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ROLE OF P300 ZZ DOMAIN IN CHROMATIN ASSOCIATION AND HISTONE 

ACETYLATION 

 

Yongming Xue, B.S. 

Advisory Professor: Xiaobing Shi, Ph.D. 

 

Transcription is strictly regulated by numerous factors including transcription 

coactivators. The p300 protein and its close paralogue CREB-binding protein 

(CREBBP, aka CBP) are well-known transcriptional coactivators that have 

intrinsic lysine acetyltransferase activity. The functions of p300/CBP largely rely 

on their capabilities to bind to chromatin and to acetylate the histone substrates. 

However, the molecular mechanisms underlying the regulation of these 

processes are not fully understood.  

Through combination of various biochemical, biophysical and molecular 

approaches, we show that the ZZ-type zinc finger (ZZ) domain of p300 functions 

as a histone reader that specifically binds the N-terminal tail of histone H3. 

Crystal structure of p300 ZZ in complex with the H3 peptide reveals that the ZZ 

domain adopts a negatively charged cavity to anchor Ala1 and Arg2 of H3. The 

ZZ-H3 interaction is not sensitive to common post-translational modifications, 

such as methylation or acetylation, on the H3 tail. Both in vitro and cell-based 

assays reveal that p300 ZZ domain, together with bromodomain (BRD), is 

important in recruiting p300 to chromatin. As a module adjacent to the histone 

acetyltransferase (HAT) domain, ZZ domain is also required for efficient histone 
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acetylation by HAT. The recognition of histone H3 by the ZZ domain selectively 

promotes p300-dependent acetylation specifically on histone H3K27 and H3K18, 

whereas the acetyllysine binding activity of BRD is required for acetylation of 

virtually all lysine residues in H3 and H4 tails. 

p300/CBP are frequently mutated or dysregulated in many human diseases 

including cancer. We found that p300 is overexpressed in small cell lung cancer 

(SCLC), the most aggressive subtype of lung cancer. By CRISPR/Cas9-

mediated gene manipulation, we found that p300 depletion impedes proliferation 

of human and mouse SCLC cells whereas CBP depletion has little or no effect. 

Depletion of p300 reduces the expression of critical oncogenes such as the MYC 

family genes, indicating that p300 promotes SCLC cell growth by sustaining 

oncogene expression.  

In summary, we identified the ZZ domain of p300 as a novel histone H3 

reader that is critical for the chromatin association and enzymatic activity of p300. 

Recognition of H3 by ZZ domain is important to the functions of p300 in human 

cancer.  
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Chapter 1. Introduction 

 

Copyright information: 

Contents of Chapter 1.1-1.3 are based on my review article: Xue Y*, Wen H, Shi 

X*. 2018. CBP/p300: intramolecular and intermolecular regulations. Front Biol. 

13: 168-179. (*: Corresponding authors). I am the primary author of this review. 

Permission to reuse the whole article for thesis was obtained from 

www.copyright.com with license number: 4456690546571. 

 

1.1 Transcriptional coactivators CBP/p300 

Transcription is critical for deciphering the commands encrypted in DNA 

for the completion of various important biological processes. Regulation of this 

molecular event in eukaryotes is complex, but strictly controlled by a vast 

network of regulatory factors. Two of these factors are cAMP response element-

binding protein (CREB)-binding protein (CREBBP, aka CBP or lysine 

acetyltransferase 3A, KAT3A) and its close paralogue p300 (aka KAT3B) (1, 2). 

CBP and p300 were initially identified as interacting proteins of CREB and 

adenoviral protein early region 1A (E1A), respectively (3-7). Both proteins contain 

intrinsic histone lysine acetyltransferase (HAT) activity (8, 9) and constitute the 

KAT3 family of acetyltransferase in mammals. The encoding genes of CBP and 

p300 in human genome are CREBBP and EP300, respectively. 

 Acetylation on histone lysine residues neutralizes positive charge on their 
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side chain, weakens not only the interaction between histones and negatively 

charged DNA but also that between neighboring nucleosomes, creating an open 

chromatin structure that facilitates transcription (10). CBP and p300 have 

promiscuous acetyltransferase activity. In vitro they are able to acetylate multiple 

sites of histones H2A, H2B, H3 and H4 in the context of free histone (8) or 

nucleosome (8, 9, 11).  However, depletion (12-14) or inhibition (14, 15) of both 

CBP and p300 in cells greatly reduces the global level of histone H3K18 and K27 

acetylation without dramatically affecting acetylation at other sites, indicating that 

they are mainly required for H3K18 and K27 acetylation in vivo. In response to 

DNA damage, CBP/p300 acetylate H3K56 on free histones (16, 17), which is 

required for chromatin reassembly after DNA repair (18). In addition to their 

histone substrates, CBP/p300 can also acetylate many other proteins including 

transcription factors (19). By interacting with hundreds of proteins, CBP and p300 

work as scaffolds to assemble transcriptional activation complexes, or serve as  

bridges linking the activator complexes to the RNA polymerase II (Pol II) 

transcription machinery (20-22). Consistent with their roles in transcriptional 

activation, CBP/p300 are mainly localized at regulatory DNA elements, especially 

enhancers (23, 24). In fact, the genomic occupancy of CBP/p300 has been used 

as a predictive marker for active enhancers (25). 

CBP and p300 proteins are composed of multiple conserved domains, 

which, from N- to C-terminus, include a nuclear receptor-interacting domain 

(NRID), a transcriptional adapter zinc-binding (TAZ1) domain, a kinase-inducible 

domain interacting (KIX) domain, a bromodomain (BRD), a combined Really 



3	
	

Interesting New Gene (RING) domain and plant homeodomain (PHD), a HAT 

domain that contains an autoinhibitory loop (AIL), a ZZ-type zinc finger (ZZ) 

domain, another TAZ domain (TAZ2) and an interferon binding domain (IBiD) 

(19). Of note, the TAZ1, RING/PHD and ZZ/TAZ2 domains each forms a 

cysteine/histidine-rich region (CH), named as CH1, CH2 and CH3, respectively. 

BRD, CH2, HAT domain and CH3 form the catalytic core of CBP/p300 (26). 

Other domains and regions are linked to the catalytic core by long stretches of 

unstructured regions (Figure 1A).   
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Figure 1. The regulation of CBP/p300 acetyltransferase activity by AIL, 

RING domain and BRD.  

(A) Schematic representation of human CBP/p300 domain architecture. The 

numbers of amino acid residues of CBP and p300 are labeled. (B) When the 

HAT domain is in its inactive state, the hypoacetylated AIL occupies the 

substrate-binding groove along with the RING domain packed in close proximity 
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to the HAT catalytic site. Upon autoacetylation of the AIL, it is displaced from the 

catalytic site along with the RING domain, making the HAT domain accessible to 

its substrates. (C) The BRD recognizes acetylated histones, preferentially 

acetylated histone H4. Binding of acetylated histone tail by BRD facilitates the 

recruitment of CBP/p300 to chromatin and also increases the access of HAT 

domain to the histone substrate such as the H3 tail. Such an enhancement may 

occur either in cis on the same nucleosome or in trans on adjacent nucleosomes. 
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1.2 Intramolecular regulation mechanisms of CBP/p300 

The functions of CBP/p300, especially their acetyltransferase activity and 

chromatin association, are regulated both intramolecularly by their AIL, BRD, and 

PHD-RING region and intermolecularly by their interacting partners and post-

translational modifications (PTM).   

The AIL (aka autoregulatory loop or activation loop) is a lysine-rich loop 

region adopting a disordered structure within the HAT domain (26, 27) (Figure 

1A). It encompasses amino acid residues (AA) 1520-1581 and 1556-1618 of 

human p300 and CBP, respectively. The AIL was discovered by the Philip Cole 

laboratory when they studied how autoacetylation regulates the HAT activity of 

p300 (28). Up to 17 lysine residues in the AIL and nearby regions of p300 can be 

autoacetylated through an intermolecular mechanism (29, 30). When AIL is 

hypoacetylated, it occupies the catalytic site of HAT domain with its lysine 

residues interacting with the acidic residues in the substrate-binding groove of 

HAT domain. This interaction prevents the positively-charged substrates such as 

lysine-rich histone tails from entering the catalytic site, thus inhibiting the 

acetyltransferase activity of p300 (30, 31). Acetylation on the AIL lysine residues 

disrupts their binding to the substrate-binding groove of HAT domain (30), 

displacing the AIL from the catalytic site. As a result, the catalytic site of HAT 

domain becomes more accessible to its substrates and the acetyltransferase 

activity is thus activated (Figure 1B). In addition to the modulation of HAT activity, 

the AIL also plays a role in regulating CBP/p300 chromatin association. In an in 

vitro system, autoacetylation of the AIL induces the dissociation of p300 from the 
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preinitiation complex (PIC) containing GAL4-VP14 and Mediator at the 

chromatin, which enhances both TFIID binding and transcription initiation (32).  

The CH2 region, located between the BRD and HAT domains, is 

comprised of a RING domain and a PHD. Crystal structure of the p300 catalytic 

core encompassing the BRD, CH2 and HAT domains reveals that CH2 region 

serves as a bridge to connect the BRD and HAT domains (27). The RING 

domain is packed in close proximity to the HAT domain and restricts the access 

of HAT active site to the AIL and other substrates (27, 30). Deletion of the RING 

domain or the mutations in RING that impairs either its structural integrity or its 

interaction with HAT enhances p300 autoacetylation (on K1499) and acetylation 

of p53 substrate (on K382) (27, 30, 33), suggesting RING negatively regulates 

the acetyltransferase activity of p300. Likewise, the RING domain of CBP shows 

a similar regulatory role in both CBP autoacetylation and p53 acetylation (26). 

However, in contrast to the enhanced autoacetylation and p53 acetylation, 

acetylation on histone H3K9 and H3K14 is reduced by the deletion of p300 RING 

domain (33), whereas in the case of CBP, RING deletion has no dramatic effect 

on histone acetylation (26). These results suggest that the regulatory role of 

RING in CBP/p300 acetyltransferase activity may be substrate-specific.  

The PHD of p300 is discontinuous as it is interrupted by the RING domain 

(27). Distinct from the mutations in RING, the mutations either within PHD or at 

PHD-HAT interfaces do not strongly affect p300 autoacetylation or p53 substrate 

acetylation (27). In addition, the PHD is not directly involved in the regulation of 

p300/CBP chromatin binding, because unlike the canonical PHDs that function 
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as readers recognizing modified or unmodified histones (34, 35), the CBP/p300 

PHD does not recognize histones due to the lack of conserved residues critical 

for histone binding (27, 36). To date, the actual function of the PHD in CBP/p300 

remains unknown. 

Acetylated histone lysine can be recognized by specific reader proteins, 

which facilitates the recruitment or retention of transcription co-activators at 

acetylated chromatin loci. BRD is the first discovered reader of histone 

acetylation (Dhalluin et al., 1999). The BRD in CBP/p300 has histone- and 

nucleosome-binding capability (Manning et al., 2001; Ragvin et al., 2004). It 

recognizes multiple acetylated histone peptides in vitro, preferentially di- and tri-

acetylated histone H4 and H2B (27, 36). Substitution of Asn1132 (N1132), a 

conserved residue within the hydrophobic acetyllysine-binding pocket of p300 

BRD, to alanine abolishes its binding to all acetylated histone peptides (27). 

Furthermore, deletion of BRD prevents p300 from forming stable and direct 

interaction with nucleosomes (Manning et al., 2001); and treatment of CBP30, a 

small-molecule inhibitor targeting CBP/p300 BRD, in cells displaces CBP/p300 

from chromatin (37, 38), suggesting that a functional BRD is required for p300-

chromatin association. 

Although CBP/p300 BRD is not adjacent to the HAT domain, it is crucial to 

CBP/p300-mediated histone acetylation. Deletion of BRD greatly impairs the 

ability of p300 to acetylate histones in the contexts of nucleosome (39), native 

chromatin (40) and recombinant chromatin (41) in vitro. In cells, the increase of 

global histone H3K9ac and H3K14ac levels caused by ectopic p300 expression 
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can be diminished by BRD deletion or mutations in its acetyllysine-binding pocket 

(33). Interestingly, in contrast to its critical role in histone substrate acetylation, 

loss of BRD does not significantly affect p300 autoacetylation or the acetylation 

of non-histone substrate such as p53, indicating that BRD is not required for the 

intrinsic acetyltransferase activity of p300 (27, 40, 41). Considering its nature as 

a histone acetylation reader, BRD may function as a “hand” that grabs acetylated 

histone tails, thus increasing the accessibility of nucleosome substrates to the 

catalytic HAT domain of CBP/p300 (Figure 1C). This model is supported by the 

recent finding that preexisting histone H4 acetylation in nucleosomes enhances 

wild-type p300-catalyzed H3K18 acetylation while this enhancement is not 

observed in p300 with BRD deletion or mutations (39). However, it remains 

unclear whether the recognition of acetylated histone H4 by BRD facilitates 

acetylation of the histone H3 within the same nucleosome (in cis model) or in the 

adjacent nucleosomes (in trans model) (Figure 1C). 

The critical role of CBP/p300 BRD in chromatin binding and histone 

acetylation explains the requirement of BRD in CBP/p300-mediated transcription 

enhancement (40) and gene activation (42). Consistently, CBP30 treatment in 

cells, dramatically reduces H3K18ac and H3K27ac level at multiple CBP/p300 

target loci and deactivates transcription of target genes in cells (38, 43). Thus, 

the cooperation between BRD and HAT ensures efficient transcription activation 

by p300/CBP on chromatin.   
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1.3 Intermolecular regulation mechanisms of CBP/p300 

In addition to the intramolecular regulation mechanisms described, 

CBP/p300 are also subject to intermolecular regulation by numerous external 

molecules, which is critical for the functions of CBP/p300 in response to various 

cell signaling pathways (44, 45). Upon the perception of intra- or extracellular 

signals, cells initiate a series of molecular events of signal transduction, leading 

to activation of a group of genes and deactivation of others. CBP/p300 play 

indispensable roles in activating gene expression in response to almost all 

signaling pathways. CBP/p300 receive and execute commands from upstream 

signals through signal-induced protein-protein interactions and PTMs, which 

modulates the dynamics of chromatin association and HAT activity of CBP/p300.  

To date, more than 400 proteins have been reported to interact with 

CBP/p300 (19), including transcription factors, coactivators, mediators and basal 

transcription machinery components. These protein-protein interactions allow 

CBP/p300 to integrate the assembly of transcription activation complexes, to be 

connected with the basal transcription machinery, and to gain access to a subset 

of these proteins for acetylation (19, 46). CBP/p300 contain a number of domains 

that interact with binding partners, including NRID, TAZ1, KIX, TAZ2, IBiD, and to 

a less extent, BRD and HAT domains (46). Notably, a single protein may interact 

with multiple domains or regions of CBP/p300 simultaneously.  

As CBP/p300 do not contain specific DNA-binding domains, recruitment of 

CBP/p300 to specific chromatin regions, such as enhancers or promoters, is 

achieved by interacting with transcription factors that bind to specific DNA 
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sequences. A well-studied example is CREB, a transcription factor that 

recognizes the DNA sequence known as cAMP-response elements (CREs). 

Following the activation of G protein-coupled receptors (GPCRs), accumulated 

cAMP promotes the catalytic subunit of protein kinase A (PKA) to dissociate from 

its regulatory domain, diffuse into nucleus, and phosphorylate the kinase-

inducible domain (KID) of CREB (47). Phosphorylation of KID (at Serine 133) 

greatly increases its binding to the KIX domain of CBP. The CREB-CBP 

interaction mediated by KID-KIX binding thus recruits CBP to CREs, leading to 

the activation of cAMP-responsive genes (7, 48). The hydrogen bond formed 

between phosphorylated Ser133 of CREB KID and Tyr658 of CBP KIX domain 

plays an indispensable role in the interaction between these two domains (49). 

Upon interaction with KIX, the unstructured KID undergoes a coil-to-helix 

transition, forming two helices, with one helix interacting with the hydrophobic 

groove of KIX to stabilize KID-KIX interaction (49).   

Intermolecular protein-protein interactions also directly regulate the HAT 

activity of CBP/p300. P300 was originally discovered as one of the proteins that 

bind E1A, an adenoviral oncoprotein (3, 4). Small E1A protein, the shorter 

isoform of E1A, contains three conserved regions (CR1-3), with CR1 and CR2 

interacting with CBP/p300 and retinoblastoma (RB) proteins, respectively (50). 

Binding of small E1A to the TAZ2 domain of CBP/p300 inhibits their HAT activity 

on histones in vitro, thus repressing CBP/p300-dependent transcription (51-53). 

Infection of cells with adenovirus Type 5 (Ad5) dl1500 that expresses only small 

E1A markedly reduces global H3K18 acetylation level, which mimics the 
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phenotype when both CBP and p300 are depleted (13). Interestingly, small E1A 

can be acetylated at K239 by CBP/p300, implying that as a substrate of 

CBP/p300, small E1A may inhibit HAT activity by directly competing with 

histones for the catalytic site of CBP/p300 (54).  

In contrast to small E1A that inhibits CBP/p300 HAT activity, Mastermind 

like 1 (MAML1), another protein that binds to p300 TAZ2 domain, activates its 

HAT activity both in vitro (55) and in vivo (56), probably through potentiating p300 

autoacetylation (56). MAML1 also helps to recruit p300 to the genomic loci of 

Notch pathway genes (57), suggesting that MAML1 regulates both HAT activity 

and chromatin association of p300. Additionally, dimerization of transcription 

factors that interact with p300 (IRF3, STAT1 etc.) can engage two p300 

molecules, which increases the likelihood of p300 AIL autoacetylation in trans, 

thus enhancing its HAT activity (30).  

In addition to protein interactors, CBP also directly binds to RNAs (58). 

Interestingly, CBP-bound RNAs arise from the chromatin regions with high CBP 

occupancy and a large fraction of them are enhancer RNAs (eRNAs). eRNAs are 

non-coding RNAs transcribed from enhancers (59). Those CBP-bound eRNAs 

directly bind to AIL and displace it from the HAT catalytic site, thus stimulating 

HAT activity in vitro. Consistently, depletion of a certain eRNA in cells greatly 

reduces the H3K18 and H3K27 acetylation level at the same enhancer where 

this eRNA is originated and its associated promoter without affecting CBP 

occupancy (58). This study suggests that when CBP is recruited to active 

enhancers where eRNAs are produced and locally enriched, these eRNAs can 
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bind to the AIL of CBP to stimulate its HAT activity, leading to a local increase of 

CBP-dependent histone acetylation at the same enhancer and associated 

promoters. This finding also indicates that in addition to AIL autoacetylation, cells 

may employ multiple mechanisms to ensure AIL is displaced from the HAT active 

site, safeguarding histone acetylation and gene activation. 

While CBP/p300 catalyze lysine acetylation on histones and non-histone 

proteins, they themselves are also subject to PTMs, such as phosphorylation, 

methylation and SUMOylation, which in turn affects the functionality and 

homeostasis of CBP/p300.  

CBP/p300 can be phosphorylated at various sites. For example, AKT 

phosphorylates p300 at S1834 (60), ERK1/2 phosphorylate p300 at S2279, 

S2315 and S2366 (61), and mTORC1 phosphorylates p300 at S2271, S2279, 

S2291 and S2315 (62). All these phosphorylation events stimulate HAT activity. 

In contrast, PKC-catalyzed p300 phosphorylation at S89 inhibits the catalytic 

activity of p300 (63). The mechanisms by which phosphorylation at the N- or C-

terminal distal regions regulate the HAT domain that is located in the central 

region of p300 have remained elusive. However, Wan et al. recently showed that 

mTORC-catalyzed p300 phosphorylation in the C-terminal region abrogates the 

interaction between p300 HAT and RING domain, thus releasing the HAT 

catalytic site from the RING domain-mediated inhibition (62). This finding 

indicates the existence of crosstalk between inter- and intramolecular regulation 

mechanisms of CBP/p300. Phosphorylation can also regulate CBP/p300 

homeostasis. For instance, phosphorylation of p300 S106 by ATM contributes to 
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p300 stabilization in response to double-strand breaks (DSBs) (64) while 

MAPK/AKT-catalyzed p300 S1834 phosphorylation induces p300 degradation 

during nucleotide excision repair (NER) (65).   

In addition to phosphorylation, other PTMs also contribute to CBP/p300 

regulation. Coactivator-associated arginine methyltransferase 1 (CARM1) 

interacts with and methylates CBP/p300 at multiple arginine residues (66-68). 

Methylation of arginine residues at different regions has distinct regulatory 

outcomes. For example, methylation of the arginine residues within the KIX 

domain of disrupts CBP/p300-CREB interaction, thus reducing the recruitment of 

CBP/p300 to the chromatin of CREB target loci (67) whereas methylation of the 

arginine residues located downstream of KIX increases the recruitment of CBP to 

estrogen receptor (ER)-responsive target genes and enhances CBP HAT activity 

(68, 69). Additionally, SUMOylation of CBP/p300 on the lysine residues upstream 

of BRD negatively regulates CBP/p300-mediated transcription, probably through 

the recruitment of transcriptional corepressor Daxx (70, 71). 

A summary of both intramolecular and intermolecular mechanisms 

regulating p300/CBP is depicted in Figure 2. In the future, a deeper 

understanding of how all the regulatory regions coordinate with each other in the 

context of the complete CBP/p300 proteins will be required.  
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Figure 2. Summary of intramolecular and intermolecular mechanisms 

regulating CBP/p300.  

The mechanisms regulating CBP/p300 acetyltransferase activity (A) and 

chromatin association (B) are shown. Lines with arrows indicate positive 

regulation whereas blunt-ended lines indicate negative regulation. *: the negative 

regulatory role of the RING domain in CBP/p300 acetyltransferase activity is only 

observed on non-histone substrates. 
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1.4 Physiological roles of CBP/p300 

CBP/p300 are essential for various cellular processes such as cell 

proliferation, differentiation and apoptosis (45). They play critical roles in mammal 

development, memory consolidation and pathogenesis.    

Mice homozygous null for either CBP (Crebbp-/-) or p300 (Ep300-/-) are 

embryonic lethal (72-74). Crebbp-/- mice die around embryonic day 10.5~12.5 

(E10.5~E12.5) (72) while Ep300-/- die around E9.0~E11.5 (73). Embryos from 

both mutants display severe defects in growth and neural tube closure (73). In 

addition, Crebbp+/- Ep300+/- double heterozygotes are also embryonic lethal and 

single heterozygotes show reduced viability and multiple developmental defects 

(73, 75, 76). These studies indicate that CBP and p300 exert overlapping 

functions and that there may be a significant dosage requirement for both genes 

during embryonic development.  

Heterozygous mutations/deletions of CREBBP or, less commonly, EP300, 

cause Rubinstein–Taybi syndrome (RTS) (77, 78), a human genetic disorder 

characterized by mental retardation, broad thumbs and toes, craniofacial defects 

and cardiac abnormalities (79). Consistently, monoallelic loss (75, 76) or 

truncation of Crebbp (80) in mice also causes phenotypes reminiscent of RTS.  

In addition, both CBP (75) and p300 (81) are crucial for hematopoiesis. 

However, they seem to play distinct roles in this process. CBP, but not p300, is 

critical to hematopoietic stem cell self-renewal while p300 plays more important 

roles in hematopoietic differentiation (82). Furthermore, CBP is also required for 

long-term memory consolidation in mice brain (83-85). The expression of 
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deactivated or truncated CBP in mice causes defects in long-term memory 

formation and synaptic plasticity through a dominant-negative mechanism (86). 

CBP/p300 are involved in a number of human cancers. Somatic mutations 

of CREBBP and EP300 frequently occur in multiple types of malignancies (87), 

such as colorectal cancer (88, 89), lung cancer (88, 90), breast cancer (88), skin 

cancer (91) and lymphoma (92-94). Most of these mutations are missense 

mutations clustering within HAT domain or its adjacent regions as well as 

frameshifts and nonsense mutations resulting in protein truncations (Figure 3) 

(92, 93, 95), implying that inactivation of CBP/p300 acetyltransferase activity may 

contribute to tumorigenesis. In addition, CREBBP, and less commonly, EP300, 

are targets of chromosome translocations. MLL-CREBBP (96, 97), MLL-EP300 

(98), MOZ-CREBBP (99) and MOZ-EP300 (100) translocations have been 

implicated in acute myeloid leukemia (AML) and myelodysplastic syndrome. 

The precise roles of CBP/p300 in cancers are complicated. They function 

as tumor suppressors in certain types of cancers, such as colon cancer (101, 

102) and B-cell lymphoma (103). Recently, the elegant work from four labs 

clearly demonstrate the function and mechanism of CBP in B-cell lymphoma 

(103-106). Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) 

are the two most common types of non-Hodgkin lymphomas derived from 

germinal center (GC) B cells. The mutation rates of CREEBP in DCBCL and FL 

are around 30% and 60%, respectively (92, 93, 107). In comparison, EP300 is 

less frequently mutated in FL and DLBCL. Although GC B cells-specific knockout 

of Crebbp alone is not sufficient to drive oncogenic transformation in mice, it 
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cooperates with Bcl2 overexpression, an event that frequently co-occurs with 

Crebbp mutations in human FL and DLBCL, to promote lymphomagenesis (104, 

106), indicating Crebbp is a tumor suppressor gene. Mechanistically, CBP 

directly binds to the promoter and enhancers of a large number of genes involved 

in B cell signaling and GC exit (104) in GC B cells. Loss of CBP represses the 

expression of these target genes by reducing the histone H3K27 acetylation level 

at their enhancers (103, 104). As most CBP target genes are also occupied by 

the BCL6-containing transcription repressor complex (103, 104), the function of 

this repressor complex may become more dominant on these genes when CBP 

is depleted, which contributes to the silencing of these genes and 

lymphomagenesis (103). Interestingly, the timing of CBP mutation matters in 

lymphoma because loss of Crebbp in early stages of lymphopoiesis is 

advantageous for lymphoid transformation whereas Crebbp loss after lymphoid 

fate commitment does not show an obvious phenotype (105). 

