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miR-484 Functions as an Onco-miR in Triple Negative Breast Cancer 

Nashwa Kabil M.D. 

Supervisory Professor: Bulent Ozpolat M.D. Ph.D 

 

Abstract: 

Triple negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer 

(BC), with a poor prognosis with currently used therapies, and thus represents an unmet 

therapeutic challenge.  Lack of molecular targets (i.e. ER, PR, HER2) and significant 

genetic heterogeneity are the major reasons contributing to early relapse and high 

mortality rates.  Numerous studies have indicated that microRNAs (miRs) have an 

important role in BC progression, invasion, angiogenesis, and metastasis.  We analyzed 

miRNA expression profiles of BC patient data bases and identified that miR-484 is highly 

upregulated in all subtypes of BC patients, with the highest expression in TNBC patients.  

miR-484 was found to be  associated with significantly shorter patient survival, while 

inhibition of miR-484 in TNBC cells led to significant reduction of cell proliferation, motility 

and invasion, and induced cell cycle arrest and apoptosis.  Furthermore, we found that 

miR-484 is inversely correlated with levels of HOXA5 in patients’ tumors and 

demonstrated that miR-484 directly binds to the 3-untranslated region (3-UTR) of 

HOXA5 mRNA to suppress its expression. Moreover, HOXA5 over-expression 

recapitulated the effects of miR-484 inhibition.  In vivo therapeutic targeting of miR-484 

by systemic administration of anti-miR-484 nanoparticles significantly induced HOXA5 

expression and suppressed tumor growth and progression in orthotopic xenograft mouse 

models of TNBC.  Thus, our findings provide new insights about the oncogenic role of 

miR-484 and suggest that miR-484 represents a novel therapeutic target in TNBC.   
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Breast Cancer Statistics 

It is estimated that about 1 out of 8 women in the U.S. (about 12.4%) will develop invasive 

breast cancer (BC) throughout their lifetime.  Over a quarter of a million new cases of 

invasive BC are expected to be diagnosed by the end of 2018 in women in the U.S, with 

an estimated 41,000 deaths (1).   Worldwide, BC still remains a global burden, with the 

latest reported statistics by the global cancer project (GLOBOCAN 2012), estimating 

more than 1.5 million newly diagnosed cases of BC, and over 500,000 deaths.  Despite 

the advancement in BC management, it still remains the most common cancer in women, 

accounting for more than a quarter of all cancer cases (2).   The incidence of BC is higher 

in developed countries (western world),  while relative mortality is greater in developing 

countries (2).  This discrepancy can be largely attributed to differences in socio-economic 

status, availability of early screening and detection programs, and access for treatment 

(2). 

The Heterogeneity of Breast Cancer 

BC is a highly heterogenous disease, composed of multiple subtypes, with each subtype 

displaying specific morphological features, which can account for differences in tumor 

behaviors, as well as therapeutic response to treatment (3).   Historically, BC has been 

classified according to the expression of three molecular markers: estrogen receptor 

(ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 

(HER2) (4).  These molecules also serve as druggable targets for specific therapies (5).  

BC tumors that lack ER, PR, and HER-2 receptors are classified as triple-negative breast 

cancer (TNBC); a highly aggressive and metastatic subtype of BC, with poor responses 

to targeted therapies (6, 7). Subsequent studies utilizing gene expression-profiling 
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revealed that BC is highly heterogeneous and subtyping was expanded beyond the 

original ER/PR/HER2 classification (4, 8, 9).  Other clinico-pathological variables such as, 

tumor size, tumor grade, and lymph node status, are also used to predict patient 

prognosis and management (10, 11).   

 

Gene expression profiling and intrinsic molecular subtypes 

 

In the era of the human genome project, the emergence of microarrays, and other gene 

expression profiling platforms has led to the development of an intrinsic subtyping system 

using multiple genes in order to classify BC (4, 8).  Perou and colleagues conducted the 

first study that classified the molecular subtypes of BC into the following 4 subtypes: 

estrogen receptor positive (ER+)/luminal-like, basal-like, receptor tyrosine kinase positive 

(HER2/neu+), and normal breast (4).  According to Perou and colleagues, most of the 

triple-negative breast cancers (TNBCs) were included in the basal-like subtype (4, 12).   

Subsequently, Sorlie and colleagues identified five major molecular types, that included 

luminal A, luminal B, HER2 over-expression, basal, and normal-like tumors (4, 8, 9).  Each 

of these subtypes harbors specific histopatholoical features that can affect clinical 

progression and treatment outcome (13-18).  Other gene signatures were introduced 

later, including the PAM50 classification which depends on the expression of hormone 

receptors, in addition to proliferation related genes, and genes exhibiting myoepithelial 

and basal features (19-21).  These markers were found to be clinically significant as 

having prognostic value and help in predicting therapeutic outcome (22).  

Luminal A tumors (ER+/PR+) are frequently low-grade tumors and respond well to ER 

targeted therapies such as tamoxifen and aromatase inhibitors (17, 23).  Luminal B 



Introduction 

4 
 

tumors (ER+ with or without HER2+ and Ki67 overexpression) tend to be more aggressive 

subtype that may respond to hormonal therapies, but are also frequently associated with 

recurrence and poorer response (22, 24, 25).  HER2+ tumors (ERBB2/HER2 amplified) 

while they are regarded as an aggressive subtype, are sensitive to anti-HER2 therapies 

such as monoclonal antibodies (eg. trastuzumab and pertuzumab) or the small-molecule 

kinase inhibitor lapatinib (25, 26).   

Basal tumors 

Basal tumors do not express ER, PR, or HER2R and display expression profiles similar 

to basal epithelial cells, as wells as normal breast myoepithelial cells (4).  They also have 

high expression of basal markers such as keratins 5, 6, 14, 17, and epidermal growth 

factor receptor (EGFR), and proliferation related genes (4, 27).  These tumors are more 

frequently associated with low BRCA1 expression (28) and TP53 mutations (8, 29).  Basal 

tumors, which account for 60% to 90% of triple negative tumors (13, 30), tend to follow 

an aggressive clinical course, with more likelihood to metastasize to distant organs, with 

the exception to bone, and lymph nodes (31).  Given their lack of expression of hormonal 

receptors, basal tumors are not sensitive to anti-hormonal targeted therapeutics, leaving 

conventional chemotherapies as their only therapeutic option (32). 
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Triple Negative Breast Cancer 

Characteristics & Risk Factors  

Approximately 15% to 20% of all diagnosed BC cases are TNBC.  These tumors share 

considerable molecular similarities with basal-like cancers  (up to 70% overlap).  

However, TNBC and basal subtypes are histo-pathologically and clinically distinct, and  

thus these two subtypes are mutually exclusive (33, 34).  TNBCs more prevalent in 

African-American or Hispanic women of younger age (<40 years) (4, 6, 35).  Other risk 

factors for TNBC include multiple and early pregnancies, as well as lack of breast feeding 

(36, 37).   At stage of presentation, TNBCs are mainly poorly differentiated invasive ductal 

carcinoma with a tendency to metastasize to the lung and brain (38, 39).  However, unlike 

other BC subtypes, the correlation between TNBC tumor size and lymph node status is 

not clearly defined (40-42).  TNBCs have the worse prognosis compared with other BC 

subtypes, with an estimated 5 year survival rate of 70% (3).  This survival rate is much 

lower for patients with advanced metastasis (~12 month survival) (43, 44).  

Molecular Heterogeneity of TNBC 

TNBCs are a highly heterogeneous subtype of BC that is composed of 6 molecular 

subtypes according to the study by Lehman and colleagues.  Each subtype displays 

distinct oncogenic drivers that can thus be utilized as potential molecular targets.  These 

subtypes include: basal-like (BL1 and BL2), immunomodulatory (IM), mesenchymal (M), 

mesenchymal stem–like (MSL), and luminal androgen receptor (LAR).  In their study, they 

also identified TNBC cell line models representing each subtype to be utilized in targeting 

specific oncogenic pathways identified in the gene expression analysis.  These 

subclasses were found to display distinct therapeutic responses that correlate with 
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pathologic complete response (pCR) rates following neoadjuvant chemotherapy (NAC) 

(45).  For example, BL1 and BL2 subtypes displayed higher expression of cell cycle and 

DNA damage proteins, and representative cell lines showed a favorable response to 

taxane-based therapies.  BL1 tumors show the most favorable pCR rates (52%) 

compared to other subtypes after NAC, whereas BL2 patients display the lowest pCR 

(46).  M and MSL subtypes showed higher expression of epithelial-mesenchymal 

markers, and growth factor pathways which responded well to a PI3K/mTOR inhibitors 

and an Abl/Src inhibitors (7).  Patients with MSL subtype displayed upregulation of 

transforming growth factor receptor III (TGFβ-III), a known driver of migration and invasion 

(47), and showed moderate pCR rates (between 20-30%) (46).  The LAR subtype 

includes patients characterized by androgen receptor (AR) signaling, with frequent 

display of positive PI3KCA activating mutations (48).  LAR subtype patients are less 

responsive to chemotherapy, with a pCR rate of around 10% (46), but display favorable 

response to anti-androgen treatments in combination with PI3K inhibitors (48).  Finally, 

the IM subclass display higher expression of immune response signaling proteins, and 

have a moderate pCR of around 30% (46). 
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Current Therapeutic Strategies for TNBC 

Currently, there are no approved targeted therapeutics available for TNBC, although there 

are a several drugs in pre-clinical and clinical trials that are being investigated (49, 50).  

Taxane based therapies (eg. docetaxel or paclitaxel), anthracyclines (eg. doxorubicin or 

epirubicin) and alkylating agents (eg. Cyclophosphamide) are still considered the gold 

standard of therapy for TNBC (49).   Given that approximately 15-20% of TNBCs harbor 

BRCA 1/2 mutations (51), platinum based therapies that affect the DNA repair mechanism 

have been proven to be effective in TNBC patients (50, 52).  Also other therapeutic 

options include poly ADP ribose polymerase inhibitors (PARP inhibitors), Src family 

kinase inhibitors, EGFR inhibitors, as well as anti-androgens (50).  A small percentage of 

TNBC patients, particularly  mesenchymal and luminal androgen receptor (LAR) subtypes 

have also been shown to benefit from PI3K/AKT/mTOR inhibitors (50).  Another emerging 

concept in TNBC management is the use of immune checkpoint inhibitors, targeting either 

the programmed death (PD)-1 receptor or its ligand PD-L1, in combination with either 

cytotoxic chemotherapy or radiotherapy (53, 54). 

Drug Resistance in TNBC 

TNBC management remains an extensive clinical challenge due to its aggressive course 

and poor therapeutic outcome (6, 35, 55, 56), compared with other BC subtypes (57-59).  

Substantial tumor heterogeneity is one of the major reasons for the development of drug 

resistance, resulting in the selective survival of residual tumor cells that can repopulate 

the tumor and result in relapse (60).  Other evidence suggests, that some cytotoxic agents 

can promote epithelial-mesenchymal-transition (EMT) and or enrich the tumor initiating 

cell population to promote metastasis (61).   
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Due to the lack of effective targeted therapeutics, new interest has emerged in identifying 

new molecular targets and development of therapeutic strategies against them in order 

to improve TNBC patient survival and prognosis.  In recent years, numerous publications 

have highlighted the critical role of  miRNAs in cancer (62).  Extensive research over the 

years has shown that micro RNAs (miRNAs) are implicated in all stages of BC (63, 64), 

which has rendered them as valuable diagnostic and prognostic markers (65).  Recently, 

there has been a growing interest in the use of miRNA based therapeutic strategies in BC 

(66). 
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Role of miRNA in the Pathogenesis of Breast Cancer  

The initial discovery of miRNAs was in early 1990s by Ambros and Lee that found that 

short non-coding region of lin-4 negatively regulates the expression of lin-14 during larval 

development of C. elegans (67).  Later that year, lin-4 was shown to bind to the lin-14 3’ 

untranslated region (3’-UTR) that harbors multiple conserved sequences complementary 

to lin-4 (68).  As of 2001, these short non-coding RNAs were classified as a new set of 

genes called micro RNAs (miRNAs) (69-71). 

miRNA Biogenesis & Mechanism of Action  

miRNA genes reside in either intergenic, or intragenic (intronic or in exonic) regions within 

the genome. They can be transcribed as a single transcript from its own promoter or 

several miRNAs can share a promoter and be transcribed as a long polycistronic primary 

transcript (72-74).   

miRNA are primarily transcribed by RNA polymerase II into a long primary transcript 

called pri-miRNA which can have a nucleotide length up to 1kb.  This pri-miRNA is 

5’capped and 3’ poly-adenylated (72, 75), and then converted into a hair pin structure 

around 70-80 nct. called pre-miRNA by ribonucleases III enzyme DROSHA and RNA-

binding protein Digeorge Critical Region 8 (DGCR8), also known as Pasha (75).  

Subsequently this pre-miRNA is then transported form the nucleus into the cytoplasm by 

Exportin 5 (XPO5), to undergo further processing by DICER (RNAse III endonuclease 

enzyme) into a double stranded miRNA, which is around 18-25 nct in length (76).  This 

double stranded structure is then unwound and single strands, composed of a guide 

strand and a passenger strand, are then loaded on to the RNA-Induced Silencing 

Complex (RISC) to its target mRNA (77) (Figure 1). 
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Figure 1: Gene silencing mechanisms of miRNAs 

This figure is reused with permission and was originally published by I. Fernandez-
Piñeiro, I. Badiola, and A. Sanchez in Biotechnology Advances, 2017. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Fernandez-Pi%C3%B1eiro%20I%5BAuthor%5D&cauthor=true&cauthor_uid=28286148
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fernandez-Pi%C3%B1eiro%20I%5BAuthor%5D&cauthor=true&cauthor_uid=28286148
https://www.ncbi.nlm.nih.gov/pubmed/?term=Badiola%20I%5BAuthor%5D&cauthor=true&cauthor_uid=28286148
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miRNAs mainly act by regulating gene expression at the post-transcriptional level  

depending on the degree of sequence complementarity between the miRNA and its target 

mRNA. They can either lead to mRNA degradation, in the case of perfect 

complementarity; or translational inhibition, in the case of imperfect complementarity (78). 

The binding of miRNAs and their target mRNAs mainly occurs by interaction between the 

3’-UTR of the mRNA with the miRNA seed sequence (∼6–8 nt), which is located near 

their 5’ end, and was found to be  highly conserved (79).  The 3’-UTR of a single mRNA 

can bind to multiple miRNAs and any single miRNA can bind to hundreds of targets.  

Thus, miRNAs have the ability to regulate many signaling pathways simultaneously (80, 

81).  The binding between miRNAs and their target mRNAs can be computationally 

predicted using a number of highly accurate predictive algorithms, which can then be 

experimentally verified (82, 83).   Currently, there over 2600 mature human miRNAs 

according to the miRbase database humans [http://www.mirbase.org/]. 

