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CHOLINERGIC CONTROL OF CORTICAL CIRCUIT ACTIVITY 

 

Rajan Dasgupta, M.Sc. 

 

Advisory Professor: Michael Beierlein, Ph.D. 

 

Cholinergic neurons of the basal forebrain send extensive projections to all regions of the 

neocortex and are critically involved in a diverse array of cognitive functions, including 

sensation, attention and learning. Cholinergic signaling also plays a crucial role in the 

moment-to-moment control of ongoing cortical state transitions that occur during periods of 

wakefulness. Yet, the underlying circuit mechanisms of synaptic cholinergic function in the 

neocortex remain unclear. Moreover, acetylcholine continues to be widely viewed as a slow 

and diffuse neuromodulator, despite the preponderance of in vivo evidence demonstrating 

rapid cholinergic function. In this study, we used a combination of optogenetics and in vitro 

electrophysiology to examine spatiotemporally precise control of cortical network activity by 

endogenous acetylcholine. We show that even brief activation of cholinergic afferents could 

powerfully suppress evoked cortical recurrent activity for several seconds. This suppression 

was reliant on the engagement of both nicotinic and muscarinic acetylcholine receptors. 

Nicotinic receptors mediated transient suppression by acting in the superficial cortical layers, 

while muscarinic receptors mediated prolonged suppression in layer 4. In agreement, we found 

nicotinic-mediated excitation of inhibitory neurons in the supragranular layers, and 

muscarinic-mediated hyperpolarization of excitatory cells in layer 4. Together, these findings 

present novel circuit mechanisms for fast and robust cholinergic signaling in neocortex. 
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Chapter 1: Introduction 

 

The brain is a highly dynamic organ. To keep up with the demands of a constantly changing 

external environment, the computational rules underlying brain function must also be 

continually and swiftly updated. The behavioral state, or the set of rules defining neuronal 

activity in the brain, is thus in constant flux. Although behavioral state is reflected in the 

activity of the entire mammalian brain, the effects of state transitions are most pronounced in 

the cerebral cortex, the so-called “seat of consciousness”. During cortical states characterized 

by sleepiness or low arousal, circuits in the cerebral cortex spontaneously generate slow 

internal rhythms that are rapidly abolished when the animal shifts to a more aroused state. 

These cortical network dynamics can often have as large an influence on neuronal activity as 

the sensory stimulus itself, and must therefore be precisely regulated by several 

neuromodulatory inputs, chief among which is the cholinergic projection system to the cortex.  

 

Cholinergic neurons in the mammalian forebrain send extensive axonal afferents 

throughout the cortical regions and have long been known to be crucial for several cognitive 

functions, including attention, sensory discrimination and learning. Defects in cholinergic 

signaling underlie pathologies like Alzheimer’s disease and schizophrenia. More recently, 

cholinergic activity in the cerebral cortex has been shown to precisely regulate cortical state 

transitions. Thus, elucidating the neurophysiological mechanisms of cholinergic control of 

cortical network activity is of critical importance. In this chapter, we will summarize wiring 

principles in cortical circuits, neuromodulation of cortical activity as a function of brain states, 

and the known structure and circuit functions of cholinergic afferentation in the cortex. 
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1.1 Neocortical circuits 

 

The cerebral cortex, the most recently evolved structure in the mammalian brain, is an 

exquisitely complex formation. Found to be disproportionately large in humans, this sheet of 

neurons occupying the anterodorsal extremity of the central nervous system is considered to be 

the basis of consciousness. Coordinated activity within and between networks of densely 

interconnected networks of dozens of different types of neurons in the cortex underlies 

cognition and all higher brain functions, including thought, motivated behaviors and complex 

planning. What rules dictate cortical structure and function are some of the most fundamental 

questions of neuroscience. 

 

Organization of the rodent somatosensory cortex 

 

Neurons in the mammalian cerebral cortex are found to be arranged in several distinct layers 

(Ramon y Cajal, 1899). The neocortex, which forms the largest part of the cerebral cortex and 

mediates most cognitive functions, comprises six layers. These layers are numbered 1-6 (from 

superficial to deep), with layers 2 and 3 often referred to together as layer 2/3. Each layer is 

distinct in terms of the density and types of prevalent neurons (Meyer et al., 2010), rules of 

wiring, and the cortical subnetworks they form part of (Feldmeyer, 2012). In the primary 

sensory cortices, including the somatosensory cortex, layer 4 is the primary recipient of 

sensory input from the thalamus (specifically the ventrobasal, or VB nucleus of the thalamus, 

in the case of somatosensory input). From layer 4, this sensory input is then relayed to layers 

2/3 and 5, where it is amplified, transformed and communicated horizontally to neighboring 
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cortical areas (Li et al., 2013, Lien and Scanziani, 2013, Sarid et al., 2015). There is also 

evidence for some direct thalamocortical communication to layers 5 and 6 (Constantinople and 

Bruno, 2013). The neocortex also shows functional organization horizontally, and its circuits 

are arranged into distinct iterative units called columns (Mountcastle, 1997). Cortical 

interactions, both vertically (between cortical layers) and horizontally (between cortical 

columns) are dynamically regulated as a function of cortical state. 

 

In rodents, the primary somatosensory cortex (S1) is dominated by the so-called “barrel 

field”, a region where layer 4 is segregated into easily discernible and cytoarchitectonically 

distinct subregions called “barrels” (Figure 1.1) (Feldmeyer, 2012). Layer 4 barrels process 

input from the animal’s whiskers and form a topographic representation of the mystacial 

vibrissae, such that neurons in a given barrel receive sensory input only from a single whisker 

(Simons and Carvell, 1989, Petersen, 2007). This specificity is possible in part because the 

dendrites of small spiny stellate cells (excitatory cells that serve as the main recipients of 

thalamocortical input) are spatially restricted to within the barrel boundaries.   

 

Excitatory cells in the sensory cortices form distinct subnetworks 

 

The vast majority (~85%) of neocortical neurons are excitatory glutamatergic cells in all layers 

(with the exception of layer 1, where the small numbers of neurons are exclusively 

GABAergic). Excitatory cells show great diversity in their axonal and dendritic morphologies, 

which leads to interesting distinctions in their functional organization within cortical 

microcircuits. For instance, although stellate cells in layer 4 have dendritic trees that are 
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confined within the barrel, other layer 4 glutamatergic cell types, such as pyramidal and star 

pyramidal cells, possess prominent apical dendrites that extend into layer 2/3, allowing them to 

sample horizontal inputs (Staiger et al., 2004), and suggesting that they may have a role in 

integrating corticocortical signals from wider areas. This notion is supported by their axonal 

morphologies as well; whereas axonal projections from stellate cells into layer 2/3 remain 

largely restricted to the same cortical column, layer 4 pyramidal cells have wide axonal arbors, 

often reaching several columns across. Excitatory cells in layer 2/3 tend to show pyramidal 

morphologies, with apical dendrites that sample horizontal signals in layers 1 and 2, and layer 

4 input in layer 2/3. In addition to sending extensive lateral “recurrent” projections to 

neighboring cells, layer 2/3 pyramidal cells also project to layer 5. In layer 5, the dominant cell 

type are pyramidal cells with large somata and thick apical dendrites that reach up to layer 1, 

allowing them to integrate a wide variety of long-range and local cortical inputs (Shai et al., 

2015). Finally, excitatory cells in layer 6 provide feedback projections onto thalamic relay 

cells (Guillery, 1967, Jones and Powell, 1968, Crandall et al., 2017). Thus, axonal and 

dendritic morphologies of excitatory cells are well-adapted to enable layer-specific functions. 

 

Electrophysiologically, cortical excitatory cells generally have so-called regular-

spiking (RS) phenotypes, characterized by wide (~1 millisecond half-width) action potentials, 

relatively low firing rates, slow monophasic after-hyperpolarizations (AHPs) and initial spike 

doublets upon current injection (Connors and Gutnick, 1990, Beierlein et al., 2003), thus 

allowing them to be distinguished from local inhibitory cells. Also, cortical excitatory neurons 

share extensive recurrent connections with one another, allowing them to amplify sensory 

input and to generate self-sustaining activity (Beierlein et al., 2002, Shu et al., 2003). 
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Figure 1.1: Schematic of rodent primary somatosensory “barrel” cortex.  Spiny stellate 

cells in layer 4 are the primary recipients of thalamocortical input. They in turn provide 

excitatory drive to layer 2/3 pyramidal cells that also share extensive “recurrent” connections 

with one another. All cortical layers contain several different classes of GABAergic 

interneurons. PV cells form feed-forward inhibitory circuits and target proximal dendritic and 

somatic regions of excitatory cells, while SOM cells target distal dendrites. VIP cells inhibit 

both SOM cells and excitatory neurons, thus mediating either disinhibition or inhibition. How 

these various cell types are modulated by fast cholinergic signaling is not entirely clear. 
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Neocortical inhibitory cell types form stereotypical circuit motifs 

 

Although comprising only ~15% of cortical neurons, inhibitory GABAergic cells are crucial 

players in cortical circuit functions, critical not only for the maintenance of stable 

excitation/inhibition ratios (Xue et al., 2014), but also the mediation of complex cognitive 

functions like sensory processing (Hubel and Wiesel, 1962), decision-making (Guo et al., 

2014) and learning (Letzkus et al., 2011). Cortical inhibitory interneurons show even greater 

diversity than excitatory cells in their morphologies, genetic identities, electrophysiological 

properties and circuit functions (Ramon y Cajal, 1899, Fishell and Heintz, 2013). Significant 

disagreements persist in the field regarding the most appropriate method to classify 

interneuron subtypes (Jiang et al., 2015, Barth et al., 2016). Most classification schemes rely 

on a combination of parameters (such as morphology and electrical properties), but none are 

devoid of problematic inconsistencies, overlapping groups and exceptions. One of the more 

commonly used schemes divides interneuron subtypes into three broad clusters based on their 

expression patterns of distinct molecular markers: 

1. PV interneurons express the Ca
2+

-binding protein parvalbumin. About 40% of all 

cortical inhibitory neurons are PV expressing. 

