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MECHANISM OF INCORPORATION AND REPAIR OF URACIL AT HIGHLY 
TRANSCRIBED GENES IN SACCHAROMYCES CEREVISIAE 

 
 

Norah Auma Owiti, B.A. 

Advisory Professor: Nayun Kim, Ph.D. 

Recombination and mutagenesis are elevated by high levels of transcription. The 

correlation between transcription and genome instability is largely explained by the 

topological and structural changes in DNA and the associated physical obstacles generated 

by the transcription machinery.  However, such explanation does not directly account for the 

unique types of mutations originating from the non-canonical residues such as uracil, which 

are also elevated at highly transcribed regions. Apurinic/Apyrimic or Abasic (AP) sites 

derived from uracil excision, accumulate at a higher rate in actively transcribed regions of 

the genome in S. cerevisiae and are primarily repaired by base excision repair (BER) 

pathway.  I have demonstrated that transcription-coupled nucleotide excision repair (NER) 

pathway can functionally replace BER to repair those AP sites located on the transcribed 

strand much like the strand specific repair of UV-induced pyrimidine dimers. 

This thesis reveals that the DNA composition can be modified to include higher 

uracil-content through the non-replicative, repair-associated DNA synthesis.  I show here a 

positive correlation between the level of transcription and the density of uracil residues in the 

yeast genome indirectly through the mutations generated by the glycosylase that excise 

undamaged cytosine as well as uracil.  The higher uracil-density at actively transcribed 

regions is confirmed by the long-amplicon qPCR analysis.  I also show that the uracil-

associated mutations at highly transcribed regions are elevated by the induced DNA 

damage and reduced by the overexpression of a dUTP-catalyzing enzyme, Dut1, in G1- or 

G2-phases of the cell cycle. 
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Additional roles of transcription elongation factor Dst1 and RNAPII degradation factor 

Def1 in AP induced transcription arrest is also revealed. I report that Def1 directs NER to AP 

lesions on the transcribed strand of an actively transcribed gene but that its function is 

dependent on metabolic state of the yeast cells.  I additionally show that Dst1, a homolog of 

mammalian transcription elongation factor TFIIS, interferes with NER-dependent repair of 

AP lesions while suppressing homologous recombination pathway. 

In summary, this thesis elucidates a novel mechanism of introducing uracil into DNA 

during damage-induced repair synthesis and provides further insights onto how AP sites on 

the transcribed DNA strand are repaired.  
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1.1 Sources of DNA Modifications 
	

DNA serves as the template for the essential cellular metabolic processes of DNA 

replication and transcription; therefore, maintaining its integrity is important for viability. The 

genome is exposed to different kinds of changes that can alter  its structure and/or the 

information encoded in the sequence of nucleotides. These modifications have the potential 

to promote mutagenesis, the process of changing the normal DNA sequence, and to 

facilitate genomic instability, which can be both beneficial and detrimental to organisms 

depending on the context. One benefit of genomic instability is that the changes ranging 

from simple base substitutions to the rearrangements or loss of chromosomes can act as 

the raw materials of evolution. Additionally, genetic variation is important in processes such 

as immunoglobulin diversification (Maizels, 2005). However, these changes can also be 

harmful to the cell because they can disrupt essential cellular processes. In higher 

eukaryotes, genomic instability is associated with premature aging,  predisposition to 

various types of cancers, and inherited diseases.  

The genome is subject to both endogenous and exogenous sources of damage. It 

has been known for a long time, even before the discovery of the double helical structure of 

DNA in 1953, that exogenous (environmental) damaging agents have mutagenic effects and 

can lead to cancer predisposition ("An early suggestion of DNA Repair. Effect os sublethal 

doses of monochromatic ultraviolet radiation on bacteria in liquid suspensions. By Alexander 

Hollaender and John T. Curtis. Proc Soc Exp Biol Med, 33,61-62(1935)," 1975; Friedberg, 

2008; Kelner, 1949). It took yet another decade after the DNA structure was revealed to 

recognize that DNA is also subject to endogenous (spontaneous) damage during normal 

cellular metabolism (Lindahl, 1993; Lindahl & Nyberg, 1972). Both exogenous and 

endogenous sources of DNA damage can induce damage in a variety of forms such as: 

altered bases, base adducts, abasic sites (apurinic/ apyrimidinic, or AP sites), or single- or 

double-stranded breaks.  
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DNA modifications can arise from various environmental factors and lead to various 

types genome instability events. Exogenous sources of DNA damage include ultraviolet 

(UV) radiation originating from sunlight, ionizing radiation derived from both natural or 

clinical sources, food, chemicals and inhaled cigarette smoke. UV-induced damage can lead 

to formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) 

formed between adjacent pyrimidine dimers (Pfeifer, 1997). These photoproducts can cause 

the collapse of the replication fork, leading to the generation of DNA double stranded breaks 

(DSBs) (G. L. Chan et al., 1985; Cordeiro-Stone et al., 1997). Smoking has been associated 

with mutations in the lung and development of lung cancer (Ozlu & Bulbul, 2005). 

A variety of processes inside the cells can also lead to DNA damage. Reactive 

oxygen species (ROS) that are produced as intermediate products of cellular metabolic 

processes can cause oxidative damage to DNA leading to the formation of single- or double- 

stranded breaks (Sallmyr et al., 2008).  Changes to genomic DNA can also occur during 

normal cellular processes such as transcription or DNA replication. For example, DNA 

polymerases are prone to adding incorrect bases, which can lead to mutagenesis if not 

properly removed. In addition, because transcription and replication utilize the same 

template, collisions between the transcription machinery and the replication machinery are 

inevitable and can result in genomic instability. Finally, spontaneous hydrolysis of the DNA 

bases in the form of deamination or the removal of bases to create AP sites can also lead to 

genomic instability.  

There are approximately 70,000 DNA lesions formed in each human cell per day 

(Lindahl & Barnes, 2000). Given this large amount of daily damage to the cell’s genome, 

preserving the integrity of the genome is a monumental but critical task. Cells have 

developed several mechanisms to sense and repair DNA damage and preclude genomic 

instability. Years after the discovery of the double helical structure of DNA, Francis Crick 

wrote, “We totally missed the possible role of enzymes in repair although… I later came to 
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realize that DNA is so precious that probably many distinct mechanisms would exist. 

Nowadays one could hardly discuss mutations without considering repair at the same time” 

(Crick, 1974).  

1.2 Transcription as a source of genomic instability 
 

Transcription is a fundamental cellular function where the genetic information for 

both protein expression and non-coding function is converted from DNA to an RNA 

molecule. There are many aspects of transcription that allow it to be a source of genomic 

instability. Unlike DNA replication, in which one copy of each DNA strand is made 

throughout the genome once per cell division, transcription is a very nonuniform process 

that occurs at specific segments of the genome. Also unlike replication, the rate of 

transcription is highly variable and only one strand of the DNA is serves as a template.  

Transcription involves more than just copying the DNA template. It also has the 

ability to alter the genomic landscape by enhancing the rates of recombination and as well 

as mutagenesis, processes referred to as transcription-associated recombination (TAR) and 

transcription-associated mutagenesis (TAM) respectively. Several studies performed in the 

1970s using reversion assays in Escherichia coli were the first to demonstrate that highly 

transcribed genomic loci are more prone to mutagenesis (Herman & Dworkin, 1971; Savic & 

Kanazir, 1972). These studies showed that mutations were more efficiently induced by 

exogenous mutagens such as ICR-191 and ultraviolet radiation when the reporter gene was 

highly transcribed. In the last two decades, several studies have demonstrated that 

transcription has the ability to stimulate spontaneous mutagenesis and recombination in 

eukaryotes (Datta & Jinks-Robertson, 1995; Keil & Roeder, 1984; Voelkel-Meiman et al., 

1987). The earlier experiments in yeast utilized a reversion LYS2 allele that detects one-

base pair frameshift reversions to demonstrate that reversion frequencies increased with the 

increasing rates of transcription (Datta & Jinks-Robertson, 1995). In addition, transcription 
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increased the hyper-recombinogenic effects of 4-Nitroquinoline (4-NQO) and methyl 

methane-sulphonate  (MMS)  in a synergistic manner suggesting that transcription can 

render DNA more susceptible to genotoxic agents (Garcia-Rubio et al., 2003). Currently, 

TAR is thought to be associated with collisions between transcription and replication 

machinery, and the formation of non-canonical DNA structures such as R-loops and G4-

DNA structures while TAM is thought to be associated with increased access to mutagens 

as well change in the nucleotide composition of DNA. 

The question of how transcription can sensitize DNA to damage remains to be 

addressed. One possible mechanism could involve the damage-prone single-stranded DNA 

regions that occur in highly transcribed regions of the genome. Transcription leads to 

changes in DNA topology by introducing positive and negative supercoils to the DNA. 

During transcription, RNA polymerase II (RNAPII) generates positive supercoiling ahead of 

the transcription bubble and negative supercoiling behind the transcription bubble, which 

may cause torsional stress (Aguilera, 2002; Kim & Jinks-Robertson, 2012). This superhelical 

stress generated during transcription opens up the double helix and facilitates the formation 

of non-canonical DNA structures that can encourage genome instability. In addition, DNA 

strands are separated during transcription, temporarily leaving the DNA in a single-stranded 

state, which is more susceptible to damages than double-stranded DNA. In summary, 

transcription-related stress  can lead to the accumulation of different kinds of damage in the 

DNA and facilitate genomic instability.  

Co-transcriptionally formed RNA/DNA hybrids have been implicated as a major 

source of TAR in yeast. Original studies that provided evidence for TAR in yeast showed a 

strong increase in TAR in hpr1 mutant of the THO complex (Chavez & Aguilera, 1997; 

Prado et al., 1997). Additionally, it was shown that the hyper-recombination observed in the 

hpr1 mutants was associated with the accumulation of co-transcriptionally formed RNA-DNA 

hybrids (R-loops) (Huertas & Aguilera, 2003). R-loops are stable hybrids of the transcribed 
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DNA strand (TS) and the nascent RNA that form during transcription leaving the non-

transcribed DNA strand (NTS) single-stranded. Genome-wide analyses in yeast confirmed 

that R-loops, which have been associated with mutagenesis, recombination and 

rearrangements, are formed at highly transcribed genomic regions (Y. A. Chan et al., 2014; 

El Hage et al., 2014; Wahba et al., 2016). One potential mechanism for R-loop induced 

genomic instability is that R-loops can block/stall replication fork progression and induce 

recombination.  Other  studies have shown that R-loops mediate genomic instability in yeast 

and human cells by inducing transcription-replication conflicts (Castellano-Pozo et al., 2012; 

Herrera-Moyano et al., 2014). R-loops are degraded by specialized enzymes called RNaseH 

that specifically degrade the RNA that is hybridized to DNA (Pallan & Egli, 2008).  If not 

removed, these R-loops can cause the stalling and eventual collapse of the replication fork, 

which must be restarted/ repaired via homologous recombination. In addition, R-loops 

expose the non-transcribed DNA strand (which is single-stranded) further subjecting it to  

the endogenous or exogenous DNA damaging agents that can increase the frequency of 

recombination and genomic rearrangements by interfering with replication (Aguilera & 

Garcia-Muse, 2012). 

A high level of transcription facilitates the formation of non-B DNA structures that 

promote TAR. Single-stranded DNA formed during transcription can facilitate the formation 

of non-canonical DNA structures depending on the sequence of the DNA (Hall et al., 2017; 

Zhao & Usdin, 2015). An example of a non-canonical DNA structure is G-quadruplex 

structure (G4-DNA) which consist of stacks of guanine bases bound to each other. These 

structures are formed when several runs of guanine are present within a single-stranded 

segment of DNA via the Hoogstein bonds. G4-DNA structures are fairly stable and have 

been shown to stabilize R-loops and also block transcription in vitro and could potentially 

block replication as well (Belotserkovskii et al., 2010). The rate of recombination was 

significantly increased, in a transcription-dependent manner when a G-rich murine switch-
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region fragment was introduced into yeast. The increase was especially significant when the 

G-rich sequence was located on the NTS (Kim & Jinks-Robertson, 2011). 

Interestingly, TAR was shown to depend on replication in yeast and mammalian cells 

(Gottipati et al., 2008; Prado & Aguilera, 2005). This observation raised the question of how 

replication forks contend with transcription, especially because both replication and 

transcription utilize the same template. DNA replication complexes move faster in 

comparison to the transcription machinery; therefore, collisions between these two 

complexes are inevitable. When the lagging strand is being transcribed, the replication forks 

and the transcription machinery converge, and when the leading strand is being transcribed, 

both the replication machinery and the transcription machinery are moving in the same 

direction. The resulting conflicts are referred to as head on and co-directional collisions 

respectively, and they can each trigger TAR. Head-on collisions have been shown in vitro to 

be a stronger hindrance to the progression of the replication machinery compared to the co-

directional collisions (Liu & Alberts, 1995).  Additionally, the direct conflicts observed 

between the two machineries generate positive supercoils ahead of these machineries. 

These supercoils lead to the accumulation of superhelical stresses that can trigger 

replication fork reversal and eventually accumulation of double strand breaks (Postow, 

Crisona, et al., 2001; Rudolph et al., 2007). Therefore, transcription-replication conflicts  can 

be a major source of TAR and therefore genomic instability.  

Even though transcription, replication, and DNA repair are distinct and separate 

metabolic processes, they are all interconnected with genomic DNA being the common 

template. In addition to stimulating recombination, transcription has also been shown to 

stimulate mutagenesis (i.e. transcription-associated mutagenesis or TAM).  The enhanced 

single-stranded nature of the non-transcribed strand during transcription is an important 

source of TAM.  Most importantly, increased spontaneous cytosine deamination was 

observed on the non-transcribed DNA strand compared to the transcribed strand in bacterial 
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cells (Beletskii & Bhagwat, 1996). In eukaryotes, it was observed that cytosine deaminases 

prefer the cytosines that are located on the non transcribed single stranded DNA of the R-

loops structures. Correspondingly, the enzymatic deamination of cytosine residues to uracil 

has primarily been observed on the NTS of DNA in yeast THO mutant (Gomez-Gonzalez & 

Aguilera, 2007). 

Transcription also appears to alter the nucleotide composition of DNA. Using a 

frameshift assay, TAM was shown to be a result of damage to DNA.  A reduction in TAM 

was observed in yeast strains lacking the error-prone translesion synthesis polymerase 

(TLS) and increased in the absence of the error-free repair pathway (Datta & Jinks-

Robertson, 1995; Morey et al., 2000). Further studies using a mutation reporter system 

modified with a tetracycline-regulatable pTET promoter demonstrated a dramatically 

elevated mutagenesis upon activation of transcription in repair-deficient strains (Kim & 

Jinks-Robertson, 2009, 2010). This TAM was abrogated when uracil DNA glycosylase, 

Ung1, was disabled indicating that the observed mutagenesis was the result of excision of 

uracil from DNA. This uracil-dependent mutagenesis was further reduced when the free 

dUTP level was reduced by the overexpression of dUTPase, Dut1. These results suggested 

that the uracil derived from dUMP incorporated into DNA by DNA polymerases is the major 

source of uracil associated with highly transcribed genomic regions. In addition to enhanced 

uracil-derived mutagenesis when transcription is activated, increased incorporation of 

ribonucleotides into DNA has also been shown to be enhanced when transcription was 

activated (Nick McElhinny et al., 2010). Transcription, therefore, apparently alters the 

underlying DNA nucleotide composition. Overall, studies have indicated transcription as a 

major source of endogenous damage to DNA. 
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1.3 Uracil in DNA 
 

DNA encodes, stores and transmits genetic instructions that are necessary for 

cellular functions. The building blocks of DNA are deoxyribonucleotides with four different 

bases: the pyrimidine bases are adenine and guanine and purine bases are thymine and 

cytosine. DNA forms an anti-parallel double helical structure, where two strands of DNA are 

held together by hydrogen bonds that form between pyrimidines and purines. Adenines (A) 

base-pairs with the thymine (T); guanine (G) with cytosine (C). An exceptional case exists in 

some rare bacteriophages where all thymine residues are completely replaced by uracil (U) 

residues (Kiljunen et al., 2005; Skurnik et al., 2012; Warner & Duncan, 1978). In contrast to 

DNA, RNA is usually found as a single-stranded molecule containing the 5-carbon sugar 

ribose in the sugar-phosphate backbone instead of a deoxyribose. RNA also utilizes the 

purine, uracil in place of  thymine bases. Uracil and Thymine are very similar in structure 

except for the existence of a methyl group in the 5’ C atom position in a thymine base. The 

lack of the 5-methyl group in uracil does not interfere with the interaction and base pairing of 

the uracil residue with adenine (Figure 1).  

Uracil can also be found in DNA. Spontaneous or enzymatic deamination of cytosine 

to uracil, can introduce uracil residues into genomic DNA, creating a pre-mutagenic U:G 

mispair. Uracil in DNA can also arise through direct incorporation into DNA in place of 

thymine during DNA replication creating a U:A mispair. The uracil residue is then excised by 

uracil DNA glycosylase, Ung1, to create an abasic site. Repeated cycles of Ung1-initiated 

uracil repair might result in accumulation of abasic sites leading to DNA strand breaks and 

ultimately cell death (el-Hajj et al., 1988; Gadsden et al., 1993).  

Depending on the context, uracil in DNA can cause unfavorable or beneficial events. 

On one hand, uracil incorporation at specific regions of the immunoglobulin gene is an 

essential intermediate in antibody affinity maturation during adaptive diversification 

processes. On the other hand, uracil can be present in the DNA as a lesion that might lead 
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to deleterious mutations if not properly removed. Presence of uracil in DNA can interferes 

with the binding of some transcription factors thereby altering the expression of those genes 

(Luhnsdorf et al., 2014). 
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Figure 1: Structure and base pairing of uracil with adenine 

Uracil and Thymine are very similar in structure except for the 5’ methyl group in Thymine. 

Due to these structure similarities, uracil can successfully base pair with Adenine as the 5’ 

methyl is not necessary for base pairing. 
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Uracil derived from cytosine deamination is necessary for adaptive immunity but can 

also lead to deleterious genomic instability events. 100-500 cytosine deamination events 

have been predicted to occur per human cell per day (Lindahl, 1993). Studies have shown 

that enzymatic deamination of cytosine at the immunoglobulin loci is necessary for antibody 

diversification (Muramatsu et al., 1999). In antibody-expressing B lymphocytes, Activation 

Induced Deaminase (AID) enzyme triggers the deamination of cytosine to uracil and 

subsequent uracil removal is the first phase of hypermutation driving immunoglobulin gene 

diversification (Longerich et al., 2006; Petersen-Mahrt et al., 2002), (Klemm et al., 2009; 

Maul & Gearhart, 2010). In this case, the presence of uracil in the genome and the resulting 

mutation increases diversity in the immunoglobulin genes and serves an important role in 

adaptive immunity. In some instances, the unregulated expression of AID has been 

associated with increased uracil-dependent mutations and chromosomal translocations in 

genes that are important for cancer development in several cancer types (Alexandrov et al., 

2013; Tsai et al., 2008; Zhang et al., 2010).  

Uracil in DNA can also result from its incorporation in place of thymine during DNA 

replication. dUTP is a precursor required for the de novo synthesis of thymidine  

(Hochhauser & Weiss, 1978; Tye et al., 1977). Because of the structure similarity between 

uracil and thymine bases, most DNA polymerases cannot distinguish between these two 

nucleotides and will readily incorporate dUMP instead of dTMP (Bessman et al., 1958; 

Warner et al., 1981). Incorporation of dUMP depends on the [dUTP]/[dTTP] ratio which was 

estimated to be less than 0.1 under normal physiological conditions (Traut, 1994).  

Even though most replicative polymerases cannot distinguish between uracil and 

thymine, a subset of B family polymerases of archaea can recognize the presence of uracil 

in DNA (Lasken et al., 1996). Furthermore, the DNA polymerases of thermophilic 

archaebacteria bind DNA template containing uracil with higher affinity causing stalled 

replication forks (Greagg et al., 1999; Wardle et al., 2008) (Firbank et al., 2008; Fogg et al., 
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2002). These studies using primer extension assays demonstrated that replicative 

polymerases from bacteria and eukaryotes completed a full extension of a DNA template 

containing uracil residue indicating that they could not recognize the uracil residue; however, 

the thermophilic archaea DNA polymerases stalled 4 to 6 nucleotides upstream of the uracil 

residue. These studies also suggest that thermophilic archaeabacteria might have 

developed mechanisms to tolerate high uracil DNA content. For example, it has been shown 

that the rate of cytosine deamination is enhanced at higher temperatures. This suggest that 

cytosine deamination occurs at a higher frequency in thermophilic archaea; therefore, a 

greater number of uracil residues accumulate at these conditions (Greagg et al., 1999; 

Lindahl & Nyberg, 1974). The ability of these polymerases to recognize uracil might be a 

mechanism that evolved to prevent mutagenesis that might arise from increased uracil 

density from enhanced cytosine deamination.  

In summary, it  is necessary for the cell to regulate the levels of uracil in DNA to 

avoid unfavorable outcomes resulting from its presence in the genome. 

 

1.4 Regulation of dUTP and dTTP nucleotide biosynthesis 
 

Fine-tuned regulation of cellular nucleotide metabolism is vital for maintaining the 

deoxynucleotide triphosphate (dNTP) pool and sustaining DNA replication. In addition, 

excluding non-canonical bases from DNA is necessary in maintaining genome stability. As a 

result, multiple enzymes with temporal regulation throughout the cell cycle are in place to 

allow for efficient production and balance of nucleotides (McIntosh et al., 1986; Storms et 

al., 1984) (Figure 2). 

In the dTTP biosynthesis pathway, actions of ribonucleotide reductase (RNR) result 

in the biosynthesis of dUTP which can be directly incorporated into DNA to create A:U base 

pairs. In addition, the dUTP produced is a precursor for dTTP synthesis (Warner et al., 
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1981). Deoxyuridine triphosphatase (dUTPase), an essential enzyme, selectively catalyzes 

the conversion of free dUTP to dUMP and pyrophosphate, PPi, thereby eliminating it from 

the dNTP pool (Gadsden et al., 1993; Shlomai & Kornberg, 1978). dUTPase therefore 

serves two functions; (i) lowering the dUTP:dTTP ratio thereby preventing incorporation of 

uracil into DNA during replication or repair and (ii) providing a dUMP substrate for thymidine 

synthesis (Lindahl, 1993). 

dUTPase deficiency leads to the accumulation of uracil into DNA. Subsequent 

rounds of repair initiation by Ung1 cause DNA strand breaks and consequently, cell death 

(Gadsden et al., 1993; Kavli et al., 2007). For S. cerevisiae cells defective in dUTPase, 

viability was restored by exogenous supplementation with dTMP (Guillet et al., 2006). 