Although miRNAs mainly act by binding to the 3’-UTR of their target mRNAs, several 

other mechanisms have also been proposed as means of their actions.  For example, 

miRNAs can by bind to the 5’-UTR regions to increase mRNA translation (84, 85), as in 

the case of miR-10b, which was shown to bind the 5’-UTR of ribosomal protein mRNA 

and increase their translation (85).  Other miRNAs, such as let-7 and miR-363, were found 

to increase mRNA expression by recruitment of specific micro-RNPs (eg. Argonaute 2 

(AGO) and fragile X mental retardation-related protein 1 (FXR1), to the AU rich regions 

in the 3’-UTR of their target mRNA (84).  Some studies have also suggested that miRNAs 

can be translocated to the nucleus to activate the promotor region of their target genes 

and increase transcription (86).  For instance, miR-551b-3p was found to recruit RNA 
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polymerase II and the transcription factor Twist related protein 1 (TWIST1) to the signal 

transducer and activator of transcription (STAT3) promoter region, to activate its 

transcription (86).  Additionally, some miRNAs can localize to  different subcellular 

compartments, as in the case of miR-29b, which has a specific hexanucleotide terminal 

sequence that directs its translocation to the nucleus (87).  Also a few miRNAs can bind 

to RNA-binding proteins and thus inhibit their binding with their target (88).  Thus, the 

mechanism of miRNA-mediated regulation of gene expression is a mutli-facted subject 

that requires further exploration.   

 

Role of miRNA in Cancer 

The role of miRNA in cancer was first described in 2002, where it was found that the 

chromosomal region 13q14, which is frequently deleted in chronic lymphocytic leukemia 

(CLL) patients (89, 90), harbors a chromosomal translocation at t(2:13) at a fragile site 

resulting in the deletion of the miR-15a/16-1 cluster (91), suggesting their potential role 

as tumor suppressors.  The following year in a follow up study, miRNAs were mapped in 

chromosomal fragile sites, regions of loss of heterozygosity, or regions of amplifications 

(92).   Furthermore, in 2005, another study reported that the miR 17~92 cluster, induced 

by c-MYC, enhances lymphoma in mouse models of B-CLL, suggesting its possible role 

as an oncogenic miRNA (93).  These discoveries paved the way for a new era of 

biomedical research in deciphering the role of miRNAs in tumorigenesis, resulting in more 

than 30,000 publications recorded on PUB MED to date. 
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Mechanisms Altering miRNA Expression in Cancer   

The aberrant expression of miRNAs in cancer can be attributed to many factors discussed 

below (62).  

Genetic Regulation:  miRNAs can reside within the chromosomal regions that are 

proximal to fragile sites, or in regions of loss of heterozygosity, deletions, amplifications, 

or translocations. Chromosomal regions that harbor miRNAs involved in negatively 

regulating known tumor suppressors (oncogenic miRNAs), may be amplified, resulting in 

increased expression of these oncogenic miRNAs and subsequent reduction in the 

expression of their tumor suppressor genes (94).  On the other hand, miRNAs that inhibit 

oncogenes (tumor suppressor miRNAs) are located at chromosomal fragile sites, where 

deletion or mutations can decrease their levels, resulting in overexpression of their target 

oncogenes (94).  Such is the case for miR15a/16-1, which were found to be 

deleted/translocated in the majority of CLL patients (91), and were later revealed to target 

the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in CLL (95). 

Epigenetic Regulation:  The presence of DNA-binding factors can affect the promoter 

regions of miRNA genes. This can result in the downregulation of miRNA genes by hyper 

methylation or histone deacetylation of the promoter regions (96).  For example, the miR-

9-1 gene in BC is downregulated due to hyer-methylation of its promoter regions (97).  

Other means of epigenetic regulation include histone deacetylation and tri-methylation, 

as in the case of miR-29 in B-cell lymphoma (98).  On the other hand, histone acetylation 

can lead to the activation of miRNA genes, such as that of miR-224 in hepatocellular 

carcinoma (99).  Other miRNAs can be activated by transcription factors acting at their 
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promoter region.  For example, the tumor suppressor p53 was found to bind and activate 

the promoter regions of the miR-34a (100). 

Regulation of miRNA Biogenesis/Processing:  miRNAs expression levels can also be 

regulated by factors that affect their biogenesis or processing at multiple levels (101).  For 

example,  miRNA biogenesis proteins such as  DROSHA, DICER, DGCR8, TRBP, XPO5 

and AGO can be affected by genetic mutations, post-translational modifications, or 

binding to regulatory proteins, which can ultimately affect  miRNA expression levels (102).  

Additionally, single nucleotide polymorphisms (SNPs)  in a miRNA gene may alter miRNA 

processing efficiency by changing its stem–loop structure (101). 

Given that one miRNA can have up to several hundred mRNA targets, aberrantly 

expressed miRNAs in cancer may affect multiple transcripts and hence significantly 

impact numerous cancer signaling pathways (103).  For example, factors that lead to 

increased expression of miRNAs that are frequently over-expressed in cancer would lead 

to enhanced silencing of tumor suppressor genes.  Consequently, this may promote 

tumor formation by increasing cell proliferation, invasiveness, angiogenesis, or 

suppressing apoptosis.  On the other hand, under expression of tumor suppressor 

miRNAs in cancers could also promote tumorigenesis through upregulation of their 

oncogenic target mRNAs (104) (Figure 2). 
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Figure 2: miRNAs can function as tumor suppressors or oncogenes 

This figure is reused with permission and was originally published by Aurora Esquela-
Kerscher, Frank J. Slack in Nature Reviews Cancer, 2006. 

 

 

 

 

 

http://www.nature.com/articles/nrc1840/figures/2
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MicroRNAs in Breast Cancer  

Several platforms have been developed to profile the global expression of miRNAs in 

normal or diseased tissues.  In the context of cancer, these profiling studies have been 

used to aid in tumor classification and the assessment of diagnosis and prognosis (62).  

Iorio and colleagues, in 2005, were the first to describe a specific miRNA signature pattern 

that were differentially expressed  in normal vs. BC tissue, and was correlated with tumor 

grade, disease stage, vascular invasion, proliferation index, and hormone receptor 

expression (105).   Subsequently, several studies revealed that aberrantly expressed 

miRNAs are able to regulate many process in breast carcinogenesis, thereby acting as 

either oncogenic or tumor suppressor miRNAs (106).   In BC, miRNAs have been shown 

to regulate many processes such as cell cycle progression, apoptosis, angiogenesis, 

epithelial-mesenchymal transition, metastasis, and drug resistance (64).  

 

Oncogenic miRNAs in Breast Cancer    

Micro RNAs have been demonstrated to be key modulators in controlling the primary 

tumor growth, as well as in promoting the metastatic process, and modulating the 

interaction of the tumor with its microenvironment (107, 108).  Some of the well described 

examples of oncogenic miRNAs in BC are discussed below and are listed in Table 1.  
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miR-21: 

Among the differentially expressed miRNAs that were shown to be upregulated in BC 

patients and speculated to be oncogenic was miR-21, which was later one of the most 

extensively researched miRNAs with oncogenic properties.  Some of its oncogenic 

properties to promote BC cell survival and proliferation may be attributed to targeting 

tumor suppressors such as phosphatase and tensin homolog (PTEN) (109), programmed 

cell death 4 (PDCD4) (110) and tropomyosin 1 (TPM1) (111).   Additionally, the clinical 

significance of miR-21 in BC was demonstrated by studies that found it to be associated 

with advanced clinical staging, lymph node status, and worse prognosis in BC patients 

(112, 113). 

miR-10b:  

miR-10b was shown to be an oncogenic driver of BC, by promoting migration and invasion 

in metastatic BC cells.  Moreover, it was also shown to initiate invasion and metastasis in 

non-metastatic breast cells.  miR-10b expression is enhanced by the transcription factor 

TWIST1, which binds to its promoter region.  miR-10b acts by binding and inhibiting the 

expression of HOXD10, which then enhances the expression of the pro-metastatic gene, 

Ras homolog gene family member C (RHOC) protein  (114).  miR-10b was also shown 

to be a miRNA of clinical significance as it was found to be positively correlated with BC 

staging, histological grading, and lymph node metastasis (115).  Additionally, miR-10b 

was shown to target E-cadherin in metastatic BC cells to promote cell invasion (116). 
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miR-155: 

miR-155 is another miRNA that was found to be frequently up-regulated in breast tumor 

tissue and was found to be associated with clinicopathologic markers, BC subtype, and 

poor survival rates (105, 117, 118) . miR-155 was found to act via targeting and 

downregulating the expression forkhead box O3 (FOXO3a) to enhance tumor cell 

sensitivity to chemotherapy and mediate apoptosis  (119).  Other studies suggested that 

miR-155 promotes BC oncogenesis by targeting suppressor of cytokine signaling 1 

(SOCS1), leading to the activation of the JAK/STAT3 pathway.  In that study, miR-155 

expression was found to be induced by inflammatory cytokines such as IL-6 and INF-γ, 

suggesting its possible relationship to inflammation in cancer (120).  Additionally, miR-

155 was shown to target caspase-3 in activated macrophages to promote their survival 

in the inflammatory response (121). 
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Table1: Oncogenic miRNAs in Breast Cancer  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oncogenic 
miRNA 

Target 
Cancer Related 

Events 
References 

miR-21 

TPM1,  
PDCD4,  
TIMP3,  
PTEN 

 
Cell proliferation,  

Apoptosis,  
Invasion 

(110, 111, 
122, 123) 

miR-155 

FOXO3a, 
SOCS1, 

caspase-3, 
TP53INP1 

Cell proliferation, 
Apoptosis, Cell 

cycle progression 

(119-121, 
124) 

miR-10-b HOXD10, Tiam1 
Invasion, 
Migration, 
Metastasis 

(125, 126) 

miR-9 E-cadherin 

Cell motility, 
Invasion, 

Angiogenesis, 
Metastasis 

(127) 

miR-27a 
HOXO1, 
ZBTB10 

Cell proliferation, 
Cell cycle 

progression, 
Angiogenesis, 

Metastasis 

(128-130) 

miR-181a Bim 
EMT, Migration, 

Invasion, 
Metastasis 

(131) 

miR-182 
RECK, MIM, 

FOXO1 
Cell proliferation, 

Invasion 
(129, 132) 

miR-221/222 
TRPS1, 

ADIPOR1, 
p27Kip1 

EMT (133-135) 

miR-373/520c CD44 
Migration, 
Invasion, 

Metastasis 
(136) 
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Tumor Suppressor miRNAs in Breast Cancer 

Let-7 family: 

One of the well characterized examples of tumors suppressor miRNAs in BC is the let-7 

family.  Several groups have reported that the let-7 family are differentially expressed in 

BC, as well as in other tumors (137-139).   Let-7, tumor suppressor microRNA was 

originally discovered in C. elegans, where it was found to regulate cell differentiation and 

cell cycle (140).  This family has been shown to act as tumor suppressor miRNAs by 

targeting critical oncogenes such as RAS, high-mobility group AT-hook 2 (HMGA2), c-

Myc, and caspase-3 (141-144), as well as several genes involved in  stem cell 

maintenance (145).   

miR-34 family: 

Another well characterized tumor suppressor miRNA family in BC is the miR-34 family.   

The miR-34 family is composed of 3 members: miR-34a, which is encoded by its own 

gene from chromosome 1p36, and miR-34b/c which are co-transcribed from a shared 

locus on chromosome 11q23 (146).  miR-34a is the most extensively studied member in 

cancer and was found to inhibit many different oncogenic processes relating to tumor cell 

differentiation, proliferation, migration, and invasion by targeting BCL-2 and SIRIT1 (147, 

148); and induce apoptosis and cell cycle arrest (100).   Previous studies have shown 

that miR-34a js transcriptionally activated by tumor suppressor p53, and thereby 

contributes to p53 mediated downstream effects on cell cycle arrest and induction of 

apoptosis, by targeting c-MYC, CDK6, and c-MET (146).  Other studies have also shown 

that miR-34a targets NOTCH, epithelial-mesenchymal transition (EMT), and transforming 

growth factor beta (TGF-β) signaling pathways, as well as elongation factor 2 kinase 
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(EF2-K) and forkhead box protein M1 (FOXM1) axis, WNT/β-Catenin pathways (146, 149, 

150). 

 

miR-200 family: 

There are five members of the miR-200 family, which are organized into two clusters.  

Cluster 1 is composed of miR-200a, miR-200b, and miR-429, located on chromosome1, 

while, cluster 2 is composed of  miR-200c and miR-141 (miR-200c/141) located on 

chromosome 12 (151).  Previous studies have shown the miR-200 family is involved in 

regulating EMT by zinc finger E-box-binding homeobox 1 (ZEB1) and ZEB2, which are 

transcriptional repressors of E-cadherin, and thereby maintaining an epithelial like state 

(152-154).  On the other hand, other studies have shown the existence of a reciprocal 

feedback loop where ZEB1 and ZEB2 also act by repressing miR-200 transcription (155, 

156).      
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Table 2: Tumor Suppressor miRNAs in Breast Cancer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Tumor 
Suppressor 

miRNA 
Targets 

Cancer Related 
Events 

References 

Let-7 family H-Ras, HMGA2, 
PAK1, DIAPH2 

Stemness, Cell 
motility, Migration, 

Invasion 
(157-159) 

miR-34 family 

BCL-2, SIRIT1 
c-MYC, CDK6, 

c-MET, 
NOTCH1, EF-
2K, FOXM1 

Cell proliferation, 
Migration, 

Invasion, EMT, 
Cell cycle 

progression, 
Apoptosis 

(147, 148) 
(146, 160, 

161) 

miR-200 family 
ZEB1, ZEB2, 

HER3, Sec23a, 
SIRT1 

EMT, Stemness, 
Metastasis 

(162-165) 

miR-145 
IRS-1, ER-α, 

RTKN, MUC1, 
OCT4, N-Ras, 

VEGF-A 

Cell proliferation, 
EMT, Invasion, 

Metastasis, 
Angiogenesis 

(166-171) 

miR-205 ZEB1, ZEB2, 
HER3, VEGF-A 

EMT, Cell 
proliferation, 

Invasion, 
Stemness 

(172-175) 
(176) 

miR-30 family 

MTDH, FOXD1, 
AVEN, VIM, 

Eya2, Vimentin, 
KRAS, MAPK, 

TWFI 

Cell proliferation, 
Cell cycle 

progression, 
Apoptosis, 

Invasion, Chemo- 
sensitivity 

(177-181) 

miR-335 
SOX4, tenascin 
C, ER-α, IGF1, 

RSP1, ID4 

Cell proliferation, 
Apoptosis, 
Metastasis 

(182-184) 
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miRNAs as Diagnostic & Prognostic Markers in Breast Cancer  

Recent evidence has suggested that circulating miRNAs are present in several body 

fluids including blood, serum, saliva, urine, and breast milk (185-187).  Circulating 

miRNAs are either free or packaged into vesicles such as exosomes, apoptotic bodies, 

or incorporated with high density lipoproteins, or AGO proteins (188).  Thus circulating 

miRNAs are stable, easily detected by non-invasive measures, making them ideal 

biomarkers for early cancer detection and predictors of therapeutic outcome (65).   