2. SOM interneurons express the neuropeptide somatostatin and comprise about 30% of 

cortical interneurons. 

3. 5HT3aR interneurons that express an ionotropic serotonin receptor make up most of 

the remaining 30% of GABAergic cells (Lee et al., 2010). This group can be 

subdivided further into two groups: VIP cells express vasoactive intestinal peptide, 
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while non-VIP cells are characterized by their expression of the protein reelin 

(Wamsley and Fishell, 2017). 

The principal advantages of using this classification scheme are twofold. First, these three 

groups together encompass ~99% of cortical interneurons, with very little overlap between the 

groups (with some exceptions, such as reelin- or parvalbumin-expressing SOM cells). Second, 

basing classification on genetic markers enables the manipulation of specific subgroups using 

available transgenic mouse lines (such as PV-Cre or SOM-Cre mice), thereby also allowing 

for experimental consistency across research groups (Taniguchi et al., 2011). It should be 

noted, however, that each of these groups contains several subtypes within them that feature 

important differences in morphologies, layers of preponderance and circuit functions. 

  

PV cells, the best characterized interneuron group, typically show fast-spiking (FS) 

phenotypes, with high firing rates (often >200 Hz), low input resistances, large rheobase 

values and fast (~0.3 millisecond half-width) action potentials. They form powerful feed-

forward inhibitory circuits that accompany every major excitatory cortical pathway 

(Feldmeyer et al., 2013), including the VB inputs to layer 4 stellate cells, and layer 4 inputs to 

layer 2/3 (Helmstaedter et al., 2008). Layer 4 FS cells are rapidly recruited by sensory input 

(Cruikshank et al., 2007), leading to disynaptic inhibition of stellate cells (Beierlein et al., 

2003) and thereby creating a short temporal window for thalamocortical excitation/integration 

in layer 4 (Gabernet et al., 2005, Bruno and Sakmann, 2006). Feedforward inhibition also 

precludes recurrent excitatory activity for weak stimuli (Pinto et al., 2003). Moreover, PV cell 

axons target proximal dendrites, somata and axon initial segments of pyramidal cells, 

affording them robust control of excitatory spike output (Kawaguchi and Kubota, 1997). In 
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fact, certain forms of cortical-dependent learning are contingent upon brief alleviation of PV-

mediated inhibition by disinhibitory pathways (Letzkus et al., 2011, Letzkus et al., 2015). PV 

neurons also inhibit one another (Pfeffer et al., 2013), at times leading to paradoxical increases 

in network inhibition when they are experimentally suppressed (Kato et al., 2017).  

 

SOM cells show a variety of non-fast spiking (non-FS) firing properties, featuring 

depolarized resting potentials, adapting action potentials with half-widths around 0.6 

milliseconds, biphasic AHPs, and often prominent IH-mediated sag conductances (Ma et al., 

2006) with hyperpolarizing current injections. SOM cells derive most of their excitatory drive 

from local or long-range cortical excitatory cells, forming feedback inhibitory circuits 

(Wamsley and Fishell, 2017). Unlike PV cells, SOM neurons largely avoid inhibiting one 

another (Pfeffer et al., 2013). They do, however, strongly inhibit all other cortical excitatory 

and inhibitory cell types, leading to SOM-mediated suppression of local recurrent activity 

evoked by sensory input (Kato et al., 2015, Adesnik, 2017, Kato et al., 2017). Also unlike PV 

cells, SOM cells target distal regions of pyramidal cell dendrites (Kawaguchi and Kubota, 

1997) and are involved in control of dendritic computation. In layer 4, SOM cell axonal arbors 

are restricted within barrel boundaries (Muñoz et al., 2017). 

 

5HT3aR cells are the most diverse group of the three and thus somewhat difficult to 

define. They also show non-FS phenotypes with adapting, irregular or late-spiking properties. 

5HT3aR cells are most prevalent in the superficial layers 1 and 2/3, where they make up ~95% 

and ~50% of all inhibitory neurons, respectively (Rudy et al., 2011). VIP cells are the best-

characterized subgroup. Several recent studies have identified a stereotypical disinhibitory 
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circuit from VIP to SOM cells in layer 2/3 (Pfeffer et al., 2013, Fu et al., 2014). However, VIP 

cells also directly inhibit pyramidal cells (Peters, 1990, Alitto and Dan, 2012), and there likely 

exists a balance between VIP-mediated inhibition and disinhibition of cortical networks in vivo 

(Garcia-Junco-Clemente et al., 2017, Kuchibhotla et al., 2017). Layer 1 interneurons have also 

been shown to engage disinhibitory mechanisms via their inhibition of PV cells (Letzkus et al., 

2011). Thus, cortical inhibitory interneurons comprise several distinct subgroups that form 

stereotypical circuit motifs, the dynamic interactions amongst which are still the subject of 

intense research. 
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1.2 Cortical states  

 

Cortical circuits are signal aggregators. In stark contrast to most peripheral sensory neurons 

that faithfully transduce stimuli to action potentials with little variability (Yang et al., 2016), 

cortical neuronal responses, even in primary sensory areas, are highly variable from trial to 

trial when presented with identical stimuli. What causes this variability? While the underlying 

circuit principles and stimulus-independent information contained in this variability are only 

beginning to be elucidated, it is becoming clear that cortical circuits integrate bottom up 

sensory inputs with numerous top down inputs signaling internal state, expectation and 

motivation, among other things (Kuchibhotla et al., 2017). In effect, this means that cortical 

neuronal outputs are determined by the interplay between at least three distinct predictable 

factors: 

(i) sensory input from thalamus, 

(ii) stable network features (cellular physiology, wiring principles, synaptic dynamics) and 

(iii) dynamic contextual signals (neuromodulatory inputs, long-range corticocortical inputs), 

along with one unpredictable factor, noise. The previous section provided a brief overview of 

stable network organization in rodent barrel cortex. In this section, we will introduce cortical 

state dynamics, which are a part of the contextual signals being aggregated by sensory cortices 

and a principal determinant of cortical circuit activity.    

 

The external environment an animal typically finds itself in is in constant flux, 

requiring it to continually adapt its behavioral state to the changing environmental conditions. 

For example, the presence of a predator would require arousal and vigilance to external cues, 
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whereas the absence of one would indicate to the animal that it is safe to rest or sleep. While 

changes accompanying behavioral state transitions are comprehensive, they are perhaps most 

pronounced in the nature of cortical network activity. To keep up with a changing 

environment, the rules that determine global cortical network activity in vivo are also highly 

dynamic and transitory. The cortical state, put simply, is the set of rules defining spatial and 

temporal network dynamics in large cortical circuits (Harris and Thiele, 2011). 

 

Cortical states are defined using a few dynamic network properties 

 

The most well recognized and best-studied transitions in cortical state are those that occur 

between sleep and wakefulness. The nature of cortical activity is strikingly different between 

awake periods and periods of what is known as slow-wave sleep, or SWS (Hobson, 2005, Lee 

and Dan, 2012). Because cortical states are reflected in the activity patterns of large networks 

of neurons, they are best detected in vivo by techniques that sample synaptic dynamics from 

large populations of cells. Recordings using the electroencephalogram (EEG) were the first to 

reveal that in human subjects, cortical activity during sleep was dominated by slow, large 

amplitude voltage oscillations, suggesting it was highly “synchronized” (Berger, 1969). But 

when the subject was awake, cortical activity was marked by fast low amplitude patterns, 

indicating “desynchronization”. Another common method to detect global cortical state 

transitions involves monitoring the local field potential (LFP) of cortical circuits, which is 

generated by the summation of extracellular voltages produced by dendritic currents in several 

neurons spread over large volumes of cortical tissue (Kajikawa and Schroeder, 2011, Herreras, 

2016). Paralleling findings in EEG, SWS in rodents is accompanied by a drastic increase in 
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low frequency power (1-4 Hz, signatures of synchronized oscillatory activity) in cortical LFP 

recordings (Gervasoni et al., 2004). Cortical state dynamics can be sampled intracellularly as 

well. Sleep-related cortical states are reflected in current-clamp recordings by slow 

synchronized oscillations between periods of depolarization and quiescence (Steriade et al., 

1993, Steriade et al., 2001), a behavior that can be mimicked in acute slice preparations under 

special conditions to generate alternating “Up” and “Down-states” (Neske et al., 2015), while 

awake state recordings generally lack synchronous activity (Constantinople and Bruno, 2011). 