However, the cell death associated with dut1 mutant is not due to the lack of dTMP:  

disruption of Ung1, a uracil DNA glycosylase that excises uracil and initiates excision repair, 

was able to restore survival in dut1 mutants in yeast, bacteria and flies (Guillet et al., 2006; 

Lari et al., 2006; Muha et al., 2012). In dut1 ung1 double mutants, uracil content in the DNA 

is significantly elevated but the cells can survive because uracil does not alter the coding 

characteristics of the DNA. Similalrly, in wild-type Drosophila melanogaster, the dUTPase 

expression is observed only in imaginal (undifferentiated) tissues and in the central nervous 

system but not in most of the larval tissues (Horvath et al., 2015; Muha et al., 2012). But, 

due to the absence of Ung1, the fly can tolerate elevated genomic uracil content (Adams et 

al., 2000). 
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Figure 2: Key Enzymes in the Thymidine biosynthesis pathway 

dUTP is a precursor of dTTP synthesis and can be directly incorporated into DNA as well 

as dTTP. This figure illustrates the key enzymes in the thymidine biosynthesis pathway 

discussed in this thesis including: dUTPase, Dcd1 and  Thymidylate synthatase (TS). 
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The role of dUTPase in preventing accumulation of uracil in DNA is conserved in 

several organisms including: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis 

thaliana, Trypanosoma brucei, Caenorhabditis elegans Drosophila melanogaster and 

humans, indicating that dUTPase is ubiquitous and essential in DNA replication across 

organisms (Castillo-Acosta et al., 2008; Dengg et al., 2006; Dubois et al., 2011; el-Hajj et al., 

1988; Guillet et al., 2006; Muha et al., 2012; Vertessy & Toth, 2009). dUTPase also plays an 

important role in virus replication. A form of dUTPase is encoded by poxviruses, 

herpesviruses and some retroviruses to minimize the incorporation of uracil into the viral 

DNA by ensuring a low [dUTP]/[dTTP] ratio (Chen et al., 2002). In most organisms, 

dUTPase is highly expressed in S-phase both at the protein and mRNA level ensuring that 

dUTP levels are kept low during replication (Ladner & Caradonna, 1997; Pardo & Gutierrez, 

1990). 

In addition to the hydrolysis of dUTP by dUTPases, dUMP, required for dTTP 

synthesis, can also be synthesized by another highly conserved enzyme deoxycytidine 

monophosphate deaminase, Dcd1, which converts dCMP to dUMP (L. Wang & Weiss, 

1992). The dUMP produced by Dcd1 is sufficient in generating adequate dTTP to sustain 

replication (McIntosh & Haynes, 1984). Unlike dUTPase, which is cell-cycle regulated, Dcd1 

is constitutively expressed throughout the cell cycle (McIntosh et al., 1986). Studies in S. 

cerevisiae indicated that deletion of DCD1 led to a significant increase in dCTP and 

reduction in dTTP pool without affecting the viability of the cells (Kohalmi et al., 1991; 

Sanchez et al., 2012). In addition, an increase in mutagenesis was observed following 

DCD1 deletion, possibly due to misinsertion of nucleotides into DNA and most likely uracil 

(Kohalmi et al., 1991). Dcd1 therefore, plays an important role in dTTP synthesis without 

utilizing the dUTP pool as the intermediate. 

dUMP produced by dUTPase or Dcd1 is subsequently converted to dTMP, which is  

the substrate for dTTP synthesis. This reaction, catalyzed by thymidylate synthase (TS) 
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enzyme, is the sole de novo source of dTMP essential for DNA replication and repair and 

therefore is the most critical step in thymidine biosynthesis. TS uses 5,10 

methylenetetrahydrofolate (5,10-CH2THF) as a co-factor to add a methyl group to C5 of 

uracil base (Costi et al., 2005). During this reaction, 5,10-CH2THF is oxidized to 

dihydrofolate (DHF) which is thenrecycled by dihydrofolate reductase (DHFR) and serine 

hydroxymethyltransferase (SHMT) to produce more  5,10-CH2THF. TS, similar to dUTPase, 

is an essential enzyme which is tightly regulated with highest activity in S-phase of the cell 

cycle (Storms et al., 1984). Overall the cell has developed several mechanisms to ensure 

maintenance of the nucleotide pool during DNA synthesis and also to avoid incorporation of 

non-canonical nucleotides, such as uracil, into DNA. An illustration of the thymidine 

biosynthesis pathway is shown in Figure 2. 

1.5 Role of uracil metabolism in Cancer Chemotherapy 
 

Inhibitors of thymidine biosynthesis pathway are one of the most effective 

chemotherapy agents in the treatment of cancer since the 1940s (Farber & Diamond, 1948). 

Since TS enzyme has an important role in thymidylate metabolism, it is a frequent 

chemotherapy target.  Inhibition of TS leads to depletion of dTMP and the imbalance of the 

nucleotide pool leads to impaired DNA synthesis and repair resulting in damage (Chu et al., 

2003). Inhibitors of this pathway include fluoropyrimidines such as 5-fluorouracil (5-FU), 

fluorodeoxyuridine (FUdR) and capecitabine and antifolates such as raltitrexed, pemetrexed 

and methotrexate classes of anti-cancer agents (P. M. Wilson et al., 2014). These agents 

block dTMP production by either directly inhibiting TS or indirectly inhibiting TS by targeting 

DHFR, thereby limiting the availability of 5,10-CH2THF required for TS reaction. 5-FU is one 

of the oldest and still widely used fluoropyrimidine that was first synthesized in 1957 

(Heidelberger et al., 1957). It has broad activity towards many solid tumors including 

colorectal, head and neck, gastric, ovarian, pancreatic and breast tumors. Methotrexate, an 
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antifolate,  was discovered in the 1940s for treatments against Leukemia (Farber & 

Diamond, 1948; Freireich, 1967; Goldin et al., 1955). 

In addition to damage induced by dNTP pool imbalance, TS inhibition can induce 

cytotoxicity via various mechanisms.  TS inhibition causes the accumulation of dUMP which 

leads to the production of dUTP through phosphorylation and subsequent incorporation of 

uracil into DNA (Caradonna & Cheng, 1980). Ung1-mediated cleavage of the uracil residue 

creates abasic sites (Lindahl, 1979). Persistence of high [dUTP]/[dTTP] leads to continuous 

rounds of uracil incorporation into DNA and attempted repair by Ung1, accumulation of DNA 

breaks and ultimately cell death (Brynolf et al., 1978). In addition to uracil-induced 

cytotoxicity, several other mechanisms of anti-tumor activity have been observed. For 5-FU, 

the metabolite fluorodeoxyuridine monophosphate (FdUMP) also binds to and inhibit TS 

(Danenberg & Lockshin, 1981). FdUTP is also incorporated into DNA albeit to a low extent 

and repair is initiated by Ung1 excision of the FdUTP nucleoside analog (Caradonna & 

Cheng, 1980; Danenberg et al., 1981; Seiple et al., 2006). Finally, fluorouridine triphosphate 

(FUTP) is also misincorporated into RNA leading to cytotoxicity via the disruption of RNA 

synthesis (Glazer & Lloyd, 1982; Herrick & Kufe, 1984). The precise mechanism of 

cytotoxicity of fluoropyrimidines and antifolates are often debated. However, it is possible 

that a combination of dUTP and FdUTP in DNA, thymine deficiency, and FUTP in RNA 

contribute to the cytotoxicity in the clinical setting. 

 In TS targeted therapies, it has been demonstrated that dUTPase can protect tumor 

cells from TS-induced cytotoxicity (Tinkelenberg et al., 2002; P. M. Wilson et al., 2012). In 

fact, dUTPase overexpression has been demonstrated in most cancer cells treated with TS 

inhibitors, thereby protecting the cells from uracil-derived cytotoxicity as a result of TS 

inhibition (Kawahara et al., 2009; Longley et al., 2003; P. M. Wilson et al., 2014). Recent 

studies have demonstrated that targeting dUTPase augments the efficacy of the TS 

inhibitors, presumably by enhancing the misincorporation of uracil into DNA and 
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subsequently cell death (Hagenkort et al., 2017; Koehler & Ladner, 2004; Miyahara et al., 

2012). The first dUTPase inhibitor, TAS-114, is currently in clinical trials and has 

demonstrated safety and synergistic effect in combination with current TS inhibitors (Saito et 

al., 2014). These studies altogether highlight the important role of uracil in cancer therapy. 

1.6 Mechanism of Uracil DNA Repair (BER and TCR) 
 

Since the DNA is subject to damage on a regular basis, DNA repair mechanisms are 

critical for maintaining genome stability. Consequently, the cell has developed several 

mechanisms to deal with the different types of damages. The importance of DNA repair was 

highlighted in 2015 Nobel prize in Chemistry to Thomas Lindahl for pioneering studies on 

the mechanisms of Base Excision Repair, Aziz Sancar for his contributions to understanding 

Nucleotide Excision Repair and Paul Modrich for Mismatch Repair (Lindahl et al., 2016). 

Because DNA repair is critical for survival, most of these repair mechanisms are highly 

conserved from bacteria to humans. These repair mechanisms are, for the most part, 

efficient but can also be error-prone and inadvertently encourage genome instability. 

Abasic sites are the most common, endogenous DNA lesions that if left unrepaired 

can block transcription or replicative polymerases and induce mutagenesis (Boiteux & 

Guillet, 2004; De Bont & van Larebeke, 2004; Swenberg et al., 2011). It is estimated that 

approximately 10,000 abasic sites are formed per human cell per day (Lindahl, 1993; 

Lindahl & Nyberg, 1972). To prevent mutagenesis, AP sites must be processed and 

repaired prior to the next round of DNA replication. There are three major pathways the cell 

utilizes to deal with  abasic sites and resume DNA replication: (i) Abasic sites can be 

processed in an error-free manner by Base- Excision Repair (BER), (ii) If present on the 

transcribed DNA strand and in the absence of BER, abasic sites are repaired by 

Transcription-Coupled Nucleotide Excision Repair (TCR) and finally, (iii) If the repair 
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pathways are overwhelmed, specialized translesion synthesis (TLS)  polymerases can be 

recruited to bypass AP sites in a mutagenic manner. 

The BER pathway is highly conserved from bacteria to humans indicating its 

necessity in maintaining the integrity of the genome (Krokan & Bjoras, 2013). This repair 

pathway is initiated by the recognition of damaged or incorrect base by DNA glycosylases, 

that cleave and release the incorrect base creating an apurinic/apyrimidic or Abasic (AP) 

site. Uracil DNA glycosylase, Ung1, in yeast recognizes and excises uracil residues present 

in either single or double-stranded DNA leaving an AP site (Percival et al., 1989). The 

resulting AP site is recognized by AP endonucleases, which bind to and cleave AP sites on 

duplex DNA leaving a sugar attached to the 5’ side of the lesion. In yeast there are two AP 

endonucleases, Apn1 and Apn2 with Apn1 accounting for >95% of endonuclease activity 

(Popoff et al., 1990). AP site repair can also be initiated by glycosylase-associated AP lyase 

in an Apn1-independent manner. In yeast, the AP lyases Ntg1 and Ntg2 can nick the sugar-

phosphate backbone on the 3’ side of the AP site (Boiteux & Guillet, 2004). Once the DNA 

backbone is cleaved by either Apn1, Ntg1 or Ntg2, the remaining deoxyribose phosphate 

residue is removed by a 3’ or 5’ phosphodiesterase. DNA polymerases then fills the gap 

created and the remaining nick is sealed by DNA ligase (Krokan & Bjoras, 2013). 

When BER is overwhelmed or disabled, Nucleotide Excision Repair (NER) can act 

as a backup in the repair of AP sites (Swanson et al., 1999; Torres-Ramos et al., 2000). 

NER is characterized with removing the helix-distorting lesions with the ability to stall 

replication and transcription such as UV-induced cyclobutane pyrimidine dimers (CPDs), 6-4 

photoproducts as well as other bulky adducts (Cadet et al., 2005). However, it was later 

recognized that NER can also repair small lesions such as AP sites and oxidized bases 

(Gellon et al., 2001; Scott et al., 1999; Swanson et al., 1999; Torres-Ramos et al., 2000). 

Loss of NER is associated with the disease Xeroderma Pigmentosum (XP) characterized by 

increased sensitivity to sunlight and cancer predisposition. NER pathway is subdivided into 
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two pathways, global genome nucleotide-excision repair (GGR) and transcription-coupled 

nucleotide excision repair (TCR) (Hanawalt, 2002). In GGR, when there is a damage to 

DNA, repair proteins directly recognize the distortion to DNA and initiate repair. The lesions 

are repaired regardless of the transcriptional status of the gene. Rad7 and Rad16 in yeast 

specifically participate in GGR (Verhage et al., 1996). 

TCR is specific in repairing lesions which are present on the transcribed strand of 

DNA and can stall the elongating RNA polymerase (Hanawalt, 2002). This stalling of the 

RNA polymerases signals for the recruitment of repair proteins to remove the lesions and 

allow for continued transcription elongation (Hanawalt, 2002). TCR therefore, promotes the 

rapid removal of transcription blocking lesions to prevent detrimental effects. There are 

several mechanisms the cell uses to resolve these lesions that block transcription 

elongation; backtracking of the stalled RNA polymerase, bypassing the damage or 

degradation of the RNA polymerase. These mechanisms are discussed in more details in 

Chapter 4 of this thesis. TCR was first discovered in mammalian cells. The repair of CPDs 

was shown to be faster in the highly expressed DHFR gene than in the less transcribed 

genes downstream indicating that the lesions on the transcribed DNA sequences were 

preferentially removed (Bohr et al., 1985; Mellon et al., 1986). In yeast, it was shown that 

CPDs were removed faster in the actively expressed MATα locus relative to the inactive 

HMLα locus (Terleth et al., 1990). Philip Hanawalt was first to clearly demonstrate the 

preferential repair of CPDs on the transcribed strand relative to the non-transcribed strand in 

the RPB2 gene (Sweder & Hanawalt, 1992). Rad26 in yeast functions specifically for the 

initiation of TCR, however, its effect is only partial unlike its human homolog CSB that is 

required for TCR (Kim & Jinks-Robertson, 2010; Verhage et al., 1996). A second protein 

Rpb9 has been implicated in TCR of UV-induced damages in a Rad26 independent manner 

(S. Li & Smerdon, 2002).  
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Following recognition of the lesion for both GGR and TCR, the downstream repair 

mechanisms are similar for both subpathways. Dual incisions around the lesion are made, 

and a single-stranded DNA of ~25-30 nucleotides is released. The remaining gap is filled by 

DNA polymerase and the nick sealed by a DNA ligase. Rad14 is required for the lesion 

binding step of both GGR and TCR subpathways of NER and, thus, the loss of Rad14 

completely abolishes NER (Guzder et al., 1995).  

 When DNA polymerases encounters  the unrepaired AP sites during replication, 

specialized translesion synthesis (TLS) DNA polymerases can be recruited to bypass the 

damages and allow for the continued replication. TLS polymerases have very low fidelity 

hence the translesion synthesis pathway is highly mutagenic. However, for the cell, 

introducing mutations in DNA is a preferable risk in comparison to the drastic ramifications 

that result from the complete replication block. In yeast, Rev1 and Polζ are important in the 

bypass of AP sites (Gibbs et al., 2005; Kow et al., 2005). Biochemical characterization 

revealed that Rev1 utilizes a dCMP transferase activity during AP site bypass (Nelson et al., 

1996). These results were further confirmed in vitro and in vivo with experiments that 

showed that the insertion of C nucleotide across the AP site accounts for ~85% of bypass 

events at abasic sites (Gibbs et al., 2005; Kim, Mudrak, et al., 2011; Kow et al., 2005; Pryor 

& Washington, 2011).  

1.7 Summary and Significance 
 
 DNA is susceptible to both endogenous and exogenous damage which can lead to 

genomic instability in the form of mutations or rearrangements. Distribution of genome 

instability events is not random, there are certain hotspots such as highly transcribed 

genomic loci, that show a larger load of DNA damage (Aguilera, 2002; Kim & Jinks-

Robertson, 2012). Until recently, the elevated damages associated with highly transcribed 

genomic loci was attributed to the single-stranded nature of highly transcribed genomic loci 
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and the consequently elevated susceptibility to DNA damage. Additionally, the enhanced  

formation of  non-canonical structures such as R-loops or G4-DNA during highly transcribed 

genomic loci contributes to genomic instability. Recently, a novel mechanism of 

transcription-associated DNA lesion, not involving chemical modification to DNA, was 

identified through genetic studies in yeast. This novel category of DNA lesions is composed 

of non-canonical DNA nucleotide, uracil (Kim & Jinks-Robertson, 2009).  

 Thesis work described here first aims to elucidate the mechanism by which the 

mutagenic imbalance in nucleotide composition is achieved at highly transcribed genomic 

loci leading to specific elevation in the mutagenesis associated with uracil-misincorporation 

into DNA. The thesis further attempts to expand the current understanding of TCR repair of 

AP sites, specifically the roles played by some transcription elongation factors.  

Changes in the genome can suppress essential cellular processes and lead to 

defects such as cancer and aging. Understanding the causes of genome instability and how 

different repair pathways are regulated is therefore, fundamental to understanding both 

normal, and abnormal developmental processes. The results of this study provide additional 

insights into how uracil is incorporated into DNA as well as the factors involved in the uracil 

repair process. In addition to clarifying the molecular mechanisms of transcription-

associated genomic instability, mechanistic insights into the regulation of uracil into DNA will 

enhance our understanding of the mechanisms of action of TS- and dUTPase-inhibitors as 

well as the mechanisms of resistance to these therapeutics leading to designing of more 

targeted and effective therapeutic strategies. 
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Chapter 2 

Materials and Methods   
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2.1 Yeast Strains and Plasmids 

  Yeast strains were derived from YPH45 (MATa, ura3-52 ade2-101 trp1Δ1). The 

construction of strains containing the his4Δ::pTET-lys2-TAA allele was previously described 

(Kim & Jinks-Robertson, 2010). The his4Δ::pTET-lys2-TAG allele was introduced using the 

pop-in/pop-out two-step allele replacement method to replace the his4Δ::pTET-LYS2 allele 

on Chr III using BglII-digested pSR982. Further gene deletions of the yeast strains 

containing the pTET-lys2-TAA or -TAG allele were carried out using the standard one-step 

gene disruption method. The subsequent Cre/loxP-mediated deletion of the marker gene 

was carried out as appropriate (Gueldener et al., 2002).  

 pCDG and pTDG are 2-micron plasmids each with a mutant human UDG encoding 

sequence under the pGAL control with the TRP1 marker (P. A. Auerbach & Demple, 2010) 

and were gifts from Dr. Bruce Demple (Stony Brooke School of Medicine, Stony Brooke, 

NY). The cell-cycle specific Dut1-overexpression plasmids were constructed by digesting 

p426-GAL1-DUT1 (Kim & Jinks-Robertson, 2009) with BamHI and SacI to remove and 

replace the pGAL promoter with the promoters of yeast genes CLN2, HHO1 or CLB2.   

Sequences of primers used to amplify the promoters of CLN2, HHO1 or CLB2 genes from 

the yeast genome were described previously (Prado & Aguilera, 2005; Wellinger et al., 

2006). The 537 nt sequence encoding the CLN2 PEST domain was synthesized through the 

Invitrogen GeneArt Gene Synthesis service and was inserted into the EcoRI/BamHI 

digested pCLN2-DUT1, pHHO1-DUT1, and pCLB2-DUT1 plasmids. Each of these plasmids 

were further modified by the addition of 3XHA-encoding sequence to the C-terminal ends. 

2.2 Mutation  and Recombination Rates  

 Mutation  and recombination rates were determined by fluctuation analysis and the 

method of the median; the 95% confidence intervals were calculated as described 
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previously (Spell & Jinks-Robertson, 2004). Each rate was based on data obtained from 12-

24 independent cultures and two independently derived isolates. For the pCDG and pTDG 

expression experiments, the indicated strains were transformed with either the empty vector 

pYES2 or pCDG or pTDG and plated selectively on the synthetic complete medium with 2% 

dextrose media lacking tryptophan (SCD-Trp). Individual colonies were inoculated into a 1-

mL SC-Trp culture supplemented with 2% galactose and 1% raffinose.  After 4 days of 

growth at 30°C, appropriate dilutions were plated on SCD-Trp to determine total cell 

numbers and on SCD-Trp-Lys to determine the number of Lys+ revertants in each culture. 

For the Dut1-overexpression experiments, the indicated strains were transformed with 

pRS426 or pGAL-DUT1, pCLN2-DUT1-PEST-HA, pHHO1-DUT1-PEST-HA, or pCLB2-

DUT1-PEST-HA.  After culturing in SC-Ura media with 2% galactose/1% raffinose or SC-Ura 

with 2% glycerol/2% ethanol for 4 days at 30°C, the Lys+ revertants were selected on SC-

Ura-Lys plates. Where “low transcription” is indicated, doxycyline (2 µg/mL) was added to 

the media to lower the transcription of LYS2 gene. 

For Dst1, Srs2 and Sub1 experiments, 1 mL of yeast extract-peptone (YEP) medium 

supplemented with 2% glycerol and 2% ethanol (YEPGE) was inoculated with 250,000 cells 

from an overnight culture grown in the same medium. For DEF1-deleted strains, 500,000 

cells from an overnight culture were used to inoculate.  Following growth at 30°C in YEP 

with 2% dextrose (YEPD) for 3 days or YEPGE for 4 days, cells were washed with water 

and appropriate dilutions were plated either on synthetic, lysine-deficient medium containing 

2% dextrose (SCD-Lys) to select Lys+ revertants or on SCD-Leu medium to determine the 

total number of cells in each culture. CAN1 forward mutation rates were determined by 

plating cells on SCD-Arg medium supplemented with 60µg L-canavanine sulfate per mL 

(SCD-Arg+Can; Sigma). Since fluctuation tests are non-random and unbiased, all data with 
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mutation rates and recombination rates are presented using median and 95% confidence 

intervals of the median.  

2.3 Mutation Frequency  

To determine the mutation frequency following drug treatments, cells were first 

grown in YEPD (1% yeast extract, 2% peptone, 2% glucose) medium overnight. The 

overnight cultures were diluted to an OD of 0.2 and grown for 4 hrs at 30°C.  5-FU, 4NQO, 

or CPT was added to the yeast culture to final concentrations of 10 µM, 0.2 µg/mL and 100 

µM, respectively, and incubated at 30°C for 20 hrs with shaking. The cell cultures were spun 

and washed twice with sterile water to remove any residual drug and plated on SCD-Lys 

plates to select for revertants and on YEPD plates to determine the total cell number. 

Colonies were counted after 48 hrs and the mutation frequency was calculated by method of 

the median as described above.   

2.4 Mutation Spectra 

To determine the mutation spectra, individual colonies were used to inoculate 0.3 mL 

YEPGE cultures (or SC-Trp with 2% galactose and 1% raffinose for CDG and TDG 

expression experiments). After 2 or 3 days of growth at 30°C, an appropriate fraction of 

each culture was plated on SCD-Lys (or SCD-Trp-Lys in CDG and TDG expression 

experiments). A single Lys+ revertant from each culture was purified on YEPD plates, and 

genomic DNA was prepared using a 96-well format in microtiter plates.  The lys2-TAA or -

TAG reversion window was amplified using LYSWNF and LYSWNR primers and the PCR 

product was sent to Eurofins Genomics for sequencing using LYSEQ primer (primer 

sequences listed in Table 2). The rates of A>C and T>G were calculated by multiplying the 

proportion of the events by the total Lys+ mutation rate. The 95% confidence intervals for the 

rate of A>C or T>G mutation type were calculated first by obtaining the 95% confidence 
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intervals for the proportion of each mutation type (Vassarstats; (Newcombe, 1998)) and 

applying the root-sum-squared (RSS) method.  

