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Abstract 

MICRORNA FUNCTIONS IN UV-INDUCED 

CUTANEOUS SQUAMOUS CELL CARCINOMA 

Tran Nguyen, B.Pharm. 

Advisory Professor: Kenneth Y. Tsai, M.D., Ph.D. 

Cutaneous squamous cell carcinoma (cuSCC) is the second most common skin cancer, 

for which long term UV exposure and chronic wounding are the dominant risk factors. Despite 

these clinically established connections, little is understood about the early molecular response 

of human skin to UV exposure and its connection to acute wounding and cuSCC. Thus, our goal 

is to find common and specific signatures driven by UV-exposure and wounding as a means of 

developing new approaches for treating and preventing cuSCC. 

Here, we perform integrated analyses of RNA-seq and miR-seq on 3 datasets: (1) UV-

unexposed and acute UV-exposed human skin, (2) public dataset on acute wound healing and 

(3) our previously published dataset on normal skin and cuSCC from humans. We find that 

biological signatures and processes regulated by acute UV exposure and wounding has profound 

similarity.  

Through RNA-seq and miR-seq on matched normal skin and cuSCC tumors from 

humans and a UV-driven mouse model, as well as acute UV-exposed human skin, we were able 

to identify a group of miRs that change both in cuSCC development and following UV 
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exposure.  We previously reported that miR-21-5p and miR-31-5p overexpression correlates 

with the development of UV-induced cuSCC in human. This is also true for our analysis where 

we find that these miRs as well as miR-21-3p are upregulated by more than 6-fold in cuSCC 

(compared to normal skin) and more than 2.5-fold in UV-exposed skin (compared to unexposed 

skin). In addition, we identify that miR-340-5p and let-7i-5p are novel candidates that have not 

been previously linked to either cuSCC development or the UV response of human skin.   

This suggests that these changes in miRNA-RNA are important early events that 

regulated by both UV-exposure and wounding which eventually can promote cuSCC initiation. 

Thus, our findings suggest that UV-exposed skin, wound and cuSCC share various common 

signatures, which can be potentially validated as chemopreventive targets for cuSCC.  
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Chapter 1: Introduction 

1.1 Cutaneous Squamous Cell Carcinoma: Background and Motivation 

Cutaneous squamous cell carcinoma is the second most common skin cancer, surpassed 

only by basal cell carcinoma (1, 2). Annually, an estimated of over 250,000 new cases of cuSCC 

are diagnosed  in the United States (3).  In 2012, 3900 to 8700 people in the United Stated died 

from cuSCC. Although the exact incidence of cuSCC is unknown since it has not been included 

in national cancer registries, this incidence has been recorded to steadily rise during the last four 

decades in both men and women (Figure 1)  (3). Risk factors for cutaneous squamous cell 

carcinoma include chronic sun exposure, older age, and impaired immune surveillance with sun 

exposure being the main etiological factor (4).  It is well-established that actinic keratosis (AKs) 

are pre-neoplastic lesions that can progress to cuSCC. The rate of progression occurs at a 

statistically low of 10% annually (5).  
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Figure 1 

Increase in age-adjusted incidence of cutaneous squamous cell carcinoma in sun zone 2 by 

gender with average, plateau, and constant increase assumption incidence estimates ( X ). This 

figure is reproduced based on previously published figure (3) 
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From the clinician’s perspective, cuSCC is highly curable and more than 95% of cuSCC 

patients were cured with surgical excision (4). Nevertheless, there is a subset of aggressive 

cuSCC tumors recur or metastasize, resulting in a 2.1% risk of disease specific death overall (6, 

7). In immunosuppressed patients, cuSCC displays more rapid growth, has 13% risk of 

recurrence, and 5-8% risk of metastasis (8). Once a cuSCC has recurred, it has a much worse 

prognosis, with risk of metastasize to lymph nodes and distant organs cited as high as 45% (9).  

Given its steep rise in incidence, limited therapeutic options for advanced or metastatic 

disease and potential for poor outcomes, cSCC is emerging as a public health problem. Thus, 

understanding the genomic signatures of cuSCC can help identify potential predictive 

biomarkers that can dictate prevention and upfront treatment approaches.  

 

1.2 High-risk cutaneous squamous cell carcinoma  

Cutaneous squamous cell carcinoma (SCC) includes many subtypes with widely varying 

clinical behaviors, ranging from easy-to-manage indolent to aggressive tumors with significant 

metastatic potential. 

It is well documented that immunosuppressed patients due to solid organ transplantation 

are at greater risk of developing cSCC, with an estimated 65-fold increase compared to the 

general population (10). The cuSCC to basal cell carcinoma ratio is reversed in the 

immunosuppressed population. While cuSCCs make up 20% and basal cell carcinomas make up 

80% of NMSCs in immunocompetent patients (10, 11). These cancers are more aggressive, with 

an increased risk of metastases (12). Recurrence and mortality rates are also higher in patients 

who are immunosuppressed (5%) than those who are immunocompetent (1%) (13, 14). 
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In addition to immunosuppressed patients, patients who suffer from chronic skin 

injuries, such as wounds, or burns, are at increased risk of developing aggressive cSCC (13). 

Included in this subgroup are patients with a genetic predisposition to skin injury, including 

epidermolysis bullosa, xeroderma pigmentosum, and congenital dyskeratosis (13, 15, 16). 

 

1.3 Genomic background of cuSCC development 

Like other cancers, the development of cuSCC is likely a multi-step process, involving 

sequential acquisition of genetic changes. The genomic profile of AKs, the precursors of 

cuSCC, significantly overlaps that of cuSCC (17). Previously reported, cuSCC tumors features 

very high background mutation rate with a significant enrichment in UV signatures (Figure 2) 

(17, 18). UVB exposure is known to cause C>T transitions often following a pyrimidine base. 

The mutation spectrum of cuSCC is quite similar to that of head and neck cutaneous squamous 

cell carcinoma (HNSCC) except for the UV signature. In cuSCC, high frequencies of 

inactivating mutation were found to occur in major tumor suppressors TP53, CDKN2A, 

NOTCH1 and NOTCH2 (17-19).  

1.4 UV spectrum of solar radiation (UVR) 

Ultraviolet (UV) rays are a form of invisible energy given off by the sun. Based on 

wavelength solar UV radiation (UVR) is divided into three ategories, UVA (320-400nm), UVB 

(280-320nm) and UVC (100-280nm). Minute amount of UVC reaches the earth surface by 

penetrating the ozone layer of atmosphere and for this reason UVC is not physiologically 

relevant for studies of human skin cancer. On the other hand, UVA rays account for the majority 
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(95%) of the UV radiation reaching the earth's surface; terrestrial radiation from the midday sun 

comprises about 95% UVA and 5% UVB [17]. UVA is mainly responsible in the aging of the 

cells and some DNA damage. On the other hand, UVB rays cause direct DNA damage and 

responsible for sunburns. UVA rays can penetrate deeply into the skin and mainly cause dermal 

compartment damage while UVB damage is mainly in the epidermal compartment. UV 

radiation can cause an increase in collagen breakdown and abnormal deposition of elastin [18, 

19]. This process and it’s pathological manifestation is referred to as solar elastosis. In addition, 

UV radiation can cause an increase in free radicals resulting in damage of cellular functions and 

DNA damage. Moreover, UV radiation can suppress the immune system by inducing release of 

certain cytokines, inhibiting antigen presentation, and enhancing leukocytes apoptosis [20]. 
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Figure 2 

 Key mutations in cSCC. Total number of mutations per patient is shown on the top. 

Inactivating mutations include nonsense, frameshift, and splice site events. This figure is 

reproduced based on previously published figure (17).   
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At the chromosomal level, several studies have shown that cuSCC can display  complex 

karyotypes with large numbers of allelic imbalances (20, 21) .Moreover, widespread gains and 

losses of chromosomal fragments have been reported to be already present in AKs (22).  

It has been challenging to identify drivers of progression to cuSCC from normal skin as 

multiple studies show little overlap in differentially expressed (DE) genes in their genome-wide 

transcriptional profiles. Majority of the studies have employed cuSCC cell lines or small cohorts 

of unmatched normal skin, AKs and cuSCC tissues on several platforms known to have 

potentially high annotation error rates (23-26). Using normal skin, AKs and cuSCC tissues 

derived from patients received immunosuppressive drugs, Hameetman at el. suggested that the 

NFκB1 and TNF pathways activated as early as AKs stage while RAS and MYC oncogenic 

pathways appear to be specifically activated in cuSCC (23). Using cross-species approach on 

sporadic cuSCC in human and UV-induced cuSCC in mouse, our lab has identified several key 

early transcriptional drivers of cuSCC include E2F, ELK1 and NFY (17). These early findings 

serve as foundation for further transcriptomics studies of UV-induced cuSCC. 

1.5 UV-induced hairless mouse model 

In cuSCC research, there are currently two types of mouse model being widely used. 

The differences lie on how the tumors were induced. The first one is the two-stage chemically 

induced skin carcinogenesis model (27). In brief, a subcarcinogenic dose of carcinogen 7,12-

dimethylbenz[a]-anthracene (DMBA) (Figure 3) was applied onto the mouse skin, followed by 

repeated application of tumor promoting agent  12-O-tetradecanoylphorbol-13-acetate (TPA). 

This model allows the initiation and promotion stages can be distinctly separated both 
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operationally and mechanistically. In lesions initiated by this method, mutations in Hras1 (A → 

T (182) transversion in codon 61) Kras, and Trp53 were observed (28-31). Although the 

chemically-induced mouse model proved to be extremely useful and faithful in creating 

papillomas and cuSCCs, the need for a mouse model that better captured the genomic features 

of human UV-induced cuSCC emerged.  

 

 

Figure 3 

Two-stage model of skin carcinogenesis in mice 
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This figure is reproduced based on previously published figure (27).  

During initiation, topical application of a sub-carcinogenic dose of a mutating agent 

induces mutations in target genes in keratinocyte stem cells. Repeated topical application of a 

promoting agent begins two weeks after initiation and continues for the duration of the study. 

Papillomas begin to arise after approximately 6–12 weeks of promotion and a fraction begin to 

convert to SCC after approximately 20 weeks. Representative H&E stained sections of normal 

skin, hyperplastic skin, a papilloma, and a SCC are presented. All mice were handled in 

accordance with institutional and national regulations. This figure is reproduced based on 

previously published figure (27). 

The second cuSCC mouse model is UV-induced SKH1 hairless mouse model. Tumors 

induced in these mice resemble both at the morphologic and molecular levels, UV-induced skin 

malignancies in human.  Although there are various strains of hairless mice, outbred albino 

SKH1 is the strain most extensively used for Wound healing, acute photobiologic responses, 

and skin carcinogenesis. We chose this model to avoid chronic irritation as a confounding 

variable in our studies that is due to depilation of mice. In addition, with this model we can 

eliminate the effects of hair cycle on skin carcinogenesis.  

Murine Hr gene locates at the 70Mb on mouse chromosome 14. In mice, Hr gene 

encodes a ~130kDa protein (32). The HR protein is a transcriptional co-repressor, binding to 

thyroid hormone, vitamin D, and retinoic acid receptor-related orphan receptors but not to 

retinoic acid or glucocorticoid receptors (33). Embryonically, Hr is expressed in various tissues 

and highly expressed in both hair follicle and interfollicular keratinocytes of epidermis by birth. 

The mutant allele that is carried by SKH1 mice is autosomal recessive, hr, which has an 
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aberrant splicing due to stable integration of a retrovirus into the 6th intron of the gene. In 

human, two autosomal recessive diseases are associated with Hr mutations. Various studies 

have shown that for normal hair growth Hr is necessary and sufficient (34). Hair growth in 

hairless mice is normal during the first hair cycle; however, mice rapidly lose hair starting 

cephalically and proceeding caudally(34). During consecutive hair cycles, follicles develop 

abnormally with characteristic histological findings of utriculus, deep dermal cysts, and 

sebaceous gland hyperplasia (34). 

Each mouse can produce multiple skin tumors, independent of one another, and this 

feature can be used to discern the rate of development and individual aggressiveness of each 

tumor. Tumor progression starts from epithelial hyperplasia which then progresses to papilloma 

and eventually into carcinoma. From this progression sequence, we can identify markers for 

tumor initiation, promotion and progression. Hairless mice have been shown to be sensitive to 

development of UV-induced carcinoma that have similar pattern of mutations as human cuSCC. 

Of important note, haired mice are less susceptible to UVR immunosuppressive effects than 

nude mice. In the SKH-1 Hairless mouse model of UV-induced cuSCC, p53, RAS, and 

CDKN2A are similarly affected as seen in human cuSCC [7-16].  
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Figure 4 

Cross-species transcription factor motif analysis reveals major drivers of cuSCC 

development. 

(a) Global view of transcription factors with target genes enriched across the entire 

NS/CHR to AK/PAP to cuSCC progression sequence. Directionality reflects the significant 
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upregulation (above the line) or downregulation (below the line) of predicted targets of the 

listed transcription factors. Some factors have targets that are enriched in opposite directions 

across distinct transitions. The transcription factors highlighted in red were identified in both 

TRANSFAC and LME-based analyses. (b) Network analysis demonstrates that core 

transcriptional drivers are highly interconnected in both human (left) and mouse (right). The 

bolded lines delineate connections that are significant by Fisher exact test (P<10−4). (c) The 

LME model of mRNA expression changes across cuSCC development in both species 

demonstrates that the vast majority of significant gene expression changes occur in the early 

transition from NS/CHR to AK/PAP. This figure is reproduced based on previously published 

figure (17). 

 

1.6  MicroRNA landscape in UV-induced cutaneous squamous cell carcinoma 

1.6.1. MicroRNA biogenesis 

MicroRNAs (miRNAs) comprise a class of non-coding regulatory RNAs of 20-25 

nucleotides that regulate transcription of numerous genes mainly by binding to complementary 

sequences on the 3′ untranslated regions (3′-UTRs) of the target genes. miRNA biogenesis is a 

complex but fairly well understood process. The biogenesis of miRNAs initiated in the nucleus 

and complete in the cytoplasm. In the nucleus, primary transcripts (pri-miRNA) are transcribed 

by RNA polymerase II and cleaved into precursor miRNAs (pre-miRNAs) by the ribonucleases 

Drosha and DGCR8. Then, pre-miRNAs are exported into the cytoplasm for additional cleavage 

by a ribonuclease called Dicer. The mature miRNA is a part of the RNA-induced silencing 
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complex (RISC) where they bind to a specific seed sequence on the 3’UTR of target genes. If 

the 3′-UTR site is fully complementary to the miRNA, the mRNA is targeted for 

degradation (35). Since the first discovery of miRNAs in the early 1990s, a large amount of 

studies have focused on uncovering the biological relevance of these small RNAs in skin cancer 

initiation, development and metastasis.  

 

Figure 5  
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 Nuclear events in the miRNA biogenesis pathway. This figure is reproduced based on 

previously published figure. (36) 

1.6.2. MicroRNAs in skin cancer 

Current data established the crucial roles of some miRNAs in controlling the transition 

of skin stem cells along certain differentiation lineages (37-39). Here, miRNAs are involved in 

controlling the expression of key regulators of stem cell activity in normal healthy skin and hair 

follicles. miR-203 regulates the p63-dependent proliferative potential of epithelial precursor 

cells during keratinocyte differentiation by repressing DeltaNp63 (40). miR-125b control stem 

cell proliferation, fate commitment and differentiation (38). miR-31 ensures proper hair follicle 

growth by targeting a number of growth regulatory molecules and cytoskeletal components of 

the WNT and FGF signaling pathways (41). 

A large body of literature shows that miRNAs are abnormally expressed in tumors. 

While tumors often overexpress oncogenic miRNAs (e.g., miR-155, miR-21 and miR-17∼92 

miR family) that promote cancer cells tumorigenesis, certain tumor suppressor miRNAs are 

regularly downregulated in cancers (e.g., let-7, miR-16) (42, 43). Due to this, miRNAs might 

represent important diagnostic tools in cancer as well as possible targets for anticancer 

treatments. Much research in the area has found that in many cases, a specific microRNA can 

be oncogenic in one cancer and tumor suppressor in another cancer. For example, anti-

inflammatory miR-223 promotes gastric cancer metastasis by targeting EPB41L3 while 

suppresses proliferation and migration of nasopharyngeal carcinoma cells through MAFB (44, 
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45). Therefore, the need to characterize miRNA-mRNA regulatory networks in specific 

cancer settings is crucial.  

Like in other cancers, miRNAs have been associated with the initiation and progression 

of squamous cell carcinoma of the skin by multiple studies. miR-21 was found to be the only 

miRNA consistently overexpressed in 540 clinical samples in of cancer patients. The 

importance of miR-21 in tumor development has been documented in multiple studies including 

melanoma (46). A significant upregulation of miR-31, a proto-oncogene like miR-31 was 

observed. miR-31 can have tumor-suppressive and oncogenic roles in different tumor types. In 

colorectal cancer, miR-31 expression is associated with the progression of the disease (47).  

An adequate amount of evidence points to the conclusion that miRNAs play an 

important role in biology of cuSCC. Specific miRNAs might be used as diagnostic and 

prognostic markers but also to develop targeted or personalized anti-cuSCC treatments. 

Understanding in detail the function of miRNAs in cuSCC will open new opportunities for 

modern medicine and clinical application. 