CBP/p300 are also reported to play roles in promoting oncogenesis or 

disease maintenance in other types of cancers. For example, high expression of 

CBP/p300 was correlated with poor prognosis in prostate cancer (108), 

hepatocellular carcinomas (109) and lung cancers (110, 111). In addition, p300 is 

required for androgen receptor (AR) expression and prostate tumorigenesis in a 

PTEN-deficient mouse model (112). CBP/p300 also work as the coactivators of 

AR to support the androgen-induced gene expression in prostate cancer (113). 

Consistently, small-molecule inhibitors targeting the CBP/p300 HAT domain 

efficiently reduces prostate cancer cell viability and represses tumor growth (15, 
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114).  Furthermore, CBP/p300 also facilitate the induction and maintenance of 

AML both in vitro and in vivo (115), which may partially be dependent on their 

interaction with c-Myb (116, 117). The oncogenic roles of CBP/p300 in AML 

suggest that they may be promising therapeutic targets (115, 118). 
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Figure 3. Mutation diagrams of human CREBBP and EP300 genes based on 

215 cancer genomic studies.  

The mutation diagrams of human CREBBP (A) and EP300 (B) genes were 

obtained from cBio Cancer Genomics Portal (http://cbioportal.org) (119, 120) on 

4/27/2018. Mutation types and corresponding color codes are as follows: 

Green: missense mutations. Black: truncating mutations (nonsense, nonstop, 

frameshift deletion or insertion, splice site variant). Brown: in-frame deletion, in-

frame insertion. Purple: all other types of mutations. 
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1.5 ZZ-type zinc finger (ZZ) domain 

The ZZ domain is a small (~45 AA) motif with a cross-braced zinc finger 

topology. It uses s cysteine residues and 2 histidine residues to coordinate 2 Zn2+ 

ions (121). This domain was named ZZ for its capacity to bind two Zn2+ ions 

(122). The ZZ domain was originally identified in dystrophin, a cohesive protein 

critical to muscle fiber integrity, and its related proteins (122). Dystrophin is a vital 

subunit of the dystrophin-associated protein complex that connects the actin 

cytoskeleton of muscle fibers to the surrounding extracellular matrix (123). The 

ZZ domain of dystrophin is located within its C-terminal cysteine-rich domain and 

is required for its interaction with the transmembrane adhesion receptor β-

dystroglycan (124), which is crucial to dystrophin function.  

ZZ domain has been identified in approximately 20 human proteins with 

various functions including chromatin modification, RNA processing, cytoskeletal 

scaffolding, ubiquitin binding or conjugating, and autophagy (121). The 

phylogenetic tree and sequence alignment of the ZZ domains from multiple 

proteins are shown in Figure 4. The function of the ZZ domain has been poorly 

studied. A few ZZ domains were reported to be involved in protein-protein 

interaction. For example, p62 ZZ domain interacts with RIP1 in NF-κB pathway 

(125) and the ZZ domains of the E3 ligase HERC2 (126) and CBP (127) bind 

Small Ubiquitin-like Modifier 1 (SUMO1). However, a more comprehensive 

understanding of ZZ domains’ functions is in need.  
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Figure 4. Phylogenetic tree and sequence alignment of ZZ domains in 

human proteins. 

(A) Phylogenetic tree presentation of ZZ domains in human proteins. (B) 

Sequence alignment of human ZZ domains. Identical residues are in white text 

shaded in red. Conserved residues are in red text and framed by blue line. 

Figure 4 is adapted from Mi W, Zhang Y, Lyu J, Wang X, Tong Q, Peng D, Xue 

Y, Tencer AH, Wen H, Li W, Kutateladze TG and Shi X. 2018. The ZZ-type zinc 

finger of ZZZ3 modulates the ATAC complex-mediated histone acetylation and 
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gene activation. Nat Comm. 9:3759. Permission to reuse these figures for thesis 

was obtained from www.copyright.com with license number 4456700921676. 
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1.6 Small cell lung cancer (SCLC) 

Lung cancer is divided into three main subtypes (Figure 5A): non-small 

cell lung cancer (NSCLC), small cell lung cancer (SCLC) and lung carcinoid 

tumor (http://www.cancer.org/cancer/lungcancer/index). SCLC, the most 

aggressive subtype, accounts for 10~15% of all lung cancer cases and is tightly 

associated with heavy smoking behavior in patients (128). This disease is 

characterized by rapid tumor expansion, frequent relapse and early metastasis 

(129). SCLC cells are small, poorly differentiated, and likely originated from 

neuroendocrine cells within the pulmonary epithelium (130, 131).  

SCLC is commonly divided into limited stage and extensive stage. Limited 

stage SCLC is confined to a single radiation field in one side of the chest while 

extensive stage SCLC has distant metastases (132). Approximately two-thirds of 

SCLC patients are diagnosed with extensive stage (133). In general, limited-

stage patients are treated concurrently with chemotherapy in combination with 

radiation therapy, whereas extensive-stage patients are treated with 

chemotherapy alone (134). Despite the initial good response to frontline 

therapies in most SCLC patients, the disease will soon relapse with resistance to 

second-line and subsequent therapies. Numerous clinical trials since the 1970s 

have failed and there are still no approved targeted drugs for this disease. The 5-

year survival rate of SCLC patients remains lower than 7% (128, 134). 

The mutation rate of SCLC is among the highest, which can be explained 

by its link to tobacco exposure (135). Genomic studies have revealed multiple 

recurrent genetic alterations in SCLC (Figure 5B, C). For example, loss-of-
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function mutations in TP53 and RB1 are present in almost all SCLC samples (95, 

136, 137). Amplified SOX2 (137) and MYC family genes (138, 139), activated 

phosphatidylinositol 3 kinase (PI3K) pathway and inactivated NOTCH signaling 

pathway are also common (95, 136, 140, 141).  

In addition to the genetic alterations, dysregulated epigenetic mechanisms 

also contribute to SCLC onset and progression. For example, Enhancer of zeste 

homolog 2 (EZH2), a core subunit of the polycomb repressive complex 2 (PRC2) 

and a histone H3K27-specific methyltransferase, is highly expressed in SCLC 

compared to normal lung tissues and other cancer types (142-145). This might 

be the result of E2 promoter binding factors (E2Fs) upregulation, which is caused 

by the universal RB1 loss or frequent E2Fs amplification in SCLC (143). 

Overexpressed EZH2 directly silences TGFBR2, the gene encoding transforming 

growth factor-β (TGF-β) type II receptor (TβRII), by catalyzing histone H3K27 

trimethylation at its promoter, which suppresses TGF-β pathway, enabling SCLC 

cells to escape apoptosis (146). EZH2 also directly silences Schlafen family 

member 11 (SLFN11), a gene critical to DNA damage response, to promote the 

resistance to chemotherapy in SCLC (147). Inhibiting EZH2 with small molecules 

such as EPZ reduces SCLC xenograft tumor growth (145) and prevents the 

acquisition of chemoresistance in SCLC (147).  

While anti-tumor genes are silenced, oncogenes such as MYC, MYCN, 

NFIB, SOX2, NEUROD1 and ASCL1, are expressed at very high levels in SCLC 

(148-153). Recently it has been reported that these highly-expressed oncogenes 

are associated with large and clustered enhancer elements containing 
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extraordinarily high level of H3K27ac (153, 154), namely super-enhancers (155). 

Many factors involved in transcription activation, such as BET proteins, mediator 

components and p300/CBP, are enriched at super-enhancers to maintain the 

activation of those oncogenes (154). Inhibition of the BET family member BRD4 

by JQ1 (156, 157) or the cyclin-dependent kinase CDK7 by THZ1 (153) in SCLC 

suppresses the expression of super-enhancer-associated oncogenes and cell 

growth. 

EP300 and CREBBP are also frequently mutated in SCLC (90, 95, 136, 

137, 158) with mutation frequencies of 13% and 15%, respectively (136). 

Alterations in EP300 and CREBBP are mutually exclusive (95). Except for the 

inactivating translocations, mutations of EP300 and CREBBP are clustered within 

the HAT domain and its adjacent regions (95, 136). However, only a few of 

mutations in HAT domain have been confirmed to reduce HAT activity (95), 

whereas the functional consequences of most mutations are still elusive. SCLC 

patient survival analysis has not revealed any significant differences between 

individuals with and without EP300/CREBBP mutations (136). Interestingly, high 

p300/CBP expression levels have been reported to be associated with poor 

overall survival for resected SCLC patients (111). Direct evidence clearly 

revealing the roles of p300/CBP in SCLC initiation and progression is still lacking.  

The pathogenesis of SCLC is a complex, multi-step process. 

Understanding the genetic and epigenetic basis of SCLC will contribute to the 

development of novel therapies. In the future, more multidisciplinary and 
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comprehensive studies will be required for translating these biological findings 

into clinical practice.  
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Figure 5. Genetic alterations in small cell lung cancer.  

(A) The classification of lung cancers. (B) The somatic mutations of candidate 

genes in SCLC tumor samples. Tumor samples are arranged from left to right. 

Alterations of SCLC candidate genes are annotated for each sample according to 

the color panel below the image. The somatic mutation frequencies for each 

candidate gene are plotted on the right panel. Mutation rates and type of base-

pair substitution are displayed in the top and bottom panel, respectively. 

Significant candidate genes are highlighted in bold (*corrected q-values < 0.05, 
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†P < 0.05, ‡P < 0.01). The respective level of significance is displayed as a 

heatmap on the right panel. Genes that are also mutated in murine SCLC tumors 

are denoted with a § symbol. Mutated cancer census genes of therapeutic 

relevance are denoted with a + symbol. (C) Somatic copy number alterations 

determined for 142 human SCLC tumors by single nucleotide polymorphism 

(SNP) arrays. Significant amplifications (red) and deletions (blue) were 

determined for the chromosomal regions and are plotted as q-values 

(significance < 0.05). 

Figure 5B and 5C are adapted from George, J., J. S. Lim, S. J. Jang, Y. Cun, L. 

Ozretic, G. Kong, F. Leenders, X. Lu, L. Fernandez-Cuesta, G. Bosco, C. Muller, 

I. Dahmen, N. S. Jahchan, K. S. Park, D. Yang, A. N. Karnezis, D. Vaka, A. 

Torres, M. S. Wang, J. O. Korbel, R. Menon, S. M. Chun, D. Kim, M. Wilkerson, 

N. Hayes, D. Engelmann, B. Putzer, M. Bos, S. Michels, I. Vlasic, D. Seidel, B. 

Pinther, P. Schaub, C. Becker, J. Altmuller, J. Yokota, T. Kohno, R. Iwakawa, K. 

Tsuta, M. Noguchi, T. Muley, H. Hoffmann, P. A. Schnabel, I. Petersen, Y. Chen, 

A. Soltermann, V. Tischler, C. M. Choi, Y. H. Kim, P. P. Massion, Y. Zou, D. 

Jovanovic, M. Kontic, G. M. Wright, P. A. Russell, B. Solomon, I. Koch, M. 

Lindner, L. A. Muscarella, A. la Torre, J. K. Field, M. Jakopovic, J. Knezevic, E. 

Castanos-Velez, L. Roz, U. Pastorino, O. T. Brustugun, M. Lund-Iversen, E. 

Thunnissen, J. Kohler, M. Schuler, J. Botling, M. Sandelin, M. Sanchez-

Cespedes, H. B. Salvesen, V. Achter, U. Lang, M. Bogus, P. M. Schneider, T. 

Zander, S. Ansen, M. Hallek, J. Wolf, M. Vingron, Y. Yatabe, W. D. Travis, P. 

Nurnberg, C. Reinhardt, S. Perner, L. Heukamp, R. Buttner, S. A. Haas, E. 
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Brambilla, M. Peifer, J. Sage, and R. K. Thomas. 2015. Comprehensive genomic 

profiles of small cell lung cancer. Nature 524: 47-53. Permission to reuse these 

figures for thesis was obtained from www.copyright.com with license number: 

4324930807544. 
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Chapter 2. Materials and Methods 

 

2.1 Plasmids and molecular cloning. 

The coding DNA sequences (CDS) encoding human full-length p300 

protein and various p300 fragments were amplified from pcDNA3.1-p300 vector 

(#23252) purchased from Addgene. The CDS of full-length p300 and p300 BD-

RING-PHD-HAT-ZZ-TAZ2 region (BRPHZ, amino acids 1035-1830) and cloned 

into pENTR3C vector and subsequently cloned into p3FLAG and pCDH-3FLAG 

destination vectors using Gateway techniques (Invitrogen). The CDS encoding 

the human p300 BD-RING-PHD-HAT-ZZ region (BRPHZ, amino acids 1035-

1720) and ZZ domain (amino acids 1650-1720) were cloned into the pGEX-6P-1 

vector (GE Healthcare). Point mutations and deletions were generated using a 

site-directed mutagenesis kit (Stratagene) and verified by Sanger sequencing.  

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 

guide RNAs (gRNAs) were designed by the online CRISPR design tool of Feng 

Zhang’s lab (http://crispr.mit.edu/) for human and mouse EP300/CREBBP genes. 

Two gRNAs targeting the 5’ region of each gene’s CDS and one non-target 

control gRNA were used in this study. The oligos encoding those gRNAs were 

annealed and then cloned into lentiCRISPRv2 puro vector (#98290, Figure 6) 

purchased from Addgene. 

The detailed information of all the vectors and oligos are included in Table 

1 and 2, respectively.  
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Figure 6. The map of LentiCRISPR v2 Puro vector.  

The vector was linearized by BsmI digestion. The DNAs encoding gRNAs were 

inserted between two BsmI restriction sites. This figure is made using DNASTAR 

SeqBuilder Pro.  
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Name Region cloned Application 

pGEX-p300-ZZ p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ D1664A p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ F1666A p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ Y1668A p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ N1671A p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ R1680C p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ W1681A p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ D1688K p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-ZZ D1690A p300 AA1650-1720 Prokaryotic expression 
pGEX-p300-BRPHZ p300 AA1035-1720 Prokaryotic expression 

pGEX-p300-BRPHZ ∆AIL 
p300 AA1035-1720 
(1520-1581 del) 

Prokaryotic expression 

pGEX-p300-BRPH p300 AA1035-1669 Prokaryotic expression 
pGEX-p300-BRPHZ N1132A p300 AA1035-1720 Prokaryotic expression 
pGEX-p300-BRPHZ D1399A p300 AA1035-1720 Prokaryotic expression 
pGEX-p300-BRPHZ N1671A p300 AA1035-1720 Prokaryotic expression 
pGEX-p300-BRPHZ D1690A p300 AA1035-1720 Prokaryotic expression 
pGEX-p300-BRPHZ N1132A 
D1690A 

p300 AA1035-1720 Prokaryotic expression 

pENTR3C-p300-BRPHZT p300 AA1035-1830 Gateway cloning 

pENTR3C-p300-BRPHZT ∆ZZ 
p300 AA1035-1830 
(1664-1705 del) 

Gateway cloning 

pENTR3C-p300-BRPHZT ∆BRD p300 AA1162-1830 Gateway cloning 
pENTR3C-p300-BRPHZT 
∆ZZ&BRD 

p300 AA1162-1830 
(1664-1705 del) 

Gateway cloning 

pENTR3C-p300-BRPHZT ∆AIL 
p300 AA1035-1830 
(1520-1581 del) 

Gateway cloning 

pENTR3C-p300-BRPHZT N1132A p300 AA1035-1830 Gateway cloning 
pENTR3C-p300-BRPHZT D1399A p300 AA1035-1830 Gateway cloning 
pENTR3C-p300-BRPHZT N1671A p300 AA1035-1830 Gateway cloning 
pENTR3C-p300-BRPHZT D1690A p300 AA1035-1830 Gateway cloning 
pENTR3C-p300-BRPHZT N1132A 
D1690A 

p300 AA1035-1830 Gateway cloning 

pENTR3C-p300FL p300 full-length CDS Gateway cloning 
pENTR3C-p300FL N1671A p300 full-length CDS Gateway cloning 
pENTR3C-p300FL D1690A p300 full-length CDS Gateway cloning 

 

Table 1. Plasmids used in this study. 
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Name Region cloned Application 

pCDH-3FLAG-p300-BRPHZT p300 AA1035-1830 Lentiviral expression 

pCDH-3FLAG-p300-BRPHZT ∆ZZ 
p300 AA1035-1830 
(1664-1705 del) 

Lentiviral expression 

pCDH-3FLAG-p300-BRPHZT ∆BRD p300 AA1162-1830 Lentiviral expression 
pCDH-3FLAG-p300-BRPHZT 
∆ZZ&BRD 

p300 AA1162-1830 
(1664-1705 del) 

Lentiviral expression 

pCDH-3FLAG-p300-BRPHZT ∆AIL 
p300 AA1035-1830 
(1520-1581 del) 

Lentiviral expression 

pCDH-3FLAG-p300-BRPHZT N1132A p300 AA1035-1830 Lentiviral expression 
pCDH-3FLAG-p300-BRPHZT D1399A p300 AA1035-1830 Lentiviral expression 
pCDH-3FLAG-p300-BRPHZT N1671A p300 AA1035-1830 Lentiviral expression 
pCDH-3FLAG-p300-BRPHZT D1690A p300 AA1035-1830 Lentiviral expression 
pCDH-3FLAG-p300-BRPHZT N1132A 
D1690A 

p300 AA1035-1830 Lentiviral expression 

pCDH-3FLAG-p300FL p300 full-length CDS Lentiviral expression 
pCDH-3FLAG-p300FL N1671A p300 full-length CDS Lentiviral expression 
pCDH-3FLAG-p300FL D1690A p300 full-length CDS Lentiviral expression 
p3FLAG-p300FL p300 full-length CDS Transfection 
p3FLAG-p300FL N1671A p300 full-length CDS Transfection 
p3FLAG-p300FL D1690A p300 full-length CDS Transfection 
Human CBP gRNA5-LentiCRISPRv2 NA Gene depletion 
Human CBP gRNA6-LentiCRISPRv2 NA Gene depletion 
Human p300 gRNA1-LentiCRISPRv2 NA Gene depletion 
Human p300 gRNA6-LentiCRISPRv2 NA Gene depletion 
Mouse CBP gRNA3-LentiCRISPRv2 NA Gene depletion 
Mouse CBP gRNA6-LentiCRISPRv2 NA Gene depletion 
Mouse p300 gRNA2-LentiCRISPRv2 NA Gene depletion 
Mouse p300 gRNA5-LentiCRISPRv2 NA Gene depletion 

 
Table 1 (continue). Plasmids used in this study. 
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2.2 Primers 

The sequences and usages of all primers/oligos used in this study are 

described in Table 2. 

Oligo name Sequence (5'-3') Application 

p300-fl-KpnI-F GGGGTACCATGGCCGAGAATGTG Cloning 

p300-fl-XhoI-R GCGCCTCGAGCTAGTGTATGTCTAG Cloning 

p300-BRD-EcoRI-F  CGGAATTCACCCAGTCATCTCC Cloning 

p300-PHD-EcoRI-F  CGGAATTCTACTGTTGTGGCAGA Cloning 

p300-HAT-XhoI-R  GCGCCTCGAGTTAGGTGTAGACAAAGCG Cloning 

p300-ZZ-XhoI-R  GCGCCTCGAGTTACTGCTGGTTGTTGC Cloning 

p300-TAZ2-XhoI-R  GCGCCTCGAGTTACCTGCGAAGCATTTG Cloning 

p300-dAIL-F  GAAAGCATTAAGGAACAGAAACTATATGCC Deletion 

p300-dAIL-R GGCATATAGTTTCTGTTCCTTAATGCTTTC Deletion 

p300-dZZ-F  CACACGCAGAGCCAGGAGAAACTAGGCCTT Deletion 

p300-dZZ-R AAGGCCTAGTTTCTCCTGGCTCTGCGTGTG Deletion 

p300-ZZ-D1664A-F CACACGCAGAGCCAGGCCCGCTTTGTCTACACC Mutagenesis 

p300-ZZ-D1664A-R GGTGTAGACAAAGCGGGCCTGGCTCTGCGTGTG Mutagenesis 

p300-ZZ-F1666A-F CAGAGCCAGGACCGCGCTGTCTACACCTGCAAT Mutagenesis 

p300-ZZ-F1666A-R ATTGCAGGTGTAGACAGCGCGGTCCTGGCTCTG Mutagenesis 

p300-ZZ-Y1668A-F CAGGACCGCTTTGTCGCCACCTGCAATGAATGC Mutagenesis 

p300-ZZ-Y1668A-R GCATTCATTGCAGGTGGCGACAAAGCGGTCCTG Mutagenesis 

p300-ZZ-N1671A-F TTTGTCTACACCTGCGCTGAATGCAAGCACCAT Mutagenesis 

p300-ZZ-N1671A-R ATGGTGCTTGCATTCAGCGCAGGTGTAGACAAA Mutagenesis 

p300-ZZ-R1680C-F CACCATGTGGAGACATGCTGGCACTGTACTGTC Mutagenesis 

p300-ZZ-R1680C-R GACAGTACAGTGCCAGCATGTCTCCACATGGTG Mutagenesis 

p300-ZZ-W1681A-F CATGTGGAGACACGCGCGCACTGTACTGTCTGT Mutagenesis 

p300-ZZ-W1681A-R ACAGACAGTACAGTGCGCGCGTGTCTCCACATG Mutagenesis 

p300-ZZ-D1688K-F TGTACTGTCTGTGAGAAGTATGACTTGTGTATC Mutagenesis 

p300-ZZ-D1688K-R GATACACAAGTCATACTTCTCACAGACAGTACA Mutagenesis 

p300-ZZ-D1690A-F GTCTGTGAGGATTATGCCTTGTGTATCACCTGC Mutagenesis 

p300-ZZ-D1690A-R GCAGGTGATACACAAGGCATAATCCTCACAGAC Mutagenesis 

p300-HAT-D1399A-F TACATATCTTACCTCGCTAGTGTTCATTTCTTC Mutagenesis 

p300-HAT-D1399A-R GAAGAAATGAACACTAGCGAGGTAAGATATGTA Mutagenesis 

p300-BRD-N1132A-F AATGCCTGGTTATATGCCCGGAAAACATCACGG Mutagenesis 

p300-BRD-N1132A-R CCGTGATGTTTTCCGGGCATATAACCAGGCATT Mutagenesis 

 

Table 2. Oligos used in this study. 
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Oligo name Sequence (5'-3') Application 

NBPF1-46k-F TCAAGAGCCCAGCCAACAC ChIP-qPCR 
NBPF1-46k-R CAGCCCTACAGAAGTGCCTTTT ChIP-qPCR 
NOTCH2NL-d4k-F AGCCCTTCGGGACACATG ChIP-qPCR 
NOTCH2NL-d4k-R GGGCTTCCACTCTTCCAAAGT ChIP-qPCR 
DMPK-1k-F CACCCAGAAGAACCCAAAGTTG ChIP-qPCR 
DMPK-1k-R GGAGAACCAGCTTTGCAGACA ChIP-qPCR 
PDE4DIP-U10k-F TCTCGTGCCATCCACTCTATCTC ChIP-qPCR 
PDE4DIP-U10k-R GCCTGGATGTGCTGGACAA ChIP-qPCR 
INSM1-D8k-F CCCAGTTGTTGCCCCAGTAA ChIP-qPCR 
INSM1-D8k-R TGGTGCCCAAGCCATCA ChIP-qPCR 
ASCL1-P-F GCACGCACTGCAACAACAA ChIP-qPCR 
ASCL1-P-R CTCCCGCTCCTTGCAAACT ChIP-qPCR 
ASCL1-D5k-F GAGTTTGAGACTAGCCTGGGAAAG ChIP-qPCR 
ASCL1-D5k-R CCAGCACCTTCAGCTAATTTTTG ChIP-qPCR 
Myc-ChIP-P1k-F CAGCCCGAGACTGTTGCA ChIP-qPCR 
Myc-ChIP-P1k-R TTTCAGAAGAGACAAATCCCCTTT ChIP-qPCR 
Myc-ChIP-P0.1k-F CCCGGGTTCCCAAAGC ChIP-qPCR 
Myc-ChIP-P0.1k-R CCAGACCCTCGCATTATAAAGG ChIP-qPCR 
mMyc-RTq-F GTCTTTCCCTACCCGCTCAAC RT-qPCR 
mMyc-RTq-R GTGGAATCGGACGAGGTACAG RT-qPCR 
mMycl-RTq-F GGCAACAGCAACTGCAAAAG RT-qPCR 
mMycl-RTq-R CAGGCGTTCTGGTCGGTTAG RT-qPCR 
mMycn-RTq-F TGCCCGCGAGAAGCTAGA RT-qPCR 
mMycn-RTq-R CGTGGCCGTGCTGTAGTTT RT-qPCR 
mAscl1-RTq-F TCCTGTCGCCCACCATCT RT-qPCR 
mAscl1-RTq-R AGAACCCGCCATAGAGTTCAAG RT-qPCR 
mNfib-RTq-F CCCGTGCTGTGTCTTATCCA RT-qPCR 
mNfib-RTq-R AGGCAGTCGATCCTCCTAATCTT RT-qPCR 
MYC-RTq-F CGTCTCCACACATCAGCACAA RT-qPCR 
MYC-RTq-R CACTGTCCAACTTGACCCTCTTG RT-qPCR 
MYCL1-RTq-F GGAGCGGACATGGACTACGA RT-qPCR 
MYCL1-RTq-R GCCGTGGAGCGGTAGAAAT RT-qPCR 
MYCN-RTq-F AATTGAACACGCTCGGACTTG RT-qPCR 
MYCN-RTq-R AATGTGCAAAGTGGCAGTGACT RT-qPCR 
ASCL1-RTq-F GAGCAACTGGGACCTGAGTCA RT-qPCR 
ASCL1-RTq-R CCCACTGCTTTTGCACACAA RT-qPCR 
NEUROD1-RTq-F AAGGTGGTGCCTTGCTATTCTAA RT-qPCR 
NEUROD1-RTq-R CCAAGCGCAGAGTCTCGATT RT-qPCR 

 

Table 2 (continue). Oligos used in this study. 
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Oligo name Sequence (5'-3') Application 

CBP-gRNA5-5' CACCGCGCGGGACTGAACACCGCAC CRISPR gRNA 
CBP-gRNA5-3' AAACGTGCGGTGTTCAGTCCCGCGC CRISPR gRNA 
CBP-gRNA6-5' CACCGGCAGCCGAACAGTGCTAACA CRISPR gRNA 
CBP-gRNA6-3' AAACTGTTAGCACTGTTCGGCTGCC CRISPR gRNA 
EP300-gRNA1-5' CACCGGTTCAATTGGAGCAGGCCGA CRISPR gRNA 
EP300-gRNA1-3' AAACTCGGCCTGCTCCAATTGAACC CRISPR gRNA 
EP300-gRNA6-5' CACCGGAATTGGGACTAACCAATGG CRISPR gRNA 
EP300-gRNA6-3' AAACCCATTGGTTAGTCCCAATTCC CRISPR gRNA 
mCBP-gRNA3-5' CACCGGGCCTTCTCAATAGTAACTC CRISPR gRNA 
mCBP-gRNA3-3' AAACGAGTTACTATTGAGAAGGCCC CRISPR gRNA 
mCBP-gRNA6-5' CACCGAGCGGCTCTAGCATCAACCC CRISPR gRNA 
mCBP-gRNA6-3' AAACGGGTTGATGCTAGAGCCGCTC CRISPR gRNA 
mEP300-gRNA2-5' CACCGATGAACGGTTCCATTGGAGC CRISPR gRNA 
mEP300-gRNA2-3' AAACGCTCCAATGGAACCGTTCATC CRISPR gRNA 
mEP300-gRNA5-5' CACCGGGCCACCGACTCCCATGTTG CRISPR gRNA 
mEP300-gRNA5-3' AAACCAACATGGGAGTCGGTGGCCC CRISPR gRNA 
NT-gRNA2-5' CACCGGGATACTTCTTCGAACGTTT CRISPR gRNA 
NT-gRNA2-3' AAACAAACGTTCGAAGAAGTATCCC CRISPR gRNA 

 

Table 2 (continue). Oligos used in this study. 
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2.3 Antibodies 

The information of all the primary and secondary antibodies used in this 

study is included in Table 3. 