 

Studies have indicated that miRNAs may be valuable diagnostic markers for early 

detection of BC.  One of the most extensively studied miRNAs in cancer is miR-21, which 

has been shown in numerous studies to be a useful diagnostic biomarker for BC, as it is 

significantly overexpressed in either plasma/serum or tissue samples of BC patients 

compared to normal healthy volunteers (189-192).   Furthermore, miR-21 proved to be a 

highly reliable biomarker, displaying higher sensitivity than other well characterized 

markers, such as clinical cancer antigen 15-3 (CA153) and carcinoembryonic antigen 

(CEA) in BC diagnosis (191).  Other extensively studied oncogenic miRNAs for BC 

diagnosis include miR-155 (193-195) and miR-18a (196, 197). 

 

miRNAs could also serve as prognostic tools in BC whereby their expression can predict 

patient survival and treatment outcome.  For example, high miR-21 expression levels 

were shown to be associated with reduced disease-free survival (DFS) and overall 

survival (OS), as well as clinical staging and lymph node metastasis in BC patients (112, 
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198, 199).  Furthermore, miR-21 was also shown to have prognostic value as it was 

demonstrated to be highly expressed in the bone marrow of BC patients (200). 

 

miRNAs as Markers for Therapeutic Response 

miRNAs could also be predictive of therapeutic outcome, whereby their expression levels 

could indicate either sensitivity or resistance to treatment.  For instance, high expression 

of miR-210 in tissues has been associated with poor patient survival and prognosis in 

ER+ tamoxifen-treated BC patients (201).  Similarly, high levels of miR-210 was also 

found to be correlated with trastuzumab resistance in HER2+ breast tumors (202).  

 

miRNAs as a Novel Class of Targeted Therapeutics 

Give the critical role of miRNAs in carcinogenesis, and their ability to simultaneously 

regulate many targets/pathways, a growing interest in recent years has been in utilizing 

miRNA based therapies as a therapeutic modality in cancer (203).  This can be achieved 

by either restoring tumor suppressive miRNAs (miRNA mimetics) or by inhibition of 

oncogenic miRNAs (miRNA inhibitors) (203). 

Restoring Tumor Suppressor miRNAs in Breast Cancer 

Restoring the expression and function of tumor suppressor miRNAs can be achieved by  

miRNA mimics which are synthetic oligonucleotides that can also be chemically modified 

(2′-O′methoxy) to increase their stability (204).  By replacing the lost or suppressed tumor 

suppressor miRNAs, these synthetic molecules can be loaded into the RISC complex to 

achieve downstream target inhibition (203).  Several studies have validated the efficiency 

of miRNA replacement therapies in many in vitro and in vivo models of cancer (203), 
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including BC  (205, 206).  For example replacement of the tumor suppressor Let-7 miRNA 

by lenti-viral system lead to decrease cellular proliferation, self-renewal, and metastasis 

of BC cells (207).  Another example is the replacement of miR-145 and miR-205 , which 

were found to restore functional BRCA1 gene in BC (208).  Furthermore, down-regulated 

tumor suppressor miRNAs such as miR-205, miR-126, miR-335, and miR-451 can be 

restored through miRNA replacement therapy (157, 209, 210). 

 

Targeting oncogenic miRNAs in Breast Cancer 

miRNA inhibitors are single stranded oligonucleotides that are complementary to  

endogenous miRNAs and have the ability to bind/sequester miRNAs and thereby prevent 

their processing by the RISC complex.  Some examples of miRNA inhibitors include: anti-

miRNAs (AMOs), locked nucleic acids (LNAs), antagomirs, and miRNA sponges (203). 

 

Anti-miRNA oligonucleotides (AMOs) are single-stranded, anti-sense oligonucleotides, 

that can bind to their selected miRNA by Watson Crick interaction, and thus prevent the 

miRNA from binding to its target (211).  AMOs have shown to be successful in 

suppressing miR-21 levels in BC cells both in vitro and in vivo.  For instance, the use of 

anti-miR-21 oligonucleotides were found to suppress both MCF-7 cell growth in vitro and 

tumor growth in vivo in xenograft mouse models.  Furthermore, the effect of miR-21 

inhibition in decreasing cell growth was also associated with an increase in apoptosis, in 

part by downregulation of the anti-apoptotic protein Bcl-2 (212). 

 



Introduction 

26 
 

AntagomiRs are chemically modified synthetic oligonucleotides that are complementary 

to miRNAs and can effectively compete with miRNAs for their target mRNAs with a 

stronger binding affinity (213).   AntagomiRs are modified by the addition of 2’-O-methoxy 

group on the ribose residues, partial replacement of phosphodiester bonds to 

phosphorothioate, and the addition of a cholesterol motif at 3′ end (213).  The 2′-O-

methoxy and phosphorothioate modifications help improve their bio-stability, whereas the 

cholesterol conjugation increases their cell distribution and permeation (214).  It has been 

demonstrated that antagomiR-21 can reduce cell proliferation and lead to induction of 

apoptosis in BC cells (212, 215).  Additionally, miR-21 antagomiRs were found to 

enhance the response to trastuzumab in resistant BC cells by upregulating PTEN (216). 

 

Locked nucleic acids (LNAs) are modified anti-sense oligonucleotides where the ribose 

moiety is locked in a C3’-endo conformation by an extra methylene bridge (217).  LNAs 

against miR-10b were found to be effective in inhibiting BC metastasis (218).  LNAs 

packaged in nano-liposomes were also found to prevent lymph node metastasis in 

orthotopic MDA-MB-231 tumor models (219).  Additionally, the use of LNA miR-21 

successfully reduced miR-21 expression levels as well as proliferation of BC cells (215). 

 

A miRNA sponge is a construct that encodes a mRNA containing multiple complementary 

binding sites in its 3′-UTR for the miRNA of interest (220).  Sponges can bind from 2-7 

specific seed sequences of the miRNAs of interest, and have the ability to bind to miRNAs 

from the same family (221).  Previous studies have shown that miR-9 sponges results in 

more than 50% reduction of miR-9 activity in 4T1 mammary tumor cells (127).  In addition, 
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miR-10b sponges effectively reduced cell growth, migration, and invasion in MDA-MB-

231 and MCF-7 BC cell lines, along with upregulating the expression of the miR-10b 

target HOXD10 (222) .  

 

Current Challenges in microRNA Delivery  

 
Despite the recent advances in the field of miRNA-based therapies, there are still many 

challenges to overcome in order to ensure safe and effective miRNA delivery in vivo.  

These obstacles include enzymatic degradation by nucleases, rapid renal clearance, as 

well the development of immune toxicities, and off-target effects (223, 224).  Thus, the 

use of miRNA modulators is limited due to their poor bioavailability, stability, and tissue 

permeability (223).   Therefore, several miRNA delivery systems have been engineered 

using viral or non-viral vectors in order to overcome these hurdles (225).  Although viral 

based vectors; made of either lentiviruses, adenoviruses, or adeno-associated viruses; 

have been shown to efficiently deliver miRNA modulators in vivo; their use is limited by 

their immunogenic effects (226).   Hence, the use of non-viral vectors may offer a safer, 

less toxic alternative (227).  One increasingly popular approach for miRNA delivery is the 

use of nano-carriers which are biocompatible and biodegradable carriers, that are highly 

versatile with the ability to modify their size and surface in order to enhance tumor-specific 

delivery (227).  Nano-carriers (1-1000nm) can be formed of inorganic materials such as 

gold or silica; or organic materials such as polymers or lipids; (228, 229) and offer the 

advantage of increased payload stability, and bioavailability, as well as selective 

accumulation at the tumor site due to the enhanced permeability and retention effect (228, 
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230).  Additionally, nano-carriers can be modified to express specific ligands for receptors 

on tumor cells (231). 

 

 

 

 

 

 

Figure 3: miRNA mechanism and modulation. Canonical biogenesis and 
processing of miRNAs and mechanism of RNAi-regulated gene silencing. 

 
This Figure is reused under the terms of the CC-BY-NC-ND license agreement 
(http://creativecommons.org/licenses/by-nc-nd/4.0/), and originally published by Maitri Y. 
Shah, Alessandra Ferrajoli, Anil K. Sood, Gabriel Lopez-Berestein, George A. Calin in 
EBio Medicine, 2016. doi:10.1016/j.ebiom.2016.09.017. 
  

https://dx.doi.org/10.1016%2Fj.ebiom.2016.09.017
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=5078622_gr1.jpg
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First miRNA-Based Clinical Trials 

Due to the great promise in utilizing miRNAs as therapeutic agents, there are now several 

ongoing clinical trials on miRNA based therapies in many cancers.  For example, the 

locked nucleic acid (LNA) against miR-122 Miravirsen (SPC3649), developed as 

treatment of hepatitis C virus (HCV), was found to safe and well tolerated in phase I 

clinical trial, and effective in Phase II trials, with a significant reduction in HCV RNA levels 

(232).    

 Another noteworthy example is the replacement therapy of the tumor suppressor miR-

34a by a liposomal mimetic (MRX34), which was evaluated in the first-in-human, phase I 

study, in patients with advanced solid tumors, including hepatocellular carcinoma, 

melanoma, and renal cell carcinoma (233).  However, this clinical trial was halted by 

miRNA Therapeutics due to multiple immune-related severe adverse effects that were 

observed (http://www.businesswire.com).  Therefore, dose optimization for miRNA based 

strategies is highly warranted in order to prevent potential adverse events. 

With the great promise that miRNA based therapies hold, there are still some obstacles 

that need to be overcome such as improving their safety, modes of delivery, and their 

therapeutic efficacy before their translation from the bench to the clinic.  However, a 

deeper understanding of the biological role of miRNAs could pave the way for a new era 

in personalized medicine. 

  

http://www.businesswire.com/
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Hypothesis & Aims: 

TNBCs represent a significant clinical challenge that is largely attributed to lack of 

effective targeted therapeutics, significant tumor heterogeneity, and poor response to 

conventional chemotherapies (6).  Therefore, better understanding of the biology of the 

disease and identification of novel molecular targets is crucial for the development of 

highly effective therapies to eradicate TNBC and improve patient survival.  Given the role 

of miRNAs in initiation, progression, metastasis, and drug resistance in various human 

cancers including BC, identification of clinically significant miRNAs that are involved in 

TNBC growth and progression is critical for better understanding of the complex biology 

of this cancer and for development of miRNA based strategies (106, 225).  Recent studies 

have shown that miRNA 484 was among seven miRNAs that were correlated with OS 

amongst various clinical and molecular subtypes of invasive ductal carcinoma patients 

(234).  Furthermore, miR-484 was also found to be significantly highly expressed in serum 

of early BC patients compared to healthy volunteers, suggesting that it may serve as an 

early diagnostic biomarker (235).  However, the role and mechanism of action of miR-484 

in TNBC has not been previously elucidated.  In light of this, we embarked on identifying 

clinically significant miRNAs using the The Cancer Genome (TCGA) database, and we 

identified miR-484, which we found to be clinically and prognostically significant and 

correlated with poor overall survival (OS) in BC (Fig. 4), supporting the previous findings.  

We further analyzed miR-484 expression profiles in all clinical BC subtypes including, 

ER+, ER-, HER2+, and TNBC, which we found to have the highest expression compared 

with normal breast tissues (Fig. 5).  Additionally, we found that miR-484 expression is 

significantly higher in basal subtype of BC compared to non-basal subtype and matched 
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normal breast tissues (Fig. 6).  Furthermore, we screened a panel of TNBC cells lines for 

basal miR-484 expression, and found that miR-484 was upregulated in all of our TNBC 

panel (2-10 folds) compared to normal mammary epithelial cells (MCF-10A) (Fig. 7).  . 

Overall Hypothesis: 

Thus, based on our preliminary data, as well as the recent findings, our overall hypothesis 

is that miR-484 acts as onco-miR to promote tumor growth & progression in TNBC.    

We tested this hypothesis with the following specific aims: 

Aim 1: Determine the functional role of miR-484 in TNBC cells in vitro. 

Aim 2: Determine the mechanism of action of miR-484 in TNBC cells. 

Aim 3: Determine the role of miR-484 in TNBC tumorigenesis in orthotopic TNBC mouse     

models. 
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Figure 4: High miR-484 expression is associated with shorter overall survival in 
breast cancer patients. Kaplan-Meier Survival curves analysis showing high miR-484 

expression is associated with shorter overall survival rate in BC patients compared with patients 
with low miR-484 expression (n=602) (p≤0.001).   

 

Low miR-484 

High miR-484 
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Figure 5: miR-484 expression is significantly higher in TNBC subtypes compared 
to non-TNBC subtypes and normal tissues. The number of patients is listed at the bottom 

of the graph (p≤0.001).  
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Figure 6: miR-484 expression is significantly higher in basal subtype of BC 
compared to non-basal subtypes. The number of patients is listed at the bottom of the graph 

(p≤0.001). 
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Figure 7: miR-484 levels are upregulated in TNBC cells.  Expression levels of miR-484 

in TNBC cell lines and normal breast epithelial MCF-10A cells by qRT-PCR.  Data was normalized 
to the expression of U6 as an endogenous control and represent means ± SDs of three 
independent experiments.
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Cell Lines and Culture conditions 

TNBC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-453, MDA-MB-468, MDA-MB-

361, BT-549, BT-20, BT-483, HCC-1937, and SUM-149) and human mammary epithelial 

cell lines (MCF-10A, HMEC) and) were purchased from the American Type Culture 

Collection (Manassas, VA).  TNBC cells were cultured in Dulbecco's modified Eagle's 

medium (DMEM/F12), with the exception of HCC-1937, which was cultured in RPMI1640, 

and all media were supplemented with fetal bovine serum (FBS 10%) and a 

penicillin/streptomycin (100-U/ml) (Sigma).  MCF-10A cells were cultured in DMEM/F12 

media with the addition of horse serum (5%), insulin, hydrocortisone, epidermal growth 

factor, and cholera toxin.  Cultured cells were kept in a water-saturated incubator (95% 

air–5% CO2) at a temperature of 37°C. 

The Cancer Genome Atlas (TCGA) and Bioinformatics Analysis 

Statistical analyses were performed in R (version 3.4.1) (http:///www.r-project.org/) and 

the statistical significance was defined as a p-value less 0.05.  We downloaded patient 

clinical information for the TCGA patients with breast invasive carcinoma from cBioPortal 

(http://www.cbioportal.org/).  For the miRNA-Seq data, we derived the 

‘reads_per_million_miRNA_mapped’ values for the mature form hsa-miR-484 

(MIMAT0002174) from the “Isoform Expression Quantification” files from Genomic Data 

Commons Data Portal (https://portal.gdc.cancer.gov/).  The log2-transformation was 

applied to the data.  We analyzed total of 914 invasive BC cases with miRNA data and 

clinical information available.  For 93 cases matched, normal solid tissue was available.   