1.6.3. MicroRNA target identification 

Computational prediction tools continue to be the first routine step in identifying 

miRNA targets. These tools are usually based on the phylogenetically conserved 

complementarity of miRNAs to their potential target genes (48). However, seed pairing may not 

be an fully accurate predictor (49). Therefore, the interaction between microRNA and its target 

genes must still be validated to reveal the functions of microRNA.  The validation method 

involves well-established techniques, such as qRT-PCR, luciferase reporter assay and western 
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blot (50). Western blot and qRT-PCR measure the expressions level of protein and the mRNA 

level, respectively. Reporter assays are dependable methods for elucidating the direct interaction 

between microRNA and its target gene (51).  

 

There are currently two types of miRNA targets prediction tools: databases with 

experimental data and computational algorithms. The most highly cited experimental public 

database is miRTarBase (52) and miRWalk with miRTarBase being more frequently updated. 

These experimental databases collect data using various methods including: PCR, Western blot, 

proteomics, microarray, etc. (Table 2).  

 

Database 

name 

Number of entry Version/year Reference 

TarBase 

(53) (54) 

miRNA–gene 

interactions:65 814 

Species :24 

Paper curate: 10,000 

TarBase (2006) 

Tarbase 5 (2008) 

Tarbase 6.0 

(2012) 

TarBase (2014) 

http://diana.imis.athenainnovation. 

gr/DianaTools/index. 

php?r=tarbase/index 

miRecords 

(55) 

miRNA-gene 

interaction: 2705 

miRNA: 664 

gene:1907 from 9 

miRecords 

(2008) 

last updated 

April 2013 

http://mirecords.biolead.org/ 
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animal 

Curated from low 

through put 

experiment:2028 

miRGator 

(56) 

Mature miRNA: 1856 

Validated target:4745 

Predicted target :6 218 

792 

miRGator (2008) 

miRGator (2011) 

miRGator (2013) 

http://mirgator.kobic.re.kr/ 

http://genome.ewha.ac.kr/miRGator/ 

miRWalk 

(57) 

858,750,070 

interactions 

between 11,748 

miRNAs and 

308,700 genes 

miRwalk 1.0 

(2010) 

miRWalks2.0 

(2014) 

http://www.umm.uni-heidelberg. 

de/apps/zmf/mirwalk/ 

miRTarBase 

(52) 

Species: 18 

Target genes: 22,563 

miRNAs: 3786 

miRNA–target 

interactions: 

366,181 Articles: 

4966 

miRTarBase 1.0 

(2010) 

miRTarBase 4.0 

(2014) 

miRTarBase 

5.0(2015) 

miRTarBase 

6.0(2016) 

http://mirtarbase.mbc.nctu.edu. 

tw/index.php 
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miRTarBase 

7.0(2017) 

miRSel (58) Human (2112 pairs) 

Mouse (895 pairs) 

Rat (231pairs) 

Other organism: (452 

pairs) 

miRSel (2010) http://services.bio.ifi.lmu.de/ 

mirsel/ 

starBase 

(59) 

miRNA-circRNA: 

9000 

miRNA-pseudogene: 

16 000 

protein–RNA: 285 

000 

StarBase (2011) 

Starbase (2014) 

http://starbase.sysu.edu.cn 

PMTED 

(60) 

miRNA:1897 

Target: 5449 

Species:12 

Experiment:311 

Assay:3492 

PMTED (2013) http://pmted.agrinome.org/ 

ComiRNet 

(61) 

5 million MTIs 

miRNA: 934 

mRNA:30,835 

ComiRNet(2015) http://www.comirnet.di.uniba.it 
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biclusterhierarchies:15 

MtiBase 

(62) 

Gene: 15,546 

miRNA: 4420 

4 400 000 CDS - 

470 000 5′UTR 

miRNA target sites 

SNP influence 

290,000 CDS 

and 28,000 5′UTR 

miRNA 

target sites 

MtiBase(2015) http://mtibase.sysu.edu.cn 

 

Table 1.   

miRNA target databases based on experimental data 

 

Current prediction algorithms based on structural characteristics can be categorized into 

three groups: ab initio, machine learning and hybrid approaches (63, 64). The ab initio 

algorithms are based on computational models that do not use the experimental data directly but 

instead, make the prediction based on the structural features extracted from data. This approach 

usually leads to high false positive. Machine learning approaches, on the other hand, use 

computational algorithms that rely directly on experimental data for training. However, negative 

interactions with experimental support are usually discarded. The limitations of ab initio and 



20 

 

machine learning algorithms, have led to the development of hybrid algorithms with features 

from both methods incorporated. A summarizing table of algorithms can be found below. 

 

Database name Class Reference 

miRanda (65) ab initio  

weighted dynamic programming algorithm  

http://www.microrna.org 

TargetScan (66) 

(67) (68) 

ab initio  

ranked base on hierarchy (6mer 

offset < 6mer < 7mer-A1 < 7mer-

m8 < 8mer) 

http://www.targetscan.org/ 

PicTar (69) ab initio  

targets are ranked based on a score derived 

using a hidden Markov model  

http://pictar.mdc-berlin.de/ 

RNA22 (70) ab initio  

pattern discovery using Markov chain 

http://cbcsrv.watson.ibm.co

m/rna22.html 

RNAhybrid (71) ab initio  

computes the minimum free energy 

http://bibiserv.techfak.uni- 

bielefeld.de/rnahybrid/ 

PITA (72) ab initio  http://genie.weizmann.ac.il

/pubs/mir07/ 

EiMMo (73) ab initio  

Bayesian method 

(http://www.mirz.unibas.ch

/ElMMo2/ 

http://www.microrna.org/
http://www.targetscan.org/
http://www.pictar.mdc-berlin.de/
http://www.cbcsrv.watson.ibm.com/rna22.html
http://www.cbcsrv.watson.ibm.com/rna22.html
http://www.genie.weizmann.ac.il/pubs/mir07/
http://www.genie.weizmann.ac.il/pubs/mir07/
http://www.mirz.unibas.ch/ElMMo2/
http://www.mirz.unibas.ch/ElMMo2/
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DIANA (74) ab initio  http://diana.cslab.ece.ntua.

gr/microT/ 

miTarget (75) SVM http://cbit.snu.ac.kr/xmiTar

get/introduction.html 

Ensemble 

Algorithm 

(76) 

SVM a post-processing step for 

miRanda 

NBmiRTar (77) Naïve Bayes classifier post-processing step to 

miRanda 

MirTarget2 (78) SVM  http://mirdb.org 

MiRTif  SVM 

Combines sets from  

miRanda, PicTar and TargetScan 

http://mirtif.bii.a-

star.edu.sg/ 

MTar (79) SVM http://www.rgcb.res.in/dow

nloads/Mtar.rar 

TargetSpy (80) automatic feature selection 

HITS-CLIP 

http://www.targetspy.org/ 

mirSVR (65) miRanda followed by a support vector 

regression 

http://www.microrna.org 

mirror (81) unified platform generated from several ab 

initio predictors   

http://www.proto.cs.huji.ac

.il/mirror/search.php 

http://www.diana.cslab.ece.ntua.gr/microT/
http://www.diana.cslab.ece.ntua.gr/microT/
http://www.cbit.snu.ac.kr/xmiTarget/introduction.html
http://www.cbit.snu.ac.kr/xmiTarget/introduction.html
http://www.mirdb.org/
http://www.mirtif.bii.a-star.edu.sg/
http://www.mirtif.bii.a-star.edu.sg/
http://www.rgcb.res.in/downloads/Mtar.rar
http://www.rgcb.res.in/downloads/Mtar.rar
http://www.targetspy.org/
http://www.microrna.org/
http://www.proto.cs.huji.ac.il/mirror/search.php
http://www.proto.cs.huji.ac.il/mirror/search.php
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miREE (82) hybrid algorithm http://didattica-

online.polito.it/eda/miREE/ 

 

Table 2 

miRNA target prediction tools based on mathematical models 

 

Identifying the target of a specific miRNA is crucial in understanding the role of the 

miRNA in biological processes. MiRNA, however, can target thousands of genes (66, 83). Over 

the better part of the last two decades, experimental and computational prediction tools have 

been developed to facilitate microRNA research (63, 64).  Although each has predictive power, 

they all have limitations based on the scoring and integration of features into the 

tool. Understanding the principle of these prediction methodologies will aid in the 

appropriate tools selection and tool output interpretation. 

 

 

1.7 Pathway analysis for genome-wide association study data: An overview 

  High-throughput experiments (e.g. microarray, next-generation sequencing, or 

proteomics) have transformed biomedical research by enabling comprehensive monitoring of a 

biological system. Analysis NGS data typically yields a useful list of differentially expressed 

genes or proteins. However, this gene list of thousands of rows often fails to provide insights 

into the underlying biology of the condition being studied. To reduce the complexity of the data, 

one approach has been to group long lists of individual genes into smaller sets of related genes 
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or proteins. Researchers have developed a large number of pathway databases (e.g. KEGG (84), 

Ingenuity, MSigDB, Wikipathways) to help with this task. The pathway databases describe 

biological processes, components, or structures in which individual genes and proteins are 

known to be involved in, as well as how and where gene products interact with each other 

(Table 1) (85-87).  

 

 

PDB Name Pathway focus URL Y.O.R. Formats 

EcoCyc M,S biocyc.org 1995 SBML, 

BioPAX 

KEGG M,S,D kegg.jp 1996 BioPAX 

RegulonDB GR regulondb.ccg.unam.mx 1997 BioPAX 

MetaCyc M metacyc.org 1999 SBML, 

BioPAX 

STRINGDB PPI string-db.org 2000 PSI-MI 

PANTHER S,D,PS pantherdb.org 2004 SBML, 

SBGN, 

BioPAX 

Gene Ontology PPI,M,S geneontology.org 2000   

REACTOME M,S,D reactome.org 2005 SBML, 

SBGN, 

http://biocyc.org/
http://kegg.jp/
http://regulondb.ccg.unam.mx/
http://metacyc.org/
http://string-db.org/
http://pantherdb.org/
http://geneontology.org/
http://reactome.org/
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BioPAX, 

PSI-MI 

MSigDb M,S,GR broadinstitute.org/gsea/

msigdb 

2005   

Ingenuity 

Knowledge Base* 

PPI,PCI,M,S,GR,

D 

ingenuity.com 2005   

NCI PID S,D pid.nci.nih.gov 2006 BioPAX 

WikiPathways M,S,D wikipathways.org 2008 BioPAX 

Small Molecule 

Pathway DB 

M,S smpdb.ca 2009 SBML, 

BioPAX 

ConsensusPathD

B 

PPI,PCI,M,S,GR consensuspathdb.org 2009 BioPAX, 

PSI-MI 

Pathway 

Commons 

PPI,PCI,M,S pathwaycommons.org 2010 BioPAX 

 

Table 3 

Pathway databases. A brief example of the diversity of available PDBs found online. The 

second column shows the kind of biological focus pursued by each database: (PPI, protein-

protein intereactions; PCI, protein-compound interactions; M, metabolic; S, signaling; GR, gene 

regulation; D, diagrams; PS, protein sequence). The last column addresses the standard pathway 

languages adopted to provide data. Additionally, in the third column the links to web sites are 

http://broadinstitute.org/gsea/msigdb
http://broadinstitute.org/gsea/msigdb
http://ingenuity.com/
http://pid.nci.nih.gov/
http://wikipathways.org/
http://smpdb.ca/
http://consensuspathdb.org/
http://pathwaycommons.org/
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supplied. YOR, Year of release. *Commercial database. This table is reproduced based on 

previously published data. 

1.7.1 Over-Representation Analysis (ORA): First Class pathway analysis  

ORA approach has become a routine task in functional genomics studies. The basic 

hypothesis in ORA is that relevant pathways can be detected if the proportion of differential 

expressed genes, within a given pathway, exceeds the proportion of genes that could be 

randomly expected. The confidence level of overlapping is calculated using statistical 

methods such as hypergeometric, chi-square, or binomial distribution. Popular tools 

implementing this idea include DAVID (88), BINGO (89), and GeneMania (90).  

Despite the availability of a large number of tools and their widespread usage, traditional 

ORA have a number of limitations. First, the different statistics used by ORA are independent of 

the measured changes (85). This means that these tests consider the number of genes alone and 

ignore any values associated with them such as fold-changes or significance of changes. By 

discarding this data, ORA treat each gene with equal weight or importance and assume that each 

gene is independent of the other genes. Assuming independence between genes amounts to 

“competitive null hypothesis” testing, which ignores the correlation structure between genes 

(85).  For example, a gene may act as the regulator of a number of genes inside the same 

pathway, and the perturbation of this gene may have a larger impact on the pathway than the 

perturbation of its target genes do. Consequently, the estimated significance of a pathway may 

be biased or incorrect. Second, ORA uses arbitrary user cut-off threshold, that leaves out 

potentially important information and generates result variability (91). To date, there is no rule 
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of thumb for establishing a cut-off threshold. Finally, ORA assume that each pathway is 

independent of other pathways, which is contrary to the acknowledgement of interaction 

between pathways (86, 92). To find a more precise model of biological systems, pathway 

analysis has to evolve to address the discussed limitation. This led to the second class of 

pathway analysis method.  

1.6.2 The Second Generation: Functional Class Scoring (FCS)  

These methods work under the main hypothesis that although large changes in gene 

expression have significant effects on a pathway, weaker but coordinated changes in the genes 

that assemble the pathway have an impact on the overall pathway state. In this way Functional 

Class Scoring (FCS) methods use all the available measurements in NGS data to evaluate their 

enrichment scores, but still using pathways as gene sets to perform their computations. FCS 

methods use a three-step framework that consists of gene-level statistics, pathway-level 

statistics and assessment of the statistical significance of the pathway-level statistic.  

An important improvement of FCS methods over ORA is that they are built to use all 

available measurements from NGS data. They do not need an arbitrary cut-off threshold of 

differentially expressed genes. Also, they can detect differences between pathways that are 

barely passing the differentially expressed thresholds and the ones that are passing them with 

significance levels. They can also detect coordinated associations between genes and their 

belonging pathways.  
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One of the first and most popular methods deploying the FCS approach is the Gene Set 

Enrichment Analysis (93), which was developed by researchers from the Broad Institute for 

gene expression analysis from microarray data. In brief, GSEA uses a list of ranked genes in 

accordance to their differential gene expression between two biological states (93). Then, 

evaluates their distribution on pre-defined gene sets, (i.e., gene sets from the MSigDB) thus 

computing an enrichment score (ES) for each set of genes (through a Kolmogorov-Smirnov 

pathway-level statistic) to determine whether it shows statistically significant, concordant 

differences between two biological states (93). 

Another popular FCS tool is Ingenuity Pathway Analysis (IPA) canonical pathway 

owned by QIAGEN (Hilden, Germany). IPA charges a user fee and maintains their own 

knowledge base to compare gene expression data to. They, however, incorporate causal 

analytics tools in their ‘Upstream Regulator Analysis', ‘Mechanistic Networks', ‘Causal 

Network Analysis' and ‘Downstream Effects Analysis'. In particular, IPA uses two 

measurements that address two independent aspects of the inference problem: an enrichment 

score (Fisher’s exact test) that measures the overlap significance, and a Z-score assessing the 

match of observed and take direction of change into account. Here, Z-score serves as both a 

significance measure and a predictor for the activation state of the regulator (94). This is a 

significant advancement over traditional FCS tools which just look for statistical enrichment in 

overlap to sets of genes.  

Although an improvement over ORA, FCS has several setbacks. First, they do not take 

the relationships between pathways components or pathway network configuration into account 
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(95).  This issue has been partially addressed by Ingenuity causal network analysis (94). Second, 

similar to ORA, FCS analyzes each pathway independently from each other, not accounting for 

overlapping between them or the influence they can exert over another (92). This concern has 

been partly addressed by Enrichment Map, which groups dependent gene-sets into network 

clusters, enabling researchers to quickly visualize major enriched functional themes. Enrichment 

map utilizes GSEA output results and was developed as an add-on application in the Cytoscape 

software (96). However, the remaining unbridged gaps suggest opportunities in the field to 

explore. 

1.6.3 The Third Generation: Pathway Topology (PT)-Based Approaches 

Beside simple gene lists, publicly available pathway databases also provide vast amount 

of information about genes that interact with each other in a given pathway, how they interact 

(e.g., activation, inhibition, etc.), and where they interact (e.g., cytoplasm, nucleus, etc.). ORA 

and FCS methods dramatically under-utilize the knowledge that such pathways are meant to 

capture. Thus, if the pathways are perturbed with new connections between the genes, so long as 

they contain the same set of genes, ORA and FCS will return exactly the same results.  

The key hypothesis of pathway topology (PT)-based analysis is that interactions found in 

pathway topology, annotated in pathway databases, bear information for interpreting correlated 

changes between pathway components. PT-based methods can be seen as extensions of the 

ORA and FCS methods, as they perform along the same initial steps. The main difference 

comes the use of pathway topology to compute gene-level statistics (85).   
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PT-based methods that consist of multiple scoring steps, are difficult to generalize and 

are beyond the scope of this dissertation. A detail overview of existing methods are published 

previously (87). The most popular commercial tool that incorporates topology in the pathway 

analysis is MetaCore (oftenly regarded as GeneGO, Thomson 

Reuters, http://www.thomsonreuters.com). Here, MetaCore use only the differentially expressed 

gene list without associated expression value as input for its two propriety knowledge bases: an 

interaction database and canonical pathways (87).  

