 200-300 trials were presented during a typical daily session with 

even numbers of match trials and non-match trials. Stimulus presentation was controlled 

with custom script using PsychoToolBox. Synchronization between multiple devices (eye 

tracker, juicer, graphic card) was controlled by the Experimental Control Module (ECM, 

FHC, Inc.) to ensure the best timing accuracy. 
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Figure I-1 Delayed match to sample image discrimination task using natural scenes as the visual stimuli. 
Animals were trained to report whether two briefly flashed successive natural scenes (target and test) were 

identical or different.    

 

                     

Figure I-2 Behavioral performance of two animals – monkey W: 60 ± 5% correct responses in non-match 
trials and 90±2% in match trials; monkey C: 73 ± 7% correct responses in non-match trials and 85±4% in 

match trials.  

Electrophysiological recording of neuronal populations 

Visual cortex areas V1 and V4 were simultaneously recorded extracellularly using 

laminar probes (16 channels Plexon U-probe, Figure I-3), similar to previous experiments 

done in the lab (Hansen and Dragoi 2011). Neuronal and behavioral events were 

recorded using the Plexon system (Plexon, Inc.). Real-time neuronal signals were 

amplified, recorded, and stored with Multichannel Acquisition Processor system (MAP, 

Plexon, Inc.) at a sampling rate of 40 kHz and stored digitally. Neuronal spikes were first 

identified by visual inspection in a virtual oscilloscope and heard through a speaker. 

Non-match trials Match trials 
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Spike waveforms that crossed a user-specified threshold voltage [typically 4 standard 

deviations (SD) of the baseline] were automatically separated from the raw waveform 

and stored for further offline analyses. The spike waveforms were sorted using Plexon's 

offline sorter program (using waveform clustering based on parameters such as principle 

component analysis, spike amplitude, timing, width, valley, and peak).  

 

 

Figure I-3 Electro-physiological setup for simultaneous recording from population of neurons in V1 and V4. Each 
area may contain 1 or more U-probes, each with 16 channels. The U-probes has been inserted into the brain tissue 

using electronically controlled advancement equipment (picture in the panel on the right).  

 

We analyzed the spiking activity of 293 single neurons (up to 14 cells per area in each 

session) that were significantly modulated by the stimuli used in our experiments (at 

least a 4-fold response increase with respect to baseline). 

Receptive fields 

Both stimuli fully covered the receptive fields of the neurons recorded simultaneously in 

each session (there was an 80% overlap between the receptive fields of the cells 

recorded in V1 and V4; Figure I-4). 
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Figure I-4 A) The receptive field of a sample neuron represented as orange and red pixels within the lower left 
quadrant of the visual field (other quadrants are not shown) B)Receptive field positions of individual V1 (green 
circles) and V4 neurons (magenta circles) recorded simultaneously in a representative session are shown 

with reference to the visual stimulus. 

Analysis of single unit activity 

Sorted spikes were further analyzed for firing rates for the time course of the trial for 

which fixation was stable (200 ms before the target stimulus and 200 ms after the test 

stimulus). The PSTHs of spikes were generated by averaging the spike trains binned at 

1 ms for the time course of the trial. A spike train was accepted as a visually responsive 

neuron if the firing rates during the target and test stimuli were greater than 4 SD of the 

firing rates of the baseline period (200 ms before the target stimulus; Figure I-5A). 

Typically, neurons show both transient and sustained responses to stimuli and the 

response may vary with the orientation of the natural scene (Figure I-5B).  
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Figure I-5 A) Raster plots of spiking activity of simultaneously recorded neurons in V1 and V4. The 

horizontal bar represents the time of test stimulus presentation. B) Sample histograms of spike rates for the 

target and the test stimuli separated for trials with 0 and 5 test stimuli. 
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CHAPTER II     DECODING VISUAL INFORMATION FROM 

THE POPULATION ACTIVITY 

 

Inferring information coding from differences in neural activity that are averaged across 

trials of the same condition is a common practice in neuroscience. However, trial 

averaging is not the brain's way of separating signal from noise. Moreover, individual 

neurons respond diversely, when encoding information. Therefore, a trial average 

analysis might not be conclusive about the role of each neuron in information coding at 

any time. Recently, the trial by trial decoding analysis has gained popularity in the field. 

The idea is to train a decoder to classify experimental conditions based on the activity of 

individual neurons or their populations. To compare two specific experimental conditions, 

a wide range of binary classifiers have been used.           

In our orientation discrimination experiment, we are interested to know if neural firing 

rates are informative about the orientation of the visual scene. The test stimulus appears 

in two conditions: match and non-match, with 3-5 orientation differences. The trial 

average firing rates in these two conditions were different for some neurons. However, to 

demonstrate that the information about the visual stimulus condition was encoded in the 

neural population, we used a class of standard decoders, called Support Vector 

Machines (SVM), to decode the condition from the population activity within recorded 

brain areas. SVM classifiers essentially find a hyperplane in the reduced dimension 

space with the shape of the defined kernel function; however, they use support vectors 

to place the hyperplane within the gap between the two conditions optimally to allow the 

best generalization. The classifier's performance is measured by the percentage of trials 

that were classified correctly. However, to avoid over-fitting, the classifier was trained 
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and tested using a segregated set of trials. When only one set of trials is provided, this 

can be accomplished by randomly dividing the set to non-overlapping training and test 

sets for a number of iterations. This procedure is called cross-validation.          

To determine the statistical significance of the classifier's performance, the distribution of 

the values (across cross-validation iterations, different sessions, etc.) may be tested 

against the chance level. Sometimes the chance level is not at 50% because the 

classifier is biased toward one of the conditions. For example, when the number of trials 

for two conditions are highly imbalanced (e.g. 80% class 1 and 20% class 2) a trivial 

classifier that classifies everything as class 1 tends to be 80% correct on average. To 

determine the chance level for this classifier, the cross-validation may be repeated on 

the data with shuffled class labels. In the case of trivial classifier, the shuffled classifier 

performs 80% correct as well, which means the original data was not classified better 

than the chance level.   

DECODING VISUAL STIMULI FROM SPIKE RATES OF NEURONS 

To determine if the neural populations in V1 and V4 are able to discriminate between the 

two images (rotated or not), we trained classifiers using the firing rates of simultaneously 

recorded neurons. We used support vector machines to determine if stimulus is encoded 

in firing rates of V1 or V4 populations. The parameter of a linear kernel function was 

tuned to the training data. The decoder performance was determined as the percentage 

of correctly classified test samples. The training and test trial sets are determined based 

on the purpose of decoding. When cross-validation was done, the trials were randomly 

divided to training (80%) and test (20%) subsets for 1000 iterations, the performance of 

the decoder was assessed in each iteration and the average over iterations of the 

performance was used. The shuffled decoders were trained and tested on data with 
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randomly shuffled class labels. Performance of shuffled decoder was used as a null 

hypothesis for statistical testing the decoder performance. As an additional control, the 

decoders were trained and tested using sliding window on spiking data, starting before 

the presentation of the test stimulus, when decoding the upcoming test stimulus is 

logically impossible. 

Using SVM classifiers to decode V1 and V4 populations, Both areas were able to 

decode stimulus orientation in ‘correct’ trials significantly above chance level determined 

by shuffling across correct and incorrect trials (Figure II-1; p-value of Wilcoxon signed 

rank test was smaller than 0.01 for any 200 ms window in V1 that was overlapping the 

stimulus presentation time or any window in V4 starting 200 ms after test onset). 

However, in incorrect trials we found that stimulus orientation is only encoded correctly 

by the V1, but not the V4, population (Figure II-2, p-value of Wilcoxon signed rank test 

was smaller than 0.05 as early as 100 ms after test onset in V1, but always bigger than 

0.2 for any window in V4). That is, despite the fact that firing rates of neurons were not 

significantly different between correct and incorrect trials (p-value of Wilcoxon sign rank 

test was 0.51 for V1 and 0.79 for V4), the task relevant information required for a correct 

behavioral report was only present in V1, but not V4.  

 

Figure II-1 Decoding the stimulus in correct trialas. Performance of a classifier that uses firing rates of all 

simultaneously recorded neurons in V1 and V4 to decode the test stimulus (we used a 200 ms window sliding in 20 ms 

increments). The classifier was trained using 80% of all correct trials and performance validated by classifying the 

remaining 20% of trials (performance was cross-validated 1000 times by randomly dividing trials to training and test 

sets). Shuffled classifier – trial labels (stim 1 vs. stim 2) were shuffled before training and then the cross-validation 

procedure was repeated. The results in the figure belong to SVM with linear kernel but the results with quadratic as 
well as RBF kernels were very similar. 
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Figure II-2 Decoding the stimulus in incorrect trials. The classifiers were trained using all correct trials, then tested 

on incorrect. The rest of the procedure is similar to the previous figure.   

Results of the decoders, show that the performance of the decoder is higher than the 

chance level for V1 which suggests that perceptual inaccuracy occurs in downstream 

areas. However, in V4, the decoder’s performance is about the chance level 

suggesting that the information about the identity of the stimulus is missing in this 

area. Given that the primary flow of the visual information is feedforward, the lack of 

information in V4, but not V1, suggest that the information was lost either in the 

areas between V1 and V4 or within V4.  

To further examine the role of each area in perceptual processing we examined the 

correlation of firing rates within each population with the behavioral outcomes using 

SVM decoders. To classify correct and incorrect trials using SVM decoders, we 

trained the decoder using the firing rates of V1 or V4 population within a 200 ms 

sliding window, similar to the stimulus classifiers on the previous section. None of the 

visual areas were able to decode the behavioral outcome better than the chance 

level (Figure II-3).  
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Figure II-3 Performance of the classifier that uses the firing rates of all simultaneously recorded neurons to decode 
perceptual accuracy (correct vs. incorrect reports). A 200 ms window sliding in 20 ms incremental steps was used. 

The classifier was trained using 80% of the trials and performance was measured by classifying the remaining 20% 
of trials. The performance was cross-validated 1,000 times by randomly dividing trials to training and test sets. In 
shuffled classifiers, the trial labels (correct vs. incorrect) were shuffled before training; then the cross-validation 

procedure was repeated. The performance of the classifier was not significantly different from the null hypothesis 
(p>0.1, Wilcoxon signed tank test) for any analysis window in any cortical area. 

 

CONCLUSION 
In this chapter, asked whether the information about the visual stimuli that is relevant to 

our orientation discrimination task are encoded in visual areas V1 and V4. We found that 

when monkeys report the presented stimulus correctly, we are able to decode the stimuli 

from population of neurons in either V1 or V4. When the behavioral report was incorrect, 

we used the trained decoder to determine if either the presented or the reported stimulus 

is encoded in each area. We were able to decode the presented stimulus from V1 

activity. However, neither the presented nor the reported stimulus was decoded from V4. 

Our further attempt to decode the behavioral reports from V1 or V4 population activity 

failed as well. We conclude that firing rates of neurons in V1 is encoding the visual 

stimulus, regardless of perceptual accuracy. However, when perception is inaccurate, 

V4 activity is missing the information on the identity of the stimulus. We hypothesize that 

loss of stimulus information in V4 or in the feedforward pathway between V1 and V4 is 

responsible for the inaccuracy of perception. Because the majority of the incorrect trials 

were non-match conditions which were reported as match by the animal, we speculate 

that, in the absence of information, monkeys go with their default response (which is 

reporting a match due to the discussion in the previous chapter on Figure I-2). The 
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relative spike timing between neurons in the same network is suggested to modulate the 

efficacy of synaptic connections between them in previous studies. Therefore, we 

examined the relative timing of spikes in the following chapter.  
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CHAPTER III         TEMPORAL COORDINATION IN NEURAL 

POPULATIONS 

 

Temporal dependency of spike events has been considered a measure of functional 

connectivity between neurons when direct examination or causal manipulation is not 

possible. Given the complexity of connectivity pattern in cortical networks as well as the 

uncertainty of synaptic connections, the chance that every single spike of a neuron is 

time-locked to one or more spikes of its network neighbors is very small. Therefore, 

methods to detect coordinated spikes are optimized to detect rare events that occur 

beyond the chance level.         