 

Antibody Vendor Catalog # Application 

Anti-H3 Abcam Ab1791 WB, ChIP 
Anti-H3K4ac Abcam Ab176799 WB 
Anti-H3K9ac Abcam Ab32129 WB 
Anti-H3K9ac Active Motif 61251 WB 
Anti-H3K18ac Active Motif 39755 WB, ChIP 
Anti-H3K27ac Abcam Ab4729 WB, ChIP 
Anti-acetyl-Histone H4  Millipore 06-598 WB 
Anti-GST Santa Cruz Sc-459 WB 
Anti-FLAG  Sigma F1804 WB, ChIP 
Anti-p300 Santa Cruz Sc-585 WB 
Anti-CBP Santa Cruz Sc-369 WB 
Anti-β-Tubulin Sigma T8328 WB 

IRDye® 800CW Goat 
anti-Rabbit IgG 

LI-COR 926-32211 WB (secondary) 

IRDye® 680LT Goat anti-
Mouse IgG 

LI-COR 926-68020 WB (secondary) 

Peroxidase-conjugated 
Donkey anti-Mouse IgG 

Jackson Immuno 
Research 

715-035-150 WB (secondary) 

Peroxidase-conjugated 
Donkey anti-Rabbit IgG 

Jackson Immuno 
Research 

711-035-152 WB (secondary) 

  

Table 3. Antibodies used in this study.  
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2.4 Cell lines 

The information of all cell lines used was described in Table 4. They were 

mycoplasma-negative and tested for authentication by short tandem repeat 

(STR) profiling by the MDACC Characterized Cell Line Core. 

Cell line Species Cancer type Medium Source 
HEK293T Human Kidney cancer DMEM* ATCC 
HBEC Human Lung epithelial control cell KSFM** Dr. John Heymach 
A549 Human NSCLC RPMI Dr. John Heymach 
H1299 Human NSCLC RPMI Dr. John Heymach 
H1048 Human SCLC HITES*** Dr. Lauren Byers 
H1836 Human SCLC HITES Dr. Lauren Byers 
H209 Human SCLC RPMI**** Dr. Lauren Byers 
H2171 Human SCLC HITES Dr. Lauren Byers 
H524 Human SCLC RPMI Dr. Lauren Byers 
H69 Human SCLC RPMI Dr. Lauren Byers 
H82 Human SCLC RPMI Dr. Lauren Byers 
ID43 Mouse Pre-SCLC RPMI Dr. Kwon-Sik Park 
Kp1 Mouse SCLC RPMI Dr. Julien Sage 
Kp3 Mouse SCLC RPMI Dr. Julien Sage 

Kp3+GFP+Luc Mouse SCLC RPMI Dr. Julien Sage 

Kp12 Mouse SCLC RPMI Dr. Julien Sage 
259-2 Mouse SCLC RPMI Dr. Julien Sage 

 

Table 4. Cell lines used in this study. 

*DMEM: Dulbecco's Modified Eagle Medium	(Cellgro) supplemented with 10% 

fetal bovine serum (FBS) (Sigma). **KSFM:	Keratinocyte serum-free medium. 

***HITES: DMEM/F12 Medium (Cellgro) supplemented with ITS mixture (Lonza, 

containing 0.005 mg/ml Insulin, 0.01 mg/ml Transferrin and 30nM Sodium 

selenite), 10 nM Hydrocortisone (Sigma), 10 nM β-estradiol (Sigma), 4.5 mM L-

glutamine (Cellgro) and 5% FBS (Sigma). **** RPMI: Roswell Park Memorial 

Institute 1640 medium (Cellgro) supplemented with 10% FBS (Sigma). 
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2.5 Protein expression and purification 

The CDS of p300BRPHZ or p300ZZ cloned in the pGEX-6P-1 vector were 

expressed in BL21 Rosetta 2 cells. Protein production was induced with 0.2 mM 

IPTG and cultured overnight at 16 °C in Luria broth (LB) medium supplemented 

with 0.05 mM ZnCl2. The glutathione S-transferase (GST)-tagged proteins were 

purified on glutathione Sepharose 4B beads (Amersham) in binding buffer (50 

mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% NP-40, 1 mM PMSF plus protease 

inhibitors (Roche)) at 4 °C for 4 hours and eluted by 100 mM Tris pH 8.0 

containing 15 mg/mL Reduced Glutathione (Sigma) at 4 °C for overnight. Eluted 

proteins were supplemented with 25% glycerol before frozen at -80 °C. All 

proteins harboring mutations or deletions were expressed and purified as WT 

proteins.  

 

2.6 Peptide microarray and pull-down assays 

 Biotinylated histone peptides bearing different modifications were 

synthesized at CPC, LLC. For peptide microarray, biotinylated histone peptides 

were printed in triplicate onto a streptavidin-coated slide (PolyAn) using a 

VersArray Compact Microarrayer (Bio-Rad). After a short blocking with biotin 

(Sigma), the slides were incubated with the glutathione S-transferase (GST)-

tagged p300 ZZ domain in binding buffer (50 mM Tris-HCl, pH 7.5, 250 mM 

NaCl, 0.1% NP-40, 1 mM PMSF, 20% FBS) overnight at 4 °C with gentle shake. 

After washed with the same buffer, the slides were probed with an anti-GST 

primary antibody and then a fluorescein-conjugated secondary antibody and 
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visualized using a GenePix 4000 scanner (Molecular Devices). For peptide pull-

down, 1 μg of each biotinylated histone peptide was incubated with 1-2 μg of 

GST-fused p300 ZZ domain in binding buffer (50 mM Tris-HCl pH 7.5, 250 mM 

NaCl, 0.1% NP-40, 1 mM PMSF) for overnight with rotation at 4 °C. Streptavidin 

beads (Amersham) were added to the mixture, and the mixture was incubated for 

1 hour with rotation at 4 °C. The beads were then washed three times and the 

bound proteins were analyzed using SDS–PAGE and Western blotting. 

 

2.7 Calf thymus histone pull-down assay 

2 µg GST-tagged p300ZZ domain were incubated with 10 µg of calf thymus 

total histones (Worthington) in binding buffer (50 mM Tris-HCl pH 7.5, 1M NaCl, 

1% NP-40) at 4 °C for overnight with rotation. Glutathione Sepharose 4B beads 

(Amersham) were added to the solution and incubate for 1 h. The beads were 

then washed six times using binding buffer and the bound histones were 

detected using SDS–PAGE and Western blotting. 

 

2.8 In vitro histone acetyltransferase (HAT) assays 

 For HAT assays on recombinant nucleosomes containing full-length histone 

H3.1, purified wild type or mutated p300BRPHZ (300 nM) was incubated with 

recombinant mononucleosome (100 nM) in HAT reaction buffer (50 mM Tris 

pH 8.0, 0.1 mM EDTA, 10% glycerol, 1 mM PMSF and 1mM DTT) in a total 

volume of 50 µL. After pre-warming at 37 °C for 5 minutes, reactions were 

initiated with the addition of acetyl-CoA (Sigma) to a final concentration of 0.1 
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mM and incubated for 10~80 minutes at 37 °C. For assays comparing the HAT 

activities on recombinant nucleosomes containing full-length histone H3.1 and N-

terminally truncated H3.1, wild type p300BRPHZ fragment (50 nM) and 

monobucleosome (500 nM) were incubated under the same condition for 1 to 6 

hours. Reactions were quenched by flash-freezing in liquid nitrogen and then 

analyzed by SDS-PAGE and Western blot analysis. Western blot results were 

quantified by LI-COR Odyssey and normalized to a common standard sample.  

 

2.9 Western blot 

 Cells were lysed in RIPA buffer (50 mM TrisHCl pH7.4, 150 mM NaCl, 2 

mM EDTA, 1% NP-40, 0.1% SDS) and sonicated for 20s at 15% intensity. 

Generally, 15~30 µg protein lysate was loaded into various percentages of SDS-

polyacrylamide gels for electrophoresis in PAGE running buffer (25 mM Tris, 192 

mM glycine, 0.1% SDS, pH8.3). Then proteins were transferred to 0.2 or 0.45 μm 

PVDF membrane in transfer buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, 

20% methanol). The membranes were blocked by TBST buffer (150 mM NaCl, 

10 mM Tris pH8.0, 0.1% Tween20) supplemented with 5% non-fat milk for 1 hour 

at room temperature and then blotted with primary antibodies overnight at 4°C on 

an orbital shaker. After three times of wash by TBST, membranes were 

incubated with secondary antibodies for 1 hour at room temperature and washed 

again by TBST for 3 times. The membranes were then either used for film-

developing in darkroom after incubating with ECL Western Blotting Detection 

Reagent (GE Healthcare) for 5 min or directly scanned by LI-COR Odyssey. 
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2.10 Transfection and lentiviral infection 

Transient transfection was performed using X-tremeGENE DNA 

transfection reagent (Roche). 48 h after transfection, cells were collected for 

Western blot analysis. For packaging lentivirus, 293T cells were co-transfected 

with pMD2.G, pPAX2 (Addgene) and pCDH (or LentiCRISPRv2) constructs using 

X-tremeGENE DNA transfection reagent (Roche). For infections, cells were 

incubated with viral supernatants in the presence of 8 mg/ml polybrene; after 48 

hours, the infected cells were selected with blasticidin (10 µg/ml) or puromycin (2 

µg/ml) for 4-6 days before experiments. 

  

2.11 Salt fractionation 

The method of salt fractionation was modified from Tjian lab protocol (159). In 

short, cells were swollen with hypotonic buffer (10 mM HEPES pH 7.9, 1.5 mM 

MgCl2, 10mM KCl) and lysed by gentle disruption to isolate nuclei. The nuclei 

were incubated with wash buffer (20 mM HEPES pH 7.9, 1.5 mM MgCl2, 0.2mM 

EDTA, 25% glycerol) containing 75 mM NaCl for 30 min at 4 °C and then pelleted 

and the supernatant fraction was collected. The nuclei were then similarly 

washed by wash buffer containing 150mM, 300mM and 600mM NaCl and the 

supernatant fraction of each step was collected (Figure 7). After the final wash 

step, the pellet was resuspended and sonicated before collection. All fractions 

collected were analyzed by SDS–PAGE and Western blotting. 
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Figure 7. The workflow for salt fractionation assay.  
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2.12 Chromatin immunoprecipitation (ChIP) and ChIP-seq 

ChIP analysis was performed as described in our previous papers (160, 

161). In brief, cells were cross-linked with 1% formaldehyde for 10 min and 

stopped by adding 125 mM glycine. The isolated nuclei were resuspended in 

nuclei lysis buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS) and sonicated 

using a Bioruptor Sonicator (Diagenode) for two cycles. The samples were 

immunoprecipitated with 2–4 μg of the appropriate antibodies overnight at 4 °C. 

Protein A/G beads (Millipore) were added and incubated for 1 hour, and the 

immunoprecipitates were washed twice, each with low-salt (20 mM Tris pH 8.0, 

150 mM NaCl, 2 mM EDTA, 1% Triton X-100 and 0.1% SDS), high-salt (20 mM 

Tris pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100 and 0.1% SDS) and 

LiCl buffer (20 mM Tris pH 8.0, 250 mM LiCl, 1 mM EDTA, 1% NP-40 and 1% 

SDS). DNA was eluted from the beads using elution buffer (50 mM NaHCO3, 1% 

SDS) and then reverse-crosslinked, purified using PCR purification kit (Qiagen). 

The purified DNA was analyzed by quantitative real-time PCR on the ABI 7500-

FAST System using the Power SYBR Green PCR Master Mix (Applied 

Biosystems). The primer sequences for ChIP-qPCR are listed in Table 2. 

For ChIP-seq, the purified DNA was sequenced using the Illumina Solexa 

Hiseq 3000. The raw reads were mapped to human reference genome NCBI 37 

(hg19) or the Drosophila melanogaster genome (dm3) by bowtie v1.1.0, allowing 

up to 1 mismatch. Only uniquely mapped reads were retained for peak calling. 

But before that, we use spike-in normalization for sample size correction as 

previously described (162). For simplicity, the reads were downsampled to keep 
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same spike-in reads count in different samples. Then the ChIP-seq peaks were 

called by MACS v1.4.2 with a cutoff of p ≤1e−8, and clonal reads were 

automatically removed by MACS. The ChIP-seq reads density was determined 

by deepTools v2.3.4, and then the average binding profile and heatmap were 

visualized using R v3.2.3. 

 

2.13 ChIP-western blot 

The ChIP-western blot (ChIP-WB) assay was largely similar to ChIP 

assay. Briefly, cells were cross-linked with 1% formaldehyde for 10 min and 

stopped by adding 125 mM glycine. The isolated nuclei were resuspended in 

nuclei lysis buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS) and sonicated 

using a Bioruptor Sonicator (Diagenode). Anti-FLAG M2-conjugated agarose 

beads (Sigma) were incubated with sonicated lysates overnight at 4 °C. The 

beads were washed twice, each with low-salt (20 mM Tris pH 8.0, 150 mM NaCl, 

2 mM EDTA, 1% Triton X-100 and 0.1% SDS), high-salt (20 mM Tris pH 8.0, 500 

mM NaCl, 2 mM EDTA, 1% Triton X-100 and 0.1% SDS) and LiCl buffer (20 mM 

Tris pH 8.0, 250 mM LiCl, 1 mM EDTA, 1% NP-40 and 1% SDS), and the bound 

proteins were analyzed by SDS-PAGE and Western blot. 

 

2.14 RNA extraction, reverse transcription (RT), and RT-qPCR 

Total RNA was extracted using an RNeasy plus kit (QIAGEN) and 

reverse-transcribed using an iScrip reverse transcription kit (Bio-Rad). 

Quantitative real-time PCR (qPCR) analyses were performed using Power SYBR 
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Green PCR Master Mix and the ABI 7500-FAST Sequence Detection System 

(Applied Biosystems). Gene expressions were calculated following normalization 

to GADPH levels using the comparative Ct (cycle threshold) method. The primer 

sequences for RT-qPCR are listed in Table 2. 

 

2.15 Cell proliferation assay 

 Cells were seeded into a 96-well plate for 200~500 cells in 100 µL 

medium per well in triplicate for each time point and their proliferation was 

measured every one or two days depending on the growth rate of those cells. 

There is a tight linear relationship between cell number and the concentration of 

ATP measured in cell lysate. The bioluminescence-based reagents such as 

CellTiter-Glo (Promega) can detect ATP, which provides a sensitive readout of 

cell proliferation. For proliferation measurement, directly add 25 µL CellTiter-Glo 

into each well and gently rock the plate for 2 minutes on an orbit shaker to induce 

cell lysis. Then incubate the plate at room temperature for 10 minutes to stabilize 

luminescent signal before reading it using Fluostar Omega plate reader. 

 

2.16 Statistical analyses  

Data were presented as mean ± s.e.m. unless stated otherwise. Statistical 

significance was calculated by two-tailed unpaired t-test on two experimental 

conditions with P < 0.05 considered statistically significant unless stated 

otherwise. Statistical significance levels are denoted as follows: *P < 0.05; **P < 

0.01. No statistical methods were used to predetermine sample size. 
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Figure 8. The expression, purification and peptide microarray analysis of 

p300 ZZ domain.  

(A) Schematic representation of full-length p300 protein and the prokaryotic 

expression vector of p300 ZZ domain. (B) SDS-PAGE analysis of GST-tagged 

p300 ZZ domain before and after purification. The arrow points out the band for 

GST-p300ZZ. IPTG: isopropyl β-D-1-thiogalactopyranoside. FT: flow-through. (C) 

The histone peptide microarray probed with GST-tagged p300 ZZ domain. 

Histone peptides were printed in triplicate with their names labeled on the left or 

right. 
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Chapter 3. The ZZ Domain of p300 Recognizes Histone H3 to Regulate 

Chromatin Association and Histone Acetylation 

 

Copyright information: 

Contents of Chapter 3.1-3.5 are based on Zhang Y*, Xue Y*, Shi J, Ahn JW, Mi 

W, Ali M, Wang X, Klein BJ, Wen H, Li W, Shi X and Kutateladze TG. 2018. The 

ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone 

H3. Nat Struct Mol Biol. 25: 841–849. (*: Co-first authors). According to this 

journal, authors retain the rights “to reproduce the contribution in whole or in part 

in any printed volume (book or thesis) of which they are the author(s)”.  

 

3.1 p300 ZZ domain is a reader for histone H3 

To determine the function of p300 ZZ domain in histone binding, we 

performed histone peptide microarray using the GST-tagged p300 ZZ domain. 

GST-p300 ZZ showed a molecular weight ~32 kDa on SDS-PAGE (Figure 8A, 

8B). On the histone peptide microarray, p300 ZZ bound to the unmodified H31-21 

peptide and the H31-21 peptides containing mo-, di-, or tri-methylation on H3K4 or 

H3K9, or symmetric (me2S) or asymmetric dimethylation (me2A) on H3R2 or 

H3R17 (Figure 8C), suggesting that the ZZ domain is able to recognize H3 N-

terminal tail independent of methylation on these residues. 

To determine whether p300 ZZ domain specifically binds to histone H3 but 

not other histones, we performed calf thymus histone pull-down assays using 

GST-tagged p300 ZZ domain (Figure 9A). A known histone H3 reader, RBP2 
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PHD1 domain (163), was used as a positive control. The GST protein was used 

as a negative control. Western blots using specific histone antibodies revealed 

that similar to RBP2 PHD1, p300 ZZ specifically pulled down H3, but not other 

histones. Under the same condition, GST alone did not bind to any histone. 

These results demonstrate that p300 ZZ domain is a histone H3-specific reader.   

To identify the minimal region of H3 tail required for p300 ZZ binding, we 

performed histone peptide pull-down using various fragments of histone H3 

(Figure 9B). Consistent with the microarray data, p300 ZZ domain bound strongly 

to the H31-22 peptide. The H31-8 peptide retained sufficient binding to p300 ZZ. 

However, deletion of the first 4 amino acids from the N-terminus of H3 abolished 

its binding to p300 ZZ. As expected, other H3 regions did not bind to p300 ZZ. 

A number of residues on the histone H3 tail can be post-translationally 

modified, more frequently with methylation and acetylation. To determine 

whether methylation or acetylation on histone H3 affects p300 ZZ binding, we 

performed histone peptide pull-down using histone peptides bearing methylation 

or acetylation on various residues (Figure 10A). Consistent with the microarray 

data, methylation or acetylation did not affect the binding of p300 ZZ domain to 

the H3 tail. Furthermore, p300 ZZ did not bind to other regions of histone H3 or 

H4, regardless of PTMs. Tryptophan fluorescence measurements revealed a Kd 

value of 8.8 μM of p300 ZZ domain for unmodified H31-12 peptide, and 7.7 μM or 

7.6 μM for the H3K4me3 or H3K4ac peptide, respectively (Figure 10B). All 

together, these results demonstrate that the ZZ domain of p300 is a H3-specific 

reader that is insensitive to histone modifications.  
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Figure 9. The ZZ domain of p300 binds to histone H3 tail.  

(A) Calf thymus histone pull-down assays of p300 ZZ domain. RBP2 PHD1 or 

GST was used as a positive or negative control, respectively. (B) Peptide pull-

down assays of p300 ZZ domain using the indicated histone H3 peptides. 
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Figure 10. Recognition of H3 by p300 ZZ domain is not sensitive to 

methylation or acetylation on H3.  

(A) Peptide pull-down assays of the p300 ZZ domain with the indicated histone 

peptides. (B) Binding affinities of p300 ZZ domain for the indicated histone 

peptides measured by tryptophan fluorescence. The experiments were carried 

out in triplicate for H3 and H3K4ac and in duplicate for methylated H3 by Yi 

Zhang from the Kutateladze lab at University of Colorado.  
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3.2 The structural basis of H3 recognition by p300 ZZ domain 

Through collaboration with Dr. Tatiana Kutateladze’s lab at University of 

Colorado School of Medicine, we determined the crystal structure of the p300 

ZZ-H3 complex at 2.0 Å resolution. The complex structure was obtained using a 

chimeric construct containing residues 1-6 of H3 linked to residues 1663-1713 of 

p300. The structure showed that two H3-ZZ fusion proteins form complexes in 

which the H3 region of one molecule is bound to the ZZ domain of another 

molecule (Figure 11A). The p300 ZZ domain adopts a cross-brace topology 

stabilized by two zinc-binding clusters, a couple of twisted two- and three-

stranded anti-parallel -sheets, and a short -helix (Figure 11B). The histone 

residues pair with the first -strand (residues 1665-1669 of ZZ), creating the third 

anti-parallel -stand and make extensive intermolecular contacts with the domain 

(Figure 11B). Characteristic -sheet interactions are observed between the 

backbone amides of Ala1, Thr3 and Gln5 of H3 and T1669, V1667 and R1665 of 

the ZZ domain. Ala1 occupies a highly negatively charged binding site where the 

NH3
+ group of Ala1 is anchored through the hydrogen bonds with T1669 and 

N1671 and a salt bridge with D1690 (Figure 11C, D). The guanidinium moiety of 

Arg2 is restrained via a salt bridge with the carboxyl group of D1688 and 

hydrogen bonds with the backbone carbonyl oxygen of E1687, whereas the 

backbone amide of Arg2 is involved in direct and water-mediated hydrogen 

bonding contacts with D1688. The side chain of Lys4 lays in a groove formed by 

the aromatic ring of F1666 and the side chain of D1664, the negatively charged 

carboxylic group of which forms a salt bridge with the -amino group of Lys4 
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(Figure 11B, E). The formation of the salt bridge most likely accounts for the 

indifference of p300 ZZ domain towards PTMs on H3K4, which would augment 

cation- and hydrophobic interactions with F1666 but diminish the electrostatic 

contact with D1664. The side chain of Gln5 is hydrogen bonded to the 

guanidinium group of R1665 (Figure 11E).  

This structural mechanism for the recognition of H3 distinguishes p300 ZZ 

domain from all currently known histone H3 readers. For example, BHC80 PHD 

finger, a H3 reader domain specifically recognizing K4-unmodified H3 tail (164), 

also forms a negatively charged cavity to bind the Ala1 of H3 (Figure 11F). 

However, this binding cavity is located on the opposite side of this domain as 

compared with p300 ZZ (Figure 11C). In addition, unlike ZZ, BHC80 PHD 

contains another site with negative charge to accommodate unmodified Lys4 

(Figure 11F). Methylation on Lys4 disrupts its binding to this negatively charged 

site of BHC80 PHD (164), but does not affect its interaction with p300 ZZ domain 

because ZZ does not have this Lys4-accomadating site (Figure 11C). Therefore, 

the molecular basis of ZZ-H3 interaction indicates that the ZZ domain represents 

a novel family of histone readers. 

