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ASSEMBLY AND DISPLAY OF SURFACE PROTEINS  

IN ACTINOMYCES ORIS 

 

Sara Danielle Siegel, B.S. 

 

Advisory Professor: Hung Ton-That, Ph.D. 

 

 Bacteria are an integral part of human health and disease. In the human host, 

dental plaques form as a result of up to 700 individual bacterial species colonizing oral 

surfaces and forming a multispecies biofilm. These biofilms are the cause of prevalent 

human diseases such as dental caries, gingivitis, and periodontitis. The microbes 

present in the oral biofilm are highly spatially and temporally structured and require a 

primary colonizing species to adhere to host tissue. As an important primary colonizer of 

the oral biofilm, the actinobacterium Actinomyces oris utilizes cell wall anchored proteins 

and glycoconjugates to initiate adherence to host surfaces, recruit additional bacterial 

species that could not bind otherwise, and maintain the structural integrity of the oral 

biofilm. In this thesis, I reveal mechanisms involved in the assembly and display of 

surface proteins that are central to these processes in A. oris.  

 Cell wall-anchored proteins contain a signal peptide to direct their secretion to 

the exoplasmic side of the membrane, where they are liberated from the secretion 

machine by signal peptidases. Cell wall-anchored proteins also contain a cell wall sorting 

signal, which is required for their covalent attachment to peptidoglycan by 

transpeptidase enzymes called sortases. Furthermore, a subset of cell wall-anchored 

proteins are polymerized to form pili prior to being anchored. I found that pilin proteins 
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require a distinct signal peptidase for their maturation and function and uncovered 

residues required for adherence in a minor pilin protein. In certain cases after 

translocation, proteins are modified by the addition of glycopolymers, and I characterized 

a phosphotransferase enzyme with a novel role in protein glycosylation. These studies 

contribute to the understanding of the role of A. oris as a primary colonizer in the oral 

biofilm. Additionally, using A. oris as a model for general processes has led to findings 

which are applicable to principles of biofilm formation, interspecies interactions, 

glycoconjugate formation, and bacterial pathogenesis. 
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 The bacterial cell envelope serves as a platform for molecular interactions. The 

outermost layer of the Gram-positive envelope, the cell wall, is decorated with proteins 

and glycoconjugates that mediate interactions with the local environment. In this thesis, I 

reveal molecular mechanisms underlying the assembly and display of proteins on the 

surface of the Gram-positive actinobacterium Actinomyces oris. My work expands the 

understanding of how these proteins are elaborated and their role in interaction with host 

and microbes that make A. oris a major contributor to the formation of the multispecies 

oral biofilm. 
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Actinomyces oris and the Oral Biofilm 

 Dental plaques are multispecies biofilms that form on oral surfaces and consist of 

up to 700 different bacterial species (1). The oral biofilm is more easily accessible than 

other human-associated microbial communities and can serve as a model for biofilms 

that form on non-shedding surfaces (2). Early realizations of the complexity of this 

biofilm sparked a foray into understanding the species present in the biofilm, what drove 

these interactions, and whether they proceeded at random or with high specificity (3). 

These studies demonstrated that pairwise interactions between two species, known as 

coaggregation, is a regulated process mediated by specific receptor and adhesin pairs 

(4,5). Expansion of genome based research also provided extensive knowledge about 

the players involved at different stages of biofilm formation (6).  

 From these initial works multispecies biofilm development is proposed to occur 

through a stepwise process (1,2). First, primary colonizers bind a conditioned 

substratum then expand and secrete exopolysaccharide (EPS) eventually forming a 

microcolony. In the oral biofilm, salivary proteins deposited on the tooth surface serve as 

the conditioned substratum. These initial microcolonies modify the local environment 

attracting secondary colonizers to the biofilm. Growth and secretion of EPS by 

secondary colonizers culminates in the formation of a mature multispecies biofilm 

(1,2,7). This regulated, hierarchical accretion of bacterial species has been confirmed by 

modern micron-scale biogeographical studies that show oral biofilms exhibit a high 

degree of spatial structuring (8,9). A shared matrix and a variety of molecular 

interactions resulting from physical attachment and soluble molecule signals maintain 

the biofilm through harsh conditions and inconstant nutrient availability (10,11).  

 Although oral biofilms do form in healthy hosts, problems arise from overgrowth 

of these complex communities and subsequent recruitment of key pathogenic species 

that have been demonstrated to subvert host immunity and modulate local and systemic 
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inflammatory responses (12). Pathogenic microbes in the oral biofilm can cause a 

number of infectious diseases such as dental caries, gingivitis, and periodontitis (6). 

Dental diseases caused by poor oral hygiene are considered by the World Health 

Organization as among the most important global oral health burdens due to their high 

prevalence and impact on human health (13). There is also extensive evidence that 

suggests oral bacteria contribute to systemic diseases including cardiovascular disease 

and preterm birth via a systemic inflammatory response to the presence of microbial 

species disseminated through the bloodstream of those with poor oral health and 

hygiene (14,15).  

 One bacterial genus that has emerged as a key primary colonizer and a major 

contributor to oral biofilm formation is Actinomyces. Actinomyces  demonstrate the 

unique ability to interact with the tooth, gingiva and bacterial species (16-18), are 

frequently isolated from oral biofilms (19-21), and remain abundant at the basal layer as 

the biofilm expands (9,22-24). Molecular analyses have uncovered drivers of 

Actinomyces ability to facilitate this structural and temporal hierarchy (18,25,26). This 

means that Actinomyces can maintain the oral biofilm adherence to the tooth as it 

expands below the gum line. Therefore, Actinomyces acts as a support to attract 

bacteria that directly release harmful molecules to damage tissue and persist in the 

periodontal pocket where they would otherwise be unable to adhere and persist (9,27).   

 There are several species of Actinomyces associated with the oral biofilm, and of 

these Actinomyces oris has been developed as a primary model (3,21). The niche of A. 

oris as a primary colonizer is heavily dependent on proteins anchored to the cell wall. 

Therefore, A. oris serves as an outstanding model for basic principles of cell wall 

anchoring, pilus polymerization, and molecular interactions necessary for multi- and 

mono-species biofilm formation. We also have defined morphological characteristics 



5 
 

(Fig. 1-1), established molecular techniques, and an arsenal of approaches to address 

the physiological impact of genetic manipulations in A. oris. 

 The role of A. oris as a primary colonizer of the oral biofilm is associated with the 

expression of two distinct pilus types (21). Actinomyces pili are among the earliest 

imaged bacterial macrostructures by electron microscopy (28) and were the first sortase-

catalyzed pilus operons identified by sequencing (29). Early studies in A. oris 

demonstrated that these pili are accessible to immune cells, and inhibition of either type 

1 or type 2 pili leads to loss of colonization (30-34). However, molecular details of the 

biogenesis of these pili remained a mystery until sortase-catalyzed pili were described in 

Corynebacterium diphtheriae (35), a finding that uncovered conserved mechanisms for 

several Gram-positive pili including those from Actinomyces (36). 

 These features have established A. oris as a model to study actinobacterial 

protein secretion, cell envelope biogenesis, cell wall sorting, and molecular interactions 

that occur at the cell surface. Cell surface display of macromolecules begins after 

proteins are translocated across the cytoplasmic membrane and may require oxidative 

protein folding. Once outside of the cell, proteins can be further modified by a suite of 

membrane-associated enzymes. These modifications can include cell wall anchoring by 

sortase enzymes or the addition of glycopolymers. Proteins displayed on the cell surface 

are accessible to the environment and contribute to modulation of cellular physiology 

and interactions required for pathogenicity. And although pili are the most well described 

contributors to biofilm formation, we still do not have a complete understanding of either 

the players mediating additional interactions or the role of the suite of other cell wall 

associated proteins. 
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Figure 1-1: Known cell surface protein dependent processes in Actinomyces oris. 

A. oris are represented as purple rod-shaped cells undergoing snapping division. Each 

arrow points to a physiological property that we can assess and the associated cell 

surface protein(s). Specifically, these proteins are covalently attached and/or 

polymerized by sortases. The colonization of teeth and gums depends on type 1 pili and 

CafA-containing type 2 pili, respectively. Additionally, CafA is required to mediate 

coaggregation with oral streptococci, shown here in light green. Monospecies biofilm 

formation is mediated by type 2 pili, specifically FimA polymers, and EPS is represented 

in the background. Maintenance of the mono- and multi-species biofilm in the presence 

of salts is mediated by GspAHMM (unpublished data from Abu Amar Al Mamun, used with 

permission), Na+ and K+ ions are represented with orange dots. Figure was generated 

using © BioRender.  
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Glycoconjugates of the Gram-positive Cell Envelope 

 The Gram-positive cell envelope is a broadly defined structure encompassing the 

exoplasmic face of the cytoplasmic membrane and the characteristically thick layered 

meshwork of peptidoglycan called the cell wall as well as all of the components 

associated with these megastructures (37). The cytoplasmic membrane allows for 

nutrient acquisition, embeds transporter proteins, and maintains an electrochemical 

gradient important for energy production and protein transport. A thick layer of 

peptidoglycan surrounds the cytoplasmic membrane. Although we tend to regard the 

peptidoglycan as a static structure, new evidence suggests that there is a stunning 

variety of wall-associated glycoconjugates that are variable in presence and composition 

(38,39). In addition to glycoconjugates, there are also proteins covalently attached to the 

cell wall (40). The combination of these cell envelope features underlies bacterial 

viability, environmental interactions, and niche selection (39). Recent investigations of 

the Gram-positive cell envelope have focused on the individuality of molecular 

composition and how these variations in the cell envelope are derived and translated 

into distinct functions and phenotypes. 

 A major source of variation in the cell envelope arises from envelope associated 

glycoconjugates (38,39). In addition to the notably conserved glycoconjugate 

peptidoglycan, there are several additional glycoconjugates that contribute to the 

individuality of the bacterial cell envelope. These include the capsular polysaccharide, 

exopolysaccharide, glycan-modified pili and flagella, wall and lipo-teichoic acids, and 

glycoproteins. 

Peptidoglycan 

 Peptidoglycan (PG) is the rigid bacterial glycoconjugate that provides structure 

for cell morphology and protects cells from turgor pressure resulting from external 



8 
 

osmotic changes. It is the most highly conserved glycoconjugate in bacteria consisting of 

N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) sugar moieties and 

a pentapeptide attached to the MurNAc subunit. It is present in all bacteria except 

Mycoplasma (41). The GlcNAc-MurNAc-pentapeptide precursors are synthesized in the 

cytoplasm, attached to the universal lipid carrier undecaprenol phosphate (UndP), and 

flipped across the membrane. In the exoplasmic space, the precursors are accessible to 

transglycosylases that link MurNAc to GlcNAc moieties to form the glycan chains. 

Transpeptidase enzymes then covalently link these repeating MurNAc-GlcNAc-

pentapeptide units together forming a peptide crossbridge. This process is repeated until 

eventually a durable mesh structure is formed (36). PG glycan chain length differs 

between species, but variations of the peptidoglycan structure are introduced primarily to 

the pentapeptide composition (41).  

Wall teichoic acids 

 Wall teichoic acids (WTA) are long anionic glycopolymers that are attached to 

and threaded through the PG layer. These molecules extend beyond the cell wall and 

account for a significant portion of the cell mass (37,42). WTA polymers consist of 

repeating polyribitol phosphate or polyglycerol phosphate subunits attached by a 

phosphodiester bond to the MurNAc subunit on peptidoglycan. WTAs are negatively 

charged, and their display has been implicated in several different and species specific 

functions (37,39). The negative charge of the polymers gives teichoic acids the capacity 

to bind cations (42). Accordingly, one of the earliest functions attributed to WTAs was a 

role in cation homeostasis (43). WTAs have since been found to have a range of 

functions including protection against cationic antimicrobial peptides, reduced biofilm 

formation on abiotic surfaces, and resistance to lysozyme (39). 

 The attachment of teichoic acids to the cell wall is mediated by a family of 

enzymes containing LytR-CspA-PsrA domains or LCP enzymes (44). The activity of the 
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LCP enzymes extends beyond just WTA synthesis and have been described to catalyze 

the attachment of other glycopolymers to the bacterial cell wall such as arabinogalactan, 

glucose-rhamnose-polymer, and capsular polysaccharides (45-48). LCP enzymes have 

recently been found to protect Mycobacterium tuberculosis from LC3-associated 

phagocytosis without affecting arabinogalactan display or cell wall integrity suggesting 

an entirely different role for this particular LCP (49). In A. oris, the function of one LCP 

enzyme, LcpA, is the transfer of an unknown glycopolymer to a cell wall anchored 

protein called GspA (50). Combined, these data suggest that LCP enzymes recognize a 

spectrum of substrate and acceptor molecules. The specific activity of A. oris LcpA that 

is required to glycosylate GspA is investigated in chapter IV. 

Glycoproteins 

 The function of LcpA in the glycosylation of a protein substrate came as a 

surprise because it is typically accepted that bacterial proteins are either N- or O-

glycosylated meaning that the glycopolymers are attached to asparagine or 

serine/threonine residues, respectively. Protein glycosylation mechanisms are 

distinguished by whether they proceed via sequential or en bloc glycosylation (38). 

Substrates that are sequentially glycosylated are directly targeted by specific glycosyl 

transferase (GTase) enzymes that transfer specific sugar molecules one at a time. In 

contrast, if the glycan is fully synthesized in the cytoplasm and transferred across the 

membrane on the UndP lipid carrier prior to transfer, this is en bloc glycosylation. 

Oligosaccharyltransferase (OSTase) enzymes are responsible for en bloc protein 

glycosylation in bacteria. Determination of all glycopolymer composition is notably 

challenging because glycosylation occurs through a non-templated process and often 

results in complex structure (38,39). 
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Cell Wall Anchored Proteins 

 The surface proteins that decorate the A. oris cell are part of the larger cell 

envelope structure and are another major source of cell envelope variation (37,51). 

Proteins destined for secretion contain an N-terminal signal peptide and are addressed 

for cell wall anchoring via a C-terminal cell wall sorting signal. Cell wall anchored 

proteins mediate many of the specific functions that require direct interactions such as 

adherence. 

General protein translocation machinery 

 The assembly of proteins on the exoplasmic side of the membrane requires the 

proteins to first be secreted beyond the cytoplasmic membrane. Secreted proteins are 

specifically addressed to translocation machines after being synthesized in the 

cytoplasm. These addresses, or signal peptides, specify the protein for either general 

secretion (Sec) or twin-arginine translocation (Tat) transport. Recognition of the signal 

peptide by the secretion machine components is the first step of the translocation event. 

Signal peptides are located at the N-terminus of a polypeptide and are short, 

unstructured primary amino acid sequences. In Gram-positive bacteria signal peptides 

are on average 30 amino acids in length (52). Signal peptides can be divided into three 

distinct regions, the positively charged n-region followed by a hydrophobic domain (h-

region) and a polar cleavage (c-region) containing an AXA motif, but overall have little 

sequence similarity (53).  

 The subsequent translocation step is the most energy intensive step in the 

process. The Sec and Tat pathways are the two major secretion systems in bacteria. A 

major distinction between the secretion machines is the folding state required for 

successful substrate translocation. The Sec protein conducting channel is narrow 

allowing for only one or two polypeptide chains at a time. In contrast, the Tat system 
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secretes folded proteins through a variably sized channel appropriate for individual 

substrates. These mechanism also differ in energetics. Although both require high 

energy expenditure, Sec consumes NTP to translocate proteins, while Tat utilizes the 

proton motive force (PMF) (54).  

 Proteins targeted to the Sec pathway proceed in an unfolded state. Because the 

substrates are unfolded, Sec translocation can occur co- or post-translationally. Co-

translational targeting is mediated by a protein called signal recognition particle, and 

post-translational polypeptides are maintained in an unfolded state by cytoplasmic 

chaperones that interact with SecA at the secretion channel. The protein conducting 

channel of SecYEG is a heterotrimer, which interacts with the soluble ATPase SecA to 

power translocation (55). 

The twin-arginine translocon signal peptide, as the name suggests, contains two 

consecutive arginine residues with the conserved consensus sequence being 

(S/T)RRxFLK (55). Gram-positive Tat machines have two core components, TatA and 

TatC, and can include the accessory components TatB and TatE depending on the 

organism (56,57). A. oris encodes tatA and tatC in a gene cluster and tatB elsewhere in 

the genome. TatA is a membrane bound monomer with a cytoplasmic C-terminal 

extension. TatC has six transmembrane helices with the N-terminus and C-terminus 

facing into the cytoplasm (56). TatB and TatE are TatA-like proteins, and TatB has been 

shown to be constitutively associated with TatC to form the TAT signal peptide 

recognition complex whereas TatE has been shown to be functionally redundant to TatA. 

Following signal peptide binding to the TatBC recognition complex, TatA moves laterally 

through the membrane to the site of translocation and oligomerizes in a PMF dependent 

manner to form a protein conducting channel matching the size of the substrate (56,58).  

 The terminal step of translocation regardless of whether proteins are secreted by 

Sec or Tat is removal of the signal peptide so that the protein can be freed from the 
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translocation machine to fulfill its subsequent function. Non-lipoprotein signal peptide 

cleavage is catalyzed by type I signal peptidases (SPase). SPases are serine 

endopeptidases that recognize an AXA motif present in the signal peptide c-region and 

cleave immediately after this motif leaving a mature, secreted protein (59,60). Integral 

membrane proteins that do not contain a cleavage site are laterally inserted from the 

secretion machine by YidC (40,61). A type I SPase from A. oris with novel substrate 

specificity is analyzed in chapter III. 

Oxidative protein folding  

 Proteins secreted via the Sec translocon often contain cysteine residues that 

participate in a disulfide bond. Due to the lack of a traditional periplasm, disulfide bond 

(DSB) formation in Gram-positive bacteria was considered to be only a specialized 

phenomenon with a paired substrate-enzyme. However, recent in vivo analysis of a 

disulfide bond forming pathways revealed the physiological importance of DSB formation 

in the biogenesis of the actinobacterial cell envelope (62,63).  

 The major complex required for oxidative protein folding in A. oris consists of two 

proteins, the main oxidoreductase MdbA and its reoxidizing partner protein VKOR 

(62,64). As secreted proteins exit the translocation machine, MdbA catalyzes the 

formation of consecutive disulfide bonds. In the absence of MdbA or if participating 

cysteines are mutated so that they can no longer form a disulfide bond, many proteins 

including actinobacterial pili and toxins, lose stability and become degraded or remain 

nonfunctional (25,62,65). Additionally, in the absence of the reoxidizing factor VKOR, 

protein stability is compromised, although not to the extent of the MdbA deletion (64). 

Cell wall sorting pathway 

 Proteins which are secreted and contain a cell wall sorting signal (CWS) are 

covalently attached to the cell wall by a transpeptidase enzyme called sortase. Thus far, 
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all known cell wall anchored proteins proceed through the Sec pathway (40). The CWS 

is a tripartite signal containing an LPXTG motif followed by a hydrophobic domain and a 

positively charged tail (51). After secretion, CWS containing proteins are retained in the 

membrane by the hydrophobic domain of the CWS. Within the CWS is a conserved motif 

of five residues referred to as the LPXTG motif (66). Sortase recognizes the CWS to 

anchor the protein to the cell wall (40). During the anchoring reaction, the LPXTG 

residues interact with the sortase catalytic pocket, which is necessary for the formation 

of a sortase-substrate acyl intermediate (67). This intermediate is then resolved by a 

nucleophilic attack of the free amine group from the lipid II precursor, then incorporated 

into the cell wall (Fig. 1-2A). Cell wall sorting allows for the attachment of both 

monomeric and polymeric proteins to the cell wall (Fig. 1-2B and C). Using immunogold 

labeling and electron microscopy (IEM) monomeric and polymeric cell wall proteins can 

be visualized and have a distinctive pattern. Here, monomeric cell wall anchored 

proteins are represented by GspA (Fig. 1-2B) and polymeric proteins are represented by 

the type 2 pilin backbone FimA (Fig. 1-2C). 

 All Gram-positive bacteria sequenced thus far encode at least one sortase (68). 

Based on primary amino acid sequence homology and substrate preference, six sortase 

classes have been proposed, known as class A – F (66). Sortases can have a broad 

substrate range as is the case of housekeeping sortases, or in the case of pilin-specific 

sortases recognize single or few substrates with high specificity. Housekeeping sortases 

from firmicutes exemplify the Class A sortases that recognize the canonical LPXTG motif 

and include SrtA from S. aureus. Actinobacterial housekeeping sortases fall into Class E 

and recognize an LAXTG motif (66). Class C sortases are those that are uniquely 

responsible for pilus polymerization (35,66). Class B sortases have a role in anchoring 

iron-regulated proteins, class D sortases are related to sporulation and class F sortases 

have an unknown function (66). 
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Figure 1-2. Sortase anchors monomeric and polymeric substrates to the cell wall. 

(A) Schematic depicting cell wall anchoring pathway for the paradigm housekeeping 

sortase SrtA from S. aureus. Cell wall anchored proteins are first exported to the 

exoplasmic side of the membrane by their N-terminal signal peptide (1). Then, a signal 

peptidase cleaves off the signal peptide so that the protein can fold (2). The cell wall 

anchored protein precursor is retained in the membrane by the hydrophobic domain of 

the C-terminal cell wall sorting signal (CWSS) (3). Sortase recognizes the CWSS and 

cleaves between the threonine and glycine residues of the LPXTG motif forming an acyl 

intermediate with the substrate (AI). The sortase-substrate intermediate is resolved by 

the free amino group of the glycine crossbridge on the lipid II precursor (P3) and is 

incorporated into the cell wall via normal cell wall building processes (4). Permission to 

reprint Figure 1 from Springer Nature Terms and Conditions for RightsLink Permissions 

A 

B C 
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Springer Customer Service Centre GmbH : Springer Nature. Chapter “Anchoring of 

LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope” in Protein and Sugar 

Export and Assembly in Gram-positive Bacteria by Sara D. Siegel, Melissa E. Reardon 

and Hung Ton-That. © Springer International Publishing Switzerland 2016 (2016). (B) 

Monomeric cell wall anchored protein, GspA. (C) Polymeric cell wall anchored protein, 

FimA. For B and C, the proteins were reacted with a specific primary antibody and then 

treated with a secondary antibody conjugated to a 12-nm gold particle and viewed by 

electron microscopy. Scale bar represents 0.2 nm.  

https://link.springer.com/book/10.1007/978-3-319-56014-4
https://link.springer.com/book/10.1007/978-3-319-56014-4
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Sortase-Catalyzed Pilus Assembly  

 Utilizing Class C sortases, Gram-positive bacteria elaborate covalently linked 

polymeric proteins called pili or fimbriae (Fig. 1-2C). These structures are strongly 

associated with pathogenicity and play a direct role in bacterial adherence (35,69-74). 

Pilin subunits are covalently linked by pilin specific sortases and to the cell wall by the 

housekeeping sortase enzyme. Individual pilin subunits have an isopeptide bond in the 

Cna domain that contribute to overall stability of the subunits and polymer (25,75,76). 

The Cna domain superfamily was first defined in an S. aureus collagen binding protein, it 

forms a stalk-like fold that present the ligand binding domains in a variety of cell and 

pilus-associated adhesin proteins (77).  By measuring the amount of mechanical force 

that could be applied to a pilus by atomic force microscopy, A. oris type 2 pili have been 

demonstrated to withstand forces of approximately 690 pN, owing largely to the 

isopeptide bond (76,78). These forces are the strongest reported for globular proteins 

and likely contribute to the ability to withstand large mechanical disturbances that exist in 

the A. oris niche (78). 

 A. oris pili are heterodimeric polymers made of a repeating major pilin subunits, 

FimP or FimA, and a single minor pilin tip protein. Pilin-specific sortases are typically 

genetically clustered with the pilin subunits they polymerize and have high specificity for 

their substrates. For example, A. oris encodes SrtC1 and SrtC2, which polymerize type 1 

and type 2 pili, respectively. Type 1 pili are encoded by the fimQ-fimP-srtC1 cluster (18). 

Type 2 pili are encoded by fimB-fimA-srtC2 (29,79). An interesting exception is the 

alternative tip protein CafA, which is encoded outside of the type 2 gene cluster (Fig. 1-

3A), but is polymerized by SrtC2 with the major pilin subunit FimA (Fig. 1-3B) (25). CafA 

is a pilus-associated adhesin that plays a major role the ability of A. oris to colonize the 

oral biofilm. CafA mediates both coaggregation with oral streptococci, and adherence to 
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host tissues. Studies of the molecular requirements for CafA binding are described in 

chapter V. 

 Cognate pilin-specific sortase recognizes the LPXTG motif in the membrane 

retained pilin precursors and cleaves between the threonine (T) and glycine (G) residues 

to form a sortase-pilin acyl intermediate. Polymerization occurs when the intermediate is 

resolved by a nucleophilic attack from a lysine (K) group of the major pilin subunit (35). 

Pili are anchored to the cell wall by a free amine group from the lipid II cell wall precursor 

(Fig. 1-3B) (40). 

 In A. oris, SrtC1 and SrtC2 require a tip protein to initiate polymerization. Thus, 

substrate entry and polymerization steps seem to be regulated (18,25). However, the 

regulation and molecular requirements for initiation and specificity are not fully 

understood. A feature that is conserved among the pilus tip proteins is the presence of a 

putative Tat signal peptide. The possible involvement of the Tat translocation system in 

CafA export is explored in chapter VI. 
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Figure 1-3: Type 2 pili are polymerized by the pilus-specific sortase SrtC2. (A) The 

type 2 pilus gene cluster encoding fimB-fimA-srtC2. cafA and srtA are positioned outside 

of the gene cluster, but are also involved in assembly of type 2 pili. (B) Graphic 

representation of the type 2 pilus polymerization pathway in A. oris. Pilin precursors are 

secreted via a signal peptide then retained in the membrane by the cell wall sorting 

signal (CWS). The type 2 pilus-specific sortase SrtC2 forms an acyl intermediate with 

the pilin precursors, as described above. A minor tip pilin, either FimB or CafA, initiates 

polymerization of the major pilin subunit FimA. Once a minor-major pilin heterodimer is 

formed the major pilin subunit is polymerized successively until the housekeeping 

sortase SrtA catalyzes cell wall anchoring. 
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Significance of these Studies 

 Oral biofilm-associated diseases are significant global oral health burdens, 

however, there is no effective therapy to control oral biofilms (13). A. oris plays a critical 

role in development of the oral biofilm as a primary colonizer enriched at the base of the 

biofilm and facilitates the adherence of species that cannot bind otherwise (8,9). The 

studies in this thesis investigate protein and glycan assembly and display on the A. oris 

cell envelope and their roles in oral biofilm formation. 