2.5 Quantitative reverse transcriptase PCR (qRT-PCR) 

  Total RNA was extracted using the standard hot acid phenol method and treated with 

DNase 1 (New England Biolabs). For qRT-PCR performed in chapter III, cDNA synthesized 

using the AmfiRivert cDNA Synthesis Platinum Master Mix from GenDepot was used in the 

subsequent qPCR performed using amfiSure qGreen Master Mix from GenDepot and 

Biorad CFX Connect instrument. The qRT-PCR conditions were as follows: 45 °C for 10 

mins and 95 °C for 2 mins followed by 40 cycles of 95 °C for 5 s, 60 °C for 10 s and 72 °C 

for 5 s. The primers used for amplification are listed in Table 1.  Relative RNA levels were 

determined by ΔΔCq analysis using ALG9 as the reference gene. For the qRT-PCR 

performed in chapter IV, SensiFAST SYBR No-ROX one-step kit from Bioline was used and 

UBC6 or ACT1 used as reference gene as indicated. 

2.6 Quantitative long-amplicon PCR 

The uracil density in DNA was quantified using the long amplicon quantitative real-

time PCR approach as described previously with the following modifications (Hunter et al., 

2010). DNA samples (5 µg) were digested with 1 unit of UDG (New England Biolabs) for 30 

min to remove  uracil residues followed by an incubation with EndoVIII (New England 

Biolabs) for 1 hr at 37°C. After DNA was precipitated and dissolved in water, 100 ng of DNA 

from each sample was used to carry out qPCR in triplicates.  Primers used for the 

amplification of the yeast LYS2, CAN1, and TDH3 are listed in the Table S1. The 

amplification was performed using Bioline SensiFAST SYBR No-ROX kit and Biorad CFX 

Connect Real-Time PCR machine.  Cycling parameters were as follows: For the short 

amplicons:  95°C for 3 min followed by 40 cycles of 95°C for 5 s, 60°C for 10 s and 72°C for 
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10 s. For the long amplicons: 95°C for 3 min followed by 40 cycles of 95°C for 5 s, 60°C for 

10 s and 72°C for 1 min.  

2.7 Determination of the induced lesion frequency 

  The frequency of uracil in DNA was calculated by assuming that the UDG/EndoVIII 

treatment leads to the strand breaks specifically at the location of uracil, which results in the 

quantitative loss of the template DNA and consequently the reduced qPCR amplification 

efficiency.  The uracil density at pTET-LYS2, CAN1, and TDH3 was inferred from the 

reduction in the amplification of the UDG/EndoVIII-treated samples relative to the untreated 

samples when amplifying a large 3- to 4-kb region of each gene.  For each gene, qPCR 

amplification of ~ 100-bp target area was used to normalize for the template DNA loading.  

Primers used for the amplification of the 100-bp or the 3- or 4-kb regions of the yeast LYS2, 

CAN1, and TDH3 are listed in the Table 2. Assuming the Poisson distribution of uracil in the 

large amplicons, the density of uracil was calculated using the following equation where the 

amplification percent of the large amplicons in the UDG/EndoVIII-treated and in the 

untreated controls, relative to the amplification of the small ~100-bp amplicons, are 

represented by At and Au, respectively. 

 Uracils per 10-kb DNA  =   
! !" !"

!"  ! !""""(!")

!"#$ !" !"#$ !"#$%&'( (!")
 

2.8 Labelling and quantification of uracil  

Fluorescent labelling of the uracil-derived AP sites was performed as described 

previously with minor modifications (Wei et al., 2015). Briefly, genomic DNA was isolated 

from the ung1∆ yeast cells treated with the indicated concentrations of 5-FU or 4NQO and 

treated with 10 mM methoxyamine to reduce the endogenous AP sites.  Then, 5 µg of each 
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DNA sample was treated with 1 unit of UDG (New England Biolabs) for 30 mins at 37°C to 

generate the uracil-specific AP sites and labeled by incubation with 5 mM AA3 for an 

additional hour. Following the addition of Cy5 azide (Lumiprobe) to the final concentration of 

0.5 mM and the freshly prepared CuBr/TBTA (1:4 in DMSO/t-BuOH 3:1, 0.5 mM, Sigma), 

the mixture was shaken at 37°C for 2 hrs.  The Cy5/AA3-labeled DNA was purified using 

ethanol precipitation, heated at 95°C, and transferred to a positively charged nylon 

membrane using the Bio-Dot microfiltration apparatus (Biorad). The membrane was 

scanned using the ChemiDoc MP imaging system (Biorad) with a Cy5 filter and quantified 

using the Image Lab software. 

2.9 Cell Synchronization  

Synchronization of yeast cells at G1 was carried out by arresting bar1∆ cells with α-

factor as described previously (Rosebrock, 2017). Briefly, yeast cells were grown in either 

YEPD or SC-Ura + 2% glucose overnight.  The overnight cultures were diluted to an OD600 

of 0.2 (for YPD) or 0.4 (for SC-Ura + glucose) and grown at 30°C until reaching an OD600 of 

0.8. The cells were washed twice followed by the addition of α-factor (Sigma) to a final 

concentration of 50ng/mL and grown for 2 hrs or until ~100% of the cells were unbudded 

with a typical pear/ schmoo shape characteristic of α-factor arrest. To remove the α  factor, 

cells were washed twice with water and resuspended in the medium supplemented with 50 

µg/mL pronase. Cells were collected after every 15 minutes (YEPD) or 20 minutes (SC-Ura 

+ 2% glucose) following the release and used for RNA analysis. 

2.10 5-FU and 4-NQO survival assays 

  The overnight cultures were diluted to an OD600 of 0.2 and grown at 30°C for 4 hrs 

before adding 5-FU, 4NQO or DMSO to a final concentration of 10 µM, 0.2 µg/mL, and 

0.1%, respectively.  Following incubation at 30°C for 20 hrs with shaking, cells were spun, 
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washed twice, and plated on YEPD plates. Colonies were counted and the percent survival 

of 5-FU- or 4NQO-treated cultures was calculated relative to the DMSO-added cultures. 
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Table 1: Primers used in this study 

 
Primer name 

 
Sequence 5’-3’ 

 
Used for: 
 

   
LYS2 3KBF CTTTCAGTGTTACCACATGA Long amplicon qPCR 

 
LYS2 3KBR CAAATTTTTCGTTCCAAGTACC 

 
Long amplicon qPCR 

LYS2 4KBF CTTTCAGTGTTACCACATGA 
 

Long amplicon qPCR 

LYS2 4KBR GTTCTATACTTGGCAGTGGAAG 
 

Long amplicon qPCR 

CAN1 3KBF CAGTCCTATTCGGAGATACAG 
 

Long amplicon qPCR 

CAN1 3KBR CTAACTCAGACATTATCGGAAC 
 

Long amplicon qPCR 

TDH3 3KBF GTTCTCACAC GGAACACCAC 
 

Long amplicon qPCR 

TDH3 3KBR GTGGCAGCAAGTGATAAGCAAGC 
 

Long amplicon qPCR 

5’BGLF GAGTAACCGGTGACGATGATATT 
 

Long amplicon qPCR 
and qRT-PCR  

5’BGLR CATTAAATGACCACGTTGGTTGA 
 

Long amplicon qPCR 
and qRT-PCR  

CAN1F GAGTTCTGGGTCGCTTCCAT 
 

Long amplicon qPCR 
and qRT-PCR 

CAN1R GGCACCTGGGTTTCTCCAAT 
 

Long amplicon qPCR 
and qRT-PCR 

TDH3F CATGGGGTTCTTCCAACGTTG 
 

Long amplicon qPCR 
and qRT-PCR 

TDH3R GGAAGATGGAGCAGTGATAAC 
 

Long amplicon qPCR 
and qRT-PCR 

DUT1F GGTTCTGCCACTGCCGCGGG 
 

qRT-PCR  

DUT1R GGCGCAATACGACCGTAGGT 
 

qRT-PCR  

ALG9F CACGGATAGTGGCTTTGGTGAACAATTAC 
 

qRT-PCR  

ALG9R TATGATTATCTGGCAGCAGGAAAGAACTTGG
G 

qRT-PCR  

HTA2F CCCAGTTGGTAGAGTGCACAG 
 

qRT-PCR  

HTA2R CTCTAGCAGCATTACCAGCC 
 

qRT-PCR  

UBC6F GATACTTGGAATCCTGGCTGGTCTGTCTC qRT-PCR  
 
 

UBC6R AAAGGGTCTTCTGTTTCATCACCTGTATTTG
C 

qRT-PCR  
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ACT1F ATTCTGAGGTTGCTGCTTTGG 
 

qRT-PCR  

ACT1R TGTCTTGGTCTACCGACGATAG 
 

qRT-PCR  

LYSWNF AGCTCGATGTGCCTCATGATAG Amplification before  
sequencing 
 

LYSWNR CATCACACATACCATCAAATCC Amplification before 
sequencing 
 

LYSEQ TAGAGTAACCGGTGACGATG Sequencing for 
mutation spectra 
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Chapter 3 

Unscheduled DNA synthesis leads to elevated uracil residues 

at highly transcribed genomic loci 
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3.1 Introduction 
 

 Transcription, a fundamental cellular process, can inappropriately pose a serious 

threat to genome stability. Highly transcribed genomic regions have been reported to be 

hotspots for mutagenesis and recombination, phenomena referred to as transcription-

associated mutagenesis (TAM) and transcription-associated recombination (TAR), 

respectively (Aguilera, 2002; Datta & Jinks-Robertson, 1995; Herman & Dworkin, 1971; Kim 

& Jinks-Robertson, 2012).   

Several different ways by which transcription promotes genomic instability have been 

described.  First, the single strand DNA generated by DNA strand-separation during 

transcription is much more chemically labile than double-stranded DNA, leading to the 

mutations resulting from the spontaneous base modifications such as deamination (Fix & 

Glickman, 1987; Klapacz & Bhagwat, 2002, 2005; Skandalis et al., 1994). Second, 

transcription necessitates a change in DNA topology and the ensuing accumulation of both 

negative and positive supercoils promotes the formation of non-canonical secondary 

structures such as R-loops, the stable hybrids of transcribed DNA and nascent RNA or G-

quadruplex DNAs (G4 DNA), the four-stranded DNA configuration held together by 

Hoogsteen bonds among guanine bases (Duquette et al., 2004; Wu et al., 1988).  These 

structures leave the non-transcribed DNA in the susceptible single-stranded state and 

frequently lead to stalling and eventual collapse of the replication fork, which must be 

restarted/ repaired via homologous recombination (Aguilera & Garcia-Muse, 2012; Cox et 

al., 2000; Huertas & Aguilera, 2003).  Finally, because replication and transcription occur on 

the same template, collisions between the replication fork and transcription machinery are 

possible (Prado & Aguilera, 2005; Takeuchi et al., 2003). These collisions induce helical 

stress and can trigger replication fork reversal giving rise to non-canonical DNA structures 

that can be processed into double stranded breaks (Postow, Ullsperger, et al., 2001; 

Rudolph et al., 2007).  
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Recently, a novel mechanism of transcription-associated mutagenesis involving the 

non-canonical DNA nucleotide, uracil, was identified through genetic studies in yeast (Kim & 

Jinks-Robertson, 2009, 2010). Due to its close structural resemblance to thymine, uracil can 

be directly incorporated into DNA by DNA polymerases that cannot distinguish between the 

two bases, leading to U:A base mispairs (Guillet & Boiteux, 2003). Subsequent uracil 

removal by an uracil-DNA glycosylase (Ung1 in yeast) creates potentially toxic 

apurinic/apyrimidic (AP) sites (Percival et al., 1989). AP sites are the most prevalent 

endogenous DNA lesions produced from either spontaneous or DNA N-glycosylases-

catalyzed hydrolysis of the base-glycosidic linkage and can act as a potent block to the 

transcription machinery and the replicative DNA polymerases. (Boiteux & Guillet, 2004). 

Blocked DNA synthesis can be rescued by the recruitment of translesion synthesis (TLS) 

DNA polymerases Rev1 and Polζ that together bypass the lesion by typically incorporating a 

C nucleotide across from the AP site in yeast and metazoans (P. A. Auerbach & Demple, 

2010; Lindahl & Nyberg, 1972; Otsuka et al., 2002; Waters et al., 2009).  In addition to their 

misincorporation into DNA by DNA polymerases during replication or repair, uracil in DNA 

can result from either spontaneous or enzymatic deamination of cytosines to create U:G 

mispairs, which cause G:C to A:T transitions.  Although uracil in DNA leads to deleterious 

mutations if not properly repaired, it is an essential intermediate in antibody affinity 

maturation during the adaptive diversification processes at the immunoglobulin genes (Z. Li 

et al., 2004).  

The detrimental mutagenic outcome of uracil in DNA is prevented by Base Excision 

Repair (BER) pathway, which initiates repair via the AP endonuclease-catalyzed cleavage of 

the sugar-phosphate backbone at the 5’ side of the AP lesion.  In yeast, the major AP 

endonucleases are Apn1, which carries out 95% of the repair, and Apn2 (Demple & 

Harrison, 1994; D. M. Wilson, 3rd & Barsky, 2001).  N-glycosylases such as Ntg1 and Ntg2 

with the associated AP lyase activity can also create breaks at the DNA backbone adjacent 



	
	

	 37	

to the AP site in certain instances such as when the AP endonucleases activity is diminished 

or overwhelmed (Kim & Jinks-Robertson, 2010; Senturker et al., 1998).  Subsequent steps 

in BER involve the removal of the blocked DNA ends, gap filling by a DNA polymerase and 

ligation of the remaining nick by a DNA ligase.  Although Nucleotide Excision Repair (NER) 

usually removes bulky, helix-distorting lesions such as UV-induced DNA damage, the 

transcription-coupled repair (TCR) sub-pathway of NER has been implicated in the repair of 

AP sites when BER is overburdened or disrupted (Kim & Jinks-Robertson, 2010). TCR 

specifically repairs the RNA polymerase-stalling lesions in the transcribed strand of active 

genes encouraging a rapid removal of damage and preventing the accumulation of 

mutations on the transcribed strand. In yeast, Rad14 is absolutely required for TCR repair of 

AP sites, while Rad26 and Def1 contribute partially (Kim & Jinks-Robertson, 2010; Owiti et 

al., 2017).  

Deoxyuridine triphosphatase (dUTPase), a ubiquitous enzyme that is essential for 

viability in both prokaryotic and eukaryotic organisms, catalyzes the conversion of dUTP to 

dUMP and pyrophosphate (Ppi), thereby reducing the pool of free dUTP and preventing the 

incorporation of uracil into DNA (Gadsden et al., 1993).  Following the conversion of dUTP 

to dUMP by the dUTPase, Thymidylate Synthase (TS), using tetrahydrofolate as a methyl 

donor, converts dUMP to dTMP, an intermediate that is required for dTTP synthesis. 

dUTPase serves two essential functions; maintaining a low intracellular [dUTP]/[dTTP] ratio, 

thus minimizing incorporation of uracil into DNA, and providing an important intermediate, 

dUMP, for the de novo synthesis of thymidylate. In addition to pyrophosphorlysis of dUTP by 

dUTPase, the pools of dUMP required for TS reaction is partly supplied by the deamination 

of dCMP by deoxycytidylate deaminase, Dcd1 in yeast (L. Wang & Weiss, 1992). 

Recent  studies in Saccharomyces cerevisiae demonstrated an increase in uracil-

derived mutations following the activation of transcription at a defined reporter gene (Kim & 

Jinks-Robertson, 2009). These mutations were highly elevated by the disruption of BER and 
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eliminated by the deletion of UNG1 gene or the overexpression of yeast dUTPase, Dut1, 

suggesting that the uracil-dependent mutations result from the AP sites generated by 

excision of uracil incorporated into DNA. Repressing the transcription of the reporter gene 

lowered the uracil-associated mutations, suggesting a link between the extent of uracil 

incorporation into DNA and the process of transcription.  However, a clear demonstration of 

higher uracil content at highly transcribed genomic loci is still lacking.  In addition, how the 

nucleotide composition is affected by transcription remains to be deciphered.  In the current 

study, I used the mutagenesis reporter with a regulatable promoter to further investigate the 

link between active transcription and uracil DNA content. The results show that there are 

significantly more uracil residues present at the highly transcribed genomic locus and that 

the DNA glycosylase activity is slightly enhanced when transcription is elevated.  

Furthermore, I show that the DNA repair synthesis, induced by DNA damaging agents, 

leads to an increase in uracil residues present in DNA and that the overexpression of Dut1 

in G1- and G2-phases of the cell cycle leads to a significant reduction in the uracil-

dependent mutations at the highly transcribed site.  Overall, the data in this chapter strongly 

support a model in which various transcription-associated damages induce unscheduled 

DNA synthesis, particularly in G1 and G2, subsequently leading to the elevated uracil 

residues at highly transcribed genomic loci. 

3.2 Results 
 

Previously, a mutation reporter system with a tetracycline-regulatable promoter 

(pTET) was used to examine the effect of transcription on the mutagenesis in BER/NER-

deficient yeast strains (Kim & Jinks-Robertson, 2010). Specifically, in the pTET-lys2-TAA 

system, the in-frame insertion of “TAA” stop codon disrupting the LYS2 ORF renders the 

yeast cells auxotrophic for lysine (Lys-).  Those mutations abrogating the TAA stop codon 

and allowing the translation read-through are then selected by the reversion to Lys+ 
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phenotype.  In the repair-deficient, apn1, apn1 rad14, and apn1 ntg1 ntg2 backgrounds, I 

observed a dramatic elevation in mutagenesis, particularly of A>C and T>G transversions, 

when the pTET promoter was activated.  These mutations were mostly eliminated when 

Ung1 was disabled, or when transcription was repressed by the addition of the tetracycline 

analog doxycycline (+DOX).  The rate of A>C and T>G mutations was also significantly 

reduced when the dUTPase-encoding DUT1 gene was highly overexpressed to reduce the 

level of free dUTP available for incorporation into the genome.  When uracil is 

misincorporated in place of thymine in DNA and subsequently excised by Ung1 to generate 

AP sites, the net result of Rev1/Polζ-dependent translesion bypass synthesis, inserting 

predominantly C nucleotides opposite AP sites, is expected to be A>C or T>G mutations.  

Therefore, the highly elevated rate of A>C and T>G mutations observed under high 

transcription conditions at the pTET-lys2-TAA reporter is originating from the uracil residues 

in DNA that are excised by Ung1 to generate the mutagenic AP sites.  

There are two possible explanations for the enhanced uracil-dependent mutations 

when transcription is activated: (i) highly active transcription leads to elevated dUTP 

incorporation into the genome or, (ii) rather than affecting the number of uracil residues 

incorporated into the DNA, active transcription leads to the enhanced uracil glycosylase 

activity. These two hypotheses, each leading to the accumulation of mutagenic AP sites 

specifically at highly transcribed genes, are summarized in Figure 3.  
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Figure 3: Alternative hypotheses for the transcription-associated elevation in uracil-
dependent mutations. 

A) Higher number of uracil residues are present at highly transcribed loci resulting in the 

higher rate of uracil-dependent mutations. B) Uniform number of uracil residues are present 

regardless of the transcription level; the uracil DNA glycosylase activity is enhanced at highly 

transcribed genomic loci. In both instances, the uracil residue (U) is recognized and excised 

by Ung1 to create AP sites (o). The resulting abasic site is bypassed by translesion 

synthesis (TLS) polymerases in a mutagenic manner. 
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3.2.1 CDG glycosylase causes uracil- and cytosine- derived mutations.  

In order to investigate whether the main cause underlying the transcription-

associated elevation in uracil-dependent mutations is the higher uracil density or the 

enhanced uracil excision, I used a modified human uracil DNA glycosylase (UDG).  The 

mutant enzyme, hereon referred to as CDG, was generated by introducing Asn204 to Asp 

mutation in the substrate binding pocket of the UDG (P. Auerbach et al., 2005; Kavli et al., 

1996).  CDG is able to excise unmodified cytosine residues from oligonucleotide substrates 

in vitro.  Expression of CDG in the TLS-proficient yeast cells was previously shown to induce 

the accumulation of A:T > C:G  and G:C > C:G transversions, resulting from the excision of 

uracils and cytosines, respectively.  I expressed CDG to generate AP sites through excision 

of cytosines and uracils in yeast cells containing the mutation reporter pTET-lys2-TAG.  This 

reporter contains the in-frame TAG stop codon inserted into the LYS2 ORF and mutations at 

this stop codon is required for the reversion to Lys+ phenotype.  The pTET-lys2-TAG 

reporter can be transcribed at a high or low level by the absence or presence of doxycycline 

in the media, respectively.  As illustrated in Figure 4A, a A>C or T>G mutation is expected 

when an AP site is generated from the excision of uracil that is in place of thymine.  And a 

G>C mutation is expected when an AP site is generated from the excision of cytosine (Fig. 

4B).  I expressed CDG in the apn1∆ ung1 or apn1 rad14 ung1 strain backgrounds, where 

the endogenous UNG1 is deleted so that all uracil- or cytosine-associated mutations are 

resulting from the activity of ectopically expressed CDG.  The rates of uracil-dependent, 

A>C and T>G mutations as well as cytosine-dependent, G>C mutations were determined 

under the high (no DOX) and low (+DOX) transcription conditions to determine the effect of 

transcription on these mutations.  Since the number of cytosine residues in DNA should not 

be affected by the level of transcription, the rate of mutations caused by the AP sites 

generated by the cytosine excision (G>C mutations) should not change whether under the 

high or low transcription conditions, unless the enzymatic efficiency of cytosine excision by 
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CDG is affected by activated transcription.  When CDG was expressed in the apn1 ung1 

strain, the overall mutation rate was ~7-fold higher under the high transcription conditions 

than under the low transcription conditions (Fig. 4C and Table 2).  The mutation spectra 

showed a ~10-fold increase in the rate of uracil-dependent, A>C and T>G mutations but 

only a ~1.7 -fold increase in the rate of the cytosine-dependent, G>C mutations (Fig. 4D and 

4E).  In a BER/NER- deficient, apn1 rad14 ung1 strain, the CDG expression under high 

transcription conditions led to ~10- and ~ 2.5-fold increases in the rates of uracil- and 

cytosine-dependent mutations, respectively, compared to the CDG expression under low 

transcription conditions.  Overall, the active transcription resulted in the significantly greater 

increase in the uracil-associated mutations compared to the cytosine-associated mutations. 

Altogether, these data suggest that the elevated glycosylase efficiency is only a minor factor 

contributing to the transcription-dependent elevation in the uracil-associated mutations.   
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Figure 4: The effect of CDG expression on uracil- and cytosine-derived mutations	

Schematic representations of the mutations originating from A) the uracil and B) the cytosine 

excised by the CDG glycosylase. Uracil or cytosine residue is removed by CDG creating an 

AP site. The AP site (o) is bypassed by TLS polymerases inserting predominantly C across 

the AP site. C) Overall mutation rates in yeast strains with CDG glycosylase-expressing 

plasmid under high-transcription (no doxycycline) or low-transcription (doxycycline added) 

conditions. Error bars represents 95% confidence intervals. D) and E) Rates of the uracil-

dependent A>C and T>G mutations and the cytosine-dependent G>C mutations, 

respectively. 
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3.2.2 CDG glycosylase activity in the absence of Topoisomerase 1 or RNase Hs.  