 Substitution of N1671, D1688 or D1690, the ZZ domain residues that are 

responsible for binding Ala1 and Arg2 of H3, with an alanine or lysine, abolished 

the ZZ-H3 interaction in peptide pull-down or calf thymus histone pull-down 

assays (Figure 12A, B). Further, mutation of D1664, F1666 or Y1668 also 

substantially reduced the binding, pointing to the essential role of the Lys4 

coordination (Figure 12A, B). 
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Figure 11. Structure of the p300 ZZ-H3 complex. 

(A) The crystal structure of the linked H3-ZZ construct. (B) A ribbon diagram of 

the p300 ZZ domain (light blue) in complex with histone H3 tail (residues 1-6) 

(orange). (C) Electrostatic surface potential of p300 ZZ domain is colored blue 
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(positive charge) and red (negative charge) with the bound histone H3 tail shown 

in stick (green). (D) Zoom-in view of the histone H3 Ala1 binding site. (E) Zoom-

in view of the histone H3 Lys4 binding site. (F) The electrostatic surface potential 

plot of the PHD finger of BHC80 recognizing the N-terminal sequence of histone 

H3 (PDB: 2PUY) (164). 
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Figure 12. Key residues required for ZZ-H3 binding. 

(A) Peptide pull-down assays using wild type and mutated p300 ZZ domain. (B) 

Calf thymus histone pull-down assays of the wild type p300 ZZ domain and the 

indicated mutants. 
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3.3 Recognition of H3 by the ZZ domain is required for p300-chromatin 

association 

Our in vitro data reveal that p300 ZZ domain specifically recognizes the 

histone H3 tail. However, whether the ZZ-H3 interaction is important to the 

functions of p300 in cells is unknown.  

First, we asked the question whether the H3 recognition by ZZ is required 

for p300-chromatin association. To address this question, we attempted to 

determine the chromatin occupancy of the full-length wild-type (WT) p300 or ZZ-

mutants in cultured cells. We cloned the full-length coding DNA sequences 

(CDS) of EP300 gene into either lentiviral vector (pCDH) or retrovirial vector 

(pBABE), and delivered the expressing vectors into H1299 cell line through viral 

infection. Unfortunately, the stable cells thus established failed to express full-

length p300, likely due to the failure of the viruses in packaging the extra-large 

CDS (7.2 kb) of p300.  

To overcome this difficulty, we decided to use the p300 core fragment 

(p300BRPHZT) that contains the BRD, RING, PHD, HAT, ZZ and TAZ2 domains 

(Figure 13A) in our experimental system. The p300BRPHZT fragment cloned in the 

pCDH-3XFLAG vector can be successfully introduced and stably expressed in 

H1299 cells at a reasonable expression level. Therefore, using this p300BRPHZT 

core fragment, we deleted the individual BRD, ZZ, AIL or BRD+ZZ to evaluate 

the importance of these domains to chromatin binding of the p300 core fragment 

in cells (Figure 13A).  
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We performed salt fractionation assay in the cells stably expressing WT 

p300BRPHZT fragment or its counterparts with individual domain deleted (Figure 

13B). The more tightly a protein binds to chromatin, the higher salt concentration 

is needed to wash it off from chromatin. WT p300BRPHZT bound strongly to 

chromatin in cells, as wash buffer containing 0.6 M salt was needed to 

completely wash it off from chromatin. In contrast, ZZ- or BRD-deleted fragments 

bound more weakly to chromatin, as 0.3 M salt can wash them off from 

chromatin. The BRD of p300 is known to bind acetylated histones, preferentially 

acetylated H4 (27). It has been reported that BRD is required for p300 to form 

stable interaction with chromatin (165). The reduced chromatin binding as a 

result of BRD deletion in our salt fractionation assays is consistent with the 

published data. Importantly, simultaneous deletion of both BRD and ZZ domain 

caused a more profound decrease in chromatin binding than single deletions, 

implying an additive effect. As expected, deletion of AIL did not affect chromatin 

binding (Figure 13B). 

 Next, we performed chromatin immunoprecipitation (ChIP) using FLAG 

M2 antibody followed by western blotting (ChIP-WB) of histone H3 to evaluate 

chromatin association of the p300BRPHZT core fragment and the domain-deletion 

mutants (Figure 13C). All FLAG-tagged p300 fragments were expressed at a 

similar level, while the amount of histone H3 pulled down by the ZZ- or BRD-

deletion mutants was much less than that of the WT p300BRPHZT, indicating that 

loss of either domain reduces chromatin binding. Deletion of both domains led to 

a further reduction whereas AIL deletion had little effect. All together, these 
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results suggest that both ZZ and BRD are required for p300-chromatin 

association. 

To further determine the importance of the H3-binding activity of the ZZ 

domain in p300-chromatin association, we introduced histone-binding deficient 

point mutations (N1671A and D1690A, named as ZZmu1 and ZZmu2) into the 

p300BRPHZT fragment (Figure 14A). A BRD point mutant, N1132A (named as 

BRDmu), that fails to bind histone acetylation (27) was also tested. In addition, 

we also constructed p300 fragment carrying D1690A and N1132A double 

mutations (named as ZZmu+BRDmu).  

Both salt fractionation and ChIP-Western assays revealed that mutation of 

either domain reduced p300BRPHZT binding to chromatin and mutations of both 

showed a more severe defect (Figure 14B, C), suggesting that the H3-binding 

activity of the ZZ domain and the histone acetylation binding activity of BRD are 

both required for chromatin association of p300 in cells.   
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Figure 13. Both ZZ domain and BRD are required by p300 for chromatin 

association. 

(A) Schematic representation of full-length p300 protein and the p300 fragments 

stably expressed in H1299 cells. (B) Salt fractionation of H1299 cells stably 

expressing wild type or deletion-mutated FLAG-p300BRPHZT. The workflow for salt 

fractionation assay is shown in Figure 7.	 (C) ChIP-WB analysis of wild type or 

deletion-mutated FLAG-p300BRPHZT in H1299 stable cells. 
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Figure 14. Both the H3-recognition ability of ZZ domain and the acetyllysine 

binding activity of BRD are required by p300 for chromatin association. 

(A) Schematic representation of full-length p300 protein and the p300 fragments 

stably expressed in H1299 cells. (B) Salt fractionation of H1299 cells stably 

expressing wild type or mutated FLAG-p300BRPHZT. The workflow for salt 

fractionation assay is shown in Figure 7.	 (C) ChIP-WB analysis of wild type or 

mutated FLAG-p300BRPHZT in H1299 stable cells. 
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3.4 Recognition of H3 by the ZZ domain facilitates the acetylation of H3K18 

and H3K27 by the HAT domain 

Both BRD and the ZZ domain of p300 are adjacent to the catalytic HAT 

domain. As we discussed in Chapter 1.2, recognition of acetylated histone H4 by 

BRD increases the accessibility of nucleosome substrates to CBP/p300 HAT 

domain, thus contributing to histone acetylation (39). So we speculated that ZZ 

may regulate the enzymatic activity of HAT through a similar mechanism. 

To test this hypothesis, we purified recombinant GST-tagged p300BRPHZ 

fragment (encompassing BRD, RING, PHD, HAT and ZZ domains) and the same 

fragment bearing various deletions/mutations (Figure 15A) and compared their 

enzymatic activity on nucleosomes by in vitro HAT assays. These 

deletions/mutations include ZZ domain deletion, AIL deletion, HAT catalytic dead 

mutation D1399A (HATmu) (166), ZZ domain mutations N1671A or D1690A 

(named as ZZmu1 or ZZmu2, respectively), BRD mutation N1132A (BRDmu), 

D1690A and N1132A double mutations (ZZmu+BRDmu). All the mutations or 

deletions did not affect the protein stability during purification.   

Next we used these fragments as enzymes and recombinant 

mononucleosomes (without pre-existing modifications) as substrate for in vitro 

HAT assays. Equal molar amount of each fragment was used in the assays for 

easy comparison (Figure 15B). Samples were collected at different time points: 

0, 10, 20, 40, 60 and 80 min after reaction, and immunoblotted using specific 

antibodies against H3K4ac, H3K9ac, H3K18ac, and H3K27ac. Total H3 was also 

blotted as a loading control. The fluorescence intensity of each band was 
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measured using Odyssey system. To compare signals from different gels, we 

used pre-modified nucleosomes as a standard to run on each SDS-PAGE gel.  

All values of fluorescence intensity across different gels were compared to the 

common standard sample. All quantifications were based on three biological 

replicates.  
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Figure 15. The p300 fragments used in in vitro HAT assays. 

(A) Schematic representation of p300 fragments used in in vitro HAT assays. (B) 

Western blot analysis showing equal amount of p300 fragments used in the HAT 

assays. 
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As shown in Figure 16, histone acetylation signals gradually increased 

during the time course, indicating the accumulation of products of the HAT 

reaction. All four lysine residues tested, H3K27, H3K18, H3K9 and H3K4, can be 

acetylated by the WT p300BRPHZ enzyme in vitro. Interestingly, deletion of ZZ 

domain greatly reduced acetylation on H3K27 and H3K18 (Figure 16A, B) but not 

on H3K9 and H3K4 (Figure 16C, D), suggesting that the ZZ domain is required 

for efficient acetylation specifically on H3K27 and K18.  

It has been previously reported that deletion of AIL can release the active 

site creating a constitutively active HAT (28). Consistent with this, we found 

deletion of AIL dramatically accelerated the acetylation at all lysine residues at 

early time points such as 10, 20 and 40 min (Figure 16A-D). At 80 min, the 

histone acetylation levels were comparable between reactions with WT and AIL-

deleted enzymes, implying that all substrates were fully acetylated at the last 

time point. This is in agreement with a previously proposed model that the 

hypoacetylated AIL contacts a negatively charged patch on the HAT domain 

surface blocking the active site, whereas acetylation of AIL by HAT releases the 

inhibitory loop, thus freeing the active site (28, 31). As a negative control, HAT 

domain mutation D1399A abolished the acetylation of all sites tested. 
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Figure 16. Deletion of ZZ domain specifically attenuated the acetylation of 

H3K27 and H3K18. 

H3K27ac (A), H3K18ac (B), H3K9ac (C), H3K4ac (D) and H3 (E) western blot 

analysis of	in vitro HAT assays using WT p300BRPHZ or its counterpart harboring 

either ZZ deletion, AIL deletion or loss-of-catalytic activity HAT mutation 

(D1399A), and the reconstituted mononucleosome. Quantification of the HAT 

activity on each lysine was based on the fluorescence signal from three biological 

replicates. A common standard sample is used for normalization in each 

replicate.  
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To further determine whether the regulatory role of ZZ on the HAT activity 

of p300 is dependent on its H3-binding capability, we carried out the same in 

vitro HAT assays to compare WT and ZZ-mutated p300BRPHZ fragment (ZZmu1 or 

ZZmu2) (Figure 17). BRDmu and ZZmu+BRDmu were also included as controls. 

Similar to deletion of ZZ, ZZ point mutations exhibited a much lower HAT activity 

on H3K27 and H3K18 (Figure 17A, B), whereas acetylation of H3K9 and H3K4 

were not reduced compared to the WT p300 fragment (Figure 17C, D). Different 

from ZZ mutations that specific attenuated H3K18 and H3K27 acetylation, BRD 

mutation led to a substantial decrease in acetylation of all lysine residues tested 

(Figure 17A-D). Furthermore, double mutations of both ZZ and BRD totally 

abolished the acetylation of all tested residues (Figure 17A-D). Together, these 

results suggest that the acetyllysine binding function of BRD is necessary for the 

overall catalytic activity of p300BRPHZ on histones, whereas recognition of H3 by 

ZZ domain is specifically required for p300BRPHZ to acetylate H3K18 and H3K27. 

Mutations simultaneously disrupting the functions of both domains may 

completely disable p300’s access to nucleosomes, abolishing acetylation of all 

histone substrates.
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Figure 17. H3 binding by ZZ domain facilitates p300 HAT activity on H3K18 

and H3K27. 

H3K27ac (A), H3K18ac (B), H3K9ac (C), H3K4ac (D) and H3 (E) western blot 

analysis of	in vitro HAT assays using WT or mutated p300BRPHZ and the 

reconstituted mononucleosome. Quantification of the HAT activity on each lysine 

was based on the fluorescence signal from three biological replicates. A common 

standard sample is used for normalization in each replicate.  
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Because the first two residues of H3 (Ala1-Arg2) are critical to the ZZ-H3 

interaction, we speculated that the very N-terminal residues of H3 are also 

required for the acetylation of H3K18 and H3K27 by p300 HAT. To test this 

hypothesis, we carried out in vitro HAT assays of the WT p300BRPHZ fragment 

using recombinant mononucleosomes containing full-length H3 (rNUC_H3_FL) 

or H3 with the first two amino acid residues deleted (rNUC_H3_∆N). We found 

that the removal of Ala1-Arg2 of histone H3 dramatically decreased acetylation of 

H3K27 and H3K18 by p300 HAT (Figure 18A-B), likely due to the reduced ZZ-H3 

interaction. However, since each nucleosome contains two H3 subunits, this 

experiment cannot distinguish whether the recognition of H3 by p300 ZZ 

facilitates the acetylation of K27 and K18 on the same H3 subunit (in cis) or on 

the other H3 subunit in the same or adjacent nucleosomes (in trans). To clarify 

this mechanism, we performed in vitro HAT assays using histone peptides as 

substrates. We incubated the WT p300BRPHZ with the H31-33 peptide or the same 

H3 peptide with the first two amino acids deleted (H33-33). Similar to the results of 

the HAT assays on mononucleosomes, p300BRPHZ catalyzed H3K18ac and 

H3K27ac more efficiently on H31-33 than on H33-33 (Figure 18C), supporting the in 

cis model (but not excluding the in trans model).  
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Figure 18. The first two residues of H3 are required for the acetylation of 

H3K18 and H3K27. 

(A) In vitro HAT assays using WT p300BRPHZ and the reconstituted 

mononucleosome carrying either intact H3.1 (rNUC_H3_FL) or N-terminally 

truncated H3.1 (rNUC_H3_∆N, Ala1 and Arg2 of both H3.1 are deleted). (B) 

Quantification of the HAT activity on H3K18 and H3K27 based on the 

fluorescence signal in (A) from three biological replicates. The 1 hr sample of 

rNUC_H3_FL is used for normalization. (C) In vitro HAT assays using WT 

p300BRPHZ and biotinylated H3 peptides.  
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The in vitro HAT assays demonstrate that recognition of H3 by the ZZ 

domain is required for the HAT domain of p300 to acetylate histone on H3K18 

and H3K27. Next we asked whether this recognition has the same regulatory role 

in cells. To address this question, we utilized the H1299 stable cells systems 

established in Chapter 3.3 and evaluated global histone acetylation levels of 

these H1299 cells by Western bot analysis. First, we compared various H3 and 

H4 acetylation levels in the cells stably expressing WT FLAG-p300BRPHZT, ZZ, 

BRD, or AIL deletion mutants as well as ZZ and BRD double deletion mutants 

(Figure 19A). The Western blotting band intensities were quantified using 

Odyssey and normalized by total H3 or H4 values. Heatmaps were generated 

using the mean values of fold changes relative to the vector controls from three 

biological replicates (Figure 19B). Compared with the control cells infected with 

an empty vector, WT p300BRPHZT-expressing cells showed higher levels of global 

H3K4ac, H3K18ac, H3K27ac and H4 tetra-acetylation (5~8-fold) and a 

moderately higher H3K9ac level (~2-fold) (Figure 19A, B). Compared with the 

WT p300BRPHZT-expressing cells, BRD deletion markedly reduced the acetylation 

levels on all sites tested. In contrast, deletion of the ZZ domain specifically 

decreased H3K18ac and H3K27ac levels, whereas the levels of H3K4ac, 

H3K9ac or H4ac remained largely unchanged. Deletion of both ZZ and BRD 

further reduced acetylation on H3K18 and H3K27 to an undetectable level 

(Figure 19A, B). These results suggest that both BRD and the ZZ domain are 

required for maintaining H3K18 and H3K27 acetylation in cells. Unlike the in vitro 

HAT assays results, deletion of AIL did not dramatically change the acetylation 
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levels of any site in cells (Figure 19A, B). One possible explanation is that the AIL 

region of the ectopic p300BRPHZT fragment is hyperacetylated and stretching out 

from the HAT active site, thus having a minimal inhibitory effect. 

The results above demonstrate that while BRD is required for acetylating 

all lysine residues, the ZZ domain is specifically required by p300 in acetylating 

H3K18 and H3K27 in cells. Next, we sought to determine whether the importance 

of ZZ and BRD in histone acetylation is dependent on their histone-binding 

capabilities. In this regard, we compared the global histone acetylation levels of 

H1299 cells stably expressing WT FLAG-p300BRPHZT and those expressing 

FLAG-p300BRPHZT bearing point mutations in ZZ, BRD or both domains. Similar to 

their respective deletion mutants, the BRD mutant failed to acetylate almost all 

histone H3 and H4 lysine residues tested, and the two ZZ point mutations were 

specifically defective in acetylating H3K18 and H3K27 (Figure 19C, D). Mutations 

in both domains led to a more severe drop in H3K18ac and H3K27ac levels 

compared to the ZZ or BRD single domain mutations (Figure 19C, D).  

Furthermore, in a transient expression system expressing full-length p300 

in 293T cells, introducing the loss-of-function mutations into the ZZ domain also 

attenuated the full-length p300 in acetylating H3K18 and H3K27 (Figure 20A, B). 

Together, these findings reveal that recognition of H3 by the ZZ domain plays a 

critical role in facilitating p300-mediated H3K18 and H3K27 acetylation in cells 

whereas the binding of acetylated histone by BRD is required for the acetylation 

of all lysine residues on H3 and H4.  
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Figure 19. H3 recognition by ZZ domain is critical to p300-mediated H3K18 

and H3K27 acetylation in cells. 

(A) Western blot analysis of histone acetylation levels in whole cell extract of 

H1299 cells stably expressing wild type or deletion-mutated FLAG-p300BRPHZT. 

(B) Heatmap of quantification of the indicated histone acetylation levels from 

three biological replicates as in (A). Total H3 or H4 was used for normalization. 

(C) Western blot analysis of histone acetylation levels in whole cell extract of 

H1299 cells stably expressing wild type FLAG-p300BRPHZT or the indicated 

mutants. (D) Heatmap of quantification of the indicated histone acetylation levels 

from three biological replicates as in (C). Total H3 or H4 was used for 

normalization. 
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Figure 20. H3 recognition by ZZ domain is required by full-length p300 to 

acetylate H3K18 and H3K27 in cells. 

(A) Western blot analysis of histone acetylation levels in whole cell extract of 

293T cells transiently expressing full-length p300 or the ZZ mutants. (B) 

Quantification of the indicated histone acetylation levels from three biological 

replicates as in (A). Total H3 was used for normalization.   
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3.5 Recognition of H3 by the ZZ domain is required for genome-wide p300 

occupancy and p300-dependent deposition of H3K18ac and H3K27ac  

To gain a deeper insight into the role of p300 ZZ domain in regulating 

p300 occupancy and p300-dependent deposition of H3K18ac and H3K27ac 

genome-wide, we performed ChIP-seq analysis in H1299 cells stably expressing 

FLAG-p300BRPHZT or its counterpart harboring ZZ loss-of-function mutations, 

N1671A or D1690A (Figure 21A-C). Western blotting analysis showed that the 

WT and mutant FLAG-p300BRPHZT fragments are expressed at similar levels 

(Figure 21B). We used the anti-Flag M2 antibody to ChIP for FLAG-p300BRPHZT 

fragments and anti-H3K18ac and anti-H3K27ac antibodies to ChIP for respective 

histone acetylation. The ChIPed DNA was sequenced using the Illumina Solexa 

Hiseq 3000 at MD Anderson Cancer Center Science Park Next-Generation 

Sequencing (NGS) Facility. We collaborated with Jiejun Shi from Dr. Wei Li’s lab 

in Baylor College of Medicine (BCM) to analyze the ChIP-seq data. Our lab’s 

previous data of anti-H3K4me1, anti-H3K27me3 and anti-H3K27ac ChIP-seq in 

parental H1299 cells were also used in our analysis.  

Anti-FLAG ChIP in the cells expressing WT FLAG-p300BRPHZT identified 

679 p300BRPHZT binding sites. Compared with the previously published full-length 

p300 binding sites (25, 167), p300BRPHZT binding sites are much broader and the 

peaks are less sharp. To ensure to include the majority of p300BRPHZT binding 

sites, we analyzed ChIP-seq signals spanning a ± 20 kb window centered on 

binding peaks (Figure 21D). Based on pre-existing PTMs on H3K27 in H1299 

cells, we divided the p300BRPHZT binding sites into two groups: H3K27 pre-
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acetylated regions (Group 1) and H3K27 pre-methylated regions (Group 2) 

(Figure 21D). Group 1 sites are enriched with H3K27ac and H3K4me1, indicating 

they are probably active enhancers and are likely targets of endogenous 

p300/CBP. Because the peaks are already hyperacetylated, ectopic expression 

of the p300BRPHZT fragment is not able to further increase acetylation levels at the 

peaks. In contrast, a significant increase in H3K18ac and H3K27ac levels at the 

hypoacetylated peak flanking regions was observed when ectopically expressing 

WT p300BRPHZT (compared with the control cells expressing an empty vector) 

(Figure 21D, Figure 22). Group 2 binding sites are preoccupied by H3K27me3 

but not by H3K27ac or H3K18ac. This is not surprising as it has been shown 

previously that p300/CBP also bind to a large number of poised regulatory 

regions that are low in H3K27ac and high in H3K27me3 (167-169). Because 

H3K27 at these regions is largely methylated across the entire +/- 20 kb windows 

thus less accessible to p300 HAT, no significant increase in H3K18ac or 

H3K27ac level was observed, despite the strong binding of p300BRPHZT in these 

regions (Figure 21D).  

In contrast to the WT p300BRPHZT protein, the two ZZ domain mutants, 

N1671A and D1690A, were much less capable of gaining the chromatin binding 

at both groups of sites, and consequently, the increase in H3K18ac and 

H3K27ac occupancies at those sites was attenuated in the cells expressing 

these mutants (Figure 21D, Figure 22).  

We show in Figure 23 genome-browser views of four representative p300-

bound genes: NBPF1, NOTCH2NL, PDE4DIP and DMPK. While endogenous 



81	
	

histone acetylation is strongly enriched at gene promoters, FLAG-p300BRPHZT 

binds to much broader regions not only at promoters, but also in gene bodies and 

intergenic regions. Binding of p300BRPHZT enhanced local histone acetylation 

levels on both H3K18 and H3K27. However, loss-of-function mutations in ZZ 

domain abolished p300BRPHZT bindings at those regions and consequently, 

impaired acetylation on H3K18 and H3K27. These ChIP-seq results were 

validated by ChIP-qPCR (Figure 24). Notably, the mutations of the ZZ domain 

that abolish its H3-binding ability considerably decreased binding of p300BRPHZT 

to individual genes (Figure 24A) and led to a notable reduction in the H3K18 

(Figure 24B) and H3K27 (Figure 24C) acetylation levels on these genes. In 

contrast, the H3K18 and H3K27 acetylation levels on ASCL1 and INSM1, the 

negative control sites without p300BRPHZT binding, were not significantly changed 

by ZZ mutations.   

Similarly, the N1132A mutation that abrogates acetyllysine binding activity 

of BRD resulted in a drastic decrease in p300BRPHZT occupancy and H3K18ac 

and H3K27ac deposition at NBPF1, NOTCH2NL and DMPK target regions but 

not the negative control regions (Figure 25). However, the p300BRPHZT occupancy 

and H3K18ac and H3K27ac levels of PDE4DIP upstream regions were not 

significantly affected by BRD mutation, indicating the chromatin association and 

histone acetylation of p300BRPHZT are specifically dependent on ZZ-H3 

recognition but not on BRD’s function at this site. 

  Together, these data suggest that both ZZ-H3 and BRD-acetyllysine 

interactions are required for binding of p300 to chromatin and efficient histone 
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H3K18/K27 acetylation in cells, corroborating the findings in salt fractionation 

(Figure 14B), ChIP-WB (Figure 14C), in vitro HAT assay (Figure 17) and in vivo 

histone acetylation analysis (Figures 19-20) described above.  
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Figure 21. The ZZ domain is necessary to p300’s chromatin binding and 

acetylation activity on H3K18 and H3K27 in cells. 

(A) The workflow of samples preparation for ChIP-seq assay. (B) Western blot 

analysis of the expression levels of wild type or mutated FLAG-p300BRPHZT level. 

(C) Electrophoresis of sonicated DNAs for ChIP-seq. (D) Heatmap of normalized 

H3K27ac (purple), H3K4me1 (green), H3K27me3 (scarlet), FLAG (brown) and 

H3K18ac (blue) ChIP-seq signals centered on FLAG binding sites in a ±20kb 

window in H1299 control cells and H1299 cells stably expressing wild type 

FLAG-p300BRPHZT or the indicated ZZ mutants. The color keys represent signal 

density.  
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Figure 22. Box plots comparing FLAG, H3K18ac and H3K27ac occupancies 

in different samples at FLAG-p300BRPHZT binding peaks.  

All FLAG-p300BRPHZT peaks are divided into two groups as in Figure 21D. The 

centerline of box represents the median and box limits indicate the 25th and 

75th percentiles. Two-tailed paired Student’s t-test was used for statistical 

analyses. 
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Figure 23. Representative genome-browser views of ChIP-seq data.  