 Proteins displayed on the surface must be translocated before surface 

attachment. The final step of translocation is cleavage of the signal peptide as the 

protein emerges from the secretion machinery. I have shown that a type SPase LepB2 is 

required for pilus assembly, but dispensable for other cell wall anchored proteins. The 

deletion of LepB2 also decreases biofilm formation and coaggregation, which are 

physiologically relevant phenotypes (80). Importantly, the second signal peptidase 

encoded by A. oris LepB1 is not involved in these processes. While the presence of 

multiple signal peptidases is not uncommon in Gram-positive bacteria, the specific role 

and target specificity of these homologous enzymes is often unknown (55). This system 

provides a new model containing only two non-redundant SPase I enzymes with known 

substrate specificity.  

 After translocation, proteins on the surface can be modified by en bloc 

glycosylation. The cell wall anchored protein GspA is glycosylated in an LcpA- 

dependent manner (50). This represents an entirely new mode of protein glycosylation 

(81), because LCP enzymes have been shown to catalyze the transfer of glycopolymers 

to the cell wall, but had not been previously demonstrated to modify protein substrates. I 

have characterized the residues and activities of LcpA that are required for this novel 

functionality. My work revealed that the A. oris LcpA has phosphotransferase activity 

similar to other LCP enzymes, and our results are applicable for a broad range of LCP 
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enzymes. This system can be used to address how LCP enzymes select acceptor 

substrates. 

 Once proteins on the cell surface are fully translocated, modified, and anchored, 

they can contribute to adherence, a critical factor contributing to bacterial pathogenesis. I 

have investigated how a pilus-associated adhesin, CafA, contributes to oral biofilm 

formation in two distinct ways by adhering to both oral streptococci and human gingival 

cells. This study also addressed the prevalence and conservation of CafA among 

different A. oris strains. These studies can be extended to other bacterial adhesins, and 

enhance our overall understanding of adhesins in formation of multispecies biofilms. 

 I have also examined the role of a putative twin arginine signal peptide in CafA 

secretion. This work has shown that there are likely additional factors contributing to the 

secretion of proteins through either Sec or Tat. Bioinformatics predicted the presence of 

a Tat signal peptide in CafA. However, our mutagenesis studies suggested that the twin 

arginine residues were required for stability, but could not mediate secretion of two Tat-

dependent reporter proteins. 

 Overall, my studies have explored how cell surface proteins are successfully 

translocated, glycosylated, and contribute to biofilm formation in the oral microbe 

Actinomyces oris. My work has established new possibilities for investigating signal 

peptidase specificity, LCP-mediated protein glycosylation, protein adherence function, 

and tools for the Tat pathway. 
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CHAPTER II 

Materials and Methods 
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This chapter is based, in part, upon work published in 2016: Siegel SD, Wu C, Ton-That 

H “A type I signal peptidase is required for pilus assembly in the Gram-positive biofilm-

forming bacterium Actinomyces oris.” J Bact. 198(15):2064-73. doi: 10.1128/JB.00353-

16. I am the first author of this publication and was responsible for preparing the original 

manuscript and conducting the experiments described in this paper. I have permission to 

reproduce any and all of this manuscript, in print or electronically, for the purpose of my 

thesis in accordance with the American Society for Microbiology (publisher of Journal of 

Bacteriology) “Journals Statements of Authors’ Rights.” 

http://journals.asm.org/site/misc/ASM_Author_Statement.xhtml. 

 

Bacterial strains and media. Actinomyces strains were grown in heart infusion broth 

(HIB) and on heart infusion agar (HIA) supplemented with 0.5% glucose at 37°C with 5% 

CO2. Streptococcus strains were grown in HIB and on HIA supplemented with 1.0% 

glucose at 37°C in anaerobic conditions. E. coli strains were grown in Luria broth (LB) or 

Luria agar (LA) at 37°C in aerobic conditions. When appropriate, 50 µg mL-1 kanamycin 

(Kan) or streptomycin (Sm) or 100 ug mL-1 of ampicillin (Amp) was added to the media. 

E. coli DH5α was used for cloning experiments. Restriction enzymes, T4 polynucleotide 

kinase, LIC-qualified T4 DNA polymerase, T4 DNA ligase and Phusion DNA polymerase 

were purchased from New England Biolabs. A list of strains can be found in Table 2-1. 

Human cell culture. Human gingival fibroblast (HGF-1) cells (ATCC® CRL-2014™) 

were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% heat-inactivated 

fetal bovine serum and 1% penicillin/streptomycin at 37°C with 5% CO2, with medium 

renewal every three days. To subculture, the medium was removed and treated with 1-

mL 0.25% trypsin, 0.53 mM EDTA (TE) at 37°C for 10 minutes, until the cells detached 

from the flask. Cells in suspension were pelleted by centrifugation, and the supernatant 

https://doi.org/10.1128/JB.00353-16
https://doi.org/10.1128/JB.00353-16
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containing TE was aspirated. The cells were sub-cultured at a 1:4 ratio and new media 

was added. 

E. coli competent cells and heat shock transformation. E. coli cells were subcultured 

from overnight cultures in LB and grown until ODA600 = 0.6. The cells were chilled for 10 

minutes (min), then centrifuged in a pre-chilled 4°C rotor at 6,000 rpm for 5 min. The 

supernatant was discarded and the pellet was suspended in 20 mL TfbI (30 mM 

KCH3CO2, 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl, pH 5.8) then chilled on ice for 5 

mins before pelleting by centrifugation. The cell pellets were then suspended in 2 mL 

TfbII (10 mM PIPES, 10 mM RbCl, 75 mM CaCl, 15% v/v glycerol, pH 6.5) and chilled on 

ice for 15 mins. Then, 100 µL cells were then aliquoted into sterile, pre-chilled 1.5 mL 

tubes and snap frozen in a dry ice ethanol bath. The aliquots were stored at -80°C. To 

transform the competent cells, an aliquot of competent cells was thawed on ice for 10 

mins. Then, 100 ng of plasmid was added to the cells for 1 hour followed by heat shock 

at 42°C for 40 seconds. Cells were recovered in LB for 20 mins at 37°C with shaking, 

then plated on LA with Amp. 

A. oris competent cells and electroporation. Overnight A. oris cells were subcultured 

into 25 mL HIB, and grown at 37°C to an ODA600 = 0.6. 10% glycine in HIB was added 

and the cells were incubated for an additional hour. Cells were chilled on ice for 20 mins 

then centrifuged at 6,000 rpm for 10 min at 4°C. The cells were washed twice with cold 

15% glycerol and finally suspended in 1.5 mL 15% glycerol before aliquoting 100 µL into 

1.5 mL tubes, snap frozen (as above) and stored at -80°C. To transform the A. oris cells, 

plasmid was added to a thawed competent cell aliquot, swirled to mix and transferred to 

a 2 mm gap electroporation cuvette (Sigma). The cells were electroporated at 2,500 V 

with 25 µF capacitance and 400 Ω of resistance (82). HIB was added to the cuvette 

immediately following electroporation and recovered for 2 hours at 37°C before plating 

onto HIA containing either Kan or Sm. 
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Table 2-1. Bacterial strains and cell lines used in this studies 

Strain Description Reference 

E. coli DH5α Plasmid propagation and cloning strain (83) 

A. oris MG1 Parental strain (84) 

A. oris CW1 ∆galK; an isogenic derivative of MG-1 (79) 

S. oralis So34 RPS positive (85) 

S. oralis OC1 RPS-negative isogenic mutant of So34 (85) 

A. oris AR4 ∆fimA; an isogenic derivative of CW1 (79) 

A.oris WU36 Conditional srtA deletion mutant (∆srtA), 

containing pTetR--SrtA 

(50) 

A.oris WU51 ∆gspA; an isogenic derivative of CW1 (50) 

A.oris WU73 ∆gspA/∆srtA (50) 

A.oris WU42 ∆lepB2; an isogenic derivative of CW1 (80) 

A.oris WU50 ∆lepB1; an isogenic derivative of CW1 (80) 

A.oris WU80 ∆lepB1/2; an isogenic derivative of CW1 (80) 

A.oris WU81 ∆lepB2/∆srtA (80) 

A.oris WU42c1 WU42 containing pLepB2 (80) 

A.oris WU42c2 WU42 containing pLepB2(S101A) (80) 

A.oris WU42c3 WU42 containing pLepB2(K169A) (80) 

A. oris WU72 ∆lcpA; an isogenic derivative of CW1 (50) 

A. oris D0299 ∆lcpB; an isogenic derivative of CW1 This study 

A. oris D1578 ∆lcpD; an isogenic derivative of CW1 This study 

A. oris lcp∆3 ∆lcpA∆lcpB∆lcpD This study 

A. oris MR108 ∆vkor; an isogenic derivative of CW1 (62) 

E. coli C3209/ 

Shuffle® 

Derived from E. coli K12 parental strains, 

engineered to form disulfide bonds in the 

cytoplasm; expresses T7 RNAP. 

(86) 

A. oris AR5 ∆cafA; an isogenic derivative of CW1 (25) 

A. oris tetR--tatC Conditional srtA deletion mutant, inducible by 
addition of tetracycline and theophylline 

This study 

A. naeslundii N28B15 Clinical isolate J. Cisar collection 

A. naeslundii N34A24 Clinical isolate J. Cisar collection 

A. naeslundii N35B3 Clinical isolate J. Cisar collection 

A. oris N11A16 Clinical isolate J. Cisar collection 

A. oris N12A2B Clinical isolate J. Cisar collection 

A. oris ATCC® 

49339™ 

Human abscess isolate 

 

J. Cisar collection 

A. oris N11A12 Clinical isolate J. Cisar collection 

A. oris ATCC® 

27044™ 

Human sputum isolate J. Cisar collection 
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A. oris N33A2B Clinical isolate J. Cisar collection 

A. oris N37B13 Clinical isolate J. Cisar collection 

A. oris N34A23 Clinical isolate J. Cisar collection 

A. oris N28B1 Clinical isolate J. Cisar collection 

A. oris N29A27 Clinical isolate J. Cisar collection 

A. oris N32A8 Clinical isolate J. Cisar collection 

A. oris N37B9 Clinical isolate J. Cisar collection 

Actinomyces n/sa 

N38B10 

Clinical isolate J. Cisar collection 

Actinomyces n/s 

N33A3 

Clinical isolate J. Cisar collection 

Actinomyces n/s 

N34A14 

Clinical isolate J. Cisar collection 

A. johnsonii PK1259 Clinical isolate J. Cisar collection 

A. johnsonii ATCC® 

49338™ 

Human gingival crevice isolate J. Cisar collection 

Streptomyces 

violaceoruber M145 

Prototrophic derivative of S. coelicolor A3(2) 

 

ATCC® BAA-471™ 

HGF-1 Human gingival fibroblast cell line (ATCC® CRL-

2014™) 

ATCC 

a non-serotypable 
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Plasmid construction 

 A list of plasmids can be found in Table 2-2 and list of primers in Table 2-3. 

 pCWU10 – To generate a RSF1010 derivative that is functional in A. oris, the 

ampicillin resistance gene of pCVD047, a cyanobacterial broad-host-range vector (87),  

was replaced by the kanamycin (kan) cassette from pJRD215 (88). Briefly, using the 

primer pair pCVD047-noAmp-F/R for an inverse PCR reaction, an amplicon containing  

pCVD047 sequence without the ampicillin resistance gene was generated. Next, the 

fragment encompassing the kan resistance gene and a  multiple cloning site from 

pJRD215 was amplified with the primer pair 215KanMCS-F/R. Both amplicons were 

digested with SacI and HindIII. The isolated products were ligated to generate pCWU10.  

pGspAΔcwss – Using pAcaCΔcws (50) as a template, primers com-AcaC-F and 

GspA∆cws-His6-R were used to PCR-amplify a fragment encompassing the promoter 

region of gspA and its open reading frame (ORF) lacking the cell wall sorting signal 

(CWS) while appending a hexa-histidine tag to the GspA C-terminus. The gspA 

amplicon was digested with NdeI and EcoRI and ligated into pCWU10 digested with the 

same enzymes to generate pGspAΔcwss.  

pFimAΔcwss – The primer sets prFimB-BamHI-F and prFimB-R and FimA-F and 

FimA∆cws-His6-EcoRI-R were used in PCR reactions with MG1 genomic DNA as a 

template to amplify the promoter region of fimB and the fimA ORF lacking the CWSS 

while appending a hexa-histidine tag to the FimA C-terminus, respectively. The fimB 

promoter product was digested with BamHI whereas the fimA coding region was 

digested with EcoRI and then treated with T4 polynucleotide kinase to phosphorylate the 

5’ end. The digested DNA fragments were ligated into pCWU10 digested with BamHI 

and EcoR1 to generate pFimA∆cwss. 
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pCWu2-∆lepB1 – 1 kb upstream and downstream the lepB1 (ana_1188) open 

reading frame was amplified using primer pairs 1188up-F and 1188up-R and 1188dn-F 

and 1188dn-R. 1188up fragment was engineered with a 5’ EcoRI and 3’ XbaI restriction 

site and the 1188dn fragment was engineered with 5’ XbaI and 3’ KpnI restriction sites to 

facilitate ligation of the fragments to the pCWu2 vector digested with EcoRI and KpnI, in 

the presence of T4 DNA ligase. 

pCWu2-∆lepB2 – 1 kb upstream and downstream the lepB2 (ana_1190) open 

reading frame was amplified using primer pairs 1190up-F and 1190up-R and 1190dn-F 

and 1190dn-R. 1190up fragment was engineered with a 5’ XbaI and 3’ HindIII restriction 

site, and the 1190dn fragment was engineered with 5’ HindIII and 3’ EcoRI restriction 

sites to facilitate ligation of the fragments to the pCWu2 vector digested with XbaI and 

EcoRI, in the presence of T4 DNA ligase. 

pLepB2 – The lepB2 coding sequence and rimM promoter region were amplified 

from pLepB2 with the primers Pro-1192-F and com-lepB2-R. The PCR product was 

digested by EcoRI and HindIII and ligated into pJRD215 (84) digested with the same 

enzymes.  

prGspA – gspA (ana_1291) sequence containing only residues 31 and 256 

(lacking signal peptide and cell wall sorting signal) was amplified from the A. oris MG1 

genomic DNA template with the primers rGspA-F and rGspA-R, containing adapter 

sequences for subsequent ligation independent cloning (LIC) into pMCSG7. The 

resultant amplicons were treated with LIC-qualified T4 DNA polymerase and dCTP. In 

parallel, the SspI digested vector was treated with T4 DNA polymerase and dGTP. The 

insert and vector fragments were ligated in a step-down annealing reaction. The vector 

was transformed into chemically competent E. coli DH5α. 
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pLcpA – LcpA (ana_1292) complement strain was cloned by amplifying the 

native promoter, 152 bp upstream of the start codon until the native stop codon using 

primers pLCP-F and pLCP-R  engineered with a BamHI and EcoRI cut site respectively 

and using A. oris MG1 genomic DNA as a template. The resultant amplicon was gel 

purified. Simultaneous restriction digest with BamHI-HF and EcoRI-HF of the amplicon 

and parental plasmid (pCWu10) was performed, and the products were again gel 

purified. The restricted products were ligated with T4 DNA ligase at 16°C for 18 h. The 

ligation mixture was transformed into chemically competent E. coli DH5α, and colony 

PCR was used to identify plasmids with the correct insert. The plasmid was introduced 

to A. oris ∆lcpA cells via electroporation (88). 

pCWu2-∆lcpB – 1 kb upstream and downstream the lcpB (ana_0299) open 

reading frame was amplified using primer pairs 0299up-F and 0299up-R and 0299dn-F 

and 0299dn-R. 0299up fragment was engineered with a 5’ KpnI and 3’ XbaI restriction 

site, and the 0299dn fragment was engineered with 5’ XbaI and 3’ EcoRI restriction site 

to facilitate ligation of the fragments to the pCWu2 vector digested with KpnI and EcoRI 

in the presence of T4 DNA ligase. 

pCWu2-∆lcpD – 1 kb upstream and downstream the lcpD (ana_1578) open 

reading frame was amplified using primer pairs 1578up-F and 1578up-R and 1578dn-F 

and 1578dn-R. 1578up fragment was engineered with a 5’ KpnI and 3’ XbaI restriction 

site, and the 1578dn fragment was engineered with a 5’ XbaI and 3’ EcoRI restriction 

site to facilitate ligation of the fragments to the pCWu2 vector digested with KpnI and 

EcoRI in the presence of T4 DNA ligase. 

rLcpA – lcpA (ana_1292) sequence containing residues 78 and 370 (lacking the 

transmembrane region) was amplified from the A. oris MG1 genomic DNA template with 
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the primers rLcpA-F and LCP∆TM-R containing adapter sequences for subsequent 

ligation independent cloning (LIC) into pMCSG7 (89). 

pCafA – The A. oris MG1 CafA (ana_2235) complement strain was cloned by 

amplifying the native promoter, 407 bp upstream of the start codon until the native stop 

codon, using primers CafA-pro-F and CafA_comp-R  engineered with a KpnI and BamHI 

cut site respectively and using A. oris MG1 genomic DNA (gDNA) as a template. The 

resultant amplicon was gel purified. The amplicon and parental plasmid (pCWu10) were 

simultaneously digested with the restriction enzymes KpnI-HF and BamHI-HF, and the 

products were purified. The restricted products were ligated with T4 DNA ligase at 16°C 

for 18 hours.  

pCafA∆cws-H6 – The CafA (ana_2235) native purification strain was cloned by 

amplifying the native promoter, 407 bp upstream of the start codon until the CWS, using 

primers CafA_pro-F and CafA∆cws-H6-R engineered with a KpnI and hexa-histidine-

BamHI cut site respectively and using A. oris MG1 pCafA as a template. The resultant 

amplicon was gel purified. The amplicon and parental plasmid (pCWu10) were 

simultaneously digested with the restriction enzymes KpnI-HF and BamHI-HF (NEB), 

and the products were purified. The restricted products were ligated with T4 DNA ligase 

at 16°C for 18 hours.  

pGFP – Green fluorescent protein (GFP) was amplified from pBsk-GFP using 

primers GFP-F and GFP-R. To drive expression, the EF-Tu (ana_0022) promoter was 

cloned upstream of GFP using the primers prom-EF-tu-F and prom-EF-tu-R. To facilitate 

ligation, prom-EF-tu-F was designed with a KpnI restriction site and GFP-R was 

designed with a BamHI restriction site. The GFP fragment was treated with T4 

polynucleotide kinase and ATP for intramolecular ligation. The two amplified restricted 
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fragments were combined with pCWu10, treated with KpnI and BamHI in the presence 

of T4 DNA ligase. 

pDagASv – The agarase gene (dagA) was amplified from Streptomyces 

violaceoruber M145 gDNA using primers dagASv-F and dagASv-R. To drive expression, 

the EF-Tu (ana_0022) promoter was cloned upstream of dagA using the primers prom-

EF-tu-F and prom-EF-tu-R. To facilitate ligation, prom-EF-tu-F was designed with a KpnI 

restriction site and GFP-R was designed with a BamHI restriction site. The GFP 

fragment was treated with T4 polynucleotide kinase and ATP to facilitate intramolecular 

ligation. The two amplified restricted fragments were combined with pCWu10 treated 

with KpnI and BamHI in the presence of T4 DNA ligase. 

DagA and GFP reporter plasmids – Inverse PCR was used to insert signal 

peptides between the EF-tu promoter and dagA or gfp sequence, the signal peptide 

fragment contained a 5’ phosphate and 3’ restriction site that was complementary to the 

restriction site on the reporter gene.  

pCWu2-∆tatC – 1 kb upstream and downstream the tatC (ana_0769) open 

reading frame was amplified using primer pairs tatCup-F and tatCup-R and tatCdn-F and 

tatCdn-R. tatCup fragment was engineered with a 5’ KpnI and 3’ HindIII restriction site, 

and the tatCdn fragment was engineered with a 5’ HindIII and 3’ EcoRI restriction site to 

facilitate ligation of the fragments as well as the pCWu2 vector digested with KpnI and 

EcoRI in the presence of T4 DNA ligase. 

ptetR- Ω -TatC – The tetR-Ω inducible promoter was amplified from the ptetR-Ω-

srtA plasmid using tetR-Ω-F engineered with a KpnI restriction site and tetR-Ω-R 

primers. The tatC open reading frame was amplified using primers tatC-F and tatC-R, 

and the reverse primer was designed with an EcoRI restriction site. The digested tatC orf 
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fragment was treated with T4 polynucleotide kinase and ATP for subsequent 

intramolecular ligation. The vector pCWu9 was digested with KpnI and EcoRI and ligated 

with the tetR-Ω and tatC fragments.   
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Table 2-2. Plasmids used in these studies 

Plasmid Description Reference 

pJRD215 Actinomyces/E. coli shuttle vector, KmR, SmR (82) 

pRMC2 a tetracycline-inducible expression vector  (90) 

pCVD047 Broad host range vector  (87) 

pCWU10 Actinomyces/E.coli shuttle vector, KmR. A 

derivative of pCVD, a generous gift from Dr. Golden 

(80) 

pTetR--SrtA A derivative of pTetR-SrtA with a riboswitch element 

incorporated upstream of the start codon ATG 

(50) 

pGspA pJRD215 expressing GspA (50) 

pGspA∆cws pJRD215 expressing GspA lacking the cell wall 

sorting signal (CWS) 

(80) 

pFimA∆cws pCWU10 expressing fimA under the srtC2 

promoter, lacking the cell wall sorting signal (CWS) 

(80) 

pLepB2 pJRD215 expressing lepB2 (80) 

pLepB2(S101A) pJRD215 expressing lepB2 with the mutation 

S101A 

(80) 

pLepB2(K169A) pJRD215 expressing lepB2 with the mutation 

K169A 

(80) 

pCWU2 Derivative of pHTT177, expressing GalK under the  

control of the rpsJ promoter 

(79) 

pCWU2-∆lepB1 An allelic replacement vector of lepB1 using 

pCWU2 

(80) 

pCWU2-∆lepB2 An allelic replacement vector of lepB2 using 

pCWU2 

(80) 

pCafA∆cws-H6 pCWU10 expressing CafA lacking the cell wall 

sorting signal (CWS) containing a 6xHis tag 

This study 

pMCSG7 Expression vector for protein purification (89) 

pKO-0299 pCWU2 derived KO plasmid ∆lcpB This study 

pKO-1578 pCWU2 derived KO plasmid ∆lcpD This study 

rLcpA pMCSG7 expressing LcpA(78-370) This study 

rLcpA(R149A) rLcpA with the mutation R149A This study 

rLcpA(∆s-s) rLcpA with the mutation C179A/C365A This study 

pLcpA pCWu10 expressing LCP from native promoter This study 

pLcpA(R128A) pLcpA with the mutation R128A This study 

pLcpA(R149A) pLcpA with the mutation R149A This study 

pLcpA(R266A) pLcpA with the mutation R266A This study 

pLcpA(C365A) pLcpA with the mutation C365A This study 

pLcpA(C179/365A) pLcpA with the mutation C179/365A This study 

pVKOR-2HA pCWU10 expressing VKOR with double C-terminal 

influencza hemagglutinin (HA) tag 

(64) 

pGspAΔcws-H6 pCWU10 expressing GspA lacking the cell 

wall sorting signal (CWS) with Hisx6 tag 

(80) 

rGspA pMCSG7 expressing GspA(31-286) This study 
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pCafA pCWu10 expressing cafA from native promoter This study 

pCafA(K111M) pCafA with K111M mutation This study 

pCafA(R123H) pCafA with R123H mutation This study 

pCafA(Y145R) pCafA with Y145R mutation This study 

pCafA∆cws-H6 pCWu10 expressing CafA variant lacking the cell 

wall sorting signal and containing a Hisx6 tag from 

CafA promoter 

This study 

pCafA-RR1 pCafA∆cws-H6 with CafA(R3,4A) mutation This study 

pCafA-RR2 pCafA∆cws-H6 with CafA(R11,12A) mutation  This study 

pCafA-RR3 pCafA∆cws-H6 with CafA(R25,26A) mutation This study 

pBsk-GFP pBluescript SK expressing GFP Addgene plasmid 

#29459 (91) 

pGFP pCWu10 expressing GFP from the EF-Tu promoter This study 

pDagASv pCWu10 expressing the DagA ORF from S. 

violaceoruber from the EF-Tu promoter 

This study 

pFimASP-DagA pCWu10 expressing FimA-SP fused to DagA 

without signal peptide from the EF-Tu promoter 

This study 

pFimASP-GFP pCWu10 expressing FimA-SP fused to GFP from 

the EF-Tu promoter 

This study 

pDagASP-GFP pCWu10 expressing DagA-SP fused to GFP from 

the EF-Tu promoter 

This study 

pCafASP-DagA pCWu10 expressing CafA-SP fused to DagA 

without signal peptide from the EF-Tu promoter 

This study 

pCafASP-GFP pCWu10 expressing CafA-SP fused to GFP from 

the EF-Tu promoter 

This study 

   

pTatC-KO pCWu2 expressing ~1.8kb fragments upstream and 

downstream of TatC ORFs for allelic exchange and 

counter-selection of mutants 

This study 

ptetR-Ω-tatC pCWu9 expressing tatC ORFs under transcriptional 

control from a tetR inducible promoter and post-

transcriptional control by a theophylline responsive 

riboswitch 

This study 

 



34 
 

  

Site-directed mutagenesis. For site-directed mutagenesis of LepB2, pLepB2, rLcpA, 

pLcpA and pCafA∆cws-H6 mutations were incorporated into the 5’ end of synthesized 

primers (Table 2-3) for inverse PCR as previously described (50). The PCR products 

were purified by gel extraction and phosphorylated to facilitate circularization of the 

amplicons. After transformation into E. coli, the genes were sequenced to ensure the 

mutation was present and in-frame. 