PY-based methods have certain common limitations. One problem is that true pathway 

topology is highly specific to the phenotypes and condition being studied. However, this 

information is fragmented in pathway data bases (85). As annotations improve, these 

approaches are expected to become more useful. Currently, there is no analysis method that 

takes advantage of the information stored in all of these different pathway database sources. 

Promising developments include the incorporation of multiple component types and interaction 

types, each with specific properties (87).  

http://www.thomsonreuters.com/
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Figure 6 

Overview of existing pathway analysis methods using gene expression data as an example. Note 

that this overview is equally applicable to molecular measurements using proteomics, and any 

other high-throughput technologies. The data generated by an experiment using a high-

throughput technology (e.g., microarray, proteomics, metabolomics), along with functional 

annotations (pathway database) of the corresponding genome, are input to virtually all pathway 

analysis methods. While ORA methods require that the input is a list of differentially expressed 

genes, FCS methods use the entire data matrix as input. In addition to functional annotations of 

a genome, PT-based methods utilize the number and type of interactions between gene products, 

which may or may not be a part of a pathway database. The result of every pathway analysis 

method is a list of significant pathways in the condition under study. DE, differentially 

expressed. This figure is reproduced based on previously published figure (85). 
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With efforts to understand vast amount of data generated by high-throughput 

experiments, thousands of computational pathway analyses tools have been developed over the 

better part of the last two decades. Each tool has pros, cons and even ‘niche’. Thus, it is 

important for biology researchers to understand the basis of how they are built and be conscious 

of the limitations when applying these methods on their high-throughput data.  

1.8 Papillomavirus-related cutaneous squamous cell carcinoma 

Papillomaviruses (HPVs) are small non-enveloped icosahedral viruses that infect the 

keratinocytes of skin and mucosa. HPVs are represented mainly by the beta and gamma genera, 

which are widely present in the skin of normal individuals. In recent years, the impact of viruses 

to cutaneous oncogenesis has increasingly gained recognition. Cutaneous HPVs that belong to 

the beta genus (β-HPV) have been found to act as co-carcinogen with UVR.  Mechanistic 

studies have previously shown that UV can trigger the promoter activity of the cutaneous types 

HPV5, 8, 20, and 77 (97, 98). Exposure to UV could also favor replication of β-HPV types by 

inducing local immunosuppression (99). Furthermore, immunosuppressed individuals show a 

markedly increased incidence of β-HPV–positive SCC (100).  

 

1.9 Dissertation outline 

It is well accepted that miRNAs are often deregulated and plays major roles in tumor 

development. The aim of this dissertation is to better understand the role of miRNAs and their 

targets in cuSCC development in order to identify biomarkers for prediction and prevention of 

this second most common skin cancer. 
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Chapter one provides a general introduction to cuSCC risks, genomic backgrounds, 

mouse models, details of miRNA biogenesis and available miRNA prediction tools. We also 

discuss the method of pathway analyses that were used on our next-generation sequencing data. 

In chapter two, we provide information on methodologies and materials used in this study. In 

chapter three, we investigated the transcriptomes of UV-exposed skin, wound healing skin and 

cuSCC tumors based on the knowledge that cuSCC mostly arise from chronic UV-exposed skin 

and wound areas. We discovered that their transcriptomes overlap significantly. Thus, we were 

able to use common transcriptomic features shared by these three tissues to identify potential 

candidates for biomarkers evaluation. In chapter four and chapter five, we characterized the 

functions of important miRNAs in cuSCC and identified novel functional targets that are 

regulated by the miRNAs. 
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Chapter 2: Materials and methods 

Cell Culture  

Normal human epidermal keratinocytes (NHEK) were purchased from Lonza and 

maintained in KGM-Gold Keratinocyte Basal Medium (Lonza). SRB1, SRB12, and COLO16 

were a gift from Dr. Jeffrey Myers UT MD Anderson Cancer Center (Houston, TX). SCC 

IC1, SCCT1, SCCT2, SCCT3, SCCT8, SCRDEB2, SCRDEB3 and SCRDEB4 were provided 

by Dr. Andrew South at Thomas Jefferson University (Philadelphia, PA). HaCaT cells, an 

immortalized human keratinocyte line cell was obtained from Dr. Norbert Fusenig at German 

Cancer Research Center. CuSCC cell lines were maintained in DMEM/F12 (1:1), supplemented 

with with 10% FBS, RM+ supplement (101) and 1% pen/strep. All lines were STR profiled to 

confirm distinct identities.  

 

Quantitative RT-PCR  

miRNAs and mRNAs were detected by Taqman quantitative reverse transcription PCR 

(qRT-PCR) method. Expression of miRNAs were normalized by RNU6B. Expression of 

mRNAs were normalized to GAPDH. All primers were purchased from Thermo Fisher, USA 

(Cat. # 4427975, Assay ID 000480). 
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Western blot analysis 

 

50µg of total protein were electrophoresed on 10% SDS-PAGE gel and transferred to 

PVDF membrane as previously described (6, 127). Blots were then probed with anti-

ΔNp63 (619002, Biolegend, 1:500), E-cadherin (3195, Cell Signaling, 1:1000), 

Vimentin (ab92547, Abcam, 1:1000), Twist1 (sc-81417, Santa Cruz, 1:250), Lef1 

(2230S, Cell Signaling, 1:1000), Snail (3879S, Cell Signaling, 1:1000), Zeb (sc-10572, 

Santa Cruz, 1:500), Smad2 (sc-101153, Santa Cruz, 1:500), Smad3 (9523S, Cell Signaling, 

1:1000), phospho-Smad2 (ab53100, Abcam, 1:500), and phospho-Smad3 (9520S, Cell 

Signaling, 1:500) overnight at 4oC. Horseradish peroxidase conjugated- secondary 

antibodies against either murine or rabbit IgG (Jackson lab) were incubated with the blots 

for 1 hour at room temperature. Actin (A5060, Sigma) or Hsp90 (ab13495, Abcam) was 

used as loading control. Detection was performed using ECL Plus Kit (Amersham) or 

Licor system. 

 

Apoptosis assay 

TMRE (Invitrogen) was used as a measure of mitochondrial membrane potential, 

Annexin V-FITC or Annexin V-APC (Invitrogen) as a probe for apoptosis, and Cytox Blue 

(Invitrogen) as an indicator for dead cells. At 6, 24, or 48 hours post-irradiation, both floating 

and adherent cells were collected and stained with TMRE, Annexin V and Cytox Blue. Data 
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were collected and analyzed using a flow cytometer (FACScalibur, Becton Dickinson) and 

FlowJo Software (Tree Star). Data were analyzed and charts were plotted using GraphPad 

Prism software. 

Confluence-based proliferation aassay 

0.2x104 cells per well were plated onto 96-well plates. The plates were read with the 

IncuCyte (Essence Bioscience) every 6 hours for 96 hours. Cell confluency or density was 

measured using IncuCyte Zoom software. 

Overexpression and inhibition of miRNA in cuSCC cells and keratinocytes 

5x105 cells per 60 mm dish were transfected with 40 nM microRNA inhibitors 

(ThermoFisher) or 3 nM microRNA mimics (ThermoFisher) using  Lipofectamine RNAi 

Max (Invitrogen) according to manufacturer’s protocol. The cells were collected 48 

hours post-transfection for further analysis. The microRNA inhibitors used to target 

microRNAs are as followed: miR-21-5p, miR-21-3p, miR-181a-5p and negative control 

(4464077) (ThermoFisher). The microRNA mimics purchased from ThermoFisher are 

miR-21-5p, miR-21-3p, miR-181a-5p 
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and negative control mimics (4464058). 

Lentivirus-based GFP-tagged vectors for hsa-miR-181a (lenti-miR-181a OE) or scramble 

control (lenti-miR-00 control) were purchased from System Biosciences (SBI) lenti-miRNA 

vector bank. Transduction efficiency was assessed by GFP intensity and Taqman qRT-PCR. 

 

Overexpression and depletion of TGFΒR3  

To overexpress TGFbR3, we purchased pDONR223-TGFΒR3 (Addgene, plasmid # 

23478) donor vector which contained TGFΒR3 ORF. Then, the TGFR3 ORF was cloned into 

pcDNA4.1/V5 expressing vector using Gateway technique. All vector sequences were validated 

by Sanger sequencing. TGFΒR3 expression was validated by western blot.  

To deplete TGFR3, we use GIPZ Human TGFR3 shRNA (GE Dharmacon, Clone ID 

V3LHS_352448 and V3LHS_352450). GIPZ non-silencing lentiviral shRNA (GE Open 

Biosystems, Cat. # RHS4348) was used as control. The shRNA lentivirus was prepared with 

293T cells and psPAX2/pVSV.G packaging plasmids, and then was transduced to target cells. 

Following transduction, cells were puromycin-selected and sorted to obtain cells with high-level 

suppression TGFR3 suppression were validated by Taqman qRT-PCR. 

 

Trans-well Invasion Assay 

Cells were treated with mitomycin C 2 hours prior to the assay, then 4.5 x 105 cells were 

suspended in serum-free media and seeded on a 8µM pore size control insert (Corning, Cat. # 

08-774-162) or the insert coated with matrigel (Corning, Cat # 08-774-122). Complete media 
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contain 30% FBS was added to the lower compartments as a chemo-attractant for cells. 

Thereafter, cells were allowed to move for 48 hours. Cells remaining on the upper side of the 

membrane were removed. Those that invaded to the bottom side of the membrane were fixed 

and stained with Diff-Quik Stain Set (Siemens B4132-1A). The membranes were air-dried and 

mounted for photography. Cells from ten random fields were counted. 

 

miRNA in situ hybridization (ISH) 

In situ hybridization was conducted by the MD Anderson Center for RNA interference and non-

coding RNAs. Skin squamous cell cancer tissue arrays (Cat # SK 801b and # SK 802a) were 

purchased from US Biomax, Inc. (Rockville, MD). 

 

Plasmid construct and luciferase reporter assay 

The pEZX-MT05 expression vector harboring the human TGFR3 3’ UTR cDNA 

(GeneCopoeia, Cat. # HmiT066530) was used as DNA template. Site-directed mutagenesis was 

carried out using the QuickChange II XL Site-Directed Mutagenesis Kit (Catalog #200521, 

Agilent Technologies), following the Manufacturer’s instruction. The mutagenic primers were 

synthesized by IDT and the oligonucleotide sequences of these primers are listed in Table X. 

The success of the designed mutations was verified by DNA sequencing.  

 

HaCaT cells were transfected with wild-type and mutant reporter vectors along with 

scrambled control. 72 hours after transfection, the cell culture medium was collected for the 
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assay. The luciferase reporter assays were performed according to the manufacturer’s guidelines 

for the Secrete Pair Dual Luminiscence Assay Kit. Luciferase activity was normalized to 

secreted alkaline phosphatase. 

 

Soft agar and colony formation assays 

Following plating of bottom agar (0.6% Bacto Agar) with media we plated 2500 to 

10,000 cells per well and they were embedded in top agar (0.3%) and plated in 24-well plates. 

Control or lenti-miR-overexpression media was replaced every 48 hr for 4 to 6 weeks. Cell 

colonies were stained with 1% crystal violet, imaged and quantified. 

 

Protein extraction and Western blot analysis 

Protein lysates were prepared in RIPA buffer (Sigma, Cat # R0278) supplemented with 

Halt Protease & Phosphatase Inhibitor Cocktail (Thermo Scientific, Cat #1861281). Primary 

antibodies were obtained from Cell Signaling and Thermo Scientific. Westerns were imaged 

using the Licor Odyssey CLx system. 

 

Animals and in vivo model of human cutaneous squamous cell carcinoma 

NOD CRISPR Prkdc Il2r gamma (NCG) mice (6 to 8 weeks old; Charles River) were 

housed and monitored in our Animal Research Facility. All experimental procedures and 

protocols had been approved. RDEB2 cells were transfected with control inhibitor and miR-

181a inhibitor. 24 hours post-transfection, cells were trypsinized for xenografting. Mice were 



39 

 

subcutaneously inoculated with 3 x 106 SCC RDEB2 cells. Once tumors become palpable, 

measurement was taken every other day. Mice were sacrificed 11 days after inoculation. 

 

mRNA-Seq analysis 

The mRNA-seq paired-end reads were aligned to the human reference genome, 

GRCh37/hg19, using the TopHat2 alignment software (102, 103). The overlaps between aligned 

reads and annotated genomic features, such as genes/exons were counted using HTSeq software 

(104). Hierarchical clustering analysis, using the Pearson correlation coefficient as the distance 

metrics and the complete linkage, and principal component analysis (PCA) were performed 

using the R statistical system. Genes significantly different between the control and different 

time points of acute UV treatment were determined using the R package DESeq (105).  Since 

multiple genes were tested simultaneously, the Benjamini-Hochberg method was used to control 

false discovery rate (FDR). For further integration of mRNAs and miRNAs, and detection of 

enriched transcription factor targets, we used a cutoff of Q-value<0.05 and fold change 

exceeding 1.25x. 

 

smallRNA-Seq Analysis.  

This work was performed with collaboration with laboratory of Dr. Preethi Gunaratne, 

PhD (University of Houston, Biology & Biochemistry). As previously described (17), Illumina 

small RNA adapter sequences were trimmed from the reads, and reads of length below 10nt or 

ending in homopolymers of length 9 nt or above were discarded. Total usable number of reads 
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for each sample was calculated. The reads were mapped to the miRBase (106) reference using 

BLAST; the abundance of each expressed microRNA was quantified as a fraction of the usable 

reads, and expressed as parts per million  We determined differentially expressed microRNAs 

imposing a fold-change of 1.25x and t-test comparison (p<0.05) using the R statistical system. 

We employed principal component analysis (PCA) to examine sample structure; further 

visualization of microRNA significant in one or multiple comparisons was carried out using the 

R statistical system. 

 

Integrative mRNA-miRNA functional pair analysis.  

We determined enriched miRNA-mRNA pairs using the SigTerms methodology. 

Essentially, by applying a one-sided Fisher exact test and using the TargetScan (107) predicted 

microRNA targets, we determined the miRNAs for which the gene targets are significantly 

enriched (FDR-adjusted q<0.25) in the gene signature. Finally, we determined the conserved 

enriched miRNAs and the conserved miRNA-mRNA pairs conserved with respect to acute UV 

treatment. 

 

TMT-base proteomics 

Sample Preparation. Cells were lysed in denaturing lysis buffer containing 8M urea, 20 mM 

HEPES (pH 8), 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate and 1 mM β-

glycerophosphate. A Bradford assay was carried out to determine the protein concentration. 

Equal amount of heavy and light proteins were mixed together. The mixed proteins were 
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reduced with 4.5 mM DTT and alkylated with 10 mM iodoacetamide. Trypsin digestion was 

carried out at room temperature overnight, and tryptic peptides were then acidified with 1% 

trifluoroacetic acid (TFA) and desalted with C18 Sep-Pak cartridges according to the 

manufacturer’s procedure. 

TMT Labeling. 400 microgram of peptide from each sample was labeled with TMT reagent. 

The label incorporation was checked by LC-MS/MS and spectral counting. 98% or greater label 

incorporation was achieved for each channel. The 6 samples were then pooled and lyophilized.  

High pH Reversed Phase Peptide Separation. After lyophilization, the peptides were re-

dissolved in 400 micro liter of 20 mM Ammonium Formate, (pH 10.0). The high pH reversed 

phase separation was performed on a Xbridge 4.6 mm x 100 mm column packed with BEH C18 

resin, 3.5 µm, 130Å. (Waters) The peptides were eluted as follows: 5% B (5 mM Ammonium 

Formate, 90% acetonitrile, pH 10.0) for 10 minutes, 5% - 15% B in 5 minutes, 15-40% B in 47 

minutes, 40-100% B in 5 minutes and 100% B held for 10 minutes, followed by re-equilibration 

at 1% B. The flow rate was 0.6 ml/min, and 24 concatenated fractions were collected. Speedvac 

centrifuge was used to dry the peptides.  

LC-MS/MS. A nanoflow ultra high performance liquid chromatograph (RSLC, Dionex, 

Sunnyvale, CA) coupled to an electrospray bench top orbitrap mass spectrometer (Q-Exactive 

plus, Thermo, San Jose, CA) was used for tandem mass spectrometry peptide sequencing 

experiments.  The sample was first loaded onto a pre-column (2 cm x 100 µm ID packed with 

C18 reversed-phase resin, 5µm, 100Å) and washed for 8 minutes with aqueous 2% acetonitrile 

and 0.04% trifluoroacetic acid.  The trapped peptides were eluted onto the analytical column, 

(C18, 75 µm ID x 25 cm, 2 µm, 100Å, Dionex, Sunnyvale, CA).  The 90-minute gradient was 
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programmed as: 95% solvent A (2% acetonitrile + 0.1% formic acid) for 8 minutes, solvent B 

(90% acetonitrile + 0.1% formic acid) from 5% to 38.5% in 60 minutes, then solvent B from 

50% to 90% B in 7 minutes and held at 90% for 5 minutes, followed by solvent B from 90% to 

5% in 1 minute and re-equilibrate for 10 minutes.  The flow rate on analytical column was 300 

nl/min. Sixteen tandem mass spectra were collected in a data-dependent manner following each 

survey scan. Both MS and MS/MS scans were performed in Orbitrap to obtain accurate mass 

measurement using 15 second exclusion for previously sampled peptide peaks..   