To further probe the effect of transcription on the activity of glycosylases, I repeated 

the CDG expression in apn1 top1 ung1 and apn1 rad14 top1 ung1 strains and determined 

the mutation rates under the high and low transcription conditions. Topoisomerase 1 (Top1) 

functions to relieve topological stress, including transcription-associated supercoils, by 

creating transient strand breaks and then rejoining DNA strands (J. C. Wang, 2002).  

Deletion of TOP1 leads to an accumulation of negative helical stress, particularly in the 

highly transcribed areas. Upon CDG expression in the cells of apn1 top1 ung1 background, 

the rate of overall mutation at the pTET-lys2-TAG reporter was 7.9-fold higher under high 

transcription conditions than under low transcription conditions (Fig. 5A). This is comparable 

to the 7.1-fold difference between the rates of CDG-induced mutations under high and low 

transcription conditions in apn1 ung1 background.  

Additionally, I sequenced the pTET-lys2-TAG allele in the Lys+ revertants to identify 

the specific nucleotide substitutions. In apn1 top1 ung1 background, CDG-expression under 

the high transcription conditions resulted in 16.3- and 27.6-fold increases in A>C and T>G 

mutations, respectively, compared to the CDG-induced mutations occurring under low 

transcription conditions (Figure 5B, 5C and Table 2).  These are substantially higher than 

the high-transcription associated elevation in A>C and T>G mutations observed in apn1 

ung1 background, which were 4.2- and 11.2-fold increases, respectively (Table 2).   

Additionally, when comparing the CDG-induced mutations, the transcription-dependent fold 

elevation (high/low) of A>C, T>G, and C>G mutations were significantly higher in apn1 

rad14 top1 ung1 than in apn1 rad14 ung1.  As illustrated in Fig. 5A, the uracil-derived A>C 

and T>G mutations result from the excision of uracil present on the transcribed (bottom) 

strand and the non-transcribed (top) strand, respectively. Since TOP1 deletion resulted in 

the higher transcription-dependent elevation of both A>C and T>G mutations, the overall 

DNA topology changes in the Top1-deficient cells appear to increase the access of 
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glycosylase to the uracil residues regardless of whether they are located on the transcribed 

or non-transcribed strand.   

To determine whether uracil residues in the single-stranded DNA are more easily 

accessed by DNA glycosylases, I determined the rates of uracil- and cytosine-dependent 

mutations in the apn1 rnh1 rnh201 ung1 strain following CDG expression. RNH1 and 

RNH201 encode the RNaseH enzymes that degrade RNA hybridized to DNA (Cerritelli & 

Crouch, 2009). During transcription, RNA-DNA hybrids form when the nascent RNA anneals 

to the template, transcribed DNA strand leaving the non-transcribed DNA strand single-

stranded. In the absence of RNaseH enzymes, the transcription-associated RNA-DNA 

hybrids persist and accumulate to form “R-loops” (Aguilera & Garcia-Muse, 2012). In apn1 

rnh1 rnh201 ung1 strain backgrounds, the rate of overall mutations induced by the CDG-

expression at the pTET-lys2-TAG reporter under the high transcription conditions was not 

significantly greater than the rate in apn1 ung1 (Fig. 5D).  And the transcription-dependent 

increase in the rates of A>C or C>G mutations was not significantly different in these two 

backgrounds (Fig. 5E, 5F and Table 2). However, the transcription-dependent fold-increase 

(high/low) in the rate of T>G mutation was 39.1 in apn1 rnh1 rnh201 ung1 compared to 11.2 

in apn1 ung1 (Table 2).  The greater effect of the disruption of RNase H enzymes on the 

T>G mutations relative to the nominal effect it had on the A>C or C>G mutations indicate 

that CDG has a greater access to the target (U or C) on the single-stranded non-transcribed 

strand of DNA.  
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Figure 5: The effect of CDG expression on uracil- and cytosine-derived mutations in 
the absence of Topoisomerase 1 or RNase Hs. 

A) and D) Overall mutation rates in yeast strains with CDG glycosylase-expressing plasmid 

in under high-transcription (no doxycycline) or low-transcription (doxycyline added) 

conditions.  Error bars represents 95% confidence intervals. B), C), E) and F) Rates of the 

uracil-dependent A>C and T>G mutations and the cytosine-dependent G>C mutations. 
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Table 2: Mutation Rates, Mutation Spectra and Fold Change following CDG 
expression 

 
*Rates of mutations under high transcription conditions (no doxycycline) 
**Rates of mutations under low transcription conditions (2µg/mL doxycycline) 
***Rates of specific mutation types were calculated by multiplying the overall rate by the proportion of 
the relevant mutation type in the corresponding spectrum.	  

Relevant  
Genotype 

Mutation 
Rate 
( x10 -8) 

High rate* 
(95%CI) 

N*** 
(High) 

Low rate**  
(95% CI) 

N***  
(Low) 

Rate ratio 
(High/Low) 

apn1 ung1 Overall 18.3  
(15-21.8) 

91 2.57  
(2.11-2.8) 

56 7.12 

A>C  3.3  25 0.78  17 4.2 
T>G  5.14  39 0.46  10 11.2 
A>C + T>G  12.9  64 1.24  27 10.4 
G>C  0.92  7 0.55  12 1.67 
Other  4.02  20 0.78  17 5.15 

 

apn1 ung1 
rad14 

Overall  38.7  
(36.8-41.9) 

92 4.61  
(3.99-6.17) 

67 8.4 

A>C  18.1  43 1.58 23 11.5 
T>G  1.68  4 0.34  5 4.94 
A>C + T>G  19.8 47 1.93 28 10.24 
G>C  5.05 12 1.99 29 2.53 
Other  13.9  33 0.68  10 20.4 

 

apn1 ung1 
top1 

Overall  16.8  
(14.5-17.8) 

80 2.14 
(1.63-2.62) 

55 7.85 

A>C  4.41 21 0.27  7 16.3 
T>G  4.41 21 0.16  4 27.56 
A>C + T>G  8.82  42 0.43 11 20.8 
G>C  2.94  14 1.17  30 2.52 
Other  5.04  24 0.97  25 5.19 

 

apn1 ung1 
rad14 top1 

Overall  40.8  
(35-45) 

86 5.03  
(4.49-5.81) 

65 7.95 

A>C  18.03 38 0.31  4 58.2 
T>G  3.8 8 0.62  8 6.12 
A>C + T>G  21.8 46 0.93  12 23.44 
G>C  7.11 15 0.93  12 7.64 
Other  11.9 25 3.17  41 3.74 

 

apn1 ung1 
rnh1 rnh201 

Overall  12.7  
(9.14-14.8) 

77 2.01  
(1.52-2.41) 

75 6.32 

A>C  1.81  11 0.40 15 4.5 
T>G  3.13  19 0.08  3 39.13 
A>C + T>G  4.95  30 0.48  18 10.3 
G>C  2.64  16 0.75  28 3.52 
Other  5.11  31 0.78  29 6.55 
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3.2.3 The long-amplicon qPCR experimental strategy to quantify uracil residues in 

DNA. 

To determine whether there is a correlation between the level of transcription and the 

uracil content in DNA, I sought to measure the density of uracil in DNA at specific genomic 

sites using the long-amplicon quantitative PCR approach. This method, which measures the 

reduction in the amplification efficiency resulting from the polymerase-blocking damage to 

the template DNA, was previously used to quantify the damage in the mitochondrial DNA of 

various vertebrate species (Santos et al., 2006) and the uracil residues at the mouse 

immunoglobulin loci in B lymphocytes (Maul et al., 2011). Genomic DNA isolated from yeast 

cells lacking the endogenous Ung1 was treated in vitro with recombinant UDG to create AP 

sites specifically at the uracil residues. The resulting AP site was then converted into a 

single-strand break by the Endo VIII-treatment. The presence of uracil is measured as the 

relative loss of qPCR signal or the relative reduction in the amplification efficiency when the 

UDG/Endo VIII-treated DNA is amplified compared to when an untreated DNA sample is 

amplified.  First, to validate this strategy, I measured uracil content in ung1 yeast cells 

treated with 0, 1, 5 and 10 µM 5-fluorouracil (5-FU), an inhibitor of thymidylate synthase (TS) 

that leads to an increase in the cellular dUTP pool and the accumulation of uracil residues in 

DNA. The DNA samples purified before or after UDG/Endo VIII-treatment were used as the 

template in qPCR reactions with LYS2 primers targeting ~100-bp, 3-kb, and 4-kb regions 

(Fig. 6A ). The Ct values from the “LYS2 100-bp” primers were used as normalizing controls, 

under the assumption that it is highly unlikely there is a significant number of the 

polymerase-blocking lesions within the approximately 100-bp region targeted by these 

primers.  For the DNA sample from cells treated with no or 1µM 5-FU, the amplification of 

the UDG/EndoVIII-treated DNA were about 75% of the untreated DNA.  For the samples 

treated with 5 and 10 µM 5-FU, there was a dose-dependent reduction in the amplification 

efficiency compared to that of untreated samples (Fig. 6A).  As expected, the amplification 
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of the 4-kb amplicon (“LYS2 4kb” primer set) had a significantly reduced amplification in 

comparison to the 3-kb amplicon (“LYS2 3kb” primer set) since the larger amplicon size 

increases the likelihood of a lesion being encountered during PCR.  A Poisson equation was 

used to further estimate the average uracil frequency at the LYS2 locus from the long-

amplicon amplification efficiency and observed that the uracil frequency is significantly 

elevated when treated with higher concentrations of 5-FU (Fig. 6B).  The frequency of uracil 

in DNA was about 1 per 10 kb in cells treated with 0 or 1 µM 5-FU and was elevated to >2 

per 10 kb with the treatment of 5 or 10 µM 5-FU.  Overall, these results show that the long-

amplicon qPCR strategy can be used to quantitatively measure the uracil frequency in yeast 

genomic DNA.  
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Figure 6: Validation of the long-amplicon qPCR approach  

A) Relative percent amplification of the genomic DNA samples from the yeast cells treated 

with the indicated concentration of 5-FU for 24 hrs.  B) The uracil-density of the genomic 

DNA samples calculated from the relative percent amplification shown in A).  
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3.2.4 Uracil residues enhanced at highly transcribed genomic loci.  

The long amplicon qPCR method was extended to determine the endogenous uracil 

levels at several genomic loci.  In order to first determine the level of transcription of the 

genes where the uracil frequency was measured, I isolated RNA from ung1 and ung1 dcd1 

strains grown in the presence or absence of doxycycline. DCD1 is a gene that encodes a 

deoxycytidylate deaminase (Dcd1), which converts dCMP to dUMP, a substrate for the 

dTTP production (Gadsden et al., 1993). The deletion of DCD1 increases the [dUTP]/[dTTP] 

ratio, leading to the increased incorporation of uracil into DNA.  As expected from the 

elevated level of uracil-incorporation into DNA, the deletion of DCD1 in apn1 strain led to a 

two-fold increase in the rate of mutation at the pTET-lys2-TAA reporter under high 

transcription conditions (Fig. 7A). Following mRNA extraction from ung1 and ung1 dcd1 

strains, I performed RT-qPCR to determine the expression levels of pTET-lys2-TAA, CAN1 

and TDH3 in the presence and absence of doxycycline.  While the expression levels of 

CAN1 and TDH3 genes, which are not regulated by the pTET promoter, was not affected by 

the presence of doxycycline, the level of pTET-lys2-TAA transcripts from no DOX samples 

was ~170-fold higher than that from +DOX samples (Fig. 7B). 
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Figure 7: The rate of Lys+ mutations in apn1 dcd1 strain and expression levels of 
target genes and primer locations used in the long-amplicon qPCR 

A) Overall mutation rates of the indicated yeast strains under the high transcription conditions 

(no doxycycline). Error bars indicate 95% confidence intervals.  B) The expression level of the 

indicated genes in the presence (+) or absence (-) of doxycycline in ung1 or ung1 dcd1 

strains as determined by qRT-PCR with the ALG9 gene as the control. Error bars indicate 

standard deviations and all measurements are from N=6. C) The locations of primer sets used 

in the long-amplicon qPCR are indicated. The sequences of the primers are listed in Table 1. 
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For the long-amplicon qPCR analysis, DNA samples were prepared from WT, ung1, 

and ung1 dcd1 strains grown in the presence and absence of doxycycline.  Under the 

conditions where the transcription of pTET-lys2-TAA is repressed (+ DOX), the density of 

uracil in DNA as inferred from the amplification carried out with the “LYS2 3kb” primers were 

0.08, 0.93, and 1.1 per 10 kb in WT, ung1, and ung1 dcd1, respectively (Fig. 8A).  Under 

high transcription conditions (no DOX), the uracil-density was significantly higher in all three 

strain backgrounds with 0.45, 1.5, and 2.1 per 10 kb in WT, ung1, and ung1 dcd1 strains, 

respectively.   In WT cells, the activity of endogenous Ung1 accounts for the relatively low 

level of uracil in DNA in WT as determined by the long-amplicon PCR approach.  When 

“LYS2 4kb” primers were used for the analyses on the same DNA samples, the uracil-

densities calculated were 0.53, 1.3, and 2.1 per 10 kb in WT, ung1, and ung1 dcd1, 

respectively, under high transcription conditions and statistically the same as those 

calculated using “LYS2 3kb” primers (Fig. 8B). For the CAN1 or TDH3 loci, a set of primers 

targeting a ~3 kb region encompassing each gene was used in the long amplicon PCR with 

another set of primers targeting a ~100 bp region within each gene as the control PCR 

reactions (Figure 7C). In a manner similar to the pTET-lys2-TAA, the density of the uracil in 

DNA were highest in the ung1 dcd1 background and lowest in WT background (Fig. 8C and 

8D).   Unlike the pTET-lys2-TAA, the addition of doxycycline did not affect the uracil density 

at CAN1 or TDH3 loci.  In the ung1 background, the uracil density was about 3-fold lower at 

CAN1 than TDH3.   However, in the ung1 dcd1 background, the uracil density derived by 

the long-amplicon PCR approach at TDH3 and CAN1 were not significantly different.  In 

both ung1 and ung1 dcd1 backgrounds, TDH3 is transcribed at ~100-fold higher rate than 

CAN1 (Fig. 7B). 
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Figure 8: Uracil-density measured by the long-amplicon qPCR approach 

A) – D), the genomic DNA samples isolated from the indicated yeast strains grown in the 

absence (-dox) or presence (+dox) of 2 µg/mL doxycycline in the media were used for 

qPCR and the calculation of uracil-density.  A) Uracil density at LYS2 calculated from 

qPCR using “LYS2 3 kb” primers. B) Uracil density at LYS2 calculated from qPCR using 

“LYS2 4 kb” primers. C) Uracil density at CAN1 calculated from qPCR using “CAN1 3 kb” 

primers. D) Uracil density at TDH3 calculated from qPCR using “TDH3 3 kb” primers. For 

A) to D), error bars represent standard deviation (*P < 0.05, **P < 0.005, ***P < 0.0005, 

n.s - not significant; unpaired student t-test) and all measurements are from N=6. 
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3.2.5 Uracil-dependent mutations increase when repair synthesis is induced by 4NQO 

or CPT. 

We postulate that spontaneous DNA damage associated with high transcription lead 

to cycles of unscheduled DNA synthesis (UDS) leading to the increase in uracil-associated 

mutations. In order to test this hypothesis, UDS was induced using three different types of 

DNA damaging agents, and the mutation frequency of uracil-dependent mutations 

calculated. First, I treated the cells with 5-fluorouracil (5-FU), which imbalances the 

[dUTP]/[dTTP] ratio and thus enhance the incorporation of uracil residues in DNA.  The 

frequency of mutations at the reporter was determined in WT, ung1, apn1, and apn1 ung1 

background cells treated with 10µM 5-FU. Compared to the DMSO control, the 5-FU 

treatment led to a remarkable elevation in the rate of pTET-lys2-TAA mutations in the BER-

deficient apn1∆ strain but not in the BER-proficient WT or ung1∆ strain.  As would be 

expected of mutations arising from the uracil-derived AP sites, the rate of mutations was far 

reduced in the uracil-excision incapacitated apn1 ung1 compared to that in apn1.  When the 

Lys+ mutants were sequenced, the majority (67/72) in the apn1 strain were A>C or T>G, as 

expected of uracil-associated mutations (Fig. 9A and 9B).  

 In order to determine whether the repair induced by a broad spectrum of DNA 

damage can increase the uracil-incorporation into DNA and the consequent uracil-derived 

mutations, the frequency of the pTET-lys2-TAA mutations was measured in yeast cells 

treated with two DNA damaging agents without previously reported effects on the 

dUTP/dTTP metabolic pathway -camptothecin (CPT) and 4-nitroquinoline 1-oxide (4NQO).  

CPT is a Top1 inhibitor that traps the Top1-DNA cleavage complex and is known to elevate 

recombination and copy number variations in the eukaryotic genomes (Andersen et al., 

2015; Balestrieri et al., 2001). Following CPT-treatment, the overall mutations were elevated 

by ~3 fold in WT, ung1, apn1, and apn1 ung1 backgrounds (Fig. 9C).  The mutation spectra 

and the frequency of the specific type of mutations were determined by sequencing the 
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pTET-lys2-TAA reporter in Lys+ revertants.  In apn1 cells, the increase in the rate of A>C 

and T>G mutations due to CPT-treatment was statistically significant with the 95% 

confidence intervals not overlapping (Fig. 9D).  In apn1 ung1 cells, the frequency of A>C 

and T>G mutations in the CPT-treated samples was slightly higher than the untreated 

control but the difference was not statistically significant.  Also, A>C and T>G mutations in 

the CPT-treated apn1 ung1 were significantly reduced compared to those in apn1, indicating 

that the mutations resulting from Ung1-mediated excision of uracil in DNA do occur at a 

significant level upon CPT-treatment.  

  4NQO is a mutagenic heterocyclic chemical that forms covalent bulky adducts to dG 

or dA, which are predominantly repaired by NER (Ikenaga et al., 1975).  Following 

treatments with 4NQO, the overall mutation frequency at the pTET-lys2-TAA reporter was 

elevated ~15- to 50-fold in WT, ung1, apn1, and apn1 ung1 backgrounds (Fig. 9E).  The 

mutation spectra revealed that a majority of the mutations elevated by the 4NQO-treatment 

were A:T > T:A transversions (Fig. 10), the type of mutations that had previously been 

associated with 4NQO (Ryu et al., 1999). The uracil-dependent mutations (A>C and T>G) 

were significantly elevated only in the apn1 cells treated with 4NQO (Fig. 9F).  Similar to the 

observation in the CPT-treated cells, the frequency of 4NQO-induced A>C and T>G 

mutations in the apn1 ung1 background was significantly lower than that in apn1, indicating 

that uracil-incorporation into DNA and the resulting mutations also occur at a significant level 

following the 4NQO-treatment. 
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Figure 9: Mutation frequencies following the 5-FU-, 4NQO-, and CPT-treatment. 
  
A), C), and E) The frequencies of overall Lys+ mutations following treatments with 5-FU (10 

µM), CPT (100 µM), or 4NQO (0.2 µg/mL), respectively, for 24 hrs. B), D), and F) The 

frequencies of the uracil-dependent A>C and T>G mutations following treatments with 5-FU, 

CPT and 4NQO, respectively.  Error bars indicate 95% confidence intervals.  
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Figure 10: The frequencies A to T mutations following 4NQO treatment.  

The frequencies of A>T Lys+ mutations following treatments with 0.2 µg/mL 4NQO. Error 

bars indicate 95% confidence intervals 
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3.2.6 The level of uracil in DNA increases when repair synthesis is induced using 

4NQO. 

In order to quantify the uracil residues present in the genomic DNA, we used an AP-

reactive alkoxyamine compound AA3 (Wei et al., 2015).  This compound contains the alkyne 

group, through which a variety of compounds can be attached via click chemistry. The 

approach for detecting uracil-residues in DNA was first to label the uracil-derived AP sites 

with AA3 and then to attach the fluorescent dye cyanine 5 (Cy5) to AA3-AP conjugates (Fig. 

11).  To demonstrate its efficacy, the approach was used in the ung1 cells treated with 

various concentration of 5-FU and a dose-dependent increase in the Cy5 signal when yeast 

cells were treated with 10, 50, and 100 µM 5-FU was observed (Fig. 12A).  Genomic DNA 

isolated from Hela cells and the AID-expressing Daudi cells was used as negative and 

positive controls, respectively.  Daudi is a B-cell lymphoma cell line with highly elevated 

level of uracil in DNA resulting from the overexpression of the APOBEC family of cytosine 

deaminases (Pettersen et al., 2015; Wei et al., 2015). While there was no significant 

difference between the level of uracil in yeast cells without 5-FU treatment and that in Hela 

cells, the level of uracil in DNA in yeast cells treated with 100 µM 5-FU increased to the level 

comparable to that in Daudi cells (Fig. 12A).  Using the same AA3-Cy5 labeling approach, I 

measured the level of uracil in DNA in yeast cells treated with 1, 5, 10, and 20 µg/mL 4NQO.  

The levels of uracil detected in cells treated with 10 or 20 µg/mL 4NQO, but not with 1 or 5 

µg/mL 4NQO, were significantly elevated compared to the untreated sample (Fig. 12B).   
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Figure 11: Schematic representation of AA3-labeling of AP sites 

Uracil is excised by UDG to create AP sites.  AP sites are labelled with AA3 followed by 

reaction with Cy5-azide and quantitation of the fluorescence on a nylon membrane. 
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Figure 12: Uracil residues in the DNA following the 4NQO-treatment 

A) Quantification of uracil residues in DNA from ung1∆ yeast cells treated with the indicated 

concentrations of 5-FU for 24 hrs. The genomic DNA samples from untreated Hela and 

Daudi are used as negative and positive controls, respectively.  All measurements are from 

N=6. B) Quantification of uracil residues in DNA from yeast cells treated with the indicated 

concentrations of 4NQO. Left- Cy5 signal from AA3-labeled DNA dot-blotted on a nylon 

membrane. Right- Quantification of the cy5 signal shown on the left. Cy5 quantity is 

represented as relative to untreated (0µg/mL) sample. Error bars indicate standard 

deviations and all measurements are from N=6. Survival after growth in C) the 5-FU- or D) 

4NQO-supplemented liquid culture, represented as the relative percentage compared to the 

untreated cells (*P<0.05, ****P < 0.0001; unpaired student t-test). N=10. 
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3.2.7 Sensitivity to 4NQO is partially reduced by UNG1 deletion. 

To further show that the uracil-incorporation into DNA is a significant component of 

the repair synthesis associated with 4NQO treatment, I tested whether uracil in DNA is 

relevant to the cytotoxicity of 4NQO. The main cytotoxic lesions of 5-FU treatment are the 

AP sites derived from the uracil incorporated into the genomic DNA.  When treated with 5-

FU, yeast cells in the BER-deficient apn1 backgrounds are highly sensitive (Fig. 12C).  But 

the 5-FU sensitivity is very significantly reduced in apn1 ung1 background, where uracil in 

DNA cannot be removed to create the toxic AP sites.  If 4NQO treatment elevates the level 

of uracil in DNA, apn1 ung1 strains would have a reduced level of sensitivity to 4NQO in 

comparison to apn1∆ strains. I calculated the number of surviving colony-forming cells after 

culturing them in the liquid medium with or without 0.2, 0.5, or 1 µg/mL concentration of 

4NQO and observed a slight survival advantage in apn1 ung1 compared to apn1, although 

only the 2 µg/mL 4NQO concentration elicited a statistically significant increase (Fig. 12D). 