Generation of nonpolar, in-frame deletion mutants in A. oris. Nonpolar, in-frame 

deletion mutants used in this study were generated according to a previously published 

protocol (79). Briefly, 1.0 kb DNA fragments upstream and downstream of a target gene 

were PCR-amplified using appropriate primers. The two fragments were treated with 

restriction enzymes and linked together by a single-step ligation. Subsequently, the 2 kb 

fragment was cloned into the deletion vector pCWU2 (50). The generated plasmids were 

introduced into the A.oris galK strain by electroporation. Selection of corresponding in-

frame deletion mutants was performed using GalK as a counter-selectable marker. 

Generated mutants were characterized by PCR and/or immunoblotting. 
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Table 2-3. Primers used in this study 

Primer Sequence(a) Application 

1190upF GGCGTCTAGATCCGGACAAACCGTTCCATG CCCCGA pCWU2-∆lepB2 

1190upR GGCGAAGCTTTGCGCTGCTCATAGGCCTTC TCCTG pCWU2-∆lepB2 

1190dnF GGCGAAGCTTGACTGATCGCCCCGAAAGCG TGCTG pCWU2-∆lepB2 

1190dnR GGCGGAATTCACCGACCTCGTCCAGGCCGC 

CGACGT 

pCWU2-∆lepB2 

Pro-1190F GGCGGAATTCCCCTCGGCCGAGTCATCGGCC 

GCTCG 

pLepB2 

pro-1190R GGCGGGTACCCTCCTGGGATCGGGGCATGGAACGG pLepB2 

com-1190F GGCGGGTACCGTGATGAGCAGCGCACCCGACCA 

GAGC 

pLepB2 

com-1190R GGCGAAGCTTTCAGTGGTGGTGGTGGTGGT 

GGTCCCCG GAGCCCGCCA GCCTG 

pLepB2 

1188upF GGCGGAATTCACTGATCGCCCCGAAAGCGT GCTGG pCWU2-∆lepB1 

1188upR GGCGTCTAGAACGGGGAAGTGCAGGCCGGT GTG pCWU2-∆lepB1 

1188dnF GGCGTCTAGAGGCCCGGACACTTACGGCGG CATGG pCWU2-∆lepB1 

1188dnR GGCGGGTACCCTAGCCCCATGACGCATCCA CCG pCWU2-∆lepB1 

1190S101A-F GCGATGGAGAACACCCTCAACGAGGGCG pLepB2(S101A) 

1190S101A-R CCCCGAGATGGTGAAGCTGCTCTGGATG pLepB2(S101A) 

1190K169A-F GCGCGGGTCATCGGAATGCCCGGTGACCACG pLepB2(K169A) 

1190K169A-R GATGAGGTGGTGACCGGCGTTCTGGGG pLepB2(K169A) 

pCVD047- 

noAmp-F 

GGCGGAGTCATGATTTAGAAAAATAAACAAATAGGG

G 

pCVD047ΔAmp 

pCVD047-

noAmp-R 

GGCGAAGCTTCTGTCAGACCAAGTTACTCATATATA pCVD047ΔAmp 

215KanMCS-F GGCGGAGCTCTCAGAAGAACTCGTCAAGAA GGCGA pCWU10 

215KanMCS-R GGCGAAGCTTATCG ATGATAAGCTGTCAA pCWU10 

GspA∆cws-His6-

R 

GGCGGAATTCTCAGTGGTGGTGGTGGTGGTGGGGC

TTGCCGGAGGTGGAGGCCGCC 

pGspA∆cwss 

prFimB-BamHI-F AAAAAGGATCCGACGTCACCGGTGTCATCACCCTCC pFimA∆cwss 

prFimB-R GGGACCGCCTTCTCTTAGGCGTCG pFimA∆cwss 

FimA-F GTGACGCCGTCGGACAAGACGGAG pFimA∆cwss 
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FimA∆cws-His6-

EcoRI-R 

AAAAAGAATTCTCAGTGGTGGTGGTGGTGGTGAAC 

CGA CTG CTT GGT GTT CTC AAC GG 

pFimA∆cwss 

RT-16s-R GGTGTTGCCGACTTTCATG RT- PCR (16s rRNA) 

RT-16s-F GTCGCTAGTAATCGCAGATCAG RT- PCR (16s rRNA) 

RT-1291F GACGGCACCTACAAGATCAC RT-PCR (gspA) 

RT-1291R AGGAGTCGGTCTTGCTGA RT-PCR (gspA) 

P1 CCTCCAGGTCC CGATCACAC RT and qRT-PCR 

P2 GCCTGCGGGGTTGGATAGAGG RT and qRT-PCR 

P3 CCCGGCCGGTCAGCCTCCGAGGTCG RT and qRT-PCR 

P4 GCTGGACCAGTGGGAGTATGGCCAC RT and qRT-PCR 

P5 GTGTGATCGCGGACCTGGAGG RT- PCR 

P6 GGCCATACTCCCACTGGTCCAG RT- PCR 

D0299up-F GGCGGGTACCGTGACGAGCAGCGCCGCTGCGCT ∆lcpB 

D0299up-R 
GGCGTCTAGAGCGAGGTCGTGTCGGCCCCTGACGA

G 
∆lcpB 

D0299dn-F 
GGCGTCTAGAGTCACGCTCGACGCCGACGCGGACA

C 
∆lcpB 

D0299dn-R GGCGGAATTCAGCTCCTCAACCGCCTCGGGCAC ∆lcpB 

D1578up-F GGCGGGTACCTCTCCTACGTCCTGGAGAAGACGA ∆lcpD 

D1578up-R GGCGTCTAGAGCGATCATAGGGAACGAGACTGCTA ∆lcpD 

D1578dn-F GGCGTCTAGAGGCCAACATCGGCGAGACGGTACTG ∆lcpD 

D1578dn-R GGCGGAATTCGCGCAGATGTTGCGCACCCTCACGT ∆lcpD 

rLcpA-F TACTTCCAATCCAATGCAGCTCATCGCCCTGCACGC

G 

rLcpA 

rLcpA-R TTATCCACTTCCAATGTTACTAGGCGCCCGCTGGCC rLcpA 

LcpA-F GGATCCTCGCCTCCTTCCAGTCTGACTGG pLcpA 

LcpA-R GAATTCCCTCGGGGTCTCTCCGGCGAGTG pLcpA 

LcpA(R128A)-F GCCGCCGATGTCATCGCCCTGGTACGC SDMb LcpA 

LcpA(R128A)-R GGAACCCTCCACCTCCTGAGTG SDM LcpA 

LcpA(R149A)-F GCGGACCTGACCATCAACAGCAAGG SDM LcpA 

LcpA(R149A)-R GGGCAGGTTGATGATGGTGACTC SDM LcpA 

LcpA(R266A)-F GCCAGCCAGTCCACGGCCACCGTG SDM LcpA 

LcpA(R266A)-R GCGTTGGGCGCCATCGGCC SDM LcpA 

LcpA(C179A)-F GCCACCGGGCTCGGAATCCCCAC SDM LcpA 
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LcpA(C179A)-R CAGGGCGTTGACCGTGTTCTGAGG SDM LcpA 

LcpA(C365A)-F CGCACGGCCAGCGGGCGCCTAG SDM LcpA 

LcpA(C365A)-R GTTTTGGGACTGTACCCATAGCGGGC SDM LcpA 

RT-lcpA-F CGGCAGATGGGTGACCATGAGC RT-PCRc 

RT-lcpA-R CAGTGCGGCCAGGTCGCTGAG RT-PCR 

rGspA-F 
TACTTCCAATCCAATGCATCCCTCGCCTTCAAGATCG

CCG 
rGspA 

rGspA-R TTATCCACTTCCAATGTTACTTGCCGGAGGTGGAGG

CCGC 
rGspA 

L/CafA(K111M) ATCGCCGGAGATCCGTGAGGG 
SDM CafA 

R/CafA(K111M) ATGTGGCGAACCAGTCGATGCACC SDM CafA 

L/CafA(R123H) CACATTGGATAGGGTGCATCGACTGG SDM CafA 

R/CafA(R123H) CACACCACTGCCGTGGGAAAGAATGAG SDM CafA 

L/CafA(Y145R) GTATCCGACACTCAGGCCCCGG SDM CafA 

R/CafA(Y145R) CGTCCGGGTAACTGGAGGGGAGACG SDM CafA 

CafA-pro-F GGATCCCAAGAAGCGCGTCGTAGATCTCCCAG pCafA, pCafA∆cws-H6 

CafA∆cws-H6-R GGTACCTCAGTGGTGGTGGTGGTGGTGCACCGCCG

ACTTGCGGTTG 

pCafA∆cws-H6 

CafA-RR1-F GCCGCATTCTTTGTCCGCTCACACCGGCGG  pCafA-RR1 

CafA-RR1-R AAGCATGAAGCGCTACCTCAGTTTTAGGGTC pCafA-RR1 

CafA-RR2-F GCGGCGGAACTGACGTCATCACGTCAACCCTCA pCafA-RR2 

CafA-RR2-R GTGTGAGCGGACAAAGAATCGGCGAA pCafA-RR2 

CafA-RR3-F GCTGCGAGACTGAGGAGCGGCGCCGCCATCTCG pCafA-RR3 

CafA-RR3-R AGACTGGCGTGAGGGTTGACGTGATGACGTC pCafA-RR3 

PromEF-Tu-F GGTACCCTGCCTCCGGGGTCCGCACC GFP and DagA 

reporters 

PromEF-Tu-R TGGTGTCCTCCTGGGACTCGGGTAG GFP and DagA 

reporters 

DagASv-F GTGGTCAACCGACGTGATCTCATCAAG pDagASv 

DagASv-R GGATCCCTACACGGCCTGATACGTCCTGAC pDagASv and 

derivatives 

GFP-F ATGTCTAAAGGTGAAGAACTGTTCACCG pGFP, pDagASP-

GFP, pFimASP-GFP, 

pCafASP-GFP 

GFP-R GGATCCCTATTTGTAGAGCTCATCCATGCCGTG pGFP, pDagASP-

GFP, pFimASP-GFP, 

pCafASP-GFP 

DagASP-R GAGGTCTGCGGCATGAGCGGC pDagASP-GFP 

FimASP-F ATGAAGCACAACGCCAGCACGCTG 

 

pFimASP-GFP, 

pFimASP-DagA 
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FimASP-R CGTTTCCGTGGCCACGGCC pFimASP-GFP, 

pFimASP-DagA 

CafASP-R GGCCTCAGCCGGGGGAGCCG pCafASP-GFP, 

pCafASP-DagA 

TatC-up-F GGTACCCTGGCCTGCTTGACGGCCTTAAGCAG pTatAC-KO 

TatC-up-R AAGCTTCTTCACCCCGTCCCTGCCTGACTTG pTatAC-KO 

TatC-dn-F AAGCTTGATGGTTCTCCCCAAGGCGGACGG pTatAC-KO 

TatC-dn-R GAATTCGACTACACTTTGCCCGCGCTGCAC pTatAC-KO 

tetR-Ω-F GGTACCTTAAGACCCACTTTCACATTTAAGTTG pTetR-Ω-tatC 

tetR-Ω-R CTTGTTGCCTCCTTAGCAGGGTG ptetR-Ω-tatC 

TatC-F GTGAACCTCTTTAAGCCGTCGCAC pTetR-Ω-tatC 

TatC-R GAATTCCTACTCGGCCAGGGCGGCCTCGAG pTetR-Ω-tatC 

RT-cafA-F GCGCGGTAAGACCGCCTCAG cafA, qRT-PCR 

RT-cafA-R CGGCCGACTTGGGAGACGATG cafA, qRT-PCR 

RT-16s-F GTCGCTAGTAATCGCAGATCAG 16S rRNA, qRT-PCR 

RT-16s-R GGTGTTGCCGACTTTCATG 16S rRNA qRT-PCR 
 

a Engineered restriction sites are underlined 

b SDM – primers used for site directed mutagenesis by inverse PCR 

c RT-PCR – reverse transcription PCR 
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Cell growth assays. A. oris growth was assessed by a plate assay and optical density 

(OD600) according to a previous protocol (50). For the plate assay, overnight cultures of 

various strains were harvested and normalized to the same OD600 in HIB. Equivalent cell 

suspensions were subjected to 10-fold serial dilution and spotted on HIA plates 

supplemented with or without 100 ng mL-1 AHT and 2 mM theophylline. Cell growth at 

37oC was recorded after 3 days. For growth in liquid broth, strains were sub-cultured to 

OD600 of ~ 0.02. Cell growth was monitored by OD600 over 19 h. The OD values were 

presented as an average of three independent experiments performed in duplicate. 

Reverse transcriptase and quantitative real-time polymerase chain reactions. 

Overnight cultures were used to inoculate fresh cultures of various A. oris strains, which 

were grown until OD600 ~ 0.25. Cells were harvested by centrifugation, and cell pellets 

were suspended in Trizol (Ambion) and lysed by mechanical disruption using 0.1 mm 

silica spheres (MP Bio). Total RNA was extracted using a Direct-zol RNA MiniPrep kit 

(Zymo Research). Complementary DNA (cDNA) was synthesized using SuperScript III 

reverse transcriptase (Invitrogen). For quantitative real-time PCR, cDNA was mixed with 

iTAQ SYBR green supermix (Bio-Rad), along with appropriate primer sets (Table 2-3). 

Threshold concentration (Ct) values were determined and the relative expression level 

was calculated using the 2-∆∆Ct method (92) with the 16s rRNA gene serving as an 

internal control. The data were obtained from three independent experiments performed 

in triplicate. 

Cell fractionation and immunoblotting. Overnight cultures of A. oris strains were 

diluted 40-fold in HIB and grown at 37°C until OD600 ~ 0.4 - 0.5. Normalized aliquots 

were subject to cell fractionation as described previously (93). Protein samples obtained 

from supernatant (S), cell wall (W), membrane (M) and cytoplasm (C) fractions were 

analyzed by 15% or 3-20% polyacrylamide gels, separated by SDS-PAGE, and 

immunoblotted with specific antibodies (1:1,333 dilution for -GspA; 1:10,000 for -
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FimP; 1:8,000 for  -FimA and 1: 4,000 for -MdbA; 1:10,000 dilution for -GspA; 

1:1,000, affinity purified -LcpA; and 1:8,000, -SrtA; 1:8,000 for -CafA). The proteins 

were detected by chemiluminescence.  

LcpA signal from four independent blots was normalized against a Coomassie 

R250 stained loading control band from the same blot and quantified using ImageJ, 

https://imagej.nih.gov/. The obtained intensity values were normalized to those of the 

wild-type strain, which were set to 1. The results were presented as average of four 

independent experiments. 

Protein purification and analysis. Recombinant plasmids pGspAΔcwss and pFimAΔcwss 

generated above were introduced to A. oris strains containing combinations of the signal 

peptidases lepB1 and lepB2 by electroporation. Each strain was inoculated into 200 mL 

HIB supplemented with 50 g mL-1 kan and grown overnight. The cell-free cultures were 

obtained by centrifugation and filtration using 0.45 µm-pore size filters. 2 ml of nickel 

resin, washed twice with EQ buffer (150 mM NaCl, 50 mM Tris.HCl, pH 7.5) were added 

to the supernatants and gently agitated at 4°C overnight. The suspensions were 

decanted onto a protein purification column, which was then washed with 20 ml EQ 

buffer. Bound proteins were eluted in 3-ml fractions with 1 M imidazole. The eluted 

proteins were desalted using a desalting column (BioRad), and concentrated using an 

Amicon Ultra 0.5 mL centrifugal unit (Millipore) with 10K (GspA) or 30K (FimA) cutoff. 

 GspALMM was purified as above for pGspA∆cwss from the ∆lcpA background. 

 rLcpA and alanine substitution mutants – generated as described above, were 

introduced into E. coli SHuffle for protein purification. The strains were inoculated into 

500 mL of LB supplemented with 100 Amp µg mL-1 and grown to OD600 = 0.8 at 30°C. 

Protein expression was induced using 0.1 mM IPTG and the culture was transferred to 

16°C overnight. Cells were pelleted by centrifugation and washed by suspension in EQ 

https://imagej.nih.gov/
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buffer (150 mM NaCl, 50 mM Tris HCl, ph 7.4). Cells were treated with 1X protease 

inhibitor cocktail (GenDEPOT). The treated cells were chilled and then lysed with a 

French press. Lysates were centrifuged to remove cell debris and nucleic acids. The 

remaining soluble fraction was decanted onto an equilibrated NiNTA column (Qiagen). 

The bound proteins were washed with up to 100 mM imidazole to remove nonspecific 

proteins, and eluted with 500 mM imidazole in wash buffer (1X EQ and 10% glycerol). 

Imidazole was removed from the eluates with a desalting column (Bio-Rad) exchanged 

with wash buffer. 

 Purified proteins were analyzed by SDS-PAGE and visualized with Coomassie 

Blue and Periodic acid-Schiff staining as previously described (50).  

 For Edman sequencing, the proteins were transferred to a PVDF membrane. The 

membrane was rinsed with ultrapure water and stained with 0.02% Coomassie Brilliant 

blue for 30 seconds followed by de-staining in 40% methanol, 5% acetic acid solution for 

1 minute and rinsed with ultrapure water 3 times. The membrane was completely air-

dried, and protein bands were excised for Edman sequencing at the TUCF core facility 

(Tufts University). 

 CafA was purified from the supernatant of A. oris cells transformed with the 

pCafA∆CWS-H6 plasmid. One liter of cells was grown to OD = 0.8, and then the cells were 

centrifuged twice to collect the cell-free supernatant. To remove remaining cells, the 

supernatant was filtered through a vacuum filtration device (Olympus) with a 0.45 µM 

pore. The supernatant was then treated with 1X protease inhibitor cocktail (GenDepot-

Xpert) and decanted onto a CapturemTM His-Tagged Purification Large Volume unit 

twice. The column was washed twice with EQ buffer, and the proteins were eluted with 

30 mL of 0.5 M imidazole in EQ buffer. The eluate was desalted using a size exclusion 
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column (Bio-Rad) exchanged with EQ buffer, and concentrated using a 15 mL 

centrifugation filter with a 50K cutoff according to manufacturer instructions (Millipore).  

Coaggregation and biofilm assays. Coaggregation between A. oris and Streptococcus 

oralis was assayed according to a previously published protocol (93). Briefly, stationary 

cultures of A. oris and S. oralis were collected by centrifugation, washed, and suspended 

in coaggregation buffer (93). To quantify coaggregation, optical density (OD600) of 

individual A. oris and S. oralis cell suspensions in coaggregation buffer was measured. 

Equal cell volumes (0.5 ml) were mixed and allowed to form aggregates. The resulting 

aggregates were photographed by an Alpha-Imager or removed by centrifugation at 100 

x g, and OD600 of the remaining supernatants were recorded. Relative coaggregation 

was determined as previously described (94).   

A. oris biofilms were cultivated in vitro as reported before (79). Briefly, cells were 

inoculated in HIB supplemented with 1% sucrose in a 24-well polystyrene plate and 

incubated at 37°C with 5% CO2 for 48 h. After incubation, the media was removed, and 

each well was gently washed with PBS three times and dried over night at room 

temperature. Biofilms were stained with 1% crystal violet and washed with water to 

remove the unbound dye. To quantify biofilm production, the biofilms were destained 

with 95% ethanol and the released dye was quantified by measuring absorbance at 580 

nm using a Tecan Infinite M1000 microplate reader. The assays were performed three 

times in triplicate. 

Whole-cell ELISA. Surface expression of A. oris tip proteins was quantified by whole-

cell ELISA as previously described with some modifications (95,96). Briefly, mid-log 

phase cells of A. oris MG1 and its isogenic mutant strains were harvested by 

centrifugation and washed twice with phosphate-buffered saline (PBS). The cells were 

suspended in carbonate-bicarbonate buffer (15 mM sodium carbonate, 35 mM sodium 
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bicarbonate, pH 9.6) and normalized to an OD600 of 1.0. 100-L aliquots of cell 

suspensions were dispensed into 96-well high-binding ELISA plates (Corning Costar 

EIA/RIA plate) to allow cell binding to wells at 4°C overnight. Unbound cells were 

removed by washing with PBS containing 0.05% Tween 20 (PBST). Adhered cells were 

blocked with 2% bovine serum albumin (BSA) in PBST prior to incubating with specific 

antibodies against CafA and FimB (1:10,000) for 2 h at 25oC, followed by washing with 

PBST, and staining with anti-rabbit IgG HRP-linked antibodies (Cell Signaling; 1:20,000) 

for 1 h at 25oC. Washed cells were treated with 100 L of the chromogenic 3,3′,5,5′-

Tetramethylbenzidine (TMB) substrate (Affymtrix eBioscience) prior to absorbance 

measurement at 450 nm using a Tecan M1000 plate reader. The absorbance for MG1, 

∆lepB1, and ∆lepB2 strains as compared with the ∆cafA and ∆fimB mutants used as 

background was determined from at least two independent experiments performed in 

triplicate. 

Immunogold-labeling and electron microscopy. Pili were visualized by electron 

microscopy (EM) as previously described (62). Briefly, A. oris cells grown in HIB were 

pelleted, washed once, and suspended in 0.1 M NaCl. For negative staining, a drop of 

bacterial suspension was placed onto carbon-coated nickel grids and stained with 1% 

uranyl acetate before viewing with a JEM1400 electron microscope. For immunogold 

electron microscopy (IEM), after immobilizing cells on the nickel grids, samples were 

stained with specific antibodies (-FimP, 1:100 dilution; -FimA, 1:100 dilution) followed 

by incubation with 12-nm gold-goat anti-rabbit IgG (Jackson ImmunoResearch). Finally, 

the samples were washed five times with water before staining with 1% uranyl acetate. 

Pyrophosphatase assay. This assay uses a 24-hour endpoint reaction of rLcpA and its 

derivatives combined with farnesyl pyrophosphate (FPP) to detect the amount of 

phosphate released. LcpA concentration for all assays was 3 µM, and FPP substrate 
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was titrated as indicated. The reactions were buffered in 20 mM Tris-HCl (pH 8.0), and 

incubated for 24 hours at 30°C (97). Controls for LcpA only and FPP only were included 

for each reaction to determine any nonspecific signal. To detect release of inorganic 

phosphate a Phosphate Fluorometric Assay Kit (MAK031, Sigma) was used according to 

manufacturer instructions. The presence of inorganic phosphate leads to the conversion 

of sucrose to glucose-1-phosphate via an enzymatic reaction. The gluose-1-

phophosphate is then oxidized and reacts with a probe, which results in the release of a 

fluorescent signal proportional to the amount of phosphate in the sample. The phosphate 

detection master mix was added to either a phosphate standard or the endpoint samples 

in a black 96-well plate and then incubated in the dark for 1 h. The fluorescence from 

each sample was measured by a Tecan microplate reader at λex = 535/λem = 587 nm. 

Results from the phosphate standards were used to generate a standard curve and 

included for each biological replicate. Each run also included a zero standard, which did 

not include any phosphate and this was used to determine background fluorescence to 

be subtracted from all readings. Linear regression analysis of the standard curve was 

used to determine the concentration of phosphate in the test samples. Non-linear 

regression and statistical analyses were performed in Prism GraphPad (version 5.04). 

Phosphotransferase assay and 2D protein electrophoresis. 12 µM GspALMM was 

incubated with 4 µM of LcpA (WT or R149A) and 50 µM of FPP in 20 mM Tris-HCl (pH 

8.0) for 72 h at 30°C. After incubation, the protein samples were treated with hydrofluoric 

acid (HF) following published protocols (48,98-100) or mock-treated with H2O. Briefly, 

protein samples were treated with 46% HF at 4°C for 18 h. After acid removal by 

vacuum evaporation, the protein samples were washed with 500 µL of deionized water 

followed by vacuum evaporation. 

 To resolve GspA modified by a phosphate group, samples were solubilized for 30 

mins at 25°C in rehydration buffer (Bio-Rad). To resolve GspALMM species by isoelectric 
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point, we used an 11 cm IPG strip with a narrow linear range (pH 3 – 6) (Bio-Rad). The 

sample was added during the rehydration step and overlaid with mineral oil. The IPG 

strips were rehydrated actively (50 V) with the sample for 12 hours, then the voltage was 

increased rapidly to a max of 8,000 V for the isoelectric focusing step with a Protean IEF 

system (Bio-Rad). After IEF, the IPG strips were placed onto a 4 – 20% Criterion™ 

TGX™ IPG+1 gel (Bio-Rad) in overlay agarose (0.5% agarose in 1X Tris/Glycine/SDS 

(TGS) buffer and 0.003% bpb) alongside a precision plus protein™ dual color standard 

(Bio-Rad). After the overlay agarose was set, 1X TGS buffer was added and the 

samples were run at 200 V for 57 min. The proteins were then transferred to a PVDF 

membrane for subsequent immunoblotting as above with an α-GspA antibody. 

HGF-1 bacterial adherence assay. Human gingival fibroblast (HGF-1) cells (ATCC® 

CRL-2014™) were grown in DMEM with 10% fetal bovine serum (FBS) and 

penicillin/streptomycin (Thermofisher Scientific) (DMEM +/+) at 37°C in 5% CO2 until 

100% confluency. For the adherence assay 6-well plates were seeded at a density of 6.0 

x 104 cells/well, and allowed to reattach in DMEM +/+ for 48 hours at 37°C in 5% CO2 

(101). Bacterial cells were grown to midlog phase from overnight cultures, washed in 

Dulbecco’s phosphate buffered saline (DPBS), and then normalized to 1 x 108 cells. The 

washed cells were diluted 1:100 in DMEM with 10% fetal bovine serum (FBS) without 

antibiotics (DMEM+/-) and plated for the colony forming unit (cfu) input count. Each strain 

was plated in triplicate for each experiment. Meanwhile, the HGF-1 cells were treated 

with 2U neuraminidase/sialidase (Clostridium perfringens; Sigma) and 1X protease 

inhibitor cocktail (GenScript) for 2 hours at 37°C in 5% CO2 in DMEM without FBS or 

antibiotics (DMEM-/-). After washing sialidase from HGF-1 cells in DMEM+/-, 200 µL of 1 

x 106 A. oris cells were added for a final multiplicity of infection (MOI) of 200 bacterial 

cells/HGF-1 cell. The plates were centrifuged at 200 x g for 5 min and then incubated 2 

hours at 37°C in 5% CO2. HGF-1 cells were lysed with cold water and vigorous pipetting. 
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Bacterial cells were enumerated by plating for cfu/mL on HIA in duplicates per well. 