Data Analysis. MaxQuant (version 1.5.2.8) was used to quantify the TMT reporter ion 

intensities (108). The MaxQuant output was normalized with modified iterative rank-order 

normalization algorithm (109).    

Statistical analyses 

All biological experiments were repeated at least three times. Numerical data were 

analyzed using a one-way analysis of variation. The statistical significance between treatments 

was assessed by one-tailed Student's t-tests or Paired Wilcoxon tests. 

 

 

 

 

 

 



43 

 

Chapter 3: Integration of transcriptomic data identifies UV 

exposure and wound-related biomarkers of cutaneous squamous 

cell carcinoma 

3.1 INTRODUCTION 

Skin is the largest organ in the body in terms of surface area and plays vital roles in 

protecting the skin from potential environmental risks. Skin cancer, 20% of which is cutaneous 

squamous cell carcinoma (cuSCC), is the most common malignancy in the United States. 

Because its incidence is rapidly increasing, cuSCC poses as a significant public health and 

economic burden (110). UV radiation is recognized as the main etiological agent that stimulates 

initiation and progression to sporadic cutaneous squamous cell carcinoma (19, 111). Although 

not as common, a subset of high-risk cuSCC, which occurs in chronic wound area in recessive 

dystrophic epidermolysis bullosa (RDEB) patients, is more lethal. In fact, metastatic cuSCC is 

the main cause of death among RDEB patients (112).  Since UV exposure and wounding are the 

two main factors that lead to cuSCC initiation, study of the acute molecular dermal responses 

shared by them can be beneficial to establish solid cuSCC prevention strategies. 

UV exposure triggers immune response and causes multiple alterations to the 

composition and architecture of the dermal extracellular matrix (ECM) (113). In melanoma, UV 

radiation induced the expression of FAP through transforming growth factor-b1 (TGF-b1) 

release, which mediated ECM degradation and enabled tumor dissemination (114). Similarly, 

non-healing RDEB wounds, precursors of cuSCC, are characterized by increased inflammation 
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and high TGF-b1 activity (112). A causal relationship between UV exposure and wound healing 

was highlighted by the benefit of UV irradiation in wound care. Beside germicidal effect, UV 

light exposure induced release of cytokines, growth factors and fibronectin, which enhance the 

wound healing process. A few clinical and animal studies have shown that low dose UV 

treament is effective in managing acute and chronic wounds (115). Even so, the similarity in UV 

exposure and wound healing response and how that can be employed to prevent cuSCC 

initiation were not reported.  

In the current study, using miRnome and transcriptome profiling in acute UV-exposed 

human skin, we first integrated differentially expressed miRNAs and mRNAs in functional pair 

analysis. We further predicted significantly enriched biological pathways related to acute UV 

exposure using GSEA (93). We then integrate miRNA and RNA profile of acute UV-exposed 

skin to equivalent published profiles of wounding skins (116, 117). Our combinatorial analyses 

show for the first time that acute UV-exposed skin (at 24h) and wounding skin (at 3 day) share 

remarkable resemblances in their miRNA and RNA profile. GSEA showed that ECM 

remodeling pathways and GPCR related pathways were positively enriched while while PPAR 

activity decreased. Finally, we compare the miRnome and transcriptome of acute UV-exposed 

skin and wound to those of cuSCC. We found that not only differentially expressed genes from 

these 3 tissues overlap but they also share similar enriched pathways. 

 



45 

 

3.2 RESULTS AND DISCUSSION 

3.2.1 Identification of acute UV-exposed differentially expressed genes and microRNAs in 

unexposed human skin 

UV radiation is a complete carcinogen that can initiate genetic mutations in human skin 

(19, 111, 118). Additionally, UV can trigger genome-wide transcriptional instability that affects 

thousands of genes. Many studies of UV-induced transcriptome have focused on in vitro 

approach where cultured human primary keratinocytes were irradiated with UVB (119). These 

approaches did not reflect the actual systemic response of human skin to UVR nor did they 

closely mimic the solar spectrum in reality. To address these issues, we interrogated normally 

sun-protected human buttock skin after an acute does of two MED of solar stimulated light 

(SSL). We then obtained the snap frozen whole skin samples pre- and post-UV in 8 healthy 

subjects with similar types of skin (Fitzpatrick skin type II or III). The solar simulator delivered 

8.7% of UVB and 91.3% of UVA (120) and the average ( ± standard error) dose delivered was 

4.6  ± 0.5 J/cm2 of UVA and 51.5 ± mJ/cm2 of UVB. 
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Figure 7 

Study pipeline of integrating existing transcriptomes of UV-exposed skin, cuSCC tumors and 
public transcriptomic data sets of wound healing skin 

 

 

 

 

RNA-Seq and microRNA-Seq was used to measure the changes in genes and microRNA 

expression at 6 hours and 24 hours post-SSL. The data were represented as the fold change (FC) 

in transcript levels, calculated by dividing the average read counts in the UVB group by those in 

control (pre-SSL) for each gene. The total number of differentially expressed genes and 

microRNAs at 6 hour and 24 hour post-SSL were reported in Table 4. The differentially 
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expressed microRNAs were reported in Appendix 1 and 2. We found that oncomiR miR-21 was 

highly expressed (miR-21-3p: 4.9-fold, p-val = 8.65E-07  and miR-21-5p: 1.96-fold, p-val = 

4.84E-05) in 24 hour post-SSL human skin which agreed with previous studies where miR-21 

were shown to be induced by UV irradiation in skin and cultured keratinocytes (121) (122) 

(123). Noticeably, inflammatory miR-223 which involved in rheumatoid arthritis and proriasis 

progression were most significantly upregulated (7.7-fold, p-val = 5.5E-09) in 24 hour post-SSL 

human skin.  As an oncomiR, miR-223 promoted breast cancer cell invasiveness (124) and 

stimulated proliferation, migration and invasion of gastric cancer cell lines (45). Since the 

functions of miR-223 in UV-induced skins or skin cancers are unknown, this miRNAs can 

potentially be further explored. 

Timepoints Total Up-regulated Down-regulated 

Differentially expressed genes 

6 hour post-SSL 767 552 215 

24 hour post-SSL 3021 1633 1388 

Differentially expressed miRNAs 

6 hour post-SSL 5 1 4 

24 hour post-SSL 89 50 39 

 

Table 4  

Differentially expressed miRNA gene counts among different conditions 
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We were interested in identifying functional miRNA-mRNA pairs that were regulated by 

UV exposure. Given that miRNAs function by suppressing their target genes, we used 

functional pair analysis method where upregulated miRNAs were paired with downregulated 

predicted mRNA targets and vice versa. In total, we identified 45 pairs of upregulated miR- 

downregulated mRNAs and 37 pairs of downregulated miRs- upregulated mRNAs.  

To investigate the effect of acute UV exposure through miRNAs on the molecular 

pathways, we use paired target mRNAs in GSEA C2 canonical pathway analyses. Here, the 5 

highest upregulated miRNAs and their downregulated predicted target genes were found to be 

involved in Immune System, Signaling by GPCR and Matrisome pathways. Interestingly, 5 

highest downregulated miRNAs and their upregulated predicted target genes were also found to 

be involved in the same mentioned pathways (Figure 8). These pathway analyses suggested that 

in acute UV-exposed human skin, Immune System, Signaling by GPCR and Matrisome 

pathways were important and were indirectly regulated by miRNAs.  
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Figure 8 

Integrated functional pair analyses reveals canonical pathways regulated by differentially 

expressed miRNAs and their predicted targets 

3.2.2 Integrated analysis revealed correlation in the microRNA and mRNA expression 

between acute wounding skin and UV-exposed skin 

SCC can arise from chronic wounds in epidermolysis bullosa (EB) individuals who are 

clinically characterized by generalized skin fragility, blistering of mucous membranes and 

compromised wound healing (125). With an effort of using integrated analyses as a solid 

foundation for better target prediction for cuSCC prevention, we sought to compare the 

transcriptome of acute UV-exposed skin with acute wound-healing skin and cuSCC tumors. The 

rationale is that cuSCC tumors can arise from chronic UV-exposed skin and chronic wounds.  

To address this, we used previously published data that showed miRNAs dynamic 

changes during the inflammation phase of human skin wound healing (116). This Taqman 

MicroRNA low-density array data set was acquired from 5 healthy donors at 0 hour and 24 

hours after injury (116). Interestingly, we found that the expression pattern of miRNA in acute 

UV-exposed skin was strongly correlated with acute wound healing skin at 24 hour time point 

(Figure 9). Inflammatory miR-223 is the highest increased miRNA in both data sets after 24 

hour, suggesting strong inflammatory response at this time point in following UV-exposure and 

injury. Among the upregulated miRNA, miR-132 has been extensively characterized in wound-

healing but not in UV response. This correlation suggests that published data in wound healing 

studies can be used as reference for UV response studies. Complete data on miRNA expression 

can be found in Appendix 1 and 2.  
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Figure 9 

Transcriptome and miRNAome of UV-exposed skin, wound healing skin and cuSCC show 

significant similarity. (A) Comparative miRNA expression level analysis between UV-exposed 

skin and wound healing skin. (B) Comparative gene expression level analysis between UV-

exposed skin and wound healing skin. (C, D, E) PCA of transcriptome of UV-exposed skin, 

wound healing skin and cuSCC. 
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To study whether the mRNA expression of UV-exposed skin, wound healing skin and 

cuSCC tumors share the similar correlation as miRNA, we again used another published 

transcriptomic data set on wound healing skin (117).  This study employed 8 burnt patients who 

underwent skin grafting. Their skins were biopsied immediately before and after harvesting and 

during the wound healing process 3 and 7 days thereafter. The biopsied tissues were subjected 

to genome-wide microarrays. We used data from 3-day wound healing since it shows strong 

transcriptomic correlation with UV-exposed skin and cuSCC tumors. Overlapping analyses 

showed significant overlap in differentially expressed genes among three data sets (Figure 9). 

Specifically, 84% of DE genes in UV-exposed skin overlapped with DE genes in cuSCC. 87% 

of DE genes in wound healing overlapped with DE genes in cuSCC (Table 5). 

 

Data set DE genes in 

UV (n= 

1047) 

DE genes in 

Wound  

(n= 3673) 

DE genes in 

cuSCC 

(n= 4354) 

Overlap percentage among DE genes in 3 data 

sets (n = 630) 

60% 17% 14% 

Overlap percentage between DE genes in UV 

and Wound (n =727) 

70% 20%  

Overlap percentage between DE genes in 

cuSCC and Wound (n =3184) 

 87% 73% 

Overlap percentage between DE genes in 84%  20% 
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cuSCC and UV (n =884) 

 

Table 5 

Overlapping gene counts among UV-exposed skin (24 hour post-SSL), wound healing skin (3 

day post-injury) and cuSCC tumors 

To better visualize the overall directional changes in 3 data sets, we performed principle 

components analysis (PCA). The data projected the 2 distinguished clusters of the UV-exposed 

skin, wound healing skin and cuSCC tumors and their normal control counterparts (Figure 9). 

To confirm, we projected the transcriptome of normal skin, AKs and cuSCC tumors and 

observed that the transcriptome of AK spanned those of normal skin and cuSCC. This 

observation agreed with previous study from our lab where we showed the transcriptomic of AK 

spanned the spectrum of normal skin to cuSCC (17). Overall, these results showed that there 

was a strong unprecedented correlation between the mRNA and miRNA expressions of UV-

exposed skin, wound healing skin and cuSCC tumors. 

 

3.2.3 Pathway analyses revealed correlation in the microRNA and mRNA expression 

between acute wounding skin and UV-exposed skin 

The global functional impact of UV-exposure vs. wounding vs. cuSCC on skin was 

determined by using 3 approaches: integrated GSEA analyses (Figure 10), upstream regulator 

predictions through IPA (Figure 11), and canonical pathways prediction also through IPA 

(Figure 11). Using pathway analyses with different algorithms and annotations allows us to 

better select central and key pathways that are being affected. IPA determines overlaps between 
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the provided gene lists and the curated databases, looking for overlaps that are bigger than that 

expected by random chance (94). In contrast, GSEA is a tool that uses every data point in its 

statistical algorithm (126) (93). Genes are ranked by from most up-regulated to most-down-

regulated. The two rank metrics commonly used are p-value and fold-change. The test assess 

whether ember of a gene set appear enriched at one end of the profile. To test enrichment, 

GSEA performs permutations of the profile, calculating the enrichment of the gene set 1000 

times or more to estimate p-value empirically (126) (93).  

 

 

 

Figure 10 

Canonical pathway analyses revealed important common pathways in UV-induced skin, wound 

healing skin and cuSCC tumors (q=0.05). Each circle represents a gene set. Each circle is 
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divided into three sections which represent one of three dataset. Blue color represents pathway 

downregulation. Red color represents pathway upregulation. 

 

When using integrated GSEA using the C2 canonical pathway gene set, we sought to 

identify unique and common pathways affected by acute UV-exposed skin, wound healing skin 

and cuSCC tumors. We focus on the common pathways because these are the pathways that 

were modified following UV-exposure and wound-healing that persisted in cuSCC tumors. We 

reason that by focusing on these pathways, we can identify ways to predict early development of 

cuSCC. Here, we observed that ECM related pathways, GPCR signaling, Cytokine and 

Chemokine signaling, immune system signaling and Cell cycle signaling were significantly and 

positively enriched. This suggested that these pathways were activated in acute UV-exposed 

skin, wound healing skin and cuSCC tumors.  

 

 Using IPA canonical pathway analysis, although we were able to detect unique and 

common pathways, we decided to focus on the common pathways modified in acute UV-

exposed skin, wound healing skin and cuSCC tumors because of the above rationales. 

Unsurprisingly, we found that p53 signaling was activated (Figure 11). Immune response 

pathways such as Oncostatin M signaling, Interferon signaling, acute phase response signaling 

were activated (Figure 11). The IPA upstream regulator analysis examines how many known 

targets of transcription regulator are present in the provided data sets with the direction of 

change taken into consideration. Here, upstream regulator predicted that in cuSCC tumors, there 

was an activation of tumor promoters while an inhibition of tumor suppressors (Figure 11). Two 
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transcriptional factors that were commonly predicted in three data sets were OSM and TNF-a 

(Figure 11).  

 

Figure 11 

Ingenuity pathway analysis (IPA) identifies deregulation of Oncostatin M pathways and 

suggests possible important role of OSM and TNF upstream regulators. (A) Unique and 
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common IPA canonical pathways shared by three data sets. (B) Identified upstream regulator in 

three data sets. 

3.2.4 Oncostatin M is a potential marker for cuSCC early development 

Oncostatin M supports diverse homeostasis processes including liver repair, cardiac-

tissue remodeling, and hematopoiesis. However, overproduction of OSM is thought to promote 

a variety of pathologies, including skin and lung inflammation, and several forms of cancer 

(127) (128). Nevertheless, the role of OSM in cutaneous squamous cell carcinoma has remained 

unclear (127) (128). Here, in cuSCC tumor, pathway mapping using GeneGO suggested that 

OSM can exert its effect through TIMPs and MMPs to regulate ECM remodeling; through 

Cyclin D1 and VEGF to modulate growth and through CCL2 to regulate inflammatory response 

(Figure 12). 
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Figure 12 

Oncostatin M downstream networks. GeneGO pathway generator identify possible downstream 

molecular targets and cellular processes regulated by Oncostatin M.  

 

Next, we sought to validate whether expression of OSM and its downstream targets 

affect survival in SCC. We used TCGA data from HNSCC with TP53 mutation because 

genetically, this type of carcinoma most closely related to cuSCC. The Kaplan-Meier survival 

curves showed that high OSM expression related with shorter overall survival time in  

comparison with low OSM expression (p-value = 0.005) (Figure 13). In addition, survival 

analysis based on expression of Oncostatin M signaling downstream upregulated targets 

ACTA2, MMP1, CCL2 showed that high expression of these genes related to shorter overall 

survival time (Figure 14, Error! Reference source not found.) in HNSCC patients with TP53 

mutation. 
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Figure 13 

Kaplan – Meier survival analysis of OSM gene expression in HNSCC patients with TP53 

mutation. In this cohort, high expression of OSM is associated with shorter overall survival 

(High: median survival = 831 days;  Low: median survival = 2033). Kaplan – Meier curves 

were generated following bifurcation of gene expression at median (High: n =42, Low: n =41). 

P-values were calculated according to the log-rank test.  
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Figure 14 

Kaplan – Meier survival analysis of ACTA2, MMP1, CCL2 gene expression in HNSCC patients 

with TP53 mutation. In this cohort, high expression of OSM is associated with shorter overall 

survival (High: median survival = 1057 days; Low: median survival = 1962). Kaplan – Meier 

curves were generated following bifurcation of gene expression at median (High: n =42, Low: n 

=41). P-values were calculated according to the log-rank test.  
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3.3 DISCUSSION 

UV exposure is the most important risk for skin carcinogenesis. Exposure to UV radiation 

in early age increased childhood melanoma risk (129).  In this chapter, we showed that the 

transcriptomic deregulation observed in cuSCC was induced early in UV-exposed skin and 

wound healing skin, which are the two main preconditions of cuSCC development. We show 

molecular evidences for the transcriptomic correlation between UV-exposed skin and wound 

healing skin using multiple gene set analysis tools.  Previously found, moderate and repeated 

doses of UV can enhance wound healing process because of its antimicrobial effects (115). 