 

Thus, transitions between sleep and awake states are characterized by pronounced 

shifts in the synchronicity of cortical activity. This has led to a simple rule-of-thumb 

distinction between synchronized SWS and desynchronized awake cortical states. However, 

recent evidence indicates that treating the awake state as a single monolithic desynchronized 

state is an oversimplification (McGinley et al., 2015b). Awake periods are a continuum of 

constantly and rapidly shifting sub-states themselves (Poulet and Petersen, 2008, Reimer et al., 

2014, McGinley et al., 2015a, Vinck et al., 2015, Reimer et al., 2016), with each sub-state 

possessing distinct neurophysiological and network properties. In fact, shifts in awake cortical 

states can produce dramatic changes in neuronal coding of sensory input, which are often as 

large as those produced by changes in the stimulus itself (Niell and Stryker, 2010, Lee et al., 

2013, Fu et al., 2014).  

 

In broad terms, sub-states of wakefulness can be classified as either low arousal states - 

“quiet wakefulness” - or high arousal states called “active waking” (Figure 1.2). Analogous to 

awake and sleep states, the degree of cortical synchrony is the main feature that sets apart low 
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from high arousal states - low arousal is characterized by slow synchronized fluctuations in 

cortical membrane potentials that resemble SWS (Poulet and Petersen, 2008), whereas shifts to 

arousal are signified by rapid suppression of this activity (Gentet et al., 2010, Eggermann et 

al., 2014, Reimer et al., 2014, Vinck et al., 2015). High arousal states often carry the additional 

feature of membrane depolarization (Polack et al., 2013, Reimer et al., 2014, Schneider et al., 

2014), which is caused at least in part by increased drive from thalamocortical inputs 

(McCormick, 1992, Eggermann et al., 2014). As a result of decreased membrane potential 

synchrony, cortical neuronal firing also becomes decorrelated during arousal, leading to 

reduced signal and noise correlations (Goard and Dan, 2009, Pinto et al., 2013, Reimer et al., 

2014). States of arousal are also accompanied by reduced long-range corticocortical 

synchrony, resulting in sharp contractions in the cortical area activated by sensory input 

(Kimura et al., 1999, Roberts et al., 2005, Ferezou et al., 2006, Petersen and Crochet, 2013). 

Additionally, cortical state dynamics during wakefulness are expressed externally by such 

features as pupil diameter and muscle tone. Pupil diameter especially is highly correlated with 

arousal levels (Reimer et al., 2014, McGinley et al., 2015a, Reimer et al., 2016, Shimaoka et 

al., 2018) and is fast becoming widely adopted as an easily accessible yet reliable and sensitive 

measure of behavioral state. Finally, shifts to high arousal states are often accompanied by 

exploratory behavior like whisking or locomotion (Eggermann et al., 2014, Fu et al., 2014, 

Reimer et al., 2014, Schneider et al., 2014), although locomotion is not necessary for arousal  

(Vinck et al., 2015). Thus, the waking state offers a rich plethora of behavioral sub-states with 

a diverse set of psychophysical properties. It is important to note, however, that while a 

comparison of high and low arousal states offers useful distinguishing features, they are but 

end-points in a much larger spectrum of waking sub-states (McGinley et al., 2015a). 
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Figure 1.2: Transitions to high arousal states are marked by suppression of slow 

synchronous cortical activity. The top trace shows an in vivo whole cell current-clamp 

recording from a layer 2/3 PV interneuron in the mouse visual cortex. The mouse was head-

fixed but allowed to freely move on a spherical treadmill. The motion in the treadmill is 

quantified in the bottom red trace; times during which the treadmill velocity was above 

threshold (dashed line) were considered periods of locomotion, an indicator of active waking 

or a high arousal state. During periods of quiet wakefulness, the PV cell showed slow 

spontaneous oscillatory activity that was rapidly abolished when the animal shifted to a more 

aroused state. (Figure from Polack et al., 2013, as adapted in McGinley MJ, Vinck M, Reimer 

J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA (2015b) 

Waking state: rapid variations modulate neural and behavioral responses. Neuron 87:1143-

1161, used with permission) 
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High arousal cortical states are optimized for stimulus-driven behaviors 

 

Awake cortical state has a profound influence on the animal’s behavioral performance. As a 

general rule, arousal-related changes tend to optimize cortical activity for sensory processing, 

thereby improving discrimination performance. During high arousal states, signal to noise ratio 

of sensory coding by cortical circuits is markedly improved (Vinck et al., 2015); the 

component of neuronal spike output determined by sensory input (signal) is increased, while 

that determined by cortically generated activity (noise) is suppressed (Bennett et al., 2013). 

This is achieved by engaging two parallel mechanisms: (i) by suppressing spontaneous 

rhythmic cortical activity (Gervasoni et al., 2004, Eggermann et al., 2014) and reducing noise 

correlations (Kimura and Baughman, 1997, Goard and Dan, 2009, Reimer et al., 2014), while 

concurrently (ii) improving the ability of sensory input to drive spiking in individual excitatory 

neurons: thalamocortical sensory inputs are enhanced (McCormick, 1992, Halassa et al., 2014) 

and subsets of excitatory neurons are disinhibited (Letzkus et al., 2011, Lee et al., 2013, Fu et 

al., 2014, Kuchibhotla et al., 2017). The net effects are a prominent arousal-mediated 

sharpening of sensory responses (Fu et al., 2014, Reimer et al., 2014), increased gain in 

sensory-evoked spiking (Niell and Stryker, 2010, Bennett et al., 2013) and greater reliability of 

sensory responses from trial to trial (Goard and Dan, 2009, Marguet and Harris, 2011). 

Behaviorally, this underlies improved sensory coding - animals can perceive more details in 

the stimulus and similar stimuli can be better discriminated (Pinto et al., 2013, Engel et al., 

2016). Furthermore, attentional performance during aroused states is greatly improved, as 

demonstrated by faster reaction times in attention-demanding behavioral tasks (Lovett-Barron 

et al., 2017). However, very high levels of arousal can be stressful, leading to detrimental 
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effects on task performance (Yerkes and Dodson, 1908, McGinley et al., 2015a). Thus, 

transitions from low to high arousal states generally underlie a shift towards processing 

external cues. 

  

Cortical states are under precise control of neuromodulatory and other systems 

 

Given their capacity to influence behavior, cortical states are tightly regulated by a host of 

overlapping systems. For the purposes of simplification, these systems may be segregated 

anatomically into two distinct but related groups:  

(i) thalamocortical and corticocortical glutamatergic pathways, and 

(ii) subcortical neuromodulatory pathways  

 

Long-range glutamatergic inputs to cortical circuits play important roles in the 

regulation of cortical states (Chen et al., 2013, Zagha and McCormick, 2014). Although 

somatosensory cortical responses are generally suppressed during high arousal states (Ferezou 

et al., 2006, Shimaoka et al., 2018), sensory-evoked responses are enhanced by arousal in the 

primary visual and auditory cortices (Reimer et al., 2014, Kato et al., 2015). One underlying 

cause for this enhancement is increased firing in thalamic relay neurons due both to direct 

depolarization (McCormick, 1992) and disinhibition of sensory thalamic nuclei (Halassa et al., 

2014). In addition, long-range corticocortical inputs may enhance sensory responses by 

engaging local disinhibitory circuits (Lee et al., 2013), although such inputs have also been 

shown to increase local inhibition (Schneider et al., 2014). 
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Figure 1.3: Cholinergic signaling is correlated with state transitions and suppresses slow 

cortical activity. (A) The axons of cholinergic projections neurons expressing the calcium 

indicator GCaMP6s were imaged in the primary somatosensory cortex of an awake head-fixed 

mouse, while its whisker movements were monitored. Periods of whisking were highly 

correlated with activity in cholinergic afferents. (B) Cholinergic signaling blocks slow cortical 

activity. Black trace shows a current-clamp recording from a layer 2/3 neuron showing 

spontaneous low frequency activity that is powerfully suppressed when cholinergic afferents 

are optogenetically activated. (Figures from Eggermann et al., 2014, as adapted in McGinley 

MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, 

McCormick DA (2015b) Waking state: rapid variations modulate neural and behavioral 

responses. Neuron 87:1143-1161, used with permission) 
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Cortical state dynamics are also under powerful control of multiple parallelly and/or 

synergistically acting neuromodulatory systems. In particular, the cholinergic and 

noradrenergic cortical projection systems have long established and crucial roles in the control 

of sleep/wake cycles, arousal and attentional modulation (Aston-Jones et al., 1999, Jones, 

2004, Aston-Jones and Cohen, 2005, Xu et al., 2015), and are known to powerfully promote 

wakefulness, arousal and selective attention. To cite but a few examples, suppressing 

noradrenergic discharges in the cortex promotes slow-wave EEG activity (Berridge et al., 

1993, Berridge et al., 2012), activating cortical cholinergic afferents suppresses slow 

membrane potential fluctuations (Metherate et al., 1992), cortically projecting cholinergic 

neurons show elevated activity in vivo during periods of cortical desynchronization (Duque et 

al., 2000), blocking cholinergic signaling mitigates the effects of attentional modulation 

(Herrero et al., 2008) and optogenetic activation of cholinergic afferents promotes immediate 

transitions to wakefulness (Han et al., 2014). In a recent study, Eggermann et al. found that the 

arousal-related suppression of slow cortical activity observed in vivo was almost entirely 

mediated by cholinergic signaling (Eggermann et al., 2014) (Figure 1.3). Although the 

cholinergic and noradrenergic projection systems to the cortex arise from anatomically distinct 

subcortical nuclei and are largely independent, they nevertheless likely act in conjunction to 

produce the cortical state dynamics observed in vivo (Polack et al., 2013, Reimer et al., 2016). 