Adherence assay were all performed in technical triplicates with duplicate enumeration, 

and each assay was replicated three times independently. 

Genomic DNA sequencing. Genomic DNA (gDNA) sequencing steps were performed 

at CARMiG by An Dinh. First, gDNA was isolated from 1 mL of cells from overnight 

cultures of A. oris MG1, N11A16, N32A8, and N11A12 according to the DNeasy Blood & 

Tissue Purification Kit (Qiagen) instructions for Gram-positive bacteria. To determine the 

concentration and quality of the prepared gDNA Qubit dsDNA High Sensitivity kit and gel 

electrophoresis were used. Samples were diluted to 0.2 ng/µL. A gDNA library was 

prepared using Nextera XT Library Prep kit (Illumina) according to manufacturer 

instructions. Libraries were assessed for yield (Qubit), and average insert size using 

Agilent D5000 High Sensitivity ScreenTape on Agilent 4200 TapeStation. Normalized 

sample libraries were pooled to achieve 80-fold genome coverage depth, and then 

denatured and diluted to 12 pM with a 1% PhiX spike-in control. Sequencing was 

performed on an Illumina MiSeq platform with MiSeq V2 reagent kit. Paired-end reads 

with onboard Illumina base-calling and adapted-trimming to yield *.fastq files. CLC 

Genomics workbench was utilized to filter, trim, and de novo assemble the reads. The 

data was analyzed using the comparative analysis platform EDGAR. 

Agarase clearance assay. To determine whether signal peptides were sufficient to 

export proteins via the Tat pathway, we utilized a modified version of the agarase assay 

originally developed for testing heterologous signal peptide fusions from Streptomyces 

coelicolor in Streptomyces lividans (102,103). A. oris cells expressing native DagA, 

DagA signal peptide fusions, or an empty vector control were grown to mid logarithmic 

phase in HIB with kanamycin, and then concentrated to OD600 of 2.0. Three microliters of 

concentrated cells were spotted onto HIA and grown for 48 hours at 37°C with 5% CO2. 
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Lugol solution (Sigma) was added to the plates for 1 h, then decanted to image the zone 

of clearance. 

Fluorescence intensity measurements. Fluorescence intensity of was measured from 

the supernatant of bacterial cells grown in HIB or from cells washed and suspended in 

PBS. A blank measurement was made for HIB or PBS alone, depending on the sample. 

Additionally, a gain reference was made using 40 µg/mL purified GFP in either HIB or 

PBS. The mean of technical triplicates was measured and averaged. Overall 

percentages of fluorescent signal in the media compared to the whole cell were 

calculated from three independent experiments. The time-course fluorescence was only 

taken from the media fraction and assessed every hour for 8 h with a final reading at 18 

h. 

Fluorescence microscopy. 10-well multi-test slides (MP Biomedicals) were prepared 

by adding 2 μL of 1.5% agarose in 1X PBS. Bacterial samples grown to mid-log phase 

were centrifuged, washed with 1X PBS, pipetted onto an individual agarose pads, and a 

cover slip was placed over the slide to secure the samples. Images were obtained on an 

Olympus IX81-ZDC inverted microscope using Slidebook imaging software. Fluorescent 

images were taken at 0.5 sec exposure with 255 gain and exported as TIFF files. 
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CHAPTER III 

A Type I Signal Peptidase is Required for Pilus Assembly  

in the Gram-positive, Biofilm-forming Bacterium  

Actinomyces oris
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The results and figures in this chapter are from work published in 2016: Siegel SD, Wu 

C, Ton-That H “A type I signal peptidase is required for pilus assembly in the Gram-

positive biofilm-forming bacterium Actinomyces oris.” J Bact. 198(15):2064-73. doi: 

10.1128/JB.00353-16. I am the first author of this publication and was responsible for 

preparing the original manuscript and conducting the experiments described in this 

paper. I have permission to reproduce any and all of this manuscript, in print or 

electronically, for the purpose of my thesis in accordance with the American Society for 

Microbiology (publisher of Journal of Bacteriology) “Journals Statements of Authors’ 

Rights.” http://journals.asm.org/site/misc/ASM_Author_Statement.xhtml. 

 

Introduction 

The role of the housekeeping sortase in Gram-positive bacterial pathogenesis has been 

demonstrated in a diverse abundance of species. For example, in S. aureus deletion of 

housekeeping sortase results in attenuation of pathogenicity in several different models 

of infection (104). This is due to the reduction of anchored virulence factors on the cell 

surface, such as protein A, the paradigm sortase substrate. Similar virulence-associated 

phenotypes have also been implicated in other Gram-positive bacteria including Listeria 

monocytogenes, Streptococcus pneumoniae, and Bacillus anthracis (105-107). 

 In an effort to identify how deletion of the A. oris housekeeping sortase affects 

biofilm formation it was discovered that it is essential for cell viability, a feature unique to 

this species (50). While the sortase cannot be deleted or catalytically inactivated, it was 

possible to delete all predicted LPXTG containing proteins (25). This led to the 

hypothesis that a toxic protein may accumulate at the membrane in the absence of 

housekeeping sortase. Using a transposon screen for suppressors of ∆srtA lethality, 13 

suppressor mutants were identified, and two were characterized further. The two 

proteins, which were characterized after the transposon screen, were LCP (LytR-CpsA-

https://doi.org/10.1128/JB.00353-16


50 
 

Psr) and AcaC (Actinomyces cell wall associated protein C). These genes are clustered 

in the genome and both had multiple transposon hits. AcaC (now GspA) was 

glycosylated in an LCP-dependent manner and required SrtA for anchoring. A model 

was proposed that accumulation of glycosylated GspA in the membrane in the absence 

of sortase leads to membrane glycol-stress and eventual cell death (50).  

 Additional mutations that could suppress ∆srtA lethality were identified from the 

original transposon mutagenesis screen. We hypothesized that glycosylation or 

anchoring pathway of GspA was central to the essentiality of srtA. Thus, all of the 

mutations were specifically associated with one of the two pathways. One such mutation 

was found to disrupt the open reading frame of ana_1190, annotated as a putative type I 

signal peptidase (SPase) and renamed lepB2 (50). 

 Secreted proteins encode a signal peptide at the N-terminus. After secretion, the 

non-lipoprotein signal peptides are cleaved by a bacterial type I SPase. This constitutes 

the terminal step of the secretion pathway. Type I SPases are endopeptidases that 

utilize a serine-lysine catalytic dyad. SPases recognize an AxA motif that is a broadly 

conserved cleavage sequence among Gram-negative and Gram-positive bacteria (53). 

Gram-negative bacteria generally encode only a single essential type I SPase, however, 

Gram-positive bacteria often encode several SPases, some of which cleave only specific 

substrates (60,108,109).  

 In this work, we investigated the role of LepB2 in the GspA glycosylation and 

anchoring pathway and determined that it is dispensable for GspA signal peptide 

cleavage. Rather, it modulated the glycosylation of GspA, and may have specifically 

impacted a yet unknown glycosylation enzyme. We further showed that LepB2 does 

cleave the signal peptide of pilin proteins and that signal peptide cleavage is required for 

pilus polymerization. Improper cleavage of the signal peptide impacted bacterial 

physiology. 
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Results 

The type I signal peptidase LepB2 is a genetic suppressor of srtA essentiality –  

We have previously reported that A. oris srtA is an essential gene and identified the 

Tn5::lepB2 mutation as one of the genetic suppressors of srtA essentiality (50). lepB2 is 

genetically linked to trmD and rimM, which encode a tRNA (guanine(37)-N(1))-

methyltransferase and a 16S rRNA processing protein, respectively (Fig. 3-1A). 

According to the BioCyc databases, http://biocyc.org/, the three genes are predicted to 

be expressed as one transcription unit in Actinomyces naeslundii Howell 279 (110). 

Farther upstream of lepB2 is another signal peptidase-encoding gene annotated as 

lepB1 (Fig. 3-1A). To exclude the possibility that the Tn5::lepB2 has a polar effect on 

adjacent genes, we created in-frame, nonpolar deletion mutations by allelic exchange 

(79) including the lepB2/srtA double deletion mutation (lepB2/srtA). At first, we 

generated a lepB2 mutation which enabled further deletion of srtA from the bacterial 

chromosome without ectopic expression of SrtA. Of note, we were unable to delete srtA 

from a lepB1 mutant strain. The lepB2/srtA strain and respective single mutations 

were assessed for their ability to grow in laboratory conditions using both plate and liquid 

broth assays (50). In the plate assay, normalized cell cultures were spotted in serial 

dilution on HIA plates and grown at 37oC. Compared to the conditional srtA deletion 

mutant, which failed to grow in the absence of two inducers anhydrous tetracycline 

(AHT) and theophylline (50), the lepB2/srtA mutant did not display any visible defects 

when grown in any conditions (Fig. 3-1B). Growth of gspA, lepB2, lepB1 and 

lepB1/lepB2 mutants was comparable to that of the parental strain MG1 (Fig. 3-1B). 

Nonetheless, when grown in liquid broth, the ∆lepB2 and lepB1/lepB2 mutants 

displayed a slight growth defect as compared to the MG1 and lepB1 strains (Fig. 3-1C).  

  

http://biocyc.org/
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Figure 3-1:  Signal peptidase LepB2 is a genetic suppressor of SrtA essentiality. 

(A) Shown is a graphic representation of the lepB2 gene locus from A. oris MG1. This 

locus encodes a ribonuclease H (rnhB), SPase I (lepB1), a ribosomal protein L19 (rplS), 

SPase I (lepB2), a tRNA (guanine-N1)-methyltransferases (trmD), and a 16S rRNA 

processing protein (rimM). (B) Growth of wild-type MG1, conditional srtA mutant, and 

non-polar deletion mutant strains on solid media in the presence or absence of inducers 

anhydrotetracycline (AHT) and theophylline. (C) Growth of A. oris MG1, ΔlepB1, ΔlepB2 

and ΔlepB1/ΔlepB2 was determined in liquid media. The optical density (OD600) values 

were presented as an average of three independent experiments done in duplicate. 

Symbols * indicate the p values less than 0.05 that were determined using the paired, 

two tailed t-test with Prism GraphPad. 
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 We next examined if lepB1 and lepB2 are part of a transcriptional unit using 

reverse transcription polymerase chain reaction (RT-PCR) as previously described 

(111). Total RNA isolated from MG1 was used in reverse transcription reactions to 

produce cDNA. As shown in Fig. 3-2A and 3-2B, RT-PCR detected the presence of 

lepB1 or lepB2 transcripts using probes specific for lepB1 (P1 and P2 primers) or lepB2 

(P3 and P4), respectively. Neither transcript was observed in the absence of reverse 

transcriptase (RT), indicative of no gDNA contamination. No transcripts were detected 

using probes specific for the region encompassing lepB1 and lepB2 (P5 and P6), 

whereas the same probes enabled amplification of this region from gDNA (Fig. 3-2B, g 

lanes). To ascertain whether deletion of lepB2 does not affect lepB1 expression, we 

examined expression levels of both genes using quantitative real-time PCR (qRT-PCR). 

Compared to the wild-type strain, relative expression of lepB1 or lepB2 was not altered 

when lepB2 or lepB1 was deleted, respectively (Fig. 3-2C) suggesting that lepB1 and 

lepB2 are independently expressed. Altogether, the results in Figures 1 and 2 confirmed 

that LepB2 is a genetic suppressor of srtA deficiency and suggest that LepB2 is required 

for processing of substrates that are involved in the SrtA-mediated glycosylation 

pathway. 
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Figure 3-2:  lepB1 and lepB2 are independently expressed. (A) Specific primers (P) 

were designed to detect lepB1, lepB2 and a region encompassing both. Brackets and 

numbers specify the primer position and sizes of amplicons. (B) Using specific primers in 

(A), reverse transcription PCR (RT-PCR) was employed to determine if lepB1 and lepB2 

are independently expressed. Plus and minus signs indicate RT-PCR reactions were 

performed in the presence and absence of reverse transcriptase (RT). PCR reactions 

with genomic DNA (g) were used as control. (C) Quantitative real-time PCR (qRT-PCR) 

was employed to determine the expression levels of lepB1 and lepB2 relative to the 

parental strain MG1, using the 2-ΔΔCt method, where 16s rRNA serves as the internal 

control. The data were presented averages of three independent experiments performed 

in triplicate; error bars represent standard deviation (SD).  
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Involvement of SPases LepB1 and LepB2 in GspA glycosylation – We previously 

showed that glycosylated GspA is a substrate of SrtA since depletion of srtA leads to the 

membrane accumulation of glycosylated GspA causing lethal phenotypes (50). 

Subsequent Tn5 mutagenesis identified viable mutants that lack both srtA and gspA or 

srtA and lepB2 (50). In this work, we have confirmed that LepB2 is a genetic suppressor 

of srtA essentiality by generating a nonpolar deletion mutant devoid of srtA and lepB2 

(Fig. 3-1). Therefore, we hypothesized that LepB2 works on the same GspA 

glycosylation pathway by processing GspA before it is glycosylated and then anchored 

to the cell wall by sortase SrtA. To examine this possibility, we first examined the status 

of GspA glycosylation in the absence of SPases by analyzing GspA proteins isolated 

from the culture medium (S), cell wall (W), membrane (M), and cytoplasmic (C) fractions 

of wild-type and SPase mutant strains. Protein samples were immunoblotted with 

antibodies against GspA and MdbA, a membrane-bound protein as a control (62). In the 

wild-type MG1 strain, glycosylated GspA polymers (GspAP) were detected as smeared 

bands in the cell wall fraction, and no GspA signal was observed in the gspA mutant 

(Fig. 3-3A, first 8 lanes), as previously reported (50). While the lepB1, lepB2, and 

lepB1lepB2 mutants did not exhibit significant defects in GspA glycosylation, the 

lepB2srtA double mutant failed to produce wild-type levels of GspA polymers. 

Instead, the accumulation of three low molecular weight (LMW) species was detected in 

the cell wall fraction, in addition to a 50-kDa species observed in the culture medium and 

membrane fractions (Fig. 3-3A, lanes lepB2srtA). To determine whether the observed 

defects might be due to low expression levels of gspA, we quantitated gene expression 

by qRT-PCR. Overall, no significant reduction in gene expression levels was observed in 

the mutant strain when compared with the wild-type strain (Fig. 3-3B).  
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Figure 3-3:  Involvement of SPases in sortase-associated GspA glycosylation. (A) 

Cells were grown to mid-log phase and normalized by optical density. Culture 

supernatant (S), cell wall (W), membrane (M), and cytoplasmic (C) fractions were 

separated by SDS-PAGE and immunoblotted with antibodies against GspA (α-GspA) 

and membrane protein MdbA (α-MdbA), which served as loading and fractionation 

controls. Brackets designate glycosylated, high molecular weight (HMW) species of 

GspA polymers (GspAP). (B) The relative expression level of gspA in indicated strains 

was determined by qRT-PCR as described in Fig. 2. Error bars are the SD from two 

independent experiments performed in triplicate.  
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Altogether, the results suggest that either LepB1 or LepB2 is sufficient for cleavage of 

the cell wall-anchored glycoprotein GspA and that LepB2 may process factors involving 

GspA glycosylation.  

Specificity of A. oris SPases for processing of LPXTG-containing proteins – GspA 

is one of 18 cell wall-anchored proteins with a CWSS and a putative signal peptide. A 

typical signal peptide is comprised of a net positive charged region (n-region), followed 

by a hydrophobic region (h-region) and a cleavage region (c-region) (53) (Fig. 3-4A). 

The c-region harbors a typical cleavage site, i.e. an AXA motif, which is recognized and 

cleaved by a type I SPase after the second Ala residue (53). To determine the cleavage 

site of GspA and the role of LepB1 and LepB2 in this process, we purified GspA by 

affinity chromatography from A. oris strains lacking either gene or both and determined 

the N-terminal sequences of the purified proteins by Edman degradation sequencing. 

Because GspA is heavily glycosylated and its glycosylation sites are not known (50), we 

expressed in these strains a GspA variant lacking its membrane-bound CWSS and 

containing a His-tag at the C-terminus (Fig. 3-4A; pGspACWSS). Using this approach, we 

could avoid the formation of high-molecular weight glycosylated GspA by forcing the 

protein to be released as a monomer to facilitate detection of small changes in pre-

protein processing. After harvesting the cell-free culture supernatants of A. oris strains 

expressing this construct by centrifugation and filtration, His-tagged proteins were 

captured by Ni-NTA agarose and purified according to a published protocol (25). Purified 

proteins were analyzed by SDS-PAGE, followed by Coomassie Blue and Periodic acid-

Schiff (PAS) staining to distinguish glycosylated proteins (see Materials and Methods). In 

the WT strain, the predominant GspA band and a weaker band migrated below and 

above the 37-kDa marker, respectively, in addition to the last one smeared between the 

50- and 75-kDa markers by Coomassie Blue staining (Fig. 3-4B; left panel). As shown 

previously, this predominant GspA species was negative for PAS staining, while 
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Figure 3-4:  Mapping the signal peptide cleavage site by Edman degradation. (A) 

Shown is a graphic representation of GspA. The N-terminal sequence of GspA contains 

a typical signal peptide comprised of a positively charged polar n-region, a hydrophobic 

central region (h-region), and a c-region with the signal peptidase recognition motif AxA. 

The arrowhead marks the predicted SPase I cleavage site. pGpsACWSS denotes a 
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plasmid expressing a GspA variant, in which the CWSS is replaced by a six His-tag 

(black circle). (B) His-tagged GspA proteins were purified from the culture medium of 

indicated strains by affinity chromatography, separated by SDS-PAGE and visualized by 

Coomassie Blue (~ 1.25 g of protein in all lanes) and Periodic acid-Schiff (PAS) (2.5 g 

of protein) staining. Glycosylated horseradish peroxidase (HRP) and non-glycosylated 

soybean trypsin inhibitor (STI) were used as positive and negative controls. Brackets 

with numbers indicates glycosylated forms of GspA. (C) Indicated bands (vertical lines) 

in B were subjected to Edman degradation. The N-terminal sequence of GspA was 

deduced from the first 10 sequencing cycles (underline). Samples from the 

lepB1/lepB2 mutant produced ragged N-terminal sequencing with the major sequence 

shown. (D) Like GspA, FimA harbors a signal peptide with the conserved cleavage site 

motif AXA. pFimACWSS represents a plasmid expressing a FimA molecule, in which the 

CWSS is replaced by a six His-tag (black circle). (E) His-tagged FimA proteins were 

purified from the culture medium of indicated strains by affinity chromatography, 

separated by SDS-PAGE and stained by Coomassie Blue. (F) The purified proteins were 

subjected to N-terminal sequencing. Underlines indicate the sequence resulted from first 

10 sequencing cycles. The lepB2 mutant also produced ragged N-terminal sequencing 

with the major sequence shown. 
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some trace of PAS staining was detected with the smeary band (Fig. 3-4B; bracket 1). The 

same phenotypes were observed in the lepB1 mutant; intriguingly, in the lepB2 mutant 

a smeary band migrating around 37-kDa was positive for PAS staining (Fig. 3-4B; bracket 

2), while the high molecular weight (HMW) band stained positive for PAS remained weakly 

visible (Fig. 3-4B; bracket 1). Finally, in the double lepB1/B2 mutant a further-upshifted 

band with positive PAS staining was detected. In addition, the HMW species of GspA 

showed a slight increase in PAS staining (Fig. 3-4B; bracket 1, last lane). These results 

indicate that glycosylation of GspA still occurs, albeit weakly, in the absence of the CWSS. 

Together with the data presented in Fig. 3-3A, we conclude that neither the deletion of 

lepB1 nor lepB2 affects GspA glycosylation.  

If either SPase is sufficient to process GspA, the cleaved products in each deletion 

mutant should contain the same N-terminal sequence. To determine if this is the case, we 

excised the major GspA bands indicated in Fig. 3-4B for Edman sequencing. As shown in 

Table 3-1, the first ten cycles of Edman degradation for GspA samples purified from the 

WT, lepB1, and lepB2 strains revealed the matching sequence of GDSLAFKIAD (Fig. 

3-4C), consistent with the predicted cleavage site between Ala (-1 position) and Gly (+1 

position) (Fig. 3-4A). In contrast, the same analysis of GspA samples isolated from the 

lepB1/B2 mutant produced a mixture of residues in the majority of the first 10 Edman 

sequencing cycles (Table 3-1) indicative of multiple polypeptides present in these 

samples; with the major polypeptide that has the sequence of LAGDSLAFKI (Fig. 3-4C). 

The results indicated that both LepB1 and LepB2 are capable of cleaving the GspA signal 

peptide. In the absence of both SPases, the GspA signal peptide might be proteolytically 

degraded at different residues by unidentified protease(s).  
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Table 3-1: Protein sequencing of GspA proteins purified from four A. oris strains 

by Edman degradation 

Sequencing 

Cycle 

Residue (pmol) 

MG1 ∆lepB1 ∆lepB2 ∆lepB1/∆lepB2 a 

1 G (4.761) G (13.250) G (7.833) L (3.150); A (3.665) 

2 D (4.438) D (13.830) D (8.280) A (3.887) 

3 S (2.529) S (5.692) S (4.623) G (2.938); P (1.390) 

4 L (3.972) L (10.650) L (6.026) D (2.962); A (2.836) 

5 A (4.082) A (11.050) A (6.184) S (1.774) 

6 F (2.913) F (8.309) F (5.394) L (3.162) 

7 K (3.882) K (10.280) K (5.761) A (4.124); G (2.501) 

8 I (2.661) I (8.125) I (4.958) F (2.520); D (2.494) 

9 A (3.427) A (9.922) A (5.492) K (2.520); S (1.729) 

10 D (2.794) D (7.996) D (5.265) I (1.875); L (2.144) 

a Two major residues were detected in the majority of the first 10 sequencing cycles.  
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LepB2 is required for pilus assembly – As previously mentioned, in addition to GspA 

and 13 other cell wall anchored proteins (25), the A. oris MG1 strain expresses 4 pilus 

proteins FimP/Q and FimA/B, which constitute type 1 and type 2 fimbriae, respectively 

(18,79,84). We asked if the function of the two SPases is extended to these LPXTG-

containing pilus proteins. Using the same approach described for GspA, whereby the 

CWSS of FimA was replaced by a His-tag (Fig. 3-4D), we purified secreted FimA 

proteins from the culture medium and analyzed them by SDS-PAGE and Edman 

degradation. While the FimA proteins isolated from the WT and lepB1 strains migrated 

with the same mobility by SDS-PAGE, the FimA proteins isolated from the lepB2 

mutant migrated slightly slower as compared to the first two (Fig. 3-4E). Consistently, 

Edman degradation revealed the same sequence of TETPNYGNIK in the first two 

samples, supportive of the cleavage site between Ala (-1) and Thr (+1) (Fig. 3-4D), 

whereas the last one had ragged sequences, with the major species of AVATETPNYG 

(Fig. 3-4F and Table 3-2). The results indicate that LepB1 is not required for proper 

cleavage of the FimA signal peptide and that LepB2 is essential for FimA pre-protein 

processing. 
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Table 3-2: Protein sequencing of FimA proteins purified from four A. oris strains 

by Edman degradation 

Sequencing 

Cycle 

Residue (pmol) 

MG1 ∆lepB1 ∆lepB2 a 

1 T (8.363) T (2.341); G (1.394) A (10.082); T (8.999); G (70.840); 

2 E (6.034) E (1.391) V (6.512); E (6.271); L (6.009) 

3 T (7.885) T (2.137) A (10.563); T (9.934) 

4 P (6.338) P (1.786) T (10.321); P (8.828) 

5 N (4.784) N (1.467) E (5.881); N (4.545) 

6 Y (5.789) Y (1.512) T (11.027); A (9.149); Y (5.218) 

7 G (5.246) G (2.061) P (7.555); G (11.852); V (6.863) 

8 N (4.597) N (1.412) N (5.679); A (9.687) 

9 I (4.777) I (1.771) I (6.770); Y (4.509) 

10 K (5.922) K (1.133) K (6.659); G (12.054); E (5.618) 

 

a Multiple residues were detected in each of the first 10 sequencing cycles.  
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 We next investigated the impact of LepB2-mediated cleavage of FimA precursors 

by examining pilus assembly on the bacterial cell surface by IEM. A. oris cells were 

immobilized on nickel grids, washed and stained with antibodies against FimA (-FimA) 

and then reacted with secondary IgG antibodies conjugated to gold particles. Samples 

were then stained with 1% uranyl acetate and viewed by an electron microscope. As 

expected, FimA labeled pili were abundant on the surface of wild-type cells, but absent 

in a mutant lacking fimA (Fig. 3-5A & 3-5B). Note that visible unstained pili in the fimA 

mutant were FimP pili (79). While the deletion of lepB1 did not affect FimA pilus 

assembly, deletion of lepB2 severely affected assembly (compare Fig. 3-5C & 3-5D). 

Ectopic expression of LepB2 in the lepB2 mutant rescued this assembly defect to the 

wild-type levels (Fig. 3-5E). To examine if LepB2 is required for the assembly process of 

tip fimbrial proteins, we quantified the protein level of FimB and CafA on the bacterial 

surface by whole-cell ELISA. Consistent with the above results, the lepB2 mutant 

displayed drastic reductions in FimB and CafA signal the lepB1 mutant exhibited wild-

type levels of both pilus tip proteins (Fig. 3-6).   

 To determine if LepB2 also acts on type 1 fimbriae, we analyzed pilus assembly 

using IEM with antibodies against the fimbrial shaft protein FimP (-FimP). As shown in 

Fig. 3-5F-J, the FimP phenotypes mirrored those of FimA presented above. Altogether, 

the results indicated that LepB2 is specifically utilized for processing of pilus precursors 

in A. oris. 
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Figure 3-5: The signal peptidase LepB2 is required for pilus assembly. A. oris cells 

were immobilized on nickel grids, reacted with the specific antiserum against the type 2 

major pilin subunit, FimA (α-FimA) (A – E) or the type 1 major pilin subunit FimP (α-FimP) 

(F – J) followed by goat anti-rabbit IgG conjugated to 12-nm gold particles, and stained 

with 1.0% uranyl acetate. Samples were viewed by transmission electron microscopy. 