Representative genome-browser views of the FLAG (brown), H3K18ac (blue) 

and H3K27ac (purple) ChIP-seq signals on the indicated genes. The red lines 

indicate the sites for ChIP-qPCR validation.  
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Figure 24. ChIP-qPCR in H1299 cells stably expressing wild type FLAG-

p300BRPHZT or the ZZ mutants. 

qPCR analysis of the FLAG-p300BRPHZT, H3K18ac and H3K27ac ChIP at target 

loci (locations indicated by red line in Figure 23) and two negative control loci in 

H1299 cells stably expressing wild type FLAG-p300BRPHZT or the ZZ mutants. IgG 

or H3 ChIP was used for normalization. 
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Figure 25. ChIP-qPCR in H1299 cells stably expressing wild type FLAG-

p300BRPHZT or the BRD mutant. 

qPCR analysis of the FLAG-p300BRPHZT, H3K18ac and H3K27ac ChIP at target 

loci and two negative control loci in H1299 cells stably expressing wild type 

FLAG-p300BRPHZT or the N1132A mutant. IgG or H3 ChIP was used for 

normalization. 
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3.6 Conclusions 

Our studies identify the ZZ domain of p300 as a reader specifically 

recognizing the N-terminus of histone H3. This recognition is insensitive to 

methylation or acetylation on H3 tail, a binding pattern distinct from all known H3 

readers, suggesting the ZZ domain may constitute a novel group of histone 

readers. Crystal structure of the ZZ-H3 complex reveals a negatively charged 

cavity of ZZ that coordinates Ala1 and Arg2 of H3, suggesting a novel recognition 

mode.   

The H3-binding capability of ZZ and the acetyllysine binding ability of BRD 

are both essential for chromatin association of p300 and acetylation of histones. 

Specifically, the BRD-acetyllysine binding is necessary for p300 to catalyze 

acetylation of virtually all lysine residues in H3 and H4, whereas the ZZ domain is 

specifically required for p300 to acetylate primarily H3K27 and H3K18. 

Collectively, the binding of p300 ZZ domain to H3 N-terminus provides a novel 

intramolecular mechanism in regulating both chromatin recruitment and substrate 

selectivity of p300. 
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3.7 Discussion 

Transcriptional coactivators p300 and CBP play critical roles in multiple 

fundamental cellular processes such as cell proliferation, differentiation and 

apoptosis. They contain multiple domains and most of these domains have been 

well studied. However, the function of their ZZ domain is still elusive. In this 

study, we discover that p300 ZZ domain is a reader for histone H3. It specifically 

recognizes the first a few residues of H3 N-terminus, regardless of methylation or 

acetylation status on H3. This unique feature distinguishes ZZ from all known 

readers, as other readers are all sensitive to histone PTMs. The Kd value for the 

p300 ZZ-H3 interaction is 8.8 μM (Figure 10B), which is in the range of binding 

affinities exhibited by the majority of histone-binding modules (170-172), 

corroborating the notion that the ZZ domain of p300 is a new member of 

epigenetic readers that select for histone H3.  

The ZZ domain of p300 possesses a novel structural mechanism for 

histone H3 recognition. Importantly, key residues forming the negatively charged 

binding site to contact with the Ala1 and Arg2 of H3, such as N1671, D1688 and 

D1690, are highly conserved in multiple members of ZZ domain family (Figure 

4B).  It will be interesting to test whether other ZZ domains containing these 

conserved residues also have H3-binding ability. 

Although coactivator functions of p300/CBP are largely dependent on their 

chromatin-binding capability (165, 173), the mechanism underlying p300/CBP-

chromatin association is not well studied. Transcription factors that bind specific 

DNA sequences and other chromatin-binding factors can recruit p300/CBP to 
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chromatin through protein-protein interaction (46). Independent of the recruitment 

by other proteins, p300 itself can directly bind to chromatin (165), which requires 

the acetyllysine-binding ability of p300 BRD. We found that recognition of H3 by 

p300 ZZ domain is also required for p300-chromatin association, which provides 

another mechanism for recruiting p300 to chromatin. By ChIP and salt 

fractionation assays, we revealed the importance of ZZ and BRD for p300’s 

binding to chromatin, as deletion or loss-of-function mutations of either domain 

dramatically reduced p300-chromatin association globally and at specific target 

regions (Figures 13, 14, 24 and 25). Furthermore, simultaneous mutations of 

both domains further reduced chromatin binding compared with single domain 

deficiencies, indicating that ZZ and BRD may collaborate in promoting p300’s 

chromatin recruitment. Interestingly, double mutations did not completely abolish 

p300’s chromatin binding (Figures 13 and 14), suggesting that mechanisms other 

than ZZ and BRD may exist. For instance, the TAZ2 domain can recruit p300 to 

chromatin through interacting with transcription factors (46). 

Genome-wide analysis of p300BRPHZT occupancy by ChIP-seq analysis 

identified 679 peaks, which are much fewer than that of full-length p300 (25, 

167). This is likely because the p300BRPHZT fragment lacks a number of protein-

interacting domains in the full-length protein that also contribute to p300-

chromatin binding. Nevertheless, the p300BRPHZT binding sites can be classified 

into two groups based on the pre-existing modifications on H3K27: H3K27 pre-

acetylated regions (Group 1) and H3K27 pre-methylated regions (Group 2) 

(Figure 21D). Group 1 sites are likely active enhancers containing high level of 
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H3K4me1 and H3K27ac while Group 2 binding sites are probably silenced or 

poised enhancers. Both BRD and ZZ domains are required for p300 binding at 

both groups of sites, however, certain level of specificity still remains. For 

example, the p300BRPHZT occupies the PDE4DIP upstream region; mutations of 

the ZZ mutation, but not BRD, affect the binding. As H4 acetylation levels may be 

low in this region, it is likely that the ZZ-H3 interaction plays a dominant role in 

p300 chromatin binding. 

Most known histone readers recognize specific histone modifications, thus 

promoting recruitment of the protein or protein complex to specific chromatin loci. 

However, the ZZ-H3 binding is independent of any H3 modifications, suggesting 

that ZZ domain alone is not be able to recruit p300 to specific chromatin regions. 

So, what is the significance of the “non-specific” ZZ-H3 interaction in p300’s 

chromatin recruitment? Inspired by the ideas of Manning et al. (165), we 

proposed the following model (Figure 26). Prior to p300 being recruited to 

specific target regions by interacting with transcription factors, the recognition of 

H3 by ZZ domain may account for the initial step of p300 to associate with 

chromatin (Figure 26A). This close chromatin proximity would allow DNA-bound 

transcription factors to quickly find p300 and then to recruit it to specific target 

regions (Figure 26B). Alternatively, after p300 is recruited to specific regions by 

transcription factors, the ZZ-H3 binding stabilizes p300’s association with 

chromatin to ensure transcription is successfully activated (Figure 26C). More 

biochemical and cell-based experiments need to be done to test this model. 
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Both p300 and CBP are promiscuous acetyltransferases with hundreds of 

substrates, including multiple sites of all core histones (19). However, depletion 

of both p300 and CBP specifically reduces global levels of H3K18ac and 

H3K27ac in mammalian cells (12, 13). The reason why acetylation on H3K18 

and H3K27 is dominantly dependent on p300/CBP is currently unknown. We 

show that the ability of p300 to acetylate primarily H3K18 and H3K27 largely 

relies on the binding of the ZZ domain to the N-terminus of H3. A model of the 

p300HAT+ZZ-H3 complex (generated by Yi Zhang from Kutateladze lab) using the 

simulated annealing method and the crystal structures of p300BRPH and p300 ZZ-

H3 reveals a ~38 Å distance between the H3A1-binding site of ZZ and the 

catalytic site in the HAT domain (Figure 27). This distance is too long for Lys4 or 

Lys9 of H3 to occupy the active site of the HAT domain and thus be acetylated in 

cis when the N-terminus of H3 is locked through the interaction with ZZ. 

However, the distal lysine residues (K18 and K27) in the H3 tail can reach the 

active site. Furthermore, the substrate-binding groove of the HAT domain is 

highly negatively charged and would favor the binding of positively-charged H3 

tail. Our in vitro and in vivo data and the structure model collectively suggest that 

binding of p300 ZZ domain to the N-terminus of H3 provides selectivity of the 

adjacent HAT domain toward the distal lysine sites in H3, such as H3K18 and 

H3K27. 
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Figure 26. The proposed functions of ZZ domain-mediated p300 chromatin 

recruitment. 

(A) Before p300 is recruited to specific target regions by transcription factors, the 

recognition of H3 by ZZ domain may represent the initial step to associate p300 

with chromatin. (B) This association would then allow DNA-bound transcription 

factors to recruit p300 from chromatin, rather than from solution, to specific target 

regions more efficiently. (C) After p300 is recruited to specific regions by 

transcription factors, its interaction with chromatin is stabilized by the ZZ-H3 

binding to ensure transcription is successfully activated. 
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Figure 27. The structural basis of ZZ-mediated HAT specificity toward the 

distal lysine sites in H3. 

A model of the p300HAT+ZZ region in complex with H31-31 peptide generated by Yi 

Zhang from Kutateladze lab. Electrostatic surface potential of p300 HAT is 

colored blue (positive charge) and red (negative charge) with the histone H3 

peptide shown in green. The side chains of H3K4, K9, K18 and K27 are colored 

yellow.  
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Chapter 4. p300 Is Required for Maintenance of SCLC Cell Growth 

 

4.1 Depletion of p300 impedes SCLC cell proliferation 

Cancer cells are highly dependent on dysregulated transcriptional 

programs gained during tumorigenesis to maintain their continued growth, a 

phenomenon called “transcriptional addiction” (174). As transcriptional 

coactivators, p300/CBP have been extensively studied in many types of cancers, 

however, their roles in SCLC are elusive. High p300/CBP expression was 

reported to be associated with poor overall survival for resected SCLC patients 

(111). In SCLC, disease maintenance is addicted to overexpression of 

oncogenes such as MYC, MYCL, MYCN, NFIB and SOX2, which is driven by 

super-enhancers containing extraordinarily high level of H3K27 acetylation (153). 

Considering p300 and CBP are the dominant HATs catalyzing H3K27 

acetylation, they likely play important roles in maintaining active super-enhancers 

in SCLC. Based on these known facts, we hypothesized that p300/CBP are 

required for SCLC disease maintenance by activating oncogenes. 

First, we examined the expression levels of p300/CBP in a number of 

mouse and human SCLC cells. SCLC cells isolated from primary tumors of 

genetically engineered mouse models (GEMM) constitute a good model because 

of their simple genetic background. Kp1 and Kp3 are two primary SCLC tumor 

cell lines isolated from the GEMM with conditional Trp53 Rb1 double knockout in 

lung (175); Kp12 and 259-2 cells are isolated from conditional Trp53 Rb1 p130 

triple knockout GEMM that have accelerated SCLC tumorigenesis compared with 
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Trp53 Rb1 double knockout GEMM (176) (Figure 28A). ID43 cells are lung 

epithelial neuroendocrine cells isolated from conditional Trp53 Rb1 p130 triple 

knockout GEMM before they become malignant (preSC), thus serving as a non-

tumorigenic control for SCLC cells (177) (Figure 28A). By analyzing the whole 

cell lysate of these cells, we found that most GEMM SCLC cells have higher 

p300 levels than the ID43 preSC cells (Figure 28B). The expression levels of 

CBP are also slightly higher in the GEMM SCLC cells. However, despite of the 

increased p300/CBP levels, we did not observe a dramatic elevation of global 

H3K27ac level in GEMM SCLC cells compared with ID43 cell (Figure 28B).  
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Figure 28. p300 is overexpressed in murine SCLC cell lines. 

(A) The sources of GEMM SCLC cell lines. (B) Western blot analysis of p300, 

CBP and H3K27ac levels in the indicated SCLC cell lines. 
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To determine the role of p300/CBP in maintenance of SCLC cell growth, 

we depleted Ep300 or Crebbp gene using a lentiviral CRISPR-Cas9 system. Two 

distinct gRNAs targeting the 5’ end of the CDS were used for each gene and 

non-targeting (NT) gRNA served as control. Western blotting confirmed that each 

target gene was successfully depleted at protein level in all cell lines without 

significantly affecting the level of its close paralog (Figure 29A). Proliferation 

assays showed that p300-depleted Kp1, Kp3, Kp12 and 259-2 cells grow much 

more slowly than their NT control cells (Fig 29B). Compared to p300 depletion, 

CBP depletion had little (Kp1 and 259-2) or no (Kp3 and Kp12) proliferation 

defect (Fig 29B). Together, these results demonstrate that p300, but not CBP, is 

essential to murine SCLC cell proliferation.  
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Figure 29. The depletion of p300 impedes murine SCLC cells proliferation.  

(A) Western blot analysis of p300 and CBP levels in the control and p300/CBP-

depleted murine SCLC cells. (B) The proliferation of control and p300/CBP-

depleted murine SCLC cells. 
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Compared with GEMM SCLC cells, human SCLC cells are much more 

heterogeneous both genetically and epigenetically. For example, they have 

distinct mutation status of CREBBP/EP300 genes, amplification of different MYC 

family genes, and various expression levels of neuroendocrine transcription 

factors. To study the role of CBP/p300 in human SCLC cells with different 

backgrounds, we chose SCLC cells with (1) WT CBP and WT p300 (H69, H82 

and H2171); (2) WT p300 and mutated CBP (H1048 and H209); and (3) WT CBP 

and mutated p300 (H524 and H1836). The detailed mutation information of those 

cells is listed in Table 5. Immortalized human bronchial epithelial cell (HBEC) 

was used as a non-cancer control. Western blot analysis showed that all SCLC 

cell lines except H1836 have much higher levels of p300 than HBEC and all cell 

lines except H209 have greatly increased CBP level compared with HBEC cells 

(Figure 30). Loss of CBP in H209 cell is due to translocation and loss-of-

heterozygosity (LOH) (90, 158). It is interesting that cell lines carrying mutated 

p300 (H524) or CBP (H1048) still had higher levels of p300 and CBP, 

respectively, than control cells. There are two possibilities: (1) the mutations are 

heterozygous and the remaining WT allele is still functional; or (2) the mutations 

do not completely abolish the proteins’ functions. For example, the CBP 

mutation, S1680del, in H1048 cells is not located within any known domain 

(Table 5), therefore its functional consequence is hard to predict. In H524 cells, 

although the mutation in the HAT domain abrogates the HAT activity (95), the 

mutant p300 may still interacts with other proteins to help to assemble an 
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activating complex. Nevertheless, our results suggest that p300 and CBP are 

overexpressed in human SCLC cells regardless of their genetic mutation status. 

We next examined global H3K18ac and H3K27ac levels in these cells 

(Figure 30). Although the levels of H3K27ac in SCLC cells are not significantly 

higher than the non-tumorigenic HBEC cells, H3K18ac levels are much higher in 

the SCLC cells compared with HBEC. The global H3K18ac and H3K27ac levels 

correlate with the total levels of p300 and CBP proteins in most human SCLC 

cells except for the H69 cells.   

 

Cell line Cell type EP300 status CREBBP status 
HBEC Human control cell WT WT 
A549 Human NSCLC WT WT 
H1299 Human NSCLC WT WT 
H1048 Human SCLC WT p.S1680del 
H1836 Human SCLC p.S1396P WT 
H209 Human SCLC WT Homozygous Deletions 
H2171 Human SCLC WT WT 
H524 Human SCLC p.F1090L, Y1503S WT 
H69 Human SCLC WT WT 
H82 Human SCLC WT WT 
ID43 Mouse pre-SCLC WT WT 
Kp1 Mouse SCLC WT WT 
Kp3 Mouse SCLC WT WT 

Kp3+GFP+Luc Mouse SCLC WT WT 

Kp12 Mouse SCLC WT WT 
259-2 Mouse SCLC WT WT 

 

Table 5. The mutation status of EP300 and CREBBP genes in lung cancer 

cell lines used in this study. 
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Figure 30. p300 and CBP are overexpressed in human SCLC cell lines. 

Western blot analysis of p300, CBP, H3K18ac and H3K27ac levels in the 

indicated SCLC cell lines. 
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Human SCLC cells can be classified by the expression levels of NE 

lineage transcription factors, ASCL1 or NEUROD1. ASCL1-high (cells expressing 

high level of ASCL1 but low level of NEUROD1) and NEUROD1-high (cells 

expressing high level of NEUROD1 but low level of ASCL1) are two dominant 

groups (178) that have different epigenetic landscapes (179). To examine the 

role of p300/CBP in both groups of human SCLC cells, we depleted 

CREBBP/EP300 in both ASCL1-high (H69 cells) and NEUROD1-high (H82 cells) 

cells and determined cell proliferation. Two distinct gRNAs targeting the 5’ end of 

the CDS were used for each gene and non-targeting (NT) gRNA served as 

control. Western blotting confirmed that each target gene was successfully 

depleted at protein level in both cell lines without significantly affecting the level 

of its close paralog (Figure 31A). Depleting p300 or CBP did not significantly 

affect the global H3K27ac level in these two cell lines (Figure 31A), suggesting 

the potential redundancy between p300 and CBP in maintaining the global 

H3K27ac level.  

Proliferation assays showed that p300 depletion led to a severe 

proliferation defect in both H69 and H82 cells, whereas CBP depletion only 

slightly impeded cell proliferation (Figure 31B), suggesting that p300, but not 

CBP, is crucial to human SCLC cell proliferation. Those results are in agreement 

with our observations in murine SCLC cells.  

NSCLC is another subtype of lung cancer accounting for ~85% of lung 

cancer cases. To examine whether p300 and CBP are required by NSCLC, we 

depleted EP300 or CREBBP gene in two representative NSCLC cell lines, A549 
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and H1299, and HBEC cell, and measured cell proliferation. Surprisingly, cell 

proliferation was not affected by p300 or CBP depletion in these cell lines (Figure 

32), indicating that the dependency on p300 is specific to SCLC but not to 

NSCLC or normal lung cells.  

In summary, we found that p300 is overexpressed in both murine and 

human SCLC cells. It is required for the maintenance of cell growth in both 

murine and human SCLC cells. Although CBP is also overexpressed in human 

SCLC, but in most SCLC cells, CBP is not absolutely required for cell growth 

maintenance. 
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Figure 31. The depletion of p300 impedes human SCLC cells proliferation.  

(A) Western blot analysis of p300 and CBP levels in the control and p300/CBP-

depleted human SCLC cells. (B) The proliferation of control and p300/CBP-

depleted H69 and H82 cells.  
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Figure 32. The depletion of p300 does not affect the proliferation of human 

NSCLC cells and normal lung epithelial cell.  

(A) The proliferation of control and p300/CBP-depleted H1299 and A549 cells. 

(B) The proliferation of control and p300/CBP-depleted HBEC cells.  
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4.2 Depletion of p300 attenuates oncogene activation in SCLC cells 

CBP/p300 are critical transcriptional coactivators that control the 

expression of key cancer-related genes, especially those associated with super-

enhancers (103). To determine the functional differences between p300 and CBP 

in SCLC cell proliferation, we assessed the expression of a few key oncogenes in 

p300 or CBP depleted cells. We chose to study the expression changes of MYC 

family genes because: (1) MYC family genes are known to play critical roles in 

the tumorigenesis/maintenance of both murine (177, 180) and human (151, 156) 

SCLCs; (2) MYC family genes are associated with super-enhancers in human 

SCLCs and are thus likely direct targets of p300/CBP (153). MYC family genes 

include 3 members: MYC, MYCL1 and MYCN. A large number of human SCLCs 

have the amplification of one MYC family gene. For example, H69 cell is MYCN-

amplified whereas H82 has MYC amplification. The amplified MYC member 

usually has much higher expression level than the other 2 members and 

becomes the dominant one in that cell (156, 181). We performed RT-qPCR 

assays to compare the expression levels of MYC, MYCL and MYCN in these two 

cell lines (Figure 33A). Consistent with the amplification status, MYC levels in 

H82 are ~1,000-fold higher than that in H69 while its MYCN level was ~1,000-

fold lower than that of H69. We also observed that H82 has higher MYCL1 

expression level than H69. It is possible that among the MYC family members, 

MYCN or MYC plays the most dominant oncogenic role in H69 or H82, 

respectively.  
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Interestingly, in H69, depletion of p300 or CBP reduced the expression of 

MYCN and MYC but not MYCL1. The decrease in MYCN level was much more 

significant in p300-depleted cells than in CBP-depleted cells (Figure 33B). The 

decreased expression of MYCN was also observed in p300- or CBP-depleted 

H82 cells. But the reduction of MYC level was only found in p300-depleted H82 

cells but not in CBP-depleted ones (Figure 33B). These results suggest that 

expression of the dominant MYC family member shows more dependency on 

p300 than CBP in both cell lines. This may partially explain why p300 depletion 

caused much more severe proliferation defect than CBP depletion (Figure 31B). 

According to the work of Drs. Kwok-kin Wong and Richard Young (153), 

MYCN is driven by super-enhancers in H69 but not in H82 while MYC is driven 

by super-enhancers in H82 but not in H69 (Figure 34A), which is consistent with 

their relative expression levels (Figure 33A) and amplification status in these 2 

cell lines. Considering p300 is one of the main acetyltransferases of H3K18ac 

and H3K27ac, we proposed that p300 is required for the acetylation of H3K18 

and H3K27 at super-enhancers associated with the dominant MYC family gene 

in SCLC cell. We chose two regions of the published MYC super-enhancer in 

H82 cell as examples and performed H3K18ac and H3K27ac ChIP-qPCR in 

p300-depleted and NT control H82 cells. Significant decrease of H3K27ac level 

at both regions was observed in p300-depleted cells (Figure 34B). The depletion 

of p300 also led to a severe drop of H3K18ac level at SE1 region. The decrease 

of both histone markers at MYC super-enhancers resulted from p300 depletion is 

consistent with the reduced MYC expression. Taken together, we found p300 is 
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required for sustaining the histone acetylation and expression of super-

enhancers-associated oncogenes in SCLC cells. 
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Figure 33. Expression activation of the dominant MYC family gene is 

dependent on p300.  

(A) RT-qPCR analysis of 3 MYC family genes in H69 and H82 cells. (B) RT-

qPCR analysis of 3 MYC family genes in control and p300/CBP-depleted H69 

and H82 cells.   
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Figure 34. Histone acetylation at MYC super-enhancer regions requires 

p300.  

(A) The genome-browser views of H3K27ac at MYC and MYCN super-enhancer 

regions. The raw data tracks are from Gene Expression Omnibus with the 

accession number GSE62614 (153). The red lines indicate the sites for ChIP-

qPCR in (B). SE: super-enhancer. (B) qPCR analysis of the H3K27ac level at two 

MYC super-enhancer regions.  
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4.3 Conclusions 

In this study, we show that p300 and CBP are overexpressed in both 

murine and human SCLC cells. Depletion of p300, but not CBP, impedes SCLC 

cell proliferation. Both p300 and CBP are required for sustaining the expression 

of oncogenes, for example, the MYC family genes, in SCLC cells. However, the 

expression of the dominant MYC family gene that is associated with super-

enhancers shows more dependency on p300 than CBP. Consistently, p300, but 

not CBP, is essential for maintenance of SCLC cell growth. 
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4.4 Discussion 

SCLC is the most aggressive subtype of lung cancer with an unmet need 

for effective treatment (182). The molecular basis of this disease is poorly 

understood. Here we found that p300 is required for the proliferation of both 

murine and human SCLC cells. The proliferation defect caused by p300 

depletion was observed in all SCLC cell lines tested. However, more cell lines 

need to be tested before we can conclude that p300 dependency is a ubiquitous 

mechanism in SCLC, a highly heterogeneous disease. It will also be important to 

test in the future whether p300 depletion also attenuates SCLC tumor growth in a 

xenograft or allograft model. Importantly, p300 depletion does not dramatically 

affect the proliferation of NSCLC cells or normal lung epithelial cell, implying that 

inhibiting p300 may be a potential SCLC treatment method with low toxicity to 

normal lung cell.  

Despite of the high sequence similarity between p300 and CBP, CBP is 

not required for cell proliferation in the SCLC cell lines tested. Because of the 

relatively high mutation rate (13~15%) of CREBBP/EP300 in SCLC (95, 136), it 

has been previously predicted that both CREBBP and EP300 are tumor 

suppressor genes (183). Most CREBBP alterations are nonsense mutations, 

deletions, frameshifts and translocations (Figure 5B), which are likely loss-of-

function. Consistent with the mutation status of CREBBP, the laboratory of Dr. 

David MacPherson recently reported that lung neuroendocrine-specific triple 

knockout of Trp53, Rb1 and Crebbp in mice accelerates SCLC tumorigenesis 

compared with Trp53 Rb1 double knockout mice, indicating Crebbp is a tumor 
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suppressor gene in murine SCLC (184). However, this paper did not mention the 

role of p300 in SCLC. In fact, the mutation pattern of EP300 in SCLC is distinct 

from that of CREBBP. The majority of EP300 alterations are missense mutations 

with unknown consequences, though only a few of mutations within p300 HAT 

domain have been confirmed to reduce HAT activity (95). Therefore, the mutation 

status of EP300 in SCLC does not conflict with our results that p300 is required 

in maintaining the continuous growth of SCLC cells.  

An explanation for the functional differences between p300 and CBP in 

SCLC may be that they target different genes (185). In H69 and H82 cells, 

activation of the dominant MYC family gene that is associated with super-

enhancers relies more on p300 than on CBP, which may reflect the differences in 

their target genes. Unfortunately, we only have a small amount of preliminary 

data on how p300 and CBP regulate oncogenes in SCLC cells. RNA-seq and 

H3K27ac ChIP-seq analysis using control cell, p300- or CBP-depleted cells will 

provide more comprehensive information to help us understand the molecular 

basis of the p300-dependency in SCLC cell proliferation in the future.  

Overall, although still preliminary, our data start to shed light on the critical 

functions of p300 in SCLC. Future studies will bring further insights into the 

molecular mechanisms of SCLC maintenance and evaluate p300 inhibition as a 

new therapeutic strategy for SCLC patients.  
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Chapter 5. Future Directions 

 

5.1 Determining the physiological importance of p300 ZZ domain 

p300 is a key transcription coactivator important to both development and 

diseases. Our findings that the ZZ domain is required for both chromatin binding 

and histone acetylation, the basic molecular functions of p300, suggesting that 

the ZZ domain is likely critical for p300 to exert its functions in both physiological 

and pathological settings. It is particularly interesting to me to determine the 

functional importance of the ZZ domain in human cancers. 