PAIRWISE CO-FIRING AND THEIR EFFECTIVENESS 
Cross-correlogram is an established method to detect correlation of spike timing and 

spike count (Alonso, Usrey, and Reid 1996; Alonso and Martinez 1998; Cohen and Kohn 

2011; Takeuchi et al. 2011b)(Figure III-1).  

 

Figure III-1 jPSTH and cross-correlogram. jPSTH shows the histogram of time bins across trials with co-occurrence 
of spikes of both neurons in the pair. While marginal histograms along each access are PSTH of each neuron, the 

marginal histogram along the unity line is the trial averaged cross-correlogram of the pair.  
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Normally the magnitude of cross-correlogram peak indicates the proportion of the spikes 

that are shared between two neurons and the shape of the peak as well as its deviation 

from the center helps identifying the source of the shared spikes (Figure III-2).  

  

Figure III-2 types of CCG peaks. A common input that is one or a few synapses away produces spikes with precise 
timing (±10 ms) which will appear as a sharp peak. If the time of arriving to each post-synaptic neuron is different, 
the peak would be shifted. This case might not be distinguishable from the case that the two neurons are connected 
themselves for which a shifted sharp peak will be observed as well. If the source of common input is many synapses 

away (such as a visual stimulus within the receptive fields of both neurons or common input from other areas of the 
brain) the peak will be wide due to inconsistency of the timing of evoked spikes.   

 

CROSS-CORRELATION ANALYSIS OF V1 AND V4 NEURONAL POPULATION  
We applied cross correlation method to all possible pairs of simultaneously recorded V1 

or V4 neurons as well as cross area pairs in V1 and V4. The trial average of spike trains 

binned to 1 ms were able to capture the precise temporal dynamics of firing rate 

modulation while the Instantaneous firing rate (IFR) was able to capture the slow 

dynamics of this modulation (Figure III-3). When Cross-correlogram (CCG) of the spike 

trains as well as CCG of the IFRs were calculated, the CCG of IFR was able to capture 

the bell shape envelop of the raw CCG.  
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Figure III-3 IFR correction. A) The trial averaged firing rate (black) for a sample neuron and the IFR  (blue) which 
is the trial average of inverse of the inter-spike time. B) Cross-correlation of spike trains for a sample pair (black) 

overlapped with the cross-correlation of their IFR traces (blue).  

We calculated IFR corrected CCGs for all correctly reported trials of the match stimulus 

as well as all trials of the non-match stimulus. Then for each stimulus-behavior category, 

we examined the statistical significance of the trial averaged CCG peak by comparing it 

to confidence interval of the tail as explained in the previous sub-chapter. To determine if 

the visual stimulus is reflected in the functional connectivity of pairs of neurons we 

compared trial average CCG of match-correct to non-match correct. Figure III-4A shows 

an example pair in each cortical area for which the peak of CCG is slightly different for 

two visual stimuli. We identified all such pairs with a significant peak (bigger than 95% 

confidence interval of the tail) and averaged the area under the peak within ±10 ms 

range of the time lag across all significant peaks within the same session. Across all our 

sessions (Figure III-4B), the area under the peak does not show a strong tendency 

toward either match (stim1) or non-match (stim2) condition (p>0.085 for V1 and p>0.67 

for V4, Wilcoxon signed rank test across sessions).   
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Figure III-4 Cross correlogram analysis of two conditions with different visual stimuli. A) The cross correlation of all 
pairs in V1 (left) and V4 (right) areas separated averaged over trials with stim1 and stim2 test stimuli. Insets: 

Magnified peak that were indicated with dashed lines in the main panels. B) The difference between the area under 
peak for cross-correlation of the two stimuli. Each point represents the average difference for one session.    

 

Similarly, we compared the cross-correlograms of non-match correct trials to that of the 

non-match incorrect. Although for some pairs, the peak of CCG shows slight difference 

between correct and incorrect trials (Figure III-5A) we did not observe any significant 

difference between two conditions across all sessions (Figure III-5; p>0.27 for V1 and 

p>0.79 for V4, Wilcoxon signed rank test across sessions).  

 

Figure III-5 Cross correlogram analysis of two conditions with different behavioral outcome. A) The cross 
correlation of all pairs in V1 (left) and V4 (right) areas separated averaged over trials with correct and incorrect 
trials. Insets: Magnified peak that were indicated with dashed lines in the main panels. B) The difference between 

the area under peak for cross-correlation of the two behavioral outcomes. Each point represents the average 
difference for one session.    

POPULATION MEASURES OF COORDINATED SPIKES 

Extending the idea of pair-wise correlations to the population of three or more neurons is 

not trivial due to exponentially increasing complexity of interactions. Methods for 
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assessing coordination and synchrony in simultaneously recorded populations relies on 

state of the art statistical models and hypothesis testing (Aertsen et al. 1989; Pipa et al. 

2008; Torre et al. 2016, 2013; Riehle 1997). Here we modified and used a simple, yet 

statistically powerful tool called Neuroxidence to find coordinated assemblies of neurons 

within a population.  

The frequencies of occurrences of coordinated events were empirically estimated using 

NeuroXidence tool available as Matlab code in http://www.ni.uni-osnabrueck.de/~ni/www 

.neuroxidence.com/. The essence of the method is to find the time bins (5 ms) 

containing a certain pattern p which consists spikes from certain neurons. For example, 

the pattern 

𝑝𝑖 = 𝑥1𝑥𝑥1𝑥𝑥𝑥𝑥1 

contains spikes from 2nd, 5th and 10th neurons in a set of 10 neurons. The other 

neurons may or may not have a spike in this pattern (x for either 0 or 1). Confounding 

factors (such as binning, multiple spikes from the same neuron within the same time bin, 

co-fluctuation of firing rate) were corrected using the jittering method detailed in (Pipa et 

al. 2008). For n neurons, the number of patterns N presenting a co-firing of 2 to n 

neurons is  

𝑁 = 2𝑛 − 𝑛 − 1 

For each of the N patterns the coordination rates F for a time window of length t sec in 

trial j were calculated as  

𝐹𝑗
𝑝𝑖 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑝𝑖

𝑡
, 𝑖 = 1, … , 𝑁 

To determine if a pattern is occurring significantly higher than chance, the frequencies of 

occurrences of this pattern across a set of trials were tested against a null hypothesis 
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which is the frequency of occurrences of the same pattern in jittered spike trains. 

Essentially, jittering is shifting each spike train in time relative to the other spike trains 

(Figure III-6-right). Jittering must be performed in a time scale shorter than the time scale 

of possible co-fluctuations of firing rates and longer than a single time bin (±10 ms; 

Figure III-6).  

 

Figure III-6 Cartoon showing coordinated spike events in groups of 2 or more neurons. Sample pair (blue), triplet 
(orange) and quartet (red) coordination are shown. Coordination rates in jittered spike trains (bottom) were used 

as null hypothesis to determine the statistical significance of coordinated spiking. 

 

The jitter corrected frequencies of occurrences were calculated as 

∆𝐹𝑗
𝑝𝑖 = 𝐹𝑗,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑝𝑖 − 𝐹𝑗,𝑛𝑢𝑙𝑙
𝑝𝑖  

Which were tested for significance using Wilcoxon signed rank test. When compared 

between two trial sets (such as correct vs. incorrect or match vs. non-match) all patterns 

occurring at a significant rate (p<0.01) within either of trial sets were selected for 

analysis. An exception was the raster plot in Fig. 3A for which we had to exclude the 

patterns for which the rate of occurrence is not significantly different between correct and 

incorrect trials (Wilcoxon signed rank test, p>0.01) to optimize the visibility. The total 

frequency of occurrences for all patterns of size c (patterns that include spikes from at 

least c neurons) in correct trials was calculated as  

𝐹𝑐𝑜𝑟𝑟
𝑐 = ∑   ∑

∆𝐹𝑗
𝑝

𝑁𝑐𝑜𝑟𝑟 × 𝑁𝑐
, 𝑐 = 2,3, … , 𝑁

𝑗∈𝑐𝑜𝑟𝑟 𝑝∈𝑠𝑖𝑔𝑛𝑖𝑓
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in which 𝑁𝑐𝑜𝑟𝑟  is the number of correct trials and 𝑁𝑐  is the number of size c patterns 

regardless of significance which, for a sizable population, is growing rapidly with c for 

c=2,3 and 4 (Figure III-7). 

 

Figure III-7 Number of patterns as a function of population size. The patterns of size 2 (pairs), size 3 (triplets) and 
size 4 (quartets) are shown.  

 

The frequencies of occurrences for incorrect trials and match correct trials were 

calculated similarly. To avoid the effect of unbalanced sets of trials on test power, 

bootstrapped distributions were generated as below: the trial sets were resampled with 

replacement (sample size was 100), then p-value of Wilcoxon signed rank test was 

calculated for each sample set. The procedure was repeated to obtain a distribution of p-

values from which the mean p-value was compared to the threshold which was 0.01. 

One major concern around this method is the false identification of coordinated spikes 

when the firing rates co-fluctuate due to firing rate modulation to stimulus and other non-

stationary events. Therefore, we simulated spikes with the exact same statistics as our 

recorded neurons and computed the coordination rates while varying the co-fluctuations 

of spike counts. To generate independent spike trains with the same statistics of the real 

neurons, first we generated spikes for each neuron using a Poisson processes for which 

the rate of events at any 1 ms time bin was the trial averaged firing rate of the actual 

neuron. To generate spike trains with, say 20% shared spikes among neurons, first we 

generated independent spike trains so that the firing rates are 20% lower than the actual 

firing rates, then added the shared spikes across the entire population, to match the 
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spike count of the actual neurons, but with random timing within a 50ms window (Figure 

III-8).  

 

Figure III-8 Simulation of spike trains with similar statistics to our actual neurons. A) spike trains that are 
generated using independent Poisson processes (green) as well as spikes that are shared among the population to 

increase the spike count correlation without increasing the spike-time correlations. B) Trial-averaged histogram of 
spike counts for 200ms before to 500 after the time of stimulus onset for an actual neuron as well as simulated 

neuron. 

This method does not add any coordinated spikes to the population and we know this 

because the cross-correlograms of the spike trains do not show any sharp peaks (Figure 

III-9a). However, the spike count correlation increases monotonically with the 

percentage of shared spikes (Figure III-9b).  

 

Figure III-9Relationship between the percentage of shared spikes and the spike time and spike count correlations. 
A) cross-correlogram averaged across trials as well as all pairs within the population for various percentages of 

shared spikes. B) Pierson correlation coefficient of spike counts across trials averaged for all pairs within the 
simulated population as a function of percentage of shared spikes. 

The coordination rates for the simulated population is not expected to be better than the 

chance level. We calculated the coordination rates combined across all pair-wise and 

higher order assemblies of neurons within this population, then applied jitter correction, 

we observed that the coordination rates for 0-50% shared spikes, which translates to 
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spike count correlation of 0-0.5. We observed less than 0.002 coordinated events per 

second which was 50 times smaller than coordination rates in the actual population 

which was around 0.1 coordinated events per second (Figure III-10).   

 

 

Figure III-10Coordination rates for all simulated populations as well as the real population. A) coordinated rates 
averaged for all assemblies of neurons (size 2 to 12) regardless of the significance of their occurrence. B) 

Coordination rates of panel ‘a’ after subtracting the coordination rates of surrogate data that was generated by 
jittering the spike trains (jitter range= 10ms). 

 

In the rest of this chapter, we present our findings with coordination rate analysis of V1 

and V4 populations.  