Together, these results support the hypothesis that uracil incorporation into DNA occurs at a 

significant level when DNA repair synthesis is induced.  

 

3.2.8 Dut1 is cell-cycle regulated in yeast. 

We hypothesized that the transcription-associated increase in the density of uracil in 

DNA as determined by the long-amplicon qPCR or the CDG expression experiments above 

is due to the incorporation of uracil into DNA during unscheduled DNA synthesis (UDS) that 

can occur outside of the genome duplication in S phase. It has been shown in mammalian 

cells and plants that DUT1, a gene that encodes for dUTPase, is cell-cycle regulated with its 

highest expression in S-phase (Ladner & Caradonna, 1997; Pardo & Gutierrez, 1990). In 
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yeast, a large-scale high through-put analysis previously has shown that the dUTPase-

encoding DUT1 gene begins to be upregulated in late G1 phase ensuring that dUTP levels 

are kept low during replication (Cho et al., 1998). Conversely, DNA synthesis occurring 

outside of S phase (i.e. G1 and G2) will be subject to the dNTP pool with the relatively 

higher dUTP levels. To confirm the cell-cycle regulated DUT1 expression in yeast, I arrested 

cells in G1 using the mating pheromone α-factor and collected cells every 15 min after 

release for the RNA isolation and qRT-PCR.  The expression level of the histone H2-

encoding HTA2 gene, which was previously shown to be upregulated during S phase, was 

determined as a control (Heintz, 1991).  The expression levels of both DUT1 and HTA2 

genes were highest at 45 min after the release from α-factor and declined to the lowest point 

at 75 mins after the release indicating that the DUT1 expression is cell-cycle regulated in a 

manner similar to the HTA2 gene (Fig. 13A). 
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Figure 13: DUT1 expression levels 

A) Relative mRNA level of endogenous DUT1 or endogenous HTA2 gene expression in 

bar1∆ cells synchronized with α-factor. RNA was collected every 20 min after the release 

from α-factor. N=6 for all data points. B) Relative expression level of DUT1 was measured 

by qRT-PCR from the asynchronous cells transformed with the plasmids from pGAL and 

the G1-, S-, G2-specific promoters. Error bars indicate standard deviations and all 

measurements are from N=3. C) Relative mRNA level of endogenous HTA2 or DUT1 

overexpresed from pCLN2 promoter, pHHF01 promoter (D) or pCLB2 promoter (E). 

Expression levels were assessed by qPCR and normalized to ALG9. N=6 for all data 

points. 
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3.2.9 Overexpression of Dut1 in G1 or G2 significantly reduces the transcription-

associated mutations. 

It was reported previously that the plasmid-mediated overexpression of DUT1 from 

the galactose-inducible pGAL promoter can greatly reduce uracil-associated mutations at 

the pTET-lys2-TAA reporter (Kim & Jinks-Robertson, 2009), indicating that the cellular 

[dUTP] is a critical determinant in the transcription-associated uracil-dependent mutations. 

When induced by the addition of galactose to the media, the pGAL-regulated genes are 

highly expressed regardless of the cell cycle. To test whether uracil incorporation into DNA 

during G1 and G2 phases is a significant contributor to the transcription-associated uracil-

dependent mutations, I modulated [dUTP] in G1, S and G2 phases by the cell-cycle specific 

overexpression of DUT1 gene and measured the effect on the mutation rate at the pTET-

lys2-TAA reporter.  For the cell-cycle specific expression of DUT1 in G1, S, or G2 phase, the  

pGAL promoter was replaced with the promoters of CLN2, HHO1, or CLB2 genes, 

respectively (Prado & Aguilera, 2005; Wellinger et al., 2006).  In order to reduce the protein 

half-life and thereby ensure cell-cycle specific presence of the overexpressed Dut1 protein, I 

added a protein destabilization domain (PEST) to the plasmid constructs (Berset et al., 

2002). I then expressed DUT1-PEST from these plasmid constructs in yeast, isolated mRNA 

from asynchronous cells and performed qRT-PCR to determine the expression level. DUT1 

was expressed 38-, 64-, and 25-fold higher than the endogenous level from the G1, S, and 

G2 constructs, respectively.  For all three constructs, the level of the overexpressed DUT1 

mRNA was substantially lower than the DUT1 expression from pGAL-construct, which was 

412-fold higher than the endogenous level (Fig, 13B).  In order to confirm that DUT1 is 

expressed in the cell cycle-specific manner from these promoters, we performed qRT-PCR 

with RNA samples isolated every 20 minutes after the release of cells arrested at G1 with α-

factor.  The DUT1 mRNA expression was highest at 100 , 40, and ~60-100 mins after 

release from α-factor (Fig. 13C, 13D, and 13E). The S-phase time point under this specific 
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condition was  determined to be 60 mins after the release from the α-factor by analyzing the 

mRNA level of HTA2 gene.  

 I transformed the BER-deficient, apn1 ntg1 ntg2 cells with the plasmids containing 

pCLN2 (G1-), pHHO1 (S-), or pCLB2 (G2)-constructs and calculated the mutation rates at 

the pTET-lys2-TAA reporter. I first carried out the fluctuation analysis for the determination 

of mutation rates in media supplemented with galactose and raffinose under high 

transcription conditions in order to compare the effect of Dut1 expression from pCLN2, 

pHHO1, or pCLB2 to its expression from the previously studied pGAL-construct.  While the 

pGAL-construct resulted in ~10-fold decrease in the rate of mutations compared to the 

vector-only control under these conditions, the G1-specific, pCLN2-construct led to a ~ 2-

fold reduction in mutation rates in cells (Fig. 14A). Although the G2-specific, pCLB2-

construct led to a <2-fold reduction, the mutation rate in the cells with this construct was 

significantly different from that in the cells with vector alone.  For the cells with S-specific 

pHHO1-construct, there was no significant reduction in the mutation rate compared to the 

vector control.  When the fluctuation analysis was repeated in the media supplemented with 

glycerol and ethanol, the G1-, S-, and G2-specific constructs all resulted in <2-fold, but 

statistically significant, reductions in the rates of mutation at the pTET-lys2-TAA reporter 

compared to the vector control (Fig. 14B).  When the transcription of the pTET-lys2-TAA 

was repressed by adding doxycycline, the rates of mutation was unchanged with the Dut1-

overexpression from the G1-, S-, or G2-specific promoters or from the pGAL promoter (Fig. 

14C and 14D). These results suggest that the shift in the free dUTP pool affects the uracil-

composition and the uracil-associated mutations more substantially at highly transcribed 

genes.  
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Figure 14: The rates of mutation in cells overexpressing Dut1 from the cell-cycle 
regulated promoters 

The rates of Lys+ reversion mutations of the apn1∆ ntg1∆ ntg2∆ strain transformed with 

plasmids expressing DUT1 from pGAL, pCLN2 (G1), pHHO1 (S), or pCLB2 (G2). The 

growth conditions were in rich media supplemented with galactose and raffinose (A), 

glycerol and ethanol (B), galactose and raffinose plus doxycycline (C), or glycerol and 

ethanol plus doxycycline (D).  The error bars indicate 95% confidence intervals.  (*P < 

0.05, **P < 0.005, ns – not significant; unpaired student t-test). 
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3.3 Discussion 
 

High levels of transcription have been implicated previously as a major source of 

genomic instability in various organisms (reviewed in (Gaillard & Aguilera, 2016; Jinks-

Robertson & Bhagwat, 2014; Kim & Jinks-Robertson, 2012). In yeast, when a reporter 

construct with the tetracycline-regulatable promoter (pTET) was used to determine the rate 

of mutations at several different levels of transcription, a linear and proportional relationship 

between the level of transcription and the rate of mutation was observed (Kim et al., 2007). 

Subsequent studies indicated that a majority of these mutations were derived from 

unrepaired AP sites (Kim & Jinks-Robertson, 2009). When BER is disabled, as in apn1 or 

apn1 ntg1 ntg2 strains, there was a unique elevation in specific types of mutations.  Namely, 

when the mutations at the pTET-lys2-TAA allele was studied, TAA to GAA, TCA, or TAC 

mutations were elevated by ~200- and 500-fold in apn1 or apn1 ntg1 ntg2 strains 

respectively (Kim & Jinks-Robertson, 2010).  The highly elevated rates of these T>G and 

A>C mutations were dramatically reduced by the disruption of the uracil DNA glycosylase 

Ung1 or by the overexpression of the dUTPase Dut1, indicating that these types of mutation 

are originating from uracil in DNA.  There are two distinct ways by which the non-canonical 

uracil residues appear in DNA; by the deamination of cytosine residues present in DNA or 

by the incorporation into DNA by DNA polymerase utilizing dUTP in place of dTTP.  The 

location of mutations at T:A or A:T pairs suggests the latter route of uracil appearance in 

DNA. Further genetic studies showed that AP sites generated by the excision of uracil by 

Ung1 is bypassed by the TLS polymerases Rev1 and Polζ to bring about the T>G and A>C 

mutations (Kim, Mudrak, et al., 2011).  The most remarkable finding about these uracil-

derived T>G and A>C mutations was that they are almost completely suppressed when the 

transcription of the pTET-lys2-TAA mutation reporter is repressed by the addition of 

doxycycline.  This transcription-dependent elevation of mutations originating from uracil 
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residues in DNA led to the hypothesis that the chemical composition of the DNA can be 

changed to include a higher number of uracil residues when actively transcribed.   

I tested the hypothesis of the transcription-dependent elevation of uracil residues in 

DNA by directly quantifying uracil residues at a defined genomic locus under high or low 

transcription conditions using the long-amplicon qPCR method.  In ung1 strains, where 

uracil residues, once incorporated into the DNA, cannot be excised out, there was a 

statistically significant 2-fold difference between the densities of uracil detected at the pTET-

lys2-TAA under high and low transcription conditions (Fig. 8).  The disruption of Dcd1, which 

has been shown to elevate the uracil incorporation into DNA in previous reports (Bryan & 

Hesselberth, 2015) and the uracil-associated mutations in the current study (Fig. 6A), 

resulted in significant elevation of the uracil density at the pTET-lys2-TAA under both high 

and low transcription conditions (Fig. 8).  The densities of uracil at the CAN1 and TDH3 

genes were also elevated by the disruption of Dcd1.  These data demonstrate that the 

difference in the uracil density calculated using the long-amplicon qPCR approach 

adequately reflect the change in the DNA composition. At CAN1 and TDH3 genes, the 

levels of uracil as well as the rates of transcription did not change when doxycycline was 

added to repress transcription from the pTET promoter (Fig. 6 and 8).  There was a ~170-

fold difference in the level of transcription at the pTET-lys2-TAA between high and low 

transcription conditions while the level of uracil is elevated by ~2-fold.  At TDH3, which is 

transcribed at ~100-fold higher rate than CAN1 according to the RT-qPCR analysis, the 

uracil density was detected to be ~3-fold higher than at CAN1 in ung1 background, providing 

further corroboration for the transcription-dependent mechanism of uracil incorporation into 

DNA.  However, when the uracil density at the pTET-lys2-TAA is compared to those at 

CAN1 and TDH3 genes, we observed that the transcription rate does not have a linear 

correlation with the level of uracil residues.  Under the low transcription conditions, the 

pTET-lys2-TAA is transcribed at a considerably lower rate than the CAN1 gene.  However, 
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under the same conditions, there was no statistical difference in the uracil densities at these 

two genomic sites. On the other hand, the uracil level at the pTET-lys2-TAA under the high 

transcription conditions was slightly higher than that at the TDH3 gene although the latter is 

transcribed at about ~10-higher rate than the pTET-lys2-TAA.  These discrepancies suggest 

that there might be factors additional to transcription that modulate the level of uracil-

incorporation into DNA such as position of the replication fork, replication timing, orientation 

of the transcription machinery.  

 In an apn1 strain, the rate of uracil-derived mutations is elevated by ~20-fold when 

transcription from the pTET promoter is activated (Kim & Jinks-Robertson, 2009). The 

approximately 2-fold difference in the uracil density cannot wholly account for the dramatic 

increase in the mutation rate. An alternative, but not mutually exclusive, explanation for the 

transcription-dependent elevation in the mutations arising from uracil in DNA is that 

transcription affects the activity of the glycosylase converting the mutation-neutral uracil 

residues into the mutagenic AP sites. In order to test this hypothesis, we studied the 

mutations induced by the glycosylase CDG, which excises undamaged cytosines in addition 

to uracil residues, at the pTET-lys2-TAG mutation reporter under high and low transcription 

conditions (Fig. 4 and 5).  If the base-excision by the glycosylase is not affected by the state 

of transcription, the rate of those mutations initiated by the excision of undamaged cytosine 

(G>C) should remain the same whether the transcription of pTET-lys2-TAG reporter is 

activated or repressed. In five different genetic backgrounds, the CDG expression led to 

significant transcription-dependent elevations of the uracil-dependent (A>C and T>G) 

mutations as expected from the greater uracil density under high transcription conditions.  

However, we also observed smaller but still significant transcription-dependent elevations in 

the rate of cytosine-dependent mutations.  The fold-difference between the high and low 

transcription conditions was 1.7 and 2.5 in apn1 ung1 and apn1 rad14 ung1 backgrounds, 

respectively, and increased to 2.5 and 7.6 when TOP1 gene was deleted from each of these 
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strains (Fig. 4E, 5C and Table 2). Compared to the transcription-dependent elevation in the 

CDG-induced A>C and T>G mutations, which ranges from 10- to 23-fold, the elevation of 

CDG-induced mutations at cytosine residues is relatively small but still significant, indicating 

that the efficiency of glycosylase activity is somehow affected by transcription (Fig. 4D, 5B 

and Table 2).   

For the uracil-associated A>C and T>G mutations, the transcription-dependent 

elevation is further augmented by ~2-fold when the topoisomerase I is disrupted, implicating 

the transcription-associated change in the local DNA topology as one of the major factors 

affecting the glycosylase activity (Fig. 5B).  When RNase Hs were disrupted as in apn1 rnh1 

rnh201 ung1 strain, the cytosine-dependent mutations at the pTET-lys2-TAG were elevated 

by 3.5-fold when transcription was highly activated (Fig. 5F). For the uracil-derived 

mutations, only the mutations originating from the excision of uracil located on the top, non-

transcribed strand (i.e. T>G) were further elevated by the disruption of RNase Hs (Table 2).  

The R-loop accumulation in the absence of RNase Hs affects the two DNA strands within 

the transcribed regions asymmetrically; the bottom, transcribed strand forms stable hybrid 

with the nascent RNA and the top, non-transcribed strand is left unpaired.  This asymmetry 

is directly reflected on the specific elevation of T>G over A>C mutations at the pTET-lys2-

TAG and corroborates the biochemical analysis where CDG was shown to excise uracil or 

cytosine from single-stranded oligonucleotide substrates ~10-fold more efficiently than from 

double-stranded substrates (Kavli et al., 1996).  The accumulations of helical stress and 

single-stranded DNA patches associated with active transcription appear to be major factors 

in enhancing the activity of uracil DNA glycosylase, contributing to the elevated uracil-

dependent mutations at highly transcribed genes.  

With the long-amplicon qPCR and the analysis of CDG-induced mutations, an 

increase in the density of uracil upon activation of transcription has been demonstrated by 

two independent approaches (Fig. 4, 5, and 8).  The mechanism underlying such 
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phenomena, however, is still not clear.  One plausible explanation can be found in the 

previously reported evidence of transcription-induced endogenous DNA damage (reviewed 

in (Gaillard & Aguilera, 2016)).  The topological changes and DNA strand-separation 

necessitated by DNA is also responsible for the elevated susceptibility to genotoxic agents 

and the consequent accumulation of base damage.  The highly transcribed areas of the 

genome are more prone to the replication fork stalls and collapse, which can be significantly 

aggravated at repetitive sequences where transcription facilitates the formation of non-B 

DNA structures.  While the DNA polymerases utilizing dUTP in place of dTTP during 

replication can account for the stochastic presence of uracil throughout the genome, DNA 

synthesis associated with correcting the damage or resolving the stalled replication fork at 

highly transcribed regions provides additional opportunities to incorporate uracil into DNA 

and to affect the locus-specific elevation in uracil content.  I demonstrated here that 

exogenously engendering damage to DNA with CPT and 4NQO, thereby inducing rounds of 

repair-dependent DNA synthesis, led to an accumulation of uracil specific mutations into 

DNA in the absence of BER at the pTET-lys2-TAA mutation reporter (Fig. 9).  In case of 

4NQO-treated cell, we also showed the uracil-accumulation in the genome by chemically 

probing for the uracil-derived AP sites (Fig. 12B).  Another important implication of these 

experiments is that uracil in DNA could be a significant factor in not only the mutations but 

also the cytotoxicity induced by various DNA damaging chemicals not specifically targeting 

the pyrimidine biosynthesis pathway.  For the TS-targeting drug 5-FU, the main cytotoxic 

mechanism involves the AP sites generated from the highly frequent uracil residues 

incorporated into DNA due to the imbalance in [dUTP]/[dTTP] ratio (Longley et al., 2003).  

The yeast cells of apn1 background with the severely compromised BER pathway and the 

inability to efficiently repair AP lesions are acutely sensitive to 5-FU. However, the apn1 

cells become highly resistant to 5-FU when UNG1 is deleted so that the uracil-to-AP 
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conversion cannot occur (Fig. 12C).  We showed that UNG1-deletion can also reduce the 

cell sensitivity to 4-NQO treatment at a low drug concentration (Fig. 12D).  

The repair-associated DNA synthesis occurring in G1- or G2-phase of cell-cycle 

would be a particularly potent way of uracil incorporation into DNA because the expression 

of dUTPase is upregulated in S-phase (Fig. S4A and (Cho et al., 1998; Ladner & 

Caradonna, 1997; Pardo & Gutierrez, 1990)).   This cell-cycle dependent regulation of the 

available [dUTP] would ensure the minimal uracil-incorporation into DNA during replication 

(Fig. 15), but comparatively increases the [dUTP]/[dTTP] ratio and thus the possibility of 

dUTP being used by DNA polymerases during the repair synthesis occurring outside of S-

phase.  When we lowered the [dUTP]/[dTTP] ratio by overexpressing the dUTPase-

encoding gene DUT1 from the G1- or G2-specific promoters, the rates of mutations at the 

pTET-lys2-TAA reporter under the high transcription conditions in BER-deficient cells were 

significantly reduced (Fig. 14A and 14B), indicating that the uracil incorporated into DNA 

during G1 or G2 comprise a substantial source of transcription-associated mutations (Fig. 

15). The DUT1-overexpresion from the ubiquitous pGAL promoter, however, resulted in 

much greater reduction in the mutation rate at the pTET-lys2-TAA reporter under high 

transcription conditions.  This effect could largely be explained by the higher overall level of 

expression from pGAL promoter but also could indicate that a considerable level of uracil-

incorporation does occur in all cell cycles including S.  The effect of the DUT1-

overexpression from S-specific promoter in reducing uracil-associated mutations when the 

pTET-lys2-TAA reporter under high-transcription conditions was relatively smaller compared 

to the G1- or G2-specific promoters. And the overexpression of DUT1 from pGAL or S-

specific promoter as well as G1- or G2-specific promoters had no effect on the mutation 

rates when the transcription of the pTET-lys2-TAA was repressed, indicating that the level of 

uracil incorporated into DNA during replication, which would be uniform throughout the 
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genome and only affected by the DUT1-expression from the pGAL or S-specific promoter, 

cannot induce uracil-associated mutations to a significant degree.   

In summary, we found a novel mechanism of introducing uracil into DNA during the 

damage-induced repair synthesis during G1- or G2-phase of cell cycle.  The repair-coupled 

uracil-incorporation would be a way to non-uniformly alter the nucleotide composition of 

genomic DNA.  The degree of alteration and the extent of uracil-incorporation would depend 

on the extent of repair synthesis occurrence and would be expected to be greater at regions 

of frequent endogenous DNA damage i.e. highly transcribed genomic loci.  Such a role 

played by transcription in changing the nucleotide composition locally would apply to other 

types of non-canonical residues. We speculate that a similar mechanism is involved in 

specifically elevating the ribonucleotides at highly transcribed regions. Previous studies 

have shown that ribonucleotide-dependent mutations are highly elevated by transcription 

(Kim, Huang, et al., 2011; Nick McElhinny et al., 2010). And similar to DUT1, RNR1, the 

gene encoding the essential, regulatory subunit of the ribonucleotide reductase is regulated 

in a cell-cycle dependent manner to ensure the optimal [dNTP]/[rNTP] ratio for the 

replication during S-phase (Elledge & Davis, 1990). There are several remaining questions 

to be answered through further studies such as whether the correlation between uracil and 

transcription apply linearly genome-wide and whether other sources of the endogenous 

DNA damage such as non-B DNA structures could elevate uracil-content through DNA 

repair synthesis.  Further work is also needed to determine the specific repair pathway 

directing the uracil incorporation at highly transcribed regions.   
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Figure 15: The model of uracil-incorporation into DNA during G1, S, or G2 phases 
of the cell cycle.  

Dut1 level is higher and the ratio of [dUTP]/[dTTP] is lower in S phase compared to G1 or 

G2. A) Uracil-incorporation during replication in S phase. The replicative synthesis occurs 

in S phase; the extent of uracil-incorporation and the ensuing uracil-associated 

mutagenesis is minor due to the low [dUTP]/[dTTP]. B) Uracil-incorporation during the 

repair-associated DNA synthesis. In S-phase (middle), the repair synthesis induced by 

transcription-associated endogenous DNA damage is subject to the low [dUTP]/[dTTP]; 

the extent of uracil-incorporation and the ensuing uracil-associated mutagenesis is minor 

due to the low [dUTP]/[dTTP]. In G1 or G2 phase, the repair synthesis induced by 
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transcription-associated endogenous DNA damage is subject to the relatively high 

[dUTP]/[dTTP]; the extent of uracil-incorporation and the ensuing uracil-associated 

mutagenesis is significant. 
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Chapter 4 
	

Def1 and Dst1 play distinct roles in repair of AP lesions in 

highly transcribed genomic regions 

 

 

 

 

 

 

 

 

 

 

 

This Chapter is based on my first author publication “Owiti, N., Lopez, C., Singh, S., 

Stephenson, A., & Kim, N. (2017). Def1 and Dst1 play distinct roles in repair of AP lesions in 

highly transcribed genomic regions. DNA Repair (Amst), 55, 31-39”.  
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4.1 Introduction 
 

Abasic (AP) sites comprise a major portion of endogenously occurring DNA 

damages and are produced when a variety of lesions including uracil, modified bases and 

spontaneous or enzymatic deamination products are excised by specific DNA N-

glycosylases thereby releasing the damaged bases from DNA (Boiteux & Jinks-Robertson, 

2013). In yeast, genetic studies showed that spontaneous AP sites prevalently originate 

from uracil incorporated during replication by DNA polymerases (Guillet & Boiteux, 2003). 