Scale bars, 0.2 μm.  
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Figure 3-6: Requirement of LepB2 for surface expression of tip pilins. The 

presence of FimB (A) and CafA (B) on the bacterial cell surface was analyzed by whole 

cell ELISA with specific antiboides to FimB and CafA, respectively. The absorbance 

values, as compared to those of corresponding mutants as background, were 

determined from at least two independent experiments performed in triplicate. Error bars 

represent standard deviations. Asterisks (*) indicate P-values of 0.02 (A) and 0.03 (B); 

all were determined using the paired, two-tailed t-test with Prism GraphPad. 
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Requirement of the conserved catalytic dyad for LepB2 activity – Bacterial type 1 

SPases utilize a conserved Ser-Lys catalytic dyad present within the conserved Box B 

and Box D, respectively, for their proteolytic activities (60). Our sequence alignment of 

LepB1 and LepB2 with many other Gram-positive signal peptidases revealed the 

conservation of this catalytic dyad (Fig. 3-7A). In LepB2, Ser is located at position 101 

and Lys at 169. To determine if these residues are indeed required for LepB2 activity, 

we generated recombinant plasmids expressing LepB2 with alanine substitutions at 

S101 or K169. The resulting plasmids were introduced into the lepB2 mutant and the 

effects of these mutations on pilus assembly were analyzed by immunoblotting and EM. 

By Western blot analysis, we observed high molecular weight species of FimP and FimA 

indicative of pilus polymers (denoted as P) in the culture medium (S) and cell wall (W) 

fractions of wild-type cells (Fig. 3-7B & 3-7C; first two lanes), as previously reported (84). 

While deletion of lepB1 did not affect pilus assembly (Fig. 3-7B & 3-7C; next two lanes), 

deletion of lepB2 greatly reduced pilus polymers and increased the accumulation of 

LMW products, presumably degradation products, in the membrane as well as their 

secretion into the culture medium (Fig. 3-7B & 3-7C; lanes lepB2). The defects of this 

mutant were rescued by ectopic expression of lepB2 (Fig. 3-7B & 3-7C; lanes 

lepB2/pLepB2). As expected, alanine substitutions of S101 and K169 resulted in the 

same defects as deletion of lepB2 (Fig. 3-7B & 3-7C; last 4 lanes). The effects of the 

catalytic dyad mutations on pilus assembly were also confirmed by negative-staining EM 

(data not shown). Thus, LepB2 contains a canonical catalytic dyad present in type I 

signal peptidase enzymes, and this dyad is critical for LepB2 activity.   
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Figure 3-7:  The Ser-Lys catalytic dyad of LepB2 is necessary for pilus assembly. 

(A) Multiple sequence alignment of type 1 SPases from A. oris (LepB1 and LepB2), 

Mycobacterium leprae (LepB), Streptomyces coelicolor (Sip1), Bacillus anthracis (SipS), 

Bacillus subtilis (SipS), and Streptococcus pneumoniae (Spi) was performed using 
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CLUSTAL W (112). The conserved Box B and Box D, which contain the catalytic Ser 

and Lys residues (highlighted in black), respectively, are shown. Numbers indicate Ser 

and Lys positions in A. oris LepB2. (B) Supernatant (S) and cell wall (W) fractions were 

collected from MG1 and its isogenic derivatives. Equivalent protein samples were 

subjected to immunoblotting with α-FimP. (C) The same samples in B were 

immunoblotted with α-FimA. The positions of fimbrial monomer (M), HMW polymers (P), 

and molecular mass markers are indicated. 
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Because LepB2 is required for pilus assembly and type 2 fimbriae are involved in 

polymicrobial interactions (or coaggregation) and biofilm formation, we then examined if 

LepB2 is also important for these processes. To test for polymicrobial interactions, 

Actinomyces cells were mixed with Streptococcus oralis in equal numbers and 

coaggregation was determined both visually (113) and quantitatively as previously 

reported (93). As shown in Fig. 3-8A & 3-8B, Actinomyces coaggregation with S. oralis 

was dependent on CafA as deletion of cafA abrogated this interaction, consistent with 

our previous report (25). Compared to the parental MG1 strain, the lepB1 mutant did not 

display any noticeable defect in coaggregation. In contrast, deletion of lepB2 significantly 

reduced bacterial coaggregation; this defect was rescued by overexpressing wild-type 

LepB2 from a plasmid, but not from the catalytically inactive LepB2 variants, i.e. S101A 

or K169A. Finally, the ability of the LepB2 mutants to form biofilms was evaluated using 

an established protocol (93), whereby Actinomyces biofilms were cultivated in the 

presence of 1% sucrose and quantified by staining with crystal violet (see Methods). 

Unlike the lepB1 mutant, which produced biofilms at the wild-type level, the lepB2 

mutant was unable to form biofilms. The biofilm defect of the lepB2 mutant was restored 

when wild-type LepB2 was expressed ectopically, but not with the S101A or K169A 

mutant (Fig. 3-8C and 3-8D). Altogether, the results support the notion that LepB2 is the 

signal peptidase specific for LPXTG-containing pilus proteins in A. oris. 
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Figure 3-8: Requirement of LepB2 for polymicrobial interactions and biofilm 

formation. The parental A. oris MG1 strain and its variants were examined for their 

ability to interact with Streptococcus oralis. Coaggregation was scored visually (A) or 

quantitatively by optical density (B). To cultivate biofilms, Actinomyces cells were grown 

in microtiter plates in the presence of 1% sucrose at 37oC with 5% CO2.  Generated 

biofilms were stained with crystal violet (C) and subsequently quantified by measuring 

absorbance at 580 nm (D). The values are expressed as averages of three independent 

experiments performed in triplicate. Symbols *, **, and *** indicate p values of 0.05, 0.01, 

and 0.005, respectively; all determined using the paired, two-tailed t-test with Prism 

GraphPad. 
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Discussion  

We recently reported that the signal peptidase LepB2 is a genetic suppressor of srtA 

essentiality in A. oris, a lethal phenotype associated with glyco-stress caused by 

accumulation of the glycosylated protein GspA in the cytoplasmic membrane when SrtA 

is disabled (50). The suppressor was found when we recovered a viable srtA-deleted 

mutant with the Tn5 transposon inserted into the lepB2 gene (50). In this report, we 

confirmed the suppression phenotype of lepB2 by deleting chromosomal srtA in a strain 

already devoid of lepB2 (Fig. 3-1). It is important to note that deletion of srtA in the 

absence of gspA is also non-lethal (50) suggesting that LepB2 acts on the GspA 

glycosylation pathway. Indeed, in the lepB2/srtA double mutant, GspA glycosylation 

was severely defective (Fig. 3-3) unlike the phenotype of srtA depletion, which does not 

affect GspA glycosylation (50). lepB2 is part of a gene locus that encodes another signal 

peptidase gene, lepB1 (Fig. 3-1A). This raises a question of redundancy as multiple 

copies of SPases are typically present in a single species of Gram-positive bacteria (60). 

To address this question, we mapped the cleavage site of the GspA signal 

peptide by Edman degradation. Because GspA is heavily glycosylated leading to a 

smeared migration pattern on SDS-PAGE (Fig. 3-3A), detecting the cleavage of the 

GspA signal peptide was challenging. To circumvent this problem, we constructed a 

GspA molecule lacking its CWSS (denoted as GspACWSS), which caused it to be 

secreted into the extracellular milieu with less chance of glycosylation. To our surprise, 

the GspACWSS precursor was properly processed when expressed in the absence of 

LepB1 or LepB2 (Fig. 3-4B & 3-4C). Especially when considering that LepB2 is linked to 

GspA glycosylation. The results support the idea that both SPases are capable of 

cleaving the GspA signal peptide. This is consistent with the observation that in the 

absence of both lepB1 and lepB2 the GspA signal peptide was not properly processed 
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(Fig. 3-4C). It is intriguing, however, that the glycosylation level of GspA detected in the 

cell wall fraction of this double mutant was comparable to that of the parental and single 

deletion strains (Fig. 3-3A). This seems contradictory to a general belief that processing 

of the signal peptide is a prerequisite for protein maturation (40). We speculate that 

GspA glycosylation occurs immediately as the protein precursors emerge from the Sec 

translocon. This is in line with the “Pilusosome Hypothesis” that sortase and its 

substrates are in close proximity with a protein secretion machine for efficient assembly 

(114). It is also possible that in the absence of the two SPases aberrant cleavage of the 

protein precursors, probably by membrane-bound protease(s), is sufficient to release the 

polypeptides from the secretion machine for sortase and glycosyltransferases to be able 

to perform their functions.  

While both LepB1 and LepB2 are capable of processing GspA, we demonstrated 

that only LepB2 is specific for cleavage of fimbrillin signal peptides. Using the major 

fimbrillin shaft FimA as an experimental model, we showed by N-terminal sequencing 

that cleavage of the FimA signal peptide depends on LepB2 (Fig. 3-4 D-F). In the 

absence of the cognate signal peptidase LepB2, the FimA signal peptide was 

proteolytically cleaved producing ragged polypeptides (Table 3-2). Unlike GspA, this 

failure of signal peptide cleavage severely affected fimbrial assembly (Fig. 3-5). 

Consequently, the ability of this mutant strain to interact with oral streptococci and to 

form biofilm is significantly hindered (Fig. 3-8). LepB2 function is not limited to type 2 

fimbriae, as the lepB2 mutant also fails to assembly type 1 fimbriae with FimP as the 

fimbrial shaft; in contrast, LepB1 is dispensable for these processes (Fig. 3-5, 3-6 and 3-

7).  

The notion that a signal peptidase is involved in pilus formation has been 

previously reported with the signal peptidase-like protein SipA in the Gram-positive 
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pathogen Streptococcus pyogenes (115). SipA is expressed by the gene locus that 

encodes the T3 pilin components in many strains of S. pyogenes (115). Although it has 

the same core fold as the type I SPase of Escherichia coli (116), it lacks the catalytic Ser 

and Lys residues typical of type I SPases (117) (Fig. 3-7A). In place of Ser and Lys are 

Asp and Gly, but they do not play any role in signal peptidase activity nor cleavage of T3 

pre-pilins (117). Unlike SipA, LepB2 contains a canonical catalytic dyad with the 

conserved S101 and K169 (Fig 3-7A). Alanine substitution of these residues abrogates 

pilus assembly as well as biofilm formation (Fig. 3-7 and 3-8). Altogether, it is clear that 

LepB2 is a type I SPase, which may serve as the prototype of type I SPases specific for 

pilus assembly in Gram-positive bacteria. 
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CHAPTER IV 

A Phosphotransferase LCP Enzyme Mediates Glycosylation of a 

Gram-positive Cell Wall Anchored Protein 
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Introduction 

Glycopolymers such as wall teichoic acids (WTAs) displayed on the cell envelope of 

Gram-positive bacteria play critical roles in cell physiology by modulating 

immunogenicity, host and bacterial surface interactions, protein stability, cell division and 

affinity for charged molecules including antimicrobial peptides and cations 

(38,39,118,119). WTAs are polyol repeats ending in a disaccharide linkage unit attached 

to the C6 hydroxyl group of N-acetyl muramic acid (MurNAc) of bacterial peptidoglycan 

via a phosphodiester bond (120). Attachment of WTAs to the anchor molecules of the 

cell envelope requires LytR-CpsA-Psr (LCP) family enzymes widespread in Gram-

positive bacteria (121). The first crystal structure of an LCP enzyme was CpsA2 from 

Streptococcus pneumoniae. The enzyme contains a hydrophobic tunnel capped with 

surface exposed catalytic arginine residues, and of theseboth features that are essential 

for functionality (44). Serendipitously, the CpsA2 structure co-crystalized with octaprenyl-

pyrophosphate (oprPP), where the isoprenyl tail is nestled within the hydrophobic pocket 

and the pyrophosphate head group interacted with the surface exposed arginine 

residues. In the case of WTAs, LCP proteins catalyze the formation of a phosphodiester 

bond to link the glycan to the MurNAc of the cell wall. A pyrophosphatase reaction 

removes the glycan from the lipid donor molecule (122). It has been previously 

demonstrated that S. pneumoniae CpsA2 and Corynebacterium glutamicum LcpA 

possess in vitro pyrophosphatase activity and this is likely a characteristic of most LCP 

enzymes that mediate phosphotransfer (44,47,97). 

 An LCP protein has also been identified in the Gram-positive actinobacterium 

Actinomyces oris, a key colonizer of the oral cavity that plays an important role in the 

development of oral biofilms or dental plaque (2). The identification of A. oris LcpA that is 

linked to the glycosylation of the cell wall anchored protein GspA was revealed by an 
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unbiased transposon mutagenesis screen. Deletions of both lcpA and gspA were shown 

to suppress the essentiality of the housekeeping sortase srtA. Additionally, the adjacent 

encoding of lcpA and gspA genes in A. oris indicates that their protein products are 

functionally linked (50). GspA harbors a typical C-terminal cell wall sorting signal (CWS), 

which is recognized by sortase enzymes for covalent attachment to peptidoglycan via an 

LPXTG motif within the CWSS (51). Biochemical evidence indicates that GspA is highly 

glycosylated and this glycosylation requires LcpA. A mutant strain lacking lcpA no longer 

produces high molecular mass glycopolymers of GspA and concomitantly accumulated 

intermediate forms (50). A model for srtA essentiality involving both GspA and LcpA has 

been proposed: as GspA is translocated across the cytoplasmic membrane by the Sec 

machine, it is glycosylated by LcpA with the glycan chain synthesized by a separate 

pathway and subsequently anchored to the cell wall by the housekeeping sortase SrtA 

(50). In the absence of srtA, glycosylated GspA accumulates in the membrane leading to 

toxic glycol-stress. Consistent with this model, genetic disruption of srtA in the absence 

of lcpA, gspA, or a GspA mutant devoid of the membrane anchored CWSS results in 

viable cell types (50). 

  While the exact nature and composition of the GspA glycans remain to be 

biochemically determined, A. oris LcpA represents the first example of an LCP enzyme 

that modifies a cell wall anchored protein substrate. Here, we present a high resolution 

crystal structure of A. oris LcpA revealing conserved features of known LCP enzymes 

and unique characteristics that may be typical of actinobacterial LCP proteins. Further 

biochemical characterization provides evidence that not only does LcpA possess 

pyrophosphatase activity but it also functions as a phosphotransferase that catalyzes 

glycosylation of the cell wall anchored protein GspA. 
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Results 

LcpA is required for GspA glycosylation. As previously mentioned, a screen for 

sortase SrtA suppressors identified an LCP homolog (ana_1292) hereafter named lcpA 

(50), which is located immediately downstream of gspA (Fig. 4-1A), which is another 

suppressor of srtA lethality (50). In addition to LcpA, A. oris MG1 encodes three 

additional proteins with LCP domains. ana_0299, hereafter called lcpB, is adjacent to 

two conserved genes (Fig. 4-1A) coding for a UDP-N-acetyl-D-mannosaminuronic acid 

dehydrogenase (ana_0300) and a homolog of glycosyl/glycerophosphate transferase 

TagF, which has previously been implicated in the wall teichoic acid (WTA) synthesis of 

Staphylococcus epidermidis (123). ana_1577 (lcpC) and ana_1578 (lcpD) appear to 

reside in the same transcriptional unit (Fig. 4-1A). Because LcpA has been linked to 

GspA glycosylation (123), we examined if genetic disruption of LcpB, LcpC, and LcpD 

affects this process, although all three were not identified from the original suppressor 

screen. We obtained mutations in lcpB and lcpD, but we were unable to generate a 

deletion mutation of the lcpC gene after several attempts suggesting lcpC is an essential 

gene. A triple mutation (lcp∆3) of lcpA, lcpB, and lcpD was also obtained.  

To analyze LcpA-mediated glycosylation, cell cultures of A. oris MG1 and these 

mutant strains were grown to mid-log phase, normalized by optical density and 

subjected to cell fractionation, as previous described (50). Protein samples from the 

culture medium (S) and cell wall (W) fractions were analyzed by western blotting with a 

specific antibody against GspA (α-GspA). As reported before (123), the MG1 strain (WT) 

produced a high molecular-mass species of GspA with glycan polymers, i.e. GspAHMM, 

detected mostly in the cell wall fractions (Fig. 4-1B, lanes WT). Deletion of lcpA 

abrogated formation of GspAHMM resulting in accumulation of a low molecular weight 

species of GspA termed GspALMM. GspALMM migrates near the 37-kDa marker, although 

the GspA monomer (GspAM; arrowhead) migrates near the 25-kDa marker (Fig. 4-1B, 
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lanes ∆lcpA). The single mutant strains ∆lcpB and ∆lcpD displayed no significant defects 

in formation of GspAHMM (Fig. 4-1B, lanes ∆lcpB and ∆lcpD), whereas the triple mutant 

lcp∆3 failed to produce GspAHMM phenocopying the lcpA mutant; this defect was rescued 

by ectopic expression of lcpA in the lcp∆3 mutant (Fig. 4-1B, last 4 lanes). To determine 

if deletion of lcpA affects cell morphology and pilus assembly, the parental and lcpA 

mutant strains were examined by electron microscopy, whereby bacterial cells, 

immobilized on carbon-coated nickel grids, were stained with 1% uranyl acetate prior to 

viewing with an electron microscope. As shown in Fig. 4-1C-D, both strains displayed 

similar cell morphology and pilus assembly phenotypes. Altogether, the results support 

that LcpA is necessary and sufficient for the production of GspAHMM and suggest that 

GspALMM might represent an intermediate form of the glycoprotein GspAHMM. 
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Figure 4-1: LcpA is solely responsible for GspA glycosylation. (A) Presented are 

gene clusters that encode four LCP proteins (LcpA-D) with numbers indicating the 

nucleotide positions of lcp genes. (B) A. oris cells of indicated strains grown to early log 

phase were subjected to cell fractionation. Culture medium (S) and cell wall (W) fractions 

were analyzed by immunoblotting with specific antibodies against GspA. High molecular 

mass (HMM) and low molecular mass (LMM) species of GspA, GspA monomer (M), and 

molecular mass markers are indicated. (C & D) A. oris cells were immobilized on nickel 

grids, stained with 1% uranyl acetate prior to viewing with an electron microscope. Scale 

bar represents 0.5 µm. 
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(Note: Portions of the writing in the following section is credited to Brendan Amer, 

who performed the X-ray crystallography, and was used with permission.) 

X-ray structure of LcpA from Actinomyces oris. To obtain insight into how LcpA 

glycosylates GspA we first determined the molecular structure of the LcpA enzyme. An 

inspection of its primary sequence reveals a proposed tripartite structure: (i) residues 1-

54 presumably reside in the cytoplasm and are predicated to adopt helical secondary 

structure, (ii) residues 55-77 are non-polar and likely form a single transmembrane helix 

(TM), and (iii) residues 78-370 presumably reside on the extracellular surface and share 

primary sequence homology to LCP-type enzymes (Pfam family PF03816). The 

structure of the extracellular LCP domain (rLcpA, residues 78-370) was solved at 2.5-Å 

resolution. Electron density was observed for residues 79-106 and 126-368, which form 

a single domain that adopts an α–β–α architecture. A seven‐stranded anti-parallel β‐

sheet forms the core of the protein with a total of eight α‐helices flanking the β-sheet on 

both of its faces forming a hydrophobic tunnel (Fig. 4-2A). The tunnel is ~23 Å in length 

and is lined by residues located on the central β-sheet, helices H5, H6 and H7. The 

tunnel varies in width from ~6 to 14 Å and is widest in the core of the protein. The 

surface of the tunnel contains many non-polar residues consistent with it interacting with 

lipid substrates. Interestingly, during refinement, an additional electron density was 

observed near the exit point of the tunnel defined by helices H6 and H7 indicating that a 

ligand was bound. However, it was not possible to conclusively define the identity of this 

ligand using MALDI-TOF mass spectrometry and modeling the ligand as a phosphate-

isoprenoid molecule or other membrane-associated lipid yielded poor refinement 

statistics. The best match to the data was obtained by modeling the ligand as a PEG-

4000 molecule that was used as a precipitant during crystallization. This ligand is bound 

with 50% occupancy and defines the exit point for the tunnel distal to the active site.  

The presence of a hydrophobic tunnel leading into the active site suggests that LcpA 
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could bind a lipid-linked glycan donor substrate similar to other members of the LCP 

superfamily (44). 

 Members of the LCP superfamily contain conserved arginine residues, which are 

thought to mediate a phosphotransfer reaction that attaches glycopolymers to acceptors 

(122). In A. oris LcpA, R128, R149, and R266 are conserved residues that cluster 

together within a surface exposed pocket (Fig 4-2A and Fig. 4-2B, shown in red). One 

surface of this exposed active site is formed by residues in strand β3 and helix H1, while 

the top and side of the pocket is formed by helix H4 and H5, respectively, packing 

against the core β-sheet. R128 and R149 in the pocket are positioned towards the 

surface and located in strands B β3 and β4/ β5 loop, respectively. Helix H5 spans the 

length of the protein and contains the third conserved active arginine (R266), which is 

located closer to the body of the enzyme where the pocket narrows. Electron density is 

observed between the guanidino sidechains of R128 and R149 and the modeled 

phosphate atom. The hydrophobic tunnel leads from this conserved site to the opposite 

face of the protein structure.  

  Intriguingly, unlike other LCP enzymes, LcpA contains a disulfide bond formed 

between residues C179 and C365 linking the C-terminus to α-helix H2 (Fig. 4-2C). This 

disulfide is presumably stabilizing, since it persists despite the presence of a reducing 

agent in the protein buffer used in the final purification step. The cysteine residues are 

also conserved in other LCP homologs present in Actinobacteria.  

 The structure of rLcpA is similar to that of previously reported LCP enzymes that 

attach polymers to the cell wall and is most closely related to the YwtF (TagT) enzyme 

from Bacillus subtilis based on a DALI analysis with a Z-score of 21.8 (PDB: 4DE9 (46)); 

the backbone atoms can be superimposed with a root-mean-square deviation (RMSD) of 

2.5Å (Fig. 4-2D). The structural conservation and presence of arginine residues in the 
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surface exposed pocket prompted us to investigate functional similarities to TagT related 

to GspA glycosylation. 
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Figure 4-2: Crystal structure of A. oris LcpA and structural requirements for 

glycosylation activity. (A) The structure of the extracellular LCP domain (residues 78-

370) was determined to 2.5-Å resolution. The proposed catalytic Arg residues are shown 

as sticks and colored red, and the cysteine residues participating in the disulfide bond 

are shown in yellow. (B) Presented is a detailed view of the LcpA active site with the 

conserved catalytic arginine residues (R128, R149, and R266) shown in red. (C) Shown 

is a close-up view of the disulfide bond that links the C-terminus via C365 to the second 

α-helix via C179 present in the LCP extracellular domain. (D) The LcpA structure (light 

green) is superimposed with the Bacillus subtilis YwtF (TagT) (PBD: 4DE9) (magenta). 

(E) Protein samples of indicated strains were prepared as described in Fig. 1B and 

analyzed by immunoblotting with anti-GspA. (F) Protein samples from the membrane 

fractions in (E) were immunoblotted with antibodies against LcpA. A membrane protein, 

MdbA, was used as a control. Molecular mass markers in kDa are shown. Note: 

Crystallization, structural determination and modeling were performed by Brendan 

Amer and Jason Gosschalk and used with permission. 



85 
 

The conserved arginine residues in LcpA are required for glycosylation activity. 

As presented above, LcpA is required for glycosylation of GspA (Fig. 4-1B) and LcpA 

contains conserved arginine residues (R128, R149 and R266) (Fig. 4-2B). Conserved 

Arg residues have been implicated in LCP activity by interacting with the pyrophosphate 

of the lipid-linked glycan donor (44). To determine whether these Arg residues affect the 

glycosylation activity of A. oris LcpA, we generated alanine-substitution mutants of these 

arginine residues using pLcpA as a template (Fig. 4-2E). Plasmids expressing mutant 

proteins were introduced into the ∆lcpA mutant and expression of LcpA proteins was 

determined by immunoblotting membrane lysates of various strains with specific 

antibodies against LcpA (α-LcpA) or with α-MdbA, to detect MdbA as a control for the 

membrane bound protein (62). As expected, LcpA was detected in the parental strain 

and absent from the ∆lcpA mutant (Fig. 4-2E, first two lanes). Complementation of the 

∆lcpA mutant with a multi-copy plasmid enhanced LcpA production as compared to the 

WT strain (Fig. 4-2E, lane LcpA). Mutations of the three Arg residues did not affect the 

stability of mutant proteins as compared to ectopically expressed wild-type LcpA (Fig. 4-

2E, last 3 lanes). We then examined GspA glycosylation by Western blotting the 

supernatant and cell wall fractions as described in Fig. 4-1B. Interestingly, the LcpA-

R128A mutant was able to produce GspAHMM at the level comparable to that of the WT 

strain and the rescued strain ∆lcpA/LcpA, whereas the LcpA-R149A and LcpA-R266A 

mutants were defective in glycosylation of GspA phenocopying the ∆lcpA mutant (Fig. 4-

2F). Altogether, the results support that the R149 and R266 residues are essential for 

the glycosylation activity of LcpA.  

The disulfide bond in A. oris LcpA is required for protein stability. A. oris LcpA has 

a stable disulfide bond (Fig. 4-2C), and it appears that the disulfide linkage is a 

conserved feature in Actinobacterial LCP proteins. To determine the role of the disulfide 

bond in LcpA stability and glycosylation activity, we generated alanine-substitution 
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mutants of either one (C365) or both Cys residues (C179 and C365). Membrane 

fractions of the parental and mutant strains were immunoblotted with α-LcpA as 

described previously. Enhanced signal of LcpA was observed in a strain expressing 

LcpA from a plasmid, as compared to the parental strain (Fig. 4-3A, first 3 lanes). 

However, no LcpA signal was detected in the membrane of strains expressing LcpA with 

C365A or C179A/C365A mutation (Fig. 4-3A, last 2 lanes) suggesting that the disulfide 

bond formed by C179 and C365 is required for stability of LcpA. 