HIGHER ORDER COORDINATION WITHIN V1 AND V4 

We detected coordinated spiking in simultaneously recorded neuronal populations by 

calculating the frequency of near-coincident (5 ms) firing of two or more neurons on a 

trial-by-trial basis that occurred significantly more often than expected by chance. The 

coordination rate was calculated by dividing the number of coordinated event 

occurrences by the time length of the analysis window. The statistical significance of 

coordination rates was tested against the null hypothesis generated by jittering the spike 

trains (jitter range was ±10 ms; 20 jittering iterations). Jittering spike trains preserves all 

statistics including periodic oscillations, co-fluctuations of firing rates and trial by trial 
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variability but not the precise timing of spikes. Therefore, subtracting coordination rates 

of jittered spike trains from that of the original spike trains before testing for statistical 

significance alleviate the possibility that significantly detected coordination rates may be 

due to coherent oscillations or co-fluctuations of firing rates (Pipa et al. 2008b) We 

interpreted a coordinated spike event as representative for the subset of neurons that 

were engaged in a cell assembly at a given time. Note that we refer to cell assemblies of 

size 3 or above as higher-order coordination which is different from higher order models 

used for reconstructing spike trains (Schneidman et al. 2006; Ganmor et al. 2011; 

Ohiorhenuan et al. 2010).  

We calculated coordination rates around the time of the stimulus presentation and 

observed that that coordination between 2, 3, and 4 spikes is not a random event, but is 

frequently encountered during the stimulus-evoked response (Figure III-11). 

 

Figure III-11 Normalized rate of occurrence for second order (pairs) and higher order (triplets and above) 
significantly occurring coordinated events within a 300 ms stimulus window shifted in 20 ms increments (average 

of 22 V1 and 12 V4 sessions). 

 

However, there was no relationship between stimulus orientation and coordination rates 

in V1 or V4 for any size of the neural assemble (Figure III-12, left). We further used ROC 

analysis to examine the relationship between coordinated events and the orientation of 

the test stimulus. The area under the ROC curve is typically used to determine the 
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performance of a binary classifier discriminating between two conditions. When the area 

under ROC is different from 0.5, the classifier’s performance is better than chance level. 

As shown in Figure III-12-right, insets, the area under ROC curve for coordination rates 

of various sizes is not significantly different from 0.5 (Wilcoxon signed rank test, p>0.1 

for all comparisons; Figure III-12, right) in either V1 or V4, which indicates that stimulus 

encoding is unrelated to the precise temporal coordination of neuronal spiking. These 

results are consistent with the long-standing idea that stimulus-specific information is 

transmitted in the neocortex by firing rate modulations, not by the precise spike 

coordination2. 

 

Figure III-12 Coordination rates in V1 and V4 during the presentation of each test stimulus (stim1 and stim2) as a 
function of ensemble size. Inset: area under ROC curve for stim1 and stim2 trials averaged across coordinated 
events of order 2 (blue), 3 (orange) and 4 (red) shown for each session. Each data point represents one session. 

 

We further tested whether the spiking coordination rate, as a measure of effective 

neuronal communication, is correlated with behavioral outcomes. To this end, the correct 

and incorrect responses in each session were separated to investigate the correlation 

between coordinated spiking rate and the behavioral choice. The example session in 
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Figure III-13 shows the responses of nine V1 neurons and twelve V4 neurons for 42 

correct and 42 incorrect trials. Coordinated spikes for pairs of cells and higher order 

assemblies (order 3 and more) were color coded. This panel only shows a subset of 

significantly occurring coordinated spikes for which the coordination rates were different 

between correct and incorrect conditions (Wilcoxon rank sum test, p<0.01), however 

other significantly occurring events were also included for the analysis.  

 

Figure III-13 Raster plots of nine V1 and twelve V4 cells from a single session for correct and incorrect trials. 
Overlaid are combinations of 2 (blue) or more (red) spiking coordinated events, subsampled for clarity with an 

equal number of randomly selected trials showing patterns for which the frequency of occurrence is significantly 
different between correct and incorrect sets (p<0.01, Wilcoxon rank sum). The horizontal lines mark the 

presentation of the test stimulus. 

 

To quantify this effect, we calculated the frequency of occurrences of coordination rates.  

It is apparent from Figure III-14 that whereas pairwise coordinated events in V1 and V4 

were unrelated to behavioral outcomes, there was a clear increase in the frequency of 

higher-order spiking events for correct trials predominantly in area V4. In contrast, 

neuronal coordination in V1 did not appear to be related to behavioral decisions.  
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Figure III-14 The normalized coordination rates in V1 and V4 represent the difference in the frequency of 
occurrences of coordinated events (correct – incorrect) represented in panel d, calculated for a 300-ms window 

sliding every 10-ms. 

The relationship between the coordination rate in higher-order ensembles and 

behavioral decisions was a general phenomenon across our recording sessions in both 

animals. We analyzed our population of recording sessions (n=22 in V1, and n=12 in V4) 

using a 300-ms sliding window with a 10-ms step (Figure III-15). The analysis included 

only the coordinated spiking events that were statistically significant (Wilcoxon signed 

rank, p<0.01) in either correct or incorrect trials regardless of the assemble size. For 

pairs of neurons, the difference in coordination rates was highly variable but not 

statistically significant for any time window, both in V1 and V4 populations (p>0.1, 

Wilcoxon signed rank). In contrast, the triplets and quartets in V4 carried significant 

information about behavioral decisions following test stimulus onset (p<0.05, Wilcoxon 

signed ranked test). For all other times shown in Figure III-15 the difference in 

coordination rates were not significant (p>0.1, Wilcoxon signed rank). We restricted this 

analysis to neuronal ensembles of size 4 and below; although we identified coordinated 

events for ensembles of order 5 and above, they were only found in a limited number of 

sessions, and their frequency of occurrence was insufficient to assess statistical 

significance.  
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Figure III-15 (A) Top panels: The difference in coordination rates (for pairs, triplets, and quartets) between correct 
and incorrect trials measured using a 300-ms window shifted in 10-ms increments (average of 22 sessions in V1 and 

12 sessions in V4). The small gap during the delay period is due to the variable interval between target and test. 
Bottom panels: Statistical significance of the Wilcoxon signed rank test (P-value) for the difference in coordination 

rates between correct and incorrect trials. Triplets and quartets are combined as ‘higher-order’ coordination 
events. The dashed lines mark the significance threshold of the p-value (0.05). (B) Normalized coordination rates 
for pairs, triplets, and quartets, measured for the 300-ms window starting 150-ms after test onset (dots represent 

individual sessions). A hyperbolic scale was used for the y-axis to optimize representations for all sessions. 

 

We further examined the correlation between the coordination rate and behavioral 

choice by performing an ideal observer analysis (Britten et al. 2009; Purushothaman and 

Bradley 2005; Nienborg and Cumming 2006) to predict the animal’s choice on a trial by 

trial basis based on temporally coordinated events (Figure III-16A). For an example 

quartet, we represented the distributions of coordination rates for correct and incorrect 

trials and the corresponding ROC curves. The distributions of correct and incorrect trials 

were partially separated (the area under ROC was 0.66 which is comparable to the 

previously reported values (Britten et al. 2009; Purushothaman and Bradley 2005; 

Nienborg and Cumming 2006; Uka et al. 2005). We illustrate the prediction of the ideal 

observer that uses the firing rates of the four neurons as well as coordination rates of the 
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6 possible pairs within the quartet. When using the firing rates, the average of the area 

under the ROC curve was 0.49 as expected by overlapping correct and incorrect 

distributions. When using coordination rates of pairs, the average area under the ROC 

curve was 0.55 as expected by greatly overlapping distributions of correct and incorrect 

coordination rates.  

For our population of cell combinations (pairs, triplets, and quartets) we averaged the 

area under ROC curve for the test stimulus (150-500 ms time window relative to test 

onset) corresponding to each session. Figure III-16B represent the session-by-session 

changes in coordination rate (correct – incorrect) and the area under ROC for the test 

stimulus. The difference in coordination rates was only significant for triplets and 

quartets in V4 (p<0.0167, Wilcoxon signed ranked test with multiple comparison 

correction. Combining across higher order combinations, p-value for monkey W was 

0.001 and for monkey C was 0.039).  

 

Figure III-16 (A) The distribution of coordination rates for (left) correct and incorrect trials for a sample quartet, 
(middle) all six possible pairs within the quartet, and (right) the firing rates of all four neurons within the quartet. 
Insets: ROC curves for correct vs. incorrect trials. (B) Area under ROC curve for correct vs. incorrect trials averaged 

across all coordination events of the same order (pairs, triplets, quartets) within each session (dots represent 
individual sessions).   
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Applying the same analysis to either target (150-500 ms after target stimulus onset) or 

delay (-350 to 0 ms before the test stimulus onset) period, we were unable to predict the 

behavioral choice using coordination rates of any assembly size (p>0.1, Wilcoxon signed 

rank test). Also, for the test period, prediction of behavioral choice based on the 

coordination of triplets and quartets in V4 were consistent across sessions (p<0.05, 

Wilcoxon signed ranked test) while the predictability of behavioral choice based on pairs 

of cells was not statistically significant (p>0.1, Wilcoxon signed ranked test). In contrast, 

we were unable to reliably predict the behavioral outcomes based on the coordination of 

spikes within V1 (Wilcoxon signed rank, p>0.1). Using the same window, shuffling trials 

yielded no significant difference between the two behavioral conditions.  

 

 

Figure III-17 Distribution of the difference in coordination rate between correct and incorrect trials for 12 V4 
sessions during the target (left) and delay (right) intervals. The windows of analysis is identical to that in Fig. 3E. 

All analysis parameters are the same as in Fig. 3E. 

 

We examined coordinated spiking at a range of time resolutions. While converging 

inputs within 1 ms can effectively drive postsynaptic targets (Zandvakili and Kohn 2015), 

coordination within the 10 ms range reflects multi-synaptic communication between 

participating neurons (Takeuchi et al. 2011a). Although our analysis was focused on 

coordinated spiking within 5 ms, we varied the time bin of the analysis from 1 to 11 ms. 
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We subsequently held the bin size to 5 ms and varied the jitter range from 3 to 13 ms. 

The differences in coordination rates increased monotonically with bin size and were 

significant for time bins of 4 ms or wider (Fig. S9A, top: coordination rate differences, 

bottom: p-value of Wilcoxon signed rank) and jitter range of 8 ms and higher (Fig. S9A, 

top: coordination rate differences, bottom: p-value of Wilcoxon signed rank). The ±8 ms 

window allows for multiple synaptic transitions (Takeuchi et al. 2011b; Pipa et al. 2008). 

Therefore, the observed coordination in V4 can include multiple synapses between 

participating neurons which, by definition, is different from controversial effect of 

synchronized spikes discussed in (Shadlen and Movshon 1999; Histed and Maunsell 

2013).  

 

Figure III-18 Coordination rates were significantly different between correct and incorrect trials (p<0.05, Wilcoxon 
signed rank test) for a range of bin sizes and jitter ranges. a) Coordination rates as a function of bin size (top) and 

associated p-values (bottom). The bin width varied in the range of 1 and 11 ms with steps of 1 ms. For bin sizes of 2-
9 ms, p-values of triplets and quartets are smaller than 0.05. b) Same analysis as in (a) but for jitter range of 3 to 13 

ms with steps of 1 ms. For jitter range of 8 ms and higher, the p-value was smaller than 0.05. 

HIGHER ORDER EVENTS ACROSS V1 AND V4 
Our results so far indicate that neuronal coordination within V4 higher-order ensembles 

carries information about the animal’s behavioral choice. However, areas V1 and V4 are 

both directly and indirectly connected through feed-forward and feedback connections 
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(Felleman and Van Essen; Ungerleider et al. 2008). This raises the question of whether 

the coordination between V1 and V4 neurons is informative for behavioral decisions. We 

addressed this question by further examining the V1 and V4 neurons with overlapping 

receptive fields (n=8 sessions) and focused exclusively on the test stimulus interval 

where we previously found significant behaviorally relevant coordination in area V4. 