Although there is no cancer-related mutation hotspot in p300 ZZ domain 

reported in TCGA, we did find dozens of genetic mutations occurring in the ZZ 

domain coding regions, albeit with low frequency, from cBioPortal 

(https://www.cbioportal.org) (119, 120) and Catalogue of Somatic Mutations in 

Cancer (COSMIC, https://cancer.sanger.ac.uk/cosmic) (186). All up-to-date 

mutations located in p300 ZZ domain are listed in Table 6 and Figure 35A. The 

effect of those mutations on p300 ZZ’s function is currently unknown. 

In our preliminary studies, we expressed and purified recombinant ZZ 

domain mutants mimicking a few TCGA mutations, including R1680C/H, W1681* 

and D1688H (Figure 35B) and tested their histone-binding activity. Histone 

peptide pull-down assays showed that the H3-binding activity is reduced in 

R1680C and W1681A and abolished in the D1688K mutant (Figure 35C). These 

preliminary data suggest that cancer-related mutations can abrogate the function 

of ZZ, implying the histone-binding activity of p300 ZZ domain is indeed 
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important to tumorigenesis. In the future, it will be interesting to study the function 

of p300 ZZ domain in tumorigenesis using a proper cancer model. For instance, 

the colon cancer mutation of ZZ domain, R1680C, can be introduced into 

endogenous EP300 gene by CRISPR/Cas9-mediated DNA cutting followed by 

homology-directed repair using single-stranded oligodeoxynucleotides in colon 

epithelial cells. Single clones containing a R1680C point mutation will be selected 

and examined for their cell growth and survival in culture. We’ll also establish 

xenograft models using those cells for measuring tumor growth in vivo. 

Mechanistically, the epigenome and transcriptome of parental and ZZ-mutated 

cells will be assessed by p300 and histone ChIP-seq and RNA-seq, respectively. 

The ZZ domain is required for p300-dependent H3K18 and H3K27 

acetylation and the BRD is required for the acetylation of all lysine residues on 

H3 and H4 by p300. Importantly, these two domains seem to cooperate in 

regulating the HAT activity of p300. The inhibitors of p300 BRD showed good 

anti-cancer effect in hematopoietic malignancies (43, 118). In the future, we also 

plan to determine whether ZZ mutations can sensitize cells to those BRD 

inhibitor, which will be beneficial to the development of targeted therapies. 
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Sample ID Cancer Study Gene AA change Type 
MFE296 cell line CCLE (Novartis/Broad 2012) EP300 R1665H Missense 
ATLL_A-01 Lymphoma/leukemia (COSMIC) EP300 T1669I Missense 
ATL014 Lymphoma/leukemia (COSMIC) EP300 T1669I Missense 
TCGA-BG-A0MG-01 Uterine (TCGA) EP300 E1672* Nonsense 
OSCC-GB_01670111 Oral (COSMIC) EP300 E1672* Nonsense 
ESCC_E11 Esophagus (COSMIC) EP300 C1673Y Missense 
MBC_71 MBL (Sickkids 2016) EP300 E1678Q Missense 
Pat_59_B Melanoma (COSMIC) EP300 T1679I Missense 
TCGA-DM-A1D0-01 Colon (TCGA) EP300 R1680H Missense 
TCGA-F5-6813-01 Colon (TCGA) EP300 R1680H Missense 
PLK106Ca Colon (COSMIC) EP300 R1680C Missense 
TCGA-ZR-A9CJ-01 Esophagus (TCGA) EP300 R1680C Missense 
PD8141a AML (COSMIC) EP300 W1681* Nonsense 
ATL359 Lymphoma/leukemia (COSMIC) EP300 C1683Y Missense 
coadread_dfci_2016_2768 Colorectal (DFCI 2016) EP300 V1685I Missense 
T2768 Colon (COSMIC) EP300 V1685I Missense 
Pat_24_Pre Melanoma (Broad 2012) EP300 C1686Y Missense 
PAJMVC Kidney (COSMIC) EP300 C1686* Nonsense 
ID32 AML (COSMIC) EP300 C1686fs FS del 
SW948 cell line CCLE (Novartis/Broad 2012) EP300 X1687_splice Splice 
MTS-T0713 Breast (METABRIC) EP300 D1688H Missense 
TCGA-P3-A5Q5-01 Head & neck (TCGA) EP300 D1688H Missense 
TCGA-GR-A4D6-01 DLBC (TCGA) EP300 T1694A Missense 
HCT-116 cell line NCI-60 EP300 N1700fs FS del 
P-0003104-T01-IM5 MSK-IMPACT EP300 H1703Y Missense 
P-0010591-T01-IM5 MSK-IMPACT EP300 E1706* Nonsense 

 

Table 6. Mutations in p300 ZZ domain occurring in cancers. 

Data are collected from cBioPortal (www.cbioportal.org) (119, 120) and COSMIC 

(https://cancer.sanger.ac.uk/cosmic) (186). The diagram view of these listed 

mutations is in Figure 35A. 	
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Figure 35. Mutations of p300 ZZ domain occurring in cancers. 

(A) The diagram view of all the mutations of p300 ZZ domain occurring in 

cancers (also listed in Table 6). Diagram is generated using the online tool 

ProteinPaint (https://pecan.stjude.cloud/proteinpaint) (187). (B) Examples of 

p300 ZZ domain mutations that occur in cancers. (C) Peptide pull-down assays 

using wild type and mutated p300 ZZ domain. 
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5.2 Determining the role of p300 in SCLC maintenance 

Our preliminary data has shown that p300 is necessary to SCLC cell 

proliferation in cell culture. This is an interesting observation, however, much 

more need to be done to reveal the role of p300 in SCLC maintenance. It would 

be of great interest to determine in the future whether p300 depletion impedes 

SCLC tumor growth in xenograft or allograft models. We can perform RNA-seq 

and ChIP-seq to further examine the transcriptomic and epigenomic changes 

resulted from p300, CBP, or double depletions. It is anticipated that depletion of 

p300, CBP or both will lead to a drastic decrease in the expression of oncogenes 

associated with super-enhancers in SCLC tumors.  

Interestingly, a recent report shows that SCLC cells are not sensitive to A-

485, a potent small molecule inhibitor targeting p300/CBP HAT domain (15), 

indicating that the function of p300 in SCLC cell proliferation may not require the 

HAT activity. Indeed, p300 is essential for the assembly of a transcription 

activation complex using protein-interaction domains, which may contribute to 

disease maintenance independent of its HAT activity. This makes it urgent to 

identify the protein domains or minimal regions of p300 that are critical for its 

biological functions in SCLC. To identify such essential domains, we will perform 

a CRISPR/Cas9-based dropout screening in SCLC cells using a tilling gRNA 

library targeting the EP300 gene exons encoding the full-length p300 protein. 

The gRNAs targeting critical domains or regions are expected to have 

significantly lower enrichment. After the critical domains/regions are identified, 

rescue assays will be performed using constructs containing the deletion of each 
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critical domain or region in p300-depleted SCLC cells. If specific inhibitors for the 

critical domains are available, we will also test whether SCLC cells are sensitive 

to those compounds. 

Collectively, these studies will depict a detailed picture of the molecular 

mechanisms of p300 and extend our understanding of critical roles of p300 in 

important biological processes. Furthermore, elucidating the role of p300 in 

SCLC will help to bring insights into the molecular basis of SCLC maintenance 

and may provide p300 as a new therapeutic target for treatment of SCLC. 



121	
	

Chapter 6. References 

 

1. Arany, Z., W. R. Sellers, D. M. Livingston, and R. Eckner. 1994. E1A-

associated p300 and CREB-associated CBP belong to a conserved family 

of coactivators. Cell 77: 799-800. 

2. Vo, N., and R. H. Goodman. 2001. CREB-binding protein and p300 in 

transcriptional regulation. The Journal of biological chemistry 276: 13505-

13508. 

3. Yee, S. P., and P. E. Branton. 1985. Detection of cellular proteins 

associated with human adenovirus type 5 early region 1A polypeptides. 

Virology 147: 142-153. 

4. Whyte, P., N. M. Williamson, and E. Harlow. 1989. Cellular targets for 

transformation by the adenovirus E1A proteins. Cell 56: 67-75. 

5. Stein, R. W., M. Corrigan, P. Yaciuk, J. Whelan, and E. Moran. 1990. 

Analysis of E1A-mediated growth regulation functions: binding of the 300-

kilodalton cellular product correlates with E1A enhancer repression 

function and DNA synthesis-inducing activity. Journal of virology 64: 4421-

4427. 

6. Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. 

Lawrence, and D. M. Livingston. 1994. Molecular cloning and functional 

analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals 

a protein with properties of a transcriptional adaptor. Genes & 

development 8: 869-884. 



122	
	

7. Chrivia, J. C., R. P. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, and R. 

H. Goodman. 1993. Phosphorylated CREB binds specifically to the 

nuclear protein CBP. Nature 365: 855-859. 

8. Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. 

Nakatani. 1996. The transcriptional coactivators p300 and CBP are 

histone acetyltransferases. Cell 87: 953-959. 

9. Bannister, A. J., and T. Kouzarides. 1996. The CBP co-activator is a 

histone acetyltransferase. Nature 384: 641-643. 

10. Farria, A., W. Li, and S. Y. Dent. 2015. KATs in cancer: functions and 

therapies. Oncogene 34: 4901-4913. 

11. Schiltz, R. L., C. A. Mizzen, A. Vassilev, R. G. Cook, C. D. Allis, and Y. 

Nakatani. 1999. Overlapping but distinct patterns of histone acetylation by 

the human coactivators p300 and PCAF within nucleosomal substrates. 

The Journal of biological chemistry 274: 1189-1192. 

12. Jin, Q., L. R. Yu, L. Wang, Z. Zhang, L. H. Kasper, J. E. Lee, C. Wang, P. 

K. Brindle, S. Y. Dent, and K. Ge. 2011. Distinct roles of GCN5/PCAF-

mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear 

receptor transactivation. The EMBO journal 30: 249-262. 

13. Horwitz, G. A., K. Zhang, M. A. McBrian, M. Grunstein, S. K. Kurdistani, 

and A. J. Berk. 2008. Adenovirus small e1a alters global patterns of 

histone modification. Science 321: 1084-1085. 

14. Weinert, B. T., T. Narita, S. Satpathy, B. Srinivasan, B. K. Hansen, C. 

Scholz, W. B. Hamilton, B. E. Zucconi, W. W. Wang, W. R. Liu, J. M. 



123	
	

Brickman, E. A. Kesicki, A. Lai, K. D. Bromberg, P. A. Cole, and C. 

Choudhary. 2018. Time-Resolved Analysis Reveals Rapid Dynamics and 

Broad Scope of the CBP/p300 Acetylome. Cell 174: 231-244 e212. 

15. Lasko, L. M., C. G. Jakob, R. P. Edalji, W. Qiu, D. Montgomery, E. L. 

Digiammarino, T. M. Hansen, R. M. Risi, R. Frey, V. Manaves, B. Shaw, 

M. Algire, P. Hessler, L. T. Lam, T. Uziel, E. Faivre, D. Ferguson, F. G. 

Buchanan, R. L. Martin, M. Torrent, G. G. Chiang, K. Karukurichi, J. W. 

Langston, B. T. Weinert, C. Choudhary, P. de Vries, J. H. Van Drie, D. 

McElligott, E. Kesicki, R. Marmorstein, C. Sun, P. A. Cole, S. H. 

Rosenberg, M. R. Michaelides, A. Lai, and K. D. Bromberg. 2017. 

Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-

specific tumours. Nature 550: 128-132. 

16. Das, C., M. S. Lucia, K. C. Hansen, and J. K. Tyler. 2009. CBP/p300-

mediated acetylation of histone H3 on lysine 56. Nature 459: 113-117. 

17. Vempati, R. K., R. S. Jayani, D. Notani, A. Sengupta, S. Galande, and D. 

Haldar. 2010. p300-mediated acetylation of histone H3 lysine 56 functions 

in DNA damage response in mammals. The Journal of biological 

chemistry 285: 28553-28564. 

18. Chen, C. C., J. J. Carson, J. Feser, B. Tamburini, S. Zabaronick, J. Linger, 

and J. K. Tyler. 2008. Acetylated lysine 56 on histone H3 drives chromatin 

assembly after repair and signals for the completion of repair. Cell 134: 

231-243. 



124	
	

19. Dancy, B. M., and P. A. Cole. 2015. Protein lysine acetylation by 

p300/CBP. Chemical reviews 115: 2419-2452. 

20. Chan, H. M., and N. B. La Thangue. 2001. p300/CBP proteins: HATs for 

transcriptional bridges and scaffolds. Journal of cell science 114: 2363-

2373. 

21. Kalkhoven, E. 2004. CBP and p300: HATs for different occasions. 

Biochemical pharmacology 68: 1145-1155. 

22. Chen, J., and Q. Li. 2011. Life and death of transcriptional co-activator 

p300. Epigenetics : official journal of the DNA Methylation Society 6: 957-

961. 

23. Wang, Z., C. Zang, K. Cui, D. E. Schones, A. Barski, W. Peng, and K. 

Zhao. 2009. Genome-wide mapping of HATs and HDACs reveals distinct 

functions in active and inactive genes. Cell 138: 1019-1031. 

24. Heintzman, N. D., R. K. Stuart, G. Hon, Y. Fu, C. W. Ching, R. D. 

Hawkins, L. O. Barrera, S. Van Calcar, C. Qu, K. A. Ching, W. Wang, Z. 

Weng, R. D. Green, G. E. Crawford, and B. Ren. 2007. Distinct and 

predictive chromatin signatures of transcriptional promoters and 

enhancers in the human genome. Nature genetics 39: 311-318. 

25. Visel, A., M. J. Blow, Z. Li, T. Zhang, J. A. Akiyama, A. Holt, I. Plajzer-

Frick, M. Shoukry, C. Wright, F. Chen, V. Afzal, B. Ren, E. M. Rubin, and 

L. A. Pennacchio. 2009. ChIP-seq accurately predicts tissue-specific 

activity of enhancers. Nature 457: 854-858. 



125	
	

26. Park, S., R. L. Stanfield, M. A. Martinez-Yamout, H. J. Dyson, I. A. Wilson, 

and P. E. Wright. 2017. Role of the CBP catalytic core in intramolecular 

SUMOylation and control of histone H3 acetylation. Proceedings of the 

National Academy of Sciences of the United States of America 114: 

E5335-E5342. 

27. Delvecchio, M., J. Gaucher, C. Aguilar-Gurrieri, E. Ortega, and D. Panne. 

2013. Structure of the p300 catalytic core and implications for chromatin 

targeting and HAT regulation. Nature structural & molecular biology 20: 

1040-1046. 

28. Thompson, P. R., D. Wang, L. Wang, M. Fulco, N. Pediconi, D. Zhang, W. 

An, Q. Ge, R. G. Roeder, J. Wong, M. Levrero, V. Sartorelli, R. J. Cotter, 

and P. A. Cole. 2004. Regulation of the p300 HAT domain via a novel 

activation loop. Nature structural & molecular biology 11: 308-315. 

29. Karanam, B., L. Jiang, L. Wang, N. L. Kelleher, and P. A. Cole. 2006. 

Kinetic and mass spectrometric analysis of p300 histone acetyltransferase 

domain autoacetylation. The Journal of biological chemistry 281: 40292-

40301. 

30. Ortega, E., S. Rengachari, Z. Ibrahim, N. Hoghoughi, J. Gaucher, A. S. 

Holehouse, S. Khochbin, and D. Panne. 2018. Transcription factor 

dimerization activates the p300 acetyltransferase. Nature. 

31. Liu, X., L. Wang, K. Zhao, P. R. Thompson, Y. Hwang, R. Marmorstein, 

and P. A. Cole. 2008. The structural basis of protein acetylation by the 

p300/CBP transcriptional coactivator. Nature 451: 846-850. 



126	
	

32. Black, J. C., J. E. Choi, S. R. Lombardo, and M. Carey. 2006. A 

mechanism for coordinating chromatin modification and preinitiation 

complex assembly. Molecular cell 23: 809-818. 

33. Rack, J. G., T. Lutter, G. E. Kjaereng Bjerga, C. Guder, C. Ehrhardt, S. 

Varv, M. Ziegler, and R. Aasland. 2014. The PHD finger of p300 

influences its ability to acetylate histone and non-histone targets. Journal 

of molecular biology 426: 3960-3972. 

34. Shi, X., T. Hong, K. L. Walter, M. Ewalt, E. Michishita, T. Hung, D. Carney, 

P. Pena, F. Lan, M. R. Kaadige, N. Lacoste, C. Cayrou, F. Davrazou, A. 

Saha, B. R. Cairns, D. E. Ayer, T. G. Kutateladze, Y. Shi, J. Cote, K. F. 

Chua, and O. Gozani. 2006. ING2 PHD domain links histone H3 lysine 4 

methylation to active gene repression. Nature 442: 96-99. 

35. Sanchez, R., and M. M. Zhou. 2011. The PHD finger: a versatile 

epigenome reader. Trends in biochemical sciences 36: 364-372. 

36. Park, S., M. A. Martinez-Yamout, H. J. Dyson, and P. E. Wright. 2013. The 

CH2 domain of CBP/p300 is a novel zinc finger. FEBS letters 587: 2506-

2511. 

37. Hammitzsch, A., C. Tallant, O. Fedorov, A. O'Mahony, P. E. Brennan, D. 

A. Hay, F. O. Martinez, M. H. Al-Mossawi, J. de Wit, M. Vecellio, C. Wells, 

P. Wordsworth, S. Muller, S. Knapp, and P. Bowness. 2015. CBP30, a 

selective CBP/p300 bromodomain inhibitor, suppresses human Th17 

responses. Proceedings of the National Academy of Sciences of the 

United States of America 112: 10768-10773. 



127	
	

38. Ghosh, S., A. Taylor, M. Chin, H. R. Huang, A. R. Conery, J. A. Mertz, A. 

Salmeron, P. J. Dakle, D. Mele, A. Cote, H. Jayaram, J. W. Setser, F. Poy, 

G. Hatzivassiliou, D. DeAlmeida-Nagata, P. Sandy, C. Hatton, F. A. 

Romero, E. Chiang, T. Reimer, T. Crawford, E. Pardo, V. G. Watson, V. 

Tsui, A. G. Cochran, L. Zawadzke, J. C. Harmange, J. E. Audia, B. M. 

Bryant, R. T. Cummings, S. R. Magnuson, J. L. Grogan, S. F. Bellon, B. K. 

Albrecht, R. J. Sims, 3rd, and J. M. Lora. 2016. Regulatory T Cell 

Modulation by CBP/EP300 Bromodomain Inhibition. The Journal of 

biological chemistry 291: 13014-13027. 

39. Nguyen, U. T., L. Bittova, M. M. Muller, B. Fierz, Y. David, B. Houck-

Loomis, V. Feng, G. P. Dann, and T. W. Muir. 2014. Accelerated 

chromatin biochemistry using DNA-barcoded nucleosome libraries. Nature 

methods 11: 834-840. 

40. Kraus, W. L., E. T. Manning, and J. T. Kadonaga. 1999. Biochemical 

analysis of distinct activation functions in p300 that enhance transcription 

initiation with chromatin templates. Molecular and cellular biology 19: 

8123-8135. 

41. Tang, Z., W. Y. Chen, M. Shimada, U. T. Nguyen, J. Kim, X. J. Sun, T. 

Sengoku, R. K. McGinty, J. P. Fernandez, T. W. Muir, and R. G. Roeder. 

2013. SET1 and p300 act synergistically, through coupled histone 

modifications, in transcriptional activation by p53. Cell 154: 297-310. 

42. Fonte, C., J. Grenier, A. Trousson, A. Chauchereau, O. Lahuna, E. E. 

Baulieu, M. Schumacher, and C. Massaad. 2005. Involvement of {beta}-



128	
	

catenin and unusual behavior of CBP and p300 in glucocorticosteroid 

signaling in Schwann cells. Proceedings of the National Academy of 

Sciences of the United States of America 102: 14260-14265. 

43. Conery, A. R., R. C. Centore, A. Neiss, P. J. Keller, S. Joshi, K. L. 

Spillane, P. Sandy, C. Hatton, E. Pardo, L. Zawadzke, A. Bommi-Reddy, 

K. E. Gascoigne, B. M. Bryant, J. A. Mertz, and R. J. Sims. 2016. 

Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as 

a therapeutic strategy to target the IRF4 network in multiple myeloma. 

eLife 5. 

44. Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, 

H. Juguilon, M. Montminy, and R. M. Evans. 1996. Role of CBP/P300 in 

nuclear receptor signalling. Nature 383: 99-103. 

45. Goodman, R. H., and S. Smolik. 2000. CBP/p300 in cell growth, 

transformation, and development. Genes & development 14: 1553-1577. 

46. Wang, F., C. B. Marshall, and M. Ikura. 2013. Transcriptional/epigenetic 

regulator CBP/p300 in tumorigenesis: structural and functional versatility 

in target recognition. Cellular and molecular life sciences : CMLS 70: 

3989-4008. 

47. Mayr, B., and M. Montminy. 2001. Transcriptional regulation by the 

phosphorylation-dependent factor CREB. Nature reviews. Molecular cell 

biology 2: 599-609. 

48. Kwok, R. P., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, 

R. G. Brennan, S. G. Roberts, M. R. Green, and R. H. Goodman. 1994. 



129	
	

Nuclear protein CBP is a coactivator for the transcription factor CREB. 

Nature 370: 223-226. 

49. Radhakrishnan, I., G. C. Perez-Alvarado, D. Parker, H. J. Dyson, M. R. 

Montminy, and P. E. Wright. 1997. Solution structure of the KIX domain of 

CBP bound to the transactivation domain of CREB: a model for 

activator:coactivator interactions. Cell 91: 741-752. 

50. Berk, A. J. 2005. Recent lessons in gene expression, cell cycle control, 

and cell biology from adenovirus. Oncogene 24: 7673-7685. 

51. Hamamori, Y., V. Sartorelli, V. Ogryzko, P. L. Puri, H. Y. Wu, J. Y. Wang, 

Y. Nakatani, and L. Kedes. 1999. Regulation of histone acetyltransferases 

p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein 

E1A. Cell 96: 405-413. 

52. Chakravarti, D., V. Ogryzko, H. Y. Kao, A. Nash, H. Chen, Y. Nakatani, 

and R. M. Evans. 1999. A viral mechanism for inhibition of p300 and 

PCAF acetyltransferase activity. Cell 96: 393-403. 

53. Perissi, V., J. S. Dasen, R. Kurokawa, Z. Wang, E. Korzus, D. W. Rose, C. 

K. Glass, and M. G. Rosenfeld. 1999. Factor-specific modulation of 

CREB-binding protein acetyltransferase activity. Proceedings of the 

National Academy of Sciences of the United States of America 96: 3652-

3657. 

54. Madison, D. L., P. Yaciuk, R. P. Kwok, and J. R. Lundblad. 2002. 

Acetylation of the adenovirus-transforming protein E1A determines 



130	
	

nuclear localization by disrupting association with importin-alpha. The 

Journal of biological chemistry 277: 38755-38763. 

55. Saint Just Ribeiro, M., M. L. Hansson, and A. E. Wallberg. 2007. A proline 

repeat domain in the Notch co-activator MAML1 is important for the p300-

mediated acetylation of MAML1. The Biochemical journal 404: 289-298. 

56. Hansson, M. L., A. E. Popko-Scibor, M. Saint Just Ribeiro, B. M. Dancy, 

M. J. Lindberg, P. A. Cole, and A. E. Wallberg. 2009. The transcriptional 

coactivator MAML1 regulates p300 autoacetylation and HAT activity. 

Nucleic acids research 37: 2996-3006. 

57. Fryer, C. J., E. Lamar, I. Turbachova, C. Kintner, and K. A. Jones. 2002. 

Mastermind mediates chromatin-specific transcription and turnover of the 

Notch enhancer complex. Genes & development 16: 1397-1411. 

58. Bose, D. A., G. Donahue, D. Reinberg, R. Shiekhattar, R. Bonasio, and S. 

L. Berger. 2017. RNA Binding to CBP Stimulates Histone Acetylation and 

Transcription. Cell 168: 135-149 e122. 

59. Kim, T. K., M. Hemberg, J. M. Gray, A. M. Costa, D. M. Bear, J. Wu, D. A. 

Harmin, M. Laptewicz, K. Barbara-Haley, S. Kuersten, E. Markenscoff-

Papadimitriou, D. Kuhl, H. Bito, P. F. Worley, G. Kreiman, and M. E. 

Greenberg. 2010. Widespread transcription at neuronal activity-regulated 

enhancers. Nature 465: 182-187. 

60. Huang, W. C., and C. C. Chen. 2005. Akt phosphorylation of p300 at Ser-

1834 is essential for its histone acetyltransferase and transcriptional 

activity. Molecular and cellular biology 25: 6592-6602. 



131	
	

61. Chen, Y. J., Y. N. Wang, and W. C. Chang. 2007. ERK2-mediated C-

terminal serine phosphorylation of p300 is vital to the regulation of 

epidermal growth factor-induced keratin 16 gene expression. The Journal 

of biological chemistry 282: 27215-27228. 

62. Wan, W., Z. You, Y. Xu, L. Zhou, Z. Guan, C. Peng, C. C. L. Wong, H. Su, 

T. Zhou, H. Xia, and W. Liu. 2017. mTORC1 Phosphorylates 

Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. 