To ensure the protein production defect above was not due to the lack of lcpA 

transcription, we collected mRNA in these strains and used reverse transcription PCR 

(RT-PCR) to amplify a 196-bp region specific to the lcpA gene. In the WT strain, the lcpA 

transcript was only detected when reverse transcriptase (RT) was added, with lcpA 

amplified from genomic DNA (g) used as a control for the length and specificity of the 

amplicon (Fig. 4-3B, lanes WT). As expected, no lcpA transcript was detected in the lcpA 

mutant (Fig. 4-3B, lanes ∆lcpA), while the transcript levels of lcpA expressed from these 

recombinant plasmids were comparable to the lcpA level in the WT strain (Fig. 4-3B, 

remaining lanes). Altogether, the results suggest that in the absence of the disulfide 

bond there is a defect in LcpA protein stability and is not due to lack of gene expression.  

We next examined if mutations of these cysteine residues affect LcpA 

glycosylation activity by immunoblotting the culture medium and cell wall fractions of the 

same set of strains, according to the procedure described in Fig. 4-2F. Surprisingly, 

strains expressing LcpA with C365A or C179A/C365A mutation produced GspAHMM, 

albeit less abundant as compared to the WT and rescued strains with accumulation of 

the intermediate GspALMM unlike the aforementioned strains (Fig. 4-3C). The data 

strongly indicate that the disulfide bond is necessary for full activity of LcpA. 
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 We previously reported that disulfide bond formation in A. oris requires the 

activity of a membrane bound thiol-disulfide oxidoreductase named MdbA (62), and 

reactivation of MdbA involves another oxidoreductase called VKOR (124,125). A mutant 

strain of mdbA is not possible, so because vkor contributes to, but is not required for 

oxidative protein folding (62), we examined if LcpA stability is affected in the vkor 

mutant. To test this possibility, the parent, its isogenic ∆vkor mutant, and rescued strains 

were subjected to cell fractionation. To determine if deletion of vkor affects LcpA 

expression, protoplast fractions were analyzed by Western blotting with α-LcpA; protein 

levels were quantified by densitometry from four independent experiments with loading 

controls from the same blots stained by Coomassie. As compared to the WT and 

rescued strains, the ∆vkor mutant produced significantly less LcpA (Fig. 4-3D-E). As a 

control, the protein level of the housekeeping sortase SrtA remained the same in three 

strains (Fig. 4-3D). When the culture medium and cell wall fractions were immunoblotted 

with anti-GspA there were no significant defects in GspA glycosylation. In the ∆vkor 

mutant GspALMM species accumulated in this strain as compared to the WT and 

complementing strains (Fig. 4-3F). Altogether, the results support that disulfide bond 

formation is critical for LcpA stability and this oxidative protein folding is mediated by the 

major oxidoreductase machinery MdbA and VKOR as previously reported (62). 
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Figure 4-3: The disulfide bond C179-C365 is required for LcpA stability. (A) 

Immunoblotting of the membrane fractions of indicated strains were performed as 

described in Fig. 4-2F with anti-MdbA used for the control membrane protein MdbA. (B) 

Expression of lcpA in indicated strains was analyzed by RT-PCR using primers specific 

for a 196-bp region of lcpA. A. oris MG1 genomic DNA (gDNA) was used as controls for 

length and specificity. (+) and (-) indicate the presence or absence of reverse 

transcriptase (RT). (C) Protein samples from the indicated strains were prepared and 

analyzed by immunoblotting as described in Fig. 4-2F. (D) Shown is a representative 

Western blot of protoplast fractions of the MG1 strain (WT), the ∆vkor mutant, and this 

mutant expressing VKOR from a plasmid. LcpA is marked with an arrow, whereas a non-
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specific band is shown as an asterisk (*); an arrowhead for a loading control band from 

the immunoblotted membrane stained with Coomassie blue. The membrane-bound 

protein SrtA serves as a control. (E) Relative steady state stability of LcpA was 

determined by comparing the relative intensity of the LcpA bands in (D), which were 

normalized against the loading control band. The relative intensity of the wild-type LcpA 

bands was set to 1. Error bars represent standard deviation (SD) of four independent 

replicates. (F) The culture medium and cell wall fractions of the indicated strains were 

analyzed by immunoblotting as described in panel C. 
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LcpA exhibits pyrophosphatase activity in vitro. LCP enzymes studied to date 

possess pyrophosphatase activity, i.e., they catalyze the hydrolysis of pyrophosphate 

bonds. For example, the LCP enzyme TagT from B. subtilis showing that the enzyme 

exhibits pyrophosphatase activity in vitro as do LCP proteins from Mycobacterium 

tuberculosis and Corynebacterium glutamicum (44,47,97). In LCP enzymes interaction 

of the arginine residues with the pyrophosphate is necessary for pyrophosphatase 

activity. We modeled an Opr-PP molecule into the LcpA hydrophobic pocket. This model 

was created using electron density of the modeled phosphate ion to place the phosphate 

head groups of Opr-PP and the electron density used to model PEG4000 to model the 

lipid component of the Opr-PP polyprenyl (Fig. 4-4A). Indeed, R149 and R266 interact 

with the pyrophosphate head group according to the model. To test for pyrophosphatase 

activity of A. oris LcpA, we utilized an in vitro assay with a diphosphate mimetic 

substrate, farnesyl pyrophosphate (FPP) and rLcpA and its mutant derivatives purified 

from E. coli. Pyrophosphatase activity of LcpA proteins was determined by quantitatively 

measuring inorganic phosphate (Pi) release from FPP (Fig. 4-4B). It was found that 

rLcpA was able to hydrolyze FPP exhibiting a Vmax of 1.509 ± 0.077 nM hr-1 and Km of 

15.16 ± 3.656 µM (Fig. 4-4C). The saturating substrate concentration occurred at an 

enzyme-to-substrate ratio of approximately 1:30 (Fig. 4-4C).  

 We then examined if mutations of the catalytic residue R149 and disulfide bond 

C179/C365 affect the pyrophosphatase activity of LCP using the above assay with the 

saturating substrate concentration. As expected, the LcpA enzyme and FPP contained 

little to no background Pi (Fig. 4-4D, first 2 columns).  Compared to the wild-type rLcpA 

enzyme, alanine-substitution of R149 in rLcpA abrogated the enzymatic 

pyrophosphatase activity (Fig. 4-4D, compare lane 4 to lane 3) further confirming the 

essential role of this catalytic residue. Consistent with the in vivo results above, the 

rLcpA protein lacking the disulfide bond C179-C365 exhibited significantly reduced  
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pyrophosphatase activity, approximately 3-fold less than the wild-type (Fig. 4-4D, last 

column). Altogether, the results indicate that LcpA possesses pyrophosphatase activity 

and that the disulfide bond C179-C365 plays in important role in maintaining the full 

activity of LcpA. 
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Figure 4-4: LcpA exhibits pyrophosphatase activity. (A) Octaprenyl-pyrophosphate 

(oprPP) bound to A. oris LcpA was modeled with the prenol chain shown in turquoise 

and the pyrophosphate in orange. Potential interactions of Arg residues (red) with the 

pyrophosphate head group are presented. (B) Presented is the hydrolysis reaction of 

farnesyl pyrophosphate (FPP) by LCP enzymes resulting in formation of farnesyl 

monophosphate (FMP) and inorganic phosphate (Pi, orange). (C) 3 µM of recombinant 

LcpA was incubated with increasing concentrations of FPP for 24 h at 30oC. Released Pi 

was detected by a fluorescent method and quantified from three biological replicates; the 

Vmax and Km values were calculated using the Michalis-Menten equation in Prism 

GraphPad, and error bars represent standard error of the mean (SEM) fit by nonlinear 

regression. (D) Pyrophosphatase activity at saturating substrate concentrations (1:30) of 



93 
 

recombinant LcpA and mutant derivatives, LcpAR149A and LcpAC179A-C365A, was 

determined as described in (C) with sole LcpA and FPP included as controls. The results 

were derived from three independent experiments performed in triplicate with phosphate 

standards performed in parallel. Error bars represent SEM, and statistical analysis with a 

one-tailed Mann-Whitney-Wilcoxon test was determined using Prism GraphPad. The 

asterisk (*) indicates p-values of 0.0383 and 0.0500 for reactions with R149A and 

C179A-C365A enzymes, respectively; nd, not detected. Note: Modeling of LcpA with 

OprPP was performed by Jason Gosschalk and used with permission. 
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(Note: A portion of the writing in the following section is credited to Brendan 

Amer, who performed the NMR experiments, and was used with permission.) 

A. oris LcpA catalyzes phophotransfer.  To further define the mechanism of surface 

protein glycosylation by LcpA, we investigated its interactions with its GspA substrate 

using solution NMR spectroscopy, which can detect transiently interacting proteins. 1H-

15N-HSQC titration studies were performed with 15N-isotopically enriched rLcpA and 14N-

rGspA, a truncation of GspA lacking its predicted N-terminal signal peptide and C-

terminal transmembrane region. A series of 1H–15N HSQC NMR spectra of 15N-rLcpA 

with various amounts of the 14N-rGspA was acquired. The various spectra of the 15N-

rLcpA (up to1:4 15N-rLcpA-to-14N-rGspA ratio) titrations were partially resolved enabling 

for line-shape, specifically peak-height analysis (Fig. 4-5A). Spectra of 15N-rLcpA and 

14N-rGspA at a 1:8 ratio respectively are completely broadened either due to sample 

dilution or more likely spin-diffusion caused by complex formation. Unfortunately, due to 

the low quality of the spectra, site-specific interactions or chemical-exchange equilibria 

could not be estimated. However, analysis of 43 resolved peaks revealed that 4 of these 

peaks with high signal-to-noise (approximately 20-fold over background), i.e., peaks 1, 

10, 12, and 20 exhibited dose-dependent reduction in peak-height during the titration 

experiment (Fig. 4-5B). This suggests that rLcpA and rGspA interact weakly in vitro. 

Further refinement of this interaction will help define the LcpA-mediated mechanism of 

glycopolymer transfer, and this data supports further studies of these interactions.  

The structural evidence, pyrophosphatase activity, in vivo glycosylation, and 

enzyme-substrate interaction above are consistent with the phosphotransfer activity of 

LCP enzymes that have previously been shown to mediate WTA synthesis (44); WTA is 

linked to the N-acetyl-muramic acid component of the cell wall via a phosphodiester 

linkage (39,126). To examine if A. oris LcpA possesses phosphotransfer activity, we 
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employed an in vitro phosphotransfer assay in which the recombinant enzyme rLcpA 

was mixed with FPP and GspA proteins. After 24 h incubation at 30oC, protein samples 

were analyzed by 2-D gel electrophoresis followed by immunoblotting with α-GspA. 

Because deletion of lcpA results in the accumulation of several GspALMM species (Fig. 4-

5C), we surmised that the GspALMM
 proteins are a substrate of LcpA. To facilitate 

purification of GspALMM in A. oris, we engineered a GspA protein with its CWSS replaced 

by a His-tag and the recombinant protein was expressed in the ∆lcpA mutant; GspALMM 

proteins were purified from the culture medium by affinity chromatography. As compared 

to the recombinant protein rGspA, which was used in Fig. 4-5A, the GspALMM proteins 

migrated between the 25-kDa and 37-kDa markers (Fig. 4-5C). The identity of these 

GspA proteins was also confirmed by mass spectrometry. If the GspALMM proteins are 

substrates of LcpA, addition of LcpA and FPP should lead to phosphate modifications of 

GspA (Fig. 4-5D), hence increasing acidity due to the negatively charged phosphate 

group. As shown in Fig 5E, in the presence of the wild-type LcpA enzyme, two new 

spots migrating between the 25-kDa and 37-kDa markers and towards the acidic pI were 

detected as compared to samples treated with the inactive enzyme LcpAR149A. 

To test if phosphate modification of GspALMM occurs via a phosphodiester bond 

the  LcpA + FPP + GspALMM samples were treated with hydrofluoric acid (HF), which 

hydrolyzes phosphodiester bonds as previously demonstrated in Staphylococcus aureus 

with an LCP enzyme (48) prior to 2D-gel electrophoresis and immunoblotting. Indeed, 

HF treatment resulted in abrogation of phosphate modification (Fig. 4-5E; HF panels). 

Altogether the results support the notion that LcpA is a phosphotransferase and that 

GspALMM is a bona fide substrate for LcpA catalyzed-glycosylation. 
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Figure 4-5: LcpA interacts with GspA in solution and catalyzes phosphotransfer. 

(A) Presented is the full 1H-15N-HSQC of 250 µM 15N-recombinant LcpA with inset 

showing representative data of overlaid 1H-15N-HSQC titration spectra displaying two 

isolated peaks with high signal-to-noise. Red spectra 1:0 molar equivalents of 15N-rLcpA 

to 14N-rGspA. Orange, Yellow, Green, and Blue represent 1:0.5, 1:1, 1:2, and 1:4 

spectra, respectively. Peak 9 is an example, which does not exhibit a dose-dependent 

decrease in peak height upon adding rGspA, and Peak 20 is shown as an example, 
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which does exhibit drastic effects on peak height. (B) Normalized plot of peak intensity of 

selected residues from titration experiment with high signal-to-noise. Intensity data was 

normalized to 1:0 titration peak intensities. (C) Recombinant GspA (rGspA) and GspALMM 

were purified affinity chromatography from E. coli and A. oris lysates, respectively, and 

analyzed by SDS-PAGE and Coomassie staining. (D) Presented is a simplified 

schematic for in vitro phosphotransfer. (E) The phosphotransfer reaction contained 12 

µM of GspALMM, 4 µM of LcpA (WT or R149A) and 50 µM of FPP in 20 mM Tris-HCl (pH 

8.0).  After 72 h incubation at 30°C, protein samples were treated with hydrofluoric acid 

(HF) or mock-treated prior to 2D-electrophoresis followed by immunoblotting with anti-

GspA antibodies. Insets with increased contrast were shown for boxed regions. NMR 

analysis was performed by Brendan Amer and used with permission. 
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Discussion 

Members of the LCP protein family studied to date have been shown to attach 

glycopolymers to peptidoglycan (120,121) with many demonstrated to possess 

pyrophosphatase and phosphotransferase activities (44,47,97,127,128). LCP enzymes 

are characterized as the terminal enzyme, which catalyzes the linkage of glycopolymers 

to the muramic acid component of the peptidoglycan via a phosphodiester bond from a 

prenyl pyrophosphate glycan donor (122,129). None of these enzymes, however, are 

involved in glycosylation of cell wall anchored proteins. We present here experimental 

evidence that A. oris LcpA – capable of catalyzing hydrolysis of diphosphate bonds and 

phosphotransfer – glycosylates the cell wall anchored protein GspA prior to attachment 

to peptidoglycan, a process that is facilitated by the housekeeping sortase SrtA (50). 

 Crystallization studies authenticate LcpA as a member of the LCP protein family, 

revealing that LcpA is structurally related to B. subtilis TagT, a previously crystalized 

LCP that mediates the linkage of WTAs to peptidoglycan (46). Both enzymes have a 

similar hydrophobic tunnel lined with arginine residues (R149 and R266 in A. oris LcpA), 

a conserved feature of LCP enzymes that is necessary for interaction with glycan donor 

substrates. Consistent with this, alanine-substitution of the catalytic R149 residue 

abrogates pyrophosphatase and phosphotransferase activities and glycosylation of 

GspA. Unlike B. subtilis TagT, A. oris LcpA does not attach glycopolymers to 

peptidoglycan, as a GspA mutant lacking the CWS still contains glycans (50). This raises 

an intriguing question as to where glycopolymers are attached to GspA. While the 

biochemical nature of the glycans and locations of the glycosylation sites remain to be 

elucidated, the results presented in our previous publication (50) and Fig. 4-5 suggest 

that an intermediate form of GspA, GspALMM, may serve as a substrate of LcpA. It is 

interesting to note that A. oris harbors four LCP homologs, but only LcpA is involved in 

GspA glycosylation (Fig. 4-1). Because lcpC is an essential gene and a conditional 
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deletion mutant is not available, this does not exclude the possibility that LcpC may 

modify GspA, leading formation of GspALMM. Future experiments will address this issue. 

 Intriguingly, the presence of a hydrophobic tunnel in the LcpA and TagT 

structures as mentioned above suggests that the enzymes use a pyrophosphate-lipid 

linked glycan donor. To gain insight into how this substrate bound, we used the structure 

of the TagT enzyme bound to all cis octaprenyl‐pyrophosphate (opr‐PP) (PDB 4DE9) to 

model the opr-PP:rLcpA complex.  This was achieved by superimposing the protein 

coordinates as well as the coordinates of the phosphate proximal to the glycan strand in 

the structure of TagT and the active site phosphate atom present in the structure of 

rLcpA. The model suggests rLcpA catalyzes a phosphotransfer reaction in which the 

pyrophosphate linkage joining the lipid to the sugar molecule is broken, presumably as a 

result of nucleophilic attack by an oxygen or nitrogen atom present an amino acid 

sidechain within the GspA protein. As a result, the proximal phosphate and glycan are 

transferred to GspA. In this reaction, R149 may stabilize the phosphate leaving group, 

whereas R266 may favorable interact with the trigonal bipyramidal intermediate that 

likely forms during catalysis. The process is thermodynamically favorable, as breakage 

of the phosphoanhydride linkage in the substrate releases more free energy than is 

required to attach a sugar molecule to the protein (the Gibbs standard free energy for 

phosphoanhydride breakage in the substrate is ~-7.3 kcal/mol, whereas only ~3.3 

kcal/mol is required to form the phosphodiester bond that joins the sugar to the protein). 

The complexity of the glycans has prohibited our ability to determine the exact identity of 

our glycans species, although this is a subject of current work. 

 Unlike other LCP proteins studied to date, A. oris LcpA possesses a distinct 

feature, which appears to be commonly present in the actinobacterial LCP enzymes, i.e., 

a disulfide bond. Given disulfide bond formation is critical for oxidative folding of 
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exported proteins in Actinobacteria (130), a process that is catalyzed by a pair of thiol-

disulfide oxidoreductase enzymes MdbA/VKOR in A. oris (62), we hypothesized that the 

disulfide bond formed between C179 and C365 is essential for post-translocational 

folding of LcpA. This is evident by the fact that mutations that abrogate the disulfide 

bond C179-C365 severely affects stability of LcpA, whereas deletion of VKOR 

significantly reduces LcpA stability (Fig. 4-3). Altogether, we propose that as the LcpA 

precursor emerges from the Sec machine, it is folded by the MdbA/VKOR enzymes and 

inserted into the membrane by the membrane protein insertase YidC. Separately, the 

membrane-bound GspA is also transported by the Sec and further modified by an 

unknown mechanism resulting in an intermediate form named GspALMM. LcpA catalyzes 

the attachment of an unknown glycan chain to GspALMM, which is then anchored to the 

bacterial peptidoglycan by the housekeeping sortase SrtA (Fig. 4-6). Given the 

conservation of LCP and GspA proteins, this glycosylation pathway may be conserved in 

Actinobacteria. 
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Figure 4-6: Proposed model of LcpA-mediated glycosylation of the cell wall-

anchored protein GspA. A. oris LcpA is proposed to catalyze the linkage of unknown 

glycopolymers to GspA, which is then anchored to the bacterial cell wall by the 

housekeeping sortase SrtA. The oxidoreductase enzymes MdbA/VKOR is thought to 

catalyze oxidative folding of LcpA (see text for details). 
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CHAPTER V 

Mapping the Molecular Domain in CafA Responsible  

for Interkingdom Adherence 
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Introduction 

Bacterial adherence is an early and important step during infection and is mediated by 

adhesins that define tissue tropism and interspecies interactions (131). Many Gram-

positive pathogens elaborate covalently linked sortase-catalyzed polymers with an 

adhesive tip pilin to mediate this step in the infection (18,25,71,73,84). Sortases are a 

broad class of transpeptidase enzymes that catalyze pilus polymerization and cell wall 

anchoring of surface proteins. Actinomyces oris strain MG1 has become a model 

organism to study the biogenesis of sortase-catalyzed pili (21). A. oris produces two 

distinct pilus structures called type 1 and type 2 pili. Both types of pili confer distinct 

adherence abilities to A. oris that are necessary to fulfill the role as a primary colonizer of 

the oral biofilm (21). The role of A. oris as a primary colonizer is exemplified by studies 

that show its early and specific colonization and localization at the biofilm base 

(9,16,132). 

 Type 1 pili mediate bacterial adherence to the conditioned enamel of the tooth 

via interactions with proline-rich proteins (18), whereas type 2 pili are involved in 

coaggregation with oral streptococci and adherence to host cells (79,113). Therefore, 

using pili, A. oris attaches to the tooth surface and enables further biofilm development 

via the recruitment of bacteria, which cannot otherwise adhere to the substratum (2,133). 

Accumulation of dental plaque can lead to dental diseases such as dental caries and 

periodontitis that are considerable health burdens on a global scale (13). Ultimately, 

accretion requires specific molecular interactions that serve as the basis for the 

spatiotemporal development of the oral biofilm and is dependent on primary colonizers 

providing the initial site of attachment for subsequent biofilm maturation (2,5). Following 

attachment and microcolony formation by primary colonizers, coaggregation between 

bacterial species can occur which serves to enhance bacterial attachment and mature 

the biofilm (2). A. oris strain MG1 and S. oralis strain 34 are well-defined coaggregation 

partners. Their interaction which can be monitored in by simply combining the two 
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species in a defined buffer and observing the supernatant clearing and aggregate 

formation (134). In this interaction, S. oralis provides a defined receptor polysaccharide 

(RPS) with a terminal D-Gal-β-(1-3)-GalNac. A. oris provides the specific adhesin for this 

interaction. It has been known that this interaction required type 2 pili from A. oris 

(33,79).  However, the specific adhesin remained unidentified until more recently when 

coaggregation factor A (cafA) was identified in A. oris as required for this specific 

interspecies interaction (25). The CafA adhesin is particularly interesting because unlike 

other pilus-associated proteins that genetically cluster with the cognate pilin specific 

sortase, cafA is located distant from SrtC2, which is required for its incorporation into 

type 2 pili. Type 2 pili were also shown to be important for sialidase-dependent binding 

of epithelial cells, however, CafA was not identified as the specific adhesin in this case 

(17). Sialic acid normally conceals the TF antigen, which has a terminal residue of D-

Gal-β-(1-3)-GalNac that bears similarity to the RPS from So34. 

 CafA hijacks the FimA backbone pilus to form a distinct CafA-FimA type 2 pilus 

(25). On average, pilin tip proteins are larger compared to the respective backbone pilins 

and have a multidomain structure including separable stalk and adherence domains. 

Pilus tip proteins often serve as the functional adhesin for pili (71,135). This property, 

combined with the fact that pili are accessible to immune cells and chemical modifiers, 

makes pili and particularly adhesins good targets for anti-adhesive strategies (135,136).  

 Our past characterization of pilus components and pilus-related functions utilized 

the lab strain A. oris MG1, however, a collection of clinical isolates taken from various 

mouth sites has previously been characterized by the Cisar laboratory with serological 

methods. Actinomyces have undergone major reclassification based on 16s rRNA and 

multi-locus sequence typing of several housekeeping genes, and we refer to the 

reclassified species designation rather than the serological description, and retain the 

original serological strain nomenclature (137,138).  
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 Here I report the study of the molecular basis of CafA interkingdom adherence. 

We first find that A. oris MG1 has the ability to adhere to human gingival fibroblasts 

(HGF-1), and this interaction depends on CafA. We then utilized a clinical isolate screen 

for the presence of CafA polymers and concurrence with So34 coaggregation. From this 

screen we identified a single clinical isolate, A. oris strain N11A12, that displays CafA 

polymers, but does not coaggregate with So34. Based on characterization and 

sequencing of CafA from this isolate, we identified the specific amino acids responsible 

for coaggregation with So34. 
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Results 

CafA binds a receptor that is conserved between oral streptococci and human 

fibroblasts. Previous work in Actinomyces demonstrated the necessity of 

sialidase/neuraminidase treatment to enhance epithelial cell binding (17,139). To 

determine if A. oris MG1 binding to human cells was CafA dependent, we infected 

human gingival fibroblasts (HGF-1) with A. oris. We found that wild-type adherence 

increases about a hundred-fold (2-log difference) when the HGF-1 cells are treated with 

sialidase prior to infection. A. oris ∆cafA binds HGF-1 at the level of MG1 without 

sialidase and does not exhibit increased adherence after sialidase pretreatment (Fig. 5-

1A). This indicates that sialidase treatment of HGF-1 uncovers a receptor that is 

normally blocked by sialic acid, and that A. oris binding to the receptor is dependent 

upon CafA. In human cells, sialic acid often caps the TF antigen, which has a terminal 

Gal--(1-3)-GalNac (135). Actinomyes spp. possess and express a sialidase gene, 

nanH, and a sialidase transporter, nanT, which are significantly upregulated in 

Actinomyces naeslundii isolated specifically from root caries (140). 

 Coaggregation is mediated by an adhesin from one species and the coordinating 

receptor of another. Moreover, prior work demonstrated the interaction between S. oralis 

strain 34 and A. oris MG1 was determined to be mediated by a Gal--(1-3)-GalNac 

moiety on So34, also called coaggregation group 3 (141). CafA was recently identified 

as the specific adhesin necessary for binding So34 (25). We confirmed that the 

coaggregation phenotype relies on the presence of CafA in A. oris MG1 (Fig. 5-1B). 