To determine the expression difference for miR-484 among normal and tumor tissue of 

different subtypes, we first employed a Shapiro-Wilk test and verified that the data does 

http://www.cbioportal.org/
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not follow a normal distribution.  The Kruskal-Wallis non-parametric test was applied to 

determine the relationship between miRNA expression and tissue type. Data is 

represented as box and-whisker plots (Box plot represents first (lower bound) and third 

(upper bound) quartiles, whiskers represent 1.5 times the interquartile range).   Univariate 

Cox proportional hazards model was fitted to evaluate the association between OS and 

covariates including miR-484 expression levels (dichotomized at the tertiles to create 

groups that are “high” or “low”) and available clinical variables (age at diagnosis, stage).   

Stage, age, and miR-484 were statistically significant factors in the univariate Cox 

proportional hazards models, and were included in the final multivariable analysis of OS.  

miR-484 was an independent factor (HR= 2.02, CI(95%)=(1.23, 3.31), Wald test p-value= 

0.005).  In order to visualize the survival difference the Kaplan-Meier plots were generated 

for “low” (first tertile) and “high” (last tertile) miR-484 groups.  We applied a Spearman's 

rank-order correlation test to measure the strength of the association between HOXA5 

expression and miR-484 expression.  We imposed a cut-off of functional relevance on the 

Spearman correlation coefficient in absolute value of 0.2 based on previously published 

methodology (236).  

miRNA Transfection  

MDA-MB-231, MDA-MB-436, and BT-20 cells were plated at a density of 1.5 × 105 

cells/well in six-well plates and treated with either miR-484 (100 nM), or control miRNA 

mimic or inhibitor (100 nM) (Ambion) with the addition of HiPerFect transfection reagent 

(Qiagen) in Opti-MEM serum free media according to the manufacturer’s instructions. 

After 6 h of transfection, cultured media was substituted with DMEM supplemented with 

10% FBS for up to 48 h. 
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Cell viability 

Cell viability of MDA-MB-231, MDA-MB-436, BT-20, and MCF-10A cells was analyzed 

using MTS assay [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H tetrazolium] as previously described (237).  Cells were seeded in a 

density of 1 to 2 × 103 cells/well in 96-well plates.  After overnight incubation, the cells 

were treated with miR-484 inhibitor or control inhibitor miRNA (Ambion).  We determined 

the cell viability by measuring the optical density at 490-nm wavelength in a VMax kinetic 

enzyme-linked immunosorbent assay microplate reader (Molecular Devices) at 24, 48, 

and 72 hours 

Colony formation assay 

The effect of miR-484 on TNBC cell proliferation was evaluated by the clonogenic assay.  

MDA-MB-231, MDA-MB-436, and BT-20 cells were seeded at low density (500 cells/well) 

in 12-well plates.  After overnight incubation, the cells were treated with either control 

inhibitor miRNA or miR-484 inhibitor and cultured for approximately 10-14 days.  Colonies 

were stained with crystal violet, and quantified with Image J software (National Institutes 

of Health, Bethesda, MD).  Each experiment was independently triplicated. 

Cell motility and invasion assays 

Cell motility and migration was analyzed by an in vitro wound healing assay.  TNBC cells 

(MDA-MB-231, MDA-MB-436, and BT-20) were plated at a density of 1.5 × 105 cells/well 

in six-well plates.  The following day cells were transfected with the control miRNA 

inhibitor or  miR-484 inhibitor.  After 48h, as the cells reached ~80% confluence, a single 

scratch was made, and cells were imaged at 0h and subsequent 12h time points, using 
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a phase contrast microscope (Nikon Eclipse TE-200-U) to measure the wound width.  

Wound healing was measured as percentage open area of the wound by Image J 

software.  All experiments were independently repeated three times. 

We evaluated TNBC cell invasion utilizing matrigel coated transwell inserts (Corning).  

After 48h transfection with either miR-484 inhibitor or control miRNA inhibitor MDA-MB-

231, MDA-MB-436, and BT-20 cells (4 × 104) were collected in serum free  medium and 

added to the upper chamber of the transwell inserts, allowing cell invasion toward the 

lower chamber which contains serum positive media (10% FBS).  After 24h, invaded cells 

at the bottom of the inserts were fixed, stained with Hema 3 (Thermo Scientific), and 

counted using a light microscope (Nikon Eclipse TE-200-U) at 10X magnification.  

Invaded cells were counted in five fields per slide and all experiments triplicated. 

Cell cycle analysis 

TNBC cells were transfected as previously described with miRNA inhibitors or control 

inhibitor.  After 48h treatment, cells were collected and washed in PBS and fixed in 75% 

ethanol overnight.  The following day cells were centrifuged and resuspended in PBS 

containing 50 μg/ mL propidium iodide (PI) and 100 U/mL of RNAse A.  Samples were 

incubated in the dark for 30 minutes at a temperature of 37ºC prior to flow cytometry 

analysis. The number of cells in each phase of the cell cycle was determined by FlowJo 

Software.  All experiments were independently triplicated. 
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Analysis of apoptosis 

Apoptosis was assessed by an Annexin V assay.  TNBC cells were seeded in 6 well 

plates (1.5 X105/well) and transfected with either control inhibitor or miR-484 inhibitor 

(100nM) for 48 h.  Cells were then collected and stained with Annexin V/propidium iodide 

(PI) according to the manufacturer’s protocol (BD Pharmingen FITC–Annexin V kit, San 

Diego, CA).   We determined the number of apoptotic cells by flow cytometry using 

CellQuest Pro software (BD Biosciences).  This assay is based on the binding of  Annexin 

V to membrane phospholipids of the apoptotic cells that are translocated from the inner 

to the outer the membrane in apoptotic cells (238).  Apoptosis was also confirmed, by 

detecting the cleavage of caspase-3, caspase-8, caspase-2, and PARP by Western 

blotting. 

Reverse phase protein array (RPPA) 

We performed the RPPA analysis at the Functional Proteomics RPPA Core Facility of 

The University of Texas MD Anderson Cancer Center according to the method described 

previously (239).  MDA-MB- 231 cells were plated in six well plates at a density of 1.5 × 

106 cells/well and transfected with either miR-484 mimic or control miRNA (100 nM) for 

48h. Cells were collected in 100 μl of lysis buffer supplemented with protease and 

phosphatase inhibitors (Roche Applied Science).  Samples were centrifuged at 14,000 X 

g for 30 minutes at a temperature of 4°C.  Supernatants were collected, and total proteins 

concentration was determined by Pierce BCA protein assay kit.  Protein concentrations 

were adjusted to a concentration of 1.0 μg/μl by the addition of lysis buffer.  4XSDS 

Sample Buffer was mixed with β‐mercaptoethanol (β‐Me) at a ratio of 9:1.  Cell lysates 
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were then mixed with 4× SDS sample buffer + β-Me mixture at a ratio of 3:1.  Samples 

were boiled for 5 minutes and stored at -80ºC prior to submission to the RPPA Core 

Facility.  

Luciferase reporter assay 

pEZX-MT06 miRNA reporter vectors containing the binding sites for miR-484 in the 3’-

UTR of HOXA5 and the luciferase gene (GeneCopoeia) were transfected into MDA-MB-

231 and MDA-MB-436.  As a control for target specificity, we transfected pEZX-MT06 

miRNA reporter vectors containing one point mutation at the miR-484 binding site 

(GAGCCTG> GCTACAG) into  MDA-MB-231 and MDA-MB-436 cells.  Cells were plated 

(5×104 cells/well) in a 24-well plate and incubated overnight.  The following day cells were 

co-transfected with the pEZX-MT06 vector (200 ng) and either 100 nM miR-484 mimic or 

control miRNA.   After 48h, firefly luciferase activity was determined by utilizing Luc-Pair 

miR Luciferase Assay (GeneCopoeia) and measurements were normalized to Renilla 

luciferase activity. 

Western blot analysis   

TNBC cells (MDA-MB-231, MDA-MB-436, and BT-20) were treated with miR-484 inhibitor 

or control inhibitor miRNA (100nM) and cells were collected after 48h transfection.  

Lysates were prepared in lysis buffer supplemented with protease and phosphatase 

inhibitors and samples were centrifuged at 14,000 × g for 30 min at a temperature of 4°C. 

Supernatants were collected and analyzed for protein concentration by using the Pierce 

BCA protein assay kit (Thermo Scientific).  Protein samples (40µg) were separated by 

SDS-PAGE on a 4%–15% gradient polyacrylamide gels (Bio-Rad), and subsequently 
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electro-transferred to polyvinylidene difluoride membranes.   Membranes were blocked 

with 5% milk in TBST, rinsed, and then incubated with primary antibodies overnight at 

4ºC.  The following day membranes were rinsed and incubated with their corresponding 

HRP-conjugated secondary antibodies.  GAPDH expression levels were detected as 

loading control.  Antibodies used in this study are listed in the appendix in Table 3.  

HyGLO Chemiluminescent Reagent (Denville Scientific) was used to detect the 

expression levels of the selected proteins and immunoblots were imaged by Fluor Chem 

8900 imager and using Alpha Imager software (Alpha Innotech).  All experiments were 

independently triplicated. 

RNA isolation and quantitative real time polymerase chain reaction (qRT-PCR) 

For mRNA and miRNA detection, first we isolated total RNA using the miRNeasy Mini Kit 

(Qiagen) according to the manufacturer’s protocol.  Subsequently, RNA concentration 

and purity was determined spectrophotometrically (260 and 280 nm UV absorbance) by 

Epoch microplate reader (BioTek Instruments).  For miRNA expression, 1µg of total RNA 

was reverse transcribed to complementary DNA (cDNA) using the qScript microRNA 

cDNA Synthesis Kit (Quanta BioSciences) according to manufacturer’s instructions.  miR-

484 expression was detected by using miRNA primers (Quanta Bio Sciences) by 

quantitative real time polymerase chain reaction (qRT-PCR) and utilizing the PerfeCTa 

microRNA Assay Kit (Quanta Bio Sciences).  The expression levels of miR-484 were 

normalized to expression levels of U6 small nuclear RNA (RNU6; Quanta Bio Sciences), 

as an endogenous control. 
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For HOXA5 mRNA quantification, first we reverse transcribed total RNA to cDNA using 

Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific) following the 

manufacturer’s instructions.   Then HOXA5 gene expression was measured with the iQ 

SYBR Green Supermix qPCR Kit (Bio-Rad).  GAPDH expression levels were determined 

as endogenous control.  The sequences of the forward and reverse primers for HOXA5 

and GAPDH are listed in the appendix in Table 4.  Relative expression levels were 

analyzed by the comparative threshold cycle (2-ΔΔCt) method. 

HOXA5 gene overexpression  

MDA-MB-231 cells were transfected with lentiviral plasmids containing the specified 

lentiviral vector for HOXA5 (NM_019102.3) with the CMV promoter (LPP-F0180-Lv105; 

GeneCopoeia, Rockville, MD) or the mock vector (LPP-NEG-Lv103; GeneCopoeia) 

according to the manufacturer’s instructions.  HOXA5 protein expression was then 

verified by Western blotting.  

Orthotopic xenograft TNBC tumor models 

For our animal study we obtained female nude athymic mice from M.D. Anderson Cancer 

Center.  We performed our animal study according to an experimental protocol approved 

by the M.D. Anderson Institutional Animal Care and Use Committee.  TNBC cells (MDA-

MB-231 and MDA-MB-436) were injected into the mammary fat pad of each mouse at a 

density of 2 × 106 in 20% matrigel.  Approximately two weeks after TNBC cell injection, 

as tumor volume was in a range of 3-5 mm, we initiated our liposomal-miRNA treatment.  

Mice were treated with either miR-484 inhibitor or control miRNA inhibitor (0.15 

mg/kg≈4μg/mouse) delivered intravenously through the tail vein, once every 4 days for 4 
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weeks (total of eight i.v. injections). We monitored tumor growth, by weekly 

measurements of tumor volumes using an electronic caliper.  At the end of the 

experimental protocol, we euthanized the mice with CO2 and determined their weight to 

measure tumor growth.  Tumor tissues were dissected for further analysis by 

immunohistochemistry, TUNEL (terminal deoxynucleotidyl transferase–mediated dUTP 

nick end labeling), western blot, and qRT-PCR. 

Preparation of miRNA nanoparticles  

For in vivo targeting of miR-484, we incorporated anti-miR484 oligonucleotides into 

liposomal nanoparticles which were composed of dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) and pegylated distearoylphosphatidylethanolamine (DSPE-

PEG-2000) (AvantiLipids) according to our previously described protocol (161).   

Immunohistochemistry 

The effect of miR-484 inhibition on TNBC cell proliferation and angiogenesis in vivo was 

determined by immunostaining tumor sections for Ki-67 and CD31 respectively according 

to the manufacturer’s protocol.  Formalin-fixed paraffin-embedded tumor tissues sections 

were deparaffinized and dehydrated, then incubated in Dako (for antigen retrieval) at 

95°C for 40 minutes.   Slides were then blocked with endogenous peroxidases with 

methanol supplemented with hydrogen peroxide (3%) for 15 min, and then incubated with 

primary antibodies for Ki-67 or CD31 overnight at a temperature of 4°C.  The following 

day, slides were incubated with secondary antibodies for 1 hour at room temperature.  

Tumor sections were then counterstained with hematoxylin for approximately 30 seconds 

and analyzed by light microscope (Nikon Eclipse TE-200-U). 
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Evaluation of in vivo apoptosis (TUNEL assay) 

We evaluated the effect of miR-484 inhibition on TNBC apoptosis in vivo, by measuring 

the nuclear DNA fragmentation using the TUNEL assay kit (Promega) according to the 

manufacturer's recommended protocol.  Tumor sections from mice treated with either 

control inhibitor or miR-484 inhibitor were incubated with biotin-dUTP and terminal 

deoxynucleotidyl transferase for 1h.  Next, we incubated tissue sections with fluorescein 

conjugated avidin in the dark for half an hour, and then counterstained with Hoechst 

33342 dye (Thermo Scientific) DNA.  TUNEL positive cells were then determined in five 

separate fields for each slide using an inverted fluorescence microscope.   

 

Statistical analyses 
 

Unless otherwise stated, data is expressed as means ± standard deviations (SDs) of 

three independent experiments.  We analyzed our data by the two tailed Student t-test to 

compare significant differences between means of data sets, and p-values indicate the 

probability of the means being significantly different, where *p≤0.05, **p≤0.01, ***p≤0.001, 

****p ≤0.001.  Data analysis was performed by Graph Pad Prism software (version 6.02) 

for student t-Test and analysis of variance (ANOVA). 
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miR-484 inhibition decreases cell viability & proliferation in TNBC cells  

Given the observed upregulation of miR-484 in TNBC patients and cells lines, we sought 

to determine the role of miR-484 in TNBC cells in vitro by various functional assays.  First, 

we verified successful transfection efficiency and found that miR-484 inhibitor transfected 

cells (MDA-MB-231) showed significant downregulation of miR-484 levels compared to 

control inhibitor transfected cells, while cells treated with miR-484 mimic had significant 

upregulation of miR-484 levels compared to control mimic treated cells (Fig. 8).  Next, we 

examined the short-term effects of miR-484 on cell proliferation, by the MTS assay on 

three different TNBC cells (MDA-MB-231, MDA-MB-436, BT-20) and normal mammary 

epithelial cells (MCF-10A), treated with either miR-484 inhibitor or control inhibitor for 24, 

48, and 72h.  Our results showed that miR-484 inhibition significantly decreased cell 

viability in TNBC cells at the indicated time points (Fig. 9, p≤0.0001), while no significant 

decrease in cell viability was observed in normal mammary epithelial cells MCF-10A (Fig. 