Molecular cell 68: 323-335 e326. 

63. Yuan, L. W., J. W. Soh, and I. B. Weinstein. 2002. Inhibition of histone 

acetyltransferase function of p300 by PKCdelta. Biochimica et biophysica 

acta 1592: 205-211. 

64. Jang, E. R., J. D. Choi, G. Jeong, and J. S. Lee. 2010. Phosphorylation of 

p300 by ATM controls the stability of NBS1. Biochemical and biophysical 

research communications 397: 637-643. 

65. Wang, Q. E., C. Han, R. Zhao, G. Wani, Q. Zhu, L. Gong, A. Battu, I. 

Racoma, N. Sharma, and A. A. Wani. 2013. p38 MAPK- and Akt-mediated 

p300 phosphorylation regulates its degradation to facilitate nucleotide 

excision repair. Nucleic acids research 41: 1722-1733. 

66. Lee, Y. H., S. A. Coonrod, W. L. Kraus, M. A. Jelinek, and M. R. Stallcup. 

2005. Regulation of coactivator complex assembly and function by protein 

arginine methylation and demethylimination. Proceedings of the National 

Academy of Sciences of the United States of America 102: 3611-3616. 



132	
	

67. Xu, W., H. Chen, K. Du, H. Asahara, M. Tini, B. M. Emerson, M. 

Montminy, and R. M. Evans. 2001. A transcriptional switch mediated by 

cofactor methylation. Science 294: 2507-2511. 

68. Chevillard-Briet, M., D. Trouche, and L. Vandel. 2002. Control of CBP co-

activating activity by arginine methylation. The EMBO journal 21: 5457-

5466. 

69. Ceschin, D. G., M. Walia, S. S. Wenk, C. Duboe, C. Gaudon, Y. Xiao, L. 

Fauquier, M. Sankar, L. Vandel, and H. Gronemeyer. 2011. Methylation 

specifies distinct estrogen-induced binding site repertoires of CBP to 

chromatin. Genes & development 25: 1132-1146. 

70. Girdwood, D., D. Bumpass, O. A. Vaughan, A. Thain, L. A. Anderson, A. 

W. Snowden, E. Garcia-Wilson, N. D. Perkins, and R. T. Hay. 2003. P300 

transcriptional repression is mediated by SUMO modification. Molecular 

cell 11: 1043-1054. 

71. Kuo, H. Y., C. C. Chang, J. C. Jeng, H. M. Hu, D. Y. Lin, G. G. Maul, R. P. 

Kwok, and H. M. Shih. 2005. SUMO modification negatively modulates the 

transcriptional activity of CREB-binding protein via the recruitment of 

Daxx. Proceedings of the National Academy of Sciences of the United 

States of America 102: 16973-16978. 

72. Tanaka, Y., I. Naruse, T. Hongo, M. Xu, T. Nakahata, T. Maekawa, and S. 

Ishii. 2000. Extensive brain hemorrhage and embryonic lethality in a 

mouse null mutant of CREB-binding protein. Mech Dev 95: 133-145. 



133	
	

73. Yao, T. P., S. P. Oh, M. Fuchs, N. D. Zhou, L. E. Ch'ng, D. Newsome, R. 

T. Bronson, E. Li, D. M. Livingston, and R. Eckner. 1998. Gene dosage-

dependent embryonic development and proliferation defects in mice 

lacking the transcriptional integrator p300. Cell 93: 361-372. 

74. Oike, Y., N. Takakura, A. Hata, T. Kaname, M. Akizuki, Y. Yamaguchi, H. 

Yasue, K. Araki, K. Yamamura, and T. Suda. 1999. Mice homozygous for 

a truncated form of CREB-binding protein exhibit defects in hematopoiesis 

and vasculo-angiogenesis. Blood 93: 2771-2779. 

75. Kung, A. L., V. I. Rebel, R. T. Bronson, L. E. Ch'ng, C. A. Sieff, D. M. 

Livingston, and T. P. Yao. 2000. Gene dose-dependent control of 

hematopoiesis and hematologic tumor suppression by CBP. Genes & 

development 14: 272-277. 

76. Tanaka, Y., I. Naruse, T. Maekawa, H. Masuya, T. Shiroishi, and S. Ishii. 

1997. Abnormal skeletal patterning in embryos lacking a single Cbp allele: 

a partial similarity with Rubinstein-Taybi syndrome. Proceedings of the 

National Academy of Sciences of the United States of America 94: 10215-

10220. 

77. Petrij, F., R. H. Giles, H. G. Dauwerse, J. J. Saris, R. C. Hennekam, M. 

Masuno, N. Tommerup, G. J. van Ommen, R. H. Goodman, D. J. Peters, 

and et al. 1995. Rubinstein-Taybi syndrome caused by mutations in the 

transcriptional co-activator CBP. Nature 376: 348-351. 

78. Solomon, B. D., D. L. Bodian, A. Khromykh, G. G. Mora, B. C. Lanpher, R. 

K. Iyer, R. Baveja, J. G. Vockley, and J. E. Niederhuber. 2015. Expanding 



134	
	

the phenotypic spectrum in EP300-related Rubinstein-Taybi syndrome. 

American journal of medical genetics. Part A 167: 1111-1116. 

79. Rubinstein, J. H., and H. Taybi. 1963. Broad thumbs and toes and facial 

abnormalities. A possible mental retardation syndrome. Am J Dis Child 

105: 588-608. 

80. Oike, Y., A. Hata, T. Mamiya, T. Kaname, Y. Noda, M. Suzuki, H. Yasue, 

T. Nabeshima, K. Araki, and K. Yamamura. 1999. Truncated CBP protein 

leads to classical Rubinstein-Taybi syndrome phenotypes in mice: 

implications for a dominant-negative mechanism. Human molecular 

genetics 8: 387-396. 

81. Kasper, L. H., F. Boussouar, P. A. Ney, C. W. Jackson, J. Rehg, J. M. van 

Deursen, and P. K. Brindle. 2002. A transcription-factor-binding surface of 

coactivator p300 is required for haematopoiesis. Nature 419: 738-743. 

82. Rebel, V. I., A. L. Kung, E. A. Tanner, H. Yang, R. T. Bronson, and D. M. 

Livingston. 2002. Distinct roles for CREB-binding protein and p300 in 

hematopoietic stem cell self-renewal. Proceedings of the National 

Academy of Sciences of the United States of America 99: 14789-14794. 

83. Korzus, E., M. G. Rosenfeld, and M. Mayford. 2004. CBP histone 

acetyltransferase activity is a critical component of memory consolidation. 

Neuron 42: 961-972. 

84. Alarcon, J. M., G. Malleret, K. Touzani, S. Vronskaya, S. Ishii, E. R. 

Kandel, and A. Barco. 2004. Chromatin acetylation, memory, and LTP are 



135	
	

impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-

Taybi syndrome and its amelioration. Neuron 42: 947-959. 

85. Barrett, R. M., M. Malvaez, E. Kramar, D. P. Matheos, A. Arrizon, S. M. 

Cabrera, G. Lynch, R. W. Greene, and M. A. Wood. 2011. Hippocampal 

focal knockout of CBP affects specific histone modifications, long-term 

potentiation, and long-term memory. Neuropsychopharmacology : official 

publication of the American College of Neuropsychopharmacology 36: 

1545-1556. 

86. Korzus, E. 2017. Rubinstein-Taybi Syndrome and Epigenetic Alterations. 

Advances in experimental medicine and biology 978: 39-62. 

87. Martincorena, I., and P. J. Campbell. 2015. Somatic mutation in cancer 

and normal cells. Science 349: 1483-1489. 

88. Gayther, S. A., S. J. Batley, L. Linger, A. Bannister, K. Thorpe, S. F. Chin, 

Y. Daigo, P. Russell, A. Wilson, H. M. Sowter, J. D. Delhanty, B. A. 

Ponder, T. Kouzarides, and C. Caldas. 2000. Mutations truncating the 

EP300 acetylase in human cancers. Nature genetics 24: 300-303. 

89. Bryan, E. J., V. J. Jokubaitis, N. L. Chamberlain, S. W. Baxter, E. Dawson, 

D. Y. Choong, and I. G. Campbell. 2002. Mutation analysis of EP300 in 

colon, breast and ovarian carcinomas. International journal of cancer. 

Journal international du cancer 102: 137-141. 

90. Kishimoto, M., T. Kohno, K. Okudela, A. Otsuka, H. Sasaki, C. Tanabe, T. 

Sakiyama, C. Hirama, I. Kitabayashi, J. D. Minna, S. Takenoshita, and J. 

Yokota. 2005. Mutations and deletions of the CBP gene in human lung 



136	
	

cancer. Clinical cancer research : an official journal of the American 

Association for Cancer Research 11: 512-519. 

91. Li, Y. Y., G. J. Hanna, A. C. Laga, R. I. Haddad, J. H. Lorch, and P. S. 

Hammerman. 2015. Genomic analysis of metastatic cutaneous squamous 

cell carcinoma. Clinical cancer research : an official journal of the 

American Association for Cancer Research 21: 1447-1456. 

92. Pasqualucci, L., D. Dominguez-Sola, A. Chiarenza, G. Fabbri, A. Grunn, 

V. Trifonov, L. H. Kasper, S. Lerach, H. Tang, J. Ma, D. Rossi, A. 

Chadburn, V. V. Murty, C. G. Mullighan, G. Gaidano, R. Rabadan, P. K. 

Brindle, and R. Dalla-Favera. 2011. Inactivating mutations of 

acetyltransferase genes in B-cell lymphoma. Nature 471: 189-195. 

93. Morin, R. D., M. Mendez-Lago, A. J. Mungall, R. Goya, K. L. Mungall, R. 

D. Corbett, N. A. Johnson, T. M. Severson, R. Chiu, M. Field, S. Jackman, 

M. Krzywinski, D. W. Scott, D. L. Trinh, J. Tamura-Wells, S. Li, M. R. 

Firme, S. Rogic, M. Griffith, S. Chan, O. Yakovenko, I. M. Meyer, E. Y. 

Zhao, D. Smailus, M. Moksa, S. Chittaranjan, L. Rimsza, A. Brooks-

Wilson, J. J. Spinelli, S. Ben-Neriah, B. Meissner, B. Woolcock, M. Boyle, 

H. McDonald, A. Tam, Y. Zhao, A. Delaney, T. Zeng, K. Tse, Y. 

Butterfield, I. Birol, R. Holt, J. Schein, D. E. Horsman, R. Moore, S. J. 

Jones, J. M. Connors, M. Hirst, R. D. Gascoyne, and M. A. Marra. 2011. 

Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. 

Nature 476: 298-303. 



137	
	

94. Haery, L., J. G. Lugo-Pico, R. A. Henry, A. J. Andrews, and T. D. Gilmore. 

2014. Histone acetyltransferase-deficient p300 mutants in diffuse large B 

cell lymphoma have altered transcriptional regulatory activities and are 

required for optimal cell growth. Molecular cancer 13: 29. 

95. Peifer, M., L. Fernandez-Cuesta, M. L. Sos, J. George, D. Seidel, L. H. 

Kasper, D. Plenker, F. Leenders, R. Sun, T. Zander, R. Menon, M. Koker, 

I. Dahmen, C. Muller, V. Di Cerbo, H. U. Schildhaus, J. Altmuller, I. 

Baessmann, C. Becker, B. de Wilde, J. Vandesompele, D. Bohm, S. 

Ansen, F. Gabler, I. Wilkening, S. Heynck, J. M. Heuckmann, X. Lu, S. L. 

Carter, K. Cibulskis, S. Banerji, G. Getz, K. S. Park, D. Rauh, C. Grutter, 

M. Fischer, L. Pasqualucci, G. Wright, Z. Wainer, P. Russell, I. Petersen, 

Y. Chen, E. Stoelben, C. Ludwig, P. Schnabel, H. Hoffmann, T. Muley, M. 

Brockmann, W. Engel-Riedel, L. A. Muscarella, V. M. Fazio, H. Groen, W. 

Timens, H. Sietsma, E. Thunnissen, E. Smit, D. A. Heideman, P. J. 

Snijders, F. Cappuzzo, C. Ligorio, S. Damiani, J. Field, S. Solberg, O. T. 

Brustugun, M. Lund-Iversen, J. Sanger, J. H. Clement, A. Soltermann, H. 

Moch, W. Weder, B. Solomon, J. C. Soria, P. Validire, B. Besse, E. 

Brambilla, C. Brambilla, S. Lantuejoul, P. Lorimier, P. M. Schneider, M. 

Hallek, W. Pao, M. Meyerson, J. Sage, J. Shendure, R. Schneider, R. 

Buttner, J. Wolf, P. Nurnberg, S. Perner, L. C. Heukamp, P. K. Brindle, S. 

Haas, and R. K. Thomas. 2012. Integrative genome analyses identify key 

somatic driver mutations of small-cell lung cancer. Nature genetics 44: 

1104-1110. 



138	
	

96. Sobulo, O. M., J. Borrow, R. Tomek, S. Reshmi, A. Harden, B. 

Schlegelberger, D. Housman, N. A. Doggett, J. D. Rowley, and N. J. 

ZeleznikLe. 1997. MLL is fused to CBP, a histone acetyltransferase, in 

therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). 

Proceedings of the National Academy of Sciences of the United States of 

America 94: 8732-8737. 

97. Rowley, J. D., S. Reshmi, O. Sobulo, T. Musvee, J. Anastasi, S. 

Raimondi, N. R. Schneider, J. C. Barredo, E. S. Cantu, B. Schlegelberger, 

F. Behm, N. A. Doggett, J. Borrow, and N. ZeleznikLe. 1997. All patients 

with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-

related hematologic disorders. Blood 90: 535-541. 

98. Ida, K., I. Kitabayashi, T. Taki, M. Taniwaki, K. Noro, M. Yamamoto, M. 

Ohki, and Y. Hayashi. 1997. Adenoviral E1A-associated protein p300 is 

involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90: 

4699-4704. 

99. Giles, R. H., J. G. Dauwerse, C. Higgins, F. Petrij, J. W. Wessels, G. C. 

Beverstock, H. Dohner, M. Jotterand-Bellomo, J. H. F. Falkenburg, R. M. 

Slater, G. J. B. van Ommen, A. Hagemeijer, B. A. van der Reijden, and M. 

H. Breuning. 1997. Detection of CBP rearrangements in acute 

myelogenous leukemia with t(8;16). Leukemia 11: 2087-2096. 

100. Kitabayashi, I., Y. Aikawa, A. Yokoyama, F. Hosoda, M. Nagai, N. Kakazu, 

T. Abe, and M. Ohki. 2001. Fusion of MOZ and p300 histone 



139	
	

acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) 

chromosome translocation. Leukemia 15: 89-94. 

101. Ionov, Y., S. Matsui, and J. K. Cowell. 2004. A role for p300/CREB binding 

protein genes in promoting cancer progression in colon cancer cell lines 

with microsatellite instability. Proceedings of the National Academy of 

Sciences of the United States of America 101: 1273-1278. 

102. Iyer, N. G., S. F. Chin, H. Ozdag, Y. Daigo, D. E. Hu, M. Cariati, K. 

Brindle, S. Aparicio, and C. Caldas. 2004. p300 regulates p53-dependent 

apoptosis after DNA damage in colorectal cancer cells by modulation of 

PUMA/p21 levels. Proceedings of the National Academy of Sciences of 

the United States of America 101: 7386-7391. 

103. Jiang, Y., A. Ortega-Molina, H. Geng, H. Y. Ying, K. Hatzi, S. Parsa, D. 

McNally, L. Wang, A. S. Doane, X. Agirre, M. Teater, C. Meydan, Z. Li, D. 

Poloway, S. Wang, D. Ennishi, D. W. Scott, K. R. Stengel, J. E. Kranz, E. 

Holson, S. Sharma, J. W. Young, C. S. Chu, R. G. Roeder, R. 

Shaknovich, S. W. Hiebert, R. D. Gascoyne, W. Tam, O. Elemento, H. G. 

Wendel, and A. M. Melnick. 2017. CREBBP Inactivation Promotes the 

Development of HDAC3-Dependent Lymphomas. Cancer discovery 7: 38-

53. 

104. Zhang, J., S. Vlasevska, V. A. Wells, S. Nataraj, A. B. Holmes, R. Duval, 

S. N. Meyer, T. Mo, K. Basso, P. K. Brindle, S. Hussein, R. Dalla-Favera, 

and L. Pasqualucci. 2017. The CREBBP Acetyltransferase Is a 



140	
	

Haploinsufficient Tumor Suppressor in B-cell Lymphoma. Cancer 

discovery. 

105. Horton, S. J., G. Giotopoulos, H. Yun, S. Vohra, O. Sheppard, R. 

Bashford-Rogers, M. Rashid, A. Clipson, W. I. Chan, D. Sasca, L. 

Yiangou, H. Osaki, F. Basheer, P. Gallipoli, N. Burrows, A. Erdem, A. 

Sybirna, S. Foerster, W. Zhao, T. Sustic, A. Petrunkina Harrison, E. 

Laurenti, J. Okosun, D. Hodson, P. Wright, K. G. Smith, P. Maxwell, J. 

Fitzgibbon, M. Q. Du, D. J. Adams, and B. J. P. Huntly. 2017. Early loss of 

Crebbp confers malignant stem cell properties on lymphoid progenitors. 

Nature cell biology 19: 1093-1104. 

106. Garcia-Ramirez, I., S. Tadros, I. Gonzalez-Herrero, A. Martin-Lorenzo, G. 

Rodriguez-Hernandez, D. Moore, L. Ruiz-Roca, O. Blanco, D. Alonso-

Lopez, J. L. Rivas, K. Hartert, R. Duval, D. Klinkebiel, M. Bast, J. Vose, M. 

Lunning, K. Fu, T. Greiner, F. Rodrigues-Lima, R. Jimenez, F. J. G. 

Criado, M. B. G. Cenador, P. Brindle, C. Vicente-Duenas, A. Alizadeh, I. 

Sanchez-Garcia, and M. R. Green. 2017. Crebbp loss cooperates with 

Bcl2 overexpression to promote lymphoma in mice. Blood 129: 2645-

2656. 

107. Okosun, J., C. Bodor, J. Wang, S. Araf, C. Y. Yang, C. Pan, S. Boller, D. 

Cittaro, M. Bozek, S. Iqbal, J. Matthews, D. Wrench, J. Marzec, K. 

Tawana, N. Popov, C. O'Riain, D. O'Shea, E. Carlotti, A. Davies, C. H. 

Lawrie, A. Matolcsy, M. Calaminici, A. Norton, R. J. Byers, C. Mein, E. 

Stupka, T. A. Lister, G. Lenz, S. Montoto, J. G. Gribben, Y. Fan, R. 



141	
	

Grosschedl, C. Chelala, and J. Fitzgibbon. 2014. Integrated genomic 

analysis identifies recurrent mutations and evolution patterns driving the 

initiation and progression of follicular lymphoma. Nature genetics 46: 176-

181. 

108. Debes, J. D., T. J. Sebo, C. M. Lohse, L. M. Murphy, D. A. Haugen, and 

D. J. Tindall. 2003. p300 in prostate cancer proliferation and progression. 

Cancer research 63: 7638-7640. 

109. Yokomizo, C., K. Yamaguchi, Y. Itoh, T. Nishimura, A. Umemura, M. 

Minami, K. Yasui, H. Mitsuyoshi, H. Fujii, N. Tochiki, T. Nakajima, T. 

Okanoue, and T. Yoshikawa. 2011. High expression of p300 in HCC 

predicts shortened overall survival in association with enhanced epithelial 

mesenchymal transition of HCC cells. Cancer Lett 310: 140-147. 

110. Hou, X., Y. Li, R. Z. Luo, J. H. Fu, J. H. He, L. J. Zhang, and H. X. Yang. 

2012. High expression of the transcriptional co-activator p300 predicts 

poor survival in resectable non-small cell lung cancers. European journal 

of surgical oncology : the journal of the European Society of Surgical 

Oncology and the British Association of Surgical Oncology 38: 523-530. 

111. Gao, Y., J. Geng, X. Hong, J. Qi, Y. Teng, Y. Yang, D. Qu, and G. Chen. 

2014. Expression of p300 and CBP is associated with poor prognosis in 

small cell lung cancer. International journal of clinical and experimental 

pathology 7: 760-767. 

112. Zhong, J., L. Ding, L. R. Bohrer, Y. Pan, P. Liu, J. Zhang, T. J. Sebo, R. J. 

Karnes, D. J. Tindall, J. van Deursen, and H. Huang. 2014. p300 



142	
	

acetyltransferase regulates androgen receptor degradation and PTEN-

deficient prostate tumorigenesis. Cancer research 74: 1870-1880. 

113. Ianculescu, I., D. Y. Wu, K. D. Siegmund, and M. R. Stallcup. 2012. 

Selective roles for cAMP response element-binding protein binding protein 

and p300 protein as coregulators for androgen-regulated gene expression 

in advanced prostate cancer cells. The Journal of biological chemistry 

287: 4000-4013. 

114. Lee, J. H., B. Yang, A. J. Lindahl, N. Damaschke, M. D. Boersma, W. 

Huang, E. Corey, D. F. Jarrard, and J. M. Denu. 2017. Identifying 

Dysregulated Epigenetic Enzyme Activity in Castrate-Resistant Prostate 

Cancer Development. ACS chemical biology 12: 2804-2814. 

115. Giotopoulos, G., W. I. Chan, S. J. Horton, D. Ruau, P. Gallipoli, A. Fowler, 

C. Crawley, E. Papaemmanuil, P. J. Campbell, B. Gottgens, J. M. Van 

Deursen, P. A. Cole, and B. J. Huntly. 2016. The epigenetic regulators 

CBP and p300 facilitate leukemogenesis and represent therapeutic targets 

in acute myeloid leukemia. Oncogene 35: 279-289. 

116. Pattabiraman, D. R., J. Sun, D. H. Dowhan, S. Ishii, and T. J. Gonda. 

2009. Mutations in multiple domains of c-Myb disrupt interaction with 

CBP/p300 and abrogate myeloid transforming ability. Mol Cancer Res 7: 

1477-1486. 

117. Pattabiraman, D. R., C. McGirr, K. Shakhbazov, V. Barbier, K. Krishnan, 

P. Mukhopadhyay, P. Hawthorne, A. Trezise, J. Ding, S. M. Grimmond, P. 

Papathanasiou, W. S. Alexander, A. C. Perkins, J. P. Levesque, I. G. 



143	
	

Winkler, and T. J. Gonda. 2014. Interaction of c-Myb with p300 is required 

for the induction of acute myeloid leukemia (AML) by human AML 

oncogenes. Blood 123: 2682-2690. 

118. Picaud, S., O. Fedorov, A. Thanasopoulou, K. Leonards, K. Jones, J. 

Meier, H. Olzscha, O. Monteiro, S. Martin, M. Philpott, A. Tumber, P. 

Filippakopoulos, C. Yapp, C. Wells, K. H. Che, A. Bannister, S. Robson, 

U. Kumar, N. Parr, K. Lee, D. Lugo, P. Jeffrey, S. Taylor, M. L. Vecellio, C. 

Bountra, P. E. Brennan, A. O'Mahony, S. Velichko, S. Muller, D. Hay, D. L. 

Daniels, M. Urh, N. B. La Thangue, T. Kouzarides, R. Prinjha, J. 

Schwaller, and S. Knapp. 2015. Generation of a Selective Small Molecule 

Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer 

research 75: 5106-5119. 

119. Cerami, E., J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, 

A. Jacobsen, C. J. Byrne, M. L. Heuer, E. Larsson, Y. Antipin, B. Reva, A. 

P. Goldberg, C. Sander, and N. Schultz. 2012. The cBio cancer genomics 

portal: an open platform for exploring multidimensional cancer genomics 

data. Cancer discovery 2: 401-404. 

120. Gao, J., B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer, 

Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, E. Cerami, C. Sander, and N. 

Schultz. 2013. Integrative analysis of complex cancer genomics and 

clinical profiles using the cBioPortal. Sci Signal 6: pl1. 

121. Legge, G. B., M. A. Martinez-Yamout, D. M. Hambly, T. Trinh, B. M. Lee, 

H. J. Dyson, and P. E. Wright. 2004. ZZ domain of CBP: an unusual zinc 



144	
	

finger fold in a protein interaction module. Journal of molecular biology 

343: 1081-1093. 

122. Ponting, C. P., D. J. Blake, K. E. Davies, J. Kendrick-Jones, and S. J. 

Winder. 1996. ZZ and TAZ: new putative zinc fingers in dystrophin and 

other proteins. Trends in biochemical sciences 21: 11-13. 

123. Barresi, R., and K. P. Campbell. 2006. Dystroglycan: from biosynthesis to 

pathogenesis of human disease. Journal of cell science 119: 199-207. 

124. Ishikawa-Sakurai, M., M. Yoshida, M. Imamura, K. E. Davies, and E. 

Ozawa. 2004. ZZ domain is essentially required for the physiological 

binding of dystrophin and utrophin to beta-dystroglycan. Human molecular 

genetics 13: 693-702. 

125. Sanz, L., M. T. Diaz-Meco, H. Nakano, and J. Moscat. 2000. The atypical 

PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-

TRAF6 pathway. The EMBO journal 19: 1576-1586. 

126. Danielsen, J. R., L. K. Povlsen, B. H. Villumsen, W. Streicher, J. Nilsson, 

M. Wikstrom, S. Bekker-Jensen, and N. Mailand. 2012. DNA damage-

inducible SUMOylation of HERC2 promotes RNF8 binding via a novel 

SUMO-binding Zinc finger. J Cell Biol 197: 179-187. 