Although, these results suggest that CafA is an interkingdom adhesin that utilizes D-Gal-

-(1-3)-GalNac as a receptor on both oral streptococci and human cells.  
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Figure 5-1: CafA adheres to receptor polysaccharides present on HGF-1 and oral 

streptococci. (A) HGF-1 adherence by A. oris MG1 or the isogenic deletion strain ∆cafA 

in the presence (+) or absence (-) of sialidase treatment by direct measurement of 

colony forming units per milliliter (cfu/mL). Student’s two-tailed, unpaired T-test; *** P-

value < 0.0001. Input values are comparable (MOI ~ 200) as determined by 

measurement of cfu/mL. (B) Coaggregation phenotype of A. oris MG1, ∆cafA, and the 

CafA complement strain (∆cafA pCafA) with the RPS-positive S. oralis strain 34 (So34) 

and RPS-negative strain S. oralis OC1 (SoC1). 
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Actinomyces clinical isolates have differential coaggregation phenotypes and 

CafA expression. We utilized coaggregation with So34 as a measure of the presence of 

binding to the RPS on oral streptococci which is recognized by the species adhesin CafA 

from A. oris MG1 (25). We wanted to determine whether Actinomyces clinical isolates 

had differential phenotypes and whether we could identify at least one of which 

displayed polymeric CafA, but did not coaggregate with So34. We first performed a 

coaggregation assay of 23 clinical isolates (Table 5-1). Then we examined the cell wall 

fractions of each isolate for the presence of polymeric CafA (Table 5-1). This screen 

identified different coaggregation groups as previously reported (142,143). The majority 

of the strains displaying polymeric CafA coaggregated with So34, as expected from our 

results with the lab strain MG1. We also identified some isolates which bind both So34 

and SoOC1, but exhibited either monomeric CafA or absence of CafA. Therefore, this 

interaction may not necessarily be CafA dependent, because CafA requires 

polymerization by FimA to be functional (25). Additionally, we found a monomeric CafA 

with no So34 binding. Our most interesting finding, however, was that isolate 9, which 

corresponds to A. oris strain N11A12, does not coaggregate with So34, despite 

elaborating CafA polymers. This is considerably different from the other isolates that we 

screened where polymeric CafA is obligatorily associated with So34 coaggregation. We 

characterized this isolate to ensure that the coaggregation defect was not due to 

significant changes of pilus structure or expression. 
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Table 5-1: Coaggregation and CafA polymerization phenotypes of Actinomyces 

clinical isolates. 

Number Species Strain Coaggregation with(b) CafA 

So34 OC1 

1 A. oris MG1 + - p(c) 
2 A. oris ∆cafA(a) - - -(d) 
3 A. naeslundii N28B15 + + - 
4 A. naeslundii N34A24 + + m(e) 
5 A. naeslundii N35B3 + + m 
6 A. oris N11A16 + - p 
7 A. oris N12A2B + - p 
8 A. oris ATCC 49339 + - p 
9 A. oris N11A12 - - p 

10 A. oris ATCC 27044 + - p 
11 A. oris N33A2B + + - 
12 A. oris N37B13 - - m 
13 A. oris N34A23 + - p 
14 A. oris N28B1 + - p 
15 A. oris N29A27 + - p 
16 A. oris N32A8 + - p 
17 A. oris N37B9 + - p 
18 Non-serotypeable N38B10 + - p 
19 Non-serotypeable N33A3 - - m 
20 Non-serotypeable N34A14 + - p 
21 A. johnsonii PK1259 + - p 
22 A. johnsonii ATCC 49338 + - p 

(a)Isogenic derivative of MG1 

(b)Positive and negative signs indicate presence and absence of coaggregation, 

respectively. 

(c)CafA polymers 

(d)No CafA signal 

(e)CafA monomer 
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Characterization the clinical isolate A. oris strain N11A12. The coaggregation 

deficient phenotype and display of CafA polymers of A. oris N11A12 prompted us to 

further characterize this isolate. First, we repeated the coaggregation result outside of 

the screening context and found that indeed coaggregation of this isolate with So34 was 

defective (Fig. 5-2A).  

 We wanted to ensure that this isolate was not dissimilar to MG1 in monospecies 

biofilm formation, which is mediated by FimA, the major pilin subunit of the type 2 pili 

(84). To do this we utilized an in vitro biofilm assay and assessed them qualitatively and 

quantitatively. Our lab strain MG1 and N11A12 are stained robustly by the crystal violet 

and are not significantly different in their ability to form a monospecies biofilms. In 

contrast, ∆fimA is defective in biofilm formation under the same conditions (Fig. 5-2B). 

 Next, we quantified the amount of FimA and CafA on the surface of MG1 and 

N11A12 using whole-cell ELISA. We found that CafA was not significantly different 

between the lab strain and the clinical isolate (Fig. 5-2C). We do note that FimA level is 

increased significantly in N11A12 compared to MG1 (Fig. 5-2D). We concluded from 

these data that lack of expression of type 2 pilus structural components was not the 

cause of the coaggregation defect. However, to be functional, CafA must be polymer 

associated (25). We previously detected the polymer through the screening process, but 

wanted to ensure the presence of CafA polymers in the media and wall fraction of 

N11A12 were similar to MG1 (Fig. 5-2E). We also detected FimA polymers in N11A12 

which were similar to MG1 in the media and cell wall fraction, which we expected due to 

the necessity of FimA polymers for monospecies biofilm formation (Fig. 5-2F). Also of 

note, the size of the CafA and FimA monomer was very similar between MG1 and 

N11A12. Additionally, we tested whether we could visualize CafA at the pilus tip by 

immunogold labeling and electron microscopy, as we saw in our MG1 control, and was 

well above nonspecific binding from ∆cafA (Fig. 5-2G & 5-2H). Indeed, in A. oris 
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N11A12, CafA was present on pili and extended away from the cells (Fig. 5-2I). 

Collectively, these data indicated that the coaggregation deficient phenotype of A. oris 

strain N11A12 was not due to reduced expression or polymerization of CafA containing 

pili.  
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Figure 5-2: Characterization of type 2 pili and pilus-related functions in 

Actinomyces oris strain N11A12. (A) Coaggregation assay with A. oris and S. oralis 

cells suspended in coaggregation buffer in a 1:1 ratio. (B) In vitro biofilm assay of A. oris 

MG1, ∆fimA, and N11A12. Biofilms were grown statistically in HIB + 1% sucrose for 48 

h. Planktonic cells were washed away and the remaining biofilm was detected with 

crystal violet. Crystal violet was released with EtOH and quantified at A580nm. The values 

shown are the average of three independent replicates that were each run in triplicate, 

and error bars represent standard error of the mean (SEM). Statistical analysis was 

performed using an unpaired, two-tailed Student’s t-test. (C & D) Whole cell ELISA with 

of A. oris MG1 and A. oris N11A12 with (C) α-CafA and (D) α -FimA antibodies. Data 

shown from three independent replicates and all replicates were performed in 

quadruplicate. Error bars represent SEM, and statistical analysis using unpaired, two-

tailed Student’s t-test. Designation ns refers to p >0.05, and *** p = 0.0001. This data 

was generated by Alexis Bradford and used with permission. (E & F) Western blot 

analysis of supernatant (S) and cell wall (W) fractions using (E) α-CafA and (F) α -FimA 

antibodies. (G - I) IEM performed with (G) MG1, (H) ∆cafA (parental strain MG1) and (I) 

N11A12 using an α-CafA primary antibody and 18-nm gold particles conjugated to the 

secondary antibody. Scale bar represents 0.2 µM. 
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Identification of specific residues that are critical for CafA adherence through 

comparison with the CafA sequence from A. oris N11A12. We reasoned that 

because the coaggregation defect did not appear to be due to differences in type 2 pilus 

expression or structure, we could compare the primary amino acid sequence of CafA 

from MG1 to that of N11A12 to find potential residues necessary for adherence. CafA 

was present outside of the N11A12 cells and anchored to both pili and the cell wall, we 

reasoned that any changes occurring in the signal peptide or cell wall sorting signal 

domains were not significant for the adherence function. CafA from the lab strain MG1 

and the clinical isolate N11A12 are 95.98% identical at the amino acid level, and we did 

not detect any major insertions or deletions. By multiple sequence alignment we 

identified 36 non-synonymous mutations. Eleven of the substitutions retained strong 

conservation (e.g. Ser to Thr), and eight substitutions maintained weakly similar 

properties, based on the Gonnet PAM 250 matrix. To begin to narrow down which 

nonsynonymous mutations were meaningful, we sequenced cafA from two additional A. 

oris isolates, which display the MG1 coaggregation and polymerization phenotypes, 

N11A16 and N32A8. We compared changes in MG1, N11A16, and N32A8 to those in 

N11A12 to identify changes in these strains that overlapped and thus could not be 

implicated in the loss of CafA binding function. We were able to eliminate all but three 

major changes found in the N-terminal domain. The remaining suspect substitutions 

were K111M, R123H and Y145R (Fig. 5-3A). These amino acid changes were present in 

the N-terminal portion of the protein that was previously purified and used to block 

coaggregation (25). Additionally, amino acid changes occurring in basic amino acids 

were of particular interest to us because previous reports of E. coli adhesins indicated 

that Lys and Arg residues are involved in glycan receptor binding (135,144). Tyr has also 

been implicated in glycan binding (135). To determine whether basic amino acids may 

be involved in CafA binding, we first reacted MG1 and ∆cafA cells with sulfosuccinimidyl-

6-[biotin-amido]hexanoate which reacts with free amine groups found in Lys and Arg 
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residues only on the cell surface. Sulfosuccinimidyl-6-[biotin-amido]hexanoate can 

effectively block interaction with glycan receptors (144). We utilized binary qualitative 

coaggregation to determine the effect of the chemical on coaggregation efficiency. We 

determined that exposing A. oris MG1 to sulfosuccinimidyl-6-[biotin-amido]hexanoate 

reduces coaggregation to ∆cafA levels (Fig. 5-3B).  

 Due to the fact that sulfosuccinimidyl-6-[biotin-amido]hexanoate could abrogate 

coaggregation, we introduced the changes that occurred in K111 and R123 residues of 

N11A12 CafA into the MG1 CafA by site-directed mutagenesis. These three 

substitutions were introduced singly into pCafAMG1 by site-directed mutagenesis. I also 

included the Y145 substitution, because it was substituted in N11A12 compared to the 

other strains, and Tyr has been demonstrated to bind glycan moieties previously. Then, I 

used these strains to test whether these residues were indeed necessary for 

coaggregation with So34. All three mutant strains were defective in coaggregation with 

RPS-positive, So34 (Fig. 5-3C). 
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Figure 5-3: Analysis of nonsynonymous mutations between CafA from MG1 and 

N11A12 identifies residues necessary for coaggregation. (A) Schematic with the 

variable sequences between A. oris strains MG1, N11A16, N32A8 and N11A12 for 

amino acids in the adherence domain. Sequencing was performed by Anh Dinh and 

used with permission. (B) Coaggregation assay of MG1 and ∆cafA with So34 performed 

in the absence (-) or presence (+) of sulfo-NHS-LC-biotin. (C) Coaggregation assay 

carried out using So34 and A. oris and derived strains encoding CafAMG1 site-directed 

mutants K111M, R123H and Y145R. 
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Discussion 

The oral biofilm is a polymicrobial community of bacterial species that relies on 

hierarchical interactions with host surfaces and bacterial species. These interactions are 

dictated by a sequential addition of new species to the biofilm based on their molecular 

properties and can be defined by their temporal association, such as primary, bridging 

and secondary colonizing species (2). They can also be defined by their pathogenic 

potential, being inflammophilic, accessory pathogens compatible with inflammation or 

completely incompatible with inflammation. These classifications have an underlying 

molecular mechanism dictating temporal, spatial and inflammatory compatibility. Here, 

we have defined molecular mechanisms and interactions associated with a primary 

colonizer and accessory pathogen compatible with inflammation (12). 

 A. oris is well defined as a primary colonizer (2,9). Using type 1 pili to bind the 

tooth surface and type 2 pili to mediate bacterial coaggregation and contact with host 

cells which is dependent on either sialidase or inflammation to uncover the host cell 

receptor (18,25). A. oris encodes a sialidase gene, nanH, and a transporter nanT which 

is upregulated in the caries biofilm (140). Upregulation of nanH and nanT could promote 

uncovering of the receptor for A. oris binding when the local concentration of the enzyme 

increases, if the bacterium is below the surface of the gum. Additionally, chronically 

inflamed cells often reveal the TF antigen due to dysregulation of sialiac acid production 

(135). Bifunctional receptor binding may promote a pathogenic phenotype such that 

upon recruitment of inflammophilic pathobionts to the biofilm, the resulting inflammation 

would reveal the TF antigen. This would support a role for A. oris as a compatible 

accessory pathogen, where it could maintain a subgingival biofilm (12,135). 

 The Actinomyces clinical isolate screen revealed differential phenotypes for the 

presence and display of CafA It also reinforced research that demonstrated Actinomyces 

species participate in different coaggregation groups (141). An interesting finding that 



117 
 

came from this work is the presence of monomeric CafA proteins in only certain strains, 

for example the only monomeric CafA in A. oris is from strain N37B13 (Table 5-1). This 

isolate displays a predictable negative coaggregation phenotype, as it was previously 

demonstrated that CafA needs to be polymerized by FimA to mediate coaggregation 

(25). Therefore, this strain may provide clues about how CafA initially evolved to hijack 

the type 2 pilus. 
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CHAPTER VI 

Exploring the Role of the Twin-Arginine Residues 

in the CafA Signal Peptide 
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Introduction 

Pili are assembled on the exoplasmic membrane, and therefore the subunits must be 

translocated prior to their assembly. General protein secretion in bacteria is mediated 

either by the general secretion pathway (Sec) or twin-arginine translocon (Tat). The 

major difference between Sec and Tat is that substrates of Sec are translocated as 

unfolded polypeptides, whereas Tat transports only fully-folded proteins (54). 

 The current model for the process of polymerization begins when the pilin 

precursors are translocated through the general secretory pathway (Sec) by an N-

terminal signal peptide. The precursor is folded after secretion and retained in the 

membrane by a C-terminal domain called the cell wall sorting signal (CWS) (40,62). The 

CWS is required to covalently attach the tip protein to the incoming backbone pilin and 

the backbone pilins to each other.  In addition to the aforementioned CWS requirements 

for sortase interaction, an additional sequence element, the triple glycine (TG) motif 

GGxG or GGxA, is only found in proteins that interact with pilin-specific sortases. The 

TG motif overlaps with the LPxTG motif in the pilin subunits of many organisms and was 

shown to be critical for pilus assembly in Lactobacillus rhamnosus GG (145). 

 In some organisms the polymerization process requires the presence of a tip 

protein, but the molecular details surrounding this process have not been elucidated 

(18,25,146). In A. oris, the tip proteins FimQ, FimB and CafA are indeed required for 

initiating the polymerization of the major pilin subunits (18,25). Interestingly, all of the 

pilus initiation proteins, CafA, FimB and FimQ, have a putative Tat signal peptide, 

suggesting that the tip proteins may use the twin arginine translocase (Tat). Moreover, 

the conservation among them provides evidence that it may be important for initiating 

pilus assembly. However, to date, all sortase substrates are known to utilize the general 

secretion pathway for their secretion (40).  
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 The consensus sequence used to discriminate Tat from Sec signal peptides is 

(S/T)RRxFLK. Primarily, this sequence information can be directly applied to identifying 

E. coli Tat substrates, but Tat signal peptides from other organisms have demonstrated 

tolerance for conservative mutations in this motif (103). The presence of a twin arginine 

motif in signal peptide of the pilin precursors suggested the use of the Tat pathway, 

although it was unclear if these proteins are secreted through the Tat pathway. In this 

study, I investigated whether the CafA signal peptide was sufficient to mediate Tat 

transport. 
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Results 

The CafA protein sequence contains three potential twin arginine residues within the 

signal peptide where a putative signal peptidase cleavage site is predicted to be 

between A56 and V57 (Fig. 6-1A). The presence of these residues suggested that CafA 

may be secreted by the Tat pathway (56). In addition to the twin arginine residues, two 

of the potential signals have a leucine reside at position +2, which has been shown to be 

important an important residue for Tat translocation (147). To determine whether any of 

these twin arginine motifs are important for CafA secretion, I created a variant that lacks 

the cell wall sorting signal (CWS)  and included a hexa-histidine tag at the C-terminus so 

that the mutant protein is secreted into the supernatant rather than polymerized or cell 

wall anchored (Fig. 6-1A). To substitute the potential arginine residues to alanine I used 

site-directed mutagenesis (Fig. 6-1A). I confirmed that these constructs are expressed at 

levels comparable to cafA containing a wild-type signal peptide using qRT-PCR of cafA 

(Fig. 6-1B). The culture supernatants were concentrated and subjected to Western 

blotting with an antibody against the C-terminal His-tag to measure CafA secretion and 

levels. The RR1 and RR3 CafA signal peptide variants secrete CafA at levels similar to 

the wild-type signal peptide. Only the RR2 mutation resulted in the lack of CafA 

secretion (Fig. 6-1C). These results suggested that residues R11 and R12 are critical for 

CafA secretion, and secretion may indeed require the Tat pathway. Because the RR2 

variant was not secreted, I expected the protein to accumulate in the cytoplasmic 

fractionation. However, I was unable to detect a significant signal in any fraction for the 

RR2 mutant, which may indicate that reduced secretion was due to low protein 

production or stability (Fig. 6-1D). 
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Figure 6-1:  Mutation of Arg 11 and Arg 12 to Ala abrogates CafA secretion and 

destabilizes CafA. (A) Schematic of full-length CafA indicating the signal peptide (SP) 

and cell wall sorting signal (CWS), and substitutions made in CafA variants RR1, RR2, 

and RR3. The pCafA∆cws-H6 variant lacks the CWS and contains a hexa-histidine tag at 

the C-terminus (blue rectangle). The SP is wild-type (WT) or mutated to Ala as indicated 

in RR1, RR2 and RR3. (B) Western blot analysis of the supernatant fraction from A. oris 

∆cafA strain expressing WT CafA, no CafA (-), or variants of CafA RR1, RR2, or RR3 

reacted with an α-His monoclonal antibody conjugated to HRP. (C) Quantitative PCR 

data expressed as a fold change calculated using the 2-∆∆G method and normalized to 

the 16s rRNA. (D) Cell fractionation for supernatant (S), cell wall (W), membrane (M) 

and cytoplasmic (C) fractions subjected to Western blot with an α-His monoclonal 

antibody conjugated to HRP. 
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 To overcome both the protein stability challenge and determine whether the 

signal peptide could indeed target the polypeptide for secretion through the Tat system, 

we utilized heterologous Tat-dependent protein fusions. I chose two established 

reporters to assess twin-arginine translocation, agarase and green fluorescent protein 

(GFP) (103,148).  

 As a proxy for Tat transport, I first used the agarase secretion reporter. Agarase 

is a natural actinobacterial Tat substrate in Streptomyces violaceoruber. Agarase activity 

is Tat-dependent and is easily measurable using an agar clearance assay (102). This 

assay has been previously used to assess whether heterologous signal peptides are 

directed for transport by Tat (103). We began by investigating whether agarase with the 

native S. violaceoruber signal peptide was functional when expressed in A. oris. The 

promoter from A. oris EF-Tu (ana_0022) was used to drive expression of the agarase 

encoding gene dagA (pDagASv).  I grew A. oris pEV or A. oris pDagASv over 48 h as a 

spot on a nutrient rich agar. The plates were then stained with Lugol’s reagent to visually 

assess agar degradation. A distinct zone of clearance around the colonies demonstrated 

that agarase is produced, exported, and functional in A. oris under our conditions and 

that A. oris has no native agarase activity (Fig. 6-2A, dagASv versus EV). As a control for 

Sec-mediated secretion, we fused the sequence encoding the FimA signal peptide to 

dagA (Fig. 6-2A, fimASP-dagA) (62). To test whether CafA can secrete a functional 

agarase, I fused the sequence encoding the CafA WT signal peptide to the DagA 

sequence (Fig. 6-2A, cafASP-dagA). The results of the agarase fusion suggested that 

CafA is not secreted by the Tat machine, as no zone of clearance is apparent in the 

strain expressing the cafASP-dagA fusion. I wanted to confirm these results with a 

secondary reporter protein assay.  

 For the GFP fluorescence Tat exclusive reporter assay, I used fluorescence to 

measure secretion in a folded state. GFP can be targeted to the Sec pathway, and 
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secreted in an unfolded state, but does not maintain complete fluorescence after 

translocation. In contrast, when folded GFP is targeted to the Tat system, the secreted 

protein fluoresces (148,149). Therefore, GFP translocation and fluorescence can be 

assessed to determine the folding state during translocation. Additionally, I expected 

GFP to be more stable in the cytoplasm making it possible to assess the localization of a 

signal peptide fusion protein. There were no studies the identified Tat substrates in A. 

oris. Therefore, I utilized the signal peptide from S. violaceoruber DagA as a positive 

control, since I found that it is sufficient to mediate Tat transport when expressed in A. 

oris (Fig. 6-2A) (103). I first employed a kinetic assay to measure fluorescence in the 

supernatant over time. This assay determined that only dagASP-gfp had a detectable 

signal above the gfpSP- background (Fig.6-2B). I then assayed the fraction of 

fluorescence in the supernatant versus the whole cell to ensure that the proteins were 

indeed being produced after 6 hours of growth. When the DagA signal peptide was 

fused to GFP 94% of the fluorescent signal was in the supernatant compared to the 

cytoplasmic GFP control in which fluorescence is primarily localized to the whole cell 

fraction (Fig. 6-2C). When the CafA signal peptide was fused to GFP this construct 

phenocopied the FimA signal peptide fusion, suggesting that Tat does not play a role in 

secreting CafA (Fig. 6-2C).  
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Figure 6-2: Evaluation of Tat-dependent reporter protein fusions. (A) 

Representative images of A. oris CW1 colony grown on solid media overnight with 

pCWu10-empty vector control (EV), pCWu10 expressing the DagA ORF from S. 

violaceoruber (pDagASv) as a Tat control, pCWu10 expressing the FimA signal peptide 

translationally fused to DagA lacking a signal peptide (pFimASP-DagA) as a Sec control, 

or pCWu10 expressing the CafA signal peptide translationally fused to DagA lacking a 

signal peptide (pCafASP-DagA). (B) Measurement of fluorescence intensity in the 

supernatant over time of strains containing pCWu10 expressing the GFP with no signal 

peptide (pGFPSP-), pCWu10 expressing the FimA signal peptide translationally fused to 

GFP (pFimASP) as a Sec control, pCWu10 expressing the DagA signal peptide 

translationally fused to GFP (pDagASP) or pCWu10 expressing the CafA signal peptide 

translationally fused to GFP (pCafASP). (C) Measurement of fluorescence intensity from 

the supernatant (SN) or whole cell (WC) fraction from normalized cultures in B grown to 

midlog phase measured in triplicate and repeated in three independent experiments.  

 

  



126 
 

 Both of the established Tat-dependent reporter assays revealed that the CafA 

signal peptide is likely not utilizing the Tat pathway for secretion. Although, the RR2 

mutant was defective for secretion, it was unstably and poorly expressed. To test this, I 

mutated the arginine residues to glutamine. Glutamine maintains a similar 

hydrophobicity and size as arginine, but is not positively charged and is also not 

sufficient to mediate Tat transport (Fig. 6-3A) (150,151). However, the mutation of RR2 

to QQ was sufficient to restore translocation of CafA (Fig. 6-3B). 

 I next sought to determine the role of the CafA signal peptide since it was not 

used for Tat secretion. I used fluorescence microscopy to visualize the GFP alone or 

fused to CafA, FimA, and DagA signal peptides. The CafA signal peptide GFP fusion 

presented an interesting phenotype. Unlike the gfp control, the cafASP-gfp had punctate 

localization at the poles and septum (Fig. 6-3C). There are two major possibilities 

directing this localization, 1) the CafA signal peptide mediates specific localization of the 

fluorescent protein, or 2) the CafA signal peptide drives the fusion protein into insoluble 

aggregates. 
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Figure 6-3: Requirement of bulky hydrophobic residues for protein stability and 

examination of GFP expressing strains by fluorescence microscopy. (A) Schematic 

of full-length CafA indicating the signal peptide (SP) and cell wall sorting signal (CWS). 

The pCafA∆cws-H6 variant lacks the CWS and contains a hexa-histidine tag at the C-

terminus (blue rectangle). The SP is wild-type (WT), mutated to Ala as indicated in RR2 

or Gln as indicated in QQ2. (B) Western blot analysis of the supernatant fraction from A. 

oris ∆cafA strains harboring an empty vector (-), expressing wild-type CafA signal 

peptide, RR2, or QQ2 signal peptide variants reacted with an α-His monoclonal antibody 

conjugated to HRP. (C) Fluorescence micrographs of strains expressing GFP signal 

peptide reporter fusion proteins from 6-2C. The scale bar represents 0.5 µM. 
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To further investigate whether Tat was playing a role in pilus formation, I decided to 

delete components of the Tat machine. During the course of attempting to delete tatA 

and tatC genes individually and together, I found that it was not possible to recover a tat 

mutant strains. Deletions in A. oris are made by first cloning the upstream and 

downstream regions of the gene of interest into a knockout vector carrying an antibiotic 

resistance cassette (93). The knockout vector replicates in E. coli, but is non-replicative 

in A. oris. Therefore, it must integrate into the A. oris to confer the resistance phenotype. 

The knockout vector also carries a gene, which is used for negative selection, galK. The 

galK gene encodes galactose kinase and can phosphorylate galactose or 2-

deoxygalactose (2-DG). Phosphorylation of these sugar molecules retains the sugar 

within the cell, and in the case of 2-DG, this is lethal. Depending on the orientation of the 

first integration event (crossover), the outcome of the second crossover, which serves to 

eliminate the plasmid from the chromosome, should have a 50% chance of recovering 

the wild-type and 50% chance of recovering the mutant strain, if no deleterious effects 

are associated with the deletion. However, we were unable to recover tatA, tatC or tatAC 

deletions. 

 Next we constructed a conditional mutant to examine the effects of the loss of the 

twin arginine translocon, where the gene of interest is under the control of a tet-inducible 

promoter and a theophylline-responsive riboswitch. Since there is a small colony 

phenotype compared to wild-type in the absence of inducer for the tatC conditional 

mutant. By electron microscopy, the tatC conditional mutant strain appeared to have an 

increase in cell shearing compared to the wild-type (Fig. 6-4A and 6-4B), but piliation did 

not appear to be affected. 
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Figure 6-4: Analysis of the tatC conditional mutant by electron microscopy. The 

tatC conditional mutant was grown to midlog phase in the presence (A) or absence (B) 

of inducers. The cells were then immobilized on nickel grids and stained with 1% uranyl 

acetate prior to viewing with an electron microscope. Scale bar represents 0.5 µm. 
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Discussion 

This study determined that the Tat machinery is likely not responsible for transport of 

CafA. However, my findings suggest that the CafA signal peptide contributes in novel 

ways to CafA maturation. The CafA signal peptide has 56 amino acids and is therefore 

much longer than an average signal peptide. A study, which examined signal peptide 

variety, found that Gram-positive signal peptides are an average of 30 amino acids in 

length with only 4.5% of signal peptides having greater than 40 amino acids. In addition, 

the majority having a positive net charge (52). When compared to the established 

actinobacterial Tat signal peptide from S. violaceoruber DagA, the CafA signal peptide 

has twice as many positively charged residues per sequence length. 