Specifically, we selected aligned spike trains in V1 and V4 within a 300 ms window, and 

then shifted the V4 spike trains relative to those in V1 by time  (between -40 and 40 ms, 

in 5-ms increments). For each  we pooled the spike trains and computed the 

coordination rates (Figure III-19, top), then we identified the peak coordination rate as 

well as the time lag at which this peak occurs.  The statistical significance of the peak 

was determined by z-scoring coordination rates across  values, similar to the cross-

correlation analysis in (M. a Smith et al. 2012; Bair, Zohary, and Newsome 2001).  

 

Figure III-19 Cartoon raster plots of V1 and V4 responses illustrating the magnitude and time lag of V1-V4 
coordination. Coordination rates were calculated from spike trains from both areas by shifting the V4 spikes by 

time lag T (between ±40 ms, in 5-ms steps). The peak coordination and time lag were determined after z-scoring 
coordination rates for all time lags by the average coordination rate of the tail (-40 to -20 timelag). 
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 Furthermore, we identified the segment of the trial (test stimulus portion only) where the 

maximum coordination occurs.  We did this by taking a 300 ms segment, starting 250 ms 

before the test stimulus onset and computing the cross correlation. These 300 ms 

segments were taken in 50 ms incremental steps.  The final segment began 200 ms 

after the test stimulus onset. For 7 out of 8 sessions, a significant peak (z-score of 2 or 

higher) was found in correct trials for the analysis window that was centered at 100 ms 

after the test onset (Error! Reference source not found.).  

   

 

Figure III-20 Difference between coordination rates for correct and incorrect trials averaged across 8 sessions as a 
function of time lag. The peak coordination rate (z-score>2) for higher order coordinated events occurs when V4 

lags V1 by +25 ms, and around 100 ms after test onset. 

 

For this analysis window, we found that in 7 out of 8 sessions the higher order 

coordination rates peak when V4 lags V1 by 20 to 40 ms (The peak of session average 

occurs around 25 ms, Figure III-21), consistent with previous reports of the delay of 

visual information between areas V1 and V4 (Leonard et al. 2011).  
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Figure III-21 Coordination rate (correct vs. incorrect) as a function of time lag for each event size was calculated 
for the 300-ms window overlapping the test stimulus presentation. The peaks for higher order coordinated events 

occur for feedforward communication (20-40 ms time lags; the average time lag across sessions is 25 ms). 

Comparing the peak frequency of feedforward (V1 to V4) coordination across correct 

and incorrect conditions, we found that although the pairs of coordinated spikes were not 

different between correct and incorrect trials, the higher-order coordination (order 3 and 

above) depends on the behavioral choice (p<0.05 Wilcoxon signed rank test, Figure 

III-22).  

 

Figure III-22 z-scored coordination rates for correct and incorrect trials, calculated for the time lag corresponding 
to the peak in each session (we included 7 out of 8 sessions showing a significant difference between correct and 

incorrect trials; p<0.05, Wilcoxon signed rank). 

To investigate if the higher order events in V4 are triggered by higher order events in V1 

or vice versa, we performed a cross correlation analysis between higher order events in 

V1 and V4. Again, we found a peak at 25 ms time lag in correct trials suggesting that 
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higher order events in V4 lag higher order events in V1 by 25 ms (Figure III-23). For 

incorrect trials we did not find any peak.  

 

Figure III-23 Cross-correlation between the occurrence times of higher order events in V1 and V4 for correct and 
incorrect trials (5-ms bin size). The rates of co-occurrence of higher order events in V1 and V4 were normalized by 

the geometric mean of the occurrence rates. Error bars represent s.e.m. 

 

Also, a pairwise cross-correlation analysis on spikes of individual neurons in V1 and V4 

did not reveal any functional connectivity (Figure III-24). 

   

 

Figure III-24 We computed the cross-correlogram (CCG) between V1 and V4 to test whether high-order spiking 
coordination drives spiking activity in a target area. Left: CCG between convergent feedforward inputs from V1 

(high-order spiking events) and V4 individual spikes reveals that high-order coordination in V1 is not associated 
with elevated spiking in V4. Right: CCG between convergent feedback inputs from V4 (high-order spiking events) 
and V1 individual spikes reveals that high-order coordination in V4 is not associated with elevated spiking in V1. 
Each cross-correlogram was normalized by the geometric mean of the firing rates of participating neurons. No 

significant CCG peak (z-score>2) was observed within the ±40 ms time lag range that we explored. 
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CONCLUSION 
We calculated cross-correlation of simultaneously recorded pairs of neurons within area 

V1 and area V4 as well as between V1 and V4 to reveal the strength of the functional 

connectivity between neurons. Our hypothesis was that the strength of the functional 

connectivity would reflect the variation in accuracy of discrimination between two very 

similar stimuli. To examine this hypothesis, we calculated the magnitude of cross-

correlogram peaks for the evoked response to each stimulus and compared the two. 

Moreover, we compared the magnitude of the peak of the correctly reported orientation 

change to that of the incorrect reports during the sustain response and after the 

response to a single stimulus. Although we found pairs of neurons in each cortical area 

for which the magnitude of peak was different between the two stimulus conditions or the 

two behavioral conditions, the overall change of magnitude was not systematic and not 

statistically significant. There are multiple reasons that the cross-correlation analyses 

failed to reveal any convincing effect: 

- The cross-correlogram is a pair-wise method which is suitable to capture the 

diversity of functional connectivity across a population. The connectivity of pairs 

within a population may reflect local processing that are irrelevant to the 

perceptual goal. Given the high degree of connectivity of cortical neurons, 

dissecting the magnitude of the cross-correlogram peaks into local and global 

sources might not be possible. 

- For cross-areas pairs, the chance that a task-irrelevant local source masks the 

perceptual effect is low. However, the main anatomical pathways between V1 

and V4 pass through V2 and the direct connections, which potentially can be 

detected using cross-correlograms are only a small portion of both feedforward 

and feedback pathways.          
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- The high temporal resolution of cross-correlograms is offered at the cost of 

reducing the statistical power. To gain statistical power, previous studies have 

taken advantage of long recording time or high number of trials. Most of these 

studies were performed on anesthetized animals, for which the constrain on trial 

length and number is relaxed, or on awake animals that are simply fixating on 

simplified stimuli. Our experiment was limited in the number of trials and the 

duration of stimulus presentation which explain the noisiness of our cross-

correlograms. The low statistical power means higher chance of both type I and 

type II statistical error. While in type II error, the chance of detecting the true 

functional connectivity is missed, in type I error, the false positive pairs that are 

mixed with the truly connected pairs mask the modulation of connectivity.                   

 Taken together, cross-correlation is not a powerful method to reveal the modulation of 

connectivity in our experiment. In addition, because cross-correlation is pairwise, it does 

not capture higher order interaction within populations which, although rarer, might be 

more informative about a global effect such as perceptual processing. This was our 

motivation to explore population measures of connectivity. We used a powerful statistical 

method to identify coordinated spike event across the entire population. But first we 

show that even though this method is able to find coordinated events that the pair-wise 

methods cannot, it does not falsely identified co-occurrences of the spike events as 

coordinated events. Applying this method to V1 and V4 populations revealed modulation 

of coordination rate with behavioral performance within the V4 population but not V1 

population. We also observed elevation of coordination rate between V1 and V4 

considering a feed-forward time lag between areas. Both findings imply that the 

behavioral accuracy is due, at least in part, to facilitation of communication between 
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neurons that are encoding task-relevant information. The significance of this finding and 

alternative hypotheses will be further discussed in the following chapter.   
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CHAPTER IV           DISCUSSION AND FUTURE DIRECTIONS 

Our findings reveal the existence of precise coordination of individual spike events in 

visual cortex time-locked to the onset of stimulus presentation. Although previous 

studies have shown that spike timing in the retina (Meister, Lagnado, and Baylor 1995; 

Gollisch and Meister 2008), thalamus (Dan, Atick, and Reid 1996), infero-temporal 

cortex (Hirabayashi and Miyashita 2005), and frontal cortex (Vaadia et al. 1995) carries 

information about specific stimulus attributes, we found that the precise coordination of 

high-order spiking events in visual cortex influences perceptual accuracy in the absence 

of firing rate modulation. However, while both early and mid-level cortical areas exhibited 

high-order spiking coordination, perceptual accuracy was associated only with high-

order coordination in area V4. Surprisingly, despite common belief that extrastriate 

feedback projections carry information about behavioral decisions (Gilbert and Li 2013; 

Takeuchi et al. 2011b), we found that only feedforward coordination between spiking 

events is functionally relevant for perception. Thus, incorrect behavioral responses may 

be due, at least in part, to weak feedforward communication between sensory areas, 

which contributes to a loss of stimulus information along the feedforward pathway 

(Smolyanskaya et al. 2015).  

We demonstrate that incorrect perceptual reports can be attributed to an improper 

decoding of sensory information in area V4, but not V1 (Figure IV-1). That is, although 

neuronal firing rates were not different between correct and incorrect trials in any of 

these two areas, only the neurons in V4 failed to encode the task-relevant stimuli when 

behavioral responses were incorrect. We further suggest that the reason for this failure 

of sensory information to reach V4 is the weak intracortical and cortico-cortical spiking 

coordination. Indeed, the signals from V1 must be accurately relayed to V4 and higher 

cortex to support accurate perception (Crick and Koch 1998; Felleman and Van Essen). 
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Consistent with previous theories (Fries 2005; König, Engel, and Singer 1996) we 

propose that the accurate transmission of neural signals from V1 may be accomplished 

by the precise temporal coordination between V1 and V4, and that within the V4 local 

circuits involved in stimulus processing. Further, the elevated spiking coordination in V4 

could either increase the efficacy in driving downstream networks or contribute to an 

increase in cortico-cortical feedforward coordination to higher cortical areas to maintain 

an accurate stimulus representation required for a correct perceptual report. Thus, our 

findings support previous theories (König, Engel, and Singer 1996; Fries 2005) 

hypothesizing that neuronal groups communicate via the precise temporal coordination 

of action potentials.  

 

Figure IV-1 Cartoon depicting our conceptual model – V4 neurons decode the information from upstream areas 
(including V1). Spiking temporal coordination controls perceptual accuracy by modulating the efficacy of cortico-

cortical signaling. 

 

One apparently surprising finding is that feedforward, not feedback, V1-V4 coordination 

is related to perceptual accuracy. Indeed, since the extrastriate feedback to V1 is 

believed to carry top-down information about behavioral context (Lamme, Supèr, and 

Spekreijse 1998; Ungerleider et al. 2008), we expected that correct behavioral 

responses would be correlated with feedback, not feedforward coordination. However, 

our analysis reveals that coordinated activity in V4 occurs after coordinated spiking 

events in V1, and that correct behavioral responses are associated with elevated V1-V4 
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coordination. From a functional standpoint, any neural mechanism relying on 

feedforward coordination of spikes is more efficient. Indeed, feedback coordination 

would require an extra 50-60 ms of processing time in order to transmit sensory 

information to higher cortical areas and influence perception. This suggests that inter-

area spiking coordination may be optimized to facilitate stimulus transmission.  

A possible limitation of our work is the lack of information regarding the identity of the 

neurons emitting spikes in each time bin. Indeed, in order to increase the reliability of our 

measurements, we calculated the coordinated activity in each trial without defining 

population ‘‘words’’, and hence information about the spiking patterns among specific 

groups of visual cortical neurons that are most relevant for driving a correct perceptual 

report is missing. However, it has been suggested that complex network firing patterns 

can be accurately explained by considering the neurons’ firing rates and strength of 

population coupling (Okun et al. 2012), which is a measure related to spiking 

coordination. Furthermore, measuring population word distributions from array 

recordings in awake animals would be extremely challenging given our finite time trial 

structure and session length.   

Our analysis indicates that V4 coordinated events are most likely due to V1 coordination 

propagated via feedforward pathways. However, an alternative scenario is that V1 and 

V4 coordination could instead reflect a common drive to these areas provided by an 

external source which enhances both V1 and V4 coordination. This is unlikely for the 

following reason. The cross-correlation analysis of coordinated events reveals a 

maximum at the expected temporal delay for signals from V1 to V4 (Ungerleider et al. 