9). 

Furthermore, we determined the long-term effect of miR-484 on cell proliferation by the 

colony formation assay in MDA-MB-231, MDA-MB-436, and BT-20 cells.  Inhibition of 

miR-484 (25nM) significantly decreased colony formation in all TNBC cell lines (MDA-

MB-231: 41.94% ±10.07 p= 0.0099; MDA-MB-436: 44.19% ±10.66; p= 0.0119; BT-20: 50 

% ± 6.193 p=0.0051) compared to cells treated with control inhibitor (Fig. 10).  Moreover, 

treatments of TNBC cells (MDA-MB-231 and MDA-MB-436) with miR-484 mimic 

significantly increased cell viability and proliferation by the MTS assays and colony 

formation assays respectively (Fig. 11 & 12), suggesting miR-484 induces cell 

proliferation in TNBC cells.   
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Figure 8: miR-484 inhibitor decreases the expression of miR-484 and miR-484 
mimic leads to increased miR-484 expression.  MDA-MB-231 cells were treated with 

either miR-484 inhibitor or miR-484 mimic or control miRs (inhibitor or mimic) at 100nM for 48h.  
miR-484 expression levels were analyzed by qRT-PCR and normalized to U6.   
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Figure 9: Inhibition of miR-484 decreases cell viability in TNBC cells.  Effects of miR-

484 inhibition on cell viability was assessed in MDA-MB-231, MDA-MB-436, BT-20, and MCF-
10A cells treated with 50nM miR-484 inhibitor or control inhibitor for 24, 48, and 72h and examined 
by the MTS assay.  The data are means ± SDs. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. 
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Figure 10: Inhibition of miR-484 decreases colony formation in TNBC cells.  Effects 

of miR-484 inhibition on colony formation of MDA-MB-231, MDA-MB-436, and BT-20 cells.  
Colony percentage was normalized to the number of colonies formed by cells transfected with 
negative control miRNA.  Data is expressed as means ± SDs. *p≤0.05, **p≤0.01. 
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Figure 11: Ectopic overexpression of miR-484 increases cell viability in TNBC cells.  
MDA-MB-231 and MDA-MB-436 cells were treated with either miR-484 mimic or control mimic 
(50nM) for 24, 48, or 72 hrs.  miR-484 treatment significantly increased cell viability in TNBC cells. 
Data = means ± SDs *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.  
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Figure 12: Ectopic overexpression of miR-484 increases proliferation in TNBC 
cells.  miR-484 increases cell proliferation in TNBC cells.  Cells were treated with miR-484 mimic 

or control mimic and the number of colonies were counted after 10 days using image J software.  
The data are means ± SDs. *p≤0.05, **p≤0.01, ***p≤0.001. 
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miR-484 promotes cell cycle progression in TNBC cells 

Deregulation of the cell cycle is often observed in many tumors, which can result in 

uncontrolled cell proliferation, further promoting the process of tumorigenesis (240).  The 

cell cycle is composed of sequential, tightly regulated events, that drive DNA replication 

and cell division (241).    Briefly, the cell cycle is divided into 4 main phases: S phase, for 

DNA synthesis, M phase, in which mitosis occurs, and two gap phases G1 and G2.   Some 

differentiated cells may also enter a period of prolonged quiescence called G0 before 

entering G1 (242).  Transitions between different phases of the cell cycle is regulated by 

changes in the activity of specific cyclins and cyclin dependent kinases (CDKs) (240).  In 

particular, the G1/S transition is a critical cell-cycle event that may be dyregulated in BC 

(243).  This phase is predominantly under the control of cyclin D–CDK4/6 and cyclin E– 

CDK2, and can be negatively regulated by CDK inhibitors such as p21 and p27 (244).   

Considering the effect of miR-484 on TNBC cell proliferation, we determined the role of 

miR-484 on cell cycle progression.  TNBC cells (MDA-MB-231, MDA-MB-436, and BT-

20) were treated with miR-484 inhibitor or control inhibitor and subjected to flow cytometry 

for cell cycle analysis.  Treatment of MDA-MB-231, MDA-MB-436, and BT-20 cells with 

miR-484 inhibitor (100nM) significantly increased the percentage of cells in G0/G1 phases 

of the cell cycle (MDA-MB-231 by 6.83%, MDA-MB-436 by 9.43%, and BT-20 by 9.61%) 

and significantly decreased the percentage of cells in S phase (MDA-MB-231 by 13.71%, 

MDA-MB-436 by 9.65%, and BT-20 by 18.32%) compared to cells treated with control 

inhibitor miRNA (Fig. 13).  Moreover, we determined the mechanism by which miR-484 

regulates the cell cycle by determining the expression of G1/S phase checkpoint 

regulators by Western blot analysis.  Our results indicated that miR-484 inhibition reduced 
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the expression Cyclin D1, Cyclin E, CDK 2, CDK4, CDK6, and induced cyclin dependent 

kinase inhibitors  p21 and p27 in TNBC cells (Fig. 14), further suggesting that miR-484 

increases cell proliferation and cell cycle progression in TNBC. 
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Figure 13: miR-484 inhibition induces G1/S phase cell cycle arrest in TNBC.  Cell 

cycle analysis after treatment with miR-484 inhibitor or negative control miRNA shows that miR-
484 inhibition increased the percentage of TNBC cells in G1 phase and decreased the percentage 
of cells in S phase. Data are represented as mean ± SD of three independent experiments. 
*p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. 
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Figure 14: miR-484 regulates G1/S phase checkpoint mediators in TNBC.  Expression 

levels of CDK2, CDK4, CDK6, cyclin D1, cyclin E1, p21, and p27 were determined by Western 
blot in TNBC cells (MDA-MB-231, MDA-MB-436, and BT-20) transfected with miR-484 inhibitor 
or negative control miRNA. GAPDH was used as a loading control.  
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Inhibition of miR-484 reduces cell motility and invasion in TNBC cells  

Metastasis is the primary cause of cancer related mortality and involves dissemination of  

the primary tumor to the surrounding tissues and distant organs (245).  Each step of the 

metastatic cascade is dependent on the motility and invasive capacity of tumor cells 

including their ability to penetrate the basement membrane, escape from the primary 

tumor site, migrate through the lymphatic and blood vessels, and finally intravasate or 

extravasate to the distant organs (246). 

Considering the significant association of miR-484 with poor OS in BC patients, we 

determined the role of miR-484 on cell motility and invasion in TNBC cells by performing 

in vitro wound healing and invasion assays.  MDA-MB-231, MDA-MB-436, and BT-20 

cells were transfected with either control inhibitor or miR-484 inhibitor (100 nM) for 48h 

and subsequently wound healing assay was performed as previously described (237).  

We observed that TNBC cells treated with miR-484 inhibitor showed decreased wound 

healing percentage compared to control inhibitor transfected cells (MDA-MB-231 

p=0.0109; MDA-MB-436 p= 0.0118, and BT-20 p=0.009) (Fig.15), suggesting that miR-

484 increases TNBC cell motility.  Furthermore, we determined the role of miR-484 on 

TNBC cell invasion using transwell invasion assay. Our results also showed that miR-484 

inhibition decreased the number of invading cells compared to control miRNA-inhibitor 

treatment in MDA-MB-231 (p=0.0006), MDA-MB-436 (p=0.0002), and BT-20 cells 

(p=0.0019 (Fig. 16), suggesting that miR-484 expression increases the invasiveness of 

TNBC cells.  Moreover, overexpression of miR-484 in MDA-MB-231 and MDA-MB-436 

cells with miR-484 mimic significantly increased cell motility and invasion compared to 
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control cells, providing further evidence that miR-484 promotes cell motility and invasion 

(Figures 17 and 18). 

 

Regulation of cell migration and invasion in cancer cells is mediated by signaling 

pathways, including SRC and focal adhesion kinase pathway (FAK) (247).  The SRC 

family of non-receptor protein tyrosine kinases are known to play critical roles in cell 

proliferation, migration/invasion, and metastasis in many cancers including BC (248).  Src 

functions by mediating multiple downstream effects of receptor tyrosine kinases, such as 

the EGFR family (249, 250), and its expression is reported to be elevated in many solid 

tumors, including BC (251) (249).  Increased Src activity can be attributed to an increase 

in its transcription or to overexpression of its upstream regulators such as EGFR, HER2, 

platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor 

(FGFR), as well as integrins, and focal adhesion kinase (FAK) (252-254).   Focal adhesion 

kinase (FAK), is another critical mediator of cell adhesion and migration, which can be 

recruited by intergrins to form a dual complex with Src that promotes cell motility and 

survival (255).  Thus, both Src and FAK may be important therapeutics targets in 

tumorigenesis (256).  Figure 19 shows that miR-484 inhibition in MDA-MB-231, MDA-MB-

436, and BT-20 cells results in a significant reduction in both p-SRC (Tyr-416) and p-FAK 

(Tyr-397) levels which is consistent with the previously described interaction between Src 

and FAK in tumor cells (256). 
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Figure 15: miR-484 inhibition reduces cell motility in TNBC.  MDA-MB-231, MDA-MB-

436, and BT-20 cells were treated with miR-484 inhibitor, or negative control inhibitor (100nM), or 
did not undergo transfection (NT), and cell motility was assessed by the wound healing assay.  
Images are shown at 0 and 48h time points. Wound closure percentage was normalized to 
untreated cells. Data is shown as means ± SDs. 
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Figure 16: miR-484 inhibition reduces TNBC cell invasion. MDA-MB-231, MDA-MB-

436, and BT-20 cells were treated with miR-484 inhibitor or negative control inhibitor miRNA 
(100nM) or not treated (NT).  After 48h of transfection, cells were transferred to matrigel-coated 
transwell inserts. 24h later the invaded cells were quantified and normalized to the number of 
invaded cells from the NT group.  Data represents means ± SDs from triplicate experiments 
(***p≤0.001).  



Results 
 

 

63 
 

 

  

 

 

Figure 17: miR-484 overexpression increases cell motility and invasion in TNBC. 
MDA-MB-231, MDA-MB-436 cells were treated with miR-484 mimic, or negative control mimic, 
and cell motility was assessed by the wound healing assay.  Images were taken at 0 and 48h. 
The percentage wound healing was quantified and shown on the right panel as means ± SDs 
(**p≤0.01). 
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Figure 18: Ectopic over-expression of miR-484 increases invasion in TNBC cells.  
MDA-MB-231, MDA-MB-436 cells were transfected with miR-484 mimic or control mimic for 48h 
and transferred to matrigel-coated transwell inserts and incubated for an additional 24h. The 
number of invaded cells per field was quantified and shown as mean ± SDs from triplicate 
experiments (***p≤0.001). 
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Figure 19: miR-484 inhibition reduces p-SRC and p-FAK expression in TNBC cells.  
Expression levels of p-SRC, SRC, p-FAK, FAK were determined by Western blot in TNBC cells 
treated with miR-484 inhibitor (100nM) for 48h or negative control miRNA. GAPDH was used as 
a loading control.   
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miR-484 Inhibition induces apoptosis in TNBC cells 

Given the observed effect of miR-484 inhibition on reducing cell growth in TNBC, we 

subsequently investigated its role in programmed cell death.  Programmed cell death I, 

or apoptosis, is mainly induced by two main mechanisms: intrinsic or mitochondrial 

apoptosis; and extrinsic or death receptor mediated apoptosis (257).  Both pathways lead 

to the activation of the caspase family of cysteine proteases, which eventually leads to 

specific morphological features, typical of apoptosis, such as  chromatin condensation, 

DNA fragmentation, membrane blebbing, and finally complete cell lysis (258).  Many 

studies have shown that aberrantly expressed miRNAs are related to apoptosis evasion 

in tumor progression and tumorigenesis and drug resistance (259). 

MDA-MB-231, MDA-MB-436 and BT-20 cells were treated with either miR-484 inhibitor 

or control inhibitor for 48h.  Apoptosis following miR-484 inhibition was determined by 

Annexin V/ Propidium Iodide (PI) staining, followed by flow cytometry (FACS) to 

determine the percentage of apoptotic cells.  The percentage of both early and late 

apoptotic cells was significantly higher in TNBC cells treated with miR-484 inhibitor 

compared to control cells (MDA-MB-231 p=0.0002, MDA-MB-436 p=0.0014, BT-20 

p=0.0036), suggesting that miR-484 inhibition induces cell death (Fig. 20).  Furthermore, 

we confirmed apoptosis induction by determining the expression of apoptosis-related 

proteins such as PARP, caspase-3, caspase-2, caspase-8 by Western blot (Fig. 21).  
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Figure 20: Inhibition of miR-484 induces apoptosis in TNBC cells. TNBC cells were 

treated with either miR-484 inhibitor or control inhibitor (100nM) for 48h, and stained by Annexin 
V/PI followed by flow cytometry to determine the number of apoptotic positive cells.  
Representative percentages are the sum of both early and late apoptosis.  Data are represented 
as means ± SD. *p≤0.05.  All experiments were independently triplicated.  
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Figure 21: miR-484 inhibition regulates the expression of apoptotic markers in 
TNBC. Expression levels of apoptotic markers (PARP, Caspase-3, Caspase-2, Caspase-8) in 

MDA-MB-231 and MDA-MB-436 cells were detected by WB after 48h transfection with miR-484 
inhibitor or negative control inhibitor miRNA (100nM). GAPDH was used as a loading control.  
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HOXA5 is a predicted target for miR-484  

We retrieved miRNA-target interaction predictions for miR-484 from miRWalk2.0  

(http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/) that integrates results from 

twelve different predictive algorithms (DIANA-microTv4.0, DIANA-microT-CDS, 

miRanda-rel2010, mirBridge, miRDB4.0, miRmap, miRNAMap, PicTar2, PITA, RNA22v2, 

RNAhybrid2.1, and Targetscan6.2).  We selected the 147 targets which were predicted 

by at least nine algorithms (3/4 of the total number of programs checked).  Among them 

we chose the 16 experimentally validated targets (listed in Appendix Table 5) as retrieved 

from miRWalk2.0.  Based on a literature search, we focused on HOXA5 as it was 

previously shown to have a tumor suppressive role in BC (260, 261).   The predicted 

binding site for miR-484 on HOXA5 3’-UTR is shown in Figure 22, and this binding site 

was also found to be highly conserved among many species (Fig. 23). 

 

 

 

Figure 22:  Predicted binding site of miR-484 and HOXA5 3’-UTR. 

 

 

 

http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microtv4/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index
http://www.microrna.org/microrna/getDownloads.do
http://www.ncbi.nlm.nih.gov/pubmed/?term=20385095
http://mirdb.org/miRDB/download.html
http://mirmap.ezlab.org/downloads/mirmap201301e/
ftp://mirnamap.mbc.nctu.edu.tw/miRNAMap2
http://dorina.mdc-berlin.de/rbp_browser/download_hg19.html
http://genie.weizmann.ac.il/pubs/mir07/mir07_exe.html
https://cm.jefferson.edu/rna22v2/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/dl_pre-page.html
http://www.targetscan.org/cgi-bin/targetscan/data_download.cgi?db=vert_61
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Figure 23: miR-484 and HOXA5 binding sites are highly conserved across many 
species. 
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High miR-484 expression is correlated with low HOXA5 expression in BC patients 

& cell lines 

The homeobox genes (HOX genes) are composed of 39 members, organized in four 

clusters (A, B, C, and D), located on chromosomes 7, 17, 2, and 12, respectively (262).  

HOXA5 belongs to the cluster A family of HOX regulatory genes.  The homeobox 

sequence (183 nt) of HOX genes encode homeoproteins that can act as transcription 

factors, to either activate or repress the expression of downstream effector target genes 

(263, 264).  Numerous studies during the last several decades, have highlighted the 

importance of HOX genes in  normal tissues, as well as in many clinical diseases and 

carcinomas (265).  The HOX family genes play fundamental roles in the anterior-posterior 

patterning during embryonic development (266, 267).   They have also been shown to be 

aberrantly expressed and/or mutated in many cancers, including leukemia, colon, 

prostate, breast, and ovarian cancers (268).  In particular, homeobox A5 (HOXA5) has 

been shown to be a key regulator of cell differentiation and organogenesis.  HOXA5 has 

been implicated in the development of the axial skeleton, as wells are respiratory system, 

mammary glands, and digestive tracts (269).  In the context of BC, HOXA5 expression 

was found be reduced in more than 60% of BC cell lines, partially due to hypermethylation 

of its promoter region (261).  Additionally, HOXA5 has been shown to induce apoptosis, 

both in a p-53 dependent or caspase 2 and 8 dependent manner in BC cells (260, 261).  

Furthermore, the loss of HOXA5 expression was shown to lead to the functional activation 

of Twist, a negative regulator of p53 (270), resulting dysregulation of the cell cycle and 

promotion of breast carcinogenesis (271).  Collectively, these studies indicate that 

HOXA5 may serve as a tumor suppressor gene in BC.    
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To evaluate the potential interaction between miR-484 and HOXA5, we analyzed the 

TCGA database of BC patients (n=833) and performed a spearman rank correlation 

(p≤0.00001, R=0.31) and found that miR-484 was inversely correlated with HOXA5 

expression in patients’ tumors (Fig. 24).  Furthermore, HOXA5 protein expression was 

found to be reduced in all BC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-453, BT-

20, MDA-MB-453, MDA-MB-361, MCF-7, and T-47)  compared with normal immortalized 

breast epithelial cell lines (MCF-10A and HMEC) by Western blot analysis (Fig. 25), 

suggesting an inverse relationship between  HOXA5 and miR-484  expression, and the 

possibility that miR-484 regulates HOXA5  mRNA expression. 
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Figure 24: miR-484 and HOXA5 expression levels are inversely correlated in BC 
patients. Spearman correlation analysis showed a negative and significant correlation between 

miR-484 and its target gene HOXA5 in BC patients (n=833).  R=0.31, p≤0.0001. 
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Figure 25: miR-484 and HOXA5 expression levels are inversely correlated in BC cell 
lines. A) HOXA5 expression levels are lower in BC cell lines compared to normal breast epithelial 

cells MCF-10A and HMEC.  Basal HOXA5 expression levels were analyzed by WB and GAPDH 
was used as loading control. B) miR-484 basal expression levels were assessed by qRT-PCR.  
U6 was used as internal control. C) Pearson correlation analysis showing a negative and 
significant correlation between miR-484 and HOXA5 in BC cells.  R=0.8, p=0.041. 
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miR-484 directly binds to the 3’-UTR of HOXA5 to regulate its expression   

miRNAs are involved in post-transcriptional regulation of gene expression mainly by 

directly binding of the 3’-UTR of their target mRNAs to negatively regulate their 

expression (72).  To evaluate the effect of miR-484 on HOXA5 gene and protein 

expression in TNBC cells, we transfected MDA-MB-231, MDA-MB-436, and BT-20 cells 

with miR-484 inhibitor (100nM) or negative control inhibitor for 48h.  Inhibition of miR-484 

resulted in significant reduction in HOXA5 protein and mRNA expression in the cell lines 

detected by Western blot and qRT-PCR analysis, respectively (Figures 26 and 27).  

Collectively, these results suggests that miR-484 suppresses HOXA5 protein and mRNA 

expression levels in TNBC cells.   
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Figure 26: miR-484 reduces HOXA5 protein expression levels in TNBC cells.  
MDA-MB-231, MDA-MB-436, and BT-20 cells were treated with miR-484 mimic or control mimic 
(100nM) for 48h and cell lysates were analyzed for HOXA5 expression by WB analysis.  GAPDH 
was used as loading control. 
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Figure 27: miR-484 reduces HOXA5 mRNA expression levels in TNBC cells.  Cell 

lines were analyzed for HOXA5 mRNA levels by qRT-PCR 48h after miR-484 transfection.  Data 
is represented as fold change normalized to GAPDH expression levels.  *p≤0.05. 
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miR-484 directly binds to HOXA5 3’-UTR to negatively regulate its expression 

To further prove the direct role of miR-484 on HOXA5 mRNA regulation we identified the 

consensus sequences on the 3-UTR region of the HOXA5 gene for binding to miR-484 

and performed a luciferase gene reporter assay.  The human wild type (WT) HOXA5 3’-

UTR was cloned upstream of a firefly luciferase gene in a reporter vector (pEZX-MT06) 

plasmid.  A similar vector containing the mutated sequence (GAGCCTG> GCTACAG) in 

the miR-484 binding site of the HOXA5 3’-UTR-mut (pMSCV–HOXA5-3’-UTR-mut) was 

used as a negative control.  The resulting plasmids were separately transfected into MDA-

MB-231 and MDA-MB-436 cells along with miR-484 mimic or negative control miRNA 

(100nM).  Firefly luciferase activity was measured and normalized to Renilla Luciferase 

activity.  As shown in Figure 28, cells treated with miR-484 and expressing the WT 3’-

UTR of HOXA5 had significant reduction in luciferase activity compared to cells treated 

with control miRNA (MDA-MB-231 p=0.0021 and MDA-MB-436 p≤0.0001).  Moreover, 

cells expressing the pEZX-MT06 miRNA reporter vector containing the mutated miR-484 

binding site (pMSCV–HOXA5-3’-UTR-mut) showed no significant difference in luciferase 

activity between miR-484 and control miRNA transfections.  Thus, our findings suggest 

that miR-484 binds specifically to the WT HOXA5 3’-UTR to negatively regulate its mRNA 

expression. 
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Figure 28: miR-484 directly binds to HOXA5 3’-UTR in TNBC cells.  Luciferase reporter 

assay showing that miR-484 directly binds to the 3’-UTR of HOXA5 luciferase reporter in MDA-
MB-231 and MDA-MB-436 cells. Firefly luciferase activity was normalized to endogenous Renilla 
luciferase activity. Data are represented means ± SDs for three independent experiments. 
*p≤0.05  
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miR-484 mediates its effects through inhibition of  HOXA5 tumor suppressor in 

TNBC cells 

Reduced cell proliferation in cancer  is often associated with concomitant activation of cell 

death pathways and inhibition of cell cycle progression (272).  We have shown that miR-

484 inhibition significantly induces apoptosis and promotes G1/S cell cycle arrest in TNBC 

cells.  Furthermore, HOXA5 expression has been shown to lead to activation of cell death 

pathways (260, 261) and aberrant cell cycle regulation (271).  Therefore, we examined 

the role of HOXA5 in mediating apoptosis in response to miR-484 inhibition.  First, we 

transduced MDA-MB-231 cells with HOXA5-expressing lenti-based vector and control 

empty-vector that lack HOXA5 gene. Light microscopy revealed that HOXA5 

overexpressing cells displayed typical apoptotic morphology such as cell shrinkage and 

appeared denser compared to controls (273) (Fig. 29).  Furthermore, HOXA5 

overexpressing cells showed increased apoptosis by FACS, which was reversed by 

expression of miR-484 mimic (Fig. 30).  This finding was also associated with a reduction 

in HOXA5 expression levels (Fig. 31).  Moreover, HOXA5 overexpression recapitulated 

the effects of miR-484 inhibition on apoptotic markers such as PARP and capase-3 and 

G1/S cell cycle regulators such as Cyclin D1, Cyclin E1, CDK4, and  induced the 

expression of CDK inhibitors p21 and p27 (Fig. 32).  Overall, our findings suggest that 

miR-484 could promote TNBC cell survival through downregulation of HOXA5 tumor 

suppressor gene. 

 

 



Results 
 

 

82 
 

 

 

 

 

 

 

 

 

 

Figure 29: HOXA5 overexpressing cells display typical apoptosis morphological 
features.  MDA-MB-231 cells were transduced with lentiviral expression vector incorporating 

WT-HOXA5 (NM_019102.3) (HOXA5-OE) for overexpression of HOXA5 or the mock empty 
vector (EV) (LPP-NEG-Lv103) and examined under the light microscope 48h after transduction. 
HOXA5 overexpressing cells appeared smaller and denser compared to cells expressing control 
empty vector.  Magnification 4X. 
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Figure 30: miR-484 reverses HOXA5 induced apoptosis. MDA-MB-231 cells over-
expressing either HOXA5 or mock empty vector were co-transfected with either miR-484 mimic 
or control mimic (100nM) and collected after 48h.  Cells were stained with Annexin/PI for FACS 
analysis of the apoptotic positive cells. Data are represented as mean ± SD. **p≤0.01. All 
experiments were independently triplicated. 
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Figure 31: miR-484 partially reduces HOXA5 expression in HOXA5 overexpressing 

cells.  MDA-MB-231 cells overexpressing HOXA5 (HOXA5-OE) or expressing control empty 

vector (EV) were treated with either miR-484 mimic or control mimic (100nM) and collected after 

48h.  Cell lysates were analyzed for HOXA5 expression levels by Western blot.  GAPDH was 

used an internal control. 
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Figure 32: HOXA5 overexpression recapitulates miR-484 inhibition on apoptosis 
and cell cycle markers.  MDA-MB-231 cells overexpressing HOXA5 lentiviral vector (HOXA5-

OE) or expressing control empty vector (EV) were treated with either miR-484 mimic or control 
mimic (100nM) and collected after 48h.  The levels of HOXA5, PARP, caspase-3, Cyclin D1, 
Cyclin E1, p27, and p21 were determined by WB.  GAPDH was used as loading control. 
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miR-484 alters multiple proteins/cancer signaling pathways in TNBC: 

To determine the potential signaling pathways that are regulated by miR-484 in TNBC, 

we performed a reverse phase protein array (RPPA) analysis of MDA-MB-231 cells 

treated with either miR-484 mimic or control miRNA. Samples were probed with 304 

proteins, including total and phospho-proteins. Among the proteins that were probed for, 

we found a total of 55 proteins that were significantly upregulated with miR-484 

overexpression compared to controls, and a total of 61 proteins that were significantly 

downregulated with miR-484 treatment compared to controls.  Significantly altered 

proteins after miR-484 transfection are shown in the heat map in Figure 33.  Of particular 

interest to us, we observed significant downregulation of caspase-8 (FCH=-1.09 p-

value=0.11), p53 (FCH=-1.074 p-value=0.014), Bax (FCH=-1.04 p-value=0.031) with 

miR-484 overexpression, and significant upregulation of cyclin D1 (FCH=+1.18 p-

value=0.012) with miR-484 treatment. Furthermore, our ingenuity pathway analysis 

showed that miR-484 overexpression in MDA-MB-231 cells resulted in alteration in many 

signaling pathways related to cell proliferation, apoptosis, and cell cycle regulation (Fig. 

34), which is consistent with our previously mentioned findings.  Figure 35 summarizes 

the findings from our IPA analysis and illustrates the interaction between miR-484 and 

HOXA5 in regulating certain apoptosis related proteins such as PARP and caspases as 

well as cell cycle regulators such as cyclins and CDKs. 
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Figure 33: Overexpression of miR-484 significantly alters multiple proteins 
involved in cancer signaling in TNBC. Heat map of RPPA analysis showing significantly 

altered proteins after miR-484 transfection in MDA-MB-231 cells.  Green color indicates that 
expression levels were reduced with miR-484 treatment compared to control miRNA treatment, 
while red color indicates that the expression levels were increased with miR-484 transfection 
compared to controls. 
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Figure 34: miR-484 overexpression significantly alters multiple cancer signaling 
pathways in TNBC. The pathway annotations obtained by Ingenuity Pathway Analysis (IPA) 

show that ectopic overexpression of miR-484 in MDA-MB-231 cells led to alteration in multiple 
canonical pathways related to cancer.    
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Figure 35: Ectopic overexpression of miR-484 regulates HOXA5 and multiple 
downstream targets in TNBC.  Ingenuity Pathway Analysis (IPA) showing the canonical 

pathways/proteins that were significantly downregulated (green) or upregulated (red) by miR-484 
in TNBC cells. Graphs produced by RPPA analysis of MDA-MB-231 treated with miR-484 or 
control mimic for 72h. 
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In vivo therapeutic targeting of miR-484 suppresses growth of orthotopic TNBC 

xenograft tumors and induces HOXA5 expression  

We have shown that miR-484 is upregulated in TNBC cell lines and is associated with 

poor patient survival and prognosis.  Therefore, to demonstrate the in vivo effects of miR-

484 in promoting TNBC tumorigenesis and progression as well as the therapeutic 

potential of targeting this oncogenic miRNA, we inhibited miR-484 in orthotopic MDA-MB-

231 and MDA-MB-436 TNBC mouse models.  Tumor cells (2 X 106 cells/mouse) were 

orthotopicaly injected in into the mammary fat pad of female nude athymic mice (n=5).  

After approximately one week, we injected dimyristoyl-sn-glycero-3-phosphocholine-

based liposomal nanoparticles (237) incorporating anti-miR-484 (0.15 mg/kg, i.v.) once a 

week, for 4 weeks.  At the end of the treatment we evaluated the in vivo effects of miR-

484 downregulation on tumor growth and analyzed for proliferation, angiogenesis, and 

apoptosis by IHC.  Mice treated with miR-484 inhibitor showed decreased expression of 

miR-484 levels in tumors (Fig. 36) compared to control inhibitor, and had a significant 

decrease in tumor volume compared to control mice (Fig. 37) (p≤0.05). 
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Figure 36: Systemic delivery of Anti-miR-484 reduces miR-484 expression levels in 
orthotopic xenograft TNBC mouse models.  MDA-MB-231 and MDA-MB-436 cells were 

orthotopically injected in female nude athymic mice (n=5).  Mice were then treated with either 
control inhibitor or miR-484 inhibitor liposomal nano-particles delivered I.V. once every 4 days, for 
4 weeks.  miR-484 expression levels were analyzed from tumor samples by qRT-PCR.  U6 was 
used as internal control. 
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Figure 37:  In vivo systemic delivery of Anti-miR-484 nanoparticles decreases 
tumor volume in TNBC mouse xenografts.  Tumor volumes were determined once a week 

for 4 weeks and data is represented as means ± SD. *p=≤0.05.  
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To assess the effects of miR-484 inhibition on cell proliferation, angiogenesis, and 

apoptosis, tissue sections were stained with hematoxylin and eosin followed by 

immunohistochemical analysis for Ki-67 expression as a proliferation marker, and CD31 

as a marker for angiogenesis.   Additionally, we analyzed the effects of miR-484 inhibition 

on apoptosis by the Terminal deoxynucleotidyl transferase–mediated dUTP nick end 

labeling (TUNEL) assay which detects nuclear DNA fragmentation in apoptotic cells.  Our 

results showed that mice treated with miR-484 inhibitor had a greater reduction of Ki-67–

positive tumor cells compared to mice treated with control inhibitor (MDA-MB-231 

p=0.0011, MDA-MB-436 p=0.0093) (Fig. 38).  Furthermore, miR-484 inhibition 

dramatically decreased micro-vessel density, as represented by CD31-positive cells, 

compared to control inhibitor miRNA (Fig. 39) in both orthotopic tumor models (MDA-MB-

231 p=0.024, MDA-MB-436 p=0.0192), suggesting that inhibition of miR-484 has an 

antiangiogenic effect in TNBC mouse models. Additionally, miR-484 inhibition 

significantly increased the number of TUNEL-positive cells compared to control inhibitor 

miRNA (Fig. 40) (MDA-MB-231 p=0.0019, MDA-MB-436 p=0.0049), suggesting that miR-

484 inhibition has a pro-apoptotic effect in vivo.  Overall, our findings indicate that miR-

484 inhibition decreased tumor growth in orthotopic TNBC mouse models through 

significant suppression of cell proliferation and angiogenesis and induction of apoptosis. 

Furthermore, we assessed the HOXA5 expression levels by both WB and PCR and 

observed that miR-484 inhibition significantly increased HOXA5 protein and mRNA 

expression levels by Western blot (Fig. 41) and qRT-PCR analysis (Fig. 42) respectively 

in both tumor models, providing further evidence that miR-484 pro-tumorigenic effect in 

TNBC mouse models is mediated by suppression of HOXA5 in TNBC.  
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Figure 38: miR-484 inhibition decreases Ki-67 expression.  Tumor cell proliferation was 

analyzed by determining Ki-67 expression in tumor tissues by immunohistochemistry.  
Magnification X20. 
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Figure 39: miR-484 inhibition decreases CD31 expression.  Tumor tissue sections were 

analyzed for CD31 expression as a micro-vessel density marker by immunohistochemistry. 
Magnification X20. 
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Figure 40: miR-484 inhibition induces TUNEL positive cells in TNBC mouse models.  
Analysis of in vivo apoptosis induction was performed by the TUNEL assay in TNBC tumor 
xenografts. Magnification×20. 
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Figure 41: miR-484 inhibition increases HOXA5 protein expression levels in TNBC 
orthotopic xenografts.  TNBC tumor cell lysates were analyzed for HOXA5 expression levels 

by Western blot analysis. GAPDH was used as a loading control.  
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Figure 42: miR-484 inhibition increases HOXA5 mRNA expression levels in TNBC 
orthotopic xenografts.  RNA was isolated from TNBC tumor samples and analyzed for miR-

484 expression by qRT-PCR.  miR-484 inhibition increase HOXA5 mRNA expression levels in 
TNBC xenograft tumors. Data is represented as fold change normalized to GAPDH as 
endogenous control.
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DISCUSSION: 

Triple negative breast cancer is a very heterogenous and aggressive BC subtype, that 

lacks specific markers (i.e. ER, PR and HER2) for effective targeted therapy (eg. anti-

estrogens, anti-HER2 therapies) (6, 49).  Currently, TNBC has six different genetically 

defined subtypes, making it highly difficult to identify common molecular targets for 

development of targeted therapies (7).  Several gene expression and miRNA profiling 

studies have been carried out in order to identify particular miRNA signatures in TNBC 

patients (274).   Moreover, several miRNAs have been identified to play a crucial role in 

TNBC carcinogenesis, providing a basis for their possible therapeutic application with 

promising results (274).  Thus, the application of miRNA based therapy represents an 

innovative approach, especially for TNBC patients with limited therapeutic options. 

The key findings in our study is that miR-484 is a clinically significant oncogenic miRNA 

that is highly expressed in TNBC patients and is associated with poor OS and prognosis.  

Additionally, we found that miR-484 acts as an onco-miR by directly binding and 

regulating the expression of the tumor suppressor gene HOXA5 in TNBC.  Our study also 

provides the first evidence that in vivo therapeutic targeting of miR-484 by systemically 

injected anti-miR-484 nanoparticles significantly inhibits tumor growth and induces 

HOXA5 expression in TNBC tumor models.   
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Significance of miR-484 in Cancer 

Certain miRNAs have been shown to behave either as oncogenic or as tumor suppressor 

miRNAs depending on the cellular context (103).  Such is the case for miR-484, as it has 

been reported to either act as a tumor suppressor or oncogenic miRNA depending on the 

cancer type.   

The potential oncogenic role of miR-484 has been previously reported in renal cell 

carcinoma (RCC), where miR-484 was shown to correlate with drug resistance to 

Sunitinib (tyrosine kinase inhibitor) (275, 276).  Patients expressing high miR-484 levels 

had a median time to progression (TTP) of 5.8 months, whereas patients with low miR-

484 expression had a median TPP of 8.9 months.  Although the exact mechanism of 

action of miR-484 in RCC is not yet elucidated, this study suggests that miR-484 may be 

utilized as a potential predictive biomarker in RCC patients treated with Sunitinib.  

Additionally, Wang and colleagues showed that miR-484 targets mitochondrial fission 

protein Fis1, which is induced by anoxia; thereby inhibiting mitochondrial fission and 

apoptosis in cardiomyocytes and in adrenocortical cancer cells (277).  Furthermore, they 

showed that the transcription factor Foxo3a activated miR-484 expression by binding to 

its promoter region, and that this binding was attenuated by anoxia (277).  Other studies 

have also suggested the clinical significance of miR-484 as a diagnostic biomarker in 

cancer.  For example, miR-484 was found to be a predictive biomarker for prostate cancer 

recurrence (278).  Another study reported that miR-484 is a predictive biomarker that is 

highly expressed in metastatic CRC patients treated with combination 5-

flurouracil/oxaliplatin (279).  However, to our knowledge the mechanism of action of miR-

484 in prostate or colon cancer has not been defined as of yet. 
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On the other hand, miR-484 was reported to act as a tumor suppressor miRNA in cervical 

cancer, leading to suppression of proliferation, migration/invasion, and induction of 

apoptosis in vitro.  Mechanistically, ZEB1 and SMAD2 were identified as miR-484 targets 

using predictive algorithms and miR-484 was shown to reduce their expression levels, 

while overexpression of ZEB1 and SMAD2 reversed the events mediated by miR-484 in 

cervical cancer cells (280).  miR-484 was also reported to be among three miRNAs 

implicated in classifying ovarian cancer patient response to chemotherapy (281).  

Moreover, miR-484 was found to modulate the tumor vasuclature by targeting VEGF-B in 

tumor cells and VEGF-R2 in adjacent endothelial cells (281). 

 

Clinical and Functional Significance of miR-484 in Breast Cancer 

Here we report for the first time that miR-484 is highly expressed in TNBC subtype of BC 

patients compared to non-TNBC and normal subtypes.  Moreover, we found that high 

miR-484 expression is correlated with worse OS and prognosis in BC patients.  In support 

of our findings, a previous study found that miRNA-484 is differentially expressed in 

different clinical and molecular subclasses of invasive BC (234).  Utilizing genome-wide 

data for miRNA/mRNA expression and DNA methylation, an integrated survival analysis 

was performed on 466 BC patients.  This analysis revealed a distinct prognostic 

signature, composed of seven miRNAs, including miR-484, and 30 mRNA genes, and 

was successfully validated on eight other BC cohorts (234).   Furthermore,  Zearo and 

colleagues reported that  miR-484 is significantly upregulated in the serum of early BC 

patients, suggesting its potential as an early diagnostic biomarker in BC (235).  Thus, our 

data, complemented by the previous findings highlight the clinical significance of miR-484 
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as a biomarker in BC, and further demonstrated the significance of miR-484 expression 

in TNBC. 

To our knowledge, we are the first to report the functional role of miR-484 in TNBC.  Our 

in vitro functional assays showed that miR-484 inhibition significantly reduced TNBC cell 

viability, cell proliferation, motility/migration, while inducing G1/S cell cycle arrest, and 

apoptosis.   Moreover, opposite effects were observed by the treatment of cells with miR-

484 mimic, providing further evidence for the oncogenic role of miR-484 in TNBC.  In 

support of our findings, Ye and colleagues recently showed that miR-484 is implicated in 

cell proliferation and cell cycle regulation.  In their study, miR-484 overexpression 

promoted cell proliferation and cell cycle progression by targeting cytidine deaminase 

enzyme in gemcitabine resistant BC cells (282).  We also utilized RPPA as an unbiased 

platform to provide us with the proteomic analysis in order to understand the potential role 

of miR-484 in vitro after its overexpression in TNBC cells (239).  The comprehensive 

analysis of the RPPA data unraveled the link between miR-484 and signaling pathways 

involved in apoptosis and cell cycle progression, which we further confirmed by western 

blot analysis. 

 

Deregulated Expression of Tumor Suppressor HOXA5 by Onco-miR-484 in Breast 

Cancer  

 

HOX genes are defined by a DNA-binding domain called the homeodomain which 

encodes for transcription factors that can function to either upregulate or repress the 

transcription of downstream targets.  Numerous studies over the past several decades 

have demonstrated that HOX genes play a crucial role in the  normal temporo-spatial limb 
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(283) and organ (284-286) development along the anterior-posterior (A-P) axis (287).  

Additionally, several studies have also revealed that HOX genes can be aberrantly 

expressed or mutated in many cancers, acting to either promote or suppress tumor 

development (288, 289), by regulating processes such as cell proliferation, angiogenesis, 

apoptosis, and tumor metastasis (290-293).  This aberration could be mainly attributed to 

three main mechanisms: 1) temporospatial deregulation, where HOX gene expression in 

tumors is temporospatially different than in normal tissues; 2) gene dominance, where 

HOX genes are expressed at higher levels in cancer tissues versus normal; and 3) 

epigenetic deregulation in which HOX genes are either downregulated or silenced in 

tumors (288). 

 

HOXA5 is a member of the cluster A family of HOX genes located on chromosome. 

7p15.2 (289).  HOXA5 has been shown to be a key regulator of cell differentiation and 

organogenesis particularly in the axial skeleton, respiratory system, mammary glands, 

and digestive tracts (269).  HOXA5 has also been shown to regulate many processes in 

carcinogenesis namely in breast, lung, colon, ovarian, and hematological malignancies 

(269).   

 

Previous literature suggest that HOXA5 may function as a tumor suppressor in BC.  

HOXA5 expression has been shown to be decreased in almost 60% of BC cell lines, 

which is partially attributed to hypermethylation of the HOXA5 promoter region (261).  

Moreover, reduced HOXA5 expression was found to be correlated with progression to 

higher-grade BC stages (261, 294), further supporting our findings of the association of 
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low HOXA5 with poor OS in BC patients.   In the context of BC, HOXA5 has been shown 

to have a growth suppressive effect by promoting apoptosis in a p53-dependant or 

independent manner.  Raman and colleagues showed that HOXA5 interacts with the p53 

promoter to activate it expression and thus induce p53-mediated apoptosis in MCF-7 ER+ 

BC cells (261).   Additionally, HOXA5 was shown to bind with TWIST (a negative regulator 

of p53), thereby reducing its suppressive effect on p53 in BC cells (271). Alternatively, 

HOXA5 was also shown to induce apoptosis in a p53-independent independent way via 

caspases 2 and 8 (260).  

Other studies have also shown that HOXA5 is involved in retinoic acid (RA) induced 

apoptosis in BC cells, where RA was shown to induce HOXA5 expression to mediate its 

growth suppressive effects.  Furthermore, a follow up study revealed a post-

transcriptional modulation of RA-induced HOXA5 expression, where miR-130a and the 

RNA binding protein-human antigen R were found to be involved in HOXA5 upregulation 

following RA treatment (295).   

 

Furthermore, Teo and colleagues defined the role of HOXA5 in maintaining certain 

molecular features such as cell-cell adhesion and markers of differentiation in mammary 

epithelial cells.  In their study, reduced HOXA5 expression was shown to increases the 

self-renewal capacity and the acquisition of a more aggressive phenotype in mammary 

epithelial cells, via a reduction in E-cadherin and CD24 levels, whereas HOXA5 

overexpression promoted the differentiation of the progenitor population to a more 

differentiated state (296).   
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Utilizing our miRNA target prediction strategy, we identified HOXA5 as a target for miR-

484, and demonstrated that miR-484 directly binds to the HOXA5 3’-UTR to negatively 

regulate its expression.  Furthermore, we showed that miR-484 is inversely correlated 

with HOXA5 expression in BC patients and cell lines, suggesting that high expression of 

miR-484 in BC patients, particularly in TNBC patients, may be one of the major causes 

that contribute to the suppression of HOXA5 tumor suppressor gene.  In agreement with 

previously published data (260, 261), we found that HOXA5 over expression promoted 

cell death through apoptosis, which was associated with an increase in the active forms 

of caspase-2 and capsase-8.  Furthermore, the growth inhibiting effects of HOXA5 were 

reversed with ectopic overexpression of miR-484 in TNBC cells.  Moreover, we also 

showed that HOXA5 overexpression recapitulated the effects of miR-484 inhibition on cell 

cycle progression, whereby we observed the inhibition of  cell cycle proteins including 

cyclin D1, cyclin E1, as well as CDK4 which is being targeted by novel inhibitors in the 

clinical trials (297).  Since p53 is mutated in almost 80% of TNBC patients (298)  and the 

TNBC cell lines used in our study (MDA-MB-231, MDA-MB-436, and BT-20) harbor p53 

mutations (299), it is possible that HOX5 mediated effects may mostly be mediated 

through p53 independent mechanisms. 

 

Aberrant HOXA5 and miR-484 levels were also reported in other cancer types besides 

BC, suggesting the existence of a possible regulatory pathway in other tumors.  For 

instance, HOXA5 expression levels were found to be reduced in non-small cell lung 

cancer (NSCLC) patients, where HOXA5 was shown to induce cell proliferation by 

upregulating Cdkn1a, encoding the cyclin-dependent kinase inhibitor p21 (300-302).  
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Interestingly, miR-484 was shown to promote NSCLC oncogenesis through inhibiting 

apoptotic protease activating factor (Apaf-1) associated with the suppression of apoptosis 

(303).  However, whether miR-484 function in NSCLC is also via targeting HOXA5 levels 

would be a point of further investigation.   

 

miR-484 was also reported to be highly expressed in serum of colorectal cancer (CRC) 

patients, with its highest expression in the later stages (III-IV) (279, 304), suggesting that 

it may function as an oncogenic miRNA in CRC.  On the contrary, HOXA5 levels were 

shown to be downregulated in CRC tumors, which was associated with upregulation of 

the Wnt/β-catenin pathway.  Moreover, HOXA5 overexpression in CRC lead to reduction 

of their self-renewal capacity via inhibition of Wnt signaling, along with reduction in tumor 

size and metastasis (305).   

 

HOXA5 expression was also found to be lost in angiogenic endothelial cells of the tumor 

vasculature, suggesting the role of HOXA5 in suppressing tumor angiogenesis.  Previous 

studies reported that HOXA5 overexpression was found to inhibit the expression of pro-

angiogenic factors such as VEGFR2, while inducing the anti-angiogenic factor 

Thrombospondin-2 (TSP-2) (306).  Additionally, restoring the expression of HOXA5 also 

inhibited angiogenesis in brain hemangiomas in mice, which was associated with 

increased TSP-2 and reduced hypoxia inducible factor 1 (HIF-1α) expression levels (307).  

In our study, our RPPA analysis revealed that miR-484 induces HIF-1α expression in 

TNBC, one of the major drivers of oncogenesis.  Additionally, we found that in vivo 

inhibition of miR-484 reduced angiogenesis in TNBC tumor xenografts, which was 
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associated with an increase in HOXA5 expression levels.  Collectively, these data 

suggest that miR-484 may promote angiogenesis in TNBC, and the possible existence of 

a regulatory pathway between miR-484 and HOXA5/HIF-1α in modulating angiogenesis 

in TNBC, could be a point of further exploration. 

 

miR-484 as a Novel Molecular Target in TNBC 

Since numerous studies have demonstrated that miRNAs are aberrantly expressed in 

many cancers, and have the ability to regulate multiple cancer-related genes and 

pathways simultaneously, the use of miRNA based therapies represents a promising 

therapeutic approach against cancer (308).  Indeed several miRNAs are currently in 

clinical development or are being evaluated in clinical trials as a therapeutic modality 

against cancer (203).  

One of the key findings in our study is that in vivo therapeutic targeting of miR-484 by 

systemically injected anti-miR-484 nanoparticles significantly inhibits tumor growth in 

TNBC tumor models, with no sign of toxicity during 4 weeks of treatment.  Considering 

the clinical significance and broad expression of miR-484 in TNBC cell lines and BC 

patients (non-TNBC and TNBC tumors), miR-484 represents an excellent molecular 

target in BC especially in the TNBC subtype. 

A major obstacle in the field of miRNA-based cancer therapy is developing a safe and 

effective systemic delivery of therapeutic miRNAs in vivo.  Some obstacles that hinder 

successful miRNA delivery in vivo include degradation by enzymatic nucleases, as well 

as poor cellular uptake, and poor stability (309). 
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Thus, the ideal delivery system for miRNAs or miRNA antagomirs should provide 

sufficient target binding that is tumor tissue specific, and be packaged in a carrier that is 

biodegradable and non-immunogenic (225).  One such strategy that has been extensively 

investigated in the field of RNA interference is the use of nanocarriers.  Nanoparticles are 

submicron in size, usually made up of natural or synthetic lipids or polymers, that can be 

utilized to deliver various cargos such as drugs and oligonucleotides in vivo (230).  

Nanoparticles also offer the advantage that they can be coated with high-affinity ligands 

for tumor-specific receptors to achieve controlled and/or sustained delivery (308). 

Liposomal nanoparticles are among the favorable options for systemic miRNA delivery in 

vivo. (230).  Advantages of these nanoliposomes include their biocompatible and 

biodegradable characteristics, and lack of any apparent toxicity (230).  Several studies 

have shown that incorporation of miRNA mimics/inhibitors in neutral nanoliposomes 

achieved significant reduction in tumor volume and altered the expression of target genes 

in many cancer models including subcutaneous xenografts and orthotopic tumor models 

(161, 237, 310).   Moreover, neutral nanoliposomes did not cause any detectable distress 

or toxicity and were found to be safe in mice (161).   

In our study, we provide the first evidence that in vivo therapeutic targeting of miR-484 by 

nanoliposomes made of DMPC successfully delivered anti-sense miR-484 and reduced 

miR-484 expression in orthotopic TNBC mouse models as detected by qRT-PCR.  

Furthermore, mice treated with miR-484 inhibitor showed an increased expression of 

HOXA5, as well as reduced intra-tumoral proliferation and angiogenesis, and induction of 

apoptosis.  Additionally, we observed a significant inhibition in tumor growth in the miR-
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484 targeted group compared to controls, with no observed side effects, suggesting that 

miR-484 could be a potential therapeutic target in TNBC.  Mechanistically, given the 

previously described role of HOXA5 in inducing apoptosis in BC cells in vitro (260, 261), 

as well as it anti-angiogenic effect on endothelial cells (306, 311), the observed miR-484 

effects in vivo may be in part via induction of HOXA5 expression. 

 

In conclusion, our study provides new insight into the role and mechanism of action of 

miR-484 in TNBC as a potential molecular target, which can further be utilized to develop 

safe and effective miRNA-based therapies for TNBC patients with limited therapeutic 

options.  Collectively, our in vitro and in vivo data, as well as the protein array results 

suggest that miR-484 promotes tumor growth, invasion, metastasis, and progression in 

TNBC cells by regulating multiple oncogenic pathways.  The key findings for our three 

specific aims are summarized in Figure 43.  Thus, our data suggest that miR-484 may 

function as an “onco-miR” in TNBC and may therefore serve a potential therapeutic target.   
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Figure 43: Summary of the key findings depicting the role and mechanism of action 
of miR-484 in TNBC.
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CHAPTER V: 

FUTURE DIRECTIONS 
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Evaluating the role of miR-484 and HOXA5 in other breast cancer subtypes: 

One of the critical findings in our study is that miR-484 is significantly associated with 

poor OS in BC patients.  According to our TCGA analysis we also found that miR-484 is 

upregulated in all BC subtypes compared to matched normal tissues, with the highest 

expression in the TNBC subtype.  Furthermore, we showed that HOXA5 and miR-484 

expression levels are inversely correlated in BC patients and cell lines, suggesting that 

miR-484 may also promote tumor growth and progression in other BC subtypes by 

targeting HOXA5.  Therefore, further evaluation of role of  miR-484 in other BC tumors 

and whether it functions by targeting HOXA5 may be investigated. 

 

Determining the mechanism of aberrant miR-484 expression in Breast Cancer: 

Aberrant miRNA expression could be due to genetic, epigenetic factors, or factors that 

affect miRNA biogenesis/processing (312).  However, the causes for dysregulation of 

miR-484 expression in TNBC are currently not known.  miRNA transcription can be 

activated by transcription factors that bind to its promoter region.  In search for possible 

transcription factors on the miR-484 promoter region (biobase.mdanderson.edu), we 

found that Nuclear Factor Kappa-B (NF-kB) (Rel A p65 subunit) has multiple predicted 

binding sites on the miR-484 promoter region (data not shown).   NF-kB is a transcription 

factor that is involved in almost all aspects of human cancer (313, 314), and represents 

a key regulator of TNBC (315, 316).  Moreover, NF-kB has been implicated in the 

dysregulated expression of many miRNAs (317).  Thus, further confirmation by CHIP 

assay of whether NF-kB directly binds to the miR-484 promoter to regulate its expression 

could be investigated.  
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Further confirmation that miR-484 mediated events in TNBC are through down 

regulation of HOXA5: 

In this study we showed that inhibition of miR-484 in TNBC cells significantly reduced cell 

proliferation, motility/invasion, and induced cell cycle arrest and apoptosis.  On the other 

hand, miR-484 overexpression resulted in increased cell proliferation, survival, motility 

and invasion, suggesting that it functions as an oncogenic miRNA in TNBC.  Furthermore, 

we identified HOXA5 as a direct target of miR-484 and found that miR-484 directly binds 

to the 3’-UTR of HOXA5 to negatively regulate its expression.   Additionally, HOXA5 over-

expression recapitulated the effects of miR-484 inhibition on apoptosis induction, while 

miR-484 overexpression reversed this effect, suggesting that miR-484 mediates its 

effects through HOXA5 suppression.  However, further examination of whether miR-484 

effects on cell proliferation, motility, and invasion are through HOXA5 downregulation 

should be considered.  Thus, determining whether siRNA mediated knockdown of HOXA5 

can recapitulate miR-484 effects in TNBC could be examined. 

Analysis for in vivo toxicity of Anti-miR-484 treatment in TNBC mouse models: 

In our study, no significant changes in mouse body weights, nor changes in behavioral or 

eating habits were detected during the 4 weeks of the treatment of mice, suggesting that 

anti-miR-484 therapy exerted no or limited side effects.  However, further confirmation by 

clinical biochemistry analyses for mice treated with either miR-484 inhibitor or control 

inhibitor nanoliposomes should be compared.  This can include biochemical parameters 

for kidney, liver, and blood toxicity such as, blood urea nitrogen, glucose, aspartate 
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aminotransferase, alanine aminotransferase, creatinine, total bilirubin, and lactic 

dehydrogenase. 

Further confirmation of miR-484 oncogenic effects in TNBC mouse models:    

We showed that treatment with miR-484 inhibitor reduced tumor growth, proliferation, and 

angiogenesis, and induced apoptosis in TNBC mouse models.  Moreover, we observed 

that these effects were associated with increased HOXA5 expression levels.  However, 

further confirmation of the oncogenic effects of miR-484 can be explored by injecting mice 

with miR-484 mimic to determine its effects on proliferation, angiogenesis, and apoptosis 

would be warranted.  Additionally, tumor samples from mice treated with either miR-484 

inhibitor or mimic can be evaluated for the proliferation, angiogenesis, and apoptosis 

markers by western blot. 

Determining the effect of miR-484 inhibition in combination with standard 

chemotherapy in TNBC: 

According to our in vitro and in vivo results, miR-484 promotes tumor growth and 

progression in TNBC and therefore represents a potentially novel therapeutic target. 

However, further evaluation of combining miR-484 inhibitors with standard 

chemotherapeutics could be evaluated in order to determine a possible synergistic effect 

and maximize treatment efficacy.  Our preliminary experiments have shown that 

combination of miR-484 inhibitor with standard chemotherapeutics such as paclitaxel or 

doxorubicin significantly reduced TNBC cell proliferation than either mono therapies (data 

not shown).  Therefore, further investigation of whether miR-484 increases doxorubicin 

or paclitaxel sensitivity in TNBC cells may be explored.
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Table 3: Antibodies used in Western Blot analysis 

Target Protein Source 
Catalog 
Number 

Application 

GAPDH Cell Signaling Technology 5174 WB, IHC, IF 

HOXA5 Santa Cruz 365784 WB, IP, IF 

Caspase-2 Cell Signaling Technology 2224 WB 

Caspase-8 Cell Signaling Technology 9746 WB, IP 

Cleaved 
Caspase-8 

Cell Signaling Technology 9496 WB, IHC, IF 

Caspase-3 Cell Signaling Technology 9662 WB, IHC, IP 

PARP Cell Signaling Technology 9532 WB, IP, IF 

p-FAK (pY397) B&D Biosciences 611722 WB 

FAK B&D Biosciences 610087 WB 

p-SRC (Tyr416) Cell Signaling Technology 2101 WB 

SRC Cell Signaling Technology 2109 WB, IHC, IF, IP 

CDK2 Cell Signaling Technology 2546 WB, IP 

CDK4 Cell Signaling Technology 12790 WB, IHC, IF 

CDK6 Cell Signaling Technology 13331 WB, IP 

Cyclin D1 Cell Signaling Technology 2978 WB, IHC 

Cyclin E1 Cell Signaling Technology 20808 WB 

p21 Cell Signaling Technology 2947 WB, IHC, IP, IF 

p27 Cell Signaling Technology 3686 WB, IP, IF 

 

 

https://www.cellsignal.com/products/primary-antibodies/caspase-3-antibody/9662?site-search-type=Products&N=4294956287&Ntt=caspase+3&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/parp-46d11-rabbit-mab/9532?site-search-type=Products&N=4294956287&Ntt=parp&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/src-36d10-rabbit-mab/2109?site-search-type=Products&N=4294956287&Ntt=src&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/cdk2-78b2-rabbit-mab/2546?site-search-type=Products&N=4294956287&Ntt=cdk2&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/cdk4-d9g3e-rabbit-mab/12790?site-search-type=Products&N=4294956287&Ntt=cdk4&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/cdk6-d4s8s-rabbit-mab/13331?site-search-type=Products&N=4294956287&Ntt=cdk6&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/cyclin-d1-92g2-rabbit-mab/2978?site-search-type=Products&N=4294956287&Ntt=cyclin+d1&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/cyclin-e1-d7t3u-rabbit-mab/20808?site-search-type=Products&N=4294956287&Ntt=cyclin+e1&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/p21-waf1-cip1-12d1-rabbit-mab/2947?site-search-type=Products&N=4294956287&Ntt=p21&fromPage=plp
https://www.cellsignal.com/products/primary-antibodies/p27-kip1-d69c12-xp-rabbit-mab/3686?site-search-type=Products&N=4294956287&Ntt=p27&fromPage=plp
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Table 4: Oligonucleotide sequences for quantitative reverse transcription 
polymerase chain reaction 

Target 

Gene 
Forward Sequence Reverse Sequence 

HOXA5 5’-AGTCATGACAACATAGGCGGC-3’ 
5’-CGGGTCAGGTAACGGTTGAA-

3’ 

GAPDH 5’-CAAGGTCATCCATGACAACTTTG- 3’ 
5’-GTCCACCACCCTGTTGCTGTA 

G-3’ 
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Table 5: Experimentally verified targets for miR-484 by miRWalk2.0  

 

RefseqID Gene 

NM_000702 ATP1A2 

NM_152272 CHMP7 

NM_020699 GATAD2B 

NM_005523 HOXA11 

NM_019102 HOXA5 

NM_001004317 LIN28B 

NM_000254 MTR 

NM_003204 NFE2L1 

NM_002616 PER1 

NM_024297 PHF23 

NM_138300 PYGO2 

NM_031459 SESN2 

NM_144582 TEX261 

NM_013390 TMEM2 

NM_005781 TNK2 

NM_017590 ZC3H7B 
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