127. Diehl, C., M. Akke, S. Bekker-Jensen, N. Mailand, W. Streicher, and M. 

Wikstrom. 2016. Structural analysis of a complex between small ubiquitin-

like modifier 1 (SUMO1) and the ZZ domain of CREB-binding Protein 

(CBP/p300) reveals a new interaction surface on SUMO. The Journal of 

biological chemistry. 



145	
	

128. Semenova, E. A., R. Nagel, and A. Berns. 2015. Origins, genetic 

landscape, and emerging therapies of small cell lung cancer. Genes & 

development 29: 1447-1462. 

129. Kato, Y., T. B. Ferguson, D. E. Bennett, and T. H. Burford. 1969. Oat cell 

carcinoma of the lung. A review of 138 cases. Cancer 23: 517-524. 

130. Sutherland, K. D., N. Proost, I. Brouns, D. Adriaensen, J. Y. Song, and A. 

Berns. 2011. Cell of origin of small cell lung cancer: inactivation of Trp53 

and Rb1 in distinct cell types of adult mouse lung. Cancer cell 19: 754-

764. 

131. Park, K. S., M. C. Liang, D. M. Raiser, R. Zamponi, R. R. Roach, S. J. 

Curtis, Z. Walton, B. E. Schaffer, C. M. Roake, A. F. Zmoos, C. Kriegel, K. 

K. Wong, J. Sage, and C. F. Kim. 2011. Characterization of the cell of 

origin for small cell lung cancer. Cell cycle 10: 2806-2815. 

132. Micke, P., A. Faldum, T. Metz, K. M. Beeh, F. Bittinger, J. G. Hengstler, 

and R. Buhl. 2002. Staging small cell lung cancer: Veterans Administration 

Lung Study Group versus International Association for the Study of Lung 

Cancer--what limits limited disease? Lung Cancer 37: 271-276. 

133. Kalemkerian, G. P., W. Akerley, P. Bogner, H. Borghaei, L. Q. Chow, R. J. 

Downey, L. Gandhi, A. K. Ganti, R. Govindan, J. C. Grecula, J. Hayman, 

R. S. Heist, L. Horn, T. Jahan, M. Koczywas, B. W. Loo, Jr., R. E. Merritt, 

C. A. Moran, H. B. Niell, J. O'Malley, J. D. Patel, N. Ready, C. M. Rudin, 

C. C. Williams, Jr., K. Gregory, M. Hughes, and N. National 



146	
	

Comprehensive Cancer. 2013. Small cell lung cancer. Journal of the 

National Comprehensive Cancer Network : JNCCN 11: 78-98. 

134. Byers, L. A., and C. M. Rudin. 2015. Small cell lung cancer: where do we 

go from here? Cancer 121: 664-672. 

135. Toyooka, S., T. Tsuda, and A. F. Gazdar. 2003. The TP53 gene, tobacco 

exposure, and lung cancer. Hum Mutat 21: 229-239. 

136. George, J., J. S. Lim, S. J. Jang, Y. Cun, L. Ozretic, G. Kong, F. Leenders, 

X. Lu, L. Fernandez-Cuesta, G. Bosco, C. Muller, I. Dahmen, N. S. 

Jahchan, K. S. Park, D. Yang, A. N. Karnezis, D. Vaka, A. Torres, M. S. 

Wang, J. O. Korbel, R. Menon, S. M. Chun, D. Kim, M. Wilkerson, N. 

Hayes, D. Engelmann, B. Putzer, M. Bos, S. Michels, I. Vlasic, D. Seidel, 

B. Pinther, P. Schaub, C. Becker, J. Altmuller, J. Yokota, T. Kohno, R. 

Iwakawa, K. Tsuta, M. Noguchi, T. Muley, H. Hoffmann, P. A. Schnabel, I. 

Petersen, Y. Chen, A. Soltermann, V. Tischler, C. M. Choi, Y. H. Kim, P. 

P. Massion, Y. Zou, D. Jovanovic, M. Kontic, G. M. Wright, P. A. Russell, 

B. Solomon, I. Koch, M. Lindner, L. A. Muscarella, A. la Torre, J. K. Field, 

M. Jakopovic, J. Knezevic, E. Castanos-Velez, L. Roz, U. Pastorino, O. T. 

Brustugun, M. Lund-Iversen, E. Thunnissen, J. Kohler, M. Schuler, J. 

Botling, M. Sandelin, M. Sanchez-Cespedes, H. B. Salvesen, V. Achter, U. 

Lang, M. Bogus, P. M. Schneider, T. Zander, S. Ansen, M. Hallek, J. Wolf, 

M. Vingron, Y. Yatabe, W. D. Travis, P. Nurnberg, C. Reinhardt, S. 

Perner, L. Heukamp, R. Buttner, S. A. Haas, E. Brambilla, M. Peifer, J. 



147	
	

Sage, and R. K. Thomas. 2015. Comprehensive genomic profiles of small 

cell lung cancer. Nature 524: 47-53. 

137. Rudin, C. M., S. Durinck, E. W. Stawiski, J. T. Poirier, Z. Modrusan, D. S. 

Shames, E. A. Bergbower, Y. Guan, J. Shin, J. Guillory, C. S. Rivers, C. 

K. Foo, D. Bhatt, J. Stinson, F. Gnad, P. M. Haverty, R. Gentleman, S. 

Chaudhuri, V. Janakiraman, B. S. Jaiswal, C. Parikh, W. Yuan, Z. Zhang, 

H. Koeppen, T. D. Wu, H. M. Stern, R. L. Yauch, K. E. Huffman, D. D. 

Paskulin, P. B. Illei, M. Varella-Garcia, A. F. Gazdar, F. J. de Sauvage, R. 

Bourgon, J. D. Minna, M. V. Brock, and S. Seshagiri. 2012. 

Comprehensive genomic analysis identifies SOX2 as a frequently 

amplified gene in small-cell lung cancer. Nature genetics 44: 1111-1116. 

138. Kiefer, P. E., G. Bepler, M. Kubasch, and K. Havemann. 1987. 

Amplification and expression of protooncogenes in human small cell lung 

cancer cell lines. Cancer research 47: 6236-6242. 

139. Krystal, G., M. Birrer, J. Way, M. Nau, E. Sausville, C. Thompson, J. 

Minna, and J. Battey. 1988. Multiple mechanisms for transcriptional 

regulation of the myc gene family in small-cell lung cancer. Molecular and 

cellular biology 8: 3373-3381. 

140. Umemura, S., S. Mimaki, H. Makinoshima, S. Tada, G. Ishii, H. Ohmatsu, 

S. Niho, K. Yoh, S. Matsumoto, A. Takahashi, M. Morise, Y. Nakamura, A. 

Ochiai, K. Nagai, R. Iwakawa, T. Kohno, J. Yokota, Y. Ohe, H. Esumi, K. 

Tsuchihara, and K. Goto. 2014. Therapeutic priority of the 



148	
	

PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a 

comprehensive genomic analysis. J Thorac Oncol 9: 1324-1331. 

141. Ross, J. S., K. Wang, O. R. Elkadi, A. Tarasen, L. Foulke, C. E. Sheehan, 

G. A. Otto, G. Palmer, R. Yelensky, D. Lipson, J. Chmielecki, S. M. Ali, J. 

Elvin, D. Morosini, V. A. Miller, and P. J. Stephens. 2014. Next-generation 

sequencing reveals frequent consistent genomic alterations in small cell 

undifferentiated lung cancer. Journal of clinical pathology 67: 772-776. 

142. Byers, L. A., J. Wang, M. B. Nilsson, J. Fujimoto, P. Saintigny, J. Yordy, U. 

Giri, M. Peyton, Y. H. Fan, L. Diao, F. Masrorpour, L. Shen, W. Liu, B. 

Duchemann, P. Tumula, V. Bhardwaj, J. Welsh, S. Weber, B. S. Glisson, 

N. Kalhor, Wistuba, II, L. Girard, S. M. Lippman, G. B. Mills, K. R. 

Coombes, J. N. Weinstein, J. D. Minna, and J. V. Heymach. 2012. 

Proteomic profiling identifies dysregulated pathways in small cell lung 

cancer and novel therapeutic targets including PARP1. Cancer discovery 

2: 798-811. 

143. Coe, B. P., K. L. Thu, S. Aviel-Ronen, E. A. Vucic, A. F. Gazdar, S. Lam, 

M. S. Tsao, and W. L. Lam. 2013. Genomic deregulation of the E2F/Rb 

pathway leads to activation of the oncogene EZH2 in small cell lung 

cancer. PloS one 8: e71670. 

144. Hubaux, R., K. L. Thu, B. P. Coe, C. MacAulay, S. Lam, and W. L. Lam. 

2013. EZH2 promotes E2F-driven SCLC tumorigenesis through 

modulation of apoptosis and cell-cycle regulation. J Thorac Oncol 8: 1102-

1106. 



149	
	

145. Poirier, J. T., E. E. Gardner, N. Connis, A. L. Moreira, E. de Stanchina, C. 

L. Hann, and C. M. Rudin. 2015. DNA methylation in small cell lung 

cancer defines distinct disease subtypes and correlates with high 

expression of EZH2. Oncogene. 

146. Murai, F., D. Koinuma, A. Shinozaki-Ushiku, M. Fukayama, K. Miyaozono, 

and S. Ehata. 2015. EZH2 promotes progression of small cell lung cancer 

by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discovery 1: 

15026. 

147. Gardner, E. E., B. H. Lok, V. E. Schneeberger, P. Desmeules, L. A. Miles, 

P. K. Arnold, A. Ni, I. Khodos, E. de Stanchina, T. Nguyen, J. Sage, J. E. 

Campbell, S. Ribich, N. Rekhtman, A. Dowlati, P. P. Massion, C. M. 

Rudin, and J. T. Poirier. 2017. Chemosensitive Relapse in Small Cell Lung 

Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer cell 31: 286-

299. 

148. Dooley, A. L., M. M. Winslow, D. Y. Chiang, S. Banerji, N. Stransky, T. L. 

Dayton, E. L. Snyder, S. Senna, C. A. Whittaker, R. T. Bronson, D. 

Crowley, J. Barretina, L. Garraway, M. Meyerson, and T. Jacks. 2011. 

Nuclear factor I/B is an oncogene in small cell lung cancer. Genes & 

development 25: 1470-1475. 

149. Denny, S. K., D. Yang, C. H. Chuang, J. J. Brady, J. S. Lim, B. M. Gruner, 

S. H. Chiou, A. N. Schep, J. Baral, C. Hamard, M. Antoine, M. Wislez, C. 

S. Kong, A. J. Connolly, K. S. Park, J. Sage, W. J. Greenleaf, and M. M. 



150	
	

Winslow. 2016. Nfib Promotes Metastasis through a Widespread Increase 

in Chromatin Accessibility. Cell 166: 328-342. 

150. Semenova, E. A., M. C. Kwon, K. Monkhorst, J. Y. Song, R. Bhaskaran, 

O. Krijgsman, T. Kuilman, D. Peters, W. A. Buikhuisen, E. F. Smit, C. 

Pritchard, M. Cozijnsen, J. van der Vliet, J. Zevenhoven, J. P. Lambooij, 

N. Proost, E. van Montfort, A. Velds, I. J. Huijbers, and A. Berns. 2016. 

Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer 

Progression in Mice and Marks Metastatic Disease in Patients. Cell 

reports 16: 631-643. 

151. Fiorentino, F. P., E. Tokgun, S. Sole-Sanchez, S. Giampaolo, O. Tokgun, 

T. Jauset, T. Kohno, M. Perucho, L. Soucek, and J. Yokota. 2016. Growth 

suppression by MYC inhibition in small cell lung cancer cells with TP53 

and RB1 inactivation. Oncotarget. 

152. Augustyn, A., M. Borromeo, T. Wang, J. Fujimoto, C. Shao, P. D. Dospoy, 

V. Lee, C. Tan, J. P. Sullivan, J. E. Larsen, L. Girard, C. Behrens, 

Wistuba, II, Y. Xie, M. H. Cobb, A. F. Gazdar, J. E. Johnson, and J. D. 

Minna. 2014. ASCL1 is a lineage oncogene providing therapeutic targets 

for high-grade neuroendocrine lung cancers. Proceedings of the National 

Academy of Sciences of the United States of America 111: 14788-14793. 

153. Christensen, C. L., N. Kwiatkowski, B. J. Abraham, J. Carretero, F. Al-

Shahrour, T. Zhang, E. Chipumuro, G. S. Herter-Sprie, E. A. Akbay, A. 

Altabef, J. Zhang, T. Shimamura, M. Capelletti, J. B. Reibel, J. D. 

Cavanaugh, P. Gao, Y. Liu, S. R. Michaelsen, H. S. Poulsen, A. R. Aref, 



151	
	

D. A. Barbie, J. E. Bradner, R. E. George, N. S. Gray, R. A. Young, and K. 

K. Wong. 2014. Targeting transcriptional addictions in small cell lung 

cancer with a covalent CDK7 inhibitor. Cancer cell 26: 909-922. 

154. Loven, J., H. A. Hoke, C. Y. Lin, A. Lau, D. A. Orlando, C. R. Vakoc, J. E. 

Bradner, T. I. Lee, and R. A. Young. 2013. Selective inhibition of tumor 

oncogenes by disruption of super-enhancers. Cell 153: 320-334. 

155. Pott, S., and J. D. Lieb. 2015. What are super-enhancers? Nature 

genetics 47: 8-12. 

156. Kato, F., F. P. Fiorentino, A. Alibes, M. Perucho, M. Sanchez-Cespedes, 

T. Kohno, and J. Yokota. 2016. MYCL is a target of a BET bromodomain 

inhibitor, JQ1, on growth suppression efficacy in small cell lung cancer 

cells. Oncotarget. 

157. Jahchan, N. S., J. S. Lim, B. Bola, K. Morris, G. Seitz, K. Q. Tran, L. Xu, F. 

Trapani, C. J. Morrow, S. Cristea, G. L. Coles, D. Yang, D. Vaka, M. S. 

Kareta, J. George, P. K. Mazur, T. Nguyen, W. C. Anderson, S. J. Dylla, F. 

Blackhall, M. Peifer, C. Dive, and J. Sage. 2016. Identification and 

Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung 

Cancer. Cell reports 16: 644-656. 

158. Pleasance, E. D., P. J. Stephens, S. O'Meara, D. J. McBride, A. Meynert, 

D. Jones, M. L. Lin, D. Beare, K. W. Lau, C. Greenman, I. Varela, S. Nik-

Zainal, H. R. Davies, G. R. Ordonez, L. J. Mudie, C. Latimer, S. Edkins, L. 

Stebbings, L. Chen, M. Jia, C. Leroy, J. Marshall, A. Menzies, A. Butler, J. 

W. Teague, J. Mangion, Y. A. Sun, S. F. McLaughlin, H. E. Peckham, E. 



152	
	

F. Tsung, G. L. Costa, C. C. Lee, J. D. Minna, A. Gazdar, E. Birney, M. D. 

Rhodes, K. J. McKernan, M. R. Stratton, P. A. Futreal, and P. J. Campbell. 

2010. A small-cell lung cancer genome with complex signatures of 

tobacco exposure. Nature 463: 184-190. 

159. Teves, S. S., L. An, A. S. Hansen, L. Xie, X. Darzacq, and R. Tjian. 2016. 

A dynamic mode of mitotic bookmarking by transcription factors. eLife 5. 

160. Li, Y., H. Wen, Y. Xi, K. Tanaka, H. Wang, D. Peng, Y. Ren, Q. Jin, S. Y. 

Dent, W. Li, H. Li, and X. Shi. 2014. AF9 YEATS domain links histone 

acetylation to DOT1L-mediated H3K79 methylation. Cell 159: 558-571. 

161. Wan, L., H. Wen, Y. Li, J. Lyu, Y. Xi, T. Hoshii, J. K. Joseph, X. Wang, Y. 

E. Loh, M. A. Erb, A. L. Souza, J. E. Bradner, L. Shen, W. Li, H. Li, C. D. 

Allis, S. A. Armstrong, and X. Shi. 2017. ENL links histone acetylation to 

oncogenic gene expression in acute myeloid leukaemia. Nature 543: 265-

269. 

162. Egan, B., C. C. Yuan, M. L. Craske, P. Labhart, G. D. Guler, D. Arnott, T. 

M. Maile, J. Busby, C. Henry, T. K. Kelly, C. A. Tindell, S. Jhunjhunwala, 

F. Zhao, C. Hatton, B. M. Bryant, M. Classon, and P. Trojer. 2016. An 

Alternative Approach to ChIP-Seq Normalization Enables Detection of 

Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon 

EZH2 Inhibition. PloS one 11: e0166438. 

163. Torres, I. O., K. M. Kuchenbecker, C. I. Nnadi, R. J. Fletterick, M. J. Kelly, 

and D. G. Fujimori. 2015. Histone demethylase KDM5A is regulated by its 



153	
	

reader domain through a positive-feedback mechanism. Nat Commun 6: 

6204. 

164. Lan, F., R. E. Collins, R. De Cegli, R. Alpatov, J. R. Horton, X. Shi, O. 

Gozani, X. Cheng, and Y. Shi. 2007. Recognition of unmethylated histone 

H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448: 

718-722. 

165. Manning, E. T., T. Ikehara, T. Ito, J. T. Kadonaga, and W. L. Kraus. 2001. 

p300 forms a stable, template-committed complex with chromatin: role for 

the bromodomain. Molecular and cellular biology 21: 3876-3887. 

166. Hilton, I. B., A. M. D'Ippolito, C. M. Vockley, P. I. Thakore, G. E. Crawford, 

T. E. Reddy, and C. A. Gersbach. 2015. Epigenome editing by a CRISPR-

Cas9-based acetyltransferase activates genes from promoters and 

enhancers. Nature biotechnology 33: 510-517. 

167. Rada-Iglesias, A., R. Bajpai, T. Swigut, S. A. Brugmann, R. A. Flynn, and 

J. Wysocka. 2011. A unique chromatin signature uncovers early 

developmental enhancers in humans. Nature 470: 279-283. 

168. Buecker, C., and J. Wysocka. 2012. Enhancers as information integration 

hubs in development: lessons from genomics. Trends in genetics : TIG 28: 

276-284. 

169. Zentner, G. E., P. J. Tesar, and P. C. Scacheri. 2011. Epigenetic 

signatures distinguish multiple classes of enhancers with distinct cellular 

functions. Genome research 21: 1273-1283. 



154	
	

170. Musselman, C. A., M. E. Lalonde, J. Cote, and T. G. Kutateladze. 2012. 

Perceiving the epigenetic landscape through histone readers. Nature 

structural & molecular biology 19: 1218-1227. 

171. Andrews, F. H., B. D. Strahl, and T. G. Kutateladze. 2016. Insights into 

newly discovered marks and readers of epigenetic information. Nature 

chemical biology 12: 662-668. 

172. Taverna, S. D., H. Li, A. J. Ruthenburg, C. D. Allis, and D. J. Patel. 2007. 

How chromatin-binding modules interpret histone modifications: lessons 

from professional pocket pickers. Nature structural & molecular biology 14: 

1025-1040. 

173. An, W., and R. G. Roeder. 2003. Direct association of p300 with 

unmodified H3 and H4 N termini modulates p300-dependent acetylation 

and transcription of nucleosomal templates. The Journal of biological 

chemistry 278: 1504-1510. 

174. Augert, A., and D. MacPherson. 2014. Treating transcriptional addiction in 

small cell lung cancer. Cancer cell 26: 783-784. 

175. Jahchan, N. S., J. T. Dudley, P. K. Mazur, N. Flores, D. Yang, A. 

Palmerton, A. F. Zmoos, D. Vaka, K. Q. Tran, M. Zhou, K. Krasinska, J. 

W. Riess, J. W. Neal, P. Khatri, K. S. Park, A. J. Butte, and J. Sage. 2013. 

A drug repositioning approach identifies tricyclic antidepressants as 

inhibitors of small cell lung cancer and other neuroendocrine tumors. 

Cancer discovery 3: 1364-1377. 



155	
	

176. Schaffer, B. E., K. S. Park, G. Yiu, J. F. Conklin, C. Lin, D. L. Burkhart, A. 

N. Karnezis, E. A. Sweet-Cordero, and J. Sage. 2010. Loss of p130 

accelerates tumor development in a mouse model for human small-cell 

lung carcinoma. Cancer research 70: 3877-3883. 

177. Kim, D. W., N. Wu, Y. C. Kim, P. F. Cheng, R. Basom, D. Kim, C. T. Dunn, 

A. Y. Lee, K. Kim, C. S. Lee, A. Singh, A. F. Gazdar, C. R. Harris, R. N. 

Eisenman, K. S. Park, and D. MacPherson. 2016. Genetic requirement for 

Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell 

lung cancer. Genes & development 30: 1289-1299. 

178. Zhang, W., L. Girard, Y. A. Zhang, T. Haruki, M. Papari-Zareei, V. Stastny, 

H. K. Ghayee, K. Pacak, T. G. Oliver, J. D. Minna, and A. F. Gazdar. 

2018. Small cell lung cancer tumors and preclinical models display 

heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res 7: 

32-49. 

179. Borromeo, M. D., T. K. Savage, R. K. Kollipara, M. He, A. Augustyn, J. K. 

Osborne, L. Girard, J. D. Minna, A. F. Gazdar, M. H. Cobb, and J. E. 

Johnson. 2016. ASCL1 and NEUROD1 Reveal Heterogeneity in 

Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic 

Programs. Cell reports 16: 1259-1272. 

180. Mollaoglu, G., M. R. Guthrie, S. Bohm, J. Bragelmann, I. Can, P. M. 

Ballieu, A. Marx, J. George, C. Heinen, M. D. Chalishazar, H. Cheng, A. S. 

Ireland, K. E. Denning, A. Mukhopadhyay, J. M. Vahrenkamp, K. C. 

Berrett, T. L. Mosbruger, J. Wang, J. L. Kohan, M. E. Salama, B. L. Witt, 



156	
	

M. Peifer, R. K. Thomas, J. Gertz, J. E. Johnson, A. F. Gazdar, R. J. 

Wechsler-Reya, M. L. Sos, and T. G. Oliver. 2016. MYC Drives 

Progression of Small Cell Lung Cancer to a Variant Neuroendocrine 

Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer cell. 

181. Kaur, G., R. A. Reinhart, A. Monks, D. Evans, J. Morris, E. Polley, and B. 

A. Teicher. 2016. Bromodomain and hedgehog pathway targets in small 

cell lung cancer. Cancer Lett 371: 225-239. 

182. van Meerbeeck, J. P., D. A. Fennell, and D. K. De Ruysscher. 2011. 

Small-cell lung cancer. Lancet 378: 1741-1755. 

183. Kim, D. W., K. C. Kim, K. B. Kim, C. T. Dunn, and K. S. Park. 2018. 

Transcriptional deregulation underlying the pathogenesis of small cell lung 

cancer. Transl Lung Cancer Res 7: 4-20. 

184. Jia, D., A. Augert, D. W. Kim, E. Eastwood, N. Wu, A. H. Ibrahim, K. B. 

Kim, C. T. Dunn, S. P. S. Pillai, A. F. Gazdar, H. Bolouri, K. S. Park, and 

D. MacPherson. 2018. Crebbp Loss Drives Small Cell Lung Cancer and 

Increases Sensitivity to HDAC Inhibition. Cancer discovery 8: 1422-1437. 

185. Ramos, Y. F., M. S. Hestand, M. Verlaan, E. Krabbendam, Y. Ariyurek, M. 

van Galen, H. van Dam, G. J. van Ommen, J. T. den Dunnen, A. 

Zantema, and P. A. t Hoen. 2010. Genome-wide assessment of 

differential roles for p300 and CBP in transcription regulation. Nucleic 

acids research 38: 5396-5408. 

186. Tate, J. G., S. Bamford, H. C. Jubb, Z. Sondka, D. M. Beare, N. Bindal, H. 

Boutselakis, C. G. Cole, C. Creatore, E. Dawson, P. Fish, B. Harsha, C. 



157	
	

Hathaway, S. C. Jupe, C. Y. Kok, K. Noble, L. Ponting, C. C. Ramshaw, 

C. E. Rye, H. E. Speedy, R. Stefancsik, S. L. Thompson, S. Wang, S. 

Ward, P. J. Campbell, and S. A. Forbes. 2018. COSMIC: the Catalogue Of 

Somatic Mutations In Cancer. Nucleic acids research. 

187. Zhou, X., M. N. Edmonson, M. R. Wilkinson, A. Patel, G. Wu, Y. Liu, Y. Li, 

Z. Zhang, M. C. Rusch, M. Parker, J. Becksfort, J. R. Downing, and J. 

Zhang. 2016. Exploring genomic alteration in pediatric cancer using 

ProteinPaint. Nature genetics 48: 4-6. 

 

  



158	
	

Vita 

 

Yongming Xue was born in Jinan, China on July 16, 1988, the son of Ying Xu 

and Bin Xue. After completing his education at Shandong Experimental High 

School, Jinan, China in 2007, he entered China Agricultural University (CAU) in 

Beijing, China. He received the degree of Bachelor of Sciences with a major in 

biological sciences from CAU in July 2011. For the next three years, he worked 

as a graduate research assistant and lab technician in Chinese Academy of 

Sciences in Beijing, China. In August of 2014 he entered The University of Texas 

MD Anderson Cancer Center UTHealth Graduate School of Biomedical 

Sciences.  

 
 
Permanent address: 

5731 Gulfton Street, APT 2704, 

Houston, Texas 77030 


	Texas Medical Center Library
	DigitalCommons@TMC
	12-2018

	ROLE OF P300 ZZ DOMAIN IN CHROMATIN ASSOCIATION AND HISTONE ACETYLATION
	Yongming Xue
	Recommended Citation


	Signed Dissertation Approval Page
	Yongming Xue Dissertation All with figure 2018-11-28