2008). Area V2, which receives the major output from V1 is likely to mediate, or 

contribute to V4 coordination, although it is unlikely to mediate coordinated spiking in V1 

via feedback pathways. Indeed, if V2 neurons were the common source of coordinated 
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spiking in V1 and V4, we would have observed that, contrary to our findings, coordinated 

spiking events in V1 and V4 would occur almost simultaneously.   

One potential concern in our study is cortical state. Indeed, it has been shown that 

during wakefulness visual cortex fluctuates through different states of synchrony 

(Beaman, Eagleman, and Dragoi 2017), and that the cortical state of local V4 

populations is correlated with behavioral discrimination performance. Although cortical 

state may be likely to alter the strength of coordination, it would probably increase long 

timescale coordination rather than the brief timescale near-coincident spiking (within 5-

ms bins) reported here. This is not an issue in our study, however, since the long 

timescale coordination was in fact removed as part of our controls when the jittered 

coordination rate was subtracted from the raw coordination. Furthermore, it was reported 

(Beaman, Eagleman, and Dragoi 2017) that increases in the low-frequency synchrony of 

local populations decrease perceptual accuracy, whereas we found interestingly that 

spiking coordination, our measure of brief timescale synchrony, increases it. Additionally, 

the Fano factor and noise correlations, which were previously correlated with attention 

(Mitchell, Sundberg, and Reynolds 2009; Reynolds and Chelazzi 2004; Cohen MR and 

Maunsell JHR 2009; McAdams and Maunsell 1999), were not significantly different 

between correct and incorrect trials in V4 (Figure IV-2; See Figure IV-3 as well for the 

statistics of the eye movements).  
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Figure IV-2 Three measures of neural activity in V4, previously demonstrated to be correlated with attentional 
modulation, do not exhibit significant differences between correct and incorrect trials. a) Firing rates of all V4 

neurons across 12 sessions for the same time interval as in Fig. 3E. b) Fano factor of the firing rates of all V4 
neurons. c) Noise correlations of simultaneously recorded pairs of V4 neurons 

. 

 

Figure IV-3 Coordination rates in V4 are unrelated to eye movements. a) The average traces of eye position as the 
distance from the fixation point, averaged across correct and incorrect trials on a sample session. b) Trial 

distributions of eye velocity for correct and incorrect trials are not statistically different for the same session in a. c) 
Single trial trace of the eye velocity (left y-axis) and number of coordinated events (right y-axis) for a sample trial. 
The length of time bins for both traces is 5 ms. d) The trial by trial correlation coefficient of two traces in c. for all 
trials of a sample session. The only trial with significant correlation coefficient (p<0.01) is shown in black. e) The 
scatter plot of coordination rates and the eye velocity, calculated as the vector derivative of eye position, for all 

trials of a sample session. The correlation coefficient was 0.08 (p>0.4). f) Distribution of correlation coefficients of 
eye velocity and coordination rates for all V4 sessions (p>0.2 for all sessions). 
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Taken together, these findings provide supportive evidences for our hypothesis that in 

incorrect trials, stimulus information is lost in feedforward pathway probably due to weak 

communication. Future research will elucidate whether the encoding strategies revealed 

here – firing rate modulation to encode sensory inputs and precise coordination between 

higher-order assemblies to encode behavioral events – are restricted to early and mid-

level visual cortex or whether they are components of a more general coding strategy 

found in other sensory cortical areas.  
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PART II                               STRATEGY ENCODING IN 

PREFRONTAL CORTEX 

 

ABSTRACT_Foraging animals explore the environment to earn valuable resources, at 

the lowest cost. Previous experiments on various species suggest that they simply 

maximize the current flow of rewards without predicting the future outcome of their 

actions. We found that monkeys are able to predict the reward outcomes to plan ahead, 

when allowed to forage freely in an interactive environment. In uncertain environments, 

the prediction of outcome requires access to a model of the reward structure. We 

recorded the activity of a population of individual neurons in dorso-lateral prefrontal 

cortex (dlPFC) and found representation of an internal reward model in this area. We 

singled out the component in dlPFC activity that represents the reward model and 

showed that this component predicts the next action. We think our naturalistic 

experimental setting as well as multi-dimensional analysis of the neural activity was the 

key to this finding and perhaps can shift the paradigm in studying neural correlates of 

complex behaviors.    
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CHAPTER V    INTRODUCTION TO FORAGING AND OUR 

EXPERIMENTAL SETUP 

Foraging is a natural task with direct implications in the life of modern humans. Foraging 

involves collecting valuable entities also known as reinforcements or rewards in 

uncertain environments. Existing theories of foraging strategy, which are based on 

decades of behavioral experiments on various species, revolve around melioration which 

is essentially maximizing the current flow of reward (Herrnstein, Rachlin, and Laibson 

1997). However, the current flow of reward does not necessarily predict the future. 

Effective foraging requires building an internal representation of the structure of the 

environment to predict the value of each option and develop a strategy. Although there is 

no evidence of optimality of animals’ foraging strategy, survival in environments with 

sparse resources requires that the animals are able to predict the outcomes before 

executing a costly action such as migration or relocation (Smith, 1982). The action 

planning and strategic decision making in the foraging task has not been well studied in 

laboratory settings. We think that one major challenge for studying animals’ action 

planning in laboratory setting is the limitations of the classical paradigms. Essentially, in 

the laboratory designs of a foraging task, interactions of the animal with the environment 

is limited to choosing between predefined choices during a forced time window. This is 

despite the fact that, in many of the previous studies, the determining factor of reward 

scheduling was time (Sugrue, Corrado, and Newsome 2004; Schneider and Davison 

2005; Herrnstein, Rachlin, and Laibson 1997; Gibbon et al. 1988; Aldiss and Davison 

1979). Therefore, fixed structure of the foraging task and forced choice in the classical 

paradigms limit the ability of animals to exploit their full potential to understand the ‘rules 

of the game’.  
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We designed a novel paradigm in which monkeys freely interact with an uncertain 

environment to understand the rules of the reward availability. Our paradigm has several 

advantages over classical experiments: First, Monkeys explore the environment with 

their own pace which allows them to execute a more deliberate strategy compared to 

their behavior in a forced choice task. Second, in our task, the reward sources are 

physically separated and exploring them requires relocation of the animal which is a 

natural way of enforcing a cost to their actions. Relocation, as the cost, does not require 

training the animals with complex associations (Shull and Pliskoff 1967; Sugrue, 

Corrado, and Newsome 2004). Finally, the freedom of movement allows the animal to be 

in a higher arousal state, compared to a restrained position, which improves their 

performance (Mcginley, David, and Mccormick 2015).  

One of the major challenges in studying the neural correlates of foraging in freely moving 

monkeys was recording the activity of individual neurons. The available tethering 

technology which has been used for rodents is obsolete with monkeys due to issues with 

safety of the animals and equipment. We solved this problem by using state of the art 

wireless electrophysiological systems that allow us to record neural activity in 96 

channels with microsecond resolution (Yin et al. 2013, 2014).   

We designed the behavioral task with two reward sources on independent variable-

interval reward scheduling. The underlying mechanism of reward time generation was a 

simple Poisson process, but when the reward became available, it stayed available until 

collected. This process, although simple, has several interesting aspects: 1. The 

probability of reward availability is a function of time which mimics the natural 

characteristic of food availability in nature. 2. The probability of reward accumulates over 

time which implies that an unused resource usually has high chance of reward 

availability. This characteristic encourages exploration rather than exploiting the same 
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resource for a long time. 3. Although the average of inter-reward interval is determined, 

its range varies widely. Therefore, even when the distribution of inter-reward time is 

stationary, the prediction of reward availability is not trivial. For this study, we used 

stationary but independent distributions of inter-reward times for our two reward sources. 

When unbalanced distributions were used, we switched the distributions between two 

sides in the middle of the experiment as well as between experimental sessions.     

We asked the question: “Can monkeys learn the characteristics of variable interval 

reward scheduling when allowed to freely explore reward options?”  To understand the 

representation of the task in the brain, we recorded from population of individual neurons 

in dorso-lateral prefrontal cortex (dlPFC). Despite the fact that the value and reward are 

represented in many brain areas such as lateral and ventral prefrontal cortex (Kennerley 

and Wallis 2009), anterior-cingulate gyrus (Amemori, Amemori, and Graybiel 2015), 

infero-temporal cortex (Sugrue, Corrado, and Newsome 2004) and midbrain (Schultz 

n.d.), dlPFC is known for being involved in goal directed reward seeking behavior 

(Ridderinkhof et al. 2004; Rowe and Passingham 2001) which requires prediction of 

future reward outcomes based on an internal model of the reward availability. Areas in 

lateral PFC work together to integrate task-relevant information over time and use it to 

deliberately plan the next action (Fuster, Neuron, 2001).  Given these evidences, we 

present our hypothesis and findings regarding the foraging strategy of animals in our 

free-moving foraging task and the involvement of dlPFC neuronal population.  

 

The hypothesis 

We expect to observe a more deliberate and complex behavior of monkeys in free-

foraging task compared to previous reports of the same species in head-fixed setting as 

well as other species of animals such as rodents and pigeons. Perhaps, the deliberate 
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behavior we expect is mediated by areas in prefrontal cortex that represent the reward 

scheduling rules and elements of planned actions.  

AIM 1. Understanding the behavioral strategy of the animals and predicting the next 

action. 

AIM 2. Determining if the parameters of the foraging task are represented in the 

population of neurons in dlPFC, as an internal reward model. 

AIM 3. Determining the components of neural activity that predict the next action.   

The setup of the free-moving foraging task 

The foraging environment was a custom made cubic cage (4’L x 2’W x 3’H) with two 

sources of reward on two sides of the longest dimension (Figure V-1). At each source of 

reward, the monkeys pressed a button or lever at any time. Once a button was pressed, 

the reward, if available, was delivered. A sound effect right after the time of the button 

push (less than 50ms later) cued the availability of reward. The reward is a 300 mg food 

pellet (Bio-serve or Test-diet) that is delivered using a pellet dispenser (med-associates). 

To record the neural activity wirelessly, 8 directional antennas were arranged 

strategically around the cage for the best coverage of the electromagnetic signal. To 

avoid electromagnetic interference, minimum amount of metal was used to build the 

cage and the apparatus. An overhead wide-angle camera was secured on the top of the 

cage for video recording.    
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Figure V-1 The overhead view of the experimental cage overlaid with the location and motion (color coded) of the 
monkey every 200ms during an entire sample session. Two reward sources are at the ends of the longest dimension 

and are paired with push buttons or levers. The location and motion were calculated by image processing of the 
captured video (will be discussed in this chapter). 

Variable interval reward scheduling 

The availability of reward is determined using concurrent variable interval (VI) schedules. 

Briefly, the variable interval schedule relies on a Poisson process to determine the 

presence of reward.  Once the reward emerges, it stays available until being collected by 

the monkey. Commonly, the variable interval schedule is called VI-M in which M is the 

expected inter-reward time in seconds. In concurrent scheduling, an independent 

Poisson process determines the availability of reward at each source and a switching 

cost between concurrent options was commonly used to balance the exploration and 

exploitation. When two sources are physically nearby, the switching cost is implemented 

by starting a time-out interval, also known as the change-over delay, every time that the 

monkey switches between the sources. In our task, switching between the sources of 

reward involved walking to the other side of the cage which takes much more effort than 

the effort required for pressing the lever at the same reward source. Therefore, we did 

not implement the change-over-delay, as the previous studies did.  

 

Behavioral training and testing and human interventions 

After habituating each monkey with the experimental cage, we trained them to press the 

button or lever and receive rewards. Over the course of 4-6 months we gradually 
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increased the mean time in the VI schedule to let the monkeys grasp the concept of 

probabilistic reward delivery. Once we started using VI10 (corresponding to an average 

reward rate of 0.1 rew/s) or higher (less than 0.1 rew/s), monkeys started to 

spontaneously switch back and forth between the two sources. If the monkeys 

disengaged from the task or showed signs of stress, we decreased the VI schedule 

(corresponding to increasing the reward rate) and kept it constant for one or two days. If 

the monkey showed strong bias toward one reward source, we used unbalanced 

schedules to encourage the monkeys to explore the less preferred source. 