Patients with skin injury has greatly benefited from UV light therapy following skin wounding 

(130). Besides that, UV and wounding has been studied as two separate events even though they 

might lead to the same consequences of non-melanoma skin cancers. Our findings provide 

unique evidences showing that transcriptomes of UV-exposed skins and wounded skins largely 

overlap. Our study also provides rationales for future studies in integrating existing findings in 

UV radiation and wounding. 

UV-exposure and skin injury triggers similar responses in human skin transcriptomes 

reflecting through several pathways. First, there is activation in pathways associated with 

inflammatory responses. Although inflammation is the second stage of wound healing, it is 

unexpected that we observed similar response in acute UV-exposed skin. These inflammatory 

responses might have resulted from the release of a variety of regulatory mediators including 

cytokines and chemokines following UV-exposure or skin injuries (131, 132). Here, at the UV 

irradiated sites or wounded sites, components of innate immune system such as macrophages 

are also recruited. Previously known, macrophage electrotaxis is mostly dependent on Rho 
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family small GTPases (133). Thus, this might be the explanation for the observed positive 

enrichment of GPCR signaling that might have been precursors to macrophage recruitment.  

OSM is thought to promote a variety of pathologies, including skin inflammation, and 

various forms of cancer (127, 128). Our analyses using multiple data sets and pathway analysis 

platforms suggested that Oncostatin M signaling, a pathway found to be modified early in UV-

exposed skin and wound healing with its deregulation existed in cuSCC tumors. High OSM 

gene expression shows significant correlation with overall survival in HNSCC patients with 

TP53 mutation, which is genetically related to cuSCC. Based on these findings, we aim to 

characterize OSM functions in cuSCC in vitro. Here, our results suggest that Oncostatin M can 

be further evaluated as a novel target in cuSCC treatment.  
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Chapter 4: Identifying miR-21 and miR-31 in cutaneous squamous 

cell carcinoma development 

4.1 INTRODUCTION 

miR-21 is a well-characterized oncogenic miRNA which was found to be the only 

miRNA consistently overexpressed in 540 clinical samples of cancer patients (42). However, 

only a handful of study has been conducted on characterizing miR-21 functions in skin 

disorders. miR-21 has been linked to the pathogenesis of epidermal hyperplasia in psoriasis 

through its targets TIMP-3 (134). miR-21 knockout mice show no obvious phenotype in 

development or adulthood, and seem to be protected against cancer development (135, 136). In 

invasive cuSCC, miR-21 is elevated and thought to induced epithelial mesenchymal transition in 

cuSCC (137). It has also been shown that miR-21 inhibition increased apoptosis in A431 cuSCC 

cell lines (138). In immunocompetent individuals, miR-21 and miR-31 is significantly 

upregulated in their healthy skin suggesting that deregulation of miR-21 and miR-31 happens 

early in cuSCC development (139). 

The functional role of miR-31 is especially complex because miR-31 can have tumor-

suppressive and oncogenic roles in different tumor types.  However, a handful of studies 

suggested that miR-31 is oncogenic in cuSCC. A study employing A-431 cuSCC cell lines 

showed that miR-31 targets RhoTBT1 and regulate cuSCC proliferation and invasion (140). 

Another study determined that miR-31 regulated cell motility and colony formation ability of 

tumor cells (141).  
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Our data shows that while miR-21 was highly upregulated in UV-exposed skin, miR-31 

has been shown to increase in the late inflammatory phase of wound healing skin (142). In 

addition, our microRNA-seq data of shows that miR-21 and miR-31 were the most highly 

expressed miRNAs in sporadic cuSCC, immunosuppressed cuSCC and Xeroderma 

pigmentosum cuSCC (Figure). These evidences motivated us to further explore the functions of 

miR-21 and miR-31 in more cuSCC cell lines and UV-induec cuSCC mouse model. In this 

study, we hypothesize that deregulation of miR-21 and miR-31 collectively plays a role in the 

development of cuSCC. We investigated the expression levels of miR-21 and miR-31 in cuSCC 

cell lines; examine their possible functions and the targets through which they exert their 

functions. 

  

4.2 RESULTS AND DISCUSSION 

4.2.1 Expression of miR-21 and miR-31 in cuSCC tumors 

We sought to study the miRNA-expression landscape in cuSCC tumors and normal skin 

tissues derived from three different groups of patients: (1) Patients with sporadic cuSCC (n= 

14), (2) Immunosuppressed patients (n= 5) and (3) Xeroderma pigmentosum patients (n= 8). We 

performed RNA-Seq to evaluate the expression of miRNAs in the tumors and normal skins. 

While we were able to identified upregulated miRNAs and down regulated miRNAs, we noticed 

that there is substantial overlap of miRNAs in the miRNA expression spectrum of the three 

patient groups (Appendix 3). Here, we found that miR-21 and miR-31 are highly up-regulated 

universally in all cuSCC tumor types compared to normal counterparts. Specifically, in sporadic 
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cuSCC, miR-21 increase 6.1-fold (p-value < 0.05) and miR-31 increases 9.7-fold (p-value < 

0.05), compared to normal skin. Notably, several miRNAs identified from this experiment (data 

shown in Appendix 3) have previously been known to regulate various biological processes 

related to cuSCC; these include upregulated miR-135b (143-145) and downregulated miR-211 

(146-148). 

 

Figure 15  

miR-21 and miR-31 were highly upregulated across cuSCC subtypes. X-axis, Y-axis and color 

represent miRNA expression levels (log2 fold change) in UV-driven cuSCC, cuSCC in 

immunosuppressed patients and Xeroderma pigmentosum, respectively. Graph was generated 

using Plotly open source tool (https://plot.ly/). 

 

https://plot.ly/
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Next, we then used qRT-PCR to validate the expression level of miR-21 and miR-31 in normal 

human keratinocytes (NHEK) and 10 cuSCC cell lines derived from different types of cuSCC 

tumors (See Introduction). We found that majority of cuSCC cell lines have elevated miR-21 

and miR-31 expression level compared to NHEKs (Figure 17). Cell line that has the highest 

miR-21 expression level compared to NHEK is SCCIC1 (4.4-fold upregulation). Cell line that 

has the highest miR-31 expression level compared to NHEK is SCC IC1 (13.8-fold 

upregulation). Taken together, the results of our RNA-seq and qRT-PCR demonstrate that miR-

21 and miR-31 expression level are highly upregulated in cuSCC cell lines and cuSCC tumors 

of different origins, suggesting the important roles of miR-21 and miR-31 in cuSCC 

development. 

 

Figure 167 
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miR-21 and miR-31 expression level in cuSCC cell lines. Taqman qPCR experiments were 

performed in three biological replicates. Cells were group in three based on miR-21 and miR-31 

expression level. Graph shows correlation between miR-21 and miR-31 in each cuSCC cell 

lines. 

4.2.2 Modulation of miRNA expression levels in cuSCC cell lines 

In order to study the effect of miR-21 and miR-31, we first established conditions for 

overexpression and knockdown of both miRNAs. To overexpress, we have used locked nucleic 

acid (LNA) modified oligonucleotides and transiently transfected it into cuSCC cell lines of 

interest. To knockdown, we have also used LNA modified antisense nucleotide to inhibit the 

expression of both miR-21 and miR-31 mature strands. The miRNA expression in testing 

condition was compared to cells transfected with a mock LNA sequence. We confirmed that the 

cellular level of established miR-21 and miR-31 targets were decreased following over-

expression and increased with inhibition of the miRNAs (Figure ).  
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Figure 18 

miR-21 inhibitor increase the expression of PDCD4, its established targets by 1.7-fold based on 

western blot analysis and vice versa. miR-31 inhibitor increase transcriptional level of STK40, a 

published target of miR-31(149) by 2.6-fold through qRT-PCR and vice versa. 

4.2.3 miR-21 and miR-31 synergistically increased proliferation in cuSCC cell lines 

To determine whether miR-21 and miR-31 affects the proliferative capacity of cuSCC 

cell lines, we performed proliferation assays. Cells were transiently transfected miR-21 and 

miR-31 inhibitors (Thermo Fisher). After 48 hours, transfected cells were re-seeded for Incucyte 

confluence-based proliferation assay. Cell proliferation was visualized and quantified using 

time-lapse imaging. We observed that miR-21 inhibitor and inhibitor combination treatment 

significantly suppressed cell proliferation in majority of tested cells (Figure 17). Interestingly, at 
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96 hour after seeding in SCCT8, which has the high miR-21 expression level, miR-21 inhibitor 

decreased its proliferation by 39% while inhibitor combination suppressed proliferation by 80% 

compared to cells transfected with non-targeted control. In line with this, the cell proliferation 

suppression by miR-21 and inhibitor combination was also observed in SCC IC1, SCC RDEB2 

and COLO16. These data indicate that loss of miR-21 contribute to reduction in cuSCC cell 

proliferation. More importantly, this suggested that miR-21 and miR-31 inhibitor can act 

synergistically in inhibiting cuSCC tumor proliferation. 

 

Figure 17 

Line graphs showing result of confluence-based cell proliferation assay (Incucyte, Essen 

Bioscience). Cells were seeded for proliferation assays 24 hour post-transfection with non-

targeting inhibitor control, miR-21 inhibitor, miR-31 inhibitor and inhibitor combination. 
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4.2.4 miR-21 and miR-31 synergistically decreased apoptosis in cuSCC cell lines 

Generally, miR-21 acts as an antiapoptotic agent as it suppresses the expression of the 

pro-apoptosis proteins PDCD4, PTEN, and many other (136, 150-152). Here, apoptosis analysis 

was performed to investigate whether cuSCC call apoptosis could be influenced after miR-21 

and miR-31 expression inhibition. We found that miR-21 inhibitor, miR-31 inhibitor and the 

inhibitor combination induced apoptosis (AnnexinV positive cells) in SCCT8 cell lines by 2.59 

± 0.42 – fold (p-value = 0.0138), 1.51 ± 0.28 - fold (p-value = 0.0596) , 3.53 ± 0.2-fold (p-value 

= 0.0032) respectively, compared to cells transfected with non-targeted control (Figure 17). We 

detected significant decrease in apoptosis in all cuSCC cell lines tested. Specifically, in RDEB2, 

miR-21 inhibitor, miR-31 inhibitor and the inhibitor combination induced apoptosis by 2.73 ± 

0.83 – fold (p-value = 0.0285), 1.33 ± 0.5 - fold (p-value = 0.1767), 4.03 ± 0.72-fold (p-value = 

0.0067) respectively, compared to cells transfected with non-targeted control (Figure 21). In 

COLO16, miR-21 inhibitor, miR-31 inhibitor and the inhibitor combination induced apoptosis 

by 1.92 ± 0.55 – fold (p-value = 0.093), 1.3 ± 0.12 - fold (p-value = 0.3717) , 3.34 ± 0.7-fold (p-

value = 0.0214) respectively, compared to cells transfected with non-targeted control (Figure 

21). 
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Figure 18  

cuSCC cells were transfected with non-targeting inhibitor, miR-21 inhibitor, miR-31 inhibitor 

and control inhibitor. After 48 hours, cells were labeled with annexin V-FITC and PI was 

collected on a BD FACS Canto II. 

 

Noticeably, the combination of miR-21 inhibitor and miR-31 inhibitor showed 

synergistic effect on inhibiting apoptosis in cuSCC cell lines. Specifically, in SCCT8, inhibitor 

combination increased apoptosis by 27% while total apoptosis increase of miR-21 inhibitor and 

miR-31 inhibitor was 45%. Taken together, this result provides indication that miR-21 and miR-

31 inhibitors have synergistic effect in cuSCC apoptosis. Furthermore, this data provide 

additional evidence that mir-21 and miR-31 cooperatively act to promote cuSCC development.   

4.2.5 Identification of novel targets for miR-21 and miR-31 in cuSCC 

TMT-based detection of the proteins was carried out in the transfected SCCT8 with 

either the mimics of the inhibitor against miR-21, miR-31 and both of them (Figure 22). SCCT8 

was chosen based on low heterogeneity often seen in cuSCC cells and strong response to 
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inhibitor treatment. We successfully detected significantly modulated proteins in three mimic 

treatment groups and three inhibitor treatment groups (p-value < 0.05). 

 

Figure 19 

Design of proteomics experiments on SCCT8 to identify miR-21 and miR-31 novel targets in 
cuSCC. Experiments were performed in three biological replicates. 
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Figure 20 

Principle component analysis of identified proteins in eight experimental conditions 

 

We next compared the list of differentially expressed proteins from our proteomics study 

to their respective list of experimentally and computationally predicted targets of both miRNAs. 

Computational prediction of targets against miRNAs typically leads to hundreds of predicted 

targets and is widely held to be susceptible to false positive prediction. We used consensus 

prediction of targets, considering only targets commonly predicted through at least four 

prediction programs including TargetScan to generate a list of targets for miR-21 and miR-31 

and finally checked for the presence of these targets in our list of differentially expressed 

proteins identified by proteomics. The consensus target prediction approach led to 1695 targets 

for miR-21 and 2409 targets for miR-31 respectively. Since number of differentially expressed 

proteins in miRNA-proteomics experiments is typically much lower than the total number of 
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predicted targets, we looked for common proteins detected in our experiment and predicted as 

targets. Given that miRNA functions by suppressing the expression of their target genes, we 

focused on predicted miRNA targets that increased following miRNA inhibition and decreased 

following miRNA overexpression. We then looked qualitatively for overlapping differentially 

expressed proteins in both conditions. In the proteomics study for miR-21, we identified 42 

proteins that fulfill these conditions. Here, we were able to identify that several potential 

functional targets of miR-21 in cuSCC that were shown in Table 6. In the proteomics study for 

miR-31, we identified 31 proteins that fulfill these conditions. Combining miR-21 and miR-31 

potential target results, we found that MTMR12 and MOCS2 can be common functional targets 

of miR-21 and miR-31 in cuSCC. To validate that the proteomics study were performed 

properly, we confirm that a known target of miR-21, Isoform 2 of Program Cell Death Protein 4 

(PDCD4) increased by 1.8-fold following miR-21 inhibitor treatment and decreased by 1.77-

fold following miR-21 mimic treatment, compared to their respective non-targeting controls. 

 

Predicted 
target 

miR-21 mimic 
treatment 
(log2FC) 

miR-21 
inhibitor 
treatment 
(log2FC) 

mimic 
combination 

treatment 
(log2FC) 

inhibitor 
combination 

treatment 
(log2FC) 

ANXA1 -0.43239 0.272606 -0.50538 0.193606 
BID -0.25126 0.555065 -0.34518 0.985248 
CAMSAP1 -0.204 0.227075 -0.1243 0.483813 
GSS -0.12422 0.220859 -0.16563 0.132916 
GTPBP1 -0.29233 0.256802 -0.40514 0.177748 
MTMR12 -1.11217 1.091099 -0.84736 0.512323 
MYO1E -0.1127 0.23083 -0.29566 0.147437 
SUB1 -0.18375 0.171702 -0.18377 0.264578 
TIMP2 -0.29589 0.411779 -0.6813 0.140253 
TP53BP2 -0.13135 0.352458 -0.13234 0.434275 
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WDR7 -0.14932 0.15522 -0.2135 0.121168 
 

Table 6 

Predicted miR-21 targets that increased following miRNA inhibitor treatment and decreased 

following miRNA mimic treatment in both single and combination treatment 

 

Predicted 
target 

miR-31 mimic 
treatment 
(log2FC) 

miR-31 
inhibitor 
treatment 
(log2FC) 

mimic 
combination 

treatment 
(log2FC) 

inhibitor 
combination 

treatment 
(log2FC) 

AHNAK2 -0.3253 0.167462 -0.24681 0.197691 
EXOC8 -0.1111 0.100481 -0.21896 0.219626 
HECTD3 -0.44966 0.189476 -0.27191 0.628198 
MTM1 -0.16351 0.130448 -0.1562 0.136523 
NELFB -0.15532 0.105361 -0.16493 0.367473 
PGM2L1 -0.16709 0.565088 -0.36869 0.616371 
PLEKHA1 -0.1872 0.241933 -0.10059 0.317377 
SNRNP27 -0.17212 0.398887 -0.20371 0.398308 

 

Table 7 

Predicted miR-31 targets that increased following miRNA inhibitor treatment and decreased 

following miRNA mimic treatment in both single and combination treatment 
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Figure 21 

Potential miR-21 and miR-31 targets in cuSCC were identified by using multiple miRNA target 

prediction tools and integrating data from eight independent experimental conditions. 

 

In order to identify canonical pathways regulated by miR-21 and miR-31, we use GSEA 

canonical pathway analysis. Then, use Enrichment map (Cytoscape) to integrate the GSEA 

output of four different conditions: cells treated with miR-21 inhibitor, miR-21 mimic, inhibitor 

combination and mimic combination. We found that  cell cycle pathways were enriched 

significantly in cells treated with miR-21 inhibitor and inhibitor combination. Specifically, 
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checkpoints activity at G1/S phase and DNA damage checkpoint was upregulated (Figure 22). 

On the other hand, the inhibitor treatment seems to further decrease ECM receptor activity and 

Ribosome activity (Figure 22). 