Following the excision of uracil base by DNA glycosylase, Ung1, AP sites ensue and 

become a potent block to transcription and replication machineries.  Failure to repair AP 

lesions, therefore, can be both mutagenic and cytotoxic.  As an alternative to repair, AP 

lesions can be bypassed by translesion synthesis (TLS) polymerases. In yeast and 

metazoans, Rev1 and Polζ ensure continued replication albeit at a high mutation cost by 

inserting mostly C nucleotides opposite the AP lesions (Gibbs et al., 2005; Kow et al., 2005). 

Base Excision Repair (BER), the major repair pathway for removing AP sites, is initiated 

when an AP endonuclease, Apn1 in yeast, cleaves the DNA phosphodiester bond at the 5’ 

side of the lesion (Popoff et al., 1990). Ntg1 and Ntg2 AP lyases can alternatively initiate 

BER by nicking the sugar phosphate backbone on the 3’ side of the AP site (Meadows et al., 

2003). To complete repair, the deoxyribose phosphate residue is removed by a 

phosphodiesterase and a DNA polymerase fills the gap followed by a DNA ligase that seals 

the remaining nick.  

When BER is disrupted or overwhelmed, Nucleotide Excision Repair (NER) can 

provide an alternative mechanism for the repair of AP sites (Gellon et al., 2001; Scott et al., 

1999; Swanson et al., 1999; Torres-Ramos et al., 2000). NER pathway is primarily involved 

in removing helix-distorting lesions such as UV-induced thymidine dimers (Cadet et al., 

2005).  The loss of NER has been associated with increased sensitivity to sunlight and 

predisposition to skin cancer in humans. NER can be divided into two sub-pathways based 
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on the lesion recognition step, global genome repair (GGR) and transcription-coupled repair 

(TCR)(Hanawalt, 2002). In GGR, repair proteins directly recognize a distortion of the DNA 

helix and are recruited to the lesion site; Rad7 and Rad16 form a complex required for this 

step in yeast. GGR is involved in the repair of lesions throughout the genome regardless of 

the transcriptional status of the genes (Guzder et al., 1997; Sugasawa et al., 2001). In 

contrast, TCR is initiated by the stalled RNA polymerase complex at a lesion and thus repair 

only those lesions located on the transcribed strand of a gene blocking transcription. Rad26, 

a yeast homolog of human CSB and a DNA dependent ATPase, is uniquely required for the 

TCR sub-pathway. The abolishment of Rad26 results in significant but partial disruption of 

TCR (Verhage et al., 1996).  Rad14, a homolog of human XPA, has been shown to be 

essential for the lesion verification step directly following the lesion recognition and is 

required for both GGR and TCR (Guzder et al., 1995). The subsequent steps are 

comparable for GGR and TCR pathways; structure-specific endonucleases together with 

NER-specific helicases create dual incisions around the lesion to release the lesion-

containing single strand DNA of 25-30 nucleotides, the resulting gap is filled by DNA 

polymerases and remaining gap ligated by a DNA ligase.  

AP sites are not recognized as helix distorting lesions by Rad7-Rad16 complex but 

can cause robust transcription block by T7 RNA polymerase or mammalian RNA 

polymerase II (Tornaletti et al., 2006).  In yeast, our previous findings demonstrated that, 

while AP sites are predominantly repaired by Apn1-mediated BER pathway, TCR pathway 

contributes significantly to repair AP lesions and reduce the AP-associated mutations in the 

context of a highly transcribed gene.  When Apn1 is disrupted, the defect in the repair of AP 

sites result in transcription-associated mutations (TAM), which is further elevated upon the 

disruption of back-up repair pathway involving Ntg1 and Ntg2, the N-glycosylases/AP 

lyases. The disruption of NER by the deletion of RAD14 also led to a dramatic increase in 

TAM in apn1 background suggesting the involvement of NER in AP site repair. The deletion 
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of RAD26, a TCR specific gene, also led to an increase in TAM although still significantly 

lower than the increase in mutation due to RAD14 deletion. In contrast, the deletion of 

RAD7, a GGR specific gene, in apn1 background did not affect mutagenesis suggesting that 

TCR, but not GGR, is involved in the repair of AP sites. The increase in TAM observed in 

apn1 rad14 or apn1 rad26 strain was specifically due to unrepaired lesions on the 

transcribed strand, further confirming TCR repair of AP sites which is likely triggered by 

stalling of the RNA polymerase II complex (RNAPII) at the AP sites (Kim & Jinks-Robertson, 

2010). This overlap between TCR and BER was also demonstrated in human cells for the 

repair of the 8-oxoguanines (GO lesions), which is the most common type of oxidative DNA 

lesions (Guo et al., 2013).  

The mechanism of what happens to RNAPII stalled at a UV-induced lesion and how 

the repair machinery accesses the damage obstructed by the stalled RNA polymerase have 

been extensively studied but still not completely understood (Gaillard & Aguilera, 2013).  

The events following RNAPII stalling at an AP lesion are even less understood. Multiple 

pathways exist that could help RNAPII contend with obstacles. First, the stalled RNAPII can 

be backtracked thereby allowing access for repair enzymes to the lesion. In E. coli, UvrD, a 

DNA helicase/translocase and NER protein, was shown in vitro to facilitate backtracking by 

binding to RNAPII and forcing it to slide backwards along DNA thereby exposing the DNA 

lesions (Epshtein et al., 2014). Second, alternative to promoting repair, the RNAPII 

backtracking can promote lesion bypass. In vitro studies have shown that transcription 

elongation past the lesion on the template is promoted by a general transcription elongation 

factor, TFIIS. Mammalian TFIIS or yeast Dst1 functions to stimulate the intrinsic 

endonuclease activity of RNAPII, which cleaves the nascent RNA transcript allowing for the 

transcript re-alignment with the active site (Charlet-Berguerand et al., 2006).  Finally, if 

RNAPII stalls for a prolonged period of time, the RNAPII degradation factor (Def1) promotes 

the ubiquitination and degradation of Rpb1, the largest subunit of RNAPII (M. D. Wilson et 
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al., 2013; Woudstra et al., 2002). The degradation of RNAPII could enhance repair by 

clearing the path for DNA repair enzymes especially since the stalled RNAPII can prevent 

access to the lesion by repair factors (Beaudenon et al., 1999; Lee et al., 2002; Woudstra et 

al., 2002).   

While in mammalian cells, CSB, the homolog of Rad26, is sufficient in activating 

TCR, Rad26 only partially accounts for TCR of AP lesions in S. cerevisiae suggesting that 

additional factors are involved in recruiting NER proteins to the stalled RNAPII (Kim & Jinks-

Robertson, 2010; Verhage et al., 1996). In the current report, we took advantage of a 

genetic assay designed to monitor the repair of AP sites within a highly transcribed gene in 

a strand-specific manner. This assay allowed us to examine the role of multiple factors that 

were previously implicated in the TCR of UV-induced DNA damage or in the rescue of the 

arrested RNAPII. Consistent with its function in the repair of UV lesions, the disruption of 

Def1 resulted in an increase in mutagenesis due to the accumulation of unrepaired AP sites 

specifically on the transcribed strand.  However, I show here that, the disruption of Dst1 

resulted in an unexpected decrease in the AP-associated mutagenesis suggesting a 

complex role for Dst1 when transcription elongation and damage repair are both at stake.  

These results provide new insights into factors that are involved in the repair or 

transcriptional bypass of the AP lesions located within transcribed genes. 

4.2 Results 
 

Reversion mutation assays were previously used to examine TAM in BER- and/or 

NER-deficient yeast strains and demonstrated that, under high transcription conditions, AP 

sites derived from uracil replacing thymine is a major source of TAM (Kim & Jinks-

Robertson, 2009, 2010). In this report, the pTET-lys2-TAA allele, which has a TAA stop 

codon inserted in-frame into the LYS2 ORF, was used in the quantitation of TAM.  In this 

reversion mutation assay, a mutation in the TAA stop codon allows the production of 
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functional Lys2 protein required for lysine synthesis, which can be distinguished by selection 

on the lysine-lacking media. When the major AP endonuclease Apn1 is disrupted, the A>C 

and T>G transversion mutations are significantly elevated.  These mutations are dependent 

on the expression of uracil DNA glycosylase Ung1 and significantly reduced when the 

cellular dUTP level is reduced upon overexpression of the dUTP pyrophosphatase Dut1.  

Overall, the previous investigation led to the model that A>C and T>G mutations are the net 

result of Rev1/ Polζ-dependent translesion bypass synthesis across from the uracil-derived 

AP sites during which predominantly C nucleotides are inserted opposite AP (Kim, Mudrak, 

et al., 2011). The pTET-lys2-TAA reversion assay allows us to infer from the mutation 

spectra whether the relevant AP sites were located on the transcribed or the non-transcribed 

strand. As diagramed in Fig. 1A, AP sites on the transcribed strand and non-transcribed 

strand each result in the A>C and T>G mutation signatures, respectively. Of the uracil-

associated mutations, A>C but not T>G mutations are greatly elevated when NER factor 

Rad14 is disrupted (Kim & Jinks-Robertson, 2010). A>C mutations were also significantly 

elevated upon the disruption of TCR-factor Rad26, but not of GGR-factor Rad7 indicating 

that only TCR sub-pathway of NER is involved in the repair of AP lesions. 

 

4.2.1 Non uracil-derived AP sites can be repaired by TC-NER. 

To determine whether those AP lesions originating from sources other than uracil 

excision could be processed in a TCR-dependent manner, I generated AP sites in the yeast 

genome by the expression of modified human glycosylase TDG, which was shown to excise 

unmodified thymine residues from oligonucleotide substrates in vitro and to induce the 

accumulation of AT>CG transversions in vivo (P. Auerbach et al., 2005; Kavli et al., 1996). 

Expected mutations from TDG-induced AP lesions at the pTET-lys2-TAA reversion allele are 

shown in Fig. 16A.  Compared to the vector control, TDG expression in yeast repair-

deficient strains, apn1 ung1 (BER-), apn1 rad26 ung1 (BER- TCR-), apn1 rad14 ung1 (NER- 
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(TCR- GGR-)) and apn1 ntg1 ntg2 ung1 (BER-), resulted in elevation of the overall mutation 

rate by 5- to 11-fold (Fig. 16B). These elevated mutations are specifically due to TDG 

glycosylase activity and not from the uracil excision by yeast Ung1 as the experiments were 

carried out in ung1 backgrounds. TDG-expression in apn1 ntg1 ntg2 ung1 strains led to an 

accumulation of T>G mutations.  Compared to the vector-control in the same strain 

background, the rates of T>G and A>C mutations were elevated by 150- and 13-folds, 

respectively. These results indicate that, in the absence of Apn1 activity, the Ntg1/Ntg2-

mediated sub-pathway of BER largely repairs those AP sites generated by excision of T’s in 

the non-transcribed strand as previously observed with uracil-derived mutations (Fig. 16C 

and 16D) (Kim & Jinks-Robertson, 2010). In apn1 rad14 ung1 strains, the rates of A>C and 

T>G mutations were elevated by 25.3-and 2.5-fold, respectively, indicating that a defect in 

NER led to accumulation of unrepaired AP sites mostly on the transcribed strand. In apn1 

rad26 ung1 strains, the rate of TDG-induced A>C mutations (42 X 10-8) was higher 

compared to that in apn1 ung1 (32 X 10-8) albeit considerably lower compared to that in 

apn1 rad14 ung1 (121 X 10-8).  Overall, TCR sub-pathway of NER is a major back-up 

mechanism to repair TDG-induced AP lesions on transcribed strand within a highly 

transcribed gene and Rad26 is partially involved in mediating TCR. 
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Figure 16: The effect of TDG expression on the rates of mutation at the pTET-lys2-
TAA reporter 

A) Schematic representation of the substitution mutations arising from base excision by 

Ung1 or TDG. o Indicates AP sites. B) Overall mutation rates in yeast strains with empty 

vector or TDG glycosylase-expressing plasmid. Error bars represents 95% confidence 

intervals. C) and D) Rates of A>C and T>G transversions, respectively. For the actual 

numbers see Table 3.  

 

 

 

A. Schematic for T>G and A>C mutations  

TAA              AA             AA                   AA               AA 
ATT               ATT             ATT                   CTT               CTT 

TAA              TAA             TAA                   TCA               T A 
 ATT              A T             A T                   A T               AGT 

Non-
transcribed 
Strand  

Transcribed 
Strand  

T>G mutation 

A>C mutation 

B. Overall mutation rate C. Rate of A>C mutations  D. Rate of T>G mutations  

ap
n1 u

ng1

ap
n1 r

ad
26

 ung1

ap
n1 r

ad
14

 ung1

ap
n1 n

tg1 n
tg2 u

ng1
0.1

1

10

100

1000

M
ut

at
io

n 
R

at
e 

X
 1

0-8

Vector
TDG

ap
n1 u

ng1 

ap
n1 r

ad
26

 ung1

ap
n1 r

ad
14

 ung1 

ap
n1 n

tg1 n
tg2 u

ng1
0.1

1

10

100

1000

R
at

e 
of

 A
>C

 x
10

-8
 

Vector
TDG

ap
n1 u

ng1 

ap
n1 r

ad
26

 ung1

ap
n1 r

ad
14

 ung1 

ap
n1 n

tg1 n
tg2 u

ng1
0.1

1

10

100

1000

R
at

e 
of

 T
>G

 x
10

-8
 

Vector
TDG



	
	

	 85	

 

Table 3: Mutation rates with hTDG expression 

 

 

 

 

 

 

 

 

 

 

 

pTET-lys2-TAG (Mutation rate x 10-8) 
Relevant genotype Total Mutation 

Rate (95%CI) 
A>C rate (95%CI) 

(Fraction) 
T>G rate (95%CI) 

(Fraction) 
Other 

(Fraction) 
apn1 ung1 
 (vector) 

5.5 (3.99 – 9.91) 1.88 (0.99-3.62)  
(15/44) 

0.25 (0.03-0.96)  
(2/44) 

3.38 
(27/44) 
 

apn1 rad26 ung1 
(vector) 

8.46 (6.77 – 14.8) 3.25 (1.87-6.06)  
(15/39) 

1.30 (0.47-2.95)  
(6/39) 

3.9  
(18/39) 
 

apn1 rad14 ung1 
(vector) 

26.9 (16.6 – 35.8) 4.78 (1.79-9.17)  
(8/45) 

1.20 (0.11-4.44)  
(2/45) 

20.9 
(35/45) 
 

apn1 ntg1 ntg2 ung1 
(vector) 

10.4 (7.36 – 14) 1.21 (0.34-2.76)  
(5/43) 

0.24 (0.002-1.43)  
(1/43) 

8.95 
(37/43) 
 

apn1 ung1 
 (hTDG) 

60.7 (48.9 – 67.9) 32.0 (21.3-40.7)  
(26/45) 

20.0 (11.4-29)  
(16/45) 

4.04 
(3/45) 
 

apn1 rad26 ung1 
(hTDG) 

61.1 (55.4 – 78.9) 41.8 (31.6-55.7)  
(30/40) 

9.00 (3.5-19)  
(6/40) 

6.11 
(4/40) 
 

apn1 rad14 ung1 
(hTDG) 

133 (109 – 177) 120.9 (92.3-162)  
(40/44) 

3.02 (0.12-18.6)  
(1/44) 

9.07 
(3/44) 
 

apn1 ntg1 ntg2 ung1 
(hTDG) 

57.0 (53.2 – 65.4) 15.5 (5.22-37)  
(4/34) 

36.0 (28-43.1)  
(28/34) 

3.35 
(2/34) 
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4.2.2 Srs2 or Sub1 is not involved in TCR-dependent repair of AP sites in yeast. 

When RNAPII encounters DNA damage, it stalls at the damage site and the lesion 

must be repaired to ensure continued elongation. TCR of AP lesions is only partially affected 

by the disruption of Rad26 and additional factors must be involved in mediating efficient 

repair of AP sites by TCR (Kim & Jinks-Robertson, 2010). E. coli protein UvrD is a DNA 

helicase/translocase with known roles in NER and replication-associated processes 

(Kumura & Sekiguchi, 1984; Van Houten & McCullough, 1994). UvrD was recently shown in 

vitro to bind stalled RNA polymerase and to force it to slide backwards along DNA allowing 

greater access for the DNA repair factors to the lesion for more efficient repair (Epshtein et 

al., 2014).  Srs2, a yeast paralog of UvrD, is a helicase and a DNA dependent ATPase that 

is involved in multiple facets of genome maintenance (i.e. homologous recombination, 

checkpoint recovery, and replication fork progress) (Krejci et al., 2003; Marini & Krejci, 2010; 

Van Komen et al., 2003). In order to determine whether Srs2, like E. coli UvrD, promotes 

TCR repair of AP lesions, I deleted SRS2 gene in WT, apn1 and apn1 rad26 strains and 

determined the rates of spontaneous reversion mutations at the pTET-lys2-TAA allele. 

Overall mutation rate was not affected by Srs2 disruption in WT or apn1 backgrounds and 

reduced by ~1.7-fold in apn1 rad26 background (Fig. 17A).  In WT or apn1 backgrounds, 

mutation spectra also showed no significant change due to Srs2 disruption.  However, in 

apn1 rad26 background, there was a 14-fold decrease in the rate of T>G mutations (from 

AP sites on the non-transcribed strand) with no significant change in the rate of A>C 

mutations (from AP sites on the transcribed strand) (Figs. 17B and 17C).  This strand 

specific effect of Srs2-disruption indicates that this factor is likely involved in promoting 

repair of AP lesions on the non-transcribed strand.   

The transcriptional co-activator Sub1 was shown to be involved in the tolerance to 

the hydrogen peroxide-induced DNA damage in a TCR-dependent manner (J. Y. Wang et 

al., 2004). The mutation rates and spectra at the pTET-lys2-TAA allele were determined in 
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WT, apn1 and apn1 rad26 backgrounds with additional deletion of the SUB1 gene. The 

rates of overall Lys+ mutations or A>C transversions were not affected by Sub1-disruption in 

all three strain backgrounds (Figs. 17D and 17E and Table 7).  The rate of T>G mutation 

rates in apn1 rad26 sub1 strains was ~4-fold reduced compared to apn1 rad26 strains but 

this difference was not statistically significant (Fig. 17F). 
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Figure 17: The effect of Srs2 or Sub1 disruption on the rates of mutations 

A) and D) Overall rates of mutations at pTET-lys2-TAA. Error bars represent 95% 

confidence intervals. B) and E) Rates of A>C mutations. C) and F) Rates of T>G 

mutations. *Zero mutation event of this class was detected and the mutation rate was 

calculated assuming 1 event. For the actual numbers see Table 7. Total, A>C, and T>G 

mutation rates in apn1 and apn1 rad26 backgrounds in D) – F) is identical to the rates 

shown in A - C. 
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4.2.3 DST1 deletion reduces mutations at pTET-lys2-TAA. 

During the DNA damage-induced transcription arrest, TFIIS can promote 

backtracking of the stalled RNAPII by stimulating the cleavage of nascent RNA but can also 

promote the resumption of transcription elongation and lesion bypass by RNAPII by 

realigning mRNA termini and DNA template (Gaillard & Aguilera, 2013; Reines & Mote, 

1993). To determine whether TFIIS is involved in the TCR repair of AP sites, I deleted 

DST1, the gene encoding TFIIS in yeast and determined the mutation rates. I will from 

hereon refer to TFIIS as Dst1. Dst1-disruption resulted in a 3.1-, 3.4- and 6-fold reduction in 

the overall mutation rates in WT, apn1, and apn1 rad26 backgrounds, respectively (Fig. 

18A). The rates of both A>C and T>G mutations were reduced suggesting that this 

reduction is not specific to AP lesions on the transcribed strand (Figs. 18B and 18C). I also 

disrupted Dst1 in the BER and NER deficient backgrounds (apn1 ntg1 ntg2 and apn1 rad14, 

respectively) and determined the mutation rates as well as the mutation spectra.  I observed 

a ~ 6-fold reduction in the mutation rates in both apn1 ntg1 ntg2 dst1 and apn1 rad14 dst1 

strains (Fig. 18A). There was a ~6-fold reduction in the rates of A>C in apn1 rad14 

background (Fig. 18B). For the T>G mutation rates, Dst1-disruption resulted in a 10-fold 

reduction in apn1 ntg1 ntg2 background, further indicating that the function of Dst1 is not 

limited to the AP sites on the transcribed strand or to the TCR pathway (Fig. 18C). 
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Figure 18: The effect of Dst1 disruption on the rates of mutations 

A) Overall rates of mutations at pTET-lys2-TAA. Error bars represents 95% confidence 

intervals. B) Rates of A>C mutations. C) Rates of T>G mutations.  For the actual numbers 

see Table 7. Total, A>C, and T>G mutation rates in apn1 and apn1 rad26 backgrounds in this 

figure is identical to the rates shown in Figure 17.  
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4.2.4 The effect of Dst1 disruption is not due to change in transcription activity. 

In order to determine whether the decrease in mutagenesis upon Dst1-disruption is 

dependent on the level of transcription, I looked at the mutation rates at CAN1, a moderately 

transcribed locus. CAN1 encodes an arginine transporter and deleterious mutations at this 

locus confer resistance to the toxic arginine analog canavanine. Dst1-disruption led to a ~2-

fold reduction in the canavanine-resistant (CanR) mutation rates in apn1 rad26 and a ~4.5 

fold reductions in both apn1 rad14 and apn1 ntg1 ntg2 backgrounds (Fig. 19A). The CanR 

mutation rate in apn1 background was not affected.  

It was previously demonstrated that mutation rate at the pTET-regulated lys2 

reporter linearly correlates with the rate of transcription; repressing transcription by addition 

of doxycycline resulted in the proportional decrease in the mutation rate (Kim et al., 2007). 

In order to determine whether the decrease in mutation rate upon DST1 deletion was due to 

a decrease in the transcription rate, I determined the LYS2 expression levels in WT, dst1 

and apn1 dst1 strains using the qRT-PCR method. The LYS2 expression level was not 

significantly affected upon DST1-deletion indicating that the effect of DST1 deletion on 

mutation rate is not due to changes in the transcription levels of LYS2 (Fig. 19B). The 

expression level of CAN1 was also not affected by DST1-deletion (Fig. 19C).  