After training, we tested monkeys using a range of balanced or unbalanced reward 

schedules. For balanced schedules we used VI20 or VI30 on both sides. For unbalanced 

schedules we used VI20 vs VI40, VI15 vs. VI25 or VI10 vs VI30. The unbalanced 

schedules may reverse once, twice or three times during a session which means the 

side with VI20 will be VI40 and the side with VI40 will be VI20 after the reversal. Each 

session lasts until the monkey receives 100 or 200 rewards 1-7 hours including the 1-

hour break after 100 rewards in sessions with 200 rewards. If the monkeys were not 

engaged with the task for more than 2 minutes, we sometimes interrupted to encourage 

them to engage with the task (For the analysis, we exclude all responses which occurred 

more than 100 s or less than 1 s after the previous response. The lower bound of the 

inter-response interval was enforced to avoid contamination in the event-locked neural 

activity).  

 

Analysis of the location and the motions of the monkey 

Each frame of the video from the over-head camera on the experimental cage was 

processed to determine the location and locomotion of the monkey (Figure V-2, step-1). 

First, the background image was calculated by averaging all frames in the same 

experimental session. To determine the location of the monkey in each frame, the 
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background image was subtracted from the frame (Figure V-2, step-2). The background 

removed image was then thresholded to find the dark areas (Figure V-2, step-3). The 

same image frame was also processed using standard edge detection algorithms 

(Figure V-2, step-4). The thresholded and edge detected images were then multiplied 

together and the result was convolved with a spatial filter, which was a circle with the 

rough diameter of the monkey in the over-head image (Figure V-2, step-5). The peak of 

the filtered image was found and marked as the location of the monkey (Figure V-2, step-

6).   

 

Figure V-2 Processing the images of the overhead camera to find the location of the monkey. See the text for 
description of steps 1-6. 

Chronic implantation of the Utah array 

We surgically implanted a 96-channel Utah array (Blackrock Microsystems) in dlPFC 

(anterior of the Arcuate sulcus and dorsal of the Principle sulcus (Figure V-3) of each 

monkey. The stereotaxic location of dlPFC was determined using MRI images prior to 

the surgical procedure. The array was implanted using the pneumatic inserter 

(BlackRock microsystems) after craniotomy and duratomy on the insertion site. The 

pedestal was secured on the skull (on the same side of the array or on the medial line) 

using either bone cement or bone screws and dental acrylic. Two reference wires were 
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passed through the craniotomy under and above the dura mater. After the implant, the 

electrical contacts on the pedestal were protected using a plastic cap for the duration of 

implant except the experiment time. The recording sessions started as early as 1 month 

and as late as 2 years from the surgery date.   

 

Figure V-3 The location of a 96-channel Utah array in dlPFC on the left hemisphere of monkey G.  

Recording and Pre-processing the neural activity 

To record the activity of neurons while minimizing the interference with the behavioral 

task, we used a lightweight, battery powered device (Cereplex-W wireless system and 

Cerebus Neural signal processor, BlackRock Microsystems). First, the monkey was 

head-fixed, the cap was removed, the contacts were cleaned using alcohol and the 

wireless transmitter was screwed to the pedestal. The neural activity was recorded in the 

head fixed position for 10 minutes to ensure the quality of signal before releasing the 

monkey to the experimental cage.  

The spikes were detected online using single or double thresholding of the raw electrical 

activity in each channel, then sorted to remove the artifacts that are introduced by the 

animal’s movements, food chewing and general muscle activity. The perfect grounding 

on the circuitry of the chronic implant and the on-site amplification and digitalization of 

the signal in the wireless transmitter helped minimize the noise in our free-moving 

paradigm. The remaining noise was removed and the spikes from single neurons were 

sorted offline using the automatic algorithms in offline sorter (Plexon inc.).  Briefly, this 

was done using the outlier removal in the space of the first three principle components 
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(outlier threshold = 4-5 x standard deviation), then the principle components were 

recalculated and used to sort single unit spike waveform using expectation maximization 

algorithm. A post cross-channel artifact removal procedure (custom code in Matlab) 

removes the waveforms that occur in more than 80% of the channels within a 1 ms time 

bin. Then each single and multi-units were evaluated using several criteria: showing 

consistent spike waveforms, modulation of activity during the 1 sec interval before or 

after the button pushes and exponentially decaying ISI histogram with no ISI shorter 

than the refractory period (1 ms). All spiking units with consistent waveform shape 

(single units) as well as the spiking units with mixed waveform shapes but clear pre or 

post modulation of firing rates (multi-units) were used (Figure V-4). 

 

Figure V-4  Spike raster of 80 simultaneously recorded single and multi-units starting 3 s before and ending 2 s 
after a sample response. 
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CHAPTER VI   ANALYSIS OF THE BEHAVIORAL STRATEGY 

As discussed earlier, the central theory of foraging strategy in the previous studies 

revolves around the idea of melioration or matching law. Melioration is the process of 

maximizing the current flow of reward, without necessarily taking into account the 

prediction of future reward outcomes. In variable interval schedules, melioration results 

in assigning value to a reward source based on the current history of reward availability. 

In concurrent variable interval tasks, melioration results in choosing the option with the 

maximum local reward rate measured as the percentage of recent responses or trials 

that were rewarded. In variable interval reward scheduling, the local reward rate deviates 

widely from the mean reward rate. Therefore, in concurrent schedules, the reward ratios 

between options dynamically varies after each response. As a result, melioration 

strategy, which follows the local reward rate, leads to dynamically matching the time and 

effort to the option with maximum local reward rate. This observation is called ‘the 

matching law’ and it applies to observed behavior across various species. Usually, the 

matching is formulated as the equality of reward and response ratios. In the case of a 

two-choice task, the formula below conveys the matching law: 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒1

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 1 + 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2
=

𝑟𝑒𝑤𝑎𝑟𝑑1

𝑟𝑒𝑤𝑎𝑟𝑑 1 + 𝑟𝑒𝑤𝑎𝑟𝑑2
 

At the first glance, matching law implies that the subject needs to estimate the reward 

schedules to be able to match response rate to reward rate. For example, if reward 

schedule is VI10 and VI20 for options 1 and 2, then, because the reward rate for option 

1 is twice as option 2, the matching law predicts twice the number of responses on 

option 1 compared to option 2. However, we argue that the subject in the experiment 

does not need to know the ratio of the reward schedules to be able to match responses 

accordingly. In fact, a strategy that is blind to the ratios of schedules can result in 
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matching. This strategy, which we call the ‘win-stay-k-loss-switch’ or WSKLS, is as 

follows: The subject keeps choosing the same option unless not rewarded for k 

consecutive responses (k losses). If a response is rewarded, the number of losses 

resets to zero. When k losses occur, the subject switches to the other option and repeats 

the same algorithm until k losses occur again, in which case, he switches back to the 

first option. Basically, a subject following this strategy does not need to use any 

information regarding the scheduled rewards because the only parameter in this strategy 

is K which is blind to the schedules or their ratio. When we simulated this strategy, we 

observed that the response ratio matches, and precisely speaking, slightly under-

matches, with the reward ratio. Interestingly, slight under-matching has been commonly 

observed across species, which implies that the subjects in the previous studies do not 

necessarily understand the actual reward rates or the rules of the variable interval 

reward scheduling.  

Even though the number of losses (Kloss) is used by foraging animals to make decisions 

in VI reward scheduling, it is independent of the probability of reward availability (Prrew). 

The drawing in Figure VI-1 demonstrates an example case: The reward availability is 

determined in every time bin (10 ms) by a probabilistic process (Figure VI-1, top row). 

The probability of reward availability is calculated as  

𝑃𝑟𝑟𝑒𝑤 = 1 −  (1 − 𝑝)𝑇 

In which p is the probability of reward availability in every time bin and T is the number of 

time bins since the last response. This formula implies that the probability of reward 

availability increases exponentially with time and converges to 1, and after each 

response it resets back to 0 (second row). 6 sample responses are shown from which 

the 1st, 2nd, 3rd and 6th are rewarded (3rd row) because they occur when the reward was 

available. Although Prrew is the highest for the 6th response because it occurs after a long 
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wait after the 5th response, the Kloss for this response is 2 which is the biggest (last row). 

On the other hand, Kloss was 0 for the 2nd, 3rd and 4th responses, where the Prrew for these 

responses is not the highest.  

 

 

Figure VI-1 A Cartoon of variable interval reward schedules for 6 hypothetical trials which are the animals’ 
responses. Rows from top to bottom: The Poisson process determines the reward probability in each time bin, the 

reward availability which takes a binary value, the probability of reward availability calculated as explained in the 
text, delivered reward as a binary variable and the number of losses which is the number of responses since the last 

reward.  

Analyzing 89 experimental sessions from two monkeys also showed that the reward 

outcome is independent of the reward history but not the theoretical probability of reward 

availability. We calculated the percentage of rewarded trials for K loss between 0 and 15 

(which accounts for 71% of 30,958 trials) and Prrew between 0 and 1 (Figure VI-2), and 

we found that it is independent of Kloss while changing linearly with Prrew, as expected.    

 

Figure VI-2 The histogram of the percentage of rewarded trials (responses) as the function of Kloss (left) and Prrew 
(right). 30,958 trials from 89 sessions of two monkeys were combined.  

0 0 1 20
Delivered rew

Rew availability

Trials (responses)
1 2 3 4 5 6

K
loss

Pr
rew

0 5 10 15 0 0.5 1

20

60

100

%
 o

f 
tr

ia
ls

Rewarded

Unrewarded

Rewarded

Unrewarded

K
loss

Pr
rew



 

 72 

 

The analysis of matching behavior for the free-moving foraging task 

We tested matching on the behavioral outcomes of all experimental sessions with 

reward schedules in the range of VI10 to VI40 by calculating the reward and response 

ratios. We also simulated WSKLS strategy in which the reward schedules on two sides 

varied between VI10 and VI40 independently. The distribution of inter-response times in 

the simulation was set as an exponential distribution with the mean of inter-response 

time for monkeys (4 s). We set k to be sampled from a normal distribution with mean of 3 

which is the mean of the Kloss for the trials in which the monkeys switch to the alternative 

option afterward. We observe near matching behavior in both monkeys as well as the 

simulated WSKLS strategy (Figure VI-3). We also simulated two extremes strategies in 

which the subject persists on either side, meaning that K for that side was 10 times 

larger than the other side (We used K=10 for side 1 and K=1 for side 2 to simulate the 

strategy of persisting on side 1 and vice versa). These strategies resemble the case 

where the subject is strongly biased toward one of the sides. Comparing the 

performance of the monkeys to three simulations (WSKLS, persist on 1, and persist on 

2) shows that their performance is closest to WSKLS strategy, which implies that the 

monkeys are following the history of rewards on both sides rather than having a strong 

bias toward either side (Figure VI-3).  
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Figure VI-3 The matching behavior of monkey G and monkey T measured as the fraction of responses on side 1 
as a function of the fraction of rewards on side 1. Also, the outcome of simulation of three strategies: WSKLS, 

persistence on side 1 and persistence on side 2, as explained in the text. 
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We further investigated the inclination of monkeys toward the side with the rich schedule 

or the side with poor schedule. We averaged Kloss before each switch on the rich side 

and on the poor side in each session and observed unbiased distribution of number of 

losses (Figure VI-4). 