Another recent multispecies study found that some of the cholinergic and noradrenergic nuclei 

controlling cortical states in mice were evolutionarily conserved in fish (Lovett-Barron et al., 

2017), cementing the roles of acetylcholine and noradrenaline as critical determinants of 

global behavioral state. Intriguingly, the frontal cortex sends extensive glutamatergic inputs to 

the noradrenergic projection nuclei in the brainstem, raising the possibility of indirect feedback 
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modulation of cortical state dynamics. It is now beginning to emerge that this control is 

mediated over several distinct timescales, each with its own cellular and synaptic mechanisms, 

and unique consequences for behavior. 

 

Thanks to recent advances in in vivo imaging and recording techniques, the elegant 

temporal precision with which acetylcholine controls cortical state dynamics is beginning to be 

revealed. In the same study cited above, Eggermann et al. used the calcium-reporting protein 

GCaMP6s to monitor cholinergic activity in the primary somatosensory cortex simultaneously 

with the animal’s whisking behavior (an exploratory behavior that served as a marker for 

arousal, Figure 1.3). They found that sharp increases in cholinergic afferent activity invariably 

preceded bouts of whisking by a few hundred milliseconds, suggesting tight coupling of 

cholinergic signaling with transitions to high arousal states (Eggermann et al., 2014). Their 

results were corroborated in a later study by Reimer et al. that found that cortical cholinergic 

signaling was highly correlated with other behavioral indicators of arousal like pupil diameter 

and locomotion (Reimer et al., 2016). Furthermore, phasic fluctuations in cholinergic afferent 

activity can lead to transient changes in cortical acetylcholine levels (Parikh et al., 2007). In 

another study, optogenetic activation of cholinergic afferents in V1 led to rapid transitions to 

desynchronized cortical dynamics within 150 milliseconds (Pinto et al., 2013). Reliable 

cortical state modulation is a crucial component of moment-to-moment adjustment of brain 

function depending on behavioral demands. Because it is critical that state transitions during 

wakefulness be achieved in rapid timescales, their regulatory mechanisms must be capable of 

fast yet spatiotemporally precise signaling. Thus, fast synaptic signaling by neuromodulatory 

systems is increasingly gaining prominence in mediating rapid state transitions during waking. 
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1.3 The cholinergic projection system in the neocortex 

 

The cholinergic projection system constitutes one of the major neuromodulatory systems of 

the vertebrate brain. In the forebrain, these projections arise largely from two sources: (i) the 

peduncolupontine and laterodorsal tegmental nuclei of the brainstem that project primarily to 

the thalamus (Ballinger et al., 2016), and (ii) a heterogeneous group of nuclei located rostro-

ventral to the thalamus, known as the basal forebrain (BF). BF cholinergic afferents reach all 

regions of the neocortex (Woolf and Butcher, 2011), can be found in all cortical layers and the 

majority of cortical cell types express cholinergic receptors (Muñoz and Rudy, 2014). 

Functionally, they are a principal determinant of firing rates and cortical states, even in 

primary sensory areas (Harris and Thiele, 2011). The central role played by these projections 

in myriad cognitive and behavioral phenomena has been a matter of established dogma for 

decades (Shiromani et al., 1987, Hasselmo, 2006).  

 

Deficits in cortical cholinergic signaling underlie numerous debilitating disorders. 

Neurodegeneration of cholinergic neurons is an early step leading to dementia in Alzheimer’s 

disease (Mufson et al., 2008). Moreover, expression patterns of cholinergic receptors are 

altered in various forms of schizophrenia (Terry, 2008): schizophrenic brains show 

postmortem deficits in expression of both metabotropic (Zavitsanou et al., 2004), and 

ionotropic cholinergic receptors (Guan et al., 1999). Notably, increases in cholinergic tone also 

lead to severe cognitive deficits (Kolisnyk et al., 2013), indicating that precise bidirectional 

regulation of cholinergic signaling from the BF is critical for normal cognitive function. The 
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following section will review some of the structure and functions of the BF cholinergic 

projection system to the neocortex. 

 

BF cholinergic projections relay behavioral signals in a temporally precise manner 

 

Cholinergic neurons in the BF are found interspersed with glutamatergic and GABAergic 

neurons within a number of morphologically distinct nuclei, including the vertical and 

horizontal limbs of the diagonal bands of Broca and the nucleus basalis magnocellularis (NB, 

in humans known as the nucleus basalis of Meynert) (Ballinger et al., 2016). In both rodent 

and primate brains, these regions show heavy histochemical and/or immunohistochemical 

labeling for acetylcholinesterase (Andrä et al., 1988) and choline acetyltransferase (Satoh et 

al., 1983, Mesulam et al., 1984, Pinto et al., 2013, Herman et al., 2016), indicating a 

concentrated presence of local cholinergic neurons. Although they are also involved in local 

cholinergic signaling, most BF cholinergic cells are distal projection neurons that send 

extensive, long-range and effusively branched but stereotypical axonal afferents to most parts 

of the mammalian forebrain. In addition to the neocortex, BF cholinergic cells also send 

projections to the hippocampus, amygdala, the olfactory bulb and some hypothalamic nuclei 

(Lucas-Meunier et al., 2003, Müller and Remy, 2017). Thus, BF nuclei are a principal source 

of cholinergic afferentation in the forebrain, and thereby serve central roles in the control of 

behavioral states.   

 

The long-range cholinergic input to the neocortex stems almost exclusively from the 

NB, along with some inputs from the substantia innominata (Nelson and Mooney, 2016). 
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Much of what is known about rodent NB afferent and efferent anatomy is derived from studies 

carried out in rats. In the BF, cholinergic cells are a small minority (5% in rats) (Gritti et al., 

2006), but this proportion has been reported to be much higher in primates (80-90%) 

(Mesulam et al., 1983, Raghanti et al., 2011). In spite of their small relative proportion 

amongst total cell bodies, long-range projections from the NB are composed predominantly of 

cholinergic cell axons (80-90% for neocortical projections) (Rye et al., 1984). Moreover, non-

cholinergic cells in the NB often fail to show the temporally locked increases in firing rate 

with arousal seen in cholinergic neurons (Duque et al., 2000, Xu et al., 2015), even though 

local GABAergic cells can be activated by NB cholinergic cells (Yang et al., 2014). Taken 

together, it is likely that most of the functionally relevant information carried by long-range 

NB projections is cholinergic in nature. However, it should also be noted that some BF 

cholinergic cells may have dual identities; optogenetic activation of cholinergic cells has been 

reported to induce co-release of GABA in neocortical layer 1 (Saunders et al., 2015), and 

activation of BF cholinergic afferents in the entorhinal cortex can produce GABAergic 

responses in inhibitory cells (Desikan et al., 2018). 

 

NB neurons sample a diverse array of behaviorally relevant inputs. NB receives input 

from several major subcortical limbic areas like the amygdala, medial hypothalamus (Jones 

and Cuello, 1989) and nucleus accumbens-ventral tegmental area (Haring and Wang, 1986). 

Perhaps as a consequence, NB cholinergic neurons are strongly and rapidly activated during 

stimuli that carry behavioral valence, such as rewards or punishments (Hangya et al., 2015). 

This allows the NB cholinergic projection system to broadcast behavioral contextual 

information in a temporally precise manner, thereby mediating multiple forms of learning 
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(Letzkus et al., 2011), including learning to accurately predict timing of reward (Chubykin et 

al., 2013). In rats, presentation of reward-predicting cues leads to brief and precise cholinergic 

transients in the frontal cortex within 2 seconds (Parikh et al., 2007), alongside slower forms 

of cholinergic signaling lasting minutes. In addition, NB cholinergic neurons serve to signal 

arousal levels: their firing rates show precisely time-locked increases during transitions to 

wakefulness or aroused states (Duque et al., 2000, Xu et al., 2015). In summary, the NB, and 

more specifically the cholinergic subpopulation within it, comprise a densely interconnected 

node that receives behaviorally important information and relays it to large parts of the 

forebrain, including all of the neocortex. This puts it in a favorable location anatomically to 

powerfully control cortical states according to changing behavioral needs. 