 

4.2.5 Dst1 disruption increases recombination. 

A reduction in mutation rate upon DST1-deletion could be due to the repair of AP 

lesions by pathways other than BER and NER. Thus, Dst1 was disrupted in yeast strains 

containing three different homologous recombination reporter constructs that vary in their 

sequence context (G-rich, C-rich or G/C-rich).  Detailed description of these reporter 

constructs as well as the recombination rates in WT strain backgrounds were previously 

reported (Yadav et al., 2014).  DST1-deletion resulted in 2- to 3-fold increases in 

recombination rates for all three constructs (Fig. 19D).  
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Figure 19: The effect of Dst1 disruption on transcription and recombination 

A) Overall rate of CAN1 forward mutations in the indicated genetic backgrounds. Error bars 

represent 95% confidence intervals. For the actual numbers see Table 4.  B) LYS2 and C) 

CAN1 expression levels calculated by RT-QPCR using UBC6 as the reference gene. RNA 

was extracted from yeast cells with the indicated genetic strains. Error bars indicate the 

standard deviation calculated from 3 or 4 independent experiments. For the actual numbers 

see Table 5. D) The rates of recombination at the G-rich, C-rich or G/C-rich cassettes were 

determined using the method of the median (Table 6.). Error bars represent 95% confidence 

intervals. 
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Table 4: Can1R mutation rates and confidence intervals 

	
Relevant genotype          CAN1R  

(Mutation rate x 10-8) 
apn1 17.9 (14.5 – 28) 

 
apn1 rad26 48.5 (21.8 – 148) 

 
apn1 ntg1 ntg2 334 (270 – 363) 

 
apn1 rad14 365 (132 – 483) 

 
apn1 dst1 22 (18.2 – 43.6) 

 
apn1 rad26 dst1 24.5 (19 – 126) 

 
apn1 ntg1 ntg2 dst1 75.3 (58.9 – 149) 

 
apn1 rad14 dst1 77.7 (61.3 – 127) 
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Table 5: LYS2 and CAN1 expression levels 

Relevant genotype LYS2 expression 
(%) 

CAN1 expression 
(%) 

WT 100 ± 5 100 ± 16 
 

dst1 85.2 ± 21 148 ± 16 
 

apn1 dst1 70 ± 15 134 ± 38 
 

apn1 rad14 dst1 81.1 ± 62.7  96.8 ± 12.3 
 

apn1 100 ± 66 N/D 
 

apn1 rad26 71.1 ± 23.3 N/D 
 

apn1 rpb9 102.3 ± 16.1 N/D 
 

apn1 rad26 rpb9 158.8 ± 7.3 N/D 
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We additionally determined the effect on AP-associated mutagenesis of disrupting 

Rpb9, which was previously reported to increase the UV sensitivity of rad26 and rad7 strains 

indicating its involvement in TCR (Gaillard et al., 2009; S. Li & Smerdon, 2002). Rpb9 is also 

a non-essential subunit of RNAPII that shares homology with Dst1 and was reported to be 

required for Dst1 to stimulate the transcript cleavage and the read-through by RNAPII 

(Awrey et al., 1997).  Similar to DST1-deletion, the deletion of RPB9 in WT, apn1, and apn1 

rad26 backgrounds significantly reduced the rates of A>C and T>G mutations but did not 

affect the transcription rate of pTET-lys2-TAA reporter (Fig. 20A - D).  Rpb9-disruption, 

however, did not result in a significant elevation in recombination (Fig. 20E). This could be 

due to the technical difficulty associated with the severely affected growth rate in this strain.  
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Figure 20: The effect of Rpb9 disruption on the rates of mutations and 
recombination 

A) Overall rates of mutations at pTET-lys2-TAA. Error bars represents 95% confidence 

intervals. B) Rates of A>C mutations. C) Rates of T>G mutations. For the actual numbers 

see Table 7. D) LYS2 expression levels calculated by RT-QPCR using ACT1 as the 

reference gene.  RNA was extracted from yeast cells with the indicated genetic strains. 

QRT-PCR was performed using primers targeting LYS2. For the actual numbers see 

Table 5. Error bars indicate the standard deviation calculated from three independent 

experiments. E) The rates of recombination at the G/C-rich cassette were determined 

using the method of the median. Error bars represent 95% confidence intervals. For the 

actual numbers see Table 6. Total, A>C, and T>G mutation rates in apn1 and apn1 rad26 

backgrounds in this figure is identical to the rates shown in Figure 17. 
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Table 6: Recombination rates and confidence intervals 

	
 
Relevant genotype 

 
Recombination rate 

(x 10-8) 

WT (G-rich) 20.3 (17.2 – 24.4) 

WT (C-rich) 12.5 (10.4 – 15.6) 

WT (G/C rich) 13.5 (10.9 – 14.9) 

dst1 (G-rich) 44.8 (40.1 – 58.3) 

dst1 (C-rich) 37.6 (28.3 – 46.6) 

dst1 (G/C-rich) 27.5 (21.9 – 29.7) 

rpb9 (G/C-rich) 13.7 (11.4 – 14.9) 

 

* The recombination data are part of my first author publication however, the experiments 
were performed by Dr. Christopher Lopez. Dr. Lopez has authorized the use of these results 
in this dissertation. 
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4.2.6 Def1-disruption elevates mutations from AP lesions on the transcribed strand. 

Def1 is recruited to the stalled and/or arrested RNAPII and promote the ubiquitination 

and degradation of RNAPII thereby clearing the way for the subsequent RNA polymerases 

and ensure the continued transcription as well as possibly allowing the access of repair 

proteins to DNA damage (Lee et al., 2002; Woudstra et al., 2002). Although previous studies 

have suggested that Def1 is not involved in TCR per se but functions as a last resort to 

allow for the resumption of transcription (Woudstra et al., 2002), other studies identified Def1 

as a potential transcription-repair coupling factor by showing that Def1-disruption elevated 

the UV-sensitivity in the absence of GGR (Gaillard et al., 2009). I deleted DEF1 in apn1 and 

apn1 rad26 backgrounds to determine whether it leads to a specific elevation in the A>C 

mutations indicative of further interruption in TCR.  The overall mutation rate in def1 and 

apn1 def1 mutants showed no significant difference compared to WT and apn1, respectively 

(Fig. 21A and Table 7). However, the deletion of DEF1 in apn1 rad26 background led to a 

1.7-fold increase in the overall mutation rate and a ~2-fold increase in the rate of A>C 

mutations (Fig. 21A and 21B). The rate of T>G mutations were generally lower in 

comparison to the A>C mutations and were slightly reduced upon the disruption of Def1 

(Fig. 21C). This suggests that, in the absence of Rad26, the Def1-mediated degradation of 

the stalled RNAPII can alternatively allow the recruitment of repair enzymes to the AP 

lesions on the transcribed strand. However, when both Def1 and Rad26 are disrupted, the 

repair of the AP sites is partially compromised and mutations accumulate. The disruption of 

Def1 did not affect the T>G mutation rates in apn1 rad14 background.  The rate of A>C 

mutations in apn1 rad26 def1 strains is significantly less than that in apn1 rad14 strains (Fig. 

21B; Table 7) where TCR as well as GGR are completely abolished suggesting that, even 

though both Def1 and Rad26 contribute to repairing the AP lesions on the transcribed 

strand, additional factor must be functioning to mediate TCR. The deletion of RAD7, which 

specifically disables GGR, did not affect the overall rate of mutagenesis in apn1 or apn1 
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rad26 strains indicating that GGR is not significantly contributing to the repair of AP lesions. 

When I deleted DEF1 in apn1 rad7 background, I observed a 2.2-fold increase in the overall 

mutation rate further supporting our findings that Def1 contributes in repairing AP sites.  

Surprisingly, the overall mutation rate of apn1 rad7 def1 strains was 2.1-fold higher 

compared to apn1 def1 strains suggesting that Def1 and Rad7 might be operating in the 

same pathway to promote the repair of AP sites.  Def1-disruption in apn1 rad14 background 

led to a slight decrease in the mutation rate indicating that the degradation and removal of 

the stalled RNAPII might interfere with the efficient repair of AP sites by pathways other than 

NER. The attempt to generate apn1 rad26 rad7 def1 strain by a consecutive one-step allele 

replacement approach was not successful. It is possible that this combination of deletion is 

lethal, although we lack the definitive proof since the construction of mutant diploids followed 

by the tetrad analysis was not carried out. 
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Figure 21: Effects of Def1 disruption on the rates of mutations in YEPGE 

A) Overall rates of mutations at pTET-lys2-TAA. Error bars represent 95% confidence 

intervals. B) Rates of A>C mutations. C) Rates of T>G mutations. *Zero mutation event of 

this class was detected and the mutation rate was calculated assuming 1 event. For the 

actual numbers see Table S2. Total, A>C, and T>G mutation rates in apn1, apn1 rad14, 

and apn1 rad26 backgrounds in this figure is identical to the rates shown in Figure 2 and 

Figure 3. 
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4.2.7 The effect of Def1-disruption on mutations from AP lesions is dependent on the 
growth conditions.  

For all of the data described above, I determined the reversion mutation rates of the 

pTET-lys2-TAA allele by growing the relevant yeast strains in the rich media supplemented 

with 2% glycerol and 2% ethanol as the primary carbon source (YEPGE).  Because the 

DEF1-deletion strains showed a slow growth phenotype in YEPGE, I repeated the 

experiments in the rich medium supplemented with the fermentable sugar dextrose (YEPD). 

Although the growth conditions did not significantly affect the mutation rates for WT or def1 

strain, in apn1 background, the rate of overall Lys+ reversion mutation was >20-fold lower 

when the cells are grown in YEPD than in YEPGE (Figs. 21A and 22A).  In YEPD, in apn1 

def1 strain compared to apn1 strain, there were ~15-fold and ~19-fold increases in the 

overall and A>C mutation rates, respectively. Compared to the modest 1.7- and 2-fold 

changes in the overall and A>C mutation rates observed in YEPGE, when analyzed in 

YEPD, DEF1-deletion in apn1 rad26 background led to an overwhelming ~53-fold increase 

in the overall mutation rate and a ~60-fold increase in the A>C mutations. The effect of 

Def1-disruption on the rate of T>G mutations was nominal in all backgrounds. In YEPD, the 

rates of overall and A>C mutations in apn1 rad26 def1 strain were comparable to those in 

apn1 rad14 strain where TCR is completely abolished (Fig. 22). I also determined the 

mutation rates in apn1 rad7 def1 strains in YEPD.  The deletion of DEF1 in YEPD led to a 

4.8-fold increase in mutagenesis in apn1 rad7 strain background indicating the involvement 

of DEF1 in the TCR repair of AP sites. However, unlike in YEPGE where I observed a 2.1-

fold increase in the mutation rate in apn1 rad7 def1 strain compared to apn1 def1 strain, I 

observed a 2.3-fold reduction in the rate of mutagenesis. And, in apn1 rad14 background, 

no further elevation in the overall mutation rate resulted from Def1-disruption. However, the 

rates of A>C mutations were slightly increased and the rates of T>G mutations were 
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reduced by two-fold further confirming that the effect of Def1 is specific to the AP lesions 

located on the transcribed strand. 
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Figure 22: Effects of Def1 disruption on the rates of mutations in YEPD 

A) Overall rates of mutations at pTET-lys2-TAA. Error bars represent 95% confidence 

intervals. B) Rates of A>C mutations. C) Rates of T>G mutations. *Zero mutation event of 

this class was detected and the mutation rate was calculated assuming 1 event. For the 

actual numbers see Table 8. 
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Table 7: Mutation rates and confidence intervals for pTET-lys2-TAA in 
glycerol/ethanol	

 pTET-lys2-TAA (Mutation rate x 10-8) 
 

Relevant 
genotype 

Total Mutation 
Rate (95%CI) 

A>C rate (95%CI)  
(Fraction) 

T>G rate (95%CI)  
(Fraction) 

Other 
(Fraction) 

WT 2.49 (1.22 – 3.42) 0.74 (0.32-1.17)  
(25/84) 

0.18 (0.04-0.41)  
(6/84) 

1.57 
(53/84) 
 

apn1 133 (112 – 155) 108 (86.1-129)  
(70/86) 

15.4 (7.56-28.1)  
(10/86) 

9.28 
(6/86) 
 

apn1 rad26 325 (302 – 354) 245 (192-288)  
(34/45) 

57.8 (29.0-108)  
(8/45) 

21.7 
(3/45) 
 

apn1 ntg1 ntg2 468 (367 – 1150) 55.0 (25.7-144)  
(11/94) 

390 (296-959)  
(78/94) 

24.9  
(5/94) 
 

apn1 rad14 997 (904 – 1140) 938 (811-1082)  
(80/88) 

26.8 (4.58-106)  
(2/88) 

68 
(6/88) 
 

apn1 srs2 145 (126 – 207) 142 (118-203)  
(45/46) 

3.15 (0.13-18.9)  
(1/46) 

<3.15 
(0/46) 
 

apn1 rad26 srs2 190 (179 – 287) 186 (163-281)  
(46/47) 

<4.04 (0.2-24.7)  
(0/47) 

 4.04 
(1/47) 
 

apn1 sub1 89.4 (64 – 100) 67.5 (43.8-80.5)  
(34/45) 

19.8 (9.09-33.2)  
(10/45) 

1.99 
(1/45) 
 

apn1 rad26 sub1 322 (257 – 371) 299 (226-347)  
(40/43) 

15 (2.25-54.9)  
(2/43) 

7.5 
(1/43) 
 

apn1 dst1 39.3 (35 – 57) 36.0 (29.1-52.5)  
(42/48) 

1.64 (0.28-6.0)  
(2/48) 

3.3  
(4/48) 
 

apn1 rad26 dst1 53 (47 – 63) 51.5 (41.9-61.7)  
(38/41) 

1.29 (0.06-7.41)  
(1/41) 

2.6  
(2/41) 
 

apn1 ntg1 ntg2 
dst1 

74.9 (45 – 94) 25.0 (11.4-38.4)  
(16/48) 

40.6 (21.2-54.7)  
(28/48) 

9.4  
(6/48) 
 

apn1 rad14 dst1 168 (77 – 219) 151 (66.5-198)  
(43/48) 

3.50 (0.31-21)  
(1/48) 

14  
(4/48) 
 

apn1 rad51 111 (88.7 – 153) N/D N/D N/D 
 

apn1 rad51 dst1 42.1 (33 – 52.5) N/D N/D N/D 
 

apn1 rad7 108 (103 – 119) 95.0 (79.2-107)  
(37/42) 

12.9 (4.75-28.2)  
(5/42) 

<2.5  
(1/42) 
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apn1 def1 111 (90.9 – 152) 101 (77-139)  

(39/43) 
<2.6 (0.09-15.7)  
(0/43) 

10.3 
(4/43) 

apn1 rad7 def1 235 (214 – 256) N/D N/D N/D 
 

apn1 rad26 def1 567 (516 – 646) 515 (424-595)  
(40/44) 

<13 (0.63-77.2)  
(0/44) 

51.5 
(4/44) 
 

apn1 rad26 rad7 267 (226 – 383) 253 (201-363)  
(38/40) 

<6.68 (0.26-40.2)  
(0/40) 

13.4 
(2/40) 
 

apn1 rad14 def1 611 (429 – 757) 571 (385-710)  
(43/46) 

26.6 (3.26-98.2)  
(2/46) 

13.3  
(1/46) 
 

apn1 rpb9 18.4 (13.4 – 22.6) 14.5 (9.48-18.4)  
(30/38) 

0.96 (0.13-3.47)  
(2/38) 

2.9 
(6/38) 
 

apn1 rad26 rpb9 38.3 (15.3 – 83.7) 33.6 (12.6-73.5)  
(36/41) 

3.24 (0.27-9.33)  
(4/41) 

0.93 
(1/41) 
 

srs2 0.86 (0.67 – 1.55) N/D N/D N/D 
 

dst1 0.8 (0.49 – 0.94) 0.15 (0.05-0.29)  
(7/37) 

0.04(0.003-0.15)  
(2/37) 

0.61 
(28/37) 
 

rad51 19.7 (16.6 – 34.1) N/D N/D N/D 
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Table 8: Mutation rates and confidence intervals for pTET-lys2-TAA in dextrose 

PTET-lys2-TAA (Mutation rate x 10-8)  
 

Relevant 
genotype 

Total Mutation 
Rate (95%CI) 

A>C rate 
(95%CI) 

(Fraction) 

T>G rate 
(95%CI) 

(Fraction) 

Other 
(Fraction) 

WT 2.21 (1.75 – 2.42) 0.62 (0.26-1.11)  
(7/25) 

0.09 (0.003-0.5)  
(1/25) 

1.5 
(17/25) 
 

def1 2.53 (2.07 – 3.39) 0.633 (0.31-1.11) 
(10/40) 

0.316 (0.12-0.72) 
(5/40) 

1.58 
(25/40) 
 

apn1 6.34 (4.87 – 8.06) 4.08 (2.81-5.41) 
(38/59) 

1.29 (0.63-2.17) 
(12/59) 

0.97 
(9/59) 
 

apn1 rad26 10.3 (6.21 – 11.4) 8.85 (5.1-10.1)  
(43/50) 

0.82 (0.21-2.05)  
(4/50) 

0.62 
(3/50) 
 

apn1 rad7 8.43 (7 – 9.83) 3.49 (1.91-5.24) 
(12/29) 

1.74 (0.71-3.39)  
(6/29) 

3.2  
(11/29) 
 

apn1 def1 92.6 (67.7 – 111) 76.9 (53.4-93.8) 
(49/59) 

9.42 (3.17-20.5)  
(6/59) 

6.3 
(4/59) 
 

apn1 rad7 def1 40.8 (30.3 – 50.6) N/D N/D N/D 
 

apn1 rad26 
rad7 

11.9 (10.2 – 13) 8.1 (5.46-10.1)  
(19/28) 

2.13 (0.8-4.54)  
(5/28) 

1.7 
(4/28) 
 

apn1 rad26 
def1 

552 (427 – 666) 532 (401-643)  
(55/57) 

<9.7 (0.24-60.9)  
(0/57) 

19.4 
(2/57) 
 

apn1 rad14 592 (531 – 651) 462 (371-536)  
(43/55) 

53.8 (19.7-124)  
(5/55) 

75.3 
(7/55) 
 

apn1 rad14 
def1 

817 (632 – 885) 797 (593-866)  
(41/42) 

19.4 (0.46-114)  
(1/42) 

<19.4 
 (0/42) 
 

apn1 srs2 6.10 (4.65 – 7.21) N/D N/D N/D 
 

apn1 rad26 
srs2 
 

10.6 (8.3 – 12.2) N/D N/D N/D 
 

apn1 sub1 8.64 (7.11 – 9.53) N/D N/D N/D 
 

apn1 rad26 
sub1 
 

10.1 (7.7 – 11.4) N/D N/D N/D 
 

apn1 dst1 4.4 (2.75 – 13.5) N/D N/D N/D 
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apn1 rad26 
dst1 
 

15.3 (8.1 – 23.2) N/D N/D N/D 
 

srs2 2.64 (1.78 – 4.96) N/D N/D N/D 
 

sub1 1.78 (1.7 – 2.32) N/D N/D N/D 
 

dst1 1.36 (1.14 – 2.22) N/D N/D N/D 
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4.3 Discussion 
 

AP lesions, arguably the most prevalent type of spontaneously occurring DNA 

damage, are produced in cells through multiple pathways.  Notably, AP lesions are 

obligatory intermediates in the repair of many different types of DNA damage including 

those produced by endogenously generated reactive oxygen species and by 

chemotherapeutic agents targeting thymidine synthesis pathway or directly damaging DNA 

by alkylation. AP sites present on the transcribed strand of a gene are particularly 

problematic since they not only endanger the genome integrity but also compromise efficient 

transcription by blocking RNA polymerases. It was previously reported that the TCR sub-

pathway of NER can be recruited to AP lesions on the transcribed strand and removes this 

type of damage to a significant extent (Kim & Jinks-Robertson, 2010). A key aspect of the 

reporter assay used to demonstrate the involvement of Rad26 in TCR repair of AP lesions is 

that we can infer from the mutation spectra whether the relevant AP lesion was present on 

transcribed or non-transcribed strand. Exploiting this assay, it previously shown that, when 

TCR is compromised in apn1 rad26 background, AP sites derived from uracil excision from 

DNA accumulate specifically on the transcribed strand.  By expression of the engineered 

human glycosylase TDG that can excise undamaged thymine to generate AP sites, I 

demonstrate here that non-uracil derived AP sites are also processed and repaired via TCR.  

AP lesions are poorly recognized by NER proteins but can be repaired by TCR by 

stalling RNAPII (Tornaletti et al., 2006), which subsequently interferes with transcription 

elongation and might be detrimental to the cell.  In order to determine how multiple 

mechanisms involved in overcoming the obstacle to transcription might interact with the 

TCR repair of AP sites, I examined four potential regulators of stalled RNAPII.  Sub1, Srs2, 

Dst1 and Def1 have been variously implicated in TCR repair of UV induced damages and/or 

transcription elongation (Awrey et al., 1997; Charlet-Berguerand et al., 2006; Epshtein et al., 

2014; Reines & Mote, 1993; J. Y. Wang et al., 2004; Woudstra et al., 2002).  
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In the current report, I demonstrate that Srs2 and Sub1 are not involved in TCR 

repair of AP lesions since disruption of either proteins did not affect the spontaneous AP-

associated A:T to C:G mutations at the pTET-lys2-TAA reporter in apn1 or apn1 rad26 

background (Fig. 17). DST1 deletion, on the other hand, resulted in up to a 10-fold reduction 

in mutation rates, which I showed was not due to the reduced transcription of the reporter 

gene. The reduction in mutation rate could be explained by more efficient repair in the 

absence of Dst1. I speculate that the action of Dst1 might be interfering with repair by 

encouraging transcriptional bypass of the AP lesion. In fact, Dst1 has been shown to induce 

RNAPII to bypass oxidative DNA damage (e.g. 8-oxoG) but not UV-induced damage 

(Kuraoka et al., 2007) leading to the suggestion that Dst1 might also promote transcriptional 

bypass of the AP lesions, which, like 8-xoG, is not helix-distorting. Interestingly, the effect of 

Dst1 disruption is not limited to the transcribed strand or TCR since mutations arising from 

AP lesions on both the transcribed (A>C) and the non-transcribed (T>G) DNA strands are 

significantly reduced and AP-associated mutagenesis reduced in both NER- (apn1 rad14) 

and BER- (apn1 ntg1 ntg2) strains. The elevation in homologous recombination upon the 

deletion of DST1 suggests that, when present, Dst1 prevents AP lesion-repair by 

recombination through a mechanism yet to be defined.  Disruption of E. coli GreA or GreB, 

which are the functional homologs of yeast Dst1, was recently shown to decrease mutations 

by increasing homologous recombination (C. Herman, Baylor College of Medicine, Houston, 

TX; Personal communications).  In fact, in E.coli, GreA and GreB, which carry out similar 

functions as Dst1 during RNA polymerase stalling, promote transcription elongation at the 

expense of repair and repress recombination. This result is fully consistent with our data that 

recombination is enhanced when DST1 is deleted (Figure 19D). To further understand the 

roles of Dst1, homologous recombination was disrupted by the deletion of RAD51 (Table 7). 

In apn1 or apn1 dst1 background, RAD51-deletion did not affect the mutation rates 

indicating that recombination might be occurring in RAD51-independent manner (Pohl & 
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Nickoloff, 2008). It is also possible that the effect of Dst1-disruption on the AP-derived 

mutations is independent of its role in repressing homologous recombination.  Further 

studies need to be performed to explore how yeast Dst1 or E. Coli GreA/GreB represses 

homologous recombination. 