 

We also examined the dynamic matching by calculating the reward and response ratios 

locally. Within a window of 30 trials that slides across trials of each session, we 

calculated the reward and response ratios. We used a causal window, meaning the 

ratios were always calculated in the past 30 trials. We also used an exponential temporal 

filter as in (Sugrue, Corrado, and Newsome 2004) so that the most recent trial has the 

largest weight compared to the other trials within the window. Finally, we calculated the 

average reward and response ratio for the trials in the same session for which the 

schedules were constant. Figure VI-5-top shows an example session in which the 

schedules reverse twice after the monkey collects 35 and 135 rewards (this number is 

implicit in the figure because on the x-axis we show the number of trials rather than 

rewards). Compared to a simulated WSKLS strategy with the same parameters as the 

experimental session (Figure VI-5-bottom), the quality of matching is very similar (both 

session shows slightly lower response ratios compared to the reward ratios).  
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Figure VI-4 The scatter of the number of losses before a switch occurs on the rich and poor sides when 
imbalanced reward schedules were used, averaged within each session. The unity line represents the WSKLS 
strategy, a shifted scatter to below the unity line represents insisting on the rich side and a shifted scatter to 

above the unity line represents insisting on the poor side.   
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 Taken together, the strategies that the monkeys follow cannot be separated from a blind 

WSKLS strategy when the behavior was analyzed using the matching law. In fact, the 

matching law explains the observed behavior without specifying the exact behavioral 

strategy. In the following section, we use a different approach to determine the 

behavioral strategy by predicting the next action using the parameters of the reward 

model as well as the actual reward outcomes.  

 

Determining the foraging strategy and predicting the next action 

As we previously discussed, the history of reward in variable interval reward scheduling 

is independent of the probability of reward availability. This implies that if the animal is 

simply meliorating, he is choosing his action solely based on the reward history and not 

the prediction of the future reward. To determine if the prediction of the reward outcome 

plays any role in the animals’ decision making, we calculated Pr rew for each response 
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Figure VI-5 Dynamic of the reward and response ratios calculated for a window of 30 trials prior to the current trial for a 
sample experimental session (top) and simulated WSKLS strategy (bottom). 
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and asked if the animals’ next action can be predicted based on the history of reward 

(Kloss), the probability of reward availability (Prrew) or both. We define the next action 

using two parameters: 1. Choice, which is staying on the same reward option for the 

next response or switching to the other option and 2. Time until next response (TUNR), 

which determines how long the monkey waits before responding again, only when his 

choice was to stay on the same side.  

To determine the effect of Kloss and Prrew on the choice, we separated all unrewarded1 

trials with 0, 1, and 2 losses, sort each group based on the Prrew, and calculated the 

percentage of switches within a 1000-trial sliding window (Figure VI-6). We observed that 

the percentage of switches increase with both Kloss and Prrew.  

 

 

Figure VI-6 The percentage of switches for the trials for which the number of losses was 0, 1 and 2 as a function of 
the Prrew. The percentage of switches was calculated within a 1000-trial sliding window.  

Similarly, we determined the effect of the probability of reward on the TUNR as follows: 

We combined all trials for which the choice is to stay on the same side and the Kloss is in 

the range of 2 and 5 (basically not including the extremes on the Kloss). We also 

                                                           

1 We excluded all rewarded trials from the choice analysis because both monkeys chose to 

stay in 99% of the rewarded trials.  
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separated the trials based on the reward outcome (rewarded vs. unrewarded). Then, we 

separated the 10% of trials with the lowest and 10% of trials with the highest Prrew in both 

groups of rewarded and unrewarded trials. This leads to four categories: low Pr rew, 

unrewarded, low Prrew, rewarded, high Prrew unrewarded and high Prrew, rewarded. We 

sorted the trials in each category based on TUNR and compared the sorted histograms 

(Figure VI-7). We observed that the shortest TUNR occurred when Prrew was low, but the 

reward was delivered (the surprise reward) and the longest TUNR occurred when Pr rew 

was high, but the reward was not delivered (the surprise miss). The TUNR for the two 

other categories were in between.   

 

Figure VI-7 The histograms of TUNR for four categories of trials. The low/high Prrew trials are each 10% of the total 
trials (30,958 trials combined across 89 sessions) that are lower/higher than the 10/90 percentile. Trials in each 

category were sorted ascendingly using TUNR values.  

Our findings imply that the monkeys ‘expectation of reward’ might be an estimation of 

the actual Prrew in this experiment and they would adjust their next action based on their 

expectation of reward as well as the actual reward (Figure VI-8).    
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Figure VI-8 A cartoon of the suggested foraging strategy for predicting the next action in a trial by trial basis. The 
inputs of the strategy come from the internal reward model, which determines the reward expectation of the 
animal, as well as the actual reward outcome of the current trial. The next action (stay/switch and if stay, the time 
until the next response) will be planned using rules of the animal’s foraging strategy.  

 

Summary of results and discussion 

To summarize our findings with the animals’ strategy as a function of Kloss and Prrew, we 

trained regression models for choice and TUNR. To predict the choice, we trained a 

linear regression model on unrewarded trials using log of Kloss and log of Prrew as the 

input and the binary choice as the output. To convert the output of the regression models 

to a binary prediction of choice, we thresholded the output so that the total percentage of 

predicted choices was equal to the total percentage of actual choices. Similarly, we 

trained regression models with TUNR as the output for rewarded and unrewarded trials 

separately. Figure VI-9A summarizes the following strategy: Generally, when the 

monkeys were rewarded, they responded faster next time and were not likely to switch. 

If unrewarded when Prrew was high, they increased the TUNR. However, they were more 

likely to switch to the other side, instead of increasing TUNR, if Kloss was high, similar to 

WSKLS strategy. To determine the statistical significance of the model prediction, we 

cross-validated the regression models by dividing the trials to 20 sub-groups and testing 

the prediction performance on each subgroup while all other 19 groups were used for 

training the model (this procedure was repeated 100 times). The performance of the 

predictor of the choice, which was a binary variable, was calculated as the percentage of 

correctly predicted switches, while the performance of the predictor of TUNR, which was 

Rew

Action

Internal model

(Pr
rew

,K
loss)

Strategy

(choice,tunr)



 

 78 

a continuous variable, was calculated as the correlation between predicted TUNR and 

actual TUNR. The null hypothesis was the predicted performance of the models which 

were trained using shuffled data. We also trained models using either of the reward 

model parameters to compare to the predictors that were trained using both parameters. 

Figure VI-9B shows that the models using both Prrew and Kloss or only Prrew performed 

better than chance, but the models using only Kloss did not (p <1e-4 when both 

parameters were used, p<0.03 when only Prrew was used, and p>0.5 when only Kloss was 

used, Wilcoxon signed rank test with FDR multiple comparison correction).        

 

                     

Figure VI-9 Prediction of the monkeys’ next action. A) the graphical representation of the regression models that 
predict the next action using the parameters of the internal model as well as the reward outcome. B) Prediction 

performance of the models in A when the predictors use Prrew, Kloss or both 

 

Taken together, our findings suggest that the history of reward (K loss) as well the 

probability of the reward availability (Prrew) predict the next action of free-moving 

monkeys in the foraging task. We suggest that these two parameters represent a model 

of the reward scheduling in the monkeys’ brain. In the next chapter we will provide 

evidences that both of these parameters were represented in the activity of neurons in 

dlPFC.  
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CHAPTER VII                             VALUE CODING AND REWARD 

EXPECTATION 

In this chapter, we investigate representation of the internal reward model in the activity 

of neurons in dlPFC. We expect that the activity of neurons in dlPFC represent a variety 

of task relevant and task-irrelevant factors. We are interested to determine the neural 

correlates of the task relevant parameters while avoiding contamination of our findings 

with neural correlates of the task irrelevant parameters. For example, the location of the 

monkey in the cage as well as the locomotion are task irrelevant parameters that are 

potentially modulating the neural activity (Figure VII-1). 

 

Figure VII-1 Population averaged firing rate for the pre-response period (-1.2 to -0.2 s) as a function of location of 
the monkey in a sample session. The location where determined using the image processing technique that we 

presented in CHAPTER V. Both the population averaged firing rate and the location vector were binned using 200 
ms time bins. 

Therefore, before we analyzed the correlation of the neural activity and the parameters 

of the internal model, we decorrelated them from the location and locomotion as 

presented in the next section.  

   

Decorrelating the neural activity from the task-irrelevant parameters 

To decorrelate the neural activity from the task irrelevant parameters, we used Gram–

Schmidt orthogonalization process (Strang 2016). First, we designed a three-
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dimensional space with task irrelevant parameters which are the monkey location in two 

dimensions (locX and locY) and the locomotion which was the vector difference of the 

location (locD). Then we removed the projection of the firing rates of each neuron on 

each orthogonal basis vector on this three-dimensional space. Figure VIII-2 shows the 

correlation matrix of neurons and the task irrelevant parameters before and after the 

orthogonalization.  

 

 

Figure VII-2 Correlation matrix for all neurons in the same session as well as the task-irrelevant parameters 
before(left) and after (right) the orthogonalization procedure. 

The orthogonalization intends to remove the correlation between the neural activity and 

the task-irrelevant parameters, but not necessarily the correlation within the neuronal 

population or within the parameters themselves. 

Decoding Prrew from the population activity 

To determine the correlation of the pre-response firing rates with the Prrew, we first 

compared trial averaged peri-response time histograms of firing rates for high and low 

Prrew subsets, determined as the highest and lowest 20 percentile of the distribution of 

Prrew over the trials of each session (Figure VII-3). 
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Figure VII-3 The distribution of the log probability of the reward availability for all responses combined across 22 
sessions of two monkeys. The responses for which the inter-response time is smaller than 1s or bigger than 100s are 

removed. 

 Figure VII-4 shows a sample neuron for which the pre-response firing rate is higher for 

trials with high Prrew compared to the trials with low Prrew. To quantify this effect, we 

averaged the firing rates for the pre-response time interval (defined as 1.2 s to 0.2 s 

before the response time in each trial), then calculated the Pearson correlation 

coefficient between firing rates and logarithm of the reward probability (Figure VII-4, 

inset).  

 

Figure VII-4 the firing rate of the same neuron for each 200ms time bin starting -3s and ending 1s relative to the 
time of the response averaged for 20th and lower as well as 80th and higher percentile of responses for the log 

reward probability. Inset: A sample neuron showing a positive correlation between the pre-response (-1.2 to -0.2 s) 
firing rate and the probability of reward availability for each response. 

We found that for about 36% of individual neurons in two monkeys (28.6% of neurons in 

monkey G and 38% of neurons in monkey T), the pre-response firing rate significantly 

modulates with the probability of reward availability. The average of the distribution of 

correlation coefficient across neurons was 0.07 which was significantly bigger than zero 
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(p<3e-38 Wilcoxon signed rank test) meaning that more spikes are generated when the 

probability of reward availability is higher. This finding is consistent with previous studies 

suggesting that the extra spikes generated before a valuable motor action increases the 

precision of execution of that action (Ramkumar et al. 2016).    

 

Figure VII-5 Distribution of correlation coefficients between pre-response firing rate and Prrew for all neurons 
combined across 22 sessions of two monkeys. The green sub-population has significant correlation coefficient 

(p<0.01) 

     

We were also able to decode the probability of reward availability from the neural activity 

on a trial by trial basis. We trained a linear regression model using the neural activity of 

the entire simultaneously recorded population, then used it to predict Prrew. To determine 

if the prediction performance is better than chance, we cross-validated the prediction 

and compared to the prediction of another regression model that was trained using 

shuffled trials. Figure VII-6 shows the predicted Prrew vs. the actual Prrew for the original 

and shuffled regression models. To quantify goodness of fit, we calculated the 

correlation coefficient of the predicted Prrew and the actual Prrew for the original and 

shuffled models. Therefore, the goodness of fit is always in the range of ±1. Figure VII-6, 

inset shows the goodness of fit for all sessions. The Prrew was predictable in 21 out of 22 

sessions (p<6e-23, Wilcoxon signed rank test).   
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Figure VII-6 Actual vs predicted probabilities of reward availability. Insets: The goodness of prediction (correlation 
between actual and predicted) for all sessions 

We also examined the effect of the size of the neural population on the prediction 

performance by using a random subset of neurons as the input of the regression model. 

We repeated the analysis for sub-populations of size 1, 5, 10 up to the number of 

recorded neurons in each session with 20 random subsets for each sub-population size. 

We observed that the performance always improves when more neurons are 

participating, but the rate of improvement saturates when the population size is bigger 

than around 15 neurons (Figure VII-7).  

 

Figure VII-7 prediction performance as a function of the number of neurons used. Each line represents a session. A 
total of 22 sessions were tested. 

 

Decoding the Kloss from the population activity 

We performed a similar analysis to show that the Kloss is encoded in the neural 

population as well. The activity of two example neurons are shown in Figure VII-8A. 
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While the neuron on the left panel generates more spikes when Kloss was in the higher 

20th percentile compared to the lower 20th percentile, the neuron on the right panel 

shows the opposite. The modulation of pre-response activity of these two neurons to 

Kloss was also quantified by calculating the correlation coefficient between the log of kloss 

and the firing rates within the pre-response interval (Figure VII-8A, insets). The 

distribution of correlation coefficient across all recorded neurons showed that the 

percentage of neurons sensitive to Kloss was lower than the percentage of neurons that 

were sensitive to Prrew (Figure VII-8B). A decoding analysis, with the exact same setting 

of the decoders that were trained for Prrew, confirm modulation of population activity with 

Kloss (Figure VII-8C and D).  

 

 

Figure VII-8 The history of reward (Kloss) was encoded in the population activity. The details of the analysis were 
exactly the same as what we explained for Prrew. 
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Summary of results and Discussion 

We found that parameters of the internal reward model are represented in pre-response 

activity of individual neurons in dlPFC. Although a considerable percentage of individual 

single or multi-units show significant correlation with the task parameters, the 

performance of decoders of the internal model parameters is not consistently above the 

chance for individual neurons but improves when more neurons are used for decoding.  

Our finding that Kloss is represented in the neural activity was not surprising, since 

previous studies show that individual neurons in infero-temporal cortical areas or 

prefrontal areas represent the local history of reward. However, to our knowledge, none 

of the previous studies show a modulation of neural activity with the actual probability of 

reward availability in any brain areas. This finding is significant because this parameter 

is not observable to the monkeys. However, as we showed before, the probability of 

reward availability in variable reward scheduling is a function of the time interval 

between the responses. We think the lack of previous reports on encoding this 

parameter might be due to the fact that none of the previous studies on variable-interval 

reward scheduling allow the animal to interact with the task in flexible time intervals.  

The fact that we found the representation of the reward model in pre-response neural 

activity suggests that the neurons represent the expectation of reward. Together, with 

the results that were reported in the previous chapter, our findings suggest that the 

monkeys build an internal representation of the reward schedules and use this model to 

estimate the expectation of reward and, consequently, use the internal model to decide 

on their next action. In the next chapter, we discuss how the neural activity predicts their 

strategy.  
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CHAPTER VIII                              DISSECTING COMPONENTS OF 

POPULATION ACTIVITY 

In the previous chapter, we provided evidences that both parameters of the internal 

reward model, the history of reward (Kloss), and the probability of reward availability 

(Prrew), are represented in the pre-response activity of neurons and they can be decoded 

from the activity of a decent size population. In this chapter, we ask the question: Are 

these two reward model parameters represented separately in sub-populations of dlPFC 

neurons or do their representations have a common source? In another words, the 

reward model parameters might not be the actual parameters that are encoded in the 

population of neurons separately, but only correlated with other task-relevant 

components that are actually encoded in the population of neurons. We used Canonical 

Correlation Analysis (CCA) (Thorndike 2000) to identify these components (Figure 

VIII-1). If each component is composed of only one of the reward model parameters, 

then we can conclude that the reward model parameters are encoded in the population 

separately. However, if the components are a mixture of both reward model parameters, 

then we conclude that some other actual task-relevant parameters, which may or may 

not have an explicit interpretation, are encoded in the neural population. To avoid a 

situation that the components are composed of many small portions of parameters or 

neurons, we enforce sparseness criteria. The concept of sparse CCA is explained in the 

following section.   
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Figure VIII-1We used Canonical Correlation Analysis to find pairs of components (yellow), one in the space of the 
reward model parameters and one in the space of the simultaneously recorded individual neurons. The main 

characteristic of the component pair is that they are correlated stronger than any other combinations of 
parameters with any other combinations of neuronal activity.  

Sparse canonical correlation analysis 

Although correlation analysis is immensely popular in understanding neural codes, a 

correlation between two entities do not specify whether they are directly related or 

confounded by a shared source. CCA has been used to identify shared sources that 

might not be directly observable but generate correlation among various entities. 

Essentially, CCA is one step forward to separate direct correlations from induced 

correlations which are correlations that are mediated by shared sources (Figure VIII-2). 

Technically, to find canonical components on two sets of random variable X and Y, we 

first calculate the co-variance matrix of X’Y, then apply singular value decomposition on 

the covariance matrix. The number of components is equal to the rank of the covariance 

matrix which is always equal to, or smaller than, the minimum of the number of variables 

in X and Y.  
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Figure VIII-2 Correlation between random variables can be direct (solid) or induced(dotted). The correlation 
coefficient analysis between individual parameters and the neural activity do not discriminate between direct and 

induced correlations. Canonical correlation analysis can find the hidden variables that are causing induced 
correlation between measured variables.  

Each CCA component is a weighted sum of the original entities. To avoid having non-

zero weights with small values compared to the other weights, we used sparse CCA 

(Witten, Tibshirani, and Hastie 2009) which enforces an adjustable penalty on the sum of 

the weights using LASSO (Tibshiranit 1996) . As a result, the number of the non-zero 

elements in the weight matrix will be minimized.         

Results 

We found CCA components between the reward model parameters (Prrew and Kloss) and 

the recorded neuronal population for 22 sessions. With 2 parameters in the reward 

model and more than 10 neurons in each session, we found two pairs of components in 

each session. Figure VIII-3 shows the scatter plot of the neural components vs. the 

parameter components for all trials of a sample session. The first component pair (left) is 

the pair with stronger correlation. The first parameter component is composed of both 

reward model parameters with balanced contributions. The second pair of components 

shows weaker correlation and the second parameter component is a mixture of both 

reward model parameters with opposite polarities.    
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Figure VIII-3 Pairs of CCA components for a sample session. The first component (left) is the component with the 
strongest correlation while the second component (right) is built upon the residual of the 1st component. Insets: The 

weights of each reward model parameters in each component.  

 

We observed the correlation coefficient between the component pairs is stronger than 

correlation between individual parameters and individual neurons. First, for the session 

in Figure VIII-3, we found a neuron in the population for which the absolute value of 

correlation with Prrew was strongest ( Figure VIII-4A-left). This correlation is weaker than 

the correlation between parameter and neural components. Similarly, we found another 

neuron in the population with the strongest correlation with Kloss and again this 

correlation was weaker than the correlation among components (Figure VIII-4-right).  

  

We observed the same trend in all sessions (Figure VIII-5). Based on this finding, we 

concluded that the actual parameters that are encoded in the population of dlPFC 
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Figure VIII-4 Correlation between individual reward components (Prrew on the left and Kloss on the 
right), with pre-response activity of individual neurons for which the absolute value of the correlation 

was strongest compared to the rest of neurons in the population. 
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neurons are a mixture of the reward model parameters rather than individual 

parameters. 

 

Figure VIII-5 correlation between the 1st pairs of the reward model parameter/ neural activity (blue) for each 
session compared to the correlation of individual parameters with the individual neuron in each session for which 

the absolute value of the correlation was strongest in the population.  

We asked the question of whether or not the components are interpretable mixtures of 

the reward model parameters. We showed in CHAPTER VI that that combination of 

reward model parameters can predict the next action better than individual reward model 

parameters. When we overlapped the 1st component in the space of the reward model 

with the model of action prediction, we observed that this component is the discriminant 

of the choice (Figure VIII-6, left). We predicted the next action using the 1st component 

and the reward outcome and observed that the prediction performance was even better 

than the predictor that uses both parameters of the reward expectation model (Figure 

VIII-6, right, p=0.04 Wilcoxon signed rank test).   
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Figure VIII-6 Prediction of the next action (choice to stay vs. switch) using the 1st canonical component of 
population activity. Left: The orientation of the 1st component vectors in the space of the reward model parameters 

justify that this component is the discriminant of the stay/switch choices. Right: The performance of the choice 
decoder that uses the 1st component only (blue) exceeds the performance of the decoder that uses both parameters 

of the internal model.    

Summary of results 

Using Canonical Correlation Analysis, we found that the neural representation of Prrew 

and Kloss are not segregated in the neural population. The component in the neural 

population that has the strongest correlation with these two parameters was composed 

of balanced portions of both parameters. We show that this component can predict the 

monkey’s choice (to stay on the same side or move to the other side) better than the 

parameters themselves. This finding suggests that the population of neurons in dlPFC 

that we recorded from are involved in planning the next action, consistent with previous 

reports that dlPFC is involved with pre-motor planning. Combined with our finding in the 

previous chapter, we think this area combines the information from the reward 

expectation with motor planning to guide the foraging strategy.   
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CHAPTER IX DISCUSSION AND FUTURE DIRECTIONS 

Based on previous studies, we know that primates are among the most capable species 

in understanding the structure of the environment and they plan their actions. The fact 

that previous foraging experiments do not reveal fundamental differences between the 

foraging strategy of primates and other species might be due to a restricted experimental 

paradigm that limits the capacity of animals’ interaction with the environment. We think 

our choice of free moving paradigm that allows the animal to learn the structure of the 

environment by freely interacting with it was crucial to our novel findings.  

Here, we reported that the foraging strategy of monkeys is based on their understanding 

of ‘rules of the game’. To our surprise, monkeys have an estimation of the probability of 

reward availability which was not a directly observable parameter. We think they must 

have come to this understanding by experimenting with the reward sources, monitoring 

the outcome of their actions in trial by trial basis, and integrating information over many 

trials. We trained regression models and observed that the next action will be predicted 

better than chance only if we take into the account the probability of reward availability 

as one of the predicting factors. We also found that we can decode this parameter from 

the activity of population of neurons in dlPFC.  

As we explained in the introduction, we chose dlPFC to look for representation of the 

internal model because unlike other brain areas that represent value and reward, this 

area is involved in goal directed action and strategic planning. We found that the internal 

model parameters are represented in this area, and we can predict the next action of the 

animal by using components that represent these parameters. However, the 

components that we found do not represent the individual parameters but a mixture of 

them. We speculate that the internal reward model resides in other brain areas which is 
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directly or indirectly connected to the recorded population, so that its activity is 

communicated to the recorded population. Therefore, dlPFC might be receiving the 

information of the reward model from other brain areas, perhaps the ventro-lateral PFC 

(vlPFC), and then plans the next action. We have several reasons for this speculation: 

First, the previous studies show a great degree of similarity between dlPFC and vlPFC in 

reward encoding and strong connectivity between the two areas. However, the 

correlation of vlPFC neurons with the value of reward is slightly stronger (Kennerley and 

Wallis 2009). Therefore, it will not be surprising if an internal model of the task that is 

encoded in vlPFC is reflected in the activity of dlPFC as well. Second, dlPFC is closer to 

motor areas compared to vlPFC which makes it a better candidate to receive the reward 

expectation and plan the next motor action (Ridderinkhof et al. 2004). Third, vlPFC is 

involved in working memory which is required for integration of information over time to 

build the internal reward model (Ridderinkhof et al. 2004; Rowe and Passingham 2001). 

Therefore, we would expect that these two areas work together to use the internal model 

for strategic planning of action. Testing this hypothesis can be a promising direction for 

future research determining the precise role of various PFC areas in complex behavior 

involving continuous interactions between animals and the real world.    
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“After sleeping through a hundred million centuries 

We have finally opened our eyes on a sumptuous planet,  

sparkling with color, bountiful with life 

Within decades we must close our eyes again 

Isn't it a noble and enlightened way of spending our brief time in the sun 

To work at understanding the universe and how we have come to wake up in it? 

 

This is how I answer when I am asked—as I am surprisingly often—why I bother to get 

up in the mornings.” 

 

― Richard Dawkins 
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