 

Structure of cholinergic afferentation in neocortex 

 

Although arousal represents a global change in the dynamic properties encompassing the 

whole brain, other forms cortical state modulation, such as directed attention, are more focal, 

affecting specific cortical regions or modalities (Harris and Thiele, 2011). It would seem that 

such precise region-specific cortical state control would require spatially specific and 

topographically defined cholinergic projections from the NB. However, the topographic 

organization of cholinergic cells within the NB is still a matter of debate (Coppola and Disney, 

2018), partly because classical immunohistochemical methods have produced ambiguous 

results. Recent studies using viral injections and deep-brain stimulation have revealed a 

somewhat specific topographic arrangement of BF cholinergic cells that project to the frontal 

cortex (Bloem et al., 2014, Nagasaka et al., 2017). By carrying out focal virally-induced 
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expression of yellow fluorescent protein in BF cholinergic cells, Bloem et al. showed that 

cholinergic cells that were more rostrally located in BF tended to project to more rostral 

cortical regions, while caudally located BF cells projected more caudally (Bloem et al., 2014). 

It is unclear, however, how much functional specificity is conferred by this rough topography, 

since afferents from a single BF cholinergic cell can arborize over a wide cortical area, likely 

leading to significant overlapping afferentation from multiple cells in the same cortical region 

(Wu et al., 2014). Although region-specific acetylcholine release has been reported in the 

sensory cortices (Fournier et al., 2004), topographic specificity among sensory-projecting BF 

cells is not clear either: limited sensory cortical regions receive input from multiple BF cells 

spread over large areas (Nelson and Mooney, 2016).  

 

In the vertical plane, there is even less specificity of cholinergic afferentation, as 

individual BF projection neurons form extremely long axons and arbors that reach across all 

layers (Wu et al., 2014), although in barrel cortex, cholinergic afferentation appears somewhat 

denser in layers 1 and 4. An additional complication is that a subset of interneurons in layer 

2/3 show some of the genetic signatures of cholinergic neurons (von Engelhardt et al., 2007), 

although acetylcholine release from cortical neurons has not been definitively reported. In 

short, cholinergic afferentation in the cortex is very widespread in nature, and this has 

prompted speculation that cortical cholinergic signaling is spatially non-specific (Lucas-

Meunier et al., 2003). However, spatial specificity of cortical cholinergic signaling may be 

achieved through other means, such as the ultrastructural features of acetylcholine release 

sites, or differences in expression patterns of cholinergic receptors among cortical neurons and 

how readily those receptors are engaged under various forms of cholinergic signaling (Muñoz 
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and Rudy, 2014). Indeed, mounting functional evidence in vivo suggests that cholinergic 

signaling in the cortex is in fact highly region-specific (Herrero et al., 2008, Guillem et al., 

2011, Kalmbach and Waters, 2014). Thus, elucidating the structural and functional 

mechanisms of cholinergic signaling in neocortical circuits will be critical to gaining a 

mechanistic description of spatiotemporally specific cortical state control by acetylcholine. 
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1.4 Mechanisms of cholinergic signaling in neocortical circuits 

 

Every major cognitive behavior is under the influence of cortical acetylcholine. Cholinergic 

signaling is critical for mediating both global arousal (Metherate et al., 1992) and focal 

attention (Harris and Thiele, 2011). It is involved in both the transient processing of sensory 

inputs (Metherate, 2004, Thiele, 2013) and in the establishment long-term learning and 

memories (Hasselmo, 2006, Chubykin et al., 2013). It affects synaptic transmission between 

local neurons (Kimura and Baughman, 1997, Origlia et al., 2006, Amar et al., 2010) and long-

range communication between distal cortical neurons (Muñoz and Rudy, 2014). Applying 

cholinergic antagonists on the cortical surface leads to deficits in attention and other cognitive 

functions (Leblond et al., 2002, Herrero et al., 2008), as does optogenetically silencing 

cholinergic afferents (Gritton et al., 2016). Transitions to high arousal states are closely 

correlated temporally with increased activity in cholinergic afferents (Eggermann et al., 2014, 

Reimer et al., 2016), and activation of cholinergic signaling causes rapid switches to 

desynchronized/decorrelated cortical states (Pinto et al., 2013, Kalmbach and Waters, 2014, 

Chen et al., 2015) that feature reduced corticocortical synchrony and restricted receptive field 

sizes (Roberts et al., 2005, Silver et al., 2008). 

  

Clearly, the functions of acetylcholine in the neocortex are myriad and complex. 

However, the mechanistic underpinnings of spatiotemporally precise cholinergic control of 

cortical activity remain largely unknown. A significant hurdle is the absence of a large body of 

information about cholinergic modulation at the circuit level that could bridge phenomena at 

the cellular and systems levels. Therefore, it is essential to understand how cholinergic 
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signaling modulates activity in well-defined canonical microcircuits, which form the most 

essential unit of information processing in the neocortex (Mountcastle, 1997, Feldmeyer et al., 

2013, Hirabayashi and Miyashita, 2014). This section will briefly review the known cellular 

and receptor sub-types engaged by cortical acetylcholine, the specific circumstances under 

which they are likely engaged, and their various circuit-level consequences. In addition, it will 

highlight critical gaps in our understanding of cholinergic signaling in the neocortex, in 

particular the spatiotemporal dynamics of cholinergic-mediated control of cortical network 

activity. 

 

Cholinergic signaling in neocortex may involve both volume and classical synaptic 

transmission 

 

The spatiotemporal dynamics of signaling by any neurotransmitter depend critically on two 

factors: 

(i) the structural properties of its synapses that determine how rapidly and specifically 

receptors are engaged, and 

(ii) postsynaptic kinetics of signaling that determine the temporal properties of downstream 

effects mediated by the receptors once engaged.  

 

The location of neuromodulatory receptors relative to sites of release is critical in 

determining the spatiotemporal dynamics of its function. In the neocortex, cholinergic 

signaling may occur via either classical or volume transmission (Zoli et al., 1999). Classical 

synaptic transmission typically features close apposition of presynaptic release sites and 
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postsynaptic receptors. This type of signaling preferentially recruits receptors that are clustered 

in the postsynaptic domain near sites of acetylcholine release. Thus, the defining feature of 

classical transmission is that single release events are sufficient to engage receptors with high 

probability, enabling efficient entrainment and temporally precise control of postsynaptic 

activity (Beierlein, 2014). As a result, classical synaptic transmission leads to fast one-to-one 

(i.e., spatiotemporally precise) synaptic communication (Zoli et al., 1999). In certain instances, 

fast and precise signaling can be achieved even in the absence of ultrastructurally defined 

synapses: although some studies have reported the lack of postsynaptic receptors close to 

acetylcholine release sites in the neocortex (Lendvai and Vizi, 2008), ionotropic cholinergic 

receptors are nevertheless capable of mediating spatiotemporally precise signaling (Bennett et 

al., 2012, Arroyo et al., 2014). Finally, classical synaptic transmission has customarily been 

thought to be dominated by ionotropic signaling, especially with regards to neuromodulatory 

transmitters like acetylcholine.  

 

Volume transmission, on the other hand, requires multiple release events and slow diffusion 

and/or spillover of transmitter through extracellular space in order to engage receptors, leading 

to temporally imprecise signaling. This typically occurs when receptors are located far from 

the release site, for instance, in the case of extrasynaptic metabotropic receptors that are 

located outside the postsynaptic density (Descarries and Mechawar, 2000). Owing to their 

nonoptimal location, they can typically only be engaged under special forms of high-frequency 

cholinergic input that cause spillover of acetylcholine outside the immediate confines of the 

synaptic cleft. Another example of volume transmission is mediated by presynaptically located 

metabotropic or ionotropic receptors, that influence synaptic release probability (Kimura and 
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Baughman, 1997, Amar et al., 2010) and short-term dynamics (Urban-Ciecko et al., 2018). 

Presynaptic receptors may be present on synapses releasing a different (heterosynaptic 

signaling) or the same transmitter (autosynaptic signaling). In the latter case, presynaptic 

signaling can mediate powerful auto-regulation of release (Sun et al., 2013). Importantly, 

volume transmission can allow transmitter released from a single axonal afferent to potentially 

engage receptors on multiple postsynaptic neurons (Zoli et al., 1999). Thus, this form of 

signaling is also spatially imprecise. Because neuromodulatory actions are conventionally 

considered to also be generally slow and diffuse, metabotropic cholinergic signaling has long 

been thought to function almost exclusively via volume transmission (Lucas-Meunier et al., 

2003).  