The degradation and clearance of RNAPII arrested at lesions require Def1, which 

mediates ubiquitination of the catalytic subunit of RNAPII (M. D. Wilson et al., 2013; 

Woudstra et al., 2002).  Our effort to determine whether Def1 allows for the more efficient 

repair of AP lesions on the transcribed strand yielded a surprising result that the effect of 

Def1 disruption was highly dependent on the growth conditions (Fig. 21 and 22). When 

analyzed in media containing glycerol and ethanol as the major carbon source, we observed 

a modest (1.7-fold) increase in the mutation rate in apn1 rad26 background as expected 

from previous findings that Rad26 normally inhibits the activity of Def1 and the degradation 

of RNAPII is used as a mechanism of last resort (Woudstra et al., 2002). However, in 

contrast to experiments in YEPGE, in dextrose-containing rich media (YEPD), Def1-

disruption resulted in much greater increase in the mutation rate in both apn1 (~15-fold) and 

apn1 rad26 (~53-fold) backgrounds (Figs. 21A and 22A). During the fermentative growth in 

YEPD, the mutation rate of apn1 rad26 def1 was similar to that of apn1 rad14 suggesting 

that Def1 is involved in TCR repair of AP sites and that Rad26 and Def1 are sufficient in 

repairing all the AP sites in the transcribed strand without the need for additional factors 

when the cells are grown in dextrose.  The effect of Def1 disruption in apn1 rad14 

background was also dependent on the growth conditions. 

Yeast cells preferably grow via fermentation using dextrose as the carbon source.  

Using the non-fermentable carbon source such as ethanol and glycerol, yeast cells respire 

or grow oxidatively relying on the mitochondria.  According to our data, the effect of cell 

metabolic state extends beyond the role of Def1; the overall mutation rates in apn1 and 

apn1 rad14 backgrounds showed significant differences depending on the growth condition 
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(Fig. 21A and 22A). I also observed that, although the effect of Srs2- or Sub1-disruption on 

the repair of AP lesion remained constant in YEPGE or YEPD, the effect of DST1 deletion in 

apn1 rad26 background on the AP-associated mutation rate was significantly dependent on 

the carbon source (Table 8). This difference is not due to different number of cell divisions 

during the culturing process since the starting and ending cell density during the 

experiments were not significantly different in these two growth conditions (data not shown).  

It has been previously shown in yeast that the metabolic state can be a determining factor in 

the types and numbers of endogenously-occurring DNA damage (Minesinger et al., 2006). 

There is a major difference in the accumulation of reactive oxygen species (ROS) in yeast 

cells growing by respiration (glycerol/ethanol) and by fermentation (dextrose) (Pan, 2011). 

The difference in the extent of the ROS-induced DNA damage in these two growth 

conditions is one potential explanation for the growth-condition-dependent effect of DEF1 

deletion.  However, the mutations in the pTET-lys2-TAA assay are originating not from 

oxidative damage but from uracil incorporated during DNA synthesis, leading us to suggest 

that the cell metabolic state and growth condition can also affect the various pathways 

involved in AP repair and/or transcriptional bypass. In E. coli, ppGpp, a small molecule 

mediator of the stringent response, was recently shown to play an important role in 

promoting TCR of helix-distorting DNA lesions (Kamarthapu et al., 2016).  Stress response 

could similarly play an important role in shifting the balance among multiple pathways 

involved in the repair of AP lesions in yeast. 

In summary, I report that Def1 and Dst1 play distinct yet significant function in how 

AP lesions in the transcribed genes are repaired (Fig. 23).  I show that Def1, in addition to 

Rad26, can facilitate repair of AP lesions located on the transcribed strand by TCR as well 

as other repair pathways.  I also describe a novel function of Dst1 in interfering with AP 

repair possibly by suppressing homologous recombination. Dst1-disruption reduces 

mutations resulting from the AP lesions located on both the transcribed and the non-



	
	

	 112	

transcribed strands leading us to suggest that further study is needed to understand how the 

role of Dst1 in AP lesion repair is mechanistically connected to its previously characterized 

role in rescuing stalled transcription complexes.  
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Figure 23: Proposed model of AP repair at transcribed regions 

AP sites on both transcribed strand (TS) and non-transcribed strand (NTS) are repaired by 

either Apn1-mediated BER or homologous recombination pathway (HR).  Repair by HR is 

suppressed by Dst1. While Ntg1/Ntg2-mediated BER repairs mostly the AP sites present on 

TS, Rad26- or Def1-mediated TC-NER repairs the AP sites on NTS.  Those AP sites left 

unrepaired will invoke mutagenic translesion synthesis (TLS).  Grey oval and dotted line 

represent RNA polymerase complex and nascent RNA chain, respectively.  AP lesion is 

denoted by o.  
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5.1 Summary 
 

The goal of this work was to develop a better understanding of the role played by 

transcription in mutagenesis resulting from the incorporation of uracil into DNA. I show that 

high transcription rates correlate with high uracil density in the yeast genome, furthermore, I 

demonstrate that uracil incorporation at highly transcribed regions occurs during repair 

synthesis. In addition, I have characterized the roles played by two proteins, Dst1 and Def1, 

in the AP-induced transcription arrest.  

In chapter 3, I showed that there are a greater number of uracil residues 

incorporated into DNA following elevation of the rate of transcription, using two 

complementary approaches: (i) a long-qPCR technique to quantifies the density of uracil at 

specific loci and (ii) the expression of a mutant glycosylase to further determine the 

contribution of uracil-density and uracil-glycosylase activity at highly transcribed genomic 

loci. In addition to these data, I provide evidence to support the hypothesis that uracil is 

incorporated into DNA via DNA repair synthesis. This was shown by using DNA damaging 

agents to induce damage and repair and assessing the effect on uracil dependent-

mutagenesis and on uracil density in DNA. 

In chapter 4, I examined the roles of Dst1 and Def1 in the transcription-coupled 

repair of abasic sites (AP sites) derived from uracil. First I described a novel role for Dst1 in 

promoting mutagenesis by interfering with the repair of AP lesions. Dst1 is presumably 

functioning by inhibiting homologous recombination. In addition, I demonstrated that Def1 

participates in directing the transcription-coupled nucleotide excision repair (TCR) to those 

AP sites located in the highly transcribed regions. Surprisingly, its role in the regulation of 

TCR appears to be dependent on the yeast metabolic state. Overall, these studies 

contributed to the more comprehensive understanding of the mechanism underlying the 

transcription-associated mutagenesis resulting from the glycosylase-catalyzed excision of 

uracil bases from DNA. 
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5.2 Transcription levels and uracil DNA content 
 

Previous studies in yeast using a tetracycline-regulatable promoter reversion assay 

found that there is a linear and proportional relationship between the level of transcription 

and the rate of uracil-derived mutagenesis (Kim et al., 2007; Kim & Jinks-Robertson, 2009, 

2010). Specifically, mutations with a distinct signature, namely A:T to C:G transversions, 

were observed when base excision repair (BER) was disabled, as in apn1 or apn1 ntg1 ntg2 

strains. These mutations were dramatically reduced when the uracil DNA glycosylase, 

Ung1, was disabled and also when DUT1 was overexpressed. These results suggested that 

the mutagenesis observed was originating from the incorporation of uracil into DNA by DNA 

polymerases. The most surprising of these observations was that the mutations were almost 

completely suppressed when transcription of the reporter gene was repressed. These 

findings implied that the nucleotide composition in highly transcribed genomic regions is 

distinct from the other parts of the genome.  

I tested the above hypothesis of transcription-dependent elevation of uracil residues 

in DNA by directly quantifying uracil residues at defined genomic loci under high- and low- 

transcription conditions using long-amplicon qPCR method. This method revealed a uracil 

‘hotspot’ (i.e uracil enrichment at highly transcribed genomic regions). I observed a 2-fold 

increase in the uracil density at the pTET-lys2-TAA mutation reporter in ung1 strains when 

transcription was activated (Fig. 8). In addition to the pTET-regulated reporter, the long 

amplicon qPCR method indicated that the uracil content was higher at the highly transcribed 

TDH3 gene compared to the less transcribed CAN1 gene. Additional uracil quantitation was 

performed following the disruption of Dcd1, which has been shown to elevate the genome-

wide uracil incorporation (Bryan & Hesselberth, 2015) as well as uracil-dependent mutations 

(Fig. 7A). I showed a significant further increase in the uracil density at all three genomic 

locations tested when Dcd1 is disrupted (Fig.8). The ability to obtain equivalents results with 

two different primer sets targeting the region with pTET-lys2-TAA reporter and the elevated 
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uracil density measured in dcd1 mutants consistent with the known role of Dcd1 protein 

reinforce the validity of the long qPCR method in quantitatively measuring the genomic 

uracil density in an accurate and reproducible manner.  

The observation of general variation in uracil content in the genome has been 

previously implied in yeast (Bryan et al., 2014). It was demonstrated that replication origins 

are completely depleted of uracil residues and that altering nucleotide biosynthesis 

misregulates uracil-incorporation into DNA. To my knowledge, the findings described in this 

thesis are the first to directly highlight the correlation between the rate of transcription and 

the genomic uracil content. It is unknown whether the transcription-dependent regulation of 

uracil DNA content is conserved in humans and other organisms; however, due to the 

conservation of the transcription-associated mutagenesis (TAM) phenomenon, the 

preservation of major nucleotide biosynthesis enzymes between different species, and the 

importance of uracil DNA regulation, we suspect that this process would be conserved 

across most organisms.  

Even though we observe a significant difference in uracil DNA content between 

highly transcribed genomic loci and loci transcribed at low rates, the uracil quantitation 

results do not directly correlate with the mutation rates results. For example, in apn1 strains, 

the mutation rate at the LYS2 reporter gene is elevated by 20-fold when the transcription is 

fully activated, while the uracil quantitation indicates a 2-fold difference in uracil content. 

This suggests that there are additional factors in addition to uracil DNA content, that could 

explain the increases in the mutation rates observed when transcription is activated. One of 

these factors could be a change in the activity of the uracil DNA glycosyase during 

transcription. To test this, I utilized a mutant glycosylase, CDG, which excises undamaged 

cytosines, in addition to uracil residues. The rationale behind the experiment is that if the 

glycosylase activity is not affected by transcription, then the rate of cytosine-derived 

mutations would remain the same whether the transcription of the reporter is activated or 
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repressed. However, if the glycosylase activity were enhanced by high transcription, then 

the number of cytosine-dependent mutations would increase when transcription of the 

reporter gene is highly transcribed. Surprisingly, the expression of this glycosylase led to 

only a small but still significant (~2 fold) transcription-dependent increase in the rate of 

cytosine-dependent mutations. This increase in cytosine-dependent mutations was much 

less than the 10-fold increase in uracil-dependent mutations that was observed. These 

observations suggest that the activity of the glycosylase is slightly enhanced during 

transcription; however, the difference observed in uracil-dependent mutagenesis with 

transcription is mainly a result of the higher uracil DNA content at these regions. Other 

potential explanations for the differences between the extents of elevation in mutagenesis 

and of increase in the uracil content include factors such as factors such as replication 

timing, position and orientation of the transcription machinery as well as the position of the 

replication fork that can modulate the incorporation of uracil into DNA.  

Future studies should determine the correlation of uracil content and transcription 

genome-wide and further determine the location of genomic uracil genome-wide. This could 

be performed using two approaches 1) utilizing a biotinylated alkoxyamine that can label AP 

sites to perform a pull-down of uracil-enriched DNA followed by deep sequencing technique, 

and 2) directly identifying the positions of uracil in DNA by adding the sequence-specific 

linkers to the breaks generated from sites of uracil, followed by deep sequencing. Based on 

the results with the long-qPCR technique, I anticipate that highly transcribed genomic loci in 

yeast, such as rDNA and yeast transposon elements (TYs), would be significantly enriched 

with uracil. 

5.3 Repair-dependent introduction of uracil into DNA 
 

Using the long-amplicon qPCR and CDG expression, I have shown that there is 

increased uracil density at highly transcribed genomic loci. These uracil residues, if present 
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on the transcribed strand, have the potential to affect the binding of transcription factors, 

thereby affecting gene expression as previously shown (Luhnsdorf et al., 2014). The 

question of how transcription, a normal cellular process, can influence the density of a non-

canonical nucleotide in DNA is yet to be elucidated. I hypothesize that the answer lies in the 

previous observations that highly transcribed genomic loci are more susceptible to 

spontaneous DNA damage (Gaillard & Aguilera, 2016). It is possible that the DNA synthesis 

that accompanies repair of transcription-induced damage occurs in regions with a high 

concentration of dUTP; this would lead to an increase in uracil incorporation into DNA. This 

could occur because eukaryotic DNA polymerases utilize dUTP as a substrate during DNA 

synthesis as efficiently as they use dTTP. This implies that the concentration of dUTP 

relative to dTTP in the nucleotide pool is the main limiting factor in the incorporation of uracil 

into DNA. 

  I showed that uracil incorporation into DNA can occur during repair of the damage 

introduced by DNA damaging agents such as 5-FU, 4NQO and CPT. Exogenously 

introducing damage (and thus subsequent repair) using 5-FU, CPT and 4NQO led to an 

increase in the uracil-dependent mutations at the reporter gene in the absence of BER (Fig. 

9). Additionally, inducing damage using 5-FU and 4NQO led to an increase in the amount of 

uracil in DNA throughout the genome according to the experiments employing the chemical 

labeling of uracil-derived AP sites (Fig 12). I predict that this repair-dependent introduction of 

uracil into DNA is not only limited to damage introduced by 4NQO and CPT, but that it would 

occur following any type of DNA damage that activates repair, including those induced by 

high transcription.  

Future studies should examine the effect of other DNA damaging agent besides 

4NQO and CPT, which both induce recombination. It would be especially informative to 

utilize DNA damaging agents known to activate different repair pathways including BER, 

NER, Break-Induced Replication (BIR) and others. This would aid in further understanding 
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the specific repair synthesis pathways involved in the incorporation of uracil into DNA. In 

addition, it would be important to elucidate whether non-canonical, co-transcriptionally 

formed DNA structures, such as G4-DNA or R-loops, could induce damage to DNA and 

enhance incorporation of uracil into DNA. I anticipate that the degree of uracil incorporation 

would depend on the extent of the repair synthesis. For example, the DNA synthesis 

associated with recombination involves several kilobases of DNA surrounding the break and 

would lead to the higher uracil-incorporation in comparison to the synthesis associated with 

NER, which is only up to ~25bp per repair event. Interestingly, a high rate of mutagenesis, 

up to 2800-fold higher than spontaneous events, has been associated with BIR, a sub-

pathway of homologous recombination that involves the repair of one-ended breaks and is 

associated with synthesis of up to hundreds of kilobases (Deem et al., 2011; Hicks et al., 

2010; Kramara et al., 2018). These mutation events were shown to result from errors made 

by DNA polymerases including pol ζ and pol ε. It would be of interest to determine whether a 

significant amount of uracil is incorporated during the error-prone BIR-dependent repair 

synthesis. This could be explored by determining the effect of uracil-derived mutagenesis of 

the deletion of POL32, which encodes a non-essential subunit of pol δ required for BIR. 

These studies would further expand the understanding of the role played by the repair 

synthesis in the incorporation of uracil into DNA by elaborating on the specific repair 

pathways involved. 

The mechanism that most likely explains how repair synthesis leads to the 

introduction of uracil into DNA lies in the cell-cycle specific regulation of dUTPase, which is 

highly expressed in S-phase (Cho et al., 1998; Ladner & Caradonna, 1997; Pardo & 

Gutierrez, 1990). dUTPase enzyme catalyzes dUTP into dUMP ensuring a low 

[dUTP]/[dTTP] in the nucleotide pool during replication (S-phase) and minimizes the 

incorporation of uracil during genome replication. For the DNA synthesis occurring outside 

of S-phase, such as that associated with repair, the available nucleotide pool has a relatively 
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higher [dUTP/dTTP] nucleotide pool. Therefore, the repair synthesis occurring during G1- or 

G2-phase of cell cycle has the higher risk of incorporating uracil into DNA. Reducing the 

[dUTP]/[dTTP] ratio by overexpressing dUTPase from the G1- or G2-specific promoters 

significantly reduced the mutation rates at the reporter under high transcription conditions 

(Fig. 14A and 14B). Interestingly, overexpressing dUTPase from the cell cycle specific 

promoters did not affect the mutation rates when transcription was lowered. These results 

indicate that the uracil incorporated into DNA during G1 or G2 is a main source of TAM 

(Fig.15). These data coupled with the fact that BIR is known to occur predominantly outside 

S-phase, specifically in G2/M phase, provide further impetus to determine whether this 

repair pathway is a major source of uracil incorporation into DNA (Kramara et al., 2018). 

In summary, chapter 3 of this thesis describes a novel mechanism for introducing 

uracil into DNA during damage-induced repair synthesis occurring outside of S-phase. One 

major missing gap is the demonstration of induction of repair synthesis by transcription. The 

positive correlation between transcription and DNA damage has previously been shown, 

however, a direct correlation of transcription and unscheduled DNA synthesis is still lacking. 

To test this, bromodeoxyuridine immunoprecipitation (BrdU-IP) can be employed to quantify 

BrdU incorporated into DNA outside of S-phase. BrdU, a thymidine analog can be efficiently 

incorporated into newly synthesized DNA. Using the reporter system, the rates of BrdU 

incorporation into DNA at different cell cycles can be monitored. It is expected that 

enhanced BrdU incorporation into DNA would be observed at the mutation reporter under 

the high transcription conditions, which is associated with the accumulation of spontaneous 

damage, compared to the low-transcription conditions. Overall, I hypothesize that this role 

played by transcription in changing the nucleotide composition locally, would apply to other 

types of non-canonical DNA residues whose quantity in the genome has been shown to be 

affected by the rates of transcription. For example, I suspect that a similar mechanism could 

explain the elevated levels of ribonucleotides-dependent mutations, at highly transcribed 
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genomic regions (Kim, Huang, et al., 2011; Nick McElhinny et al., 2010). This is especially 

intriguing because similar to dUTPase, RNR1, the gene encoding for a subunit of 

ribonucleotide reductase is regulated in a cell-cycle dependent manner to ensure the 

maintenance of optimal [dNTP]/[rNTP] ratio during replication in S-phase (Elledge & Davis, 

1990).   

5.4 Role of Dst1 in transcription elongation 
 

AP sites are necessary intermediates in the repair of many different types of DNA 

damage, including the excision of uracil from DNA. AP sites present on the transcribed DNA 

strand have been shown to block RNA polymerases; therefore, they interfere with 

transcription elongation. In addition to repair by BER, the TCR sub-pathway of NER can also 

remove AP sites that are located on the transcribed strand of DNA although the mechanism 

underlying this is poorly understood (Kim & Jinks-Robertson, 2010; Tornaletti et al., 2006). 

For example, it is unknown how different proteins interact with the stalled RNA polymerase 

at the AP lesion to allow for either the continued transcription elongation or the initiation of 

repair by TCR. In the TCR deficient apn1 rad26 strains, uracil-derived AP sites accumulate 

specifically on the transcribed strand. However, the effect in the apn1 rad26 strains is 

significantly less compared to the apn1 rad14 strains where NER (and therefore TCR) is 

completely abolished. These findings suggest that factors additional to Rad26 exist to direct 

TCR to transcribed strand through interaction with the stalled RNA polymerases.   

Dst1 has been implicated in TCR repair of several types of lesions, and it has been 

shown to be involved in transcription elongation (Awrey et al., 1997; Kuraoka et al., 2007). 

Dst1 restarts the backtracked RNA polymerase by stimulating the cleavage of the nascent 

RNA and realigning the 3’ end of the transcript with the active site, further promoting 

elongation. In Chapter 4 of this thesis, I described the role of Dst1 in TCR. Surprisingly, the 

deletion of DST1 resulted in an overall reduction in mutation rates both at the pTET-lys2-
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TAA reporter gene and at the CAN1 locus. This observation suggests that there is more 

efficient repair in the absence of Dst1; the presence of Dst1 interferes with the efficient 

repair of AP sites. Furthermore, the deletion of DST1 led to a significant increase in 

homologous recombination (HR). One hypothesis to explain these results is that, Dst1, 

through its interaction with the stalled RNA polymerase complex, prevents AP lesion-repair 

via recombination. In E. coli, GreA, the functional homolog of Dst1, was recently shown to 

interfere with the DNA break repair by HR. It was shown that the accumulation of 

backtracked RNA polymerases in the absence of GreA allows for DNA damage to be 

repaired via recombination (Sivaramakrishnan et al., 2017). I suspect that the same 

mechanism applies in the case of Dst1 in yeast because I observe enhanced recombination 

and reduced mutagenesis in the absence of Dst1. A straightforward study to determine the 

role of Dst1 in inhibiting HR repair would be to determine the ability of dst1 mutant to 

withstand double-strand break (DSB) damage. These mutants can be treated with DSB-

inducing chemicals such as Bleomycin and the sensitivity of the cells examined. The cells 

will be highly resistant to these drugs if the absence of Dst1 enhances DSB repair by HR. 

Future studies should also incorporate biochemical assays to further assess the role of Dst1 

in the AP site repair and recombination. 

5.5 Role of Def1 in transcription elongation 
 

Stalled/arrested RNA polymerase complex at lesions sites can be degraded to clear 

the way for the next round of transcription or for the repair proteins to assemble. In yeast, 

Def1 mediates the degradation of RNAPII in a ubiquitination and proteasome-dependent 

manner (M. D. Wilson et al., 2013; Woudstra et al., 2002).  In an attempt to further 

understand the mechanisms of the TCR repair of AP sites, I questioned whether Def1 allows 

for more efficient repair of AP lesions on the transcribed DNA strand by degrading the 

RNAPII. 
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The role of Def1 in the repair of AP sites was highly dependent on the growth 

conditions (Figure 21 and 22). Def1-disruption experiments were performed in media 

containing either glycerol/ethanol or dextrose as the major carbon source. In both 

conditions, Def1-disruption resulted in a significant increase in the mutations arising from the 

unrepaired AP sites on the transcribed strand in apn1 rad26 background, indicating that 

Def1’s function is important in TCR repair of AP sites. However, the mutation rates were 

significantly greater when cells were grown in dextrose than in glycerol/ethanol (Fig. 21 and 

22.)  

In yeast, the metabolic state has been shown to affect both the type and amount of 

endogenous DNA damage (Minesinger et al., 2006). The accumulation of reactive oxygen 

species (ROS) in yeast cells growing by respiration (glycerol/ethanol) and by fermentation 

(dextrose) was shown to be very distinct (Pan, 2011). It is possible that the difference in 

mutation rates with the deletion of DEF1 in these two growth conditions could be explained 

by the difference in the amounts of damages induced or alternatively, the difference in how 

the repair pathways might be regulated. Future studies should elucidate the effect of yeast 

metabolic state on mutagenesis including investigating the roles played by different stress 

inducers such as ROS or heat on not only the types and amount of DNA damage induced, 

but also the regulation of various DNA repair proteins.  

5.6 Overall Conclusions. 
 

This thesis has revealed a novel mechanism for introducing uracil into DNA and 

elucidated the role of Dst1 and Def1 in dealing with AP sites at highly transcribed loci. This 

is the first evidence for transcription-induced disproportionate distribution of uracil-DNA 

content. Overall, these studies further enhance our understanding of the mechanisms 

underlying the mutations associated with transcription, specifically those resulting from uracil 

misincorporation. If the correlation between the rate of transcription and the extent of uracil-



	
	

	 125	

incorporation into DNA content is conserved in higher organisms such as humans, then 

these findings will further contribute in the designing of more targeted antimetabolite 

chemotherapy agents. 
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