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Millions of people in low- and middle- income countries (LMICs) are without access to 

radiation therapy and as rate of population growth in these regions increase and lifestyle 

factors which are indicative of cancer increase; the cancer burden will only rise. There are a 

multitude of reasons for lack of access but two themes among them are the lack of access to 

affordable and reliable teletherapy units and insufficient properly trained staff to deliver high 

quality care.  The purpose of this work was to investigate to two proposed efforts to improve 

access to radiotherapy in low-resource areas; an upright radiotherapy chair (to facilitate low-

cost treatment devices) and a fully automated treatment planning strategy.  

A fixed-beam patient treatment device would allow for reduced upfront and ongoing 

cost of teletherapy machines.  The enabling technology for such a device is the 

immobilization chair.  A rotating seated patient not only allows for a low-cost fixed treatment 

machine but also has dosimetric and comfort advantages. We examined the inter- and intra- 

fraction setup reproducibility, and showed they are less than 3mm, similar to reports for the 

supine position. 

The head-and-neck treatment site, one of the most challenging treatment planning, 

greatly benefits from the use of advanced treatment planning strategies. These strategies, 

however, require time consuming normal tissue and target contouring and complex plan 

optimization strategies. An automated treatment planning approach could reduce the 

additional number of medical physicists (the primary treatment planners) in LMICs by up to 
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half.  We used in-house algorithms including mutli-atlas contouring and quality assurance 

checks, combined with tools in the Eclipse Treatment Planning System®, to automate every 

step of the treatment planning process for head-and-neck cancers. Requiring only the patient 

CT scan, patient details including dose and fractionation, and contours of the gross tumor 

volume, high quality treatment plans can be created in less than 40 minutes. 
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Chapter 1: Introduction 

Cancer is a worldwide and growing epidemic; projected to kill nearly 13 million people 

by 2030. It is a fallacy that cancer is a disease only of the developed world; the most recent 

statistics showed more than two thirds of cancer-related deaths occur in low- and middle-

income countries (LMICs)(1). As the population of LMICs ages and as risk factors such as 

smoking, poor dietary habits, and sedentary lifestyles increase, the cancer burden will only 

rise(2).  

Though colloquially referred to as a single disease, cancer is a class of diseases 

which share common traits, and, therefore, the treatment of cancer is necessarily very varied. 

Treatment options often involve one or more of three common techniques; surgery, 

chemotherapy, and/or radiation therapy. Surgical intervention has the longest history with 

records dating back to Greek physicians in the first and second centuries A.D.(3) and may be 

required for up to 80% of cancer patients(4). Surgery, however, is often insufficient for 

metastatic disease. Chemotherapy, introduced at the beginning of the 20th century, uses 

drugs to combat cancer growth and spread at the molecular level and can only be 

administered if sufficient laboratory facilities are also available (5). Finally, radiation therapy, 

introduced at the end of the 19th century and available for both the palliative and curative 

treatment of cancer uses energetic subatomic particles due induce DNA damage and kill 

cancer cells(6). Radiotherapy is required for the treatment of more than 50% of the cancer 

population (7).  

Radiation and its use in medicine have been intertwined from the start; in late 1895 

Wilhelm Röntgen designed an experiment to identify the source of flouresence on a painted 

cardboard screen and it was only two weeks later he took the famed first radiograph of his 

wife’s hand, which he included in the first manuscript describing this new kind of rays(8). The 

use of radiation to treat cancers came shortly thereafter, for stomach cancer in 1896, for basal 
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cell carcinoma in 1899, and many others to follow(9). Radiation therapy has advanced quickly 

since its introduction and an improved understanding of how to harness the biological effect of 

radiation on cancer cells, improvements in the safe and accurate delivery of radiation 

throughout the body, and, more recently, advances in computing power and have led to rapid 

changes in treatment delivery and improved patient outcomes. 

Radiation therapy has been shown to be cost-effective for both palliative and curative 

cancer treatment in LMICs (10, 11); one study showed that the cost of an entire course of 

radiation therapy in Senegal is only $300USD (12). However, due in part to the substantial 

capital investment and the ever-increasing pace of technological advancements, the practice 

of radiation oncology in developed and less developed regions rapidly is rapidly diverging. In 

low- and middle-income countries, defined as those countries with a gross national income 

per capita less than $12,235 USD and where 84% of the world’s population (13) and 57% of 

the cancer population lives(1), there exist only 30% of the world’s radiation therapy equipment 

(14). It is not only the equipment for treatment that is lacking – so too are trained personnel 

required to safely and effectively deliver treatment. It is estimated that by 2020 LMICs will 

need an additional 9,169 radiation therapy machines (3.2 times what was available in 2014), 

9,915 medical physicists (3.9 times 2014 availability), 12,149 radiation oncologists (2 times 

2014 availability), and 29,140 radiation therapists (3.7 times 2014 availability)(15). In order to 

bridge the gap in cancer care around the world, and to provide safe, effective, and possibility 

lifesaving treatment to 6.3 million people, urgent and innovative solutions are needed. 

In order to address the overwhelming demand for radiotherapy, a multi-thronged 

approach is necessary. Efforts should seek to utilize technology and ideas at the forefront of 

the field, should be developed in concert with professionals for which the solutions are aimed, 

and should utilize and build upon previous efforts. Current initiatives underway to bridge the 

gap in radiotherapy needs worldwide include efforts to provide necessary equipment and 

ancillary supplies to less developed regions, programs for the training (initial and ongoing) of 
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radiotherapy professionals, systems for peer-to-peer collaborations which encourage 

professional growth and promote high quality care, the development of low-cost and effective 

solutions, and there are many others. Despite these efforts, there remains a significant 

challenge to provide radiotherapy services worldwide. The work herein represents two 

proposed efforts; an upright radiotherapy chair and a fully automated treatment planning 

strategy. 

An Upright Radiotherapy Chair 

 External beam radiation therapy machines have been in use since the 1950s and 

early treatments had reports of patients treated in lying, seated, and standing positions (16, 

17). The invention of the computed tomography (CT) scanner in 1972 gave physicians the 

ability to accurately visualize each patient’s anatomy and, in the context of radiation therapy, 

optimize treatment delivery. The incorporation of CT image acquisition for treatment planning 

represented a breakthrough in radiation therapy and the acquisition of pre-treatment CT 

scans for use in treatment planning has become routine practice in radiation oncology clinics. 

The orientation of CT scanners is such that the patient lies, generally supine, on a treatment 

couch inside a bore with a diameter of up to 90cm (18), and this effectively requires that 

radiation treatment plans are developed for and delivered to patients in a lying position. 

Further, it requires that teletherapy machines accommodate this treatment position. 

Unfortunately, some patients, particularly those with head-and-neck or lung cancers, may 

develop orthopnea, dyspnea, dysphagia, or other conditions that make lying flat for the 

duration of treatment difficult or impossible. Further, it has been shown that dosimetric 

advantages can be had in other position; for example, when patients assume a seated or 

upright position lung volume and motion are reduced, allowing for sparing of normal tissues 

and fewer radiation-induced symptoms (19-21). 
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To accommodate the lying position during treatment delivery radiotherapy machines 

most commonly feature a rotating gantry around a stationary isocenter and this contributes 

greatly to the considerable cost of teletherapy units. In an effort to reduce the cost of 

teletherapy treatment machines and with added benefits of patient comfort and limited 

dosimetric improvement; we propose the development and validation of a treatment chair for 

use in radiation therapy. The use of treatment chair which rotates around the patient’s axis 

would allow for a fixed radiation field and tremendously reduce machine cost. In addition, 

such a treatment paradigm would allow for a reduction in cost due to shielding, set-up, 

treatment delivery, machine downtime, and other factors of which are currently under 

investigation (22-24). This lower cost machine is of interest to machine vendors and would be 

highly applicable in areas with limited resources. 

 The work herein represents an important step in the assessment of the clinical utility of 

a radiotherapy treatment chair; set-up reproducibility. As radiation treatment often occurs in 

small fractions over the course of many weeks and the prescribed treatment is developed 

from a single pre-treatment image it is critical that the patient be positioned in very similar 

positions each day; this is known as inter-fraction set-up reproducibility. Further, as radiation 

treatment, especially advanced techniques, may take more than ten minutes for delivery(25) it 

is important the patient maintains the same position for the duration of treatment; this is 

known and intra-fraction reproducibility. Both inter- and intra- fraction reproducibility are 

important aspects when considering the implementation of new patient positions into clinical 

practice. The traditional supine position has been shown to have inter- and intra- fraction 

reproducibility less than 5mm on average for treatment of the breast (26, 27), prostate (28), 

head and neck (29), and whole brain (30). The main goal of this study was to assess the 

setup reproducibility of a novel treatment chair design, paving the way for clinical use and 

supporting further investigation into a fixed-beam low-cost radiotherapy treatment machine.  
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Automated Treatment Planning 

Treatment planning is a mainstay in the field of radiation oncology. During the required 

treatment planning process a representation of the patient, most often a simulation CT, is 

used to design or select beam arrangements, shapes, energies, and combinations which will 

best deliver the prescribed therapeutic dose to the target volume while sparing as much 

normal tissue possible. The practice of treatment planning has evolved quite dramatically in 

the past thirty years. In the 1990s the practice of acquiring a computed tomography scan of 

the patient, on which the target and organs at risk are delineated and the dose delivery is 

visualized and optimized, became common practice. Compared to conventional techniques, 

3D conformal treatment allowed tumor dose to be escalated without a significant increase in 

normal tissue dose (31), thus improving tumor control (32, 33) while reducing normal tissue 

complication (34). The use of 3D conformal techniques did, however, also increase the cost, 

complexity, burden on equipment and personnel, and time needed to plan and deliver 

radiation therapy (31, 35, 36).  

Treatment planning and delivery further improved with the introduction of intensity 

modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) which rely 

on the use of non-uniform beam fluences and an inverse approach to the dose optimization 

problem. Through the use of optimization criteria and a search algorithm beam parameters 

are optimized in order to meet the constraints set by the user through the minimization (or 

maximization) of an objective function. The beam fluence variations in IMRT and VMAT offer 

distinct advantages over simpler beam shaping devices for irregularly shaped targets and 

those in close proximity to critical organs at risk. The advantages of these advanced 

techniques is underlined in the treatment of cancers in the head-and-neck. Cancers in this 

region are in close proximity of up to 25 organs at risk, and advanced planning techniques 

have been shown to significantly increase planned target coverage and conformality while 
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decreasing normal tissue complications including xerostomia and fibrosis (37-40). More than 

two thirds of the head-and-neck cancer population lives in less developed regions(1) where 

access to these advanced techniques is severely limited and while, for many clinics, the lack 

of advanced equipment is the primary barrier in the delivery of advanced treatments, there 

are many others for whom the machinery exists but treatment delivery is limited due to 

staffing considerations, this is the scenario for our partner clinics in South Africa and the 

Philippines. 

In low-resource areas the time and cost required for treatment planning, especially for 

these advanced techniques, contribute to the limited number of patients able to receive 

advanced treatment (41). The cost of personnel, including highly skilled treatment planners, 

while less than in high-income countries, represent 10% of the total cost of radiotherapy (6). 

Combined with the well documented “brain drain” on human resources in low-income areas 

(42) the need for tools which can relieve part of the staffing burden while maintaining a 

standard of care is tremendous. 

The increasing complexity of treatment planning has also brought other challenges. 

Complex treatments often involve many decisions and tradeoffs during the planning process 

and it has been shown that every IMRT and VMAT treatment plan may not offer the same 

benefits; in a study on treatment plan quality investigators found the plan quality was not 

significantly correlated with the treatment planning system, modality of delivery, plan 

complexity, education or certification of the planner, planner confidence or experience, the 

number of beams, or the number of monitor units. Instead, it was concluded, plan quality was 

most contributable to general “planner skill” (43). An automated planning strategy may also 

standardize treatment plan quality which are prone to significant variability; this variability 

represents a significant challenge when comparing patient outcomes (44) and when 

optimizing plan delivery parameters. Additionally, these advanced IMRT and VMAT 
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techniques come with a significant increase in technical burden including infrastructure 

required for plan development, quality assurance checks, and delivery.  

We propose a solution which would automate the treatment planning process for 

head-and-neck cancers; removing a time intensive aspect of the treatment planning process; 

standardizing treatment across patients, and relieving highly trained staff for other duties, 

ultimately reducing the tremendous deficit in the numbers of these staff. 

Automated methods are emerging throughout the radiotherapy process. From beam 

commissioning to patient plan checks, researchers and vendors alike are exploring 

automated methods of improving radiotherapy (45, 46), and this includes treatment planning 

(47-49). At the forefront of automated plan optimization is knowledge based planning (KBP) 

which uses information gathered from previously treated patients to generate treatment plans 

for new patients and was first reported in 1990 for its potential to organize and harness the 

current state of knowledge of treatment planning in order to improve treatment planning (50). 

With technological advancement and improved computing power, the interest in KBP has 

increased dramatically and has found recent success in the planning of breast, prostate and 

head-and-neck cancer showing an improvement in plan quality and a reduction in plan 

variability (51-54). Unfortunately, these studies fall short of full plan automation, as often 

these KBP algorithms require manual inputs. One of the most time intensive requirements of 

advanced planning techniques is the delineation of normal tissues and targets. The automatic 

contouring of these structures is an area of ongoing research; technologies ranging from 

traditional atlas based deformable solutions to newer deep learning pixel-wise classification 

methods are finding success in the contouring of both normal tissues and targets for a variety 

of treatment sites (55-57). These approaches, however are limited in scope and are not fully 

integrated into routine clinical practice. The full validation of automatic contouring for clinical 

use and oversight of the use of an autocontouring technique in an automated treatment 

planning system has not yet been presented in the literature. Together automatic plan 
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optimization and autocontouring represent a majority of the tasks required for treatment 

planning. 

Ideally, a fully automated planning approach would eliminate the need for human 

intervention, would produce clinically acceptable or superior plans, would include methods to 

assure the quality and safety of each step, and would do so while reducing the time and 

human effort needed for planning. Such an automated planning technique would not only be 

tremendously helpful in low resource areas but would prove an essential tool in all clinics, 

may improve the standard of care, and would be a reliable tool for comparing planning 

techniques within and among patients. 

Towards realizing the benefits of full automation in treatment planning, we propose a 

fully automated treatment planning approach for head-and-neck cancer. This system would 

decrease the time required to generate a high quality plan, would reduce the training needed 

for plan production, would reduce plan variability, and may facilitate the transition to advanced 

planning techniques. We envision a system for which the user must only provide an approved 

CT scan, patient information including information about the prescribed dose and 

fractionation, and the identification of the primary target through the contouring of either a 

high dose CTV or gross tumor volume(s) including both the primary and nodal disease as 

indicated. The system would then use this information to generate a treatment plan through 

many, validated steps including plan preparation, automatic contouring of normal tissues, 

automatic contouring of target volumes, plan optimization, dose calculation, and plan 

finalization. Secondary and independent checks of each step should be implemented for 

redundancy and to ensure the safe use of an automated system. An overview of the system 

can be seen in Figure 1. The work herein represents validation and development of three key 

components, the knowledge based plan optimization, the contouring of normal tissues and 

the generation of targets volumes.
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Figure 1. Schematic of the proposed automatic treatment planning strategy. Presented in this work are the development and validation 

of automatic contouring of both normal tissues and targets and the knowledge based plan optimization technique and associated quality 

assurance checks.
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Chapter 2: Purpose and Central Hypothesis 

Central Hypothesis 

Equipment can be developed which may partially alleviate the staff and infrastructure burden 

of radiotherapy in low- resource settings and are feasible and clinically appropriate. 

Specific Aim 1: An Upright Radiotherapy Chair 

Aim: To preclinically validate the use of an upright radiotherapy chair for head-and-neck 

patients 

Hypothesis: An upright radiotherapy chair has clinically acceptable inter- and intra- fraction 

reproducibility  

Experiment 1.1: Establish the inter- and intra- fraction setup variation of an upright 

radiotherapy chair 

Experiment 1.2: Assess patient experience in an upright radiotherapy chair 

Specific Aim 2: A Fully Automated Treatment Planning Strategy 

Aim: To develop and validate a single optimization treatment planning strategy for the head-

and-neck 

Hypothesis: Single optimization head and neck treatment plans perform with equal quality to 

clinically acceptable plans and 90% are accepted by radiation oncologists for use without edit. 

Experiment 2.1: Quantitative and physician review of treatment plan quality 

Specific Aim 3: Automatic Delineation of Normal Structures in the Head-and-

Neck 

Aim: The assess the feasibility of the use of automatically contoured normal structures in the 

head and neck in a fully automated treatment planning strategy 
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Hypothesis: Automatically contoured normal structures can be used for treatment planning 

purposes without significant impact on plan quality. 

Experiment 3.1: Evaluation of automatic contouring algorithms for normal structures 

in the head and neck 

Experiment 3.2: Clinical use of an autocontouring algorithm for normal structures in 

the head and neck 

Experiment 3.3: Development of a random forest model for assessment of 

anatomical errors in autocontours of normal structures in the head and neck 

Experiment 3.4: Assessment of dosimetric impact of using autocontoured normal 

structures for treatment planning in the head and neck 

Specific Aim 4: Automatic Delineation of Target Volumes in the Head-and-Neck 

Aim: To assess the feasibility of the use of automatically countered intermediate and low 

dose target volumes in the head and neck 

Hypothesis: Automatically contoured clinical target volumes can safely be safely used for 

treatment planning purposes. 

Experiment 4.1: Quantitative and physician review of an automatically contoured 

clinical target volumes in the head and neck 

Experiment 4.2: Assessment of dosimetric impact of using autocontoured clinical 

target volumes for treatment planning in the head and neck 

Experiment 4.3: Development of a method to ensure quality of autocontoured clinical 

target volumes 
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Chapter 3: An Upright Radiotherapy Chair 

A substantial portion of this chapter is written or based on the following publication: 

McCarroll RE, Beadle BM, Fullen D, Balter Pa, Followill DS, Stingo FC, Yang J, Court LE. 

Reproducibility of patient setup in the seated treatment position: A novel treatment chair design. 

Journal of Applied Clinical Medical Physics. DOI: 10.1002/acm2.12024 Volume 18, Issue 1, Pages 

223-229 © John Wiley & Sons 

The permission for reuse of this material was obtained from John Wiley & Sons ©. 

 

In this chapter we describe the results for Specific Aim 1 which pertains to the 

development and clinical validation of an upright treatment approach. Our working 

hypothesis is that an upright radiotherapy chair has clinically acceptable inter- and 

intra- fraction reproducibility equal to or less than that in the traditional supine position. 

Introduction 

The majority of patients treated with radiation therapy are positioned supine on the 

treatment couch, with a small proportion prone. These positions are supported by decades of 

experience and are suited for the routine practice of 3-dimensional treatment planning with 

imaging from computed tomography (CT) scanners which utilize horizontal bores. However, 

some patients, particularly those with head-and-neck or lung cancers, may develop 

orthopnea, dyspnea, dysphagia, or other conditions that make lying flat for the duration of 

treatment difficult or impossible. Further, an upright treatment allows for an increase in lung 

volume and decrease in lung motion which allow for the sparing of normal tissues and fewer 

radiation-induced symptoms (19-21). In addition to the comfort and dosimetric advantages of 

treatment in the upright position, this treatment position could allow for the development of a 

treatment paradigm centered on a fixed treatment beam and seated rotating radiotherapy 
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patient. This delivery approach would prove advantageous in the development of a low-cost 

linear accelerator system, applicable to low- and middle- income countries. Advantages of this 

approach in terms of cost, shielding, set-up, treatment delivery, machine downtime, and 

others factors are under investigation (22-24). Interest from vendors in a fixed beam system 

has further supported this work.  

Historically, chairs for radiation therapy are used primarily as an exception for patients 

unable to tolerate the lying position and have involved temporary replacement of the 

treatment couch with an upright unit(58-60) Additionally, these previous studies are from an 

era in which treatment planning was carried out primarily using 2D image acquisition(61-63) 

and margins which were much more tolerant of positional inaccuracies. The degree of these 

uncertainties is not well documented in the literature; only one description of an upright 

system included an assessment of the reproducibility of patient position(61) and found that for 

all patients shifts of the treatment blocks of at least 5mm were required. 

Concerning treatment planning in the upright position, traditional CT scanner 

geometries do not allow for image acquisition in the seated position. Recent studies, however, 

have explored the feasibility of acquiring cone beam CT (CBCT) scans of seated patients 

using the on-board imaging capabilities of modern medical linear accelerators by positioning 

the gantry at 0° degrees, and then rotating the patient couch instead of the gantry (64, 65). 

Studies have also demonstrated the feasibility of using cone beam CT images acquired at the 

treatment unit for treatment planning (64, 66-68).  This work supports our expectation that we 

will soon be able to take CBCT images of patients in an upright position for the purpose of 

treatment planning, by rotating the treatment couch. It has been reported that acquisition of a 

field of view of 40 cm x 26 cm at isocenter is possible (64).  

Given the above, we have developed a treatment chair suitable for use with standard 

gantry based linear accelerator geometries for head-and-neck cancer regions, incorporating 

27 | P a g e  
 



measures designed to optimize the reproducibility of inter- and intra- fraction patient setup. 

Herein we report the details of the chair design, inter- and intra- fraction reproducibility 

measurements for five head-and-neck cancer patients under simulated treatment scenarios, 

and patient feedback and discuss considerations for future development. 

Preclinical validation of a treatment chair is necessary for the development of a 

treatment approach centered on treatment chair and paired with a fixed radiation beam; such 

a treatment paradigm could greatly reduce the upfront and ongoing cost of radiation therapy 

make the treatment more available in low-resource settings. 

Methods 

Chair Design 

The chair was initially designed by engineering students at Rice University (Houston, 

TX), with major refinement to improve patient comfort and ease of patient positioning.  The 

general concept was based on a massage chair, as the forward leaning position was 

expected to give better stability than a regular chair design. Additionally, this forward leaning 

position is beneficial for patients with an excess accumulation of saliva.  The chair was 

constructed in two major parts: (i) the seat with the back rest was constructed such that it slid 

onto the end of the treatment couch and was securely fastened to avoid shifts in position, and 

(ii) a unit consisting of footrests (15 x 30 x 2 cm acrylic), a chest plate (T-shaped acrylic), a 

face piece, and a wooden support post. Once the patient sat down, the second unit slid into 

position between the patients’ legs and securely tightened into position. Having the chair 

attach to the couch allowed us to make use of the couch’s remote motions to correct patient 

position based on pre-treatment imaging. Additionally, set-up of the chair fits smoothly into 

patient treatment workflow, where therapists gather and position any accessories needed for 

treatment shortly before the patient enters the treatment vault. The chair allows for many 

positional variations due to patient size, height, and comfort. Figure 2 shows the available 
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chair adjustments, including adjustment of the seat depth (A), the chest plate height (B), the 

chest plate angle (C), the face piece angle (D), and the footrest height (E). The chair was 

manufactured in-house, primarily from wood and acrylic materials. Limiting the use of metal 

was important to avoid affecting beam or imaging quality. Further, the construction allowed for 

easy maneuverability into position. For setup and reproducibility, indexing measures including 

notches and angle identifiers were incorporated. 

 

Figure 2. Treatment chair setup. For 

simulation, a flattop bench was used to 

mimic the treatment couch in the 

treatment vault. For image acquisition, 

the seat was securely fastened to the 

treatment couch. The setup is 

adjustable for patient size and comfort 

including adjustment of the seat depth 

(A), chest plate height (B), chest plate 

angle (C), face piece angle (D), and 

footrest height (E). 

 

 

 

Intra- and Inter-Fraction Imaging  

Six head-and-neck cancer patients undergoing radiotherapy (in a supine position) 

were accrued with approval from our institutional review board. Five patients completed the 

study and are included in the analysis. The seated patients were first set-up in the treatment 

chair outside of the treatment room using a flattop bench in lieu of the treatment couch 
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(Figure 2). For setup, the chair position was established and a Vac-Lok cushion (MTVLG35C; 

Civco Medical Solutions, Coralville, IA) and thermoplastic head mask (MTAPU; Civco Medical 

Solutions, Coralville, IA) were made. The Vac-Lok cushion was used to fill any space between 

the patient’s chest and the chest piece, to create pseudo arm rests for patient comfort, and to 

facilitate set-up reproducibility, especially lateral stabilization (Figure 3). The head mask was 

secured over the back of the patient’s head, in contrast to typical head-and-neck cancer 

treatment for which a thermoplastic mask is generally placed over the patient’s face and 

secured to the treatment table. Additionally, the patients were assessed for the need of 

additional accessories, including an A-bar for arm and hand positioning and comfort and a 

pillow behind the back for added support. 

 

 

 

Figure 3. Patient setup for lateral image 

acquisition in the treatment vault , with kV 

imagers extended and couch positioned at 0°. 

The Vac-Lok cushion was shaped so as to 

create armrests for patient comfort, the head 

mask was secured of the back of the patient’s 

head. 
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For imaging, the chair position was duplicated in the treatment vault. For two patients, 

acrylic shims were needed to loosen the thermoplastic mask at the face, after the mask had 

hardened. A TrueBeam® linear accelerator (Varian Medical Systems, Palo Alto, CA) was 

used for this study, primarily due to the couch end load limit of 200 kg, which allows for 

positioning of the treatment seat and patient at the couch’s end. With the gantry at 330°, 

kilovoltage imagers retracted, and the patient couch lowered to the full extent and positioned 

at 270°, the patient was set up as in simulation.  The gantry rotation to 330° was necessary to 

improve access in this relatively tight space.  We also inserted a custom tray into the physical 

wedge slot to protect the exit window in case of accidental contact.  

The longitudinal table position was selected so that the patient’s vertebrae were 

approximately at the beam’s isocenter. Using orthogonal lasers, the patient’s position was 

marked on the thermoplastic mask. The gantry was rotated to 0° and kilovoltage imagers 

were extended outward. The position of kilovoltage imagers varied between patients due to 

patient size and couch location, to which the chair was attached. The superior-inferior, left-

right, and anterior-posterior positions of the imagers relative to the patient ranged 10, 3, and 

5cm respectively. The position of the imagers was such that anatomical regions captured in 

the image were similar between patients. Posterior-anterior images were acquired first (couch 

at 90°, gantry at 0°, kV imagers extended), the couch was rotated to 0° and then lateral 

images were acquired. All mechanical motions occurred under supervision inside the 

treatment vault.  

After image acquisition and under supervision, the couch was rotated for 5 minutes to 

simulate treatment delivery. Two additional images (lateral and P-A) were then acquired. 

Image registration of these two sets of images was used to calculate the first intra-fraction 

reproducibility measurement. The patient then got out of the treatment chair and rested for a 

few minutes, and the process was repeated to acquire 2 more sets of images, providing one 

inter-fraction reproducibility measurement and one additional intra-fraction measurement. 
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Upon completion, the patient was asked to complete a questionnaire (see supplemental 

materials, page 180) regarding both their supine treatments and their experience in the chair.  

Image Registration 

The head-and-neck region has many degrees of motion, so inter- and intra-fraction 

alignment was evaluated for several sub-regions of the acquired images.  We used a method 

similar to that used previously to evaluate setup reproducibility in patients with head-and-neck 

cancer after cone beam CT guidance (69). Sub-regions of interest on kV projection lateral 

images were cervical vertebrae 1-3 (C1C3), C3C5, the mandible, and the occipital bone. The 

sub-regions of interest on P-A images were the left temporomandibular joint and the nasal 

sinuses. These regions were chosen to facilitate accurate evaluation of patient motion, to 

match those studied previously (69), and to obtain high visibility on the acquired images. The 

images were processed via histogram normalization and sub-regions were chosen by hand to 

include the area of interest, see Figure 4. Rigid 3-dimensional image registration (bi-

directional translation and rotation) was carried out between the two 2-dimensional kilovoltage 

images in Matlab (MathWorks, Natick, MA) using the gradient descent method with the mean 

square error as the registration metric.  All registration results were verified visually.  
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Figure 4. Histogram-normalized kilovoltage image of a representative patient , outlining the 

sub-regions selected on the lateral image (A) and PA image (B) for registration. C1C3 and 

C3C5, cervical vertebrae 1–3 and 3–5, respectively. 

 

Simulated Image Guidance 

The use of image guidance for patient positioning and tumor localization in head-and-

neck cancer patients receiving radiotherapy is a routine procedure in many clinics and is 

necessary for the delivery of advanced treatment techniques such as IMRT and VMAT. We 

therefore simulated the use of image guidance in our inter-fraction displacement images, as 

done by others, which were acquired without patient realignment prior to the simulated 

treatment delivery. The two images were first registered according to the position of C1C3 

(lateral images) or the spinal column (posterior-anterior images). Then, the remaining sub-

regions were registered as previous. This approach provided a measure of the residual error 

in inter-fraction displacement given the use of image guidance.  

C1C
 

C3C
 

Mandibl
 

Occipita
l Bone 
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Measurement of Registration Uncertainty 

To best approximate the possible uncertainty in the rigid registration, we placed an 

Alderson Radiation Therapy phantom (ART-210, Radiology Support Devices, Ramsey, NJ) in 

the treatment chair, and images were acquired within the range of imaging parameters used 

to acquire patient images. The chair and phantom were shifted by a known amount and the 

images were registered. The difference between the registration and the true table positon 

provides a measure of the uncertainty in our rigid registration technique.  

Development of an Updated Chair 

 Results from this study and feedback from the patient questionnaire indicated several 

features of the current chair design which could be improved for both patient comfort and 

radiotherapeutic use. A second treatment chair was developed in-house using primarily 

acrylic pieces and an increased number of indexing options.  

Results 

Patient Cohort 

The 5 patients in this study were all male, with a median age of 65 years (range: 55–

78 years), mean height of 181.1 cm (range: 180–183 cm), and mean weight of 88 kg (range: 

76–111 kg). Female subjects (n > 8) were positioned in the chair during trial development and 

found no difficulties in positioning or comfort. On the basis of the feedback from the first two 

patients imaged, the face piece was changed from the bolus-based chin-and-forehead piece, 

to a suctionable cushion which conforms to the patient’s face (Figure 5). Further, a small 

piece of loop fastener was applied to the top of the face piece as a barrier between the seam 

of the plastic and the patient’s forehead. 
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Figure 5. Face piece of the chair before and after the change implemented after feedback 

from the first two patients. Before the change, the chin and forehead pieces were covered 

with bolus material for comfort, and the inferior chin piece was arched for anatomical 

conformity. 

Image Registration 

Table 1 lists the intra- and inter- fraction displacement for the 6 sub-regions measured. 

Rotation displacement was found to be small, ranging between -0.2° and 0.7°. The error in 

the registration, as measured with the phantom measurements was found to be no more than 

0.4 mm. Average intra- fraction displacements were less than 2 mm across all patients. 

Average inter-fraction displacements were less than 3 mm. The largest displacements were 

seen in the anterior-posterior direction. Image guidance improved inter-fraction patient set-up 

in the anterior-posterior and left-right directions by an average of 1mm. 
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Table 1. Intra-fraction and inter-fraction displacements with and without image guidance in the treatment chair 

 Mean displacement (mm) ± SE [Range] (n=5) 
 

Intra-fraction 
Inter-fraction 

 Without IGRT With IGRT 

 S-I A-P L-R S-I A-P L-R S-I A-P L-R 

C1C3 
0.1±1.2 1.2±2.5  0.5±2.0 -2.5±5.3  Used for 

IGRT 
Used for 

IGRT 
 

[-1.8-1.9] [-3.3-4.7]  [-1.8-3.3] [-6.8-6.1]   

C3C5 
-0.1±1.1 1.2±3.3  0.2±2.4 -2.0±5.7  -0.3±0.7 0.3±0.5  

[-1.8-1.1] [-4.9-5.9]  [-3.2-3.4] [-6.8-7.1]  [-1.3-0.4] [-0.1-1.0]  

Mandible 
0.1±1.1 0.5±1.6  1.0±1.8 -1.2±4.3  0.5±1.3 1.1±3.6  

[-1.1-2.3] [-1.7-3.6]  [-1.1-3.7] [-7.1-4.0]  [-1.6-2.0] [-2.1-7.0]  

Occipital Bone 
0.2±1.4 0.3±2.5  -0.3±2.3 -2.7±4.3  -0.8±0.4 -0.4±2.6  

[-2.3-1.6] [-5.5-3.5]  [-3.2-3.0] [-7.4-1.5]  [-1.4--0.3] [-4.6-2.3]  

Nasal Cavity 
0.4±1.8  -0.7±1.2 0.4±2.0  2.1±3.4 -1.1±0.9  1.7±6.8 

[-3.2-2.4]  [-3.2-1.0] [-1.9-3.5]  [-1.0-7.3] [-1.9-0.3]  [-9.1-7.6] 

Left TMJ 
0.6±1.6  -0.8±1.8 0.3±1.9  3.0±4.1 -1.3±1.1  2.6±4.5 

[-2.5-3.0]  [-4.7-1.2] [-2.1-3.0]  [-1.5-8.4] [-2.4--0.1]  [-4.0-7.8] 

SE, standard error; S-I, superior-inferior; A-P, anterior-posterior; L-R, left-right; IGRT, image-guided radiation therapy; C1C3 and 
C3C5, cervical vertebrae 1–3 and 3–5, respectively; TMJ, temporomandibular joint
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Table 2. Comparison of inter-fraction displacements in the seated and supine treatment 

positions for simulated image guidance with respect to cervical vertebrae 1–3 

 

Region of interest 

Mean displacement (mm) ± SE 

Upright position 

(this study) 

Supine position 

Kapanen et al(70)* 
van Kranen et 

al(69) 

Cranial-caudal    

C3C5 -0.3 ± 0.7   1.2* 0.10 ± 0.00 

Mandible 0.5 ± 1.3 2.9 1.30 ± 2.50 

Occipital bone -0.8 ± 0.4 1.3 0.60 ± 2.0 0 

Anterior-posterior    

C3C5 0.3 ± 0.5   3.1* 0.10 ± 0.50 

Mandible -1.1 ± 3.6 2.2 -0.30 ± 1.20 

Occipital bone -0.4 ± 2.6 1.9 0.30 ± 0.60 

*Standard errors (SE) were not reported by Kapanen et al. Additionally, cervical vertebrae 1–
2 (C1C2) were used as a reference, and C5C7 data were reported instead of C3C5 data. 

 

Patient Questionnaire 

Patients were asked to rate various aspects of their treatment in the supine and 

seated positions by completing a questionnaire consisting of 15 items. Fourteen of the fifteen 

resultant comparisons were less than one point apart on a 6 point (0-5) scale.  In Figure 6, the 

questions separated by 4 tenths of a point or more are illustrated. Regarding comfort in the 

arms during treatment, patients preferred the seated position over the supine position, with a 

mean score of 4.6, compared with 3.6 for the supine position (a score of 5 corresponded to 

“perfectly comfortable”). Patients also had the opportunity to provide written and verbal 

feedback about the treatment experience. Verbal feedback included discomfort at the chin 

and lips, which was partially alleviated with the change in the face piece, as indicated by 

fewer verbal reports of discomfort after the change was made. Pressure from the head mask 

and pressure at the chest from the Vac-Lok cushion were also noted. Several patients 
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expressed the expected benefit of a deeper seat cushion. One patient requested a strap 

around the back to help prevent slouching and to remind the patient to relax forward into the 

chair.  

 

Figure 6. The results of the patient questionnaire. Only questions separated by an average of 

0.4 points (5 point scale) or more are shown. The full questionnaire can be found in the 

supplemental materials. The questionnaire alternated the score assigned to a positive 

response. For example, a rating of 5 was assigned to answers of “I felt calm” and “Getting on 

the chair (couch) was difficult”. In this figure all positive responses are correlated to a ratings 

of 5 and text has been altered for clarity. 

 

Development of an Updated Chair 

We modified the chair design to reflect patient feedback and our accumulated 

experience. Changes include an increase in seat depth (from 23 cm to 45 cm), the 

footrest/chest/face piece no longer attaches to of the seat portion between the patients’ legs 

but rather on the outside of one’s hips, and for dosimetric consideration the thick supportive 

materials at the chest piece were removed. A schematic and picture of the new treatment 

chair can be found in Figure 7. 
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Figure 7. New radiotherapy chair design. Shown are the pre-build schematic (panel A) and 

photos of the seat only (Panel B) and the full chair (Panel C). The new chair design features 

adjustments for the angle of the face piece (a), a back strap for patient comfort (b), 

adjustments for chest plate depth and angle (c), and adjustments for chest plate height (d). 

 

Discussion 

As radiation therapy treatment planning has moved almost entirely to 3-dimensional 

methods, the acquisition of CT scans for planning has become routine in many clinics around 

the world. The horizontal bore of such scanners is a limiting factor for possible patient 

positions and therefore nearly all patients are treated lying in a prone or supine position. 

However, this position may not be suitable for all patients, especially those suffering from 

orthopnea, dyspnea, or dysphagia. Further, dosimetric considerations may indicate upright or 
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c 
d 
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seated patient positioning.  As techniques for image acquisition at the treatment unit continue 

to advance, for treatment paradigms still reliant on 2-dimensional planning techniques, for 

patients unable to tolerate a lying treatment position, and for the development of a fixed-beam 

low-cost system an upright treatment chair may prove optimal for treatment. We have 

designed a treatment chair compatible with current linear accelerator geometries and have 

tested patient intra- and inter- fraction displacement for the head and neck region. Patient 

displacement was on average less than 2 mm in the intra- and 3 mm in the inter- fraction 

scenarios. These raw inter- fraction measurements prove much better than those found for a 

previous upright setup for mantle treatments, for which all patients required block shifts of at 

least 5 mm, and 35% requiring shifts greater than or equal to 1 cm(61).  

We also evaluated inter-fraction displacements in a scenario of simulated image 

guidance. While in clinical scenarios the radiation therapist would typically compare the whole 

acquired image to a planning image for use in image guidance, we have used only a sub-

region of the acquired image to simulate image guidance. This approach is consistent with 

techniques used previously (69) and both the mean and standard deviation of inter-fraction 

displacement in the seated position in our study are on the same order as those reported for 

the traditional supine-position techniques (Table 2). 

There are limitations to this technique.  One patient was not able to complete the 

testing, and review of his images before the trial was aborted suggests that he had significant 

intra-fractional displacement (up to 3.3 cm).  This was likely due to the fact that he was falling 

asleep and not feeling well, resulting in significant positional changes.  While this only 

affected one patient, this may be more widespread; our attempts to create a treatment chair 

that is better tolerated than the supine position may not be tolerated by some patients.  

Furthermore, we largely enrolled “healthy” patients who tolerated the supine position quite 

well, and they also tolerated the upright position quite well.  It remains to be seen how 

patients with significant medical issues (for instance, orthopnea, dyspnea, thick secretions) 
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and for patient nearing the end of treatment may tolerate the upright treatment, and whether it 

reflects an improvement over the supine position.  These issues will be investigated in future 

studies. 

The tight geometry of the gantry system and the chair tested in our study is partially a 

result of a minimum vertical height of the treatment couch and seat height; therefore, care 

must be taken when positioning the patient. We estimate that by the sixth patient setup took 

approximately 8 minutes including marking of lasers on head mask, similar to that for supine 

positioning. A complete assessment of the shift accuracy of the used registration algorithm 

was completed. However, while the rotational displacement of patient images was small, less 

than 1°, a similar analysis was not completed for the rotational accuracy of the registration 

algorithm and is potential source of error in this study. 

The ability to acquire treatment planning images in the upright position, mirroring that 

of treatment, is an important aspect of the complete treatment process in the upright position. 

Using onboard imaging systems or other techniques, the acquisition of planning images in the 

treatment position is possible. Herein we have explored the set-up reproducibility of the 

upright treatment position in an in-house built chair. The results show the chair to have inter- 

and intra- fraction set-up reproducibility similar to current supine techniques. This works 

support the further investigation of the use of this position in the development of a fixed beam 

and rotating patient treatment paradigm. Such a position could dramatically reduce the 

upfront and ongoing cost of radiotherapy machines which may aide in their implementation in 

low-resource and LMIC settings. 

Conclusion 

In conclusion, our preliminary tests indicate that it is feasible to create an upright 

treatment chair with geometry suitable for 3-D imaging (with cone beam CT) and robust 

reproducible patient position between and within radiotherapy fractions.  This work supports 
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this vision of the a system whereby patients can be simulated and treated in an upright 

position without degradation of a conformal, modern radiation treatment plan towards a fixed-

beam low-cost radiotherapy system. 
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Chapter 4: A Single Optimization Treatment Planning 

Strategy in the Head-and-Neck 

In this chapter we describe the results for Specific Aim 2 which pertains to the 

development of a fully automated single optimization head-and-neck treatment planning 

approach. Our working hypothesis is that a single optimization head-and-neck treatment 

planning approach produces plans which perform with equal quality to clinically acceptable 

plans and 90% of which are accepted by radiation oncologists for clinical use without edit. 

Introduction 

Towards a fully automated treatment planning approach for the head-and-neck an 

optimized and validated plan optimization approach is the most important aspect. The 

treatment of head-and-neck tumors; in close proximity of up to 25 organs at risk and divided 

into multiple target dose levels, represents one of the most challenging sites in treatment 

planning. Interest in automated plan optimization strategies has increased dramatically and 

researchers have identified several approaches which have found success for prostate, lung, 

and the head-and-neck cancers (54, 71-74). These approaches, however are subject many 

limitations, including their evaluation for only a small subset of patients, the need for manual 

adjustment or fine-tuning after automatic optimization, and the need for manual input 

including beam parameters or patient-specific dose parameters.  

We seek to develop a fully automated planning strategy in the head-and-neck which 

produces plans of equal or superior quality compared to clinically treated plans, does not 

require the user to select beam angles, or modify the final treatment plan. Such a technique 

could dramatically reduce the human effort needed to generate treatment plans and ultimately 

reduce the deficient of highly trained radiotherapy staff in LMICs and represents a critical 

component of a fully automated treatment planning system. 
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 Methods 

Patient Cohort 

For this analysis, 54 patients treated at The University of Texas MD Anderson 

Cancer Center selected as to represent seven head-and-neck subsites; larynx, 

nasopharynx, oral cavity, oropharynx, paranasal sinuses and cavity, and salivary 

glands and 30 patients from other institutions treated on a clinical trial were 

retrospectively collected. The clinical trial data was obtained through The Cancer 

Imaging Archive (75) and was originally derived from the Radiation Therapy Oncology 

Group 0522 study (76). Selection criteria for both patient cohorts included a maximum 

of three planned target volume dose levels, the use of IMRT or VMAT treatment 

delivery, and availability of the treated dose distribution for comparison. Autoplans 

were generated for each of the patients and compared against clinical plans at clinical 

dose constraints and relevant endpoints. Additionally, 20 patient CTs, 10 collected 

from each of 2 partner institutions in South Africa, were used to evaluate the single 

optimization treatment planning approach but were not compared to the clinically 

treated plans. 

Planning Strategy 

The planning strategy mirrors the clinical planning approach but competes each step 

automatically and without human intervention. 

Plan Initialization 

Primarily developed by other members of our group, plan initialization steps includes 

assignment of the target prescription dose levels, removal of the treatment couch, selected of 

the treatment isocenter, initial setup of beam parameters, and contouring of any structures 

(planning or otherwise) required for treatment planning but not included in the clinical 
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treatment plan. Target prescription dose levels were matched to the clinically delivered plan. 

The treatment isocenter was selected to be at the center of all combined planning target 

volumes (PTVs). Either three or four 360-degree treatment arcs were selected depending on 

target size and orientation. The collimator angles for the first two arcs were set to be 30 and 

330 degrees and jaws were determined such that the entire target remained in the beam’s 

eye view (BEV) as the gantry rotates through 360 degrees.  If the field size exceeded 18 cm 

in the x-direction (the direction of travel of the multi-leaf collimators (MLCs)) then the jaw was 

set to be symmetric with a field size of 18 cm. This constraint was imposed on the jaw 

settings due to mechanical constraints of the MLCs modeled in the treatment planning system 

(Varian 2100 series linear accelerator, Millennium 120 MLCs) which have a maximum 

distance of travel of 14.5cm, and in an effort to design a planning approach widely applicable 

to many machine types which, for example, may not have jaw tracking capabilities. The 

collimator was then set to 90 degrees and the jaws set such that all PTVs remained in the 

field of view with a 1cm margin over 360 degrees of rotation. If this required that the x jaw size 

exceed 18 cm, a fourth field was added such that the two fields cover the PTVs, one from the 

most superior extent and from the most inferior and both with a maximum size of 18cm. 

Structures required for plan optimization which were not included in the original treatment 

plan, including planning and normal structures, were automatically contoured using an in-

house multi-atlas deformable image registration technique, details of which are described in 

Chapter 5. 

Dose Optimization and Knowledge Based Planning 

A knowledge based treatment planning module, RapidPlan®, has been implemented 

and is available for clinical use in the Eclipse Treatment Planning system (Varian Associates, 

Palo Alto, CA). Using a number of previously treated plans, from which both the geometries of 

the targets and organs at risk as well as the planned dose distributions are extracted, DVH 

estimation models are used to parameterize a DVH estimation algorithm which sets the 
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constraints for new patients. The methodology employed by the proprietary RapidPlan® 

software is based primarily on work from Duke University Medical Center which characterizes 

inter-patient organ at risk sparing (77). To estimate the DVH for each organ at risk, 

quantitative metrics are used which include the distance to target histogram, the relative 

relationship between the OAR and the targets, and additional anatomical features including; 

the relative volume overlap, the relative out-of-field volume, the absolute OAR volume and the 

absolute target volume (78). In RapidPlan® the user has the capability to create their own 

DVH estimation models based on patients selected by the user, though there are two vendor 

provided DVH estimation models for the head-and-neck – the “CancerCare Manitoba Head 

and Neck” and the “Washington University Head & Neck models”. The latter served as the 

basis for this work. The details of the data set used to develop the Washington University 

Head & Neck Model can be found in the provided model description. In short, the model was 

trained and tested on plans with targets delineated in the nasopharynx, oral cavity, 

oropharynx, hypopharynx, larynx, or other unknown head-and-neck primary anatomical 

locations. The model allows for one, two, or three targets and estimates the DVH curve for the 

brain, brainstem, upper esophagus, larynx, lips, spinal cord, mandible, middle ear, oral cavity, 

parotid glands, pharyngeal constrictors, and submandibular glands. Provided in the model 

description are contouring guidelines for both targets and organs at risk. The model was 

trained and validated on unilateral and bilateral cases planned as head first, supine, 6-9 field 

IMRT cases with 6x photons, couch rotation of 0 degrees and fields with allowable gantry 

angles in increments of 40 degrees from 0 to 320 degrees. The objectives and relative 

priorities used for clinical training cases can be found in the model description.  

For this study we used the model-provided line constraints for normal structures and 

modified or added new templated constraints for both structures with model provided line 

constraints and other structures. Through iterative testing structure constraints and priorities 

were optimized based on quadrative analysis and physician feedback.  The final constraints 
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used for the planning strategy presented here can be found in the Appendix. As is currently 

mandatory in the Eclipse TPS when using RapidPlan®, the Photon Optimizer (PO) algorithm 

(version 13.5.35) was used to optimize VMAT plans. Dose was calculated using the 

anisotropic analytic algorithm (version 13.5.35) implemented in the Eclipse treatment planning 

system.  

To ensure adequate coverage of each target autoplans were normalized such that 

95% of the target volume received at least 98% of the prescribed dose. To reduce plan 

sensitivity to normalization, normalization criteria were implemented. Structures with volume 

less than 20cc, which can greatly effect plan normalization especially if the structure is in a 

high gradient area, and structures with more than 20% of the target volume having Hounsfield 

unit less than -800, in which high doses are not theoretically achievable and the uncertainty in 

dose calculation algorithms is high, were excluded for normalization purposes, unless it was 

the only target. 

Quantitative Plan Analysis 

For evaluation, 4 patient groups were considered; (1) all patients with corresponding 

clinical plans, (2) only patients treated at MD Anderson, (3) only patients treated at other 

institutions as part of a clinical trial, and (4) only patients from partner institutions in South 

Africa for which corresponding clinical plans were not available. The autoplans were 

evaluated at typical clinical constraints and those outlined in RTOG protocol 1016. Autoplans 

were assessed as the mean, standard deviation, minimum and maximum values across 

patients at dosimetric points of interest, and the percentage of plans meeting the clinical 

constraint.  

For plans with corresponding clinically delivered plans, autoplans were also compared 

against the corresponding clinical plans at many DVH endpoints using the Wilcoxon signed 

rank test, a nonparametric statistical hypothesis test based on rank orders for two planning 

groups. The two planning techniques were also compared using the Brown-Forsythe test, a 
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non-parametric test which tests for the equality of the variances in the two planning groups by 

examining the absolute distance of each point from the median of the distribution(79). For 

both tests, significance was established as a p-value of less than 0.05. When comparing 

plans using the Wilcoxon signed rank test, plans were normalized such that DVHs were 

matched at the dose received by 95% of the high dose PTV, allowing for a fair comparison of 

OAR sparing and target coverage.  

Physician Review of Autoplans 

Throughout the process, specialized head-and-neck radiation oncologists were 

consulted concerning plan quality. Feedback was used to improve the planning strategy. 

Once the planning strategy was finalized, plan review documents were created for 40 

patients, 20 from the cohort of patients treated at MD Anderson and 20 from the cohort of 

patients treated on a clinical trial. Review documentation included CT slices with overlaid 

dose distributions, beam and field information, patient information and DVH curves for target 

and normal structures. A head-and-neck radiation oncologist was asked to rate the plans on a 

three point scale, either needing no edit for clinical use, needing minor edit, or needing major 

edit. 

Results 

VMAT optimization of plans took 5.5 ± 2.0 minutes (average ± standard deviation) and 

dose calculation took 9.0 ± 3.3 minutes, an additional 1 minute was required for additional 

steps including opening the plan and setting the prescription. Other pre-planning activities 

were not systematically recorded for this study, but for a sample of ten patients automated 

tasks which include the removal of the treatment couch, detection of the body, selection of the 

isocenter, determination of the field parameters, contouring of planning structures, data 

format conversion, and import of DICOM files into Eclipse took 22.5±1.1 minutes, with the 
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largest time commitment (on average, 18 minutes) coming from contouring. The entire 

planning process is therefore estimated to require an average of 37 minutes. 

Patient Cohort 

Patient characteristics can be found in Table 3. One of the thirty patients collected and 

treated on the clinical trial had a CT scan with variable slice spacing, which is not compatible 

with the necessary autocontouring and was thus excluded from analysis. 

 

Table 3. Characteristics of patients used to validate the treatment planning strategy. In 

parenthesis are additional statistics of the 20 patients collected from the South African partner 

institutions 

Characteristic Number 
Number of Target Dose 
Levels 

3 
2 
1 

 
56 (4) 
18 (9) 
9 (7) 

Gender 
Male 

Female 
Unknown 

 
38 
16 

29 (20) 
Sub-site 

Hypopharynx 
Larynx 

Nasopharynx 
Oral Cavity 
Oropharynx 

Paranasal Sinuses 
Salivary Glands 

Unknown 

 
3(1) 
12(3) 
5(1) 
12(3) 
41(2) 

5 
5 

20(10) 
 

Quantitative Plan Analysis 

 Plans were normalized such that 95% of each of the PTVs received at least 98% of 

the prescribed dose, excluding structures with volume less than 20cc or for which more than 

20% of the PTV had Hounsfield unit less than -800, as previously discussed. Of 250 total 
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targets, 2 had more than 20% of the volume with Hounsfield unit less than -800 (22% and 

26%) and 8 had volume less than 20cc [range 4-19 cc]. All ten of these exceptions were from 

the MD Anderson patient data set. Of the ten exceptions only four targets received less than 

98% of the prescribed dose to 95% of the volumes after plan normalization. The structure 

chosen for normalization as well as the percentage of dose covering 95% of the target volume 

can be found for all targets in Figure 8. Forty six of the 103 autoplans were normalized to the 

high dose PTV, 25 to the intermediate dose PTV, and 32 to the low dose PTV. 
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Figure 8. Coverage of 95% of target volumes , used for normalization. High dose PTVs are 

shown in red, intermediate dose in blue, and low dose in yellow. Patients from the MD 

Anderson data set in squares, from the clinical trial data set are displayed as circles, and from 

the South African data set in diamonds. The target receiving 98% of the prescription dose to 

95% of the volume was chosen for normalization. 

 

 

South Africa data Set MD Anderson data Set 

Clinical Trial data Set 

High Dose PTV 

Intermediate Dose PTV 

Low Dose PTV 
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Quantitative metrics describing the autoplan and corresponding clinical plans including 

the mean, standard deviation, and minimum and maximum value at clinically relevant 

dosimetric endpoints can be found in Table 4 and the fraction of both clinical and autoplans 

meeting clinical constraints in Table 5. Clinical constraints were, on average, met in clinical 

plans more often for patient cohort from MD Anderson (86%) than those treated on a clinical 

trial (72%).  

 Constraints least often met were the mean dose less than 39 Gy the submandibular 

glands, for which of 83 clinical plans 16% and 35% met for ipsilateral and contralateral 

glands, respectively, and autoplans met less often with rates of 12% and 28%, respectively. 

Next least often met was the clinical constraint of a mean dose less than 26 Gy to the parotid 

glands, for which clinical plans met with a rate of 46% and 83% for contralateral and 

ipsilateral glands respectively. Autoplans met these constraints more often at rates of 51% 

and 88%.  

Of the 103 autoplans, all but two had maximum spinal cord dose less than 45Gy. One 

plan, from the MD Anderson data set had a spinal cord maximum dose of 45.1Gy and while 

exceeding a 45Gy constraint, meets a constraint of less than 0.03cc with dose greater than 

48Gy which has been reported in the literature(80, 81). The other plan not meeting this 

constraint had the spinal cord contour within 1.3mm of the high dose PTV, and had a 

maximum dose of 48.44Gy, this patient, from the cohort of patients from South Africa, did not 

have a corresponding clinical plan. Similarly, two patients from the South African data set did 

not meet the clinical constraint of brainstem maximum dose less than 54 Gy, having 

maximum doses of 60.2 Gy and 57.4 Gy. For these patients the brainstem contour and high 

dose PTV overlapped with volumes of 0.3 and 0.1cc. These patients failing to meet brainstem 

and spinal cord constraints can be seen in Figure 9.  
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Table 4. Quantitative evaluation of autoplans and corresponding clinical plans (when available) at clinically relevant dosimetric points.

 AutoPlans Clinical Plans AutoPlans Clinical Plans 
 mean±std [min-max] mean±std [min-max] mean±std [min-max] mean±std [min-max] 

Structure Spinal Cord, Maximum Dose [Gy] Brainstem, Maximum Dose [Gy] 
All Patients (n=83) 39.2±5.2 [4.8-45.1] 32.2±11.6 [2.8-48.9] 33.6±15.3 [0.0-48.3] 28.6±18.5 [0.0-71.6] 

MDACC Patients (n=54) 38.0±6.2 [4.8-45.1] 26.0±9.6 [2.8-48.9] 29.3±16.7 [0.0-48.3] 18.5±14.5 [0.0-49.1] 
Clinical Trial Patients (n=29) 41.1±0.8 [40.2-43.7] 43.7±3.0 [38.8-48.9] 41.6±7.3 [16.5-47.7] 47.2±6.9 [33.5-71.6] 
South Africa Patients (n=20) 41.0±3.8 [32.0-48.4]   28.7±20.2 [1.7-60.2]   

Structure Ipsilateral Parotid, Mean Dose [Gy] Contralateral Parotid, Mean Dose [Gy] 
All Patients (n=83) 27.6±16.2 [0.1-67.8] 30.4±17.7 [0.0-70.5] 16.5±7.6 [0.1-34.9] 16.1±9.8 [0.0-33.2] 

MDACC Patients (n=54) 26.6±18.8 [0.1-67.8] 27.4±19.6 [0.0-70.5] 14.0±7.5 [0.1-34.9] 11.0±7.9 [0.0-23.4] 
Clinical Trial Patients (n=29) 29.5±9.9 [16.5-57.3] 36.0±12.1 [23.3-66.0] 21.2±5.1 [12.9-29.2] 25.6±4.6 [15.3-33.2] 
South Africa Patients (n=20) 38.5±17.7 [6.0-64.3]   24.3±14.2 [5.6-50.7]   

Structure Ipsilateral Parotid, Volume Receiving > 30Gy [%] Contralateral Parotid, Volume Receiving > 30Gy [%] 
All Patients (n=83) 37.1±29.1 [0.0-100.0] 44.4±31.0 [0.0-100.0] 14.6±13.6 [0.0-52.7] 18.2±14.4 [0.0-49.0] 

MDACC Patients (n=54) 35.9±33.5 [0.0-100.0] 40.2±33.3 [0.0-100.0] 10.4±12.1 [0.0-52.7] 11.4±11.3 [0.0-32.6] 
Clinical Trial Patients (n=29) 39.2±18.8 [16.5-57.3] 51.9±25.0 [12.7-100.0] 22.5±13.0 [0.8-43.0] 30.5±10.6 [3.7-49.0] 
South Africa Patients (n=20) 56.6±29.4 [6.0-64.3]   31.8±27.7 [0.0-86.7]   

Structure Ipsilateral Submandibular Gland, Mean Dose [Gy] Contralateral Submandibular Gland, Mean Dose [Gy] 
All Patients (n=83) 57.9±19.6 [0.5-72.4] 58.2±19.2 [0.5-74.9] 48.6±19.9 [0.4-72.1] 43.8±24.9 [0.5-73.0] 

MDACC Patients (n=54) 53.4±22.1 [0.5-72.4] 53.1±20.8 [0.5-72.3] 42.6±21.3 [0.4-72.1] 34.2±24.9 [0.5-72.1] 
Clinical Trial Patients (n=29) 66.2±9.9 [20.2-72.3] 67.9±10.5 [17.3-74.9] 59.7±10.3 [23.6-71.9] 61.810.7 [19.7-73.0] 
South Africa Patients (n=20) 58.1±15.8 [26.4-75.3]   49.3±18.3 [11.9-73.0]   

Structure Cochleae, Maximum Dose [Gy] Brain, Maximum Dose [Gy] 
All Patients (n=83) 13.1±15.1 [0.0-69.5] 13.6±14.8 [0.0-72.9] 38.2±19.1 [0.0-69.5] 41.019.9 [0.0-71.9] 

MDACC Patients (n=54) 14.8±17.2 [0.0-69.5] 10.0±13.5 [0.0-72.9] 35.6±22.1 [0.0-69.5] 34.521.4 [0.0-70.3] 
Clinical Trial Patients (n=29) 10.1±9.2 [2.2-44.5] 20.5±14.6 [2.1-57.4] 43.2±9.9 [13.3-57.1] 53.27.5 [37.3-71.9] 
South Africa Patients (n=20) 19.6±23.5 [0.6-75.2]   34.2±9.9 [1.5-78.5]   

53 | P a g e  
 



         
Table 4. Continued from previous page. 

Structure Optic Chiasm, Maximum Dose [Gy] Optic Nerves, Maximum Dose [Gy] 
All Patients (n=83) 5.1±10.0 [0.0-62.0] 4.9±10.5 [0.0-52.5] 5.5±11.2 [0.0-61.7] 5.6±12.2 [0.0-57.8] 

MDACC Patients (n=54) 6.6±12.2 [0.0-62.0] 6.2±12.0 [0.0-52.5] 7.4±13.5 [0.0-61.7] 7.2±13.8 [0.0-57.8] 
Clinical Trial Patients (n=29) 2.1-0.9 [1.0-4.2] 1.4±1.2 [0.0-4.7] 2.1±0.8 [0.9-4.1] 1.2±1.3 [0.0-4.6] 
South Africa Patients (n=20) 9.8±16.6 [0.5-64.6]   12.5±22.1 [0.5-71.4]   

Structure Lens, Maximum Dose [Gy] Eyes, Maximum Dose [Gy] 
All Patients (n=83) 2.1±2.5 [0.0-15.6] 1.7±2.5 [0.0-12.2] 5.4±10.8 [0.0-59.7] 4.8±10.0 [0.0-56.9] 

MDACC Patients (n=54) 2.4±3.0 [0.0-15.6] 1.9±2.6 [0.0-12.2] 7.1±13.0 [0.0-59.7] 6.3±12.0 [0.0-56.9] 
Clinical Trial Patients (n=29) 1.5±0.5 [0.7-3.4] 1.1±1.7 [0.0-7.1] 2.2±1.1 [0.8-7.0] 1.9±2.3 [0.0-12.8] 
South Africa Patients (n=20) 3.5±5.0 [0.3-21.4]   8.7±14.6 [0.4-49.0]   

Structure High Dose PTV, Dose Received by hottest 1cc [% of Rx] High Dose PTV, Volume Receiving 95%Rx [%] 
All Patients (n=83) 106.4±2.1 [102.7-113.5] 106.6±2.7 [97.5-114.5] 98.7±1.0 [98.0-102.8] 100.2±1.6 [89.8-102.0] 

MDACC Patients (n=54) 106.7±2.3 [102.7-113.5] 105.2±1.5 [97.5-107.6] 98.7±0.9 [98.0-101.6] 100.1±1.9 [89.8-102.0] 
Clinical Trial Patients (n=29) 105.9±1.5 [103.9-110.1] 109.1±2.5 [104.1-114.5] 98.8±1.3 [98.0-102.8] 100.3±0.5 [99.0-101.1] 
South Africa Patients (n=20) 108.7±3.4 [106.1-119.4]   99.5±2.5 [98.0-107.5]   

Structure Intermediate Dose PTV, Volume Receiving 95%Rx [%] Low Dose PTV, Volume Receiving 95%Rx [%] 
All Patients (n=83) 99.1±1.6 [91.8-104.0] 100.6±1.7 [93.3-106.6] 98.4±2.0 [87.5-105.7] 100.6±1.9 [93.0-107.7] 

MDACC Patients (n=54) 99.1±1.8 [91.8-103.1] 100.5±1.5 [93.3-102.7] 98.5±2.3 [87.5-105.7] 100.6±1.6 [93.0-107.7] 
Clinical Trial Patients (n=29) 99.1±1.4 [98.0-104.0] 100.7±2.0 [97.5-106.6] 98.2±0.3 [98.0-99.0] 100.5±2.6 [97.2-107.7] 
South Africa Patients (n=20) 98.4±0.8 [98.0-100.6]   99.8±2.7 [98.1-103.8]   
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Table 5. Fraction of clinical and autoplans meeting clinical dosimetric constraints
  MDACC & CT Patients 

(n=83) 
Clinical Trial (CT) 
Patients (n=29) 

MDACC Patients  
(n=54) 

South Africa 
Patients (n=20) 

Structure Constraint Clinical 
Plans  Autoplans Clinical 

Plans  Autoplans Clinical 
Plans  Autoplans Autoplans 

Spinal Cord Dmax<45Gy 88% 99% 66% 100% 100% 98% 90% 
Brainstem Dmax<54Gy 96% 100% 90% 100% 100% 100% 85% 

Ipsilateral Parotid Dmean<26Gy 46% 51% 24% 38% 57% 57% 25% 
Contralateral 

Parotid Dmean<26Gy 83% 88% 52% 76% 100% 94% 50% 
Ipsilateral Parotid V30Gy<50% 64% 75% 55% 79% 69% 72% 40% 

Contralateral 
Parotid V30Gy<50% 100% 99% 100% 100% 100% 98% 75% 

Ipsilateral 
Submandibular 

Gland 
Dmean<39Gy 

16% 12% 3% 3% 22% 17% 20% 
Contralateral 

Submandibular 
Gland 

Dmean<39Gy 
35% 28% 3% 7% 52% 39% 25% 

Cochleae Dmax<35Gy 91% 89% 83% 97% 95% 85% 73% 
Optic Chiasm Dmax<54Gy 100% 99% 100% 100% 100% 98% 95% 
Optic Nerve Dmax<54Gy 99% 99% 100% 100% 98% 98% 89% 

Lens Dmax<7Gy 95% 95% 96% 100% 94% 93% 81% 
Eyes Dmax<35Gy 98% 98% 100% 100% 97% 97% 88% 
Brain Dmax<54Gy 70% 84% 59% 97% 76% 78% 70% 

High Dose PTV V1cc<110% 87% 93% 62% 97% 100% 91% 85% 
High Dose PTV V1cc<117% 100% 100% 100% 100% 100% 100% 95% 
High Dose PTV V95%>95% 74% 24% 72% 17% 76% 29% 100% 

Intermediate Dose 
PTV V95%>100% 100% 100% 100% 100% 100% 100% 8% 

Intermediate Dose 
PTV V95>80% 71% 9% 43% 0% 81% 12% 100% 

Low Dose PTV V95>100% 100% 100% 100% 100% 100% 100% 25% 
Low Dose PTV V95%>78% 98% 100% 100% 100% 96% 100% 100% 
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Figure 9. Examples of normal structures not meeting clinical constraints . In only these three 

patients did spinal and brainstem structures fail to meet clinical maximum dose constraints. In 

all cases the critical structure in question was in very near proximity or overlapping with the 

high dose target volume. In panel A, the spinal cord and high dose planning target volume are 

separated by only 1.3mm, in panels B and C the brainstem overlaps with the high dose 

planning target volume. These cases underline the need for sanity checks on contours prior to 

plan optimization. 

 

A paired Wilcoxon signed rank test was used to compare the clinical and autoplans for 

three groups – all 83 patients with available clinical plans, 54 patients from MD Anderson, and 

29 patients treated at on a clinical trial protocol. The p-value of the Wilcoxon signed rank test 

for each DVH metric can be found in Table 6. Considering all 83 patients with corresponding 

clinical plans, the autoplans significantly outperformed their clinical counterparts considering 

the volume of spinal cord receiving more than 45 Gy, the maximum dose and the volume 

receiving more than the clinical threshold of 54 Gy to the brain, the mean dose to the 

ipsilateral parotid and volume receiving 30 Gy to the ipsilateral and contralateral parotids. The 

clinical plans performed better considering the maximum dose to the spinal cord, brainstem, 

optic chiasm, optic nerves, eyes, and lens. However, for all these the plans were not 

significantly different considering the volume receiving more than the clinical maximum dose 

threshold.  The clinical plans had significantly better sparing of the submandibular glands with 

Brainstem 

Spinal Cord 

High Dose PTV 
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a lower average mean dose and significantly better coverage of the low dose PTVs at 95% of 

the prescription dose and a lower dose to 1cc of the high dose PTV. Similarly, when 

considering only the patients from the MDACC data set the clinical plans outperformed the 

autoplans on all these categories. The autoplans only outperformed the cohort of patients 

from MD Anderson considering the volume receiving more than 30Gy to the ipsilateral 

parotid, the mean dose to the contralateral parotid, and the volume of the intermediate dose 

PTV receiving more than 95% of the prescribed dose. 

When considering the cohort of patients treated on a clinical trial, the autoplans 

significantly outperformed the clinical plans for a majority of evaluated constraints. The 

autoplans outperformed the clinical plans in terms of maximum dose and volume exceeding 

the maximum dose to the spinal cord, brainstem, brain, and cochlea, mean dose and V30Gy 

to both the contralateral and ipsilateral parotids, and dose to the hottest 1cc of the high dose 

PTV. The only categories in which the 29 clinical plans treated on a clinical trial outperformed 

the autoplans were the maximum dose to the optic nerves, chiasm, lens, and eyes, though for 

none of these did the clinical plans outperform the autoplans when considering the volume of 

the structure exceeding the clinical constraints and the maximum dose constraints were met 

for all patients. 
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Table 6. Comparison of autoplan performance to clinically treated plans. Shown are p-values 

of the paired Wilcoxon signed rank test. In green are parameters for which the autoplans 

outperformed the clinical plans, and in red which the clinical plans outperformed the 

autoplans. 

  p-value, Wilcoxon signed rank 

Structure Test 
Point 

All Patients 
(n=83) 

Clinical Trial 
Patients (n=29) 

MDACC Patients 
(n=54) 

Spinal Cord 
D_max <0.01 <0.01 <0.00 
V_45Gy <0.01 <0.01 1.00 

Brainstem 
D_max <0.01 <0.01 <0.01 
V_54Gy 0.25 0.25 1.00 

Ipsilateral Parotid 
Gland 

D_mean <0.01 <0.01 0.23 
V_30Gy <0.01 <0.01 <0.01 

Contralateral Parotid 
Gland 

D_mean 0.27 <0.01 <0.01 
V_30Gy <0.01 <0.01 0.39 

Ipsilateral 
Submandibular Gland D_mean 0.02 0.15 <0.01 

Contralateral 
Submandibular Gland D_mean <0.01 0.28 <0.01 

Cochleae 
D_max 0.51 <0.01 <0.01 
V_35Gy 0.11 0.01 <0.01 

Optic Chiasm 
D_max <0.01 <0.01 <0.01 
V_54Gy 1.00 1.00 1.00 

Optic Nerves 
D_max <0.01 <0.01 <0.01 
V_54Gy 0.50 1.00 0.50 

Lens 
D_max <0.01 <0.01 <0.01 
V_7Gy 0.13 1.00 0.08 

Eyes 
D_max <0.01 <0.01 <0.01 
V_50Gy 0.50 1.00 0.50 

Brain 
D_max 0.01 <0.01 0.01 
V_54Gy 0.01 <0.01 0.54 

High Dose PTV 
D_1cc <0.01 <0.01 <0.01 
V_95% 0.69 1.00 1.00 

Intermediate Dose 
PTV V_95% 0.06 0.77 0.02 

Low Dose PTV V_95% 0.02 0.07 0.26 
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Considering the variance between the two planning strategies, the results of the 

Brown-Forsythe test for all patient with corresponding clinical plans are shown in Table 7. A 

significant p-value, as for maximum dose to the spinal cord and brainstem; and mean doses 

to the contralateral parotid and submandibular glands, indicates that the two distributions 

come from distributions with different variances. When considering all 83 patients, the 

standard deviation across plans was less for autoplans than clinical plans, suggesting the 

autoplanning technique provides plans with decreased inter-patient variability. 

 

Table 7. Brown-Forsyth test of equal variance between autoplans and clinical plans. A 

significant p-value (p<0.05, shaded green) indicate that the distributions of clinically relevant 

DVH points have different variances. For each tissue the RPA plan distribution had a 

significantly smaller variation than the clinical plans. 

  p value, Brown-Forsythe Test 
Structure Test Point All Patients (n=83) 

Spinal Cord D_max <0.01 
Brainstem D_max <0.01 

Ipsilateral Parotid 
D_mean 0.40 
V_30Gy 0.61 

Contralateral Parotid 
D_mean 0.01 
V_30Gy 0.63 

Ipsilateral Submandibular Gland D_mean 0.81 
Contralateral Submandibular Gland D_mean 0.04 

Cochleae D_max 0.73 
Optic Chiasm D_max 0.74 
Optic Nerves D_max 0.50 

Lens D_max 0.37 
Eyes D_max 0.99 
Brain D_max 0.48 

High Dose PTV 
D_1cc 0.11 
V_95% 0.95 

Intermediate Dose PTV V_95% 0.82 
Low Dose PTV V_95% 0.34 

  
 

59 | P a g e  
 



Figure 10 describes the layout of Figure 11 in which the performance of the 

autoplanning strategy against the corresponding clinical plan for all 83 patients is considered 

at many clinically relevant dosimetric points. Over 83 patients and 18 structures, 4 bilaterally, 

for a total of 1719 DVH points considered (36 target volumes did not exist, and 71 structures 

were outside of the dose calculation region in the clinical plan), 610 (35%) had improved DVH 

metric for the autoplans, but the improvement did not change the whether the plans met 

clinical constraints. For 989 structures (58%), the clinical plan performed better at the 

endpoint, but the difference was not beyond the clinical threshold. However, for 76 structures 

(4%) the autoplan outperformed the clinical plan and this difference was beyond clinical 

thresholds, this is compared to 44 structures (3%) of endpoints for which the clinical plan 

performed better and was beyond clinical limits. Of the 4% of endpoints for which the 

autoplan provided an improvement at the dosimetric endpoint and this resulted in the plan 

meeting clinical constraints whereas the clinical plan had not met that constraint, 91% came 

from the population of patients treated on the clinical trial.  
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Figure 10. Explanation of clinical and autoplan comparison. For structures with an upper DVH 

constraint (i.e. spinal cord maximum dose less than 45Gy) (right), plan quality was improved if 

the DVH metric of the autoplan was less than the DVH metric of the clinical plan, these plans 

will be reflected in the shaded green regions. Plans for which an improvement was seen but 

both plans met the clinical constraint (e.g. spinal cord maximum dose of 43 Gy in the clinical 

plan and 42 Gy in the autoplan) are reflected in a, when both fail to meet the clinical 

constraint (e.g. spinal cord maximum dose of 47 Gy in the clinical plan and 46 Gy in the 

autoplan) in panel b. In the darker green region, panel c, the autoplan met the clinical 

constraint but the clinical plan did not (e.g. spinal cord maximum dose of 46 Gy in the clinical 

plan and 44 Gy in the autoplan). Similarly if the clinical plan outperformed the autoplan, this is 

reflected in the red shaded regions. If both plans met the constraint in panel d and if both 

missed the constraint in panel e. Importantly, if the clinical plan met the clinical constraint but 

the autoplan did not, the plan will be reflected in panel f. On the left, the same schema is used 

but for structures with a lower DVH constraint (e.g. volume of the PTV receiving 95% of the 

prescribed dose). An improvement in plan quality, shaded green, are seen when the autoplan 

has a higher value than the clinical plan. Color and letter definition are as previously 

described.  
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Figure 11. Distribution of autoplan and clinical plan performance at relevant dosimetric points. 

Autoplan values are shown along the x-axis and corresponding clinical plan value along the y-

axis. Shades of green indicate improvement in the dosimetric descriptor for the autoplan, 

shades of red indicate poorer performance due to autoplanning. Darker shades delineate 
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common clinical thresholds for each dosimetric descriptor, with darker green indicating an 

improvement beyond the clinical threshold and darker red indicating a poorer performance 

beyond the clinical threshold. Twenty nine patients treated on a clinical trial are shown in 

magenta circles, and 54 patients from our institution shown in cyan squares. The number of 

patients in each group are shown (continued of following pages). 
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Figure 11, continued from previous page.  
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Figure 11, continued from previous page. 
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 Finally, when considering DVHs curves of target and organs at risk, the autoplans 

show significant improvement over clinical plans treated on a clinical trial. Shown in Figure 12 

are average DVH curves for the two planning techniques and the negative of the log of the p-

value of the Wilcoxon signed rank test which is significant for values greater than or equal to 

3. For all structures, the autoplans significantly outperformed the clinical plans in DVH 

analysis. 

 

 

Figure 12. DVH comparison of autoplans and clinical plans treated as part of a clinical trial . 

The average DVH over all 20 patients is shown for both the clinical plan (red) and the 

autoplan (blue). Overlaid is negative of the log of the p value of the Wilcoxon signed sum test, 

significant in the green shaded region at values greater than or equal to 3. Autoplans routinely 

outperform clinical plans. 
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Physician Review of Autoplans 

During the development of the planning approach, four head-and-neck site specific 

radiation oncologists review the autoplans and assessed them for clinical utility. When 

presented with 8 plans, 2 radiation oncologists from South Africa approved 100% of the 

autoplans. Upon presentation of the autoplans for 20 patients treated on a clinical trial XX 

were approved for use without and one required only minor edits. However, of 20 patients 

treated at MD Anderson Cancer Center only 7 (35%) were approved for use without edit and 

one required only minor edits. These patients included patients from subsites which differ in 

treatment strategy from those primarily used for strategy development including patients with 

disease of the oral cavity in which dose prescription levels (typically 60 ,57 and 54 Gy) are 

much closer than, for example, for oropharynx cases (70, 63 and 57Gy or 66, 60 and 54 gy). 

Further, the strategy was tested for patients with primary disease of the larynx for which, in 

scenarios of low-resource, advanced techniques are unlikely to be used. While for this cohort 

of patients, clinical dose constraints were met at rates similar to clinical plans as seen in 

Table 5, other features of the plans including dose heterogeneity and relative location of 

hotspots with underlying anatomy result in major modification needed for treatment planning. 

This suggests that, while the strategy is high performing for some subsites (particularly 

disease of the oropharynx), further investigation is likely needed for other subsites. 

Discussion 

In summary, we have developed an automated single-optimization approach for 

VMAT planning in the head-and-neck. Using a full automated approach based on in-house 

algorithms and commercial solutions, head-and-neck VMAT plans are created without human 

intervention. After manual contouring of targets and organs at risk, algorithms are used to set 

beam parameters including the jaw and collimator, identify the isocenter, and automatically 

contour planning structures. Finally, using a validated RapidPlan ® model in combination with 
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added population optimization objectives, VMAT plans were optimized and dose was 

calculated automatically. The entre process takes, on average, less than 40 minutes.  

This autoplanning technique represents the first fully automated approach which 

requires no human intervention aside from the contouring of targets and organs at risk.  DVH 

analysis of 29 patients treated on a clinical trial showed considerable improvement to the 

dose to organs as risk with limited impact of dose coverage and as rated by a head-and-neck 

specific radiation oncologist, XX% of plans were clinically acceptable without edit. A decrease 

in plan variability at clinically relevant dosimetric endpoints between plans was seen for four 

organs at risk when the autoplanning approach was used. A reduction in plan variability is 

often cited as desired for quality management purposes (82), though a reduction in variability 

should not come with a reduction in quality. The plans are generated in less than 40 minutes 

and this represents time during which the user does not need to intervene or be present and 

during which other tasks (i.e. contouring, plan approval, etc.) may occur. This time includes 

that needed for the autocontouring of structures not included in the treatment plan, which if 

supplied by the attending physician would not be required. Built on clinically implemented 

tools including the Eclipse Treatment Planning system (VMAT optimizer, dose calculation 

engine) and autocontouring algorithms the autoplanning technique can easily be expanded 

for use with other treatment machines and at other institutions. Evaluated on 20 patients from 

international partner institutions, the autoplanner performed well and radiation oncologists 

from these institutions found the plans clinically acceptable. 

This autoplanning approach does, however, have limitations. First, when compared 

against clinically delivered plans from our institution, the clinical plans outperformed the 

autoplans for 10 of 26 DVH metrics analyzed, including having a lower maximum dose to the 

spinal cord, brainstem, optic chiasm, nerves, eyes and lens, better coverage at the 95% dose 

level of the low dose PTV and a lower hotspot to 1cc of the high dose PTV. The autoplans 

only outperformed for 6/26 including volume receiving 30Gy to the ipsilateral and contralateral 
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parotid glands, mean dose to the ipsilateral parotid gland, and maximum dose to the brain. It 

is known, and a fundamental characteristic of knowledge based planning, that the autoplans 

will represent the quality of the knowledge base on which the approach was designed. Also, 

as rated by a head-and-neck specific radiation oncologist, all rated plans for disease of the 

oral cavity and salivary glands needed major edit for clinical use, it is likely a subs-site specific 

optimization strategy is needed. A model built based wholly or partly on the sample of the 54 

MD Anderson patients herein, may represent an improvement in plan quality over the current 

knowledge base and therefore allow for an improvement in the autoplans.  

Similarly, while the current knowledge based schema does consider the spatial 

geometry of the patients’ targets and normal tissues the use of a single model for the planning 

of many head-and-neck subsite may limit to performance of the autoplanner. Investigation in 

subsite specific knowledge based planning techniques for the head-and-neck may allow for 

incremental improvement in plan quality. Finally, the autoplanner performance was noticeably 

poor for patients which met certain criteria including very large tumor volumes, tumor volumes 

which include large volumes with very low density, and targets in very close proximity to 

critical normal structures. Many times, in these cases, compromises in plan quality must be 

identified by highly trained staff and therefore are not suitable to a fully automated approach. 

This could be implemented through a feedback system which analyzes spatial geometry of 

the plan prior to optimization. 

In addition to general performance, the autoplanning schema used here has 

fundamental limitations. The limitation of 3 discrete target volume prescriptions which, while 

acceptable for the majority of patients, may exclude some patients who have disease very 

close to the brain or brachial plexus and generally require a fourth prescriptions volume to 

shape the dose around these critical structures. Additionally, as seen for one patient, the use 

of the current autocontouring technique requires consistent CT slice spacing, a requirement 

which does not apply to manual contouring or traditional treatment planning approaches. 
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As with any automated approach rule base objectives and tradeoffs must be 

implemented which may need revising over time. It is critical that characteristics of the 

incoming data are known and systems, which warn the user or may halt the process when a 

result is outside of standard values are implemented. For example, herein we implemented a 

normalization approach meant to ensure adequate coverage of all target volumes, which was 

realized by normalizing the final plan such that at least 98% of each target volume received 

95% of the prescribed dose. However for some patients this resulted in very small 

normalization values and unacceptable plans. Evaluation of the characteristics of the target 

volumes used for normalization revealed the normalization to very small or very low density 

target volumes could drastically effect the plan quality. Towards this, pre-normalization rules 

were implemented to avoid these scenarios and over time new scenarios may arise which 

require the revaluation of the assumptions on which the algorithms were developed. 

There are many opportunities for further study concerning this automated treatment 

planning approach. As mentioned, refinement of the knowledge based model may improve 

plan quality or may allow for tailoring to each individual site for implementation. Further, an 

iterative approach which may involve re-optimization with added constraints on hot or cold 

spots has seen success (83) and could be implemented without requiring human intervention.  

Additionally, though the current use of 3-4 arcs is not desired as the use of additional arcs 

increases the time needed for delivery, dose calculation, and plan quality assurance. 

Optimization of the planning approach including jaw and collimator selection algorithms may 

allow for the use of two arcs. Further refinement of the normalization algorithm to 

accommodate additional head-and-neck subsites, and not yet encountered circumstances, 

and in order to satisfy individual treating physicians may be required. The time needed for 

plan development may also be reduced by increasing processing power or using improved 

dose calculation algorithms including Acuros® (84) which is available in the Eclipse TPS but 

requires additional investigation including how to handle dental artifacts. Other considerations 
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for planning/overrise structures such as dental artifacts or bridges may be required and result 

in an improvement plan quality. Finally, and most importantly, the clinical use of the 

autoplanning approach will reveal how the system will be integrated into a radiation oncology 

clinic, will likely reveal the need for further refinement, and may prove to be an essential tool 

to help reduce the human infrastructure burden of radiotherapy in low-resource settings. 

Conclusion 

In conclusion, a single optimization treatment planner along with automatic field 

settings can generate clinically acceptable autoplans in under 40 minutes without the need for 

human intervention.  
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Chapter 5: Automatic Contours of Normal Structures in the 

Head-and-Neck 

A substantial portion of this chapter is written or based on the following publications: 

Placeholder – Paper under 2nd round revision. 

 

 

In this chapter we describe the results for Specific Aim 3 in which, through four 

experiments, we evaluate the feasibility of automatic delineation of normal structures for 

treatment planning in the head-and-neck. Our working hypothesis is automatically contoured 

normal structures can be used for treatment planning purposes without significant impact on 

plan quality. 

Introduction  

Advanced techniques including 3D conformal radiotherapy, IMRT, and VMAT which 

have been widespread in high-resource clinics since the 1990s, have made the process of 

contouring an essential step in the treatment planning process. Contouring, however, is 

known to be time consuming, plagued by considerable inter-physician variability (85-89), and 

the component of radiation therapy treatment planning which introduces the most error (90, 

91). For head-and-neck cancer, the contouring of 3 or more target volumes and as many as 

25 normal structures may be required (92). For any clinic, but particularly for those in low-

resource clinics the enormous time, human resource, and training burden of contouring may 

prohibit the transition to these advanced techniques, which are particularly critical for the 

treatment of head-and-neck cancer. 
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In the context of an automated treatment planning approach for head-and-neck 

cancer, automatic contouring would increase the time savings, reduce plan variability, and 

may eliminate some of the barriers prohibiting the transition to advanced delivery techniques. 

Many efforts to automate the contouring process for normal structures have been reported – 

techniques include image registration atlas based segmentation, machine learning, and 

shape modelling (57). Findings indicate that for head-and-neck treatment plans, automatic 

segmentation of normal structures can significantly reduce inter-observer variability and 

contouring time (93-95). Authors have reported on the limited implementation of automated 

contouring for small structure sets (e.g., brachial plexus(96), heart chambers(97),etc.) and for 

other anatomical sites (e.g. the prostate(98)). However, use of autocontouring for only a 

subset of structures requires a deviation in workflow, if contours require manual editing the 

time saving advantages are partially lost, and importantly, and the long term clinical use of 

autocontoured normal tissues has not been reported. 

Further, reports on the clinical implementation of automatic contouring methods note 

that automatic contours should be carefully reviewed and edited by the physician (99), which 

may take up to 60 minutes (100). The use of automatically contoured normal structures for 

treatment planning without edit would offer increased time savings and would be interest not 

only for a fully automated treatment planning approach but also for adaptive planning in which 

treatment plans are made under tight time constraints and for general clinical practice. 

However, using unedited automatically contoured normal structures should be considered 

with great caution and after comprehensive analysis. 

In this chapter we describe four experiments which assess the viability of using 

unedited normal structures in the head-and-neck for treatment planning. First, several 

autocontouring algorithms were retrospectively assessed for accuracy compared to physician 

drawn structures and were qualitatively rated by head-and-neck radiation oncologists. Then, 

the best performing algorithm was implemented into our head-and-neck clinic with careful 
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physician review and editing for clinical use. Next, a technique to ensure safe use in an 

automated process was developed in order to detect both gross errors in autocontours and 

autocontours which required physician edit for clinical use. Finally, treatment plans were 

created on autocontours without edit and DVH analysis revealed the impact planning on these 

structures, as opposed to physician derived structure, had on the treatment plan. 

Methods 

Analysis of Autocontouring Algorithms 

In this first experiment we sought to evaluate automatic contouring algorithms for 

normal structures in the head-and-neck. 

Patient Cohort 

For this study, we collected 128, the latest in our database, treated for head-and-neck 

cancer at MD Anderson Cancer Center, and who had physician approved contours. Normal 

structure contours were identified manually by naming convention and visual assessment. 

From the 128 patients, the 8 contours most often included in the final treatment plan, and thus 

included in this analysis, were the brain, brainstem, cochleae, eyes, lungs, mandible, parotid 

glands, and spinal cord. Limited analysis of the autocontouring of others structures, including 

lens, optic chiasm, optic nerves, and submandibular glands was also performed. 

A subset of 10 patients was randomly selected for initial review of four autocontouring 

techniques. For the highest performing algorithm on initial review the 118 remaining patients 

were selected to further analyze the autocontouring algorithm’s performance.  

Autocontouring Algorithms 

Of the four autocontouring algorithms used for this study, three are based on two 

commercially available autocontouring algorithms available in the Eclipse Treatment Planning 

system; Smart Detection® and Smart Segmentation®(101). Smart Detection® is a heuristic 
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solution available for a select number of structures and requires only the selection of desired 

contours. Available structures included brain, eyes, lungs, mandible, and spinal canal. The 

second algorithm, Smart Segmentation®, is a deformable image registration based technique 

which, in Eclipse TPS version 13.2, requires the user to select one of many available expert 

cases from which the autocontours will be propagated. According to the manufacturer: 

“Users match their patient case to one of the hundreds of expert cases in the 
library, and through a sequence of co-registration and proprietary deformation 
algorithms, the contours of an expert case are deformed to fit the CT images of 
the patients”(101) 

 

The Smart Segmentation software offers guidance on which expert case should be selected 

through a 5 star rating system. Expert cases for each structure for each patient were selected 

in order of star rating, with up to 14 expert cases selected for each structure for each patient, 

though not all expert cases were available for all 8 normal structures considered. Later 

versions of the Eclipse TPS software allows the selection of multiple atlas and fuses the 

contours using a majority voting algorithm. To simulate this and based on physician feedback, 

up to 12 individual contours were used as inputs to an in-house majority voting algorithm 

outside of the treatment planning system, resulting in a single fused contour per structure. 

The fused contours represent the third autocontouring approach. 

The fourth autocontouring method was based on an in-house multi atlas deformable 

image registration technique termed multi-atlas contouring service (MACS) (96, 97), was 

previously developed (102, 103) and consists of three distinct steps. First, rigid registration is 

performed between the test patient’s simulation CT and the CT of each of twelve atlas 

patients, using 2D sagittal and coronal projections. Second, the test patient is deformably 

registered to each of the atlas patients using dual-force Demons deformable registration 

(104). Using the resultant deformation vector fields, the contours from each atlas patient are 

mapped to the test patient(105); resulting in a number of individual contours equal to the 

number of atlas patients. Finally, the STAPLE algorithm with a built-in tissue appearance 
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model(106) is used to combine the individual segmentations, generating a fusion contour 

approximating a true segmentation.  Central to the MACS algorithm is the building of an atlas 

of patient CTs, which is representative of the patients for which the algorithm will be used. To 

build the atlas used in this work, 12 patients recently treated at our institution for head-and-

neck cancer were selected. The contours used for atlas building were either extracted from 

patient treatment plans (reviewed prior to treatment by head-and-neck quality assurance peer 

review clinic (107)) or created using thresholding tools (brain, lung, and mandible). All 

contours were carefully reviewed by a medical dosimetrist and head-and-neck radiation 

oncologist with 13 and 8 years of experience, respectively.  The autocontouring process of 

multi-atlas DIR based methods can be seen in Figure 13.
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Figure 13. Schematic of the multi-atlas deformable image registration autocontouring process. 

For each new patient, a deformable image registration algorithm is used to link the test patient 

to each of the chosen atlas patients, which have validated contours already drawn. The 

deformation vector field is used to map the contours from each of the atlas patients to the test 

patients, which results in a number of contours for each structure equal to the number of atlas 

patients. A fusion algorithm is used to combine the contours into a single contour. The in-

house contouring algorithm uses 12 atlas patients, a deamons dual force DIR algorithms and 

STAPLE as the fusion algorithm. For the fused Smart Segmentation contours a proprietary 

DIR and contours from up to 12 patients were used with a majority voting algorithm. A third 

algorithm, discussed in the next sections, used a Deeds deformable image registration 

algorithm, 10 atlas patients, and a majority voting algorithm. 

 

Quantitative Contour Assessment 

Contours of the 8 normal structures from each of the 4 autocontouring techniques 

were quantitatively compared to independently physician drawn contours, when available. 

The Dice similarity coefficient, mean surface distance, and Hausdorff distance were 

measured to assess contour accuracy. The Dice similarity coefficient (DSC) measures the 

volume overlap of the physician drawn contour, P, with the autocontour, A, as a ratio to their 

total volume, with a minimum value of 0 when the contours have no overlap and a maximum 

value of 1 when the contours agree perfectly, as in Equation 1. 

Equation 1 – Dice Similarity Coefficient 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃,𝐴𝐴) = 2
|𝑃𝑃 ∩ 𝐴𝐴|

|𝑃𝑃| + |𝐴𝐴|. 

The mean surface distance was calculated as a symmetric 3D mean surface distance 

between two volumes (P and A) and has a minimum value of 0 when the contours agree 

completely and no maximum value, as in Equation 2. 
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Equation 2 – Mean Surface Distance 

𝑀𝑀𝐷𝐷𝐷𝐷(𝑃𝑃,𝐴𝐴) =
1
2 �

1
|𝑃𝑃|�min (𝑑𝑑(𝑝𝑝, 𝑎𝑎))

𝑝𝑝∈𝑃𝑃

+
1

|𝐴𝐴|�min (𝑑𝑑(𝑎𝑎,𝑝𝑝))
𝑎𝑎∈𝐴𝐴

�. 

The Hausdorff distance (HD) was used to measure the maximum Euclidean distance 

from the points both contours to the nearest point in the other and has a minimum value of 0 

when the contours agree completely and no maximum value, as in Equation 3. 

Equation 3 – Hausdorff Distance 

𝐻𝐻𝐷𝐷(𝑃𝑃,𝐴𝐴) = 𝑚𝑚𝑎𝑎𝑚𝑚 �max
𝑝𝑝∈𝑃𝑃

min
𝑎𝑎∈𝐴𝐴

𝑑𝑑(𝑝𝑝,𝑎𝑎) , max
𝑎𝑎∈𝐴𝐴

min
𝑝𝑝∈𝑃𝑃

𝑑𝑑(𝑎𝑎,𝑝𝑝)�. 

For two of the eight normal structures (lungs and spinal cord) we performed the quantitative 

analysis using a modified structure which included only slices of the contours of the 

autocontour between the most superior and most inferior contours drawn by the physician. 

This analysis better represents the contouring accuracy of the algorithm (compared to whole-

structure quantitative analysis) as it eliminates errors that arise owing to differences in CT 

scan extent both between the test and atlas patients and among the atlas patients, and takes 

into consideration incomplete contouring of structures at distance far from the treated 

volumes, see Figure 14. 
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Figure 14 - Modified structures considered for analysis of autocontour performance. For 

spinal cord and lung (shown), a modified autocontour was created for analysis. This structure 

only includes slices of the original autocontour between the most superior and most inferior 

slices of the corresponding physician drawn structures. In this example, the physician drawn 

lung structure (brown) was only contoured for part of the true lung. The original autocontoured 

lung (cyan) extended for many slices below the physician lung, when modified (lavender) the 

slices extended below the most inferior slices of the physician drawn lung were removed. This 

is appropriate for many reasons including, as shown in this example, often the autocontour 

will extend further even than the dose grid (green dash) and is therefore irrelevant in the 

treatment planning process. 

 

Physician Review of Autocontours 

A radiation oncologist was asked to rate the normal structures on a five-point scale, 

Table 8. For contours receiving a score indicating minor or major edit would be needed for 

use in dose volume histogram (DVH)-based planning (scores 1-3), the physician was asked 

Modified 
Autocontoured Lung 

Autocontoured Lung 

Physician Drawn Lung 

Dose Grid 
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to note the main failure mode. This allows for analysis of potential improvement of the 

algorithm. 

 

Table 8. Five point scale for physician rating of normal structures. For structures receiving a 

score of 1, 2, or 3, which indicates either minor or major edit is needed for use in DVH based 

treatment planning, the physician was asked to cite the main failure mode. 

Rating Description 

5 Perfect; indistinguishable from physician-drawn contours for DVH based planning 
purposes 

4 Within acceptable inter-physician variation for planning purposes, as described 
above 

3 Good; needs minor edits if normal structure is near a target 

2 Fair; needs significant edits to be used for the  planning purposes described above 

1 Poor; large areas need minor or major edit. Is unusable for planning purposes 
described above 

 

For the top performing algorithm the remaining 118 patients were rated on the same 

scale and, to assess the possibility of rater bias, contours from this top performing algorithm 

for 10 patients were reviewed by five additional radiation oncologists from four international 

institutions. Physician agreement was assessed by grouping each pair of ratings (one rating 

from the primary physician and one from an outside physician) into one of three categories. 

Category I agreement includes instances when the primary and outside physician agreed as 

to the degree of edit needed, Category II agreement indicates that the physicians agreed that 

the contour required either no more than minor edits or required major edits. The final 

category, Category III agreement, includes those contours where the physicians disagreed on 

the acceptability of the contour, with one physician indicating that the contour needed major 

edit with the other indicating no or minor edit for use. Additionally, inter-physician variability in 

ratings was assessed using a Wilcoxon signed rank test. 

81 | P a g e  
 



Additional Contour Analysis 

Exploratory analysis of the autocontouring of additional structures including optic 

chiasm, optic nerves, submandibular glands, esophagus, and lens using the previously 

described algorithms and others including a commercially licensed algorithm (108) using (1) a 

proprietary atlas (2) the same atlas used in MACS and (3) the proprietary atlas in combination 

with a shape model supplied by the vendor (only available for some structures) were also 

performed results of which can be found in the appendix. 

 The results of this first experiment are found on page 100. 

Clinical Use of Normal Tissue Autocontours 

In the second experiment we investigated the clinical use of an autocontouring 

algorithm for normal structures in the head-and-neck. 

Clinical Implementation  

After retrospective validation of the contouring algorithms, we began a limited 

introduction of the top performing algorithm, MACS, into our head-and-neck clinic. The 

automated contouring algorithm was already in use for a limited number of sites and 

structures in our clinic prior to the implementation of this atlas for normal structures in the 

head-and-neck. The software based on the MACS algorithm is accessible via a script in the 

Pinnacle3 Treatment Planning System (Philips Medical Systems, Milpitas, CA). Initially, use of 

the software was limited to a select number of radiation oncologists for review, which 

prompted standardization of the contour color to match that already in clinical practice, and 

inclusion of a script to overwrite empty structures already in the treatment plan (our clinical 

workflow involves the population of a standard set of empty structures through a script). 

Additionally, due to algorithm limitation as discussed, the inferior portion of the lung was often 

either not contoured or was contoured in many segments per slice, which prompted renaming 

of the lung structure to “lung_avoid,” indicating its use for treatment planning purposes rather 
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than anatomical definition.  After the automated contouring workflow was finalized, the 

software was released for use by all attending physicians. Typically, the clinical workflow of 

automated contouring involves the initialization of the algorithm by a dosimetrist using a script 

in the treatment planning system, import of the structures into the treatment plan, followed by 

review and any needed editing of the contours by the attending radiation oncologist. All final 

contours were reviewed and edited by the attending physician, see Figure 15, in the same 

way that initial resident contours would be reviewed. The final contours reflected approval by 

the physician, with or without editing as deemed appropriate. 

Quantitative Analysis of Autocontour Edit 

To assess the degree of edits made of the autocontours for clinical use, the contours 

generated by the algorithm were compared to the contours edited for treatment planning by 

the physician using the DSC (Equation 1), MSD (Equation 2), and HD (Equation 3). In 

addition to analysis of the eight clinically implemented normal structures, we also 

quantitatively compared edits of two modified contours, as previously described. 

Additionally, in order to elucidate possible planning margins needed if autocontours 

are used without edits, we determined the minimum uniform expansion to the autocontour 

needed to cover 95% or 100% of the edited contour for 90% or 95% of the population. These 

margins may reveal that for some structures a planning at risk volume (PRV) may be added 

to the autocontoured normal tissue in order to compensate for potential errors in contouring. 

This expansion may ensure the safety of using unedited structures in treatment planning. This 

may be especially true for structures with a maximum dose constraint for which, if the 

modified structure meets constraint, any structure completely encompassed would also meet 

constraints. 
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Finally, to assess the possible motivation for contour edits outside of anatomical OAR 

definition, we used a one-sided t test to assess the association between automatic contour 

edits and the minimum distance to target volume. 

 The results of this second experiment are found on page 107. 
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Figure 15 - Example of physician edits to clinical autocontours. Shown for one patient are 

autocontours of the brain, brainstem and cochleae (panel A) and spinal cord mandible and 

parotid glands (panels B and C) in blue and the physician edits and/or approved structures 

which remained in the patient’s treatment plan in red. For this patient, no edits were made to 

the cochlea structures, and some boundaries of other structures remained unedited.  

Physician 
Edited/Approved 

Structures 

Autocontoured 
Structures 
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Machine Learning Model for Prediction of Autocontour Errors 

In the third experiment we sought to develop of a random forest model for assessment 

of anatomical errors in autocontours of normal structures in the head-and-neck 

Contour QA technique 

Necessary for implementation as part of a fully automated treatment planning 

approach is a method to detect autocontouring errors. Detection of gross and simulated errors 

represents a check of safety and catching of significant autocontouring errors. The detection 

of smaller, potentially necessary clinical edits to autocontours would allow for the possibility to 

flag to the user of an automated treatment planning approach that autocontours presented 

may require editing. Other investigations of contour QA have been reported using historical 

data with heuristically selected metrics and thresholds to predict simulated contouring errors 

(109), mislabeled contours, and the effects of noise (110). These studies introduce the 

important topic of contour QA and demonstrate the feasibility of automated techniques in 

detecting some errors. However a comprehensive or optimized prediction model was not 

used to differentiate cases of automatic contouring failure and manual detection of errors is 

still heavily relied upon. 

To predict contour errors, we implemented a random forest (RF) method in Matlab 

(Mathworks, Natick Massachusetts). RFs are machine-learning models proposed by Breiman 

(111) that do not require a priori information about any relationship between input metrics and 

output predictions (unlike, for example, regression models, which typically assume linearity) 

and provide a measure of predictor importance, and have low susceptibility to overfitting. 

Random forest models have proven successful in other contour QA approaches (49, 110) as 

well as non-linear approaches such as radiation toxicity (112-115). 

Three RF models were trained for each of the eight normal structures, one model for 

each of the three classes of automatic contouring errors (simulated errors, and two degrees of 
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true errors), as described below.  Each model was then tested on an independent dataset. 

The RF models were trained for 1,000 decision trees with a minimum leaf node size of three. 

The number of patients and error types for each training and testing dataset are detailed in 

the following sections.  

Engineered predictive metrics, developed to assess the contour accuracy, were 

extracted from each contour and corresponding CT dataset. A summary of the metrics can be 

found in Table 9. The predictive metrics included volumetric (e.g., Dice similarity coefficient) 

and distance agreement metrics (e.g., mean surface distance) with contours generated from 

three independent contouring techniques. For the first technique, a commercially licensed 

algorithm (108) (Varian Medical Systems, Palo Alto, CA) was implemented in a multi-atlas 

deformable image registration contouring approach, whereby contours from 11 atlas patients 

were deformably registered to the test patient and the resultant contours were fused using a 

majority voting algorithm, a schematic is shown in Figure 13. For the second technique, 

contours were generated using the heuristic algorithm Smart Detection®, as implemented in 

the Eclipse treatment planning software (Varian Medical Systems). Owing to algorithm 

limitations, only the brain, eyes, lungs, and mandible contours were generated and thus 

compared with the corresponding contour from the test patient. For the third technique, 11 

atlas patients were rigidly registered to the test patient and the most accurate registration (as 

measured by the mutual information between atlas and test patient data set over the whole 

image) was used for contour propagation.  

Other predictive metrics included the volume of the contour, metrics extracted from the 

Hounsfield unit (HU) distribution within the contour, and the spatial relationship of the contour 

with other automatically contoured structures (i.e., other normal structures). Additionally, we 

analyzed the highest order coefficient of first-, second-, and third-order polynomial fits to inter-

slice distance measures, both between adjacent slices and between bony tissues and the 

inter-slice area Figure 16. Because several of the available metrics were derived from the 
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same primary data (e.g., metrics from the HU distribution, agreement with secondary 

techniques, and polynomial fits to slice measures), a univariate selection was performed by 

choosing the metric within the group with the lowest average misclassification probability in a 

small (10-tree) forest using only the predictor in question. The full list of predictive metrics can 

be found in Table 9. 

 

Figure 16. Inter-slice metrics for autocontour error detection. Contour features for a 

representative patient are shown in panel A and include polynomial fits to inter-slice metrics 

such as the mean distance to bone (in panel B) and the slice area (panel C). 
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Table 9. Engineered metrics used for the prediction of errors to automatic contours.  

Shape metrics Size/Hounsfield unit (HU)-
derived metrics Positional metrics Metrics showing agreement with 

independent automatic contours 
Metric/metric 

group Definition Metric/metric 
group Definition Metric/metric 

group Definition Metric/metric 
group Definition 

Inter-slice 
slice area 
statistics 

Mean, maximum, 
minimum, and 

standard 
deviation 

Volume 

(no. of voxels 
in contour) × 
[voxel size 

(cm3)] 

Inter-slice 
minimum 

distance to 
bone statistics 

Mean, maximum, 
minimum, and 

standard 
deviation 

Independent 
deformable atlas 

approach, 
volumetric 

agreement* 

Volume ratio, true 
positive ratio, 

false positive ratio 

Inter-slice 
slice area 
polynomial 

fits* 

Highest order 
coefficient of first-

, second-, and 
third-degree 

polynomial fits 

HU statistics 

Mean, 
standard 

deviation of 
HU of pixels 

within contour 

Inter-slice 
minimum 
distance 

polynomial fits* 

Highest order 
coefficient of first-

, second-, and 
third-degree 

polynomial fits 

Independent 
deformable atlas 

approach, distance 
agreement* 

Hausdorff 
distance, mean 
surface distance 

Inter-slice 3D 
Hausdorff 
distance 

Mean, maximum, 
minimum, and 

standard 
deviation 

Lower extreme 
of HU 

distribution 
within contour* 

HU at 1%, 2%, 
5%, and 10% 

cumulative 
probability 

Inter-slice 
maximum 
distance to 

bone statistics 

Mean, maximum, 
minimum, and 

standard 
deviation 

Independent 
heuristic approach, 

volumetric 
agreement* 

Volume ratio, true 
positive ratio, 

false positive ratio 

Inter-slice 3D 
Hausdorff 
distance* 

Highest order 
coefficient of first-

, second, and 
third-degree 

polynomial fits 

Upper extreme 
of HU 

distribution 
within contour* 

HU at 90%, 
95%, 98%, 
and 99% 

cumulative 
probability 

Inter-slice 
maximum 
distance 

polynomial fits* 

Highest order 
coefficient of first-

, second-, and 
third degree 

polynomial fits 

Independent 
heuristic approach, 

distance 
agreement* 

Hausdorff 
distance, mean 
surface distance 

Inter-slice 3D 
mean surface 

distance 

Mean, maximum, 
minimum, and 

standard 
deviation 

% of contour 
with HU below 

given HU 
values 

-500, -100, 0, 
40, 300, 500 

Separation of 
contour 

centroids in X, 
Y,  and Z 
directions 

Seven other 
automatic 
contours 

Independent single-
patient rigid 
approach, 
volumetric 

agreement* 

Volume ratio, true 
positive ratio, 

false positive ratio 

Inter-slice 3D 
mean surface 

distance* 

Highest order 
coefficient of first-

, second-, and 
third-degree 

polynomial fits 

    
Independent single-

patient rigid 
approach, distance 

agreement* 

Hausdorff 
distance, mean 
surface distance 

*Univariate selection was performed within the metric group. 
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Simulated failure models 

In the RF models for simulated errors, prediction classes included unedited clinical 

automatic contours and simulated failures, including automatic contours that had been shifted 

or expanded by amounts that varied by structure. Contours were expanded uniformly in three 

dimensions or shifted in a random direction by a known amount. The size of the shifts and 

expansions varied by structure according to the average volume of the structure. Contours for 

small structures (eyes and cochleae) were shifted and expanded to a lesser extent than those 

for medium-sized structures (brainstem, mandible, and parotid glands), which were shifted 

and expanded less than that for large structures (brain, lungs, and spinal cord). For RF 

training, eight shifted structures from each of four size shifts and 10 expanded contours from 

each of three size expansions were combined with 62 unedited clinical contours, providing a 

total of 124 contours. See Table 10 for details of the training data-set, including the sizes of 

shifts and expansions. Predictor importance was assessed by summing the change in the 

mean squared error due to splits on that predictor divided by the number of branch nodes 

after the split. 

For testing of the simulated error RFs, 50 contours from each of the aforementioned 

error types (shifts and expansions) were combined with contours propagated on 13 patient 

scans of other anatomical locations (seven patients with cervical cancer and six patients with 

breast cancer), and contours from nine patients in nonstandard positions for which the 

automatic contouring algorithm was grossly incorrect, as well as contours from one patient 

who had a very large primary tumor volume that impinged on nearby normal structures. 

Figure 17 shows representative examples of contours with simulated errors and for a patient 

not in a similar position to the atlas patients. 
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Figure 17. Contouring errors for building and testing of QA models. Simulated errors included 

autocontours which had been shifted and expanded (left) and autocontours propagated on 

patients for which the atlas based technique is not suitable (right). The atlas used for the 

current study included patients positioned supine on the treatment table; when autocontours 

are propagated on patients in significantly different positons automatic contouring errors arise.  
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Table 10. Number of type of simulated failure modes used for building of the random forest models. In the prediction of simulated errors, 

four sizes of shifted contours and three sizes of expanded contours were used for each structures. The sizes of the shifts and 

expansions varied by structure in accordance with the structure size, classified into three groups. Contours for smaller structures (eyes, 

cochleae) were shifted and expanded less than those for medium-sized structures (brainstem, mandible, parotid gland), which were 

shifted and expanded less than those for large structures (brain, lung, spinal cord).  

Structure 

Shifted,  
size 1 

Shifted,  
size 2 

Shifted,  
size 3 

Shifted,  
size 4 

Expanded,  
size 1 

Expanded,  
size 2 

Expanded,  
size 3 

Size, cm No. Size, cm No. Size, cm No. Size, cm No. Size, cm No. Size, cm No. Size, cm No. 
Brain 1 8 2 8 3 8 5 8 3 10 5 10 8 10 
Brainstem 0.5 8 1 8 2 8 3 8 2 10 3 10 5 10 
Cochleae 0.2 8 0.3 8 0.5 8 1 8 1 10 2 10 3 10 
Eyes 0.2 8 0.3 8 0.5 8 1 8 1 10 2 10 3 10 
Lungs 1 8 2 8 3 8 5 8 3 10 5 10 8 10 
Mandible 0.5 8 1 8 2 8 3 8 2 10 3 10 5 10 
Parotid glands 0.5 8 1 8 2 8 3 8 2 10 3 10 5 10 
Spinal cord 1 8 2 8 3 8 5 8 3 10 5 10 8 10 
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Prediction of clinical edits 
For the prediction of true errors, a group of RF models (two for each of the eight 

OARs) were trained and tested on autocontours that were reviewed, and, if necessary, edited 

for clinical use. RF models were trained to differentiate contours that had been edited 

clinically from those that had not been edited. Two thresholds were chosen to determine 

whether the contour was edited: first, a Hausdorff distance (see Equation 3) between the 

edited contour and the contour in the patient’s final treatment plan greater than 0 (i.e., any 

clinical edit) and second, a Hausdorff distance between the edited contour and the contour in 

the patient’s treatment plan greater than 5 mm, classified as a “significant” clinical edit.  

To obtain the initial RF model, we used data collected from the first 104 patients 

during clinical implementation. Following the initial modeling, and as the automatic contouring 

software was used clinically, the results were collected and a prediction was obtained for 

each structure. After the prediction for 10 structures from at least five patients (because 

bilateral structures, if all are left in the treatment plan, accrue 10 structures from five patients), 

predictive metrics were calculated and the RF models were retrained to include the new 

clinical results. This iterative machine learning mechanism was implemented to determine 

whether model performance improved over time as the models learned from new failure 

modes; the process of model building and rebuilding is illustrated in Figure 18. The final 

analysis contained RF models tested on 120 independent patients. The number of 

autocontours used for training and testing varied by structure because predictions were 

generated only for structures that remained in the patients’ treatment plans upon treatment. 

Predictor importance was assessed by summing the change in the mean square error due to 

splits on that predictor divided by the number of branch nodes after the split. 

The results of this third experiment are found on page 112. 
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Figure 18. Workflow of the machine learning framework for the prediction of clinical edits to 

automatic contours (i.e., true errors). After the initial model building (104 patients), the model 

was used to predict clinical edits, and after prediction on 10 successive structures, the new 

data were added and the models were updated. Data from 120 patients were used for this 

prospective model testing and model updating. 
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Dosimetric Impact of Normal Tissue Autocontours for Treatment Planning 

 In an ideal scenario, the autocontouring of normal structures would produce contours 

which do not need edit for treatment planning, as they would be anatomically correct. While 

we do not expect that we have achieved this ideal, we sought to investigate the possibility of 

using unedited autocontours from the MACS autocontouring algorithm for treatment planning 

and to assess the effect this may have on the treatment plan. Other investigations have 

shown that for salivary glands the use of autocontoured or even simplified geometric 

structures may be sufficient for treatment planning purposes(116) suggesting that the same 

may be true for other normal structures. 

Patient Cohort 

For this analysis, two cohorts of patients were considered. Patients were selected as 

to represent seven head-and-neck subsites; larynx, nasopharynx, oral cavity, oropharynx, 

paranasal sinuses and cavity, and salivary glands. Selection criteria included a maximum of 

three physician-drawn planning target volume dose levels and availability of the physician 

approved contours.  

In the first cohort, 54 patients treated at The University of Texas MD Anderson Cancer 

Center had clinical normal structures which were derived from autocontours and either edited 

to satisfaction or used with approval by the attending physician. The autocontouring of eight 

normal structures (brain, brainstem, cochlea, eyes, lung, mandible, parotid glands, and spinal 

cord) was implemented clinically and thus were considered in this analysis. 

In the second cohort, normal tissue contours were drawn independently by the 

attending physician who was blind to the autocontour. In this group, structures not included in 

the clinical autocontouring atlas for 54 patients treated at The University of Texas MD 

Anderson Cancer Center and for all structures from 30 patients from other institutions treated 

on a clinical trial were collected. The clinical trial data were retrospectively collected through 
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The Cancer Imaging Archive (75) and was originally derived from the Radiation Therapy 

Oncology Group 0522 study (76). 

Using a two sided t-test the distribution of differences of clinical structures compared 

to autocontours was compared to the larger group of clinically edited patients, as presented in 

the second aim (Page 43) to determine how they compare to a population of patients with 

clinically edited contours. 

Dosimetric Evaluation 

Using the planning strategy presented in Chapter 4 - A Single Optimization Treatment 

Planning Strategy in the Head-and-Neck – two treatment plans were created for each patient. 

The first treatment plan was developed using the clinical normal structures and the second 

plan was created using unedited autocontours of normal structures (including the brain, 

brainstem, cochleae, eyes, lens, lungs, mandible, optic chiasm, optic nerves, parotid glands, 

submandibular glands, spinal cord). For all patients, physician drawn PTVs were used for 

treatment planning. Additional autocontoured planning structures were created as needed per 

the treatment planning strategy. Treatment plans were normalized as in Chapter 4. A 

schematic describing this investigation can be seen in Figure 19. 

For both plans, dosimetric analysis at clinically relevant DVH points was performed 

using the clinical normal structures, regardless of which structure (clinical structure or 

unedited autocontour) was used for treatment planning. Comparisons were made only for 

structures included in the clinical treatment plan. A Wilcoxon signed rank test was used to 

compare the dosimetric impact at clinically relevant dosimetric endpoints.

96 | P a g e  
 



Figure 19. Experiment to identify the dosimetric impact of using autocontoured normal tissues for treatment planning. Using both the 

unedited autocontours (top) and clinical structures (bottom) the planning strategy described in Chapter 4 was used to create high quality 

head-and-neck treatment plans. Evaluation of the plans was carried out on the “true” physician edited/approved structures, any 

differences in the DVH curves identifiy the impact the chioce of planning structure may have on th treatment plan.
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Correlation Dosimetric Impact of Normal Tissue Autocontouring to Quantitative Predictors 

Given the expected distribution of clinical edits and the knowledge of their impact on 

treatment plan quality we wished to investigate the possibility of predicting, prior to plan 

optimization and dose calculation, the potential impact of edits to normal tissue autocontours 

for four key normal structures in the head-and-neck; the spinal cord, the brainstem, and the 

contralateral and ipsilateral parotid glands. It may be expected that the relative importance of 

edits to normal tissue contours is related to patient specific features. For example, if the 

brainstem is close to the target volume, than edits to this autocontour may be more impactful 

than if the brainstem was at a distance from the targets. The correlation of the patient and 

structure features to the dosimetric impact of planning on these structures could provide the 

user a pre-assessment of potential autocontour quality. 

To investigate this, three dosimetric metrics including; the absolute dose to the clinical 

structure, the absolute difference in dose to the clinical structure when planned on either 

unedited autocontour or the clinical structure, and the relative dose difference when planned 

on the two structures, were evaluated for correlation with several features of the structures.  

Predictive metrics included the clinical edits to the structure, the prescription dose 

levels of the (up to three) PTVs, the minimum distance between the autocontour and the 

PTVs, the maximum distance of the closest 10% of points of the autocontour and the PTVs, 

and the Dice Similarity coefficient between the autocontours and the PTVs analyzed in 3 

ways (1) the autocontour and the original physician drawn PTVs (2) the autocontours and the 

PTVs with a uniform expansion of 0.5cm and 1cm and (3) the convex hulls of the 

autocontours and the PTVs. Examples of these structures and metrics can be found in Figure 

20. The convex hull of the normal tissues are the smallest convex shape which encompasses 

the contour. They, for example, may provide insight when a target is within the concave 

region of a parotid contour. 
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The results of this fourth experiment are found on page 119. 

Figure 20. Patient specific metrics for correlation with the effect ofthe use of autocontoured 

targets for treatment planning. For four normal structures (brainstem, parotid glands, and 

spinal cord), in blue, metrics which quantify the spatial relationship to each of the patients’ 

target volumes were calculated and included the minimum distance and minimum 10% of 

distances to each PTV (in colorwash, by dose level), the DSC and MSD with the PTV and 

with expanded PTVs (solid line, corresponding color), shown here for 1 cm uniform 

expansions, and the DSC and MSD of the normal tissue hulls (in maroon) with the PTVs. 
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Results 

Analysis of Autocontouring Algorithms 

Pilot Test of 4 Contouring Algorithms 

Considering the 10 initial test patients, the in-house MACS contouring algorithm was 

best performing when considering all 8 normal structures. For some structures, the Smart 

Segmentation® approach with and/or without fusion was not investigated owing to the 

success of the other autocontouring techniques (see Table 11). For lung contours the Smart 

Detection® algorithm performed the best with an average rating of 4.6 and a minimum of 3, 

indicating minor edits. The lung was the worst performing structure for the in-house algorithm, 

with an average rating of 3.5 and a minimum rating of 1. The main failure mode noted was in 

the inferior portion of the lung, where, due to the deformation fields, the combining of several 

contours in the STAPLE algorithm and the varying scan extent (and thus portion of the lung) 

in each of the atlas patients, the contours often have small slices inferiorly or occasionally 

islands. For many patients this part of the lung is distant from the treated volume, and given 

that the whole lung is seldom included in the simulation scan and therefore whole lung DVH 

metrics cannot be quantitated may not be included in the dose calculation region. For these 

ten patients, the most inferior portion of the PTV was at an average distance of 11.5 cm from 

the slices of inferior lung with noticeable errors, and for the patient with the closest PTV-to-

inferior-lung distance the dose grid was 3cm superior to the lung region with errors, see 

Figure 21. Given these things, we feel that errors on these bottom few slices are acceptable 

and may either be ignored or removed on post processing. For all other structures including; 

brainstem, cochleae, eyes, mandible, parotid glands, and the spinal cord, the MACS 

algorithm had an average rating better than all other algorithms. 

Quantitative comparison of the autocontours from each of these 4 autocontouring 

algorithm on the same ten patients in shown in Table 12. For all structures MACS had a 
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higher average Dice similarity coefficient and lower average Mean surface distance and 

Hausdorff distance indicating that these structure agree more closely with independently 

drawn physician structures. 

 

Figure 21. Example of autocontouring errors at the inferior structure extent. This patient, with 

the lowest physician score had large areas for which the autocontoured lung (cyan) failed to 

contour, as shown in the red circles. However, the physician drawn/approved structure 

(brown) also had large areas of incomplete contour. However, these missed areas are at the 

most inferior portion, or outside of, the dose grid (dashed green) and far from the contoured 

planning target volumes (red color wash).  

 

Planning Target 
Volumes 

Autocontoured 
Lung 

Physician Drawn 
Lung 

Dose Calculation 
Region 

Designated 
Failure Mode 
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A reoccurring failure mode of the smart detection algorithm, as cited by the rating 

physician, was structures that the structures were too large or were offset. This feedback 

prompted the decision to provide a third contouring approach in which these contours were 

fused using a majority voting algorithm. Unfortunately, many of the fused contours were also 

reported as being too large or offset, indicating that neither method was suitable for automatic 

contouring purposes. For example, the average volume across the ten patients of the 

physician drawn brainstem was 25.0 cc, the average volume of the MACS autocontoured 

brainstems was 23.85 cc, the average volume of the single and fused Smart Segmentation 

brainstem contours was 30.72 cc and 31.26 cc, respectively.   
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Table 11. Physician ratings of four autocontouring algorithms on ten patients. The mean, standard deviation, and minimum and 

maximum are shown for four autocontouring algorithms for ten patients. Contours were rated on a five point scale by a single physician. 

For brain, spinal cord and lungs, due to the success of other algorithms, Smart Segmentation® with and/or without fusion were not 

analyzed. The smart detection algorithm was not available for the structures with no reported statistics. 

 Physician Ratings of Autocontouring Algorithms 

 Smart Detection Smart Segmentation Smart Segmentation + 
Fusion 

Multi Atlas Contouring 
Service 

Structure N mean ± std [min-
max] N mean ± std [min-

max] N mean ± std [min-
max] N mean ± std [min-

max] 

Brain 10 4.9 ± 0.3 [ 4 - 5 ]                                     10 5.0 ± 0.0 [ 5 - 5 ] 

Brainstem                   91 3.1 ± 0.6 [ 2 - 5 ] 10 3.1 ± 0.7 [ 2 - 4 ] 10 4.6 ± 0.5 [ 4 - 5 ] 

Cochleae                   95 3.0 ± 0.4 [ 2 - 4 ] 20 2.8 ± 0.5 [ 1 - 3 ] 20 5.0 ± 0.2 [ 4 - 5 ] 

Eyes 20 3.4 ± 0.9 [ 2 - 5 ] 185 3.3 ± 0.9 [ 2 - 5 ] 20 3.6 ± 0.6 [ 2 - 4 ] 20 3.6 ± 0.6 [ 3 - 5 ] 

Lungs 10 4.6 ± 0.7 [ 3 - 5 ] 93 3.0 ± 1.0 [ 1 - 5 ]                   10 3.5 ± 1.1 [ 1 - 5 ] 

Mandible 10 2.8 ± 1.5 [ 1 - 5 ] 101 2.8 ± 0.8 [ 2 - 5 ] 10 2.9 ± 0.7 [ 2 - 4 ] 10 4.7 ± 0.5 [ 4 - 5 ] 

Parotid Glands                   172 2.9 ± 0.8 [ 1 - 5 ] 20 3.2 ± 0.9 [ 2 - 4 ] 20 4.5 ± 1.1 [ 1 - 5 ] 

Spinal Cord* 10 4.2 ± 0.4 [ 4 - 5 ] 93 4.1 ± 0.4 [ 3 - 5 ]                   10 5.0 ± 0.0 [ 5 - 5 ] 

*Smart detection only allowed for the contouring of spinal canal 

 

103 | P a g e  
 



Table 12. Quantitative comparison of four autocontouring algorithms with independently 

drawn physician normal tissue contours. The Dice similarity coefficient, the mean surface 

distance, and the Hausdorff distance were used to compare the normal tissue autocontours 

for 8 structures generated on the same ten patients rated by the physician. The in-house 

multi-atlas contouring algorithms most closely matched the physician drawn structures with 

the highest average DSC and lowest average MSD and HD. 

 Dice Similarity Coefficient 

 Smart 
Detection 

Smart 
Segmentation 

Smart 
Segmentation + 

Fusion 

Multi Atlas 
Contouring Service 

Structure N mean ± std N mean ± std N mean ± std N mean ± std 
Brain 10 0.98 ± 0.00         10 0.98 ± 0.00 

Brainstem     91 0.74 ± 0.05 10 0.79 ± 0.04 10 0.88 ± 0.04 
Cochleae     95 0.38 ± 0.09 20 0.38 ± 0.07 20 0.65 ± 0.09 

Eyes 20 0.75 ± 0.05 185 0.74 ± 0.08 20 0.78 ± 0.06 20 0.87 ± 0.03 
Lungs 10 0.96 ± 0.01 93 0.92 ± 0.06     10 0.92 ± 0.02 

Mandible 10 0.67 ± 0.07 101 0.68 ± 0.08 10 0.71 ± 0.06 10 0.90 ± 0.03 
Parotid Glands     172 0.67 ± 0.10 20 0.72 ± 0.10 20 0.84 ± 0.05 
Spinal Cord* 10 0.57 ± 0.05 93 0.67 ± 0.07     10 0.81 ± 0.03 

 Hausdorff Distance (cm) 

 Smart 
Detection 

Smart  
Segmentation 

Smart 
Segmentation + 

Fusion 

Multi Atlas 
Contouring Service 

Structure N mean ± std N mean ± std N mean ± std N mean ± std 
Brain 10 1.13 ± 0.24         10 0.80 ± 0.29 

Brainstem     91 0.98 ± 0.27 10 0.83 ± 0.17 10 0.68 ± 0.24 
Cochleae     95 0.84 ± 0.21 20 0.69 ± 0.19 20 0.30 ± 0.07 

Eyes 20 0.58 ± 0.11 185 0.70 ± 0.27 20 0.57 ± 0.09 20 0.44 ± 0.12 
Lungs 10 2.35 ± 0.89 93 2.30 ± 0.88     10 1.90 ± 0.66 

Mandible 10 2.40 ± 1.06 101 1.71 ± 0.48 10 1.13 ± 0.27 10 0.63 ± 0.19 
Parotid Glands     172 2.00 ± 0.76 20 2.00 ± 0.85 20 1.25 ± 0.75 
Spinal Cord* 10 5.27 ± 1.98 93 2.90 ± 2.04     10 1.48 ± 1.18 

 Mean Surface Distance (cm) 

 Smart 
Detection 

Smart  
Segmentation 

Smart 
Segmentation + 

Fusion 

Multi Atlas 
Contouring Service 

Structure N mean ± std N mean ± std N mean ± std N mean ± std 
Brain 10 0.08 ± 0.02         10 0.07 ± 0.02 

Brainstem     91 0.28 ± 0.05 10 0.24 ± 0.05 10 0.14 ± 0.04 
Cochleae     95 0.25 ± 0.05 20 0.23 ± 0.04 20 0.09 ± 0.03 

Eyes 20 0.20 ± 0.04 185 0.23 ± 0.07 20 0.20 ± 0.05 20 0.11 ± 0.02 
Lungs 10 0.10 ± 0.02 93 0.21 ± 0.22     10 0.25 ± 0.14 

Mandible 10 0.39 ± 0.18 101 0.29 ± 0.09 10 0.24 ± 0.06 10 0.08 ± 0.02 
Parotid Glands     172 0.38 ± 0.14 20 0.34 ± 0.14 20 0.18 ± 0.06 
Spinal Cord* 10 0.53 ± 0.17 93 0.31 ± 0.13     10 0.14 ± 0.06 

*Smart detection only allowed for the contouring of spinal canal 
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Further testing of in-house multi-atlas contouring service (MACS) 

The MACS contouring algorithm was best performing on initial review and was 

therefore selected for comprehensive analysis. Central to the MACS algorithms is the atlas of 

patients from which contours are propagated. Of the 12 patients in the contouring atlas, nine 

were male and 11 had primary oropharynx disease, one patient had unknown primary. The 

mean age was 72 years. Ten were AJCC 7th edition clinical stage IVa, one IVb and one stage 

III; all were treated with curative intent.  

For all 128 patients the distribution of physician ratings of the 8 normal structures on 

the same 5-point scale can be seen in Figure 22. One patient had a surgically removed 

parotid and for five patients the lungs were not visible in the patient CT, thus no rating was 

recorded for these structures. Of the eight normal structures, six were, on average, indicated 

as clinically acceptable for use without edits in DVH-based planning, scoring either a four or a 

five. The remaining two structures had ratings indicating the need for minor edits for use in 

DVH-based planning, depending on their spatial relation to the target volume. For all normal 

structures, 87% received ratings which indicate no need for edit for use in treatment planning 

(a score of 4 or five). Furthermore, 97% of normal structures received a rating which indicates 

that, at most, only minor editing is needed for use in DVH based planning. 
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Figure 22. Distribution of the primary physician ratings of the in-house MACS algorithm. 

Contours of eight normal structures generated from the MACS algorthms were reviewed by a 

physician on a five point scale for 128 patients. The mean (± standard deviation) physician 

ratings are displayed in the graphs and the % receiving each rating overlaid on the bars 

 

Inter-observer variability 

To assess inter-observer variability, a subset of 10 randomly selected patients was 

reviewed by five additional radiation oncologists from four outside institutions. The radiation 

oncologists, per a self-reported questionnaire, had an average of 8.25 years of experience 

(range, 3.0-12.5 years) and contour and/or review an average of seven patients per week 

(range, 2-15 patients), spending an average of 95 minutes per patient on contouring (range, 

45-180 minutes). For all structures except parotid glands, the scores assigned to the 10 

patients differed significantly (Wilcoxon signed rank test, p<0.05) between the primary 

physician and at least one outside physician. However, no structure was significantly different 

between primary and all of the outside physicians. 

For all structures, 45% (245/547) of the ratings by the outside physicians matched 

those of the primary physician and were classified as Category I agreements. Considering 
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Category II agreements, the physicians assigned an additional 48% (262/547) of the contours 

to same group, either as needing no or minor edit for use (48%) or as needing major edit for 

use (0%). Finally, only 7% of contours received scores indicating the need for major edits by 

one physician while needing no or minor edits by the other physician. In Table 13 the 

percentage of contours classified into each of the three agreement categories can be found 

for the eight normal structures assessed. 

 

Table 13.  Percentage of normal tissue rating pairs in three agreement categories. Category I 

indicates the scores by the two physician matched, Category II indicates that the ratings did 

not match but the contours were rated into the same “group” (either as needing no or minor 

edit or as needing major edit) by both physicians. Category III represents disagreement 

between two revewing physicians. Due to rounding, not all rows sum to 100. 

 % of agreements in 
Category 

Structure I II III 
Brain 22 76 2 

Brainstem 48 32 20 
Cochleae 46 49 5 

Eyes 47 42 11 
Lungs 60 36 4 

Mandible 40 58 2 
Parotid gland 57 38 5 
Spinal Cord 22 68 10 

Total 45 48 7 
 
 

Clinical Use of Normal Tissue Autocontours 

Due to its success on retrospective evaluation, the MACS autocontouring algorithm 

was implemented into the head-and-neck clinic at MD Anderson. During 10 months of clinical 

implementation, 22 radiation oncologists used the automated contouring software to generate 
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normal structure contours for 166 patients treated at our institution. Inclusion criteria included 

availability of the approved treatment plan and record of the requesting of the autocontours 

through the script in the treatment planning system. The 7 attending physicians who used the 

tool the most accounted for 23, 15, 14, 9, 7, 7 and 5% of the total use. The mean (± standard 

deviation) time required for generation of the autocontours was 11.5 ± 3.1 minutes when run 

on a Windows 2012-based PC with an 8-core Xeon E5-2697 v3 2.6-GHz CPU and 16 GB of 

memory. Multithread computing was enabled in the deformable registration algorithm, and 2 

registration tasks were allowed to be run simultaneously on the server.  This time does not 

require oversight by a physician or dosimetrist and can therefore occur simultaneous to other 

required treatment planning tasks. The distribution of autocontour edits, as measured by the 

Dice similarity coefficient, mean surface distance, and Hausdorff distance is shown in Figure 

23. We measured edits only for structures which remained in the treatment plan at the time of 

treatment with the same naming convention as the automatically contoured structures. 

Notably, radiation oncologists did not edit 49.8% of the contours for treatment 

planning. As shown in Figure 2, 31%, 40%, and 48% of automatically contoured brainstems, 

parotid glands, and modified spinal cords were not edited for clinical use. The structures 

edited least often were the eyes (69% were not edited) and modified lungs (74% were not 

edited). The Dice similarity coefficient was lowest for the cochlea (0.79±0.26). The maximum 

mean surface distance edits were seen for the unmodified lung avoidance structure (3.29 

mm) and unmodified spinal cord (2.65 mm), due primarily to inferior CT scan extent 

discrepancy. However, considering edit to the modified lung avoidance and spinal cord 

structures, the maximum mean surface distances were decreased for lungs and spinal cord to 

0.33mm and 0.20mm, respectively. This reduction is shown in Figure 23 as a reduction in 

both the medians and interquartile ranges of edits to the modified lungs and spinal cord 

structures relative to those edits of the unmodified versions.  
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A non-paired, one-sided t test showed that for all structures, contours that were edited 

for clinical use were significantly closer to the target volume than contours that remained 

unedited in the treatment plan (p < 0.003).  
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Figure 23. Distribution of the clinical edits to autocontours. The red line within the box plot 

represents the median and box edges represent the 25th and 75th percentile. Outliers are 

indicated by red crosses and are values outside the 25th or 75th percentile by more than 1.5 

times the interquartile range. Between the boxplots are the percent of unedited contours and 
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the means (± standard deviations) of the Dice similarity coefficients and the mean surface 

distances for each for the automatically contoured or modified structures. Abbreviations: DSC 

= Dice Similarity Coefficient, MSD = Mean Surface Distance, HD = Hausdorff distance. 

 

Given these clinical edits, we sought to identify the minimum uniform expansion to the 

autocontours needed to encompass either 95% or 100% of the clinically edited contour for 

90% or 95% of the patients. Table 14 lists the minimum uniform expansions needed for each 

of the eight normal structures examined in our study, including the inferiorly modified lung and 

spinal cord contours. If autocontours are used without edit, our findings show that a uniform 

expansion between 0 and 5 mm would provide coverage of 95% of the physician edited 

structure for 90% of the population. To cover 100% of the physician edited structure for 95% 

of the population the minimum uniform expansion needed ranges from 4mm (cochlea) to 

more than 15 mm (lungs, mandible, parotid). 

Table 14.  Minimum uniform expansion to autocontoured normal tissues needed to cover a 

given fraction of the structure for a given fraction of the population. 

 Patient population 

 90% 95% 

 Contour coverage 

Structure 95% 100% 95% 100% 

Brain 0.00 7.53 0.00 10.64 

Brainstem 3.55 7.22 4.51 8.88 

Cochlea 2.28 3.02 3.42 4.00 

Eye 1.64 3.34 2.06 5.28 

Lung (modified) 0.64 >15 4.20 >15 

Mandible 1.74 12.80 3.59 >15 

Parotid gland 4.67 >15 9.05 >15 

Spinal cord (modified) 0.98 3.74 1.63 4.81 
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Machine Learning Model for Prediction of Autocontour Errors 

As necessary for the implementation of autocontouring as part of a fully automated 

treatment planning approach a method to detect autocontouring errors was investigated. 

Detection of gross and simulated errors represents a check of safety and catching of 

significant autocontouring errors. The detection of smaller clinical edits represents the 

possibility to flag to the user of an automated treatment planning approach that autocontours 

presented may require editing. 

Simulated failure models 

The performance of the RF models to predict simulated and gross errors is 

summarized in Table 15. The overall sensitivity and specificity of the models to gross and 

simulated error prediction were greater than 0.85 for all structures. When considering 

simulated errors due to small shifts and expansions, we found that the sensitivity was greater 

than 0.9, and this improved with the size of the shifts and expansions.  

When considering patients in non-standard positions, we observed that the model 

sensitivity was slightly lower for some structures; a minimum sensitivity of 0.5 was seen for 

the cochlea, lungs, and mandible, although the size of the test set was small (2-14 patients). 

For one patient, a large primary gross tumor volume (637 cm3) resulted in substantial 

automatic contouring errors for the surrounding contours, and for contours with a Dice 

similarity coefficient of less than 0.8 compared with the clinically edited structure (right eye 

and mandible), the contouring errors were successfully detected by their respective RF 

models. When considering the test patients in nonstandard positions plus the patients with 

other scan sites, we observed that at least half of the structures were predicted to have some 

contour errors in all patients. This suggests that if automatic contouring is predicted to fail in 

more than half of the structures, the patient is not a good candidate for this in-house 

autocontouring technique.  
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Table 15. Random forest model performance for the prediction of simulated and gross errors. Sizes of shifts and expansions can be 

found in Table 10. 

Structure 

Overall model 
performance* 

Shifted, size 
1 

Shifted, 
size 2 

Shifted, 
size 3 

Shifted, 
size 4 

Expanded, 
size 1 

Expanded, 
size 2 

Expanded, 
size 3 

Nonstandar
d positions 

Other scan 
locations 

Sens Spec N, test 
set Sens N, test 

set Sens N, test 
set Sens N, test 

set Sens N, test 
set Sens N, test 

set Sens N, test 
set Sens N, test 

set Sens N, test 
set Sens 

Brain 0.88 0.95 50 1.00 50 1.00 50 1.00 50 1.00 50 0.94 50 1.00 50 1.00 7 0.71 13 0.46 

Brainstem 0.90 1.00 50 0.96 50 0.98 50 1.00 50 1.00 50 0.74 50 1.00 50 1.00 5 0.80 13 0.77 

Cochleae 0.87 1.00 50 1.00 50 1.00 50 1.00 50 1.00 50 0.84 50 1.00 50 1.00 14 0.50 26 0.38 

Eyes 0.89 0.94 50 0.98 50 1.00 50 1.00 50 1.00 50 0.84 50 0.98 50 1.00 16 0.94 26 0.77 

Lungs 0.88 1.00 50 0.98 50 0.98 50 1.00 50 0.96 50 1.00 50 0.98 50 1.00 2 0.50 13 0.54 

Mandible 0.90 1.00 50 1.00 50 1.00 50 1.00 50 1.00 50 1.00 50 1.00 50 1.00 8 0.50 13 0.77 

Parotid 
glands 0.85 0.98 50 0.92 50 0.96 50 1.00 50 0.98 50 0.96 50 1.00 50 1.00 15 0.60 26 0.69 

Spinal 
cord 0.91 1.00 50 0.96 50 0.98 50 0.96 50 0.98 50 1.00 50 1.00 50 1.00 3 0.67 13 0.77 

*Sens, sensitivity; spec, specificity. 

113 | P a g e  
 



For all structures a metric derived from the HU distribution or an agreement metric 

with the independent deformable image registration contouring technique was the most 

important predictor. Other important predictor classes were derived from the autocontour 

distance to bony structures and the quantitative comparison to an independently and 

heuristically derived autocontour. 

Prediction of clinical edits 

Table 16 shows results of the overall performance of the RF models for the prediction 

of clinical edits to automatic contours (i.e., true errors), in which the thresholds of Hausdorff 

distances greater than zero (any clinical edit) or greater than 5 mm (significant clinical edit) 

were considered for contour errors. On average, 40% of contours (including modified 

structures) were edited for clinical use and 26% were edited such that the Hausdorff distance 

was greater than 5 mm. Models were not trained to predict significant (≥5-mm Hausdorff 

distance) edits to the brain, lung, or spinal cord contours owing to the very small proportion of 

contours edited and available for model building and testing purposes. 
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Table 16. Random forest model performance for the prediction of clinical edits to 

autocontours. Two random forest models were trained for each structure, in which automatic 

contour error was defined as a Hausdorff distance (compared with the edited automatic 

contour) of greater than 0 (i.e., any clinical edit) or greater than 5 mm (i.e., significant clinical 

edit). 

Structure No. 

Any clinical edit Significant clinical edit 
No. 

edited Accuracy Sensitivity Specificity 
No. 

edited Accuracy Sensitivity Specificity 

Brain 113 63 0.56 0.71 0.36     

Brainstem 109 60 0.55 0.92 0.10 39 0.56 0.54 0.57 

Cochleae 220 79 0.57 0.39 0.67 31 0.57 0.48 0.58 

Eyes 205 58 0.68 0.07 0.92 16 0.73 0.75 0.72 

Lungs 71 14 0.79 0.00 0.98     

Mandible 113 36 0.62 0.36 0.74 29 0.57 0.59 0.56 

Parotid gland 214 102 0.61 0.80 0.44 96 0.63 0.63 0.63 

Spinal cord 108 38 0.53 0.68 0.44     

 

The model performance over time, both for any clinical edit and for large clinical edit 

can be seen in Figure 24 and Figure 25, respectively. Little model improvement was seen 

over time and performance plateaued for most structures after 10 rounds of testing. 

Generally, the RF models to predict any autocontour edits did not perform as well as 

expected, with an average accuracy of 0.61. The RF model for the prediction of edits to the 

lung contours did not correctly identify any edited contours, though only 14 of 71 were edited 

and had Dice values with an average and standard deviation of 0.96±0.04. 

The RF models to predict significant clinical edits performed, on average, better than 

those to predict any clinical edit; the best performing model for the prediction of significant 

clinical edits was for the eyes. Model performance improved when only contours that had 

significant clinical edits were considered. The RF models for the prediction of significant 

clinical edits were 100% sensitive to edits with Hausdorff distance greater 12 mm to the 
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brainstem, 7 mm to the cochlea, 6 mm to the eyes, and 22 mm to the mandible contours and 

were 76% sensitive to edits with Hausdorff distance greater than 2.2 cm to parotid contours. 

This indicates that the size of edit to which the models are sensitive may be larger than for 

edit size for which it was built. 
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Figure 24. Performance of QA models to detect any clinical edit. Models with high sensitivity 

(red) (e.g. brainstem, parotid) generally had low specificity (yellow). The accuracy (blue) of 

the detection of clinical edits to normal tissue structures was generally low, less than 0.6 for 4 

of 8 structures. (Previous page) 

 

118 | P a g e  
 



Figure 25. Performance of QA models to detect large clinical edits. Models were rebuilt after 

ten patients. Model accuracy (blue) was above 0.55 for all structure, with the model to detect 

errors in the eyes having the highest accuracy at 0.73. Model performance plateaued over 

time.(Previous page) 

 

Among the most important predictors were a quantitative comparison to the 

independent deformable image registration contouring technique and metrics from the HU 

distribution. After the initial RF was built, the models were updated after every 10 structures. 

The accuracy, sensitivity, and specificity of the models were tracked over time, although an 

improvement in model performance was not observed.  

Insight into model performance may be had by understanding the reasons for which 

contours were edited. A non-paired, one-sided t test showed that for all structures, contours 

that were edited for clinical use were significantly closer to the target volume than contours 

that remained unedited in the treatment plan (p < 0.003). For the RF models least sensitive to 

contour editing (lungs, eyes, and mandible), the edited contours were on average 1.9 cm 

(lungs), 1.9 cm (eyes), and 0.4 cm (mandible) closer to the target volume than contours that 

were not edited for clinical use. This result may indicate that reasons other than anatomical 

accuracy (e.g. potential dosimetric effect) are used for contour edit decision making.  

Dosimetric Impact of Normal Tissue Autocontours for Treatment Planning 

Patients Cohort 

For the eight structures implemented for autocontouring into our clinical practice, the 

distribution of clinical edits seen clinically were compared using a two sided t-test to both the 

group of 54 patients selected from this larger cohort and to the group of 29 patients treated on 

a clinical trial. The results are shown in Table 17. For all structures, except eye, we found no 

significant difference in the mean of the distribution of dice similarity coefficients or Hausdorff 
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distances between the cohort of 54 patients and all patients with clinically edited normal 

structures. For eye, the mean Dice similarity coefficient for 289 clinical edited eye structures 

was 0.96±0.11, for this cohort the edits were slightly less with a mean and standard deviation 

of DSC of 0.98±0.04. 

Considering the 29 patients treated on a clinical trial and when normal tissues were 

drawn independently there was a significant difference in the distribution of clinical and 

autocontour agreement. The difference between autocontours and physician structures was 

larger for this group of patients than for those with clinical edited autocontours indicating that 

the use of these for planning would represent a worst case scenario, as clinical edits would be 

expected to be smaller. 

 

Table 17.  Comparison of contour disagreement in the dosimetric cohorts with clinical edits to 

autocontours. A two sided t-test was used to test the hypothesis that the distribution of edits 

sizes for both the cohort of 54 patients with clinical edited autocontours and the cohort of 

patient with independently contours normal structures had the same mean as all patients with 

clinically edited normal structures, as described in the previous section. 

 p-value, two sided t test 

 Independently Drawn Contours 
(n=29) 

Edited contours  
(n=54) 

Structure Dice Hausdorff  
Distance Dice Hausdorff  

Distance 
Brain 0.60 <0.01 0.28 0.38 

Brainstem <0.01 <0.01 0.43 0.16 
Cochleae <0.01 <0.01 0.48 0.68 

Eye 0.01 0.06 0.03 0.01 
Lungs No Structures 0.94 0.99 

Mandible <0.01 <0.01 0.56 0.23 
Parotid Glands <0.01 <0.01 0.87 0.83 

Spinal Cord <0.01 <0.01 0.33 0.89 
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Dosimetric Impact 

A paired Wilcoxon signed rank test was used to compare the treatment plans using 

the physician drawn/edited structures with those created on unedited normal tissue 

autocontours. The comparison was done independently for the two patient groups (1) clinical 

structures derived from autocontours and (2) structures drawn independently from the 

autocontours.  

Considering the group of patients from which physician structures were derived from 

autocontours, DVH metrics which showed a significantly worsening effect on the DVH metric 

included the mean doses to both the ipsilateral and contralateral parotid glands and the 

volume of the ipsilateral parotid gland receiving more than 30Gy (p=0.01). The p-values of the 

Wilcoxon signed rank test for all structures can be found in Table 18.  These results suggest 

that for most structures using unedited autocontours generated using the method described in 

Chapter 4, results in no significant dosimetric effect on the treatment plan. The exception to 

this is for the parotid glands which are often in very close proximity to targets in the head-and-

neck. 
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Table 18. Comparison of DVH metrics to true structures when planned on unedited structures 

and clinically edited structures for 54 patients with clinical edited normal structure 

autocontours. Shown are p-values of the paired Wilcoxon signed rank test. In green are 

parameters for which having planned on unedited autocontoured normal structures showed 

an improvement in the DVH metric compared to having planned on the true physician 

edited/approved structure. In red are metric for which planning on the unedited structures 

caused a significantly poorer performance at the clinical DVH point. All plans were evaluated 

on physician edited/approved structures.  

Clinically Edited /Approved Structures 

Structure N Test Point 
p-value, paired 
Wilcoxon rank 

sum 

Spinal Cord 54 
D_max 0.08 
V_45Gy 1.00 

Brainstem 53 
D_max 0.68 
V_54Gy 1.00 

Ipsilateral Parotid 53 
D_mean 0.01 
V_30Gy 0.01 

Contralateral Parotid 50 
D_mean 0.06 
V_30Gy 0.01 

Cochleae 106 
D_max 0.49 
V_35Gy 0.68 

Eyes 88 
D_max 1.00 
V_50Gy 0.13 

Brain 50 
D_max 0.16 
V_54Gy 0.95 

High Dose PTV 54 
D_1cc 0.18 
V_95% 0.68 

Intermediate Dose PTV 45 V_95% 0.98 
Low Dose PTV 42 V_95% 0.09 

Detriment to DVH Metric Improvement in DVH Metric 
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Considering the group of patients treated on a clinical trial, and for which normal tissue 

contours were contoured independently, there was also limited dosimetric impact due to the 

use of unedited autocontours compared to physician drawn contours, Table 19. A significantly 

worsening effect due to the use of the unedited autocontoured normal structures was seen for 

the maximum dose to the brainstem (p<0.01) and both the maximum dose (p<0.01) and the 

volume receiving more than the maximally allowed dose of 45 Gy (p<0.01) for the spinal cord. 

However, for some patients, there is a clear discrepancy in the naming of structure and its 

contoured anatomy, this is especially easy to detect for the spinal cord contour. Common 

were two errors, either the physician drawn spinal cord either more closely represents a 

spinal canal contour, or is clearly not  a contour of the spinal cord (i.e. includes part of the 

spinal column or brainstem. Examples of these errors can be seen in Figure 26. This analysis 

underlines the importance of assumptions which are made about the development of 

treatment plans and their retrospective analysis.  
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Table 19. Comparison of DVH metrics to true structures when planned on unedited structures 

and independently drawn physician contours. Shown are p-values of the paired Wilcoxon 

signed rank test. In red are metric for which planning on the unedited structures caused a 

significantly poorer performance at the clinical DVH point. All plans were evaluated on 

physician drawn structures. 

Independently Physician Drawn Structures 

Structure N Test Point 
p-value, paired 
Wilcoxon rank 

sum 

Spinal Cord 29 
D_max <0.01 
V_45Gy <0.01 

Brainstem 27 
D_max <0.01 
V_54Gy 1.00 

Ipsilateral Parotid 29 
D_mean 0.55 
V_30Gy 0.77 

Contralateral Parotid 26 
D_mean 0.12 
V_30Gy 0.08 

Ipsilateral Submandibular Gland 16 D_mean 0.21 
Contralateral Submandibular Gland 21 D_mean 0.57 

Cochleae 8 
D_max 0.84 
V_35Gy 1.00 

Optic Chiasm 21 
D_max 0.14 
V_54Gy 1.00 

Optic Nerves 46 
D_max 0.44 
V_54Gy 0.50 

Lens 56 
D_max 0.34 
V_7Gy 0.46 

Eyes 6 
D_max 0.44 
V_50Gy 1.00 

Brain 1 
D_max 1.00 
V_54Gy 1.00 

High Dose PTV 29 
D_1cc 0.38 
V_95% 0.87 

Intermediate Dose PTV 29 V_95% 0.17 
Low Dose PTV 14 V_95% 0.95 

Detriment to DVH Metric  Improvement in DVH Metric 
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Figure 26. Ten patients with clinical spinal cords exceeding clinical constraints when planned 

using autocontours. For these ten patients, the maximum dose to the clinical spinal cord (red) 

exceeded 45Gy (cyan) when the autocontoured spinal cord (blue) was used for treatment 

planning; the maximum dose when the physician drawn spinal cord was used was less than 

45Gy. In panels A-C, the clinical contour exceeds more superiorly than the autocontoured 

spinal cord. In panels D-J, the clinical spinal cord more resembles a spinal canal. In panel F, 

the clinical spinal cord contour extends very far superior to include the brainstem, which was 

not included as a separate structure for this patient. 
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In Figure 27, the dosimetric impact of the choice of planning structure can be seen. 

For 898 physician drawn normal structures, 474 showed a decrease in plan quality and 424 

showed a dosimetric improvement due to planning on unedited autocontours. For spinal cord, 

13 of 83 plans (12 of which were drawn independently from autocontours) had a spinal cord 

which exceeded clinical dose constraints when planning was done on autocontoured spinal 

cords. Though, as discussed, and shown in Figure 26, all of these structures have physician 

edited/approved/drawn spinal cords which are not reflective of their naming. Considering all 

other normal structures, in only five cases (three parotid gland, one optic nerve, and one eye) 

did planning on an unedited autocontour result in an exceedance of the corresponding clinical 

threshold. The relative percentage difference of these five structures can be found in Table 20 

and were all less than 15%, indicating that while the structure did exceed clinical thresholds, 

the relative difference as small.  

The results above should be considered with the understanding that comparisons 

were made only on structures which were included in the original treatment plan. It is likely 

that structures not included in the clinical treatment plan were not of significant dosimetric 

interest because, for example, the structure may be far from the target. In these cases using 

an unedited automatic structure in lieu of a clinically approved structure is likely to have very 

limited dosimetric impact and therefore results herein represent the expected dosimetric 

impact for a subset of patients for which accurate contouring is expected to be of 

consequence in the treatment plan and therefore these results may overestimate the impact 

on the population as a whole. 
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Table 20. Dosimetric Impact of structure which exceed clinical structure when autocontours 

are used for treatment planning. Of 815 structure s 5 exceeding corresponding clinical 

constraints when autocontours, instead of clinical structures, were used for treatment 

planning. 

Structure Dosimetri
c metric 

Clinical 
Threshol

d 

Dosimetric Value when planned on Relative 
Difference 

(%) 
Clinical 

Structures 
Automatic 
Structures 

Parotid 
Gland 

Mean 
Dose 26 Gy 

25.9 Gy 27.5 Gy 6.3 
24.7 Gy 26.0 Gy 5.5 

Parotid 
Gland V_30Gy 50% 47.0% 53.6% 14 

Eyes Max Dose 50 Gy 48.2 Gy 51.4 Gy 6.6 
Optic 
Nerve Max Dose 54 Gy 52.1 Gy 54.4 Gy 4.4 
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Figure 27. Distribution of relevant dosimetric points when planned on clinical structures and 

autocontoured structures. Along the x-axis, the DVH metric to true physician approved 

structures when planning on autocontoured structures and along the y-axis for the same 

patients the DVH metric when planned on the true clinical structure. Shades of green indicate 
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improvement in the dosimetric descriptor when planned on the autocontours, shades of red 

indicate poorer performance due to use of the autocontours for planning. Darker shades 

delineate common clinical thresholds for each dosimetric descriptor, with darker green 

indicating an improvement beyond the clinical threshold and darker red indicating a poorer 

performance beyond the clinical threshold. In cyan squares, for 54 patients, clinical structure 

originated from autocontours with physician approval/editing for clinical use. In magenta 

circles, other normal structures were independently drawn for clinical use (continued on 

following pages). 
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Figure 27. (Continued from previous pages) 
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Figure 27. (Continued from previous pages) 
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Correlation to Patient Features 

Considering four structures of particular importance to the treatment of head-and-neck cancer 

(spinal cord, brainstem, and contralateral and ipsilateral parotid glands), there were few 

examples when the use of unedited autocontoured structures impacted plan quality or dose 

delivered to true clinical structure as measured by clinically used dose metrics. However, 

variations in impact including positive and negative impact as well as a limited number of 

cases for which clinical constraints were exceeded in autocontours were used for planning 

indicate a possibility of detecting these patients for the warning to the user of a fully 

automated system or for further investigation. Three dosimetric metrics; the absolute dose to 

the clinical structure, the absolute difference in dose to the clinical structure when planned on 

either unedited autocontour or the clinical structure, and the relative dose difference when 

planned on the two structures, were evaluated for correlation with several features of the 

plans, as shown in Table 21. 

For the spinal cord, brainstem, and contralateral parotid the absolute dose to the 

clinical structure when planned on the unedited autocontour was significantly correlated to the 

size of clinical edit, quantified as the Dice similarity agreement, Hausdorff distance, and mean 

surface distance. This indicates that the degree of clinical edit is correlated to its relative dose 

region. Unfortunately this data, the size of clinical edit, would not be available for incoming 

patients for which the need for clinical edits partly motivates the model prediction itself. The 

dosimetric impact for these three structures was also positively correlated to the prescription 

dose level of all three PTVs, and both the minimum distance and the distance of the 10% 

closest points to one or more PTVs. These correlations indicate that the higher a prescribed 

dose and the closer a normal tissue is to the PTVs, the higher the dose to the true normal 

structure will be. 
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The dosimetric impact due to the use of unedited autocontoured structures for 

treatment planning was assessed using the two remaining metrics; the absolute and relative 

dose differences.  Significant correlation between features of the treatment plan and the 

dosimetric impact of the choice of planning structure was found for a limited number of plan 

features. For example, the absolute difference in the mean dose to the contralateral parotid 

was significantly correlation to both the minimum distance and the distance of the 10% 

closest points to the low dose PTV, this may be expected given that edits to the parotid may 

be more impactful if the target is near the structure. Considering the very limited impact the 

choice of planning structure had on the resultant plans, as presented in the previous section, 

strong correlations would not be expected. 

 

 

 

 

 

Table 21. Correlation between dosimetric impact of using unedited autocontoured normal 

structures and patient and plan features. P-values of the hypothesis that there exist no 

relationship between the dosimetric impact (rows) and plan features (columns), significant 

established at <0.05 and shown in green. The absolute dose to the clinical structure of four 

key normal structures in the head-and-neck were significantly correlated with the size of 

clinical edit (although not available for prediction of new patients), the PTV prescribed dose 

level and the minimum distance to the target. The absolute and relative dose difference were 

less often correlated to plan features. No dosimetric features were correlated with the DSC of 

the targets or target variations.
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p-values of Correlation 
Coefficient Clinical Edit Prescription Dose 

Level Minimum Distance Max Distance of 10% 
closest points 

 Structure Dice HD MSD PTV1 PTV2 PTV3 PTV1 PTV2 PTV3 PTV1 PTV2 PTV3 

Absolute 
Dose 

Spinal Cord <0.01 0.01 0.02 <0.01 0.03 <0.01 <0.01 0.01 0.02 <0.01 0.01 0.01 
Brainstem <0.01 <0.01 <0.01 0.01 0.03 <0.01 <0.01 0.05 0.07 <0.01 0.04 0.05 

Ipsilateral Parotid 0.68 0.72 0.74 0.35 0.71 0.86 0.98 0.66 <0.01 0.68 0.70 <0.01 
Contralateral Parotid <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.24 0.09 <0.01 0.23 0.07 

Absolute 
Dose 

Difference 

Spinal Cord <0.01 0.01 0.04 0.04 0.19 0.08 0.01 <0.01 0.09 0.01 <0.01 0.05 
Brainstem <0.01 <0.01 <0.01 0.61 0.61 0.45 0.52 0.77 0.42 0.58 0.78 0.41 

Ipsilateral Parotid 0.23 0.55 0.43 0.97 0.54 0.46 0.36 0.09 0.81 0.34 0.09 0.90 
Contralateral Parotid 0.20 0.33 0.35 0.28 0.75 0.30 0.56 0.18 0.68 0.66 0.16 0.73 

Relative 
Dose 

Difference 

Spinal Cord <0.01 0.03 0.07 0.29 0.25 0.10 0.04 <0.01 0.10 0.06 <0.01 0.07 
Brainstem <0.01 <0.01 <0.01 0.48 0.87 0.28 0.47 0.76 0.64 0.53 0.75 0.65 

Ipsilateral Parotid 0.37 0.94 0.76 0.82 0.34 0.68 0.17 0.04 0.90 0.15 0.04 0.83 
Contralateral Parotid 0.17 0.21 0.23 0.07 0.38 0.15 0.46 0.24 0.87 0.56 0.25 0.92 

  Dice with PTVs Dice of Structure Hull 
with PTVs 

Dice with  0.5 cm 
expanded targets 

Dice with 1cm  
expanded targets 

 Structure PTV1 PTV2 PTV3 PTV1 PTV2 PTV3 PTV1 PTV2 PTV3 PTV1 PTV2 PTV3 

Absolute 
Dose 

Spinal Cord               0.81 0.49 0.23     
Brainstem             0.22 0.09 0.49 0.18 0.74 0.36 

Ipsilateral Parotid 0.03 0.22 0.99 0.03 0.18 0.98 0.03 0.04 0.15 0.30 0.54 0.36 
Contralateral Parotid 0.61 0.61 0.08 0.65 0.63 0.07 0.27 0.14 0.86 0.88 0.13 0.17 

Absolute 
Dose 

Difference 

Spinal Cord               0.54 0.94 0.58     
Brainstem             0.42 0.02 0.17 0.12 0.74 0.36 

Ipsilateral Parotid 0.26 0.19 0.73 0.31 0.25 0.75 0.26 0.26 0.30 0.23 0.94 0.83 
Contralateral Parotid 0.23 0.05 0.04 0.23 0.06 0.04 0.44 0.72 0.02 0.03 0.09 0.15 

Relative 
Dose 

Difference 

Spinal Cord               0.53 0.97 0.62     
Brainstem             0.45 0.05 0.24 0.17 0.69 0.44 

Ipsilateral Parotid 0.22 0.15 0.54 0.25 0.18 0.55 0.21 0.21 0.18 0.12 0.79 0.95 
Contralateral Parotid 0.14 0.13 0.06 0.14 0.13 0.06 0.39 0.72 0.05 0.06 0.14 0.26 
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Discussion 

We have investigated the use autocontoured normal structures in the head-and-neck 

for treatment planning purposes. We first evaluated retrospective and prospective algorithm 

performance including the clinical implementation of the 8 normal structures into our head-

and-neck clinic. In an effort to ensure the safe use of autocontoured for automated treatment 

planning, which may or may not include the careful review of contours, we developed an 

approach to QA autocontours in order to flag them to the user. Finally, we investigated the 

potential use of unedited autocontours for treatment planning. The results show that 

autocontouring is a viable method to save time, reduce required infrastructure, while 

maintaining a high standard of care, and that the use of unedited autocontours has limited 

dosimetric impact. 

In an analysis of four autocontouring algorithms, an in-house methods, MACS, was 

highest performing. Two commercial algorithms were also analyzed –Smart Segmentation® a 

deformable image registration technique which performance was not found to be adequate for 

clinical use and Smart Detection® a heuristic approach which worked well but is only 

available for a limited number of structures, and Smart Segmentation® a deformable image 

registration approach which performed poorly with or without the use of multiple atlas 

patients. While the heuristic approach slightly outperformed the in-house technique for a few 

structures, the advantages of using a single algorithm which include a reduction in the time 

needed to contour, a simplification in workflow, and the availability to modify the contours 

which is not possible using the commercial approach the in-house method alone was selected 

for further analysis. Interest in other automatic contouring methods are increasing, including 

the use of edge detection, image gradient, and voxel intensities, which do not require prior 

information or model building as well as shape model and machine learning techniques which 

use the contours of prior patients to inform the contour of new patients and have performed 
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well on select patient data sets (99). These techniques may offer advantages and the 

validation and assessment of these algorithms both in the clinic and for planning purposes 

may be evaluated using the principles presented here. 

Given the known inter-physician variability in contouring(88, 117) and as the atlas for 

contour generation was derived from patients from the primary rating physician we sought to 

present autocontours from MACS to 5 physicians and, as expected, the acceptability of the 

contours, especially for use without edit, varied among physicians, however only 7% of 

contours received contours which indicated physician disagreement (i.e. outside of their own 

opinion of acceptable inter-physician variability). We expect similar results for a larger group 

of physicians. 

We successfully implemented into routine clinical the autocontouring of 8 normal 

structures (11 total contours as three were bilateral). These 8 structures were chosen as they 

were the most often contoured structures in a sample of head-and-neck cancer patients. This 

clinical implementation provides ongoing data at the size of edits of autocontours and 

possible trends into normal tissue contouring practices. Other structures are also required and 

include the submandibular glands, optic structures, esophagus, and others (92). A limited 

analysis of these structures, presented in the appendix, show less success for their 

contouring compared to independently drawn physician structures and therefore these 

structures may warrant further analysis. 

While no formal analysis of time savings or systematic method for physician feedback 

was developed, we believe that, in line with previous findings, autocontouring saves time 

(118-120) and that the continued use of the software indicates that it has been well received, 

with over 1000 patients having had these contours requested through the script in the 

treatment planning system. Upon implementation a description of the tool as well as guidance 

for its use was sent to the attending physician, however due to software limitations we were 
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unable to track approval and/or editing of the structures on a patient-by-patient basis and it 

was assumed that if normal structures were requested for the patient and image set of the 

final treatment plan and if the contours remained in the final treatment plan with the same 

naming as the autocontours (which is the same as our clinical naming) then the contours 

were edited and/or approved for clinical use. These assumptions likely have an impact of the 

fidelity of the data, and a limited number of instances which highlight the impact they may 

have were encountered. In one such example, for the patient and image set in question, the 

contours were requested through the script in the treatment planning system and remained in 

the final treatment plan, however, upon analysis of the cochlea structure it was found that the 

naming was inconsistent with the structure location (i.e. the left cochlea was on the right side 

of the body, and the right cochlea on the left). These structures were removed from analysis 

but other, less obvious examples, may have remained. Generally, clinical implementation was 

considered a success as nearly 50% of structures were not edited for clinical use and 

physicians appreciate and use the tool. 

In the third experiment, a method to ensure the safe use of autocontours in automated 

treatment planning was investigated. Random forest models were developed such that a 

patient with grossly incorrect autocontours would not be allowed to continue in the automated 

treatment planning process. Additionally, the possibility of warning the user to suspected 

contour inaccuracies was investigated. Due to the success of the autocontouring algrotihm, 

there were few “true” autocontouring failures and simulated failures were therefore used to 

supplement. It is unlikely that these simulated errors (e.g. shifts and expansions) accurately 

represent the potential failure modes of an autocontouring algorithm. However, models to 

detect gross errors successfully identified patients in non-standard positions, for a patient with 

a very large gross tumor, and for a limited number of other gross contouring errors. For all 

patients in nonstandard positions and of other disease sites, at least half of the normal 

structures were flagged as failing by their respective models and therefore we suggest that if 
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more than half of the structures are flagged as failing by the gross error models then the 

patients should not continue in the autoplanning process.  

Unfortunately, efforts to detect smaller contour edits found only limited success, with 

average accuracy just over 60%. The reason for the poor performance is likely multifaceted, 

though a driving reason is likely the (mis)alignment of the data collected with underlying 

assumptions. During clinical implementation it was assumed that contours which remain in 

the treatment plan represent the anatomical structure which corresponds to their name. An 

extension of this is the idea that edit of an autocontour indicates autocontouring error and also 

the inverse; lack of contour edit indicates perfect anatomical agreement. However, numerous 

examples which do not support this idea were identified. Further, the significance of the 

correlation between contour edit and distance to target suggest that contours are not edited 

solely for the purpose of anatomical accuracy. If a model to detect anatomical accuracy of 

contours is desired then vetting and careful development of a data set which matches this 

desire should be curated. While strict adherence to anatomical boundaries of normal 

structures for treatment planning purposes is ideal, contours for the purpose of treatment 

planning may serve other purposes which are not tracked, noted, or otherwise identifiable. 

To investigate the impact that the use of unedited autocontours may have on the 

treatment plan we developed treatment plans on both clinically used structures (both edited 

and/or approved autocontours and independently drawn structures) and unedited versions. 

The results of this experiment indicate that the automated treatment planning strategy as 

presented in Chapter 4 is robust to edits on the size of those seen clinically and even larger 

differences seen when the contour is drawn independently and that using unedited structures 

for treatment planning, which may save up to an hour of editing time, may be a feasible 

option. Through this, again, we saw the impact of structures which do not align with their 

naming (121); for at least seven of ten patients with a spinal cord dose which exceeded 

138 | P a g e  
 



clinical constraint when the treatment plan was developed on unedited structures there was 

some error in the spinal cord contour. 

 There are several limitations and opportunities for further study. Generally, the 

curating of a data set which explicitly meets the needs of the hypothesis is desired, though 

the use of real clinical data exposes the purposes and methods with which a clinical tool may 

be utilized and therefore, should be considered. The structure set implemented clinically 

included only 8 normal structures, and though others were investigated including their impact 

of plan dosimetry, further investigation is needed. The study of the dosimetric impact of 

autocontours was completed for a cohort of only 54 patients, from 6 sub-sites in the head and 

neck, and the accrual of additional patients may reinforce the conclusions or may identify 

specific scenarios (e.g. groups of patients) for which the current conclusions may not apply. 

Finally, if we are to suggest that true anatomical structures are not required for high-quality 

treatment planning we must be cognizant of the impact or doing so. First, the naming of such 

structures should always be in line with their physician description (121). Second, normal 

tissue contours routinely serve purposes beyond that for treatment planning (e.g. for the 

analysis of normal tissue complications, in the case of retreatment, etc.), and if anatomically 

defined contours are not routinely generated there is a risk of losing new and clinically reliable 

data which may be used. 

 Over all, we believe this work represents the first comprehensive assessment of 

automatic contouring for a large set of normal structures in the head-and-neck, including over 

2 years of use. Further, we have developed a technique to identify contours with gross errors 

which may jeopardize the safety of a fully automated treatment planning approach. Finally, 

this is the first study to evaluate the potential of using unedited autocontours of normal 

structures for head-and-neck treatment planning, and the results show that unedited 

autocontours do not significantly impact plan quality at clinically relevant dosimetric endpoints, 

and compared to clinical edited or approved autocontours. The use of autocontouring in the 
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head-and-neck, with or without editing, could dramatically reduce the time needed to head-

and-neck treatment plan development, possibly allowing for the transition to advanced 

techniques in low-resource settings. 

Conclusion 

The automatic contouring of normal structures in the head-and-neck is a promising 

avenue, producing accurate contours which are suitable for use without edits for treatment 

planning. 
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Chapter 6: Automatic Contours of Intermediate and Low 

Dose Clinical Target Volumes and Their Use in an 

Automated Planning System 

In this chapter we describe the results for Specific Aim 4 in which, through three 

experiments we evaluate the feasibility of the use of automatically countered intermediate and 

low dose target volumes in the head and neck. Our working hypothesis is that automatically 

contoured clinical target volumes can safely be used for treatment planning purposes. 

Introduction 

Towards a fully automated treatment planning system for the head-and-neck, we have 

presented the validation of the planning technique and optimization algorithms in Chapter 4 

and the use of fully automated normal structure contours in Chapter 5. The next step towards 

full automation is the implementation of automatically contoured target volumes. Intermediate- 

and low- dose clinical target volumes are good candidates for automatic contouring as they 

are often based on anatomically defined tissues rather than, as for the high dose treatment 

volume, the cancerous tumor. 

In the treatment of head-and-neck cancer, the irradiation of subclinical disease in the 

lymphatic system of the neck to between 45 and 60 Gy has long been shown to improve 

patient outcomes (1, 2). Historical records of patient reoccurrence reveal likely patterns of 

disease spread of each sub-site in the head-and-neck (3-6) and advise physicians on the 

nodal levels which would benefit from prophylactic radiation coverage. While irradiated nodal 

levels and prescribed doses may vary between patients and physicians (7, 8) there is some 

consensus on which to base standardized nodal selection according to stage and disease 

sub-site (9, 10). An atlas of nodal levels on a contrast enhanced CT of one patients is 
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available on the RTOG website 

(https://www.rtog.org/CoreLab/ContouringAtlases/HNAtlases.aspx). 

Once the intended nodal volumes for irradiation have been selected, they must be 

delineated. Contouring of these elective targets in the head-and-neck faces the same burdens 

as does the contouring of normal structures; contouring is time consuming and even with 

published guidelines and publically available atlases of nodal volumes there exists significant 

inter-physician variability(11-14). Further, target definition represents a major contributing 

factor to geometric inaccuracy in radiotherapy (15). To reduce cntour variability as well as 

save time and standardize treatment, methods for the automatic delineation of these 

anatomically based nodal volumes have been investigated and are promising techniques (16-

19), though small patient cohorts and limited or patient specific nodal volume selections limit 

their applicability more broadly. 

We seek to provide a set of atlas based automatically contoured nodal volumes which, 

with post processing, can provide clinically usable clinical target volumes for elective neck 

coverage of many head-and-neck subsites and stages. In the context of an automated 

treatment planning system for the head-and-neck, we envision a process by which the 

attending physician is required to provide information about the location of gross disease (by 

identifying the head-and-neck subsite) and the location of gross nodal disease, if present. 

This information along with the physician drawn primary and nodal gross tumor volume (GTV) 

contours will be used to provide a preliminary clinical target volume, divided by dose level, 

which the physician will then have the opportunity for edit for treatment. This process can be 

seen in Figure 28. 
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Figure 28. Workflow of the propagation of automatically generated CTVs. Using 5 user 

provided inputs, patient specific CTVs are created. The patient CT is used in a multi-atlas 

autocontouring algorithm and information provided about the disease type and stage is used 

to select the appropriate nodal volumes based on templates. From the patient GTV, the high 

dose CTV is created and then combined with the nodal volumes to provide patient specific 

CTV contours. In a contouring workspace the physician then has the opportunity to edit and 

the obligation to approve the contours for clinical use. 

Nodal Volume Atlases  
(Left and Right) 

Physician Provided Information: 

1. Head-and-neck subsite 
2. Nodal involvement 
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4. Patient CT 
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Methods 

Autocontouring Algorithm 

Autocontours of four anatomically defined nodal level groupings, as described in Table 

22 and Figure 29, were created using the in-house multi-atlas deformable image registration 

approach known as MACS as described in Chapter 5. Two separate atlases were developed, 

one for left sided nodal volumes and one for right sided nodal volumes. The left and right 

sided atlases were comprised of 10 and 12 patients without gross disease on the 

corresponding side and who were previously treated patients at The University of Texas MD 

Anderson Cancer Center. Contours of the four target volumes were collected from the 

patients’ treatment plans or drawn by a resident radiation oncologist; all contours used in the 

atlas were reviewed and approved for use by an attending radiation oncologist with 13 years 

of experience. 

Retrospective Autocontouring Performance 

Physician Review 

For this study, 115 patients were selected from the most recent 128 patients stored in 

the database of patients treated at our institution for head-and-neck cancer; the remaining 13 

patients were used for atlas development. A radiation oncologist was asked to rate the nodal 

level contours as seen in Figure 29 on a five-point scale, Table 8, with a score of 1 indicating 

major edits are needed and a score of 5 indicating a perfect autocontour. To assess the 

possibility of rater bias, nodal level contours for 10 randomly selected patients were reviewed 

by five additional radiation oncologists from four international institutions. Physician 

agreement was assessed by grouping each pair of ratings (one rating from the primary 

physician and one from an outside physician) into one of three categories. Category I 

agreement includes instances when the primary and outside physician agreed as to the 

degree of edit needed, Category II agreement indicates that the physicians agreed that the 
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contour required either no more than minor edits or major edits. The final category, Category 

III agreement, includes those contours where the physicians disagreed on the acceptability of 

the contour, with one physician indicating that the contour needed major edit with the other 

indicating no or minor edit for use. Additionally, inter-physician variability in ratings was 

assessed using a Wilcoxon signed rank test. 
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Table 22. Anatomical definitions of individual nodal levels used in this study. Individual nodal 

levels were grouped allowing for four atlas derived volumes; the retropharyngeal nodes (red 

arrow), nodal levels II-IV (green), levels Ib-V (dark blue), and levels Ia-V (light blue). This 

table was adapted from published guidelines, Gregoire et al(9) 

 Anatomical Boundaries 
Nodal 
Level Cranial Caudal Anterior Posterior Lateral Medial 

Retropha-
ryngeal 
Nodes 

Base of skull 

Cranial edge 
of the body 

of hyoid 
bone 

Fascia under 
the pharyngeal 

mucosa 

Prevertebral 
m. (longus 

colli, longus 
capitis) 

Medial 
edge of the 

internal 
carotid 
artery 

Midline 

Ia 

Geniohyoid 
m., plane 
tangent to 

basilar edge 
of mandible 

Plane 
tangent to 

body of 
hyoid bone 

Symphysis 
menti, 

platysma m. 

Body of 
hyoid bone 

Medial 
edge of 

ant. belly of 
digastric m. 

n.a. 

Ib 

Mylohyoid 
m., cranial 

edge of 
submandibul

ar gland 

Plane 
through 

central part 
of hyoid 

bone 

Symphysis 
menti, 

platysma m. 

Posterior 
edge of 

submandibu
lar gland 

Basilar 
edge/inner 

side of 
mandible, 
platysma 
m., skin 

Lateral edge 
of ant. belly 
of digastric 

m. 

IIa 
Caudal edge 

of lateral 
process of 

C1 

Caudal edge 
of the body 

of hyoid 
bone 

Post. edge of 
sub-

mandibular 
gland; ant. 
edge of int. 

carotid artery; 
post. edge of 
post. belly of 
digastric m. 

Post. border 
of int. 

jugular vein 

Medial 
edge of 

sternocleid
omastoid 

Medial edge 
of int. carotid 

artery, 
paraspinal 

(levator 
scapulae) m. 

IIb 
Caudal edge 

of lateral 
process of 

C1 

Caudal edge 
of the body 

of hyoid 
bone 

Post. border of 
int. jugular vein 

Post. border 
of the 

sternocleido
mastoid m. 

Medial 
edge of 

sternoclei-
domastoid 

Medial edge 
of int. carotid 

artery, 
paraspinal 

(levator 
scapulae) m. 

III 
Caudal edge 
of the body 

of hyoid 
bone 

Caudal edge 
of cricoid 
cartilage 

Postero-lateral 
edge of the 

sternohyoid m.; 
ant. edge of 

sternocleidoma
stoid m. 

Post. edge 
of the 

sternocleido
mastoid m. 

Medial 
edge of 

sternoclei-
domastoid 

Int. edge of 
carotid 
artery, 

paraspinal 
(scalenius) 

m. 

IV 
Caudal edge 

of cricoid 
cartilage 

2 cm cranial 
to 

sternoclavic
ular joint 

Anteromedial 
edge of 

sternocleidoma
stoid m. 

Post. edge 
of the 

sternocleido
mastoid m. 

Medial 
edge of 

sternocleid
omastoid 

Medial edge 
of internal 

carotid 
artery, 

paraspinal 
(scalenius) 

m. 

V 
Cranial edge 

of body of 
hyoid bone 

CT slice 
encompassi

ng the 
transverse 

cervical 
vessels 

Post. edge of 
the 

sternocleidoma
stoid m. 

Ant-lateral 
border of 

the 
trapezius m. 

Platysma 
m., skin 

Paraspinal 
(levator 

scapulae, 
splenius 

capitis) m. 
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Figure 29. Examples of automatically contoured nodal level group. Shown for a representative 

patient are the retropharyngeal nodes (red), nodal levels II-IV (green), levels Ib-V (dark blue), 

and levels Ia-V (light blue), on five slices (Panels B-G) at locations as seen in Panel A. 

 

Quantitative Contour Performance 

 From the two patient cohorts as previously discussed, [1) 115 retrospectively collected 

patients with reviewed nodal levels and 2) 54 patients from various head-and-neck subsites 

and clinically edited normal tissues autocontours], inclusion criteria included clinical nodes 

which visually resembled anatomically defined nodal regions, and were treated for one of the 

7 head-and-neck subsites. This left 55 of the 115 retrospective patients and 24 of the 

prospective patient cohort, for a total of 79 patients included in this analysis. 

 Physician drawn CTVs served as the gold standard in this study and were created by 

combining physician drawn CTVs of all dose levels into a single “clinical CTV”. This was 

necessary as often the division of clinical target volumes among many prescription doses can 

vary dramatically among physicians and were not standardized according to our automated 

planning approach. Atlas derived CTVs were generated by a visual matching of the 

intermediate and low dose clinical CTV with one or more of the four autocontoured nodal level 

groups, Figure 29, or one of three additional nodal level groups (including nodal level groups 

Ia-IV, Ib-IV, or II-V), which were not included in the autocontoured structure set and were only 

used for 2, 2, and 4, patients respectively. The selected nodal levels were combined with the 

clinical high dose CTV which was copied directly from the clinical treatment plan to mimic the 

anticipated automated planning approach to create the “atlas derived CTVs”. Two quantitative 

comparisons of the clinical CTVs and atlas derived CTVs were assessed using the Dice 

similarity coefficient, mean surface distance, and Hausdorff distance, as previously described. 

First, the clinical CTV and atlas derived CTV were compared directly, as seen in Figure 30. 

Second, to eliminate the bias introduced by including the physician drawn high dose CTV in 
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the atlas derived CTV, the physician drawn high dose CTV was removed from both the 

clinical CTV and the atlas derived CTV to create atlas derived and clinical “nodal CTVs”, see 

Figure 31.  

The results of this experiment can be found on Page 156. 

 

 

Figure 30. Quantitative comparison of clinical and atlas derived CTVs. In panel A, all clinical 

CTVs (here three dose levels indicated in red blue and yellow) were combined to create a 

single clinical CTV (green). IN panel C, atlas derived nodal volumes (light blue) were 

combined with the physician drawn high dose CTV (red) to create atlas derived CTVs 

(orange). In panel C, these two volumes were compared using the DSC, MSD, and HD. 
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Figure 31. Quantitative comparison of clinical and atlas derived nodal CTVs. The high dose 

physician drawn CTV was removed from the clinical CTVs (panel A) and the atlas derived 

CTVs (panel C). The two volumes were compared the DSC, MSD, and HD. 

 

Dosimetric Impact of Planning on Autocontoured Target Volumes 

For this study, of the 54 patients used for evaluation of the treatment planning strategy 

and impact of normal tissue autocontours, 40 were selected because they met the inclusion 

criteria of at least 2 physician drawn CTVs and or PTVs, bilateral treatment, and intermediate 

and/or low dose CTVs based on anatomical nodal levels. For comparison, two treatment 

plans were developed. In the first strategy, plans were optimized to deliver dose to two 

physician drawn planning target volumes. Clinical PTVs were reduced to two such that the 

high dose physician drawn target was copied form the original treatment plan and any lower 

dose PTV was combined into one target volume. For planning purposes the prescription to 

this volume was chosen to be either equal to the original volume (if there was only an 

intermediate dose target) or between the two remaining target volumes (if there were both 

intermediate and low dose target volumes). See Figure 32 for an example of the reduction of 
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target volumes from three to two dose levels for two patients. In the second strategy, plans 

were optimized to deliver dose the atlas derived PTVs which were generated from atlas 

derived CTVs with either 3 or 5 millimeter margin. The atlas derived high dose CTV was a 

copy of the physician drawn high dose CTV. The second atlas derived CTV was derived by 

combining the selected nodal levels which best matched the physician drawn nodes and 

subtracting the high dose CTV, this volume was prescribed the same dose as the 

intermediate dose level in the first strategy. Atlas derived CTVs were expanded by a margin 

of either 3 mm or 5mm to create atlas derived PTVs. Both planning strategies used physician 

drawn normal tissues, when present, for optimization. If physician drawn normal structures 

were not included in the clinical plan MACS was used to generate these structures. For 

optimization, planning structures were also generated using the MACS software as needed 

for the planning strategy.  

The dose delivered to the clinical CTVs and PTVs was evaluated when the two 

planning strategies were used. In the first strategy, the clinical PTVs were the targets for 

which the plan was optimized, the second strategy aimed to deliver dose a different target, 

the one that would be used if atlas derived nodal volumes were used as target volumes 

without edit. Coverage at the 95%, 98% and 100% isodose levels were evaluated. 

The results of this experiment can be found on Page 161. 
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Figure 32.Clinical and atlas derived targets used for treatment planning. In panels A (patient 

1) and C (patient 2) intermediate and low dose clinical PTVs (blue and yellow colorwash) 

were combined to create a single secondary PTV (pink line). The two physician derived PTVs 

were used for treatment planning and represent the true planning scenario. Atlas derived 

CTVs (orange lines panel B,C,E, and F) were used with 3 mm (lavender line, panels B and E) 

and 5 mm (blue line, panels C and F) for comparison. 
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Evaluation of an Independent Technique for QA of autocontoured Target Volumes 

If automatically generated targets are to be used for treatment planning, similar to the 

strategy proposed for normal structures, it is necessary that automatically generated target 

volumes be verified independently. Towards this, we assessed the use of a second 

independent target volume contouring approach as a QA check of atlas derived CTVs. 

Second Clinical Target Volume Contouring Approach 

As developed by a member of our group, a machine learning approach has been 

shown to be successful in the contouring of a combined target volume structure in the head-

and-neck (CARDENAS – In Submission – Segmentation of Oropharyngeal Clinical Target 

Volumes using a two-channel 3D U-Net Architecture MICCAI). This approach uses a 3D 

variant of a two channel U-Net architecture and requires the user to input the patient CT 

volume, the physician drawn gross tumor volume(s), an external body contour, and two 

anatomical landmarks, as seen in Figure 33. The anatomical landmarks are used to identify 

the extent of the area of interest in the machine learning algorithm and include the fusion of 

sphenoid bone and basilar part of the occipital bone and most cranial extent of the sternum; 

the landmarks were manually identified for this study but their identification could be easily 

automated. The model was developed using 210 head-and-neck cancer patients treated for 

oropharynx disease with bilateral treatment. Assessed on 85 patients not included in the 

training set, this machine learning approach agreed with independent drawn physician CTVs 

with an average and standard deviation in the Dice similarity coefficient of 0.78±0.05. In this 

study, to assess the quality of the CTVs generated using this approach, CTVs for 79 patients 

were compared with both the clinical CTV and the clinical nodal CTV as previously described 

and as shown in Figure 34 
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Figure 33. Secondary technique for the generation of CTVs. This approach requires as input 

(panel A) the primary and nodal GTV, an external contour in the region of interest, and 

anatomical landmarks which define the superior and inferior region of interest. The technique 

outputs a combined CTV volume (panel B). 

 

Input: 
Sup-Inf Extent 

External 
Contour 

Primary GTV 

Nodal GTV 

Output: 
 CTV Result 

A B 

154 | P a g e  
 



 

 

 

 

 

Figure 34. Quantitative comparison 

of CTVs from the secondary 

technique to clinical and atlas derived 

CTVs. Shown for three slices are the 

CTVs from the independent 

technique which were compared to 

both the clinical CTVs (green) and 

atlas derived CTVs (blue) for both the 

whole CTV volume (left panels) and 

the nodal CTV only (right panels). 
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Independent Clinical Target Volumes as a QA Approach 

In order to assess the use of these secondary contours for QA purposes we evaluated 

the correlation between the quantitative agreement as measured by the DSC, MSD, and HD 

between 1) the atlas derived CTVs and the CTVs generated using the independent machine 

learning technique and 2) the atlas derived CTVs and the physician drawn CTVs. Correlation 

was established using the correlation coefficient with a p-value less than 0.05 establishing 

significant correlation. If correlated, the agreement of the contours generated for the 

automated planning approach (the atlas derived CTVs) could be compared with the 

secondary technique and this result provided to the user of the system to guide the need for 

edits. 

The results of this experiment can be found on Page 163. 

Results 

Retrospective Autocontouring Performance 

Physician Review 

For 115 patients with atlas derived nodal volumes, the distribution of physician ratings 

of the 4 nodal volumes on the 5-point scale according to Error! Reference source not 

found. can be seen in Figure 35. The average rating of the four nodal volumes was between 

3.5 and 3.9, and 75% of contours [686/920 contours (4 volumes bilaterally on 115 patients)] 

were rated as needing no edit for clinical use. One quarter of the nodal contours (230/920) 

were rated as needing minor edit and only 0.4% (4/920) received a score of a 2 and were 

indicated as needing major edit for use in treatment planning. 
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Figure 35. Distribution of physician scores of the atlas based nodal volumes. A score of 4 or 5 

indicates no edits are needed for use in treatment planning. 

 

To assess inter-observer variability a subset of 10 randomly selected patients was 

selected for review by five additional radiation oncologists from four outside institutions. The 

radiation oncologists, per a self-reported questionnaire, had an average of 8.25 years of 

experience (range, 3.0-12.5 years).  

For all nodal volumes the scores assigned to the 10 patients differed significantly 

(Wilcoxon signed rank test, p<0.05) between the primary physician and at least one outside 

physician. However, no volume was significantly different between primary and all of the 

outside physicians. The average score across the subset of 10 patients for each of the four 

nodal volumes and each of the 5 physicians can be seen in Table 23. Some systematic 
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differences in contour ratings are seen; for example the third outside physician rated on 

average, all volumes lower than the primary physician. The fifth outside physician, however, 

rated, on average, all volume as high as or higher than the primary reviewer. This supports 

the known presence of inter-physician variability in contouring studies.  

Of 399 total ratings by outside physicians (4 bilateral structures on 10 patients by 5 

outside physicians with one structure not rated by one physician) 49% (195/399) of the ratings 

matched those of the primary physician and were classified as Category I agreements. 

Considering Category II agreements, the physicians assigned an additional 47% (186/399) of 

the contours to same group, either as needing no or minor edit for use (47%) or as needing 

major edit for use (0%). Finally, only 5% of contours received scores indicating the need for 

major edits by one physician while needing no or minor edits by the other physician. In Table 

24 the percentage of contours classified into each of the three agreement categories can be 

found for the eight normal structures assessed.  

 

 

Table 23. Average scores of the four nodal volumes by the primary and 5 outside physicians. 

Three physicians rated at least half of the contours, on average, higher than the primary 

physician. Two physician rated all contours, on average, worse than did the primary 

physician.

 Average Contour Rating 

Nodal Volume Primary 
Physician 

Outside 
Physician 1 

Outside 
Physician 2 

Outside 
Physician 3 

Outside 
Physician 4 

Outside 
Physician 5 

Nodal Levels 
Ia-V 3.7 3.0 4.0 3.1 4.0 4.4 

Nodal levels 
Ib-5 3.9 3.1 4.0 3.1 4.0 4.4 

Nodal Levels 
II-IV 4.0 3.1 3.9 3.1 4.0 4.5 

Retropharyngeal 
Nodes 4.0 2.7 3.7 3.7 2.9 4.0 
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Table 24. Inter-physician agreement in the rating of automatically contoured nodal levels. 

Category I indicates the scores by the two physicians matched, Category II indicates that the 

ratings did not match but the contours were rated into the same “group” (either as needing no 

or minor edit, or as needing major edit)) by both physicians. Category II represents 

disagreement between the two physicians. Due to rounding, not all rows sum to 100. 

 % of agreements in 
Category 

Structure I II III 

Retropharyngeal Nodes 39 55 6 

Nodal Levels II-IV 55 41 4 

Nodal Levels Ib-V 54 42 4 

Nodal Levels Ia-V 47 48 4 

Total 49 47 5 

 

 

Quantitative Contour Performance 

Compared to clinical CTVs, atlas derived CTVs had an average (± standard deviation) 

DSC of 0.81±0.05. When considering only the nodal part of the CTVs (i.e. with the high dose 

CTV removed) the dice similarity coefficient decreaseD to 0.63±0.10. The results of both 

analyses are found in Table 25 and the distribution of value for all 79 patients are found in 

Figure 36. The analysis without the high dose CTV better represents the quality of the atlas 

contours in mimicking the clinical CTV contours, but the whole CTV analysis more closely 

represents the true treatment scenario in the RPA whereby the final treatment volume would 

include the physician drawn/edited high dose CTV. The results should be taken with some 

consideration given that chosen atlas derived nodal volumes may not have accurately 

reflected the attending physician’s intention when contouring the targets for each patient. 

Generally, the atlas contours agree well with physician drawn contours compared to 

previously published whole CTV agreement metrics (11, 19, 20). 
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Table 25. Quantitative agreement between atlas derived CTVs and clinical CTVs. 

Comparisons were made for both the whole CTV and the nodal CTV only, for which the high 

dose CTV was removed. 

 Dice Similarity Coefficient Hausdorff Distance (mm) Mean Surface Distance 
(mm) 

 Mean ± 
std [min - max] Mean ± std [min - max] Mean ± std [min - max] 

Nodal 
CTVs 0.63 ± 0.10 [ 0.34 - 0.85 ] 4.52 ± 1.56 [ 1.57 - 10.33 ] 0.55 ± 0.27 [ 0.04 - 1.53 ] 

Whole 
CTVs 0.81 ± 0.05 [ 0.69 - 0.91 ] 2.33 ± 0.82 [ 1.06 - 4.80 ] 0.30 ± 0.07 [ 0.14 - 0.46 ] 

 

 

 

 

 

 

Figure 36. Distribution of the quantitative agreement between clinical and atlas derived CTVs. 

Shown are the distributions of the Dice similarity coefficient (left) the mean surface distance 

(middle) and the Hausdorff distance (right) for both the whole CTVs (in blue) and the nodal 

CTVs only (red).Whole CTVs has better agreement due to the use of the original high dose 

CTV from the clinical plan in the autoplan. 
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Dosimetric Impact of Planning on Autocontoured Target Volumes 

Coverage of the clinical CTVs and PTVs was poorer if atlas derived PTVs were used 

for treatment planning (i.e. optimization and normalization) than if the clinical PTVs were used 

for planning. Coverage was improved, however, if 5mm margins were used when compared 

to 3mm margins for the expansion of atlas derived CTVs to PTVs. RTOG trial 1016, in which 

the investigators studied the benefit of adding a chemotherapy drug cetuximab to a 

radiotherapy treatment strategy for patients with oropharynx cancer, required that for the 

intermediate dose target, prescribed 56Gy in the trial, volume should receive at least 45Gy 

(80% of the prescribed dose) to 95% of the target volume(21). Considering this threshold of 

80% of the prescribed dose to 95% volume, if 3 and 5mm margins are used 32% and 54% of 

the 40 treatment plans considered here meet that constraint, respectively. The average and 

standard deviation of the volume of both the clinical CTVs and clinical PTVs receiving 95%, 

98% and 100% of the prescribed dose for each of the two margin values are shown in Table 

26. Coverage of clinical PTVs was significantly poorer as measured using a Wilcoxon sign-

rank test when comparing the volume receiving 95%, 98%, and 100% (p<0.001) of the 

prescribed dose when 3mm margins were used as compared to 5mm margins. In Figure 37 

are the average DVH curves to the high dose and intermediate dose CTVs and PTVs given 

the two margins While the curves are similar for doses above 100% of the prescribed dose, 

the DVH curve of the true physician drawn intermediate dose PTV has a noticeably rounder 

shoulder when using either a 3 or 5 mm margin as compared to when the true structure was 

used for planning. 
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Table 26. Average coverage of the clinical CTVs and PTVs when atlas derived PTVS were 

used for planning.

  3 mm Margin 5 mm Margin 
  mean±std [min-max] mean±std [min-max] 

PTV 

V95%(%) 81.1±13.4 [45.7-98.9] 86.9±11.1 [56.4-99.8] 

V98%(%) 78.0±14.0 [41.7-98.1] 84.7±12.0 [52.1-99.5] 

V100%(%) 74.9±14.1 [38.9-96.7] 82.3±12.5 [49.3-98.5] 

CTV 

V95%(%) 86.6±10.8 [58.4-99.2] 91.3±8.4 [67.1-99.8] 

V98%(%) 84.1±11.8 [56.0-98.4] 89.6±9.3 [64.8-99.5] 

V100%(%) 81.7±12.3 [53.7-97.1] 87.9±9.9 [63.0-99.1] 
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Figure 37. Average DVH curves to clinical PTVS when using atlas derived PTVs for planning. 

Atlas derived CTVs with 3 mm (green line) and 5 mm (blue line) were used for expansion to 

the PTVs. Coverage of clinical PTVs is noticeably poorer when clinical PTVs are not used for 

treatment planning. 

 

Evaluation of an Independent Technique for QA of Autocontoured Target Volumes 

Quality of the Second Independent Target Contouring Technique 

The second independent target contouring technique performed well in the contouring 

of CTVs for 79 patients, see Table 27. The contours agreed with a mean (± standard 

deviation) Dice similarity coefficient of 0.80±0.07 when considering the whole target volume 

and with an average of 0.66±0.11 when considering only the nodal CTV. Using a Wilcoxon 

signed rank text, the atlas based technique had a significantly better DSC (p=0.02), MSD 

(p<0.01), and HD (p<0.01) when considering the whole target volume. 

163 | P a g e  
 



Table 27. Quantitative agreement of independently derived CTVs with clinical CTVs. Whole 

and nodal only CTVs were compared using the Dice similarity coefficient, mean surface 

distance, and Hausdorff distance. 

 
Dice Similarity  

Coefficient 
Hausdorff Distance (mm) Mean Surface Distance 

(mm) 

 Mean ± 
std [min - max] Mean ± std [min - max] Mean ± std [min - max] 

Nodal 
CTVs 0.66 ± 0.11 [ 0.35 - 0.89 ] 3.07 ± 1.25 [ 0.75 - 6.37 ] 0.35 ± 0.16 [ 0.09 - 0.83 ] 

Whole 
CTVs 0.80 ± 0.07 [ 0.64 - 0.94 ] 2.64 ± 1.10 [ 1.01 - 6.37 ] 0.35 ± 0.11 [ 0.11 - 0.63 ] 

 

Independent Clinical target Volumes as a QA Approach 

 In order for the independent target contours generated using a machine learning 

technique to be useful as a QA check of the atlas based targets we first sought to establish if 

the agreement between the two contours are correlated to the agreement of the atlas based 

targets to the physician target. In Table 28 are the correlation coefficient and corresponding p 

values for 3 quantitative metrics between the atlas based and physician targets and the atlas 

based and independent targets. Significant correlation was established for all metrics 

indicating that agreement between the two contouring techniques is correlated to the ultimate 

agreement of the atlas based technique to the physician technique. The distribution of values 

can be seen in Figure 38.  

 

Table 28. Correlation of the agreement between the atlas derived CTVs with the clinical CTVs 

and the independent CTVs. Correlation coefficients and p-values are shown for the 

agreement between both the whole volume CTVs and the nodal CTV only for three 

quantitative metrics. All metrics were significant, with the strongest correlation between for the 

nodal CTVs using the mean surface distance. 
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 Correlation of Atlas and Physician and Atlas and Independent 

Targets 

 Whole CTV Nodal CTV 

 Dice HD MSD Dice HD MSD 
Correlation 
Coefficient 0.44 0.21 0.27 0.60 0.78 0.83 

p-value 6.0E-05 6.8E-02 1.6E-02 5.7E-09 3.1E-17 1.3E-21 
 

The positive correlation coefficients indicate that the larger the disagreement between 

the two contouring techniques the larger the disagreement between the atlas-based 

technique and the physician CTVs is expected to be. This correlation was stronger for the 

nodal CTVs which is expected as the subtraction of the high dose CTV removes the biased 

introduced because the atlas based technique used this contour directly while the 

independent technique does not. As seen in Figure 38, the identification of thresholds in the 

agreement of the two contouring techniques may be selected in order to identify potential 

disagreement with the physician drawn CTVs. For example, a threshold of 6 mm Hausdorff 

distance between the two contouring techniques would identify all atlas based contours with a 

Hausdorff distance of greater than 8mm and 82% of contours with HD greater than 6mm 

compared to the physician drawn CTVs. These threshold represent this data set only and 

should be further evaluated. The significant correlation supports the use of this second 

independent technique for use a QA check of atlas based CTVs when , for example in Figure 

39, when the atlas based CTVs do not agree well with clinical contours nor do they agree with 

CTVs from the independent technique and which doesn’t agree well with the clinical CTVs 

either.  
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Figure 38. Distribution of the CTV quantitative agreement. Shown are the distributions of the 

dice similarity coefficient (left), mean surface distance (middle) and the Hausdorff distance 

(right) between the whole volume CTVs (red) and nodal CTVs (blue) between the atlas 

derived CTVs with both the  clinical CTVs (x-axis) and the independent technique (y-axis). 

Clear trends are seen with the whole volume CTVs having better agreement. 

. 

Figure 39. Example of disagreement between atlas derived CTVs, clinical CTVs, and CTVs 

from the independent technique. This indicates that use of the independent contouring of the 

CTVs may be useful as a QA tool in cases, like the one here, where all three contours 

disagree 

 

A B C 

Clinical CTV 

Atlas Derived 

Independent 
Method 
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Discussion 

In this work we have investigated the use of atlas based automatically contoured 

nodal levels for the definition of intermediate and low dose target volumes in the head-and-

neck. Upon physician review we found that the four nodal volumes considered were well 

received by head-and-neck radiation oncologists with nearly half reviewed as needing no edit. 

In an inter-physician analysis we found that there exists inter-physician variability in the 

acceptability of these contours, though for only between 0.4% (as rated by the primary 

physician) and 4% (as rated by outside physicians) would be expected to need major edits for 

use in treatment planning. 

Compared to clinical CTVs, we found good agreement with an average Dice value of 

0.81, which is comparable to the agreement found in other studies (11, 19, 20). These results, 

however, should be taken with the understanding that the physician drawn CTVs used for 

comparison were copied from clinical plans directly, without consideration of the intent of the 

physician when drawing the target. There are known exceptions to the general guidelines for 

the treatment of elective nodal volumes in head-and-neck cancer and it is likely that for some 

of the plans considered here the choice of atlas-derived nodal CTVs simply did not match with 

what the physician delineated. Given this, this high DSC indicates that the atlas based 

technique for the delineation of intermediate and low dose target volumes in the head-and-

neck performed very well. 

Further, we sought to assess what impact planning on these atlas derived targets 

would have on the coverage of the clinical targets. As expected, if the target of interest (in this 

case, the clinical target) is not used for treatment plan optimization, then coverage suffers. 

We investigated the use of both 3 and 5 mm margins for CTV to PTV expansion in order to, in 

part, compensate for possible contouring errors. The CTV to PTV margin as used to 

compensate for uncertainties in CTV contouring on the initial treatment scan is often not cited 
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as a primary use, but, as it is to compensate for geometric uncertainties(22), if contouring 

uncertainties are expected it may be wise to err on the side of safety and use a larger margin. 

When a 5 mm CTV to PTV margin was used for atlas-derived intermediate dose targets, 

slightly more than half of plans met the RTOG 1016 coverage constraint to the intermediate 

dose physician drawn PTV. 

Finally, if automatically delineated target volumes are to be used for fully automated 

treatment planning, it is advisable to assess and, ideally, ensure contour quality before 

presentation to the user. Towards this, we investigated the use of an independent technique 

for the delineation of target volumes and the agreement between the atlas-based targets and 

this secondary technique to the agreement between the atlas-based targets and the physician 

targets. The two were found to be strongly correlated indicating that in a fully automated 

system, both techniques could be used to delineate the CTV contours, their agreement 

assessed and this result provided to the user as guidance for the need for editing. However, 

as before, the motivation behind the delineation of the physician drawn targets is not known 

and this may influence the results found here. There are a few clear examples of 

disagreement between all three contours, which would indicate promise for the use of this 

independent technique as a QA tool, however further investigation into the usefulness of this 

strategy should be conducted.  

There are general limitations of this analysis and potential utility of automatically 

delineated targets more broadly. First, given the prominence of extensive inter-physician 

variability in the delineation of target volumes it may be ambitious to expect very high 

agreement between any automatic contouring technique and single physician drawn volumes, 

especially, as in this case, if (1) the physician intent in target delineation is unknown or 

ambiguous and (2) the atlas derived volumes originated from contours approved by a single 

physician. A detailed record of physician intent in the delineation of CTVs and consensus 

contours which match that intent would reveal the true ability of automated techniques for 
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CTV contouring.  Further, for multi-atlas autocontouring techniques, the presentation of the 

atlas to multiple head-and-neck physicians or the development of a consensus atlas may 

further reduce inter-physician variability in the reviews of contours propagated from such an 

atlas and, ultimately, edits to such contours. Second, in the current strategy nodal levels are 

limited to the four discussed here, though upon retrospective assessment approximately 10% 

of patients required nodal levels not included in the currently available set of nodal volumes. 

The need for additional volumes in a larger cohort of patients should be evaluated and, if 

needed, the additional nodal level groups could be added to the atlas patients, but must be 

accompanied by comprehensive analysis. Third, while the current autoplanning strategy is 

limited to the use of three dose volumes, and the autocontouring supports this with the 

intermediate dose level assigned to the ipsilateral neck and the lower dose assigned to the 

contralateral neck, there exist examples where a fourth dose level may be required due to the 

location of the disease, including when the disease is close to the temporal lobe or brachial 

plexus. This division of the targets into multiple dose levels is likely to vary depending on 

patient factors and physician experience. Therefore, a check of the target location should be 

performed and the user made aware if an additional dose level is likely to be required. Fourth, 

the use of the presented secondary technique, while proven to be correlated with the 

agreement between the atlas-based targets and physician targets, needs adjustment in order 

to be used in a fully automated system.  In order to generate the contours a method to detect 

the superior and inferior landmarks must be developed. Additionally, the current model was 

intended and tested exclusively for patients with bilateral disease of the oropharynx by the 

original authors and would require further development for use for many sub-sites in the 

head-and-neck which systematically differ in the selection of nodal levels. Further, while the 

correlation between atlas-physicians CTVs and atlas-secondary CTVs was established here, 

the true ability of this technique to detect and warn physicians of possible inaccuracies in 

atlas-based nodal level contours and or their use in CTV contours needs further development. 
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Finally, for use in an automated treatment planning strategy it is our recommendation 

that atlas based nodal levels be generated using the presented autocontouring technique for 

the initiation of CTVs but are used with physician approval and with the the allowance of 

possible editing. The volumes, both prior to and after possible edits should be compared with 

the secondary independent technique in order to further examine the use of this strategy for 

QA purposes. Only true clinical implementation will reveal the extent to which these contours 

are edited clinically and the extent to which QA is possible.  

Conclusion 

We have examined the use of automatically contoured nodal volumes for use as 

intermediate and low-dose CTVs in the treatment of head-and-neck cancer with radiotherapy. 

The contours were well received by head-and-neck radiation oncologists and agreed well with 

independently drawn physician contours. An independent target contouring method proved 

promising in the identification of contours requiring edits. We suggest the careful use of these 

automatically derived nodal volumes as CTVs in a fully automated treatment planning system 

with physician approval and editing as needed. 
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Chapter 7:  Discussion 

The goal of this work as a whole was to investigate two initiatives which may help 

alleviate the burden of radiotherapy in low resource settings. The dire need for radiation 

therapy in low-resource settings, including for 135 of 139 LMICs whose population have 

inadequate access to radiation therapy and for 55 countries in which no radiotherapy facilities 

exist (1), demands attention. A multifaceted approach is necessary and collaboration with 

professionals in these regions is central to success.  

An Upright Radiotherapy Chair 

The first method aimed to make more accessible the necessary high energy external 

beam radiotherapy machines required for safe radiotherapy delivery. The concept involves 

the use of a rotating patient treatment chair which, when paired with a fixed treatment beam 

offers the same degrees of freedom as traditional treatment machines. 

In the first aim, we have investigated inter- and intra- fraction setup reproducibility of 

an upright radiotherapy chair with the hypothesis that an upright radiotherapy chair has 

clinically acceptable inter- and intra- fraction reproducibility. 

 The use of such a chair, combined with a fixed treatment beam could greatly reduce 

the upfront and ongoing cost of teletherapy machines and may be of interest in low-resource 

settings or LMICs. While treatments in this seated position are not new to the field, the use of 

treatment chairs has declined and are currently very rare due to the routine acquisition of 

treatment planning images from CT scanners which, except for in a few rare exceptions, only 

allow for horizontal or nearly horizontal acquisition. As technology improves and other 

methods for the acquisition of planning images emerge (2, 3)  the possibility of other 

treatment positions is becoming a reality. If treatment chairs are to be reconsidered their 

acceptability in the context of current treatment delivery must be re-examined. Accurate setup 
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reproducibility is an important part of a robust treatment position. We found that the inter- and 

intra-fraction reproducibility in the treatment chair was, on average, less than 3mm and this is 

comparable to that in the traditional supine position. Given patient feedback, we 

manufactured a second treatment chair which incorporates additional patient indexing 

measures, increases the depth of the seat, and is built to limit the potential dosimetric impact 

of inter and intra- fraction motion.  

Limitations of this study include the use of a small patient set, all of whom were 

relatively healthy and tolerated both the seated and supine positions well. Further, the 

assessment of set-up reproducibility under conditions of image guidance were simulated 

using pre-alignment of the images using select anatomy rather than true adjustment based on 

pre-treatment images as is clinical practice. The treatment chair was only evaluated for head-

and-neck patients, due primarily to the tight geometry of the set-up using a traditional linear 

accelerator.  

The ultimate goal of this work is to support the development of a fixed beam system, 

which would eliminate some of these challenges. Treatment of other sites in the seated 

position, for example the cervix or prostate, may bring other challenges due to a difference in 

patient anatomy in this seated positon. The current study, as it was limited to the head and 

neck, would be expected to have little impact of internal anatomy between the supine and 

upright positons. If a fixed beam-rotating patient system is to be developed, the impact of 

other aspects of the radiotherapy process must be evaluated, including treatment delivery, 

machine shielding, and patient throughput. Additionally, the compatibility of this treatment 

positon including the import of planning images acquired in this position with treatment 

planning systems and in concordance with DICOM standards must be evaluated. Finally, end-

to end testing of the entire treatment process must be completed both at the start and at 

reoccurring intervals. Clinical implementation should be accompanied by appropriate clinical 

protocols, FMEA and root cause analysis studies. 
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Towards the development of a fixed-beam and rotating seated patient treatment 

paradigm which could greatly reduce the cost of the teletherapy machinery necessary for the 

delivery of both life-saving curative and symptom alleviating palliative radiotherapy in low-

resource settings, we have shown herein that the set-up reproducibility of the treatment chair 

is comparable to that in the supine position. Members of our group have previously showed 

the capability of the onboard KV imagers to capture and reconstruct CBCT images (4), which 

as reported by other investigators, can be used for treatment planning. This technology, 

however, is not released for clinical use and represents the next step in the efforts to realize 

this treatment paradigm. Other investigators are moving forward with this type of treatment 

working towards commercialization of a fixed-beam upright system (LEO Cancer Care, 

http://leocancercare.com). 

Automated Treatment Planning 

Our second proposal for the improvement of radiotherapy in low-resource settings was 

that of a fully automated treatment planning process for head-and-neck cancers. Given the 

extreme shortage of and growing need for trained radiotherapy personnel including medical 

physicists in LMICs, methods and tools to reduce this burden are desperately needed. 

Technological improvements have the ability to both improve the quality of care while 

simultaneously reducing the required human involvement. However, the introduction of these 

advanced technologies has the risk of further dividing those who have the resources and 

infrastructure to encourage advancement and those who do not and therefore risk falling 

further behind. In the case of advanced treatment planning techniques, the introduction of 

IMRT and VMAT greatly improved outcomes for head-and-neck cancer patients, however the 

introduction of these advanced treatment techniques requires improved equipment (MLCs, 

availability of service personnel for complicated machinery, adequate dose rate to 

compensate for beam modulation, etc.) and staff capable of implementing the techniques 
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which include advanced treatment planning. Without the required infrastructure the gap in 

treatment techniques only increases.  

The aim of the second aspect of this work was to partially reduce the burden on staff 

by automating the treatment planning process. Automated methods are proving beneficial in 

many areas of radiation therapy and the automation of the treatment planning process would 

be applicable in all clinics but may be especially useful in low-resource settings. 

In Specific Aim 2, Chapter 4, we sought to develop and validate a treatment planning 

strategy for the head-and-neck with the hypothesis that single optimization head and neck 

treatment plans perform with equal quality to clinically acceptable plans and 90% are 

accepted by radiation oncologists for use without edit. We found that a fully automated 

approach can produce plans that perform as well as, and in some cases better than, those 

plans as treated on a clinical trial with XX% rated as acceptable without edit by a dedicated 

head-and-neck radiation oncologist. The automated approach utilizes the RapidPlan® tools 

available in the Eclipse Treatment Planning System (Varian Medical Systems, Palo Alto, CA) 

in conjunction with in-house algorithms and requires no user input outside of the patient CT 

and treatment details including prescription and fractionation. The results were based on 54 

patients treated for cancers of various head-and-neck subsites at The University of Texas MD 

Anderson Cancer Center and 30 patients treated on a clinical trial. 

In Specific Aim 3, Chapter 5, we sought to assess the feasibility of the use of 

automatically contoured normal structures in the head-and-neck in a fully automated 

treatment planning strategy with the hypothesis that automatically contoured normal 

structures can safely be used for treatment planning purposes without significant impact on 

plan quality. In an investigation of the use of four autocontouring algorithms we found that in-

house multi-atlas contouring approach performed well and upon its clinical implementation 

half of contours were not edited for treatment planning. Further, we found that unedited 

174 | P a g e  
 



autocontours can be used without edit for treatment planning with very limited impact on the 

treatment plan. While our hypothesis was confirmed, the use of contours without oversight is 

far reaching and represents a significant change in practice and should be of further 

investigation. Therefore, we conclude that automatically contoured normal tissues should be 

reviewed by the radiation oncologist and approved for use in treatment planning though the 

initialization of such structures will greatly reduce the manual input required and increase the 

time savings offered of an automatic system. 

Finally, in Specific Aim 4, Chapter 6, we sought to assess the feasibility of the use of 

automatically countered intermediate and low dose target volumes in the head and neck with 

the hypothesis that automatically contoured clinical target volumes can be safely used for 

treatment planning purposes. We investigated the use of automatic contours for the 

delineation of nodal levels which were then used as intermediate and low-risk clinical target 

volumes. We found that, generally, the automatically contoured nodal volumes, generated 

using the same in-house algorithm as the normal tissue autocontours, were well received by 

radiation oncologists from five institutions. Quantitatively, intermediate and low-dose CTVs 

agreed well with physician drawn targets. If automatic targets are used for treatment planning 

than the coverage of physician targets is reduced, the results however suffer from a 

fundamental difference in the intent of target delineation, for which the physician intent was 

unknown, and thus the analysis of these results is limited. Finally, we found significant 

correlation in the agreement between the atlas-based target contours with an independent 

machine learning contouring technique and the physician contours suggesting that this 

independent method may be a useful QA tool to aide users of the automated system in the 

review of automatically contoured targets.  We feel that the use of fully automatically 

contoured intermediate and low-dose CTVs is not yet suitable for safe use and should be of 

further investigation. We concluded that CTVs generated from the multi-atlas based 
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automatically contoured nodal volumes can be used in treatment planning but should be 

accompanied by physician editing and approval as deemed necessary.  

Together, through these three aims we sought to investigate the extent to which the 

development of head-and-neck treatment plans can be automated.  We found, similar to other 

investigators, that knowledge based planning approaches can be utilized successfully for 

automatic treatment planning. Our group took automation further through the identification of 

algorithms for the determination of treatment isocenter, collimator angles, and jaw settings 

and through the use of the Varian API, the combination of all steps from the import of patient 

DICOM files through to dose calculation without human intervention. We further automated 

the process by automatically contouring normal tissues and anatomically based intermediate 

and low dose clinical target volumes in the head-and-neck. We have showed that through 

automation we can reduce the time needed for treatment planning to 40 minutes, most of 

which time does not require supervision. The automation of normal structures represents an 

important step in the treatment planning process and the algorithm described herein was 

successful in the contouring structures which can be used without edit for treatment planning. 

It is unlikely that clinicians are currently amenable to the use of unedited autocontours but it 

has been shown that the review and editing of autocontours represents a significant time 

savings. Together, the strategy is ready for limited clinical use and should be done so under 

close supervision and with extensive data collection as to its impact on clinical workflow and 

patient treatments. 

The success of this work should be considered in the context of its limitations. First, 

we found that the planning approach outperformed clinical plans for a cohort of patient treated 

on a clinical trial, but, in general, did not perform as well as plans optimized by highly trained 

dosimetrists at our institution or for plans of all head-and-neck subsites. The availability of 

highly trained staff is limited to select clinics, however, and as the approach outperformed 

plans treated on a clinical trial, we believe the quality of plans is sufficient for patient 
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treatment. Improvement upon the clinical knowledge base used for treatment plan generation 

including the optimization of the templated constraints could improve resultant plan quality 

and should be of routine consideration. The development of multiple knowledge bases, for 

multiple treatment subsites, may be considered and plans for which the strategy did not 

outperform clinical plans may provide useful for the development of such a knowledge base. 

Second, considering the automatic delineation of normal tissues, while a strategy was 

presented which allowed for use of unedited contours in treatment planning it is not standard 

practice to use unapproved contours for treatment planning and the consideration of such use 

should be carefully considered, both in the context of the treatment of the individual patient 

and if questions are to be asked of the dataset in which the patient may be included. As big 

data and deep learning find use in radiation oncology it is essential that the data from which 

these approaches are built can be traced back to thoughtful implementation. As an example, 

unapproved contours should be tagged or named to indicate their use to future researchers. 

We found many examples of contour and naming mismatches which, while likely irrelevant in 

the individual patient treatment plan had an effect on the work herein. 

Finally, the use of automatically contoured targets represents the aspect of this work 

most in need of further investigation. There exist enormous variability in not only the 

contouring of targets among physician but also in the choice of target anatomy when given 

patient disease characteristics. These challenges will be underlined in a system for which a 

simplified approach is desired. It is likely that additional nodal level groupings may be 

required, the atlases may need further development for patients with gross disease, and/or for 

patients from other demographics. The use of a second contouring technique as a check of 

the atlas based contours represents a novel contribution but requires further investigations, 

specifically the extension of the secondary technique for additional head-and-neck subsites 

and stages. 
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As a system, we envision the use of the automated treatment planning strategy as 

follows; a user is required to submit an approved patient CT and patient plan order which 

includes information about the patient’s acceptability for treatment (pregnancy status, prior 

radiation, implants, etc) and treatment goals (prescribed dose and fractionation). This 

information is then used to generate automatic normal tissues and nodal level groupings. The 

process is then suspended for the manual delineation of primary disease. Then on a single 

button click clinical and planning target volumes are generated using rules and the atlas 

generated nodal volumes; the targets are then reviewed by the attending physician. At this 

time the physician will also be presented with the results of the results of the random forest 

models for the detection of normal tissue contour errors and should use this to aide in the 

approval and editing of these structures as deemed appropriate. The automatic process then 

resumes with the automatic identification of the marked and treatment isocenter, the selection 

of beam parameters, plan optimization, dose calculation and production of accompanying 

plan documentation. The whole process is estimated to take less than an hour, much of which 

time is unsupervised.  

Data concerning the editing of normal structures, targets, the results of the error 

prediction models, the timing of each step, the acceptability of the final plan, and others 

should be collected for all patients. This will allow in depth retrospect analysis of the 

performance of the automated planning technique and improvement of the system. 

We believe this system has the ability to greatly reduce the human effort needed for 

one of the most technical and tedious aspects of radiation oncology. Automation of this 

process, however, should be considered for use in low-resource settings in the context of 

radiation therapy as a whole. Notably, while advanced techniques have been shown to 

outperform older, simpler techniques for the treatment of head-and-neck cancer there exist 

downstream effects due to this transition. Quality assurance process including that of 

individual treatment plans as well as of the machines and even of the treatment planning 
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process itself must reflect the transition to these advanced techniques. Further, the tasks 

completed by an automated approach must be able to be accomplished by, ideally, a number 

of trained staff; in the case of head-and-neck treatment this requires knowledge not only of 

plan optimization but also of the contouring of normal tissues and targets. In circumstances 

where the autoplanner may not be appropriate for patient treatment plan development, when 

the system is not functional due to planned or unplanned circumstances, and for routine 

quality assurance checks it is essential that treatment planning skills not be lost, or never 

developed, in centers where autoplanning is used.  

Conclusions 

The work presented here represent efforts towards two solutions to reduce the great 

and growing disparity of radiation therapy around the world. In LMICs, where 84% of the 

world’s population lives and two thirds of the cancer population lives, there are only 30% of 

the worlds radiation facilities; 11 countries of more than a million people have not a single 

teletherapy unit. Improving access to radiation therapy is not a simple process, it requires 

innovation approaches, collaborative efforts, and consistent reassessment of the needs and 

status in the areas of interest. The approaches presented here represents efforts both to 

reduce the upfront and ongoing cost of radiotherapy machines through the introduction of a 

fixed-beam rotating patient paradigm and the automation of one of the most time-intensive 

and technologically complex aspects of advanced radiotherapy – treatment planning. We 

believe these efforts could benefit clinics in low-resource areas and partly address the 

growing need for radiotherapy around the world. 
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Appendix 

Appendix A – Specific Aim 1 

The following questionnaire was administered to patients after their participation in the inter- 

and intra- fraction setup study in the treatment chair. Participants were also encouraged to 

give verbal feedback.  
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This questionnaire evaluates your degree of comfort when in a treatment position.   

The first 15 questions refer to treatments in a seated position 

1. Getting on the chair was: Easy  Difficult (0-5) 

 

2. When initially positioned on the chair, I felt: Relaxed  Tense (0-5) 

 

DURING THE SIMULATED TREATMENT (ON THE CHAIR)… 

3. …I felt like I needed to move. Not at all  Constantly (0-5) 

 

4. …I felt: Restless  Calm (0-5) 

 

5. …My body felt tense. Strongly DisagreeStrongly Agree (0-5) 

 

6. …My breathing felt fluid and easy. Strongly Disagree Strongly Agree (0-5) 

 

7. …My neck was: Not at allPerfectly Comfortable (0-5) 

 

8. …My arms were: Not at allPerfectly Comfortable (0-5) 

 

9. …My back was: Not at allPerfectly Comfortable (0-5) 
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10. …My legs were: Not at allPerfectly Comfortable (0-5) 

 

11. …Overall my body was: Not at allPerfectly Comfortable (0-5) 

 

12. …I could have fallen asleep. Strongly DisagreeStrongly Agree (0-5) 

 

13. …I had discomfort due to the chair I was positioned on. Strongly Disagree 
Strongly Agree (0-5) 

 

OVERALL (ON THE CHAIR)… 

14. I felt stable and supported on the chair. Strongly Disagree Strongly Agree (0-
5) 

 

15. I felt absolutely safe on the chair. Strongly Disagree Strongly Agree (0-5) 

 

 

The next 15 questions are about you regular actual treatments (lying down) 

16. Getting on the patient couch was: Easy  Difficult (0-5) 

 

17. When initially positioned on the couch, I felt: Relaxed  Tense (0-5) 
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DURING TREATMENT (LYING DOWN, ON THE COUCH)… 

18. …I felt like I needed to move. Not at all  Constantly (0-5) 

 

19. …I felt: Restless  Calm (0-5) 

 

20. …My body felt tense. Strongly DisagreeStrongly Agree (0-5) 

 

21. …My breathing felt fluid and easy. Strongly Disagree Strongly Agree (0-5) 

 

22. …My neck was: Not at allPerfectly Comfortable (0-5) 

 

23. …My arms were: Not at allPerfectly Comfortable (0-5) 

 

24. …My back was: Not at allPerfectly Comfortable (0-5) 

 

25. …My legs were: Not at allPerfectly Comfortable (0-5) 

 

26. …Overall my body was: Not at allPerfectly Comfortable (0-5) 
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27. …I could have fallen asleep. Strongly DisagreeStrongly Agree (0-5) 

 

28. …I had discomfort due to the chair I was positioned on. Strongly Disagree 
Strongly Agree (0-5) 

 

OVERALL (LYING DOWN, ON THE COUCH)… 

29. I felt stable and supported on the couch. Strongly Disagree Strongly Agree 
(0-5) 

 

30. I felt absolutely safe on the couch. Strongly Disagree Strongly Agree (0-5) 

 

FINAL: COMPARISON OF SEATED AND LYING DOWN POSITIONS 

31. I prefer sitting up to lying down for treatment: strongly agreestrongly disagree 
(0-5) 

 

 

 

Please note any comments or feedback below. 

__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
_________________________________________________________________________ 

Thank you for completing this survey; we appreciate your feedback.  
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Appendix B – Specific Aim 2 

The contouring of small structures is often more difficult, as indicated by lower Dice 

similarity coefficients and larger mean surface and Hausdorff distances, compared to larger 

structures. Cochlea, the smallest structures implemented into the clinic had the largest 

disagreement with the clinically edited structures and it was therefore decided that an 

“uncertainty margin” of 5mm, similar to a PRV, would be added to the autocontoured cochlea 

for treatment planning; In Table 14, we showed that a margin of 5mm would be sufficient to 

cover 100% of the edited cochlea for more than 95% of the population. 

Other smalls structures required for treatment planning but not implemented clinically 

include the optic chiasm, optic nerves, and lens. The accurate contouring of these structures 

is of particular importance with the tumor is close to the optic structures and because they are 

serial structures (chiasm and nerves) or have particularly low clinical dose constraints (lens, 

Dmax<7Gy). As data of the clinical edit to these autocontours was not available, we examined 

the agreement between autocontoured structures using the MACS algorithm and 

independently drawn physician contours for 37 patients. Occasionally, the MACS algorithm 

would result in an empty structure due to insufficient overlap of individual contours from the 

12 atlas patients, in this case automatic optimization could not continue and in the context of 

the automated planning approach manual delineation of these structures would be required. 

To compensate, for this we investigated the possibility of using structures which have been 

expanded on the atlas patients in order to increase their volume and increase the likelihood of 

overlapping anatomy as input into the staple algorithm. In Table 29 are the average volume, 

Dice Similarity Coefficient, true positive fraction and false positive fraction as well as the 

percentage of structure with true positive fraction of 100% and greater than 95% given pre-

MACS expansion of 0-2mm in 1mm increments and with post macs (PRV-style) expansions 
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of 1 to 5mm in 1mm increments. It was decided that structures with 1mm pre-MACs expansion would be used with 5mm post MACS 

expansions for treatment planning. 

Details of the final autoplanning strategy can be found in Table 30 
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Table 29. Agreement of autocontoured optical structures with pre- and post- contouring expansions.

  Volume (cc) True Positive Fraction False Positive Fraction 
Pre-MACS 

Expansion (mm) 
Post-MACS 

Expansion (mm) 
Optic 

Chiasm Lens Optic 
Nerves 

Optic 
Chiasm Lens Optic 

Nerves 
Optic 

Chiasm Lens Optic 
Nerves 

Physician Drawn 1.25 0.37 1.16       
0 0 0.70 0.12 0.50 0.27 0.27 0.37 0.52 0.24 0.17 
0 1 1.12 0.27 0.91 0.39 0.47 0.52 0.57 0.39 0.34 
0 2 2.41 0.66 2.27 0.58 0.75 0.81 0.70 0.57 0.58 
0 3 3.12 0.98 2.98 0.66 0.83 0.85 0.73 0.68 0.67 
0 4 5.25 1.81 5.29 0.82 0.95 0.90 0.80 0.80 0.80 
0 5 6.56 2.48 6.62 0.87 0.96 0.91 0.83 0.85 0.84 
1 0 1.26 0.34 1.10 0.45 0.56 0.59 0.56 0.44 0.38 
1 1 1.83 0.62 1.72 0.56 0.69 0.69 0.61 0.61 0.54 
1 2 3.62 1.26 3.94 0.72 0.85 0.93 0.75 0.75 0.73 
1 3 4.50 1.74 4.92 0.77 0.87 0.95 0.78 0.81 0.78 
1 4 7.26 2.97 8.29 0.90 0.95 0.98 0.84 0.88 0.86 
1 5 8.86 3.87 10.11 0.93 0.95 0.98 0.86 0.91 0.89 
2 0 2.99 1.08 3.63 0.66 0.85 0.92 0.72 0.70 0.71 
2 1 4.06 1.70 5.04 0.75 0.90 0.95 0.77 0.80 0.78 
2 2 6.58 2.81 8.72 0.82 0.93 0.99 0.84 0.87 0.87 
2 3 7.93 3.65 10.38 0.85 0.93 0.99 0.86 0.90 0.89 
2 4 11.63 5.57 15.44 0.95 0.99 1.00 0.89 0.93 0.93 
2 5 13.84 6.96 18.28 0.96 0.99 1.00 0.91 0.95 0.94 
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Table 29. Continued from previous page. 
 

  Dice % with TPF > 100% % with TPF >=95% 
Pre-MACS 
Expansion 

(mm) 

Post-MACS 
Expansion 

(mm) 

Optic 
Chiasm Lens Optic 

Nerves 
Optic 

Chiasm Lens Optic 
Nerves 

Optic 
Chiasm Lens Optic 

Nerves 

0 0 0.34 0.38 0.50 0.00 0.00 0.00 0.00 0.00 0.00 
0 1 0.39 0.49 0.57 0.00 0.00 0.00 0.00 2.63 0.00 
0 2 0.39 0.51 0.54 0.00 18.42 0.00 0.00 28.95 13.89 
0 3 0.37 0.44 0.47 0.00 34.21 0.00 3.45 52.63 25.00 
0 4 0.32 0.32 0.32 11.11 69.44 13.89 22.22 83.33 44.44 
0 5 0.28 0.25 0.27 14.81 86.11 22.22 33.33 88.89 50.00 
1 0 0.43 0.53 0.59 0.00 2.56 0.00 0.00 5.13 0.00 
1 1 0.44 0.48 0.54 0.00 20.51 0.00 0.00 23.08 2.78 
1 2 0.36 0.37 0.42 0.00 53.85 11.11 6.90 64.10 58.33 
1 3 0.33 0.30 0.36 6.90 69.23 30.56 20.69 76.92 66.67 
1 4 0.27 0.21 0.24 18.52 83.78 50.00 51.85 86.49 86.11 
1 5 0.23 0.17 0.20 29.63 86.49 72.22 66.67 89.19 86.11 
2 0 0.38 0.43 0.44 0.00 35.90 11.11 3.45 53.85 52.78 
2 1 0.35 0.32 0.35 3.45 58.97 38.89 13.79 79.49 66.67 
2 2 0.26 0.22 0.23 13.79 76.92 61.11 27.59 84.62 97.22 
2 3 0.23 0.17 0.20 17.24 84.62 86.11 51.72 89.74 97.22 
2 4 0.19 0.13 0.14 29.63 97.30 97.22 66.67 97.30 100.00 
2 5 0.16 0.10 0.12 48.15 97.30 100.00 77.78 97.30 100.00 
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Table 30. Planning constraints of automated planning strategy. The origin of the contours in the RPA, in the evaluation of the planning 

strategy and the constraints (if used for optimization) are listed. *Optic chiasm, nerves and lens are expanded by 1mm on the atlas 

patients prior to MACS contouring. * 

XXXXcGy indicates that the prescribed dose of the corresponding structure is embedded in the structure name and varies between 

patients. 

Structure Structure Name Origin (Prospective 
RPA Use) Origin Type Volume Dose Priority 

Primary and 
Nodal GTV GTVp, GTVn Physician Drawn Physician Drawn     

High Dose CTV zCTV1_XXXXcGy 

Physician Drawn or 
Edited and Approved 

GTVp+1cm and 
GTVn+0.5cm 

Physician Drawn     

Intermediate 
Dose CTV zCTV2_XXXXcGy 

Physician Drawn or 
Edited and Approved 
atlas derived nodes 

Physician Drawn     

Low Dose CTV zCTV3_XXXXcGy 
Physician Drawn or 

Edited and Approved 
atlas derived nodes 

Physician Drawn     

High Dose PTV zPTV1_XXXXcGy 
High Dose CTV + 
0.5cm, within 3mm 

Contracted BodyAuto 
Physician Drawn     

Intermediate 
Dose PTV zPTV2_XXXXcGy 

Intermediate Dose 
CTV + 0.5cm, within 

3mm Contracted 
BodyAuto 

Physician Drawn     

Low Dose PTV zPTV3_XXXXcGy 
Low Dose CTV + 

0.5cm, within 3mm 
Contracted BodyAuto 

Physician Drawn     
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High Dose 
Planning PTV zpPTV1_XXXXcGy High Dose PTV  

Upper 0 108% 400 
Upper 20 103% 400 
Lower 100 96% 400 
Lower 96  400 

High Dose PTV 
Ring zrPTV1_XXXXcGy PTV1 - PTV1 

contracted 5mm 
 Upper 0 103% 300 

5mm Ring 1 mm 
from PTV1 zWallPTV1_05 PTV1+6mm - 

PTV1+1mm 
 Upper 0 100% 120 

PTV1 Minimum 
Dose 

assessment 
structure 

z8bodyPTV1 PTV1  within body 
contracted 8mm 

     

Intermediate 
Dose Planning 

PTV 
zpPTV2_XXXXcGy 

Intermediate Dose 
PTV pulled 5mm 

from pPTV1 
 

Upper 0 108%+1Gy 190 
Upper 0 103%+1Gy 190 
Lower 100 97%+1.5Gy 190 
Lower 97 100%+1.5Gy 250 

Low Dose 
Planning PTV zpPTV3_XXXXcGy 

Low Dose PTV 
pulled 5mm from 

pPTV1 and pPTV2 
 

Upper 0 108%+1Gy 190 
Upper 0 103%+1Gy 190 
Lower 100 97%+1.5Gy 190 
Lower 97 100%+1.5Gy 250 

Body BodyAuto Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) Upper 0 106 900 

Normal Tissue 
Avoidance zNT_avoid 

BodyAuto outside all 
PTVs on slices within 

1cm of PTV1 
 

Upper 0 45 70 
Upper 10 35 70 
Upper 20 30 70 

Non Target 
Tissue zNonPTVs BodyAuto outside all 

PTVs 
     

Brain Brain Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

Upper 0 45 130 
Line Model 75 

Brainstem BrainStem Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

Upper 0 45 200 
Upper 1 Model 35 
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Line Model 75 
Brainstem 7mm 

PRV zBrainStem_07 BrainStem + 7mm  Upper 0 50 300 

Brainstem 5mm 
PRV zBrainStem_05 BrainStem + 5mm      

Left Cochlea Cochlea_L Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Right Cochlea Cochlea_R Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Expanded Left 
Cochlea zCochlea_L_05 Cochlea_L + 5mm  Upper 0 45 75 

Expanded Right 
Cochlea zCochlea_R_05 Cochlea_R + 5mm  Upper 0 45 75 

Esophagus Esophagus Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Esophagus 
Avoidance 
Structure 

zEsophagus_avoid Esophagus + 5mm 
outside of all PTVs 

 Line Model 75 

Left Eye Eye_L Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) Upper 0 40 130 

Right Eye Eye_R Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) Upper 0 40 130 

Larynx Larynx Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Larynx 
Avoidance zLarynx_avoid Larynx + 5mm 

outside all PTVs 
 Line Model 70 

Left Lens* Lens_L_A1 Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Right Lens* Lens_R_A1 Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Right Lens 
Avoidance zLens_L_A1B2 Lens_R + 5mm  Upper 0 45 130 

Left Lens 
Avoidance zLens_R_A1B2 Lens_R + 5mm  Upper 0 5 130 
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Lung Avoidance Lungs_Avoid Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Mandible Mandible Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

Upper 2 105% 150 
Lines Model 75 

Left Optic 
Nerve* OpticNrv_L_A1 Automatically 

Contoured 
Clinical Plan 

(if DNE, autocontoured) 
    

Right Optic 
Nerve* OpticNrv_R_A1 Automatically 

Contoured 
Clinical Plan 

(if DNE, autocontoured) 
    

Optic Chiasm* Chiasm_A1 Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

    

Right Optical 
Nerve 

Avoidance 
zOpticNrv_R_A1B2 OpticNrv_R + 2mm  Upper 0 45 130 

Left Optical 
Nerve 

Avoidance 
zOpticNrv_L_A1B2 OpticNrv_L + 2mm  Upper 0 45 130 

Chiasm 
Avoidance zChiasm_A1B2 Chiasm + 2mm  Upper 0 45 130 

Oral Cavity OralCavity Automatically 
Contoured 

     

Oral Cavity 
Avoidance zOralCavity_plan OralCavity outside all 

PTVs 
 Line Model  100 

Left Parotid 
Gland Parotid_L Automatically 

Contoured 
Clinical Plan 

(if DNE, autocontoured) 
    

Right Parotid 
Gland Parotid_R Automatically 

Contoured 
Clinical Plan 

(if DNE, autocontoured) 
    

Left Parotid 
Gland Planning 

structure 
zParotid_L_sub Parotid_L outside of 

all PTVs 
 Line Model  120 

Right Parotid 
Gland Planning 

Structure 
zParotid_R_sub Parotid_R outside of 

all PTVs 
 Line Model  120 

Posterior Neck fsPostAvoid Automatically 
Contoured 
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Posterior Neck 
Avoidance zPostNeck_avoid fsPostAvoid outside 

of all PTVs 
 Upper 0 35 120 

Shoulders Shoulders Automatically 
Contoured 

 Upper 0 25 40 

Spinal Cord SpinalCord Automatically 
Contoured 

Clinical Plan 
(if DNE, autocontoured) 

Upper 0 40 300 
Upper 1 Model 35 
Line Model 75 

Spinal Cord 
5mm PRV zSpinalCord_05 SpinalCord + 5mm      

Spinal Cord 
7mm PRV zSpinalCord_07 SpinalCord + 7mm  Upper 0 50 300 

Spinal Canal Spinal Canal Automatically 
Contoured 

     

Left 
Submandibular 

Gland 
Glnd_Submand_L Automatically 

Contoured 
Clinical Plan 

(if DNE, autocontoured) 

    

Upper 10 35 70 
Upper 20 30 70 

Right 
Submandibular 

Gland 
Glnd_Submand_R Automatically 

Contoured 
Clinical Plan 

(if DNE, autocontoured) 

    

Upper 10 35 70 
Upper 20 30 70 

Vertebral 
Column VeterbalColumn Automatically 

Contoured 
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Appendix C – Specific Aim 3 

Additional analysis of autocontour algorithm performance was performed and is 

presented here.  The deformable image registration known as “Deeds” was presented in 2013 

and is currently licensed by Varian Medical Systems. This algorithm is used as the 

independent method for normal tissue contouring used in the machine learning models for the 

detection of autocontouring errors as presented in Chapter 5. In one version of the algorithm 

active shape models have been implemented for improved contouring(1). A physician review 

of the this algorithm, which includes the shape model and uses a Varian provided atlas, for 

ten patients was conducted and the results can be seen in Figure 40. The algorithm was also 

investigated for use with the same atlas as used in the MACS algorithm and with a second 

atlas generated from 11 patients treated at MD Anderson Cancer Center, this independent 

atlas was used for contour propagation for the machine learning models. The agreement to 

independently drawn physician contours of these three algorithms based on the Deeds DIR 

as well as for MACS can be seen in Table 31.  

In the smart segmentation software, as described, there are vendor provided ratings of 

the expected agreement between the test patient in question and each of the available atlas 

patients. We sought to investigate if there existed trends in these ratings relative to physician 

ratings or quantitative agreement with physician contours – no apparent trends were 

observed, the results can be seen in Table 32. We also sought to investigate if the physician 

ratings produced noticeable trends compared to both the average star rating and quantitative 

agreement with physician drawn structures – no apparent trend was observed, the results can 

be seen in Table 33. 
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Figure 40. Distribution of physician scores of Deeds based multi-atlas algorithm with shape models. 
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Table 31. Quantitative analysis of additional normal structure autocontouring algorithms.

 Contouring 
Method Structure N 

Dice Similarity 
Coefficient Hausdorff Distance (cm) Mean Surface Distance 

(cm) 
Mea

n Std Min Max Mea
n Std Min Max Mean Std Min Max 

Deeds MDA 
Independent 

Atlas vs Phys 

Brainstem 75 0.81 0.12 0.24 0.90 0.92 0.62 0.35 4.06 2.24 1.53 1.16 10.70 
Mandible 39 0.80 0.13 0.29 0.92 1.89 1.36 0.47 5.71 2.36 2.21 0.89 12.23 

Parotid Glands 140 0.72 0.10 0.33 0.90 1.74 0.55 0.70 3.68 3.03 0.97 1.46 6.74 
Brain 26 0.97 0.04 0.76 0.98 1.53 1.21 0.49 4.54 1.36 1.49 0.77 8.19 

Cochlea 94 0.59 0.17 0.11 0.85 0.45 0.22 0.16 1.27 1.46 0.63 0.66 3.95 
Esophagus 29 0.51 0.16 0.10 0.80 3.59 1.74 0.76 7.20 5.90 4.40 1.33 25.68 

Eye 58 0.79 0.08 0.63 0.93 0.46 0.11 0.22 0.72 1.75 0.57 0.83 3.03 
Lungs 12 0.88 0.09 0.74 0.97 3.75 2.42 1.39 7.94 4.33 4.15 1.01 13.04 

Spinal Cord 70 0.71 0.12 0.24 0.88 5.37 3.92 0.25 17.33 5.83 6.01 0.82 33.05                

Deeds MDA 
Original Atlas vs 

Phys 

Brainstem 75 0.79 0.13 0.24 0.90 0.97 0.69 0.43 4.06 2.47 1.65 1.19 10.46 
Mandible 39 0.81 0.13 0.27 0.91 1.92 1.29 0.59 5.62 2.28 2.11 1.00 12.76 

Parotid Glands 140 0.74 0.09 0.34 0.88 1.65 0.47 0.80 2.94 2.86 0.84 1.61 6.71 
Brain 26 0.98 0.01 0.96 0.98 1.37 0.94 0.50 3.81 1.01 0.17 0.80 1.51 

Cochlea 94 0.57 0.16 0.13 0.83 0.47 0.22 0.17 1.27 1.49 0.58 0.72 3.85 
Esophagus 29 0.51 0.14 0.12 0.76 3.54 1.46 0.94 5.96 5.45 3.50 1.98 20.07 

Eye 58 0.79 0.07 0.65 0.93 0.49 0.11 0.25 0.73 1.70 0.45 0.76 2.66 
Lungs 12 0.84 0.14 0.51 0.97 3.80 3.47 0.97 11.50 6.34 7.05 0.85 24.20 

Spinal Cord 70 0.74 0.11 0.28 0.87 3.90 3.23 0.37 13.47 4.29 5.32 0.90 28.89                

MACS vs Phys 

Brainstem 75 0.80 0.12 0.25 0.91 0.98 0.62 0.41 3.70 2.37 1.55 1.10 9.73 
Mandible 39 0.85 0.06 0.64 0.93 1.83 1.12 0.41 5.56 1.66 0.89 0.76 4.62 

Parotid Glands 140 0.79 0.07 0.44 0.89 1.47 0.64 0.59 3.60 2.37 0.76 1.30 6.16 
Brain 26 0.98 0.00 0.97 0.99 1.33 0.86 0.48 3.75 1.06 0.17 0.80 1.43 

Cochlea 94 0.50 0.17 0.06 0.88 0.48 0.19 0.14 1.41 1.61 0.68 0.42 4.27 
Esophagus 29 0.64 0.12 0.37 0.83 2.32 1.21 0.65 5.42 3.16 1.57 1.15 8.02 

Eye 58 0.84 0.07 0.56 0.93 0.47 0.15 0.25 1.06 1.42 0.39 0.72 2.36 
Lungs 12 0.76 0.21 0.39 0.94 4.56 4.23 1.24 14.08 9.09 9.47 1.49 29.89 

Spinal Cord 70 0.73 0.09 0.30 0.86 3.75 2.91 0.35 16.31 3.78 3.90 0.94 22.39                
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Deeds Varian 
Shape vs Phys 

Brainstem 75 0.78 0.13 0.23 0.90 1.09 0.71 0.49 4.26 2.59 1.73 1.26 10.54 
Mandible 39 0.80 0.14 0.27 0.92 2.16 1.31 0.52 5.63 2.51 2.40 0.87 12.30 

Optic Chiasm 21 0.47 0.13 0.13 0.62 0.88 0.34 0.47 2.00 2.16 0.73 1.27 3.74 
Optic Nerve 48 0.63 0.10 0.38 0.86 0.81 0.45 0.17 1.87 1.48 0.57 0.72 3.11 

Submandibular 
Glands 53 0.72 0.13 0.27 0.88 0.97 0.52 0.42 3.18 2.33 1.62 1.16 9.83 

Parotid Glands 140 0.74 0.08 0.38 0.87 1.94 0.60 0.68 3.62 2.95 0.85 1.52 6.73 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 32. Autocontour performance and Eclipse Star Rating. Mean and standard deviation of physician scores and agreement with 

physician contours divided by Eclipse Smart Segmentation star rating. 

197 | P a g e  
 



Structure Star N Physician Rating Dice Hausdorff Distance (cm) Mean Surface Distance (cm) 
Mean Std Mean Std Mean Std Mean Std 

Brainstem 
3 6 2.83 0.41 0.73 0.05 0.89 0.11 0.28 0.04 
4 77 3.17 0.59 0.74 0.05 0.96 0.25 0.29 0.05 
5 8 3.13 0.35 0.76 0.03 1.20 0.47 0.27 0.05 

Cochlea 
3 7 2.71 0.49 0.26 0.06 0.96 0.13 0.30 0.03 
4 80 3.04 0.37 0.40 0.08 0.81 0.20 0.23 0.04 
5 8 2.88 0.35 0.29 0.06 1.07 0.18 0.31 0.04 

Eye 
3 11 3.73 1.01 0.77 0.07 0.77 0.39 0.20 0.06 
4 158 3.28 0.90 0.74 0.08 0.69 0.27 0.23 0.07 
5 16 3.00 0.73 0.72 0.06 0.76 0.16 0.24 0.05 

Lung 
3 6 3.17 0.75 0.92 0.03 2.46 0.51 0.16 0.03 
4 79 2.95 0.99 0.92 0.05 2.28 0.87 0.20 0.19 
5 8 3.13 1.46 0.90 0.11 2.42 1.26 0.30 0.45 

Mandible 
3 6 2.50 0.84 0.61 0.05 1.69 0.21 0.37 0.06 
4 87 2.85 0.83 0.68 0.08 1.71 0.50 0.29 0.09 
5 8 2.88 1.13 0.69 0.09 1.74 0.41 0.29 0.11 

Parotid 
3 8 2.25 0.46 0.46 0.12 3.39 0.60 0.74 0.17 
4 148 2.91 0.82 0.68 0.09 1.94 0.72 0.36 0.12 
5 16 2.63 0.96 0.67 0.06 1.94 0.48 0.36 0.09 

Spinal Cord 
3 6 4.33 0.52 0.72 0.01 1.30 0.12 0.18 0.01 
4 79 4.04 0.41 0.67 0.07 2.95 2.13 0.31 0.13 
5 8 4.25 0.46 0.65 0.06 3.51 1.17 0.33 0.09 
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Table 33. Autocontour performance and physician rating. Mean and standard deviation of Eclipse Stars and agreement with physician 

contours divided by Physician Rating. 

Structure Rating N Star Dice Hausdorff Distance (cm) Mean Surface Distance (cm) 
Mean Std Mean Std Mean Std Mean Std 

Brainstem 

2 8 3.88 0.35 0.70 0.07 0.94 0.08 0.32 0.05 
3 63 4.03 0.44 0.74 0.04 1.02 0.31 0.29 0.05 
4 19 4.05 0.23 0.77 0.03 0.85 0.16 0.25 0.03 
5 1 4.00 0.00 0.79 0.00 1.00 0.00 0.24 0.00 

Cochlea 
2 7 3.86 0.69 0.33 0.06 0.99 0.17 0.28 0.03 
3 81 4.02 0.39 0.39 0.09 0.83 0.21 0.24 0.05 
4 7 4.00 0.00 0.40 0.07 0.83 0.11 0.23 0.03 

Eye 

2 41 4.07 0.35 0.69 0.11 0.90 0.44 0.27 0.11 
3 66 4.06 0.43 0.74 0.05 0.68 0.19 0.23 0.05 
4 63 4.02 0.34 0.76 0.06 0.62 0.12 0.21 0.05 
5 15 3.80 0.41 0.78 0.07 0.62 0.14 0.20 0.06 

Lung 

1 6 4.17 0.41 0.78 0.10 3.82 0.98 0.77 0.50 
2 25 4.04 0.35 0.91 0.06 2.72 0.51 0.23 0.17 
3 32 3.97 0.40 0.93 0.03 2.27 0.85 0.16 0.08 
4 25 3.96 0.35 0.94 0.02 1.74 0.58 0.14 0.06 
5 5 4.40 0.55 0.95 0.01 1.44 0.32 0.09 0.01 

Mandible 

2 41 4.00 0.45 0.61 0.07 1.92 0.52 0.36 0.09 
3 41 4.02 0.27 0.72 0.05 1.52 0.36 0.24 0.06 
4 14 4.00 0.39 0.71 0.06 1.67 0.36 0.27 0.08 
5 5 4.20 0.45 0.76 0.02 1.67 0.73 0.21 0.02 

Parotid 

1 1 4.00 0.00 0.29 0.00 2.57 0.00 0.68 0.00 
2 63 4.06 0.50 0.60 0.10 2.37 0.63 0.47 0.15 
3 75 4.01 0.26 0.70 0.07 1.86 0.75 0.34 0.10 
4 26 4.08 0.27 0.75 0.04 1.68 0.69 0.27 0.07 
5 7 4.14 0.38 0.76 0.08 1.39 1.01 0.26 0.14 

Spinal Cord 3 5 4.00 0.00 0.56 0.05 3.47 2.98 0.42 0.19 
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4 76 4.03 0.36 0.67 0.06 3.10 2.00 0.31 0.12 
5 12 4.00 0.60 0.73 0.04 1.37 1.23 0.21 0.08 
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