 

It is still unclear which form of transmission, volume or classical, cortical cholinergic 

signaling is predominantly reliant upon (Muñoz and Rudy, 2014). In the neocortex, evidence 

for classical cholinergic synapses (with thickened varicosities close to postsynaptic densities) 

has been sparse (Descarries et al., 1997, Descarries and Mechawar, 2000). However, 

cholinergic afferents do form synaptic specializations (Smiley et al., 1997) that are located 

adjacent to cortical neuronal dendrites (Turrini et al., 2001). An emerging picture of 

cholinergic signaling suggests that both modes of transmission are prominent and act in 

conjunction with one another (Parikh et al., 2007, Sarter and Kim, 2015). Multiple 

spatiotemporally distinct signaling modes may even be a general feature of cortical 

neuromodulation (Sarter and Kim, 2015). 
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Ionotropic and metabotropic cholinergic signaling 

 

In addition to modes of transmission, the kinetics of the postsynaptic mechanisms that are 

activated following ligand binding to the receptor are also critical factors in the spatiotemporal 

dynamics of cholinergic signaling. Cortical acetylcholine can act via the engagement of both 

ionotropic nicotinic (nAChRs) or metabotropic muscarinic receptors (mAChRs), expressed 

pre- or postsynaptically in various cortical neuronal cell types. The pentameric cation channel 

nAChRs display relatively fast kinetics (Bennett et al., 2012, Arroyo et al., 2014), mediating 

excitatory postsynaptic currents (EPSCs) that subside within 500 ms. In the neocortex, 

nAChRs are typically either homomeric α7 or heteromeric α4β2 subtypes, which differ in their 

Ca
2+

 permeability (the former subtype is permeable, the latter, not), kinetics (decay time 

constants for α7 EPSCs are ~5 ms, while those for α4β2 EPSCs can be >200 ms) (Arroyo et 

al., 2012) and expression patterns.  

 

Muscarinic receptors are metabotropic receptors that may be coupled to either Gq/11 (in 

the case of “M1-type” mAChRs) or Gi/o (“M2-type" mAChRs) proteins in the postsynaptic 

membrane (Muñoz and Rudy, 2014), leading to highly diverse downstream effects, including 

activation/deactivation of K
+
-channels (Carr and Surmeier, 2007, Eggermann and Feldmeyer, 

2009), Ca
2+

 release from intracellular stores (Gulledge and Stuart, 2005, Gulledge et al., 2007), 

activation of Protein Kinase C (Cantrell et al., 1996), and so on. Unlike nAChR-mediated 

signaling, the temporal profiles of mAChR-mediated effects are determined chiefly by the 

kinetics of their downstream biochemical pathways (Jensen et al., 2009). Resultantly, mAChR-

mediated signaling is typically prolonged, lasting on the order of several seconds.  
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Besides differences in their kinetics, there also exist important distinctions between 

nAChRs and mAChRs in their presumed modes of engagement: whereas most cortical 

nAChRs are thought to be engaged rapidly via classical synaptic transmission, mAChRs are 

considered to be almost entirely reliant on volume transmission (Lucas-Meunier et al., 2003). 

This notion has persisted despite evidence for the rapid synaptic recruitment of mAChRs in 

subcortical structures like the TRN (Sun et al., 2013). 

 

Nicotinic receptor expression and function 

 

Nicotinic receptors are expressed in a cell-type specific manner by both glutamatergic and 

GABAergic neurons in the neocortex (Poorthuis et al., 2013). Their expression and function 

are best characterized on the dendrites of cortical inhibitory interneurons, where they primarily 

mediate direct postsynaptic depolarization. Dendrites of layer 1 inhibitory interneurons are the 

most common site of expression for α7 nAChRs (Letzkus et al., 2015, Poorthuis et al., 2018), 

where they generate fast EPSCs and dendritic Ca
2+

 transients. Layer 1 cells inhibit local PV 

interneurons, their nAChR-mediated activation can cause disinhibition of layer 2/3 pyramidal 

cells (Letzkus et al., 2011). A number of recent studies have also reported the α4β2 nAChR-

mediated recruitment of inhibitory cells by endogenously released acetylcholine but have 

nonetheless failed to arrive at a definitive answer regarding their resultant network effects. 

EPSCs mediated by α4β2 nAChRs are prominent in a large proportion of superficial layer 

GABAergic neurons (Arroyo et al., 2012, Arroyo et al., 2014, Poorthuis et al., 2014). In 

particular, the non-FS VIP cell subpopulation is strongly activated by cholinergic input in vivo 

(Alitto and Dan, 2012, Pi et al., 2013, Kuchibhotla et al., 2017). Because VIP cells strongly 
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inhibit local SOM and PV cell populations (Lee et al., 2013, Pfeffer et al., 2013, Fu et al., 

2014), their recruitment leads to powerful disinhibition of subsets of pyramidal cells, a 

function critical for certain forms of learning (Pi et al., 2013). However, VIP cells also directly 

inhibit pyramidal cells, and in vitro studies have produced contradictory results – optogenetic 

activation of cholinergic afferents can cause disynaptic inhibition of pyramidal cells (Arroyo et 

al., 2012). In vivo, there likely exists a balance between general nAChR-mediated inhibition 

and selective disinhibition of smaller subpopulations of pyramidal cells (Garcia-Junco-

Clemente et al., 2017, Kuchibhotla et al., 2017), thereby leading to the sparse firing properties 

of layer 2/3 cells (Petersen and Crochet, 2013). 

 

Nicotinic receptor-mediated signaling on cortical excitatory cells has not been widely 

demonstrated. Deep layer pyramidal neurons are activated by nAChRs in multiple species 

(Verhoog et al., 2016, Obermayer et al., 2017), although the use of exogenous agonist 

application in these studies methods makes interpretation of their functional relevance 

difficult. Layer 5 and 6 glutamatergic cells can also be activated by nAChRs engaged via 

synaptic mechanisms (Hedrick and Waters, 2015, Hay et al., 2016, Nelson and Mooney, 

2016). Nicotinic receptors are expressed presynaptically at some cortical glutamatergic 

synapses, such as the thalamocortical terminals in layer 4 of primary visual cortex (Disney et 

al., 2007) and glutamatergic synapses onto SOM cells (Urban-Ciecko et al., 2018), where they 

increase release probability. However, it remains unclear under what conditions these 

receptors are engaged in vivo. 
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Muscarinic receptor expression and function 

 

Muscarinic receptors are broadly expressed in all regions of the neocortex (Volpicelli and 

Levey, 2004, Thiele, 2013) in a variety of cell types. M1-type (M1, M3 and M5) mAChRs, 

when expressed postsynaptically, act primarily by inhibiting tonically active K
+
 channels, such 

as K
+ 

leak channels (Madison et al., 1987), leading to membrane depolarization. M2-type (M2 

and M4) mAChRs, on the other hand, activate inwardly rectifying K
+
 (GIRK) channels, 

leading to postsynaptic hyperpolarization (Eggermann and Feldmeyer, 2009, Sun et al., 2013). 

Because mAChR signaling has traditionally been considered to be purely a neuromodulatory 

influence, postsynaptic actions of both mAChR subtypes have been interpreted largely in the 

context of their indirect effects via glutamatergic and GABAergic signaling (Lucas-Meunier et 

al., 2003, Lucas-Meunier et al., 2009), such as changes in the excitability of GABAergic cells 

(Kawaguchi, 1997) or the mediation of dendritic shunting inhibition. Presynaptically, 

mAChRs expressed at glutamatergic synapses between excitatory cells reduce probability of 

glutamate release (Kimura and Baughman, 1997, Amar et al., 2010), thereby decreasing the 

efficacy of corticocortical communication. This, coupled with nAChR-mediated enhancement 

of the efficacy of thalamocortical excitation (Disney et al., 2007) is thought to underlie 

cholinergic-mediated improvements in signal-to-noise ratio of sensory encoding in cortical 

circuits during high arousal states (Thiele, 2013). In some cases, mAChRs can also control the 

nature of nAChR-signaling in an activity-dependent manner (Brombas et al., 2014). Finally, 

cortical muscarinic signaling also mediates long-term synaptic plasticity: M2- and M1-type 

mAChRs facilitate long-term potentiation and depression in layer 2/3 glutamatergic synapses, 

respectively (Origlia et al., 2006). Lasting muscarinic-mediated increases in the efficacy of 
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glutamatergic synapses are thought to underlie several forms of learning, such as reward 

timing in the primary sensory cortices (Gavornik et al., 2009, Chubykin et al., 2013).  