 The arginine residues R11 and R12 are likely required for stabilizing the CafA 

protein, because I was unable to detect CafA in the cytoplasmic fraction when I mutated 

these to alanine (A), but when I mutated these residues to glutamine (Q), which should 

abolish translocation if it was Tat mediated, I was able to functionally restore 

translocation (Fig. 6-3B). When the cafASP-gfp reporter was visualized with fluorescence 

microscopy, it displayed punctate localization at the cell poles and cell septum compared 

to signal peptide lacking control reporter (Fig. 6-3C). Therefore, rather than serving as a 

Tat signal sequence, this signal peptide may serve to localize CafA at distinct sites in the 

membrane, which are also known to be where nascent peptidoglycan is deposited in 

actinobacteria (65). Additionally, CafA has 12 cysteines, which potentially form six 

disulfide bonds. It has been demonstrated in actinobacteria that disulfide bond 

containing proteins are folded on the exoplasmic face of the membrane by a protein 

called MdbA, a process called oxidative folding. Oxidative folding requires proteins to be 

in an unfolded state during secretion, which is not compatible with the Tat machine (63). 

 Following several attempts at deletion of the twin-arginine translocon (Tat), it 

seems likely that Tat secretion machine is essential for cell viability. Although, we were 
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able to construct an inducible mutant, the depletion is not robust enough to produce a 

viability phenotype, even with a subset of the cells displaying a “shearing” phenotype. It 

will be interesting in the future to determine the cause of the Tat essentiality, as it is 

typically non-essential. 
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CHAPTER VII 

Perspectives and Future Implications  
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A Model for Bacterial Type I Signal Peptidases 

A. oris expresses two distinct bacterial type I signal peptidases (SPases), LepB1 and 

LepB2. Using FimA as a model substrate I have shown that LepB2 demonstrates 

specificity for pilin proteins. Deletion of lepB2 dramatically reduces pilus assembly and 

affects pilus-related phenotypes, such as biofilm formation. Conversely, LepB1 and 

LepB2 can both act on a separate substrate, GspA (80). Having only two enzymes and a 

semi-defined substrate repertoire makes the A. oris system ideal to study type I SPase 

enzymes and to address some of the remaining questions in the field. Firstly, how do 

SPases select specific substrates? This is especially intriguing when the SPase 

enzymes are not temporally separated and I have shown that lepB1 and lepB2 are 

expressed independently during logarithmic growth. Are the specificity determinants 

present in the signal peptides, the SPase itself, or do both contribute? Finally, lepB1 and 

lepB2 are the only traditional SPase enzymes present in the A. oris genome, but these 

genes are not essential for cell viability and loss of both produces ragged termini in the 

secreted substrates. So, does an uncharacterized secretion stress pathway exist in A. 

oris? 

Specificity of bacterial type I signal peptidases  

 The signal peptides of the pilin proteins do not differ significantly from the signal 

peptide of GspA. In fact, in bacteria most signal peptides do not exhibit sequence 

conservation aside from small neutral amino acids at positions P-1, P-3, and a helix-

breaking residue in the P-6 position that are required for cleavage of all type I SPase 

substrates (53). Additionally, LepB1 and LepB2 exhibit high similarity at the amino acid 

level with the exception that LepB1 has an extended C-terminus, but these regions do 

not correspond to specificity clefts present in the well-studied E. coli type I SPase (Fig. 

7-1) (52). Gram-positive bacteria commonly encode numerous SPase I enzymes (60). 

For example, B. subtilis encodes five SPases, and Streptomyces lividans encodes four 



134 
 

of these proteins (109,152). Still, it remains unknown why multiple SPases exist in 

Gram-positive bacteria. It has been shown that in S. lividans and A. oris SPases have 

non-identical substrate preference suggesting that these SPases have specialized to 

process different substrates (80,153). Moreover, what determines SPase substrate 

specificity remains an open question. The A. oris dual SPase arrangement is useful for 

addressing this question in particular, because there are definitive phenotypes 

associated with the deletion of pilin specific LepB2 that do not affect cell viability. 

 A first step toward determining factors involved in signal peptidase specificity 

would be to assess the secreted protein profile of a lepB2 deletion strain compared to 

wild-type. Similar studies have been successfully performed in S. lividans, which also 

has clear substrate specificity and no cell viability phenotype, but specificity profiling 

focused on only a single substrate (108,153). A total secretome including proteins from 

the supernatant, cell wall, and membrane could be analyzed in A. oris by performing 

two-dimensional protein electrophoresis on the lepB2 deletion and comparing it to the 

wild-type secretome. LepB2 specific processing could be confirmed similarly to the 

methods that I described for FimA (80). I also found previously that surface exposure 

decreases and the profile of pilus polymers changes in the absence of lepB2, and these 

substrates can serve as a control. Identification of additional LepB2-specific substrates 

could lead to a greater understanding about SPase I substrate selection. After analyzing 

the secretome of LepB2 specific substrates, similarities between these proteins can be 

analyzed to look for specificity determinants. 

 FimA serves as a fully characterized substrate of LepB2 and may be used to 

determine whether features in the signal peptide or signal peptidase affect substrate 

preference. A screen for biofilm formation could be performed with a large, random pool 

of FimA signal peptide mutants. Transfer and sequencing of the biofilm defective 

mutants would reveal sequences important for type I SPase processing. Also, analysis  
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                     10        20        30        40        50        60 

                      |         |         |         |         |         | 

LepB1        VQDGTDDVGLDLKQADPSQIGRTSRSAITPACTSPSADSPQESRQAAETAGEAPVDDSDE 

LepB2        MSSAPD-------QSPQGRIHVEVDEDVTSGRHLRTDHDRRNGHRHKAGAGEDRAGDS-Q 

             :....*       *:  .:*     . :*..    : .. ::.::    ***  ..** : 

 

                     70        80        90       100       110       120 

                      |         |         |         |         |         | 

LepB1        WDYDPFIDPDAEPEPDEELTELPPSIQPRRQVAPAIPPPQTSPLYQRVIRLVLVVAVVIL 

LepB2        ---------AAEP------ASLGERIVFR--------------LKQWGITLSYLVVAVAI 

                       ***      :.*   *  *              * *  * *  :*..* : 

 

                    130       140       150       160       170       180 

                      |         |         |         |         |         | 

LepB1        VPALLRAYVVQIYEIPSGSMERTLRDGDKVAVPMYGSDNVERGDVIVFSDPDDWLHVKEP 

LepB2        I-AFIRTFIIQSFTIPSGSMENTLNEGDRVTVTMYDSDKVHRGDVVVFTDPDHWLTTQEP 

             : *::*::::* : *******.**.:**:*:*.**.**:*.****:**:***.** .:** 

 

                    190       200       210       220       230       240 

                      |         |         |         |         |         | 

LepB1        TGLRGATQRLKVLVNLLPENTGHHLVKRVIGVGGDHVVADGKGTLTVNGVAIKEPYVKDG 

LepB2        TGLQGAAQDFLVAIRIFPQNAGHHLIKRVIGMPGDHVVADGKGSLTVNGVELHESYLKPG 

             ***:**:* : * :.::*:*:****:*****: **********:****** ::*.*:* * 

 

                    250       260       270       280       290       300 

                      |         |         |         |         |         | 

LepB1        QSSSLTSFDVTVPQGYVWVMGDNRSNSADSRYHRDDAHGGFVPLKNVVGVAK-VVFQWTH 

LepB2        RSASEVAFDVTVPEGYIWVMGDNRSNSSDSRYHQNDVHRGFVPVGNVVGVAKNVVWPYSH 

             :*:* .:******:**:**********:*****::*.* ****: ******* **: ::* 

 

                    310       320       330       340       350       360 

                      |         |         |         |         |         | 

LepB1        LSRWGLLGGGESAFSDVPAQETTPSARPSPPPAPASDGETASEEEAPSPVPEGRDSEDAG 

LepB2        ---WSSLTSGQEVFSQVPKPTSTPAAVPTGAAAPAS----R------------------- 

                *. * .*:..**:**   :**:* *: ..****                         

 

                    370       380       390       400 

                      |         |         |         | 

LepB1        AVGEGHSNDEAPQPTTGGLADGPDTYGGMADQGQPPGGTR 

LepB2        ------------------LAGSGD---------------- 

                               **.. *                                     

 

Figure 7-1: Sequence alignment of A. oris LepB1 and LepB2. Sequence alignment of 

A. oris LepB1 and LepB2 was performed using CLUSTALW (112). The conserved Ser-

Lys catalytic dyad is highlighted in yellow. Asterisks (*) indicate fully conserved residues 

and the colon (:) indicates conserved residue properties.  
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of the SPase itself could be done by creating a chimeric LepB2 with the LepB1 C-

terminal extension or eliminating the extension from LepB1. If these constructs modulate 

FimA processing, further analysis can determine how the C-terminal extension affects 

substrate selection. 

 FimA serves as a fully characterized substrate of LepB2, and may be used to 

determine whether features in the signal peptide or signal peptidase affect substrate 

preference. A screen for biofilm formation could be performed with a large, random pool 

of FimA signal peptide mutants. Transfer and sequencing of the biofilm defective 

mutants would reveal sequences important for type I SPase processing. Also, analysis 

of the SPase itself could be done by creating a chimeric LepB2 with the LepB1 C-

terminal extension, or eliminating the extension from LepB1. If these constructs 

modulate FimA processing, further analysis can determine how the C-terminal extension 

affects substrate selection. 

 Finally, analysis of the substrate pool and identifying factors contributing to 

specificity may provide insight into the glycosylation pathway of GspA. Initially, lepB2 

was isolated because it could suppress srtA essentiality (50). Surprisingly, it was found 

that this was not due to a direct effect on the GspA substrate, but rather it modified the 

glycosylation profile and accumulated low molecular mass GspA products in the 

absence of lepB2 (80). Therefore, one of the substrates of LepB2 may be a glycosylation 

enzyme, and absence of specific cleavage could decrease enzyme efficiency. This 

enzyme may be part of the changed pool upon isolation of LepB2 specific substrates. 

Secretion stress pathway 

 Deletion of both lepB1 and lepB2 from A. oris has a minor effect on growth 

kinetics and produces a ragged N-terminus in the shared substrate GspA (Fig. 3-1C and 

Table 3-1) (80). Endopeptidases, such as signal peptidases, cleave precisely generating 
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a specific fragment. Ragged termini are typically indicative of an exopeptidase activity, 

as they trim the polypeptide processively, but may also result from a new cleavage site 

from an intramembrane protease (154). Thus our results suggest that there may be a 

robust, yet undefined pathway for A. oris to cope with secretion stress resulting from a 

block in signal peptide cleavage. A secretion stress system is present in S. aureus, 

where the ayrRABC operon has been identified as encoding an alternative path that can 

be utilized in the absence of a traditional type I SPase. Indeed, expression of ayrABC 

results in imperfect cleavage sites like those identified for GspA. This operon was 

identified under treatment with the antibiotic arylomycin that acts by inhibiting type I 

SPase enzymes (155). Arylomycin works synergistically with β-lactam antibiotics on 

methicillin-resistant S. aureus by specifically targeting and inhibiting SPase I SpsB 

activity (156).  

 If arylomycin is effective against A. oris LepB1 and LepB2 and does not produce 

a growth defect, it could be utilized to screen for synthetic lethal mutants against a 

transposon library. By patch plating onto plates with and without arylomycin, those 

mutants that cannot grow in the presence of arylomycin would be selected for 

sequencing. The identified genes could be analyzed, especially for their effect on 

secreted proteins and whether their gene products exhibit proteolytic activity. 

A New Paradigm for an LCP Enzyme 

LcpA is a unique LCP enzyme because of its ability to modify the protein substrate GspA 

with glycopolymers. This is not a conserved feature for all LCP enzymes, even those 

present in A. oris, and in fact it has never been demonstrated before in any organism 

(Fig. 4-1B) (81). My work has uncovered that LcpA acts as a phosphotransferase to 

transfer a lipid-linked glycopolymer to GspA, and this represents the terminal step of 

GspA glycosylation. The composition of the glycan transferred to GspA remains 

completely unknown. Beyond that, what genes are involved in synthesizing these 
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glycopolymers? It is important to address these questions in A. oris, because although 

the activity of LcpA is functionally similar to other LCP enzymes, how recognition of the 

acceptor substrate occurs prior to glycan transfer is not well understood. Characterizing 

LcpA could uncover information applicable to all LCP enzyme acceptor selection. 

LcpA selects novel acceptor substrate 

 LcpA seems to be distantly phylogenetically related to currently characterized 

enzymes and even other enzymes encoded by A. oris (Fig. 7-2). The closest match to 

LcpA by BLAST search appears to be an LCP enzyme encoded by the actinobacterium 

Geodermatophilus obscurus. It may be interesting to determine whether the G. obscurus 

LCP enzyme can be expressed heterologously in A. oris and whether an LcpA-GspA like 

relationship exists in this species. LcpA may serve as the founding member of a new 

type of LCP, but until additional members are identified it will be difficult to elucidate the 

evolutionary changes that drove LcpA to select a new acceptor. 

 Regardless of whether LcpA is the sole member of its group, it is still unknown 

how LcpA specifically selects the GspA protein acceptor. The catalytic core of the LcpA 

enzyme exhibits high structural similarity with other enzymes, especially B. subtilis TagT 

(Fig. 4-2). Many of the biochemical activities first described for wall teichoic LCP 

enzymes are also conserved in LcpA and require similar molecular features. Therefore, 

it is likely that the substrate selection domain exists outside of this conserved region. 

Remodeling these domains or targeting mutagenesis to the sequences encoding 

structurally dissimilar regions may reveal how GspA is selected by LcpA. Additionally, 

the antibodies and pyrophosphatase assay presented in this thesis can be adapted to 

ensure LcpA stability and activity remain functional in the mutant constructs. GspA 

glycosylation can be simply assessed by immunoblotting for GspA glycosylation. 

GspA glycan profile 
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 Another unknown feature regarding GspA is the glycopolymer identity, which 

unfortunately makes it difficult to recreate an accurate substrate for in vitro reactions or 

to understand the function of the glycosylated GspA. Lectin-based profiling is a 

technique that would be useful to begin characterizing the composition of the glycan 

present on the GspA low and high molecular mass moieties. Lectins are proteins that 

recognize sugars with high specificity. This methodology has been useful and successful 

in other applications, and high throughput arrays have been adapted from the low 

throughput technology (157). Many lectins are available conjugated to either a 

fluorescent or peroxidase molecule to facilitate their application. To narrow down which 

glycans are present in GspA LMM and HMM, a technique called lectin-blotting could be 

accomplished using these labeled lectins (158). Purified GspA LMM or HMM separated 

by SDS PAGE would be reacted with a series of lectins that each recognize a unique 

sugar moiety. This information would then be incorporated to further analyze the glycan 

using enzymatic digestion and mass spectrometry techniques (159). 
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Figure 7-2: Phylogenetic analysis of LCP proteins. The tree was rooted with the HD-

domain containing protein from Thermotoga maritima (WP_004082198) and constructed 

by the mega6 program. Numbers at nodes represent percentage levels of bootstrap 

support based on the unweighted pair group method with arithmetic mean of 1000 

resampled datasets.  
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GspA glycan synthetic pathway 

 My study highlights several similarities between A. oris LcpA and WTA synthesis. 

However, no genes upstream of LcpA involved in the synthesis of GspA glycopolymers 

have been identified. We may exploit knowledge and tools derived from the well-studied 

S. aureus wall teichoic acid synthesis pathway, which begins in the cytoplasm and is 

mediated by tar genes to determine whether a parallel pathway exists in A. oris. 

Chemical inhibitors and their targets have been identified that affect synthesis of the 

teichoic acid in S. aureus (160,161). Early steps in the pathway, initiated by tarO and 

tarA, are non-essential for cell viability. tarO transfers a GlcNAc molecule onto Und, and 

tarA transfers a ManNAc sugar onto the GlcNAc-Und precursor. The GlcNAc-ManNAc 

priming sugars on undecaprenol (Und) is a product that can be recycled if the process is 

stalled. The first step, transfer of GlcNAc by tarO, can be inhibited with sub-lethal 

concentrations of tunicamycin (160). The remaining steps responsible for construction of 

the teichoic acid using the tarOA Und-GlcNAc-ManNAc platform, involve genes 

tarBFLGH. These downstream genes are essential for cell viability likely because the 

Und can no longer be recycled at this stage, which would stall other cellular processes. 

The tarBFL genes are responsible for adding glycerol-3-phosphate and ribitol-5-

phosphate to synthesize the variable length lipid-linked teichoic acid. The completed 

teichoic acid is subsequently flipped across the membrane by tarGH gene products. A 

second WTA inhibitor compound called targosil targets tarG inhibiting teichoic acid 

flipping and subsequently eliminating its incorporation into the cell wall, where it 

accumulates at the cytoplasmic side of the membrane (161). Potentially, the WTA 

inhibitors tunicamycin and targosil can be used in A. oris to assess whether these 

inhibitors affect GspA glycosylation mirroring WTA synthesis. If the molecules can inhibit 

GspA glycosylation, they can be used to identify genes in the synthesis pathway, which 

will likely have similar characteristics to the S. aureus genes. 
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 Many of the features that I have uncovered regarding LcpA structure and activity 

are similar to those described for LCP proteins with a role in WTA synthesis. Therefore, 

future work should focus on how the differences displayed by LcpA drive its novel 

substrate selection. However, given that WTA synthesis is well-understood and there are 

more tools available to study it, using the properties from this pathway as a starting point 

will undoubtedly contribute to determining the overall GspA glycosylation pathway. 

 

Interkingdom Adhesin with a Pivotal Role in Oral Biofilm Formation 

CafA is a pilus-associated adhesin that binds a receptor polysaccharide (RPS) present 

on some oral streptococci, and I found that it can also mediate adherence to human cells 

under certain conditions (25). A. oris is primary colonizer of the oral biofilm and CafA 

plays a major role the niche selection. What structural characteristics confer CafA the 

ability to bind RPS and why does binding require extension on the pilus protein? The 

tertiary structure of CafA is unknown, in part because CafA cannot be stably purified 

from a traditional E. coli over-expression system. I utilized an alternative approach of 

comparison of CafA amino acid sequences from a strain that displays a negative 

coaggregation phenotype. With this approach, I identified a several residues important 

for coaggregation. Are these residues present in a conserved domain and do they 

similarly affect human cell binding? Finally, does the signal peptide of CafA contribute to 

localization and pilus assembly in a way which has not yet been explored? 

Structural identity of CafA 

 A CafA structure would be useful to better understand the structural components 

required for RPS binding as well as assigning the identified residues necessary for CafA 

adherence. There have been technical challenges purifying CafA from an E. coli 

overexpression system likely because of the large size and number of cysteines that 
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potentially form disulfide bonds. To simplify purification of full length CafA, I developed a 

native expression system; although it is plagued by low yield, it produces pure, stable, 

full-length protein (Fig. 7-3). A structure of CafA would also be informative about the 

nature of the disulfide bond scheme and how these contribute to maintaining the 

structural integrity of this protein. 

CafA strain N11A12 glycan specificity 

 It is unknown whether the changes present in CafA from A. oris strain N11A12 

result in reduced binding capacity for all glycans, or whether the mutations confer a new 

glycan specificity. To test this, a glycan spot array using purified proteins from A. oris 

MG1 and A. oris N11A12 could be employed to determine whether a new specificity of 

N11A12 exists. This would be analogous to E. coli, where the chaperone-usher tip pilins 

FimH and FmlH have a similar structure but exhibit an entirely different glycan binding 

specificity. FmlH adheres only under inflammatory conditions, when the sialic acid 

production is downregulated and the receptor is uncovered (135). There could be a 

similar mechanism for CafA, where the N11A12 has a new target. 

CafA signal peptide localization and pilus assembly 

 From the experiments outlined here, the CafA signal peptide does not seem to 

have the capacity to translocate proteins through the Tat pathway. However, using 

fluorescence microscopy, it is clear that when GFP is fused to the CafA signal peptide it 

displays a punctate localization. In contrast, the Tat-targeted GFP and the GFP alone 

have a diffuse localization. Therefore, the CafA signal peptide may be localizing GFP to 

areas of nascent peptidoglycan synthesis, where under native conditions CafA would 

initiate synthesis of a CafA-containing type 2 pilus. However, these puncta could also be 

a result of protein aggregation in the cell. To distinguish between these possibilities, the 

cafASP-gfp strain could be fractioned into the soluble and insoluble fractions,  
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Figure 7-3. Purification of CafA from A. oris supernatant. (A) Coomassie blue 

stained total supernatant (SN), cleared supernatant (CS), flow-through (FT), wash (W), 

eluate (E) and pre-concentration, post-desalt (DST) fractions from A. oris expressing 

pCafA∆CWS-Hisx6 separated by SDS-PAGE. (B) Immunoblot of the supernatant (SN) 

fraction with an α-His monoclonal antibody.  
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immunblotted with an α-GFP antibody, and compared to the signal from the gfp only 

expressing strain. If cafASP-gfp is soluble, it would suggest genuine localization by the 

CafA signal peptide. The cafASP-gfp could then be immunoprecipitated by α-GFP to 

determine whether there are additional factors, like chaperones, involved in localizing 

this protein to the midcell and poles. Then, confirmed with immunofluorescence of the 

native CafA protein. 

 

Essentiality of the Twin-Arginine Translocon 

From the work presented here, the twin-arginine translocon (Tat) appears to be essential 

in A. oris. Essentiality of the twin arginine transporter has been demonstrated previously 

in the actinobacterium Mycobacterium tuberculosis, but was never linked to a particular 

substrate (162). By bioinformatic analysis of secreted proteins, there are 43 potential Tat 

substrates in A. oris based on the presence of a signal peptide and a twin arginine motif 

within the first 50 amino acids (Table 7-1). Which of these predicted substrates actually 

requires the Tat machine for secretion? Appending the signal peptides to the agarase 

reporter with those from proteins on the list may provide a better view about what 

constitutes a Tat signal peptide in A. oris, especially because the CafA signal peptide is 

a predicted to be a Tat signal peptide, yet failed to display Tat-dependency. 

 Of these potential Tat substrates, which contribute to the essentiality of the Tat 

pathway in A. oris?  The NADH dehydrogenase (ana_0411) was identified on this list 

and has been demonstrated to be a bona fide Tat substrate and is a potential cause for 

loss of aerobic growth in Corynebacterium glutamicum, but is not essential for viability 

(163). Additionally, several subunits of the NADH dehydrogenase complex could be 

deleted from A. oris in a previous study (125). Confirming which of the signal peptides 

can indeed   
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Table 7-1: Predicted Tat-dependent proteins in the A. oris genome. The A. oris MG1 

proteome was searched for consecutive “RR” within first 50 amino acids, then filtered 

through TatP to confirm Tat consensus and signal peptide cleavage site. 

Annotation Los Alamos ID 

OmpA/MotB ana_0003 
OmpA/MotB ana_0004 
OmpA/MotB ana_0005 
OmpA/MotB ana_0008 
Lipoprotein, putative ana_0009 
OmpA family ana_0013 
LPXTG-motif protein (FimB) ana_0023 
LPXTG-motif protein ana_0196 
Zn/Mn transport substrate binding protein ana_0218 
Oxidoreductase ana_0238 
Tannase ana_0255 
Glycosyl/glycerophosphate transferase teichoic acid 
biosynthesis 

ana_0303 

Polysaccharide deacetylase ana_0318 
Peptidase, M23/M37 family ana_0332 
Hypothetical protein ana_0387 
NADH dehydrogenase ana_0411 
ABC-type multidrug transport, ATPase ana_0458 
Peptidylprolyl isomerase, FKBP type ana_0589 
Virulence factor MVIN family ana_1001 
Hypothetical protein ana_1354 
ABC-type Co/Fe siderophore transport ana_1460 
Von Willebrand factor, type A domain containing ana_1486 
Mannose-6-phosphate isomerase ana_1537 
Hypothetical protein ana_1540 
ABC-type proline/glycine betaine transport system ana_1633 
ABC-type multiple sugar transport system ana_1639 
Peptide/Ni transport system ana_1692 
Hydrolase, alpha/beta fold family ana_1727 
Multicopper oxidase, type 3 ana_1755 
Lipoprotein ana_1762 
Hly-III family ana_1803 
Tat pathway signal sequence domain ana_1831 
Hypothetical protein ana_1864 
Polysaccharide deacetylase ana_1914 
Glycoside hydrolase ana_1967 
Membrane-fusion protein ana_2031 
Cobalamin/Fe siderophore transport system ana_2051 
CnaB domain containing (CafA) ana_2235 
Hypothetical protein ana_2283 
Usher-like protein precursor (FimQ) ana_2509 
Type 1 fimbrial major subunit (FimP) ana_2510 
Exo-alpha-sialidase ana_2709 
ABC-type cobalamin/Fe3+ siderophores transport 
system 

ana_2758 
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mediate Tat transport from the predictions using the agarase reporter would significantly 

narrow down which of the proteins on the list may be responsible for Tat essentiality. 

Together these considerations make it worth exploring the role of these gene products in 

bacterial physiology, and the strict requirement for the machine may explain why 

actinobacteria utilize the apparatus for export of critical products. 

 

Final Remarks 

Cell surface proteins and glycoconjugates have a significant impact on bacterial 

physiology. My studies have addressed several aspects of the molecular assembly and 

display of these proteins. Cell surface proteins require secretion prior to fulfilling their 

function. I have found that a specific type I SPase is necessary for pilus polymerization, 

and also applied tools to investigate Tat secretion in A. oris. I have found that in the 

exoplasmic space, LcpA utilizes a conserved mechanism to mediate glycosylation of a 

novel acceptor substrate GspA. Finally, I demonstrated that Actinomyces clinical isolates 

exhibit differential CafA display and exploited these differences to identify key amino 

acid changes that contribute to the binding of A. oris MG1 CafA. 

 Studies of the fascinating microbes in the oral communities continue to reveal 

their importance in human health and disease. These works illuminate the complex 

components necessary for A. oris to fulfill its function as primary colonizer of the oral 

biofilm. These studies have also uncovered new tools and information, which is 

applicable to principles of biofilm formation, interspecies interactions, glycoconjugate 

formation, and bacterial pathogenesis.   
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