 

 

 

Figure 22 

Canonical pathway analyses revealed important common pathways regulated by miR-21 and the 

combination of miR-21 and miR-31 (node cut-off: q=0.01). Each circle (node) represents a gene 

set. Each circle is divided into three sections which represent one of three dataset. Blue color 

represents pathway downregulation. Red color represents pathway upregulation. 
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Taken together, using the integration of TMT-based proteomics analysis and 

computationally predicted miRNAs targets, we were able to determine several novel functional 

targets of miR-21 and miR-31 in cuSCC. Our on-going works include validating these targets in 

vitro and in vivo. 

 

4.3 DISCUSSION  

The up-regulation of miR-21 in many types of tumor has been known for a long time 

(153-155). In cuSCC, it was reported that hyaluronan-CD44 promoted miR-21 expression in 

cuSCC progression following UV irradiation (156). In agreement with previous findings, our 

data show that miR-21 and miR-31 are significantly overexpressed in three different subtypes of 

cuSCC, as compared to normal skin. Although widely observed to increase in cuSCC tumors, 

miR-21 and miR-31 functions in this cancer have not been characterized except for one study 

which showed that miR-31 increased in cuSCC and regulated cell motility and colony formation 

ability of tumor cells (141). Here, we found that the inhibition of miR-21 and miR-31 

significantly suppressed cell proliferation and enhance cell apoptosis. More importantly, we 

showed that miR-21 and miR-31 inhibitors functioned in a combinatorial manner, suggesting 

that once validated, they can be used in cuSCC combined treatment. 

 

Since microRNAs function through a network of target genes, it is important to identify 

these targets. PDCD4 is a confirmed target of miR-21 in many types of cancer including ovarian 

cancer, glioblastoma, breast cancer and many more (150, 157). Our proteomic data in SCCT8 
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cell line showed that PDCD4 expression increased when miR-21 was depleted and vice versa, 

which support previous findings. However, there are other proteins with higher magnitude of 

change. Among several potential miR-21 and miR-31 targets identified by proteomics approach, 

we identify that Myotubularin Related Protein 12 MTMR12 and Molybdenum Cofactor 

Synthesis 2 MOCS2 can be the common target of both miRNAs. However, there are many other 

potential candidates that have the similar magnitude of change as MTMR12. This can provide 

us with challenges when identifying additional potential targets of miR-21 and miR-31. The 

question is which genes are directly regulated by miR-21 and miR-31 and not as a secondary 

effect of the changes in other gene expression. 

Because of this, we use pathway analysis to understand important pathways regulated by 

miR-21 and miR-31 and more importantly, connected these changes to potential target genes. In 

another way, these analyses might tell us how some cumulative modest changes in gene 

expression can lead to a more robust change in biological processes. Here, we found that cell 

cycle checkpoint pathways were positively enriched in cuSCC cells treated with inhibitors. 

When taking this result into the context of cell proliferation and apoptosis assay result, we 

reason that the cycle checkpoints were activated due to the damage caused by miRNA inhibitor. 

Taken together, this data suggests that these are the important processes where miR-21 and 

miR-31 function through and that predicted targets involved in cell cycle checkpoint pathways 

should be considered with greater weight.  
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Chapter 5: miR-181a promotes progression of cutaneous squamous 

cell carcinoma by targeting TGFβR3 

5.1 INTRODUCTION 

In the United States, over 700,000 cases of cutaneous squamous cell carcinoma (cuSCC) 

are diagnosed annually and account for about 15-20% of all skin cancers (158). Our 

understanding of the molecular and genetic events that lead to sequential progression of normal 

skin (NS) to precancerous actinic keratosis (AK) to cuSCC is limited. This represents a 

fundamental gap in our knowledge and understanding of this progression sequence is of 

relevance to understanding cancer development and developing more effective chemoprevention 

strategies. In an effort to identify transcriptional drivers of cuSCC development, we previously 

genomically profiled the development sequence from NS to AK to invasive cuSCC. This effort 

identified major microRNA drivers, as identified through functional pair analysis (17).    

 

Our initial analysis suggested that miR-181a is upregulated during cuSCC development. 

The miR-181 family is highly evolutionarily conserved across vertebrates with roles in 

differentiation of hematopoietic cells, including lymphocytes, natural killer cells, and 

megakaryocytes (159). Pathway analysis reveals that miR-181 family target genes play 

important roles in cancer, axon guidance, actin cytoskeleton, MAPK signaling, and T cell 

receptor signaling pathways (160).  
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Several studies show upregulation of miR-181 expression in colorectal carcinoma (161), 

ovarian cancer(162) and hepatocarcinoma(163) with roles in cell cycle, apoptosis, proliferation, 

migration and invasion (164) through targets such as BCL2L11 (BIM) (165), BCL-2 (166), 

ATM (167), and KRAS (168). In a recent meta-analysis of 21 studies involving 1685 patients, 

elevated expression of miR-181a was identified as a negative prognostic molecular marker in 

human head and neck squamous cell carcinoma (HNSCC)(169), a disease that closely resembles 

cuSCC genomically(17, 170). Here, we define a mechanistic link between miR-181a, 

susceptibility to apoptosis, cellular motility and EMT, and TGFβR3. We show that miR-181a is 

able to confer several pro-tumorigenic properties upon epithelial cells, that these phenotypes are 

due to the direct regulation of TGFβR3 expression, and that inhibition of miR-181a 

compromises tumor growth in-vivo.  

 

5.2 RESULTS  

miR-181a overexpression is observed in cutaneous squamous cell carcinoma 

First, we examined miR-181a expression in two different non-melanoma skin cancer 

cohorts (Fig. 26 A and B). A tissue microarray containing 37 evaluable cases of cuSCC and 9 

normal skin controls (US Biomax) was hybridized with a locked nucleic acid (LNA, Exiqon) 

anti-miR-181a or nonspecific LNA anti-miR control and expression quantified within tumor 

cells and normal epidermis, respectively, using the Aperio Image system. We found that miR-

181a was upregulated in the majority of cases, by a mean of 3.0 ± 0.5-fold (P < 0.0001, 

unpaired t-test) (Fig. 26 A and B).  Furthermore, Taqman qPCR showed that miR-181a-5p was 
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increased in 8 out of 11 SCC cell lines when compared to normal human epithelial keratinocyte 

(NHEK) (Figure 25). 

 

Figure 23 

Corellation of relative miR-181a-5p (Taqman-qRT-PCR ) expression levels in NHEK, HaCaT 

and cuSCC cell lines and wound closure time. 

 

miR-181a overexpression increases colony formation efficiency and suppresses UV-

induced apoptosis. 

Next, we sought to determine the potential mechanism of action of miR-181a by 

assessing the pathways regulated by it. We performed microarray gene expression analysis 

(Illumina BeadArray) on lenti-miR-181a HaCat (miR-181a overexpressed) and lenti-miR-00 

HaCat (negative control). Ingenuity Pathway Analysis (IPA, Qiagen) revealed enrichment of 

cell proliferation and cellular movement pathways (Fig. 26 C). 
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HaCaT cells overexpressing with miR-181a were tested for their survival in liquid culture and 

enhanced colony formation in soft agar. As a positive control we used Ha-RasV12-transformed 

HaCaT cells, which readily form colonies and tumors in-vivo(171). Our results showed that 

HaCaT miR-181a overexpressing cell lines have an increased capability of colony formation in 

soft agar. miR-181a-overexpressing HaCaT cells produced 6.3 ± 0.6 fold more colonies (P< 

0.0001, unpaired t-test) (Fig. 26D), reflective of a significant increase in anchorage-independent 

proliferation.  

 

Figure 24 

miR-181a is overexpressed in cuSCC. A, ISH detection using LNA detection probe (blue) or 

scramble-miR as negative control were performed on FFPE tissue microarray. Error bars 



84 

 

represent the mean (+) S.E.M.; **** P<0.0001 (unpaired t-test). B, Representative images show 

that cuSCC has higher miR-181a expression compared to normal skin. C, Transcriptome of 

HaCaT stable cell lines overexpressing lenti-miR-181a was analyzed by IPA for their associated 

molecular pathways. D, HaCaT stable cell lines overexpressing lenti-miR-181a or lenti-control 

were tested for their survival in liquid culture and enhance colony formation in soft agar. Error 

bars represent the mean (+) S.E.M.; **** P<0.0001 (unpaired t-test).  

 

 Exposure to UV radiation (UVR) can induce apoptosis of mammalian cells. Since UV 

exposure is the primary environmental cause of skin cancer, UV-induced apoptosis represents 

an important tumor suppressive mechanism. To identify a potential link between miR-181a 

expression and UV-induced apoptosis, we used NHEK and HaCaT overexpressing miR-181a 

and the negative lenti-miR-control. Cells were subjected to a flow cytometry-based apoptosis 

assay (Annexin V) 24 hours following 750 J/m2 UV-irradiation (171). Overexpression of miR-

181a strongly suppressed UV-induced apoptosis in both NHEK and HaCaT cells by 86.8% ± 

3.5% (P < 0.001, unpaired t-test) and 45.4% ± 2.4 % (P < 0.01, unpaired t-test), respectively 

(Fig. 2A and B). Ataxia telangiectasia (ATM) is a key regulator of DNA damage signaling 

pathway that activates p53 (172, 173) and a validated target of miR-181a (174). ATM regulates 

cell cycle progression through phosphorylation of cell-cycle checkpoint kinase 1 (CHEK1) and 

p53, and DNA damage repair through phosphorylation histone H2AX(175). Here, we showed 

that ATM and p53 expression correlate conversely with miR-181a level. We also noticed that 

phosphorylation of DNA damage response proteins such as CHEK1, p53 and H2AX increased 
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to a lesser extent when cells with higher level of miR-181a were exposed to UV (Fig. 27C). 

 

 

 

Figure 25 

miR-181a suppresses UV-induced apoptosis and increases invasiveness of keratinocytes. 

A-B, NHEK and HaCat cells were stably transfected with lenti-miR-181a or slenti-miR-control. 

Cells were sham irradiated or irradiated with 750 J/m2 of UVB. Apoptotic cells were determined 

by flow cytometry. Error bars represent the mean (+) S.E.M.; *** P < 0.001, ** P < 0.01 
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(unpaired t-test). C, Western blots showed that overexpression impairs the proper induction of 

ATM, p-p53, p-His2AX, and p-Chk1 in response to UV exposure. D-E, Trans-well invasion 

assay was performed at 48 h after NHEK were transfected with control-mimic, or miR-181a-5p 

mimic and RDEB2 were transfected with control-inhibitor, or miR-181a-5p inhibitor. Error bars 

represent the mean (+) S.E.M.; * P < 0.05, ** P< 0.01 (unpaired t-test). F, Expression of EMT-

markers was determined by western blot in transfected RDEB2. GAPDH served as the loading 

control. 

 

miR-181a overexpression increases keratinocyte invasiveness 

 Because the cellular movement pathway was found to be highly enriched in miR-181a 

overexpressing HaCaT cells, we asked whether miR-181a affected keratinocyte morphology and 

motility and invasiveness. Interestingly, during the course of apoptosis assays, we observed that 

miR-181a overexpression induced morphological changes in NHEKs, with cells adopting a 

more spindled appearance. These observations suggested to us that miR-181a might also 

regulate keratinocyte epithelial-mesenchymal transition (EMT).    

 

 In order to address this, we performed Boyden chamber Matrigel invasion assays using 

NHEK and RDEB2 cuSCC cells (Fig. 27D and E). First, we overexpressed miR-181a in NHEK. 

We observed that miR-181a-5p increased NHEK invasiveness significantly by 1.7 ± 0.2-fold 

compared to non-targeting control-expressing NHEK (P < 0.05, unpaired t-test). We then 

depleted miR-181a in RDEB2 cuSCC cells. Depletion of miR-181a decreased RDEB2 

invasiveness by 1.7 ± 0.1-fold compared to non-targeting control-expressing cells (P < 0.01, 
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unpaired t-test).  

 

To investigate this further, we observed that this miR-181a depletion in RDEB2 resulted in 

decreased of Slug (SNAI2) expression (Fig. 27F). Slug is known to be particularly relevant to 

EMT in epidermal keratinocytes and our data reflect that in this context as well(176, 177). 

Taken together, these data show that the loss of miR-181a can induce decreases in EMT marker 

expression and cellular invasiveness. 

 



88 

 

Figure 26 

TGFβR3 is downregulated in cuSCC and is a direct target of miR-181a. A,  Data obtained 

by RNA-sequencing shows TGFβR3 is downregulated in cuSCC relative to normal skin. Error 

bars represent the mean (+) S.E.M.; **** P < 0.05 (unpaired t-test). B, Western blot analysis of 

NHEK transiently transfected with control-mimic, or miR-181a mimic showed that miR-181a 

regulates TGFβR3 at the post-transcriptional level. C, Diagram of miR-181a predicted seed 

regions in the WT and MUT 3’UTR of TGFβR3. D, Reporter assay in SRB1 with cotransfection 

of WT reporter plasmid and control-mimic, or miR-181a-5p mimic. E, Reporter assay in 

RDEB2 with  cotransfection of WT reporter plasmid and control-inhibitor or miR-181a-5p 

inhibitor. F, Reporter assay in HaCat, with cotransfection of WT-or MUT reporter and control-

mimic, or miR-181a-5p mimic. Data represent the S.E.M. from three replicates. *P < 0.05; 

**P < 0.01; ****P < 0.0001 (unpaired  t-test). 

 

TGFβR3 is a direct target of miR-181a 

Since the biological significance of miRNA-driven regulation relies on the effect upon their 

cognate mRNA targets, we then analyzed the predicted targets of miR-181a using  

Targetscan(178), PicTar(179) and miRanda (180). The predicted target genes of miR-181a 

included transforming growth factor beta receptor III, TGFβR3 which is highly relevant in skin 

cancer development (Appendix table 6 shows complete target list). By using RNA-seq data 

from human cuSCC samples (17), we confirmed that TGFβR3 expression is significantly 

decreased in cuSCC as compared to normal skin by 1.8 ± 0.2-fold (P<0.0001, unpaired t-test) 

(Fig. 3A). Western blot analysis demonstrated downregulation of TGFβR3 and increased 
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phosphorylation of downstream TGF-β-pathway target SMAD2 (181) in NHEK cells 

overexpressing miR-181a, consistent with upregulation of TGF-β signaling (Fig. 3B).  

 

We then sought to address the hypothesis that TGFβR3 is a direct the target of miR-181a in 

keratinocytes and we asked whether the 3’-UTR of TGFβR3 could confer direct regulation by 

miR-181a. We used plasmids harboring the 3’-UTR of TGFβR3 upstream of a luciferase 

reporter gene (Fig. 28C). Because of the size of the 3’-UTR, we split it into two segments 

labeled “A” and “B”. Only segment “B” contained the two predicted miR-181a binding sites. 

We use SCC cell line that has low miR-181a (SRB1) and high miR-181a (RDEB2) for the 

reporter assay. In SRB1, the wild-type (WT) reporter plasmids were co-transfected with a miR-

181a mimic or, control-mimic. Reporter assays were performed 48hr post-transfection. 

Compared with the control-mimic, presence of the miR-181a mimic significantly decreased the 

relative luciferase activity by 3.5± 0.4-fold (P<0.005, unpaired t-test) when co-transfected with 

the WT reporter plasmid for segment “B” only (Fig. 28D). On the other hand, when we depleted 

miR-181a in RDEB2 and perform the same assay as with SRB1, luciferase activity increased by 

1.6 ± 0.2-fold (P<0.05, unpaired t-test) (Fig. 28E). 

 

To demonstrate the specificity of control conferred by the predicted miR-181 binding sites, we 

generated the mutant luciferase reporter plasmids for segment “B”. The WT or mutant reporter 

plasmid was transfected into miR-181a constitutively overexpressing HaCat cells. While the 

WT reporter showed downregulation of luciferase activity these cells, the mutant reporters with 

site 1 and site 2 individually mutated did not show any significant decrease in luciferase activity 
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(Fig. 28E). These results show that miR-181a suppresses TGFR3 by targeting the two 

predicted sites within the 3’-UTR of TGFβR3. 

 

TGFβR3 depletion phenocopies miR-181a effect in suppressing UV-induced apoptosis 

Having demonstrated that TGFβR3 is a direct target of miR-181a, we then wanted to assess the 

degree to which phenotypes conferred by miR-181a-5p could be accounted for by 

downregulation of TGFβR3. To this end, we determined the effects of suppressing TGFR3 

expression using shRNA in NHEK. Following UV-irradiation, we performed apoptosis assay 

and observed that TGFβR3 depletion suppressed UV-induced apoptosis in both NHEK and 

HaCaT cells by 63.6%  ± 2.1% (P < 0.005, unpaired t-test) and 73.9% ± 1.8% (P < 0.01, 

unpaired t-test), respectively. Taken together, our data show that both overexpression of miR-

181a and depletion of TGFR3 can suppress UV-induced apoptosis in keratinocytes (Fig. 29A 

and B). 

TGFβR3 overexpression negates cell invasion promoted by miR-181a 

Next we determined whether TGFβR3 overexpression would negate miR-181a-mediated effects 

on keratinocyte invasiveness. HaCaT cells were stably transfected with lenti-miR-181a (OE) or 

lenti-miR-00 (control) and subjected to Boyden chamber assays, using Matrigel-coated 

membranes. Our results showed that miR-181a overexpression significantly enhanced HaCaT 

invasion (2.6 ± 0.7 - fold, P<0.01, unpaired t-test). We then assessed whether miR-181a-

induced enhancement of cell invasiveness could be blunted by TGFβR3 overexpression. In 
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these rescue experiments, we showed that overexpression of the TGFβR3 can essentially rescue 

the increased invasion nearly completely (1.3 ± 0.4-fold, P = 0.40, unpaired t-test) (Fig. 29 C 

and D). These data show that for the key phenotypes of miR-181a upregulation, including 

suppression of apoptosis and increased invasiveness can be attributed in large part to the 

downregulation of TGFβR3. 

 

Figure 27 
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Downregulation of TGFβR3 phenocopies effect of miR-181a upregulation. A-B, Depletion 

of TGFβR3 phenocopies the suppression of UV-induced apoptosis by miR-181a in 

keratinocytes. NHEK and HaCat were transfected with sh-control, or sh-TGFβR3  After 24 h, 

cells were sham irradiated or irradiated with 750 J/m2 of UVB. Apoptotic cells were determined 

by flow cytometry. Error bars represent the mean (+) S.E.M.; *** P<0.001, ** P<0.01 

(Student’s t-test). C-D, TGFβR3 overexpression negates miR-181a effects in migration and 

invasion in keratinocytes. miR-181a stably expressed HaCat (lenti-miR-181a) and non-

targeting control stably expressed HaCat (lenti-miR-control) were transfected with TGFβR3 

expressed plasmid or vector control. Assays conducted 48 h after transfection. Error bars 

show SEMs. Asterisks represent a statistically significant difference from the control 

(**P< 0.01; ****P < 0.0001). 

 

miR-181a inhibitor suppresses tumor growth in a xenograft SCC mouse model 

To assess whether suppressing miR-181a expression would affect tumor growth in-vivo, we 

transiently transfected RDEB2 cells with miR-181a inhibitor or control inhibitor, and then 

injected them into flanks of NOD CRISPR Prkdc Il2r gamma (NCG) mice (Fig. 5A). We found 

that tumors derived from RDEB2 cells transfected with miR-181a inhibitor grew substantially 

more slowly, as compared to the negative control (Fig. 30B-D). By day 10, the average volume 

for tumors derived from cells transfected with miR-181a inhibitor was 2.1 ± 0.5-fold (P < 0.05, 

paired t-test) smaller than those derived from the cells transfected with the control inhibitor (Fig. 

30B-D). Accordingly, TGFβR3 levels increased by 1.9 ± 0.5-fold (P < 0.005, two-way 
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ANOVA) in tumors derived from cells transfected with miR-181a inhibitor, as compared to 

control inhibitor (Fig. 30E).  These results show that miR-181a plays an important role in 

cuSCC progression in-vivo.  

 

Figure 28 

Inhibition of miR-181a function suppresses tumor progression in-vivo. A, Timeline of 

RDEB2 SCC cell line transfection and xenograft inoculation. B, Comparison of representative 

gross tumor xenografts at sacrifice. C-D, Xenograft tumor growth was significantly reduced (P 

< 0.05, paired Student’s t-test, n=6 each) in tumors derived from cells transfected with miR-

181a inhibitor than the control inhibitor. E, TGFBR3 expression increased significantly (P < 
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0.05, two-way ANOVA) in tumors derived from cells transfected with miR-181a inhibitor, 

compared to control inhibitor. 
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5.3 DISCUSSION 

miR-181a overexpression has been associated with poor survival in oral and head and 

neck squamous cell carcinoma, which supports an oncogenic function (182). Individual studies 

have identified miR-181a to be upregulated in HNSCC, which is closely pathologically and 

genomically related to cuSCC (183, 184). Moreover, miR-181a serves as a putative biomarker 

for lymph-node metastasis of oral squamous cell carcinoma (182). 

 

Our data show that miR-181a is significantly overexpressed in a subset of cuSCC, as 

compared to normal skin. The overexpression of miR-181a significantly suppressed UV-induced 

apoptosis (Fig. 2A-C), enhanced anchorage independent survival in keratinocytes (Fig. 1D), and 

significantly increased invasion (Fig. 2). Importantly, we showed that many of these phenotypes 

are due to the direct regulation of TGFβR3 by miR-181a (Fig. 4), which is conferred by two 

sites within the 3’ UTR (Fig. 3C-F).  

 

TGFβR3 is downregulated in various human cancers, including in HNSCC(185). In 

early-stage tumors, it has a suppressive role, serving as a homeostatic regulator of the TGF-β 

pathway. On the other hand, in late-stage tumors it increases TGF-β expression, promoting 

tumor progression(186). The TGF-SMAD2-Slug axis has been demonstrated in oral SCC, where 

SMAD2 is phosphorylated during pathway activation leading to increased migration(187).  

Phosphorylated SMAD2 is also increased in cuSCC arising in higher risk organ transplant 

recipients(188).  Conversely, binding of cuSCC cells to collagen VII decreases features 

associated with tumor progression, with decreased SMAD2 activity(189).   Also consistent with 
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a tumor-suppressive role, TGFR3 overexpression has been shown to enhance TGF-β signaling 

through the stimulation of SMAD-dependent signaling, resulting in upregulation of PAI-1 and 

p21Cip1(190). Nevertheless, there is also data that shows deletion of SMAD2 exacerbates 

cuSCC development in-vivo, reflecting the high complexity and context-dependent functions of 

this pathway(191). 

 

Our data show that TGFβR3 expression is decreased in cuSCC as compared to normal skin (Fig. 

3A) and that TGFβR3 is a direct and functional target of miR-181. Furthermore, we show that 

TGFβR3, as directly regulated by miR-181a, opposes TGF- β signaling, thus enhancing stress-

induced apoptosis and suppressing invasiveness in cuSCC with increased miR-181a expression.   
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Chapter 6: DISCUSSION AND FUTURE DIRECTION 

6.1 DISCUSSION 

The research in this dissertation was designed and performed with the goal of using 

creative strategies to identify biomarkers for cuSCC prevention and treatment, studying how 

deregulated miRNA-mRNA functions to promote to cuSCC development. The findings in this 

thesis provide fresh perspective on the extent to how early changes in the expression level of 

miRNA-mRNA happen in UV-exposed skin and wound healing skin, prior to the development 

of cuSCC, providing solid experimental-based characterization of deregulated miRNAs 

mechanism of action in cuSCC development. 

In chapter three, we showed that the transcriptomic deregulation observed in cuSCC was 

induced early in UV-exposed skin and wound healing skin, which are the two main prerequisites 

of cuSCC development. Importantly, we identified unprecedented evidence showing that the 

UV-exposed skin and wound healing skin showed significantly correlated. Even though in 

clinical setting, ultraviolet therapy has been used to disinfect the wound areas promote wound 

healing (115, 130, 192, 193), no studies have identified molecular correlation between UV-

exposed skin and wound healing skin. Furthermore, we showed that UV-exposed skin, wound 

healing skin and cuSCC tumors have significant commons in their transcriptomes and canonical 

pathways. Our finding suggested that Oncostatin M signaling, a pathway found to be modified 

early in UV-exposed skin, wound healing and its deregulation exists in cuSCC tumors. This 

showed that Oncostatin M can be further evaluated as a novel target in cuSCC treatment. 
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In chapter four, we used TMT-based proteomics to identify novel targets of miR-21 and 

miR-31, the two most significantly and commonly regulated in various types of cuSCC tumors 

through our data. Although miR-21 and miR-31 expressions are often observed to be altered 

together in many tumors (194-198), our results showed for the first time that miR-21 and miR-

31 exert synergistic effects in promoting proliferation and inhibit apoptosis in cuSCC. Our work 

from this part of the thesis will continue with the validation and characterization of the 

identified miR-21 and miR-31 targets in cuSCC cell lines and UV-induced hairless cuSCC 

mouse models. 

Chapter five is the continuing work to complete the project initiated by Dr. Vida 

Chitsazzadeh at The University of Texas MD Anderson Cancer Center. Here, we investigated 

miR-181a, a microRNA upregulated in cuSCC and induced by UV-irradiation. We showed that 

miR-181a promotes migration and invasion of cuSCC cell lines through its novel target, 

TGFbR3. In xenografts mouse model, miR-181a inhibitor significantly reduce tumor size. This 

study offers evidence showing that miR-181a is important in promoting cuSCC development.  

 

6.2 FUTURE DIRECTION 

The discovery of miRNA genes in C. elegans and the subsequent recognition that this 

family of RNAs extends throughout all multicellular organisms has provided researchers with 

much more than a new class of regulatory RNAs. The substantial body of research over the last 

17 years in the area of miRNA and cancer has constantly increased our knowledge base 

regarding the key roles of miRNA in tumor development. In this current era of genomics and 

targeted therapy, perhaps one of the more intriguing questions is how researchers can 
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incorporate prediction models and existing experimental data to ultimately generate therapeutic 

values that miRNA research can provide. The key answer to this question depends on how well 

we understand the miRNA network of targets. It has becoming more apparent that miRNAs 

systematically regulate large networks of targets instead of predominantly suppress specific 

major targets. With current technology, it is possible to record even the modest change in 

transcriptome and proteome following miRNA modulation. Once the target gene and protein 

networks were identified, it is important to determine whether the relationship among the 

components a correlation or causation. This information will help build a reliable network of 

miRNA targets, in order to choose most important genes to target. Although already in mature 

phase, miRNA research still has many interesting unanswered questions that can be addressed 

by future research. 

In the near future, the continuing work for projects in chapter 3 includes validating the 

functions of OSM in cuSCC development. Here, we plan to deplete OSM and study downstream 

pathways and proceses that might be regulated by OSM such as EMT and proliferation. In 

chapter 4, we plan to investigate whether MTMR12 as well as other potential targets are directly 

targeted by miR-21 and miR-31 in cuSCC cell lines. 
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Appendix  

Appendix 1  

Detected miRNA in human skin at 24 hour following UV-exposure (fold change) 

miRNA  Fold change at 24h post-SSL  
hsa-miR-142-3p 6.29 
hsa-miR-31 8.89 
hsa-miR-132 2.93 
hsa-miR-16 2.32 
hsa-miR-93 1.77 
hsa-miR-19a 1.8 
hsa-miR-484 1.76 
hsa-miR-150 2.45 
hsa-miR-135b 3.41 
hsa-miR-31-3p 2.99 
hsa-miR-155 2.32 
hsa-miR-886-3p 2.46 
hsa-miR-451 18.53 
hsa-miR-223 63.33 
hsa-miR-652 3.1 
hsa-miR-25 2.01 
hsa-miR-340 3.55 
hsa-miR-223-5p 11.8 
hsa-miR-144-5p 19.43 
hsa-miR-20b 7.52 
hsa-miR-486 20.05 
hsa-miR-425-5p 2.79 
hsa-miR-15b 4.68 
hsa-miR-142-5p 3.84 
hsa-miR-539 0.53 
hsa-miR-101 0.53 
hsa-miR-27a 0.57 
hsa-miR-1271 0.43 
hsa-miR-455 0.5 
hsa-miR-411 0.43 
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hsa-miR-328 0.54 
hsa-miR-409-3p 0.54 
hsa-miR-200a 0.53 
hsa-miR-23a 0.46 
hsa-miR-199a-3p 0.55 
hsa-miR-214-5p 0.41 
hsa-miR-221 0.57 
hsa-miR-210 0.49 
hsa-miR-365 0.57 
hsa-miR-99a 0.45 
hsa-miR-27b 0.53 
hsa-miR-149 0.39 
hsa-miR-23b 0.53 
hsa-miR-152 0.52 
hsa-miR-127 0.48 
hsa-let-7c 0.56 
hsa-miR-100 0.59 
hsa-miR-146a 0.58 
hsa-miR-214 0.3 
hsa-miR-193b 0.55 
hsa-miR-196b 0.51 
hsa-miR-218 0.41 
hsa-miR-139-5p 0.59 
hsa-miR-489 0.24 
hsa-miR-574-3p 0.44 

 

Appendix 2 

Detected miRNA in human skin at 1 hour following UV-exposure (log 2 fold change) 

miRNA log 2 fold change at 1 hour post-SSL 
hsa-mir-145-5p -0.54689 
hsa-mir-668-3p 0.594605 
hsa-mir-133a-3p -0.61168 
hsa-mir-23a-5p -0.54239 
hsa-mir-143-5p -0.57547 
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Appendix 3 

Detected miRNA in three subtypes of cuSCC (log 2 fold change) 

miRNA Xeroderma 
Pigmentosum cuSCC 

Immunosuppressed 
cuSCC 

UV-driven 
cuSCC 

hsa-mir-6510-3p -0.12 -1.82 3.2 
hsa-mir-4532 1.29 -1 2.55 
hsa-mir-6089 0.34 -0.8 2.48 
hsa-mir-486-5p -1.27 -3.76 2.35 
hsa-mir-3621 0.48 -0.69 2.26 
hsa-mir-204-5p -3.08 -3.28 2.26 
hsa-mir-184 0.17 -0.1 2.19 
hsa-mir-218-1-3p -0.15 -1.15 2.15 
hsa-mir-6511a-3p 0.25 -1.34 2.1 
hsa-mir-3656 1.32 -1.45 2.08 
hsa-mir-3178 1.07 -0.83 2.06 
hsa-mir-3195 1.69 -0.61 1.98 
hsa-mir-214-3p -1.19 -0.97 1.95 
hsa-mir-3663-3p 0.28 -0.55 1.93 
hsa-mir-145-5p -2 -0.3 1.79 
hsa-mir-211-5p -4.91 -2.42 1.77 
hsa-mir-1247-5p -1.68 -1.86 1.75 
hsa-mir-375 -0.22 -1.57 1.72 
hsa-mir-149-5p -0.48 -0.73 1.6 
hsa-mir-718 0.23 -0.71 1.54 
hsa-mir-574-3p -1.39 -0.28 1.53 
hsa-mir-3665 0.86 -1.09 1.53 
hsa-mir-3196 1.05 -0.28 1.52 
hsa-mir-125b-5p -1.75 -1.32 1.5 
hsa-mir-378a-5p 0.78 -0.84 1.5 
hsa-mir-6087 1.63 -0.59 1.47 
hsa-mir-6511b-3p -0.1 -0.42 1.47 
hsa-mir-652-3p 2.38 -2.12 1.46 
hsa-mir-139-5p -1.21 -1.48 1.46 
hsa-mir-4655-3p 1.12 0.29 1.45 
hsa-mir-100-5p -1.16 -1.42 1.43 
hsa-mir-762 0.28 -0.45 1.39 
hsa-mir-1538 0.47 -0.5 1.37 



103 

 

hsa-mir-486-3p -0.21 -2.77 1.34 
hsa-mir-197-3p -0.1 -0.35 1.33 
hsa-mir-4508 1.83 -1.06 1.27 
hsa-mir-193a-5p 0.35 -1.32 1.26 
hsa-mir-5787 0.72 -0.28 1.25 
hsa-mir-296-5p 1 -0.22 1.22 
hsa-mir-664b-3p 0.01 -0.86 1.22 
hsa-mir-4497 1.32 -0.34 1.21 
hsa-mir-125a-5p -1.24 -0.61 1.16 
hsa-mir-4634 -0.9 -0.09 1.16 
hsa-mir-4739 1.52 -0.43 1.11 
hsa-mir-2110 0.43 -0.86 1.1 
hsa-mir-664a-3p -0.48 -0.89 1.1 
hsa-mir-338-5p -0.41 -1.39 1.09 
hsa-mir-451a 0.53 -2.97 1.07 
hsa-mir-509-3p -0.78 -1.94 1.04 
hsa-mir-497-5p -0.5 -0.24 1.02 
hsa-mir-1247-3p 0.02 -1.62 1.01 
hsa-let-7d-3p 1.61 -0.53 0.99 
hsa-mir-3605-3p 0.81 -0.78 0.97 
hsa-mir-30a-3p 0.44 -1.09 0.97 
hsa-mir-4707-5p 1.13 -0.5 0.93 
hsa-mir-532-3p 1.07 -0.59 0.93 
hsa-mir-485-5p 0 -0.74 0.93 
hsa-mir-99a-3p 0 -0.66 0.93 
hsa-mir-508-3p -1.06 -1.53 0.92 
hsa-mir-574-5p 2.17 0.01 0.89 
hsa-mir-766-3p 0.75 -0.04 0.89 
hsa-mir-320b -0.48 -0.7 0.87 
hsa-mir-99a-5p -1.97 -1.1 0.86 
hsa-mir-320a -0.38 -0.68 0.86 
hsa-mir-125b-1-3p 0.84 -0.88 0.84 
hsa-mir-4516 3.27 -0.05 0.82 
hsa-mir-195-5p -2.57 -0.59 0.81 
hsa-mir-146b-3p 0.88 -1.02 0.8 
hsa-mir-664a-5p -0.64 -0.87 0.78 
hsa-mir-3609 0.07 0.2 0.78 
hsa-let-7e-3p 0.88 0.09 0.77 
hsa-mir-365a-5p 0.72 0.25 0.73 
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hsa-mir-30c-2-3p 0.33 -1.1 0.7 
hsa-mir-193b-3p 0.52 0.58 0.69 
hsa-mir-144-3p 3.54 -2.09 0.67 
hsa-mir-1275 1.72 -0.27 0.67 
hsa-mir-1915-3p 1.77 0.05 0.66 
hsa-mir-214-5p 1.67 -0.03 0.66 
hsa-mir-4492 2.91 -0.95 0.63 
hsa-mir-432-5p 0.06 -0.81 0.63 
hsa-mir-514a-3p 0.26 -1.16 0.6 
hsa-mir-199a-5p -0.01 -0.36 0.53 
hsa-mir-140-3p -0.53 -0.84 0.49 
hsa-mir-378a-3p -0.5 -0.72 0.49 
hsa-mir-30d-5p -0.9 -0.77 0.49 
hsa-mir-365a-3p 1.7 -0.12 0.47 
hsa-mir-365b-3p 1.7 -0.12 0.47 
hsa-mir-99b-5p -0.46 -0.15 0.47 
hsa-mir-330-3p 0.89 -0.63 0.46 
hsa-mir-6126 2.24 -0.03 0.35 
hsa-mir-324-3p 2.12 0.25 0.31 
hsa-mir-127-3p -1.43 -0.46 0.3 
hsa-mir-566 1.46 -0.03 0.28 
hsa-mir-30a-5p -1.49 -1.05 0.27 
hsa-mir-331-3p 1.92 0.47 0.25 
hsa-mir-129-2-3p -0.87 0 0.24 
hsa-mir-3158-3p 1.76 -0.77 0.21 
hsa-mir-26a-5p -1.35 -0.44 0.21 
hsa-mir-4488 3.98 0.25 0.2 
hsa-mir-3651 0.53 1.06 0.2 
hsa-mir-191-5p -0.62 -0.56 0.2 
hsa-mir-324-5p 2.58 -0.21 0.16 
hsa-mir-335-5p 0.72 -0.83 0.15 
hsa-mir-125a-3p 1.48 0.01 0.14 
hsa-mir-150-5p -1.95 -1.08 0.13 
hsa-mir-767-3p 1.14 1.55 0.11 
hsa-mir-320c 0.91 0.1 0.1 
hsa-mir-20b-5p 0.18 -2.12 0.1 
hsa-mir-185-3p 1.26 0.01 0.09 
hsa-mir-26b-3p 1.82 -0.11 0.09 
hsa-mir-24-1-5p 1.58 0.83 0.08 
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hsa-mir-15b-5p 1.5 -0.08 0.06 
hsa-mir-941 2.07 -0.36 0.05 
hsa-mir-30c-5p -0.62 -0.37 0.03 
hsa-mir-150-3p -0.26 -0.62 0.03 
hsa-mir-93-3p 1.73 0.61 0 
hsa-mir-3200-3p 0.23 -0.65 0 
hsa-mir-339-5p 2.37 0.64 0.02 
hsa-mir-10b-5p -1.7 -0.59 0.06 
hsa-mir-505-3p 2.17 0.01 0.08 
hsa-mir-106a-5p 0.43 -1.18 0.08 
hsa-mir-30b-5p -0.18 -0.44 0.09 
hsa-mir-129-5p -0.28 0.03 0.1 
hsa-mir-425-3p 1.58 -0.26 0.11 
hsa-mir-363-3p 1.15 -2.12 0.11 
hsa-mir-4326 1.16 0.27 0.15 
hsa-mir-106b-3p 1.21 -0.26 0.16 
hsa-let-7d-5p 0.42 -0.36 0.16 
hsa-mir-99b-3p 1.86 0.35 0.18 
hsa-mir-146a-5p -0.58 -0.96 0.19 
hsa-let-7g-3p 1.34 0.54 0.2 
hsa-mir-33a-3p 1.76 0.99 0.2 
hsa-mir-484 0.99 -0.23 0.21 
hsa-mir-4746-5p 1.05 0.48 0.22 
hsa-mir-409-3p -1.1 -0.23 0.22 
hsa-mir-550a-3p 1.81 -0.1 0.25 
hsa-mir-3129-3p 0.56 1.05 0.26 
hsa-mir-744-3p 0.73 0.91 0.26 
hsa-mir-221-5p 2.06 0.28 0.26 
hsa-let-7g-5p 0.89 -0.38 0.27 
hsa-mir-641 1.19 0.28 0.27 
hsa-mir-221-3p 1 0.46 0.28 
hsa-mir-455-3p 1.77 0.43 0.29 
hsa-mir-345-5p 1.85 -0.15 0.31 
hsa-mir-576-5p 2.02 0.33 0.33 
hsa-mir-185-5p 1.97 -1.04 0.34 
hsa-mir-769-5p -0.39 -0.41 0.36 
hsa-mir-3117-3p 0.9 0.99 0.37 
hsa-mir-6499-5p 0.94 0.74 0.37 
hsa-mir-148b-3p 2.26 0.26 0.38 
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hsa-mir-369-3p 1.87 0.91 0.4 
hsa-mir-200b-3p 0.56 0.62 0.41 
hsa-mir-654-5p -0.73 -0.14 0.42 
hsa-mir-425-5p 0.33 -0.72 0.42 
hsa-mir-2277-5p 1.01 0.38 0.43 
hsa-mir-4478 4.13 0.19 0.44 
hsa-mir-4784 1.49 1.1 0.44 
hsa-mir-126-3p -1.51 -0.29 0.44 
hsa-mir-23a-3p -0.22 0.59 0.45 
hsa-mir-532-5p 1.46 -0.06 0.47 
hsa-mir-4446-3p 0.24 0.01 0.49 
hsa-mir-1185-1-3p 0.7 0.12 0.51 
hsa-mir-132-3p 1.47 -0.22 0.51 
hsa-mir-548av-3p 1.73 0.35 0.51 
hsa-mir-98-5p 1.77 0.03 0.51 
hsa-mir-708-5p 1.67 0.65 0.51 
hsa-mir-24-3p 0.04 0.31 0.52 
hsa-mir-548o-3p 1.74 0.38 0.52 
hsa-mir-142-3p 1.79 0.12 0.52 
hsa-mir-6724-5p 3.16 0.41 0.54 
hsa-mir-1307-3p 2.73 0.18 0.55 
hsa-mir-5701 3.24 0.56 0.55 
hsa-mir-1293 0.66 0.4 0.56 
hsa-mir-708-3p 3.6 0.63 0.58 
hsa-let-7f-5p 0.68 0.02 0.59 
hsa-mir-182-5p 0.63 -0.18 0.59 
hsa-mir-25-3p 0.63 -0.06 0.6 
hsa-mir-4443 2.91 0.29 0.61 
hsa-mir-103a-3p 0.09 -0.11 0.61 
hsa-mir-27b-3p 0.78 0.46 0.61 
hsa-mir-614 4.07 1.42 0.62 
hsa-mir-490-3p 2.3 1.82 0.63 
hsa-mir-454-3p 2.04 0.26 0.64 
hsa-mir-27a-5p 2.56 0.35 0.65 
hsa-mir-107 0.73 -0.62 0.65 
hsa-mir-28-5p -0.1 0.08 0.66 
hsa-mir-7-1-3p 1.73 0.67 0.67 
hsa-mir-205-3p 2.12 1.53 0.68 
hsa-mir-20a-5p 0.94 0.23 0.68 
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hsa-mir-1268a 1.99 0.77 0.7 
hsa-mir-212-3p 2.68 0.08 0.71 
hsa-mir-93-5p 0.54 -0.3 0.72 
hsa-mir-330-5p 2.66 0.84 0.74 
hsa-mir-181c-5p 0.75 0.06 0.74 
hsa-mir-2355-5p 2.72 1.39 0.75 
hsa-mir-4730 3.36 0.66 0.76 
hsa-mir-181b-5p 0.61 0.5 0.76 
hsa-mir-151a-3p 0.17 0.24 0.77 
hsa-mir-3180 0.19 0.84 0.77 
hsa-mir-3180-3p 0.19 0.84 0.77 
hsa-mir-1307-5p 4.07 1.8 0.78 
hsa-mir-200c-5p 1.4 1.25 0.8 
hsa-mir-340-3p 2.01 0.25 0.8 
hsa-mir-660-5p 1.07 0.18 0.82 
hsa-mir-450b-5p 3.46 2.03 0.83 
hsa-mir-25-5p 0.81 0.73 0.84 
hsa-mir-665 1.06 1.01 0.85 
hsa-mir-17-5p 0.71 0.17 0.86 
hsa-mir-16-5p -0.27 -0.5 0.86 
hsa-let-7i-5p 1.04 0.4 0.87 
hsa-mir-1246 1.4 1.46 0.87 
hsa-mir-7-5p 1.79 1.98 0.88 
hsa-mir-582-5p 2.99 0.61 0.88 
hsa-mir-222-5p 1.01 -0.25 0.88 
hsa-mir-146b-5p -0.26 -0.53 0.89 
hsa-mir-132-5p 1.76 0.02 0.9 
hsa-mir-18a-5p 2.95 0.96 0.91 
hsa-mir-148b-5p 2.75 0.78 0.91 
hsa-mir-615-3p 2.48 1.38 0.92 
hsa-mir-493-5p 1.21 0.7 0.92 
hsa-mir-130b-5p 2.5 0.68 0.93 
hsa-mir-17-3p 2.61 0.05 0.93 
hsa-mir-493-3p 0.21 0.67 0.93 
hsa-mir-3182 1.17 1.35 0.95 
hsa-mir-454-5p 1.78 0.69 0.95 
hsa-mir-181c-3p 2.02 0.58 0.96 
hsa-mir-224-5p 0.5 0.94 0.96 
hsa-mir-1303 1.58 0.67 0.96 
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hsa-mir-22-3p 0.38 0.45 0.98 
hsa-mir-4448 1.08 1.47 1.03 
hsa-mir-629-5p 1.5 -0.03 1.04 
hsa-mir-106b-5p 1.67 0.26 1.05 
hsa-mir-223-3p 1.17 -0.88 1.06 
hsa-mir-196b-5p 0.78 1.29 1.06 
hsa-mir-200a-5p 3.22 1.38 1.07 
hsa-mir-331-5p 2.18 0.7 1.08 
hsa-mir-1285-3p 3.4 1.13 1.09 
hsa-mir-34c-5p 1.42 1.17 1.1 
hsa-mir-944 3.78 1.63 1.14 
hsa-mir-27a-3p 0.77 1.4 1.16 
hsa-mir-193a-3p 2.78 0.92 1.17 
hsa-mir-187-3p 0.78 0.81 1.17 
hsa-mir-323b-3p 0.35 0.26 1.22 
hsa-mir-431-5p 1.41 0.65 1.22 
hsa-mir-15b-3p 2.09 1.46 1.23 
hsa-mir-192-5p -0.05 0.02 1.27 
hsa-mir-141-5p 2.09 1.61 1.29 
hsa-mir-27b-5p 0.26 0.57 1.29 
hsa-mir-15a-5p 1.87 -0.46 1.31 
hsa-let-7a-3p 3.84 1.45 1.34 
hsa-mir-455-5p 1.92 1.18 1.37 
hsa-mir-16-2-3p 2.85 -0.3 1.38 
hsa-mir-135b-5p 3.14 3.41 1.41 
hsa-mir-421 2.27 0.3 1.42 
hsa-mir-452-5p 2.22 0.78 1.42 
hsa-mir-450a-5p 2.75 1.71 1.44 
hsa-mir-155-5p 0.88 0.36 1.46 
hsa-mir-24-2-5p 2.63 0.84 1.52 
hsa-mir-1269a 1.56 2.96 1.62 
hsa-mir-130b-3p 1.58 0.59 1.63 
hsa-mir-181a-3p 1.64 0.72 1.64 
hsa-mir-196a-5p 0.43 1.55 1.65 
hsa-mir-340-5p 2.26 0.37 1.68 
hsa-mir-22-5p 2.72 1.35 1.73 
hsa-mir-142-5p -0.03 -0.56 1.77 
hsa-mir-424-5p 3.36 1.95 1.82 
hsa-mir-424-3p 2.4 1.37 1.88 
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hsa-mir-21-5p 2.08 2.1 2.61 
hsa-mir-31-3p 4.16 3.96 2.73 
hsa-mir-21-3p 5.2 2.56 3.01 
hsa-mir-31-5p 2.64 3.47 3.28 

 

Appendix 4 

Potential miR-21 targets expression in SCCT8 treated with miR-21 inhibitor and mimic (log 2 

fold change) 

Proteins miR-21 inhibitor miR-21 mimic 
ABI2 0.345161903 -0.265190391 
ANP32E 0.553348599 -0.100458185 
ANXA1 0.272606179 -0.432385806 
AP1S2 0.336497486 -0.295161943 
BID 0.55506518 -0.251256637 
CAMSAP1 0.227075164 -0.203996023 
CDS1 0.258788099 -0.162024316 
CEP44 0.1440208 -0.247960871 
CHM 0.555661009 -0.252766245 
DAZAP2 0.356531027 -0.49251089 
DCTN3 0.325878418 -0.114100454 
FBXL2 0.25015208 -0.186006504 
FGFR1OP2 0.153577475 -0.114399888 
GINS1 0.186697023 -0.229961254 
GNPDA2 0.612320893 -0.165388235 
GSS 0.220859049 -0.124222386 
GTPBP1 0.25680205 -0.292331839 
GYG1 0.48055174 -0.147299543 
IPO11 0.56435111 -0.314422377 
MAPKAP1 0.122066129 -0.114405747 
MTMR12 1.091099353 -1.112174201 
MYEF2 0.29148543 -0.35450327 
MYO1E 0.230829671 -0.112699661 
NRIP1 0.1018217 -0.136875696 
NSUN2 0.334317205 -0.135366843 
PAN3 0.542806496 -0.118429218 
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POLD3 0.354945229 -0.271091152 
PPP1R15B 0.457459773 -0.572173417 
PPP1R9A 0.247218979 -0.479860937 
PTPRE 0.362242838 -0.107814551 
RAP2A 0.250560209 -0.214061809 
SC5D 0.339750765 -0.10653511 
SNIP1 0.145610548 -0.101109749 
SUB1 0.171701999 -0.183746082 
TIMP2 0.411778561 -0.295892187 
TMEM192 0.270363104 -0.127320992 
TMEM206 0.662488242 -0.183709032 
TMEM63A 0.12315484 -0.126504127 
TP53BP2 0.352457927 -0.131351061 
TRAPPC8 0.700310521 -1.18224429 
WDR7 0.155220126 -0.149321955 

 

Appendix 5 

Potential miR-21 tar3gets expression in SCCT8 treated with miR-31 inhibitor and mimic (log 2 

fold change) 

 

 

Protein miR-31 inhibitor miR-31 mimic 
ABI2 0.271379139 -0.184046531 
AHNAK2 0.167461929 -0.325298252 
BAIAP2 0.110979987 -0.196978204 
CNTN5 0.139161691 -0.219358741 
CPNE8 0.110637696 -0.334887547 
DENND1A 0.322071289 -0.192198154 
EXOC7 0.104500081 -0.190625069 
EXOC8 0.100481103 -0.11109884 
FAM204A 0.156586526 -0.43724134 
FAM210B 0.105067802 -0.138816402 
FAM219A 0.278536732 -0.290551671 
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FOSL2 0.129112392 -0.117357719 
GSE1 0.507165474 -0.656015902 
HECTD3 0.189476314 -0.449661897 
IER3IP1 0.11347451 -0.305169834 
JDP2 1.032866941 -0.869091184 
LPP 0.269905846 -0.121342165 
LUC7L 0.114884396 -0.103246439 
MANEAL 0.286967471 -0.192899519 
MTM1 0.130448108 -0.163511833 
NELFB 0.105361157 -0.155317708 
PGM2L1 0.565088447 -0.167089403 
PLEKHA1 0.24193254 -0.187203634 
RAB38 0.233814069 -0.222847641 
SEZ6L2 0.155522765 -0.226193472 
SH3BGRL 0.125236086 -0.187369158 
SHB 0.21462463 -0.1498071 
SLC7A2 0.12151903 -0.333630398 
SMAD3 0.152220698 -0.697041946 
SNRNP27 0.39888721 -0.172124386 
SPAST 0.122677515 -0.127890117 
SSH1 0.984903464 -0.116403429 
SUCO 0.180281183 -0.199824379 
TOR2A 0.261281157 -0.123233029 
UBE2B 0.145870993 -0.169010865 
ZBTB10 0.172208086 -1.255087134 
ZNF354C 0.17538168 -0.295982853 

 

Appendix 6 

Potential targets of miR-181a 

  miR-181a predicted target genes 
1 AFTPH 
2 ANKRD13C 
3 ARF6 
4 ATP8A1 
5 BAPX1 
6 BCL2 
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7 BTBD3 
8 CCDC6 
9 CCNG1 

10 CDX2 
11 DDIT4 
12 FAM160A2 
13 FBX011 
14 FBX028 
15 FBX033 
16 GATA6 
17 GIGYF1 
18 GPR1237B 
19 KRAS 
20 KIAA 
21 KLADCS 
22 LBR 
23 LCLAT1 
24 METAP1 
25 MTMR12 
26 NFYB 
27 NLK 
28 NOCH2 
29 NOL4 
30 NR6A1 
31 NRP1 
32 NUPL1 
33 PDX3X 
34 PITPNB 
35 PLAG1 
36 PLCL2 
37 PLXDC2 
38 PROX1 
39 PUM1 
40 RLF 
41 RNF34 
42 SCD 
43 SFRS7 
44 SLC37A3 
45 SLC7A11 
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46 STCH 
47 TGFBR3 
48 TIAL1 
49 TM9SF3 
50 TMED4 
51 TMEM64 
52 YOD1 
53 ZNF148 
54 ZNF445 
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