 

Studies examining direct mAChR-mediated effects on cortical neuronal outputs have 

identified a plethora of postsynaptic effects. In barrel cortex, layer 4 stellate cells are 

persistently hyperpolarized in an mAChR-dependent manner by the puff application of 

acetylcholine (Eggermann and Feldmeyer, 2009), but whether endogenous acetylcholine 

produces similar effects is not known. Pyramidal cells in layer 5 exhibit biphasic mAChR-

mediated responses: acetylcholine puffs produce initial hyperpolarizations (mediated by Ca
2+

-

activated K
+
 (SK) channels), followed by slower depolarization (Gulledge and Stuart, 2005, 

Gulledge et al., 2007, Gulledge et al., 2009). Studies employing synaptic mechanisms to 

activate mAChRs in vitro are extremely rare: Hedrick and Waters have shown both mAChR-

mediated hyperpolarization and depolarization of pyramidal neurons resulting from 

optogenetic activation of cholinergic afferents (Hedrick and Waters, 2015). With regards to 

GABAergic cells, SOM interneurons in layers 2/3 and 4 are powerfully activated by mAChRs 

(Fanselow et al., 2008), an effect that is thought to contribute to cortical desynchronization 

associated with arousal (Chen et al., 2015). A recent study found in vivo evidence for the rapid 

mAChR-mediated activation of layer 4 SOM interneurons, coincident with shifts to aroused 

states (Muñoz et al., 2017). However, it is difficult to deduce which of these responses are 

relevant in rapid forms of cholinergic signaling (since exogenous application does not reveal 

the underlying spatiotemporal dynamics) or to combine these myriad effects into a unified 

model of mAChR-mediated control of cortical network activity. 
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Spatiotemporally precise cholinergic control of cortical circuits remains largely 

unexplored 

 

While the literature for cholinergic signaling in the cortex is long and extensive, much of the 

existing work has taken broad-based approaches, making it difficult to identify some of the 

nuances of cholinergic function. For instance, numerous studies have investigated cell-type 

specific expression patterns of cholinergic receptors in the neocortex (Volpicelli and Levey, 

2004, Arroyo et al., 2014, Poorthuis et al., 2014, Groleau et al., 2015), without sufficiently 

examining their relative spatial distributions on the dendrites or their distances from 

presynaptic varicosities, thus precluding inferences about the underlying kinetics or the 

conditions under which they are engaged. Studies examining the function of cholinergic 

afferentation have similar shortcomings: the overwhelming majority have employed 

exogenous application of acetylcholine or its agonists, which, besides generating non-

physiological concentrations of ligands in the extracellular milieu, do not discriminate between 

receptors that are engaged by volume or synaptic transmission in vivo (Unal et al., 2015). 

Thus, in order to better understand the spatiotemporal dynamics of cortical cholinergic 

function, it is imperative to investigate the action of acetylcholine released under 

physiologically-relevant conditions by employing modern tools like optogenetics. 

 

The lack of mechanistic evidence for precise cortical signaling is particularly true for 

mAChRs. The arguments for spatiotemporally imprecise mAChR signaling are two-fold: their 

supposed reliance on volume transmission, and the onset latencies for the second messenger 

systems they activate. The notion of volume transmission has been bolstered by the paucity of 
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mAChRs close to acetylcholine release sites (Yamasaki et al., 2010). However, neocortical 

cholinergic synapses may not always show the signatures of conventional synapses (Muñoz 

and Rudy, 2014), and postsynaptic mAChRs are often localized with and functionally coupled 

to channels in a membrane-delimited fashion, allowing for fast PSC latencies. For instance, 

stimulating cholinergic afferents in the TRN leads to the activation mAChR-mediated K
+
 

currents with short and reliable latencies (Sun et al., 2013). Most importantly, the view of 

mAChRs purely as slow neuromodulators is difficult to reconcile with recent in vivo evidence 

of rapid and powerful mAChR-mediated control of cortical states and arousal-related 

behaviors; particularly the observation that mAChR activation leads to decorrelation of 

cortical activity on very fast timescales (Goard and Dan, 2009, Pinto et al., 2013, Muñoz et al., 

2017).  

 

In summary, there is very little in vitro evidence for the rapid engagement of mAChRs, 

with clear and direct consequences for cortical network activity. Despite the known 

contribution of mAChRs to cognitive control on fast timescales, knowledge of a circuit-level 

mechanism for rapid cell-type specific mAChR signaling in neocortex is conspicuously 

lacking. As evidence for fast mAChR-mediated control of cortical state dynamics continues to 

grow, this gap is becoming ever more glaring. 
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Chapter 2: Materials and Methods 

Reproduced from Dasgupta R, Seibt F, Beierlein M (2018) Synaptic release of acetylcholine 

rapidly suppresses cortical activity by recruiting muscarinic receptors in layer 4. J Neurosci 

38:5338-5350. 

 

 

2.1 Animals 

 

We used bacterial artificial chromosome (BAC)-transgenic mice of either sex expressing 

ChR2 under the control of the choline acetyltransferase (ChAT) promoter (ChAT–ChR2–

EYFP) (Zhao et al., 2011). Animals were purchased from Jackson Labs 

(https://www.jax.org/strain/014546) and maintained as hemizygous. This mouse line carries 

additional copies of the vesicular acetylcholine transporter (VAChT) gene, potentially leading 

to enhanced release of acetylcholine (Kolisnyk et al., 2013). Therefore, additional experiments 

were carried out using ChAT-Cre/Ai32(ChR2-YFP) mice, generated by crossing ChAT-Cre 

animals (https://www.jax.org/strain/006410) with Cre-dependent reporter Ai32(ChR2-YFP) 

mice (https://www.jax.org/strain/012569), as described previously (Hedrick et al., 2016). 

Some experiments were performed using C57BL/6 wild-type mice.  All animals used in this 

study were treated following procedures in accordance with National Institutes of Health 

guidelines and approved by the University of Texas Health Science Center at Houston 

(UTHealth) animal welfare committee. 
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2.2 Slice preparation 

 

Animals aged P12-16 were anesthetized using isoflurane and then decapitated. The brains 

were rapidly removed and placed in ice cold cutting solution saturated with 95% O2–5% CO2, 

that consisted of the following (in mM):  212 sucrose, 2.5 KCl, 1.25 NaH2PO4, 10 MgSO4, 0.5 

CaCl2, 26 NaHCO3, and 11 glucose. Thalamocortical slices (Agmon and Connors, 1991) (400 

µm) were cut using a vibratome (VT1200 S, Leica Biosystems) and immediately transferred to 

artificial cerebrospinal fluid (ACSF, saturated with 95% O2–5% CO2), maintained at 35°C and 

consisting of the following (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 2 MgCl2, 2 CaCl2, 26 

NaHCO3 and 10 glucose. Slices were incubated at 35°C for 20 minutes and then stored at room 

temperature until used for experiments. 

 

2.3 Electrophysiology 

 

Electrophysiological recordings were performed in a recording chamber (RC-26GLP, Warner 

Instruments) perfused with ACSF saturated with 95% O2–5% CO2 and warmed to 31-34°C 

using an in-line heater connected to a temperature controller (TC-324B, Warner Instruments). 

Cells were visualized via infrared differential interference contrast (IR-DIC) using a fixed 

stage microscope (BX51WI, Olympus) equipped with an infrared camera (IR-1000, Dage-

MTI). Recordings were acquired using an amplifier (Multiclamp 700B, Molecular Devices), 

filtered at 3–10 kHz, and digitized at 20 kHz with a 16-bit analog-to-digital converter 

(Digidata 1440A; Molecular Devices). For voltage-clamp recordings of glutamatergic or 

GABAergic activity in the absence of mAChR-dependent postsynaptic responses, glass 
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pipettes (3-5 MΩ) were filled with a cesium-based internal solution consisting of (in mM): 120 

CsMeSO3, 1 MgCl2, 1 CaCl2, 10 CsCl, 10 HEPES, 3 QX-314, 11 EGTA, 2 Mg-ATP, and 0.3 

Na-GTP (adjusted to 295 mOsm and pH 7.3). For current-clamp recordings, and voltage-

clamp recordings of cholinergic postsynaptic responses, we used a potassium-based internal 

solution consisting of (in mM): 133 K-Gluconate, 1 KCl, 2 MgCl2, 0.16 CaCl2, 10 HEPES, 0.5 

EGTA, 2 Mg-ATP, and 0.4 Na-GTP (adjusted to 290 mOsm and pH 7.3). Where indicated, 5 

mM BAPTA was included to block increases in intracellular calcium concentration. 

 

Cortical activity was evoked using extracellular electrical stimuli (1-20 µA). Stimuli 

were generated using an isolated pulse stimulator (Model 2100, A-M Systems) and delivered 

via a glass electrode filled with ACSF. For some experiments exogenous cholinergic agonists 

were applied using a Picospritzer (Parker Automation). 

 

NBQX, DHβE, AF-DX 116, picrotoxin, CGP 55845, D-APV, and MLA were obtained 

from R&D Systems. All other chemicals were obtained from Sigma-Aldrich. 

 

2.4 Optogenetics 

 

Cholinergic afferents were activated using 5 millisecond (ms) pulses of blue light using an 

LED light source (UHP-T-450-EP, Prizmatix) delivered through a 60X, 0.9NA water-

immersion objective (Olympus) with an effective illumination diameter of <250 µm. Light 

intensity was adjusted to ~60 mW at the back aperture of the objective and kept constant 

throughout all experiments. During recordings the objective was centered over the soma of the 
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recorded neuron. For dual recordings of cells located in distinct cortical layers, postsynaptic 

responses for each cell were recorded sequentially. 

 

2.5 Experimental design and statistical analyses 

 

In order minimize response variability due to differences of ChR2 expression between 

animals, we first quantified cholinergic synaptic responses onto neurons in the thalamic 

reticular neurons (TRN) for each animal (Sun et al., 2013). Neurons were recorded in voltage-

clamp and cholinergic afferents were activated locally with individual pulses (0.5 ms) of 

constant intensity, as described above. If nicotinic EPSCs had amplitudes less than 50 pA, 

ChR2 expression was considered too low and slices were not used for experiments. A fraction 

of ChAT-Cre/Ai32(ChR2-YFP) animals show ChR2 expression in glutamatergic neurons 

(Hedrick et al., 2016). For TRN recordings, such ectopic expression resulted in light-evoked 

fast EPSCs and slices were not further considered for experiments. 

 

Data were analyzed using custom macros written in IGOR Pro (Wavemetrics). 

Statistical tests were performed in Prism 5 (Graphpad). Evoked recurrent activity recorded in 

voltage-clamp was quantified as charge transferred to the recorded cell, by calculating the area 

under the PSC trace in a time window starting 90 ± 3 ms after the first electrical pulse and 

ending when evoked activity returned to baseline. For a given cell, the same time window was 

used for paired and unpaired trials. To account for changes in response magnitudes in unpaired 

trials over the course of pharmacological experiments, responses recorded in paired trials in a 

given drug condition were normalized to responses recorded in unpaired trials in the same drug 
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condition and time period. Decay time constants of postsynaptic cholinergic currents were 

determined by fitting single exponential functions to responses averaged over >10 trials. 

Unpaired comparisons were performed using the two-tailed unpaired t test. Paired 

comparisons were made using the Wilcoxon signed rank test or paired Student’s t test. 

Differences were considered significant when p ≤ 0.05. Data are shown as mean ± SEM. 
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Chapter 3: Results 

Reproduced in part from Dasgupta R, Seibt F, Beierlein M (2018) Synaptic release of 

acetylcholine rapidly suppresses cortical activity by recruiting muscarinic receptors in layer 4. 

J Neurosci 38:5338-5350. 

 

Cholinergic projections from the BF to the neocortex are extensive (Woolf and Butcher, 2011) 

and play crucial roles in varied cognitive processes such as attention (Herrero et al., 2008) and 

fear conditioning (Letzkus et al., 2011). Acetylcholine has a profound effect on cortical state, 

and recently, cortical cholinergic signaling has been implicated in the rapid transitions from 

idleness to arousal that occur within periods of waking (Goard and Dan, 2009, McGinley et al., 

2015b, Reimer et al., 2016), predicting a high degree of specificity and precision in the 

underlying signaling mechanisms (Muñoz and Rudy, 2014).  

 

Cholinergic fibers are prevalent in all cortical layers (Bloem et al., 2014, Wu et al., 

2014). Although fast cholinergic signaling has traditionally been thought to rely on nAChRs 

(Letzkus et al., 2011, Arroyo et al., 2012), recent in vivo evidence indicates that rapid 

cholinergic-mediated changes in cortical activity have mAChR-mediated mechanisms (Goard 

and Dan, 2009, Eggermann et al., 2014, Muñoz et al., 2017). However, the circuit mechanisms 

of fast cortical modulation by the synaptic engagement of mAChRs remain unclear. 

 

Here, we sought to determine how the synaptic release of acetylcholine rapidly alters 

cortical network activity by employing in vitro electrophysiology. 
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3.1 Synaptic release of acetylcholine suppresses evoked cortical activity 

 

We investigated the role of cholinergic synaptic signaling in regulating cortical activity by 

employing optogenetic techniques in somatosensory (barrel) cortical slices of ChAT-ChR2-

EYFP mice expressing ChR2 in cholinergic neurons (Zhao et al., 2011). Where indicated, 

experiments were carried out in slices derived from ChAT-Cre/Ai32(ChR2-YFP) mice 

(Hedrick et al., 2016). Cortical activity was evoked by applying brief stimulus bursts (4 

stimuli, 40 Hz) delivered through extracellular glass electrodes placed in layer 4. To monitor 

activity, we targeted layer 2/3 pyramidal cells in the same cortical column and performed 

voltage-clamp recordings using a Cs
+
-based internal solution (Figure 3.1A). Stimulus bursts 

generated postsynaptic responses consisting of short-latency monosynaptic EPSCs with little 

latency jitter, as well as long-latency polysynaptic activity (onset: 45.7 ± 6 ms, duration: 678.9 

± 50.9 ms, n = 19 cells) which displayed considerable jitter from trial-to-trial (Figure 3.1B). 

Stimulus intensity was adjusted to reliably evoke polysynaptic activity for the majority of trials 

(90.3 ± 3%, n = 19 cells) in a given recording. As polysynaptic responses are thought to be 

mediated by recurrent excitatory connections in local cortical networks (Beierlein et al., 2002), 

we will refer to these responses as recurrent activity.  To examine fast cholinergic modulation 

of recurrent activity, we paired extracellular stimulation in layer 4 with single light pulses (5 

ms duration), to mimic the phasic discharge pattern of BF cholinergic neurons observed in 

vivo (Lee et al., 2005, Hangya et al., 2015). Light pulses were centered on the recorded neuron 

and applied 15 ms prior to the onset of stimulus bursts. This led to a reliable and repeatable 

suppression of recurrent activity (quantified as a change in EPSC charge transfer) compared to 

unpaired trials lacking cholinergic stimulation (unpaired: 105±15 pC, paired: 27.8±4 pC, 29.8 
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± 0% compared to unpaired trials, n = 19 cells, p < 0.001, Wilcoxon signed rank test; Figure 

3.1B-E). Similar findings were obtained for ChAT-Cre/Ai32(ChR2-YFP) mice (17.7±0% 

compared to unpaired trials, n = 2 cells). In contrast, monosynaptic EPSCs evoked by the first 

two stimuli were unaltered by optical activation (unpaired: 197.5±35 pA, paired: 199.6±36 pA, 

100.9 ± 2% compared to unpaired trials, n = 19, p = 0.5, two-tailed paired t-test; Figure 3.1F).  

 

To examine the effect of cholinergic activation on the output of layer 2/3 pyramidal 

cells, we recorded in current-clamp to detect spikes. In unpaired trials, recurrent activity 

evoked few spikes in layer 2/3 neurons (unpaired: 1.18±0.4 spikes per trial; Figure 3.2B,D). 

Optical stimulation led to a reduction of spiking activity (paired: 0.38±0.2 spikes per trial, 36.4 

± 11% compared to unpaired trials, n = 6 cells, p = 0.01, Wilcoxon signed rank test; Figure 

3.2). 

 

We then asked whether cortical recurrent activity initiated by thalamocortical input to 

layer 4 could be similarly inhibited by cholinergic stimulation. Electrical stimulation in the 

TRN produced short latency (<3 ms) monosynaptic EPSCs in layer 4 neurons with stellate 

morphologies (Figure 3.3A,B), suggesting that they were produced by stimulation of 

thalamocortical afferents from the VB (Beierlein and Connors, 2002). Thalamocortically 

evoked recurrent activity was also robustly suppressed by cholinergic input (Figure 3.3C,D). 

Together, our data indicate that brief activation of cholinergic afferents reliably suppresses 

recurrent activity in cortical networks. 
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Figure 3.1: Acetylcholine release evoked by single light pulses suppresses evoked cortical 

recurrent activity. (A) Schematic of experimental setup. Cortical recurrent activity was 

evoked using brief bursts of extracellular stimuli applied in layer 4 (L4) and was recorded in 

voltage-clamp in layer 2/3 (L2/3). Cholinergic afferents (ACh) were activated using single 

light pulses (5 ms), 15 ms prior to electrical stimulation. (B) Top: Representative recording 

showing multiple trials of recurrent activity, in the absence (unpaired, black traces) or presence 

of optical stimulation (paired, blue traces). Bottom: EPSCs averaged across all unpaired and 

paired trials. Note lack of change in amplitude of monosynaptic EPSCs (outlined) (C) For the 

same cell shown in B, plot depicts recurrent activity (quantified as EPSC charge transfer), in 
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paired trials (blue) alternated with unpaired trials (black). (D) Summary data showing light-

evoked suppression of recurrent activity in layer 2/3 neurons (n = 19 cells). (E) Same data as 

in (D), normalized to unpaired responses. (F) Summary data showing average amplitude of 

monosynaptic EPSC evoked by the first two stimuli (n = 10 cells), for unpaired and paired 

trials. Shaded areas and error bars denote SEM. 

 

 

Figure 3.2: Acetylcholine release reduces action potential firing during recurrent 

activity. (A) Schematic of experimental setup. Cells were held in current-clamp with minimal 

current injection to keep the cell at ~-60 mV. Recurrent activity evoked via electrical 

stimulation in layer 4 was monitored in layer 2/3 neurons and paired with optical activation of 

cholinergic afferents. (B) Representative experiment showing consecutive trials of recurrent 

activity, under paired (black) or unpaired (blue) conditions. Raster plots indicate the timing of 

action potentials in individual trials. (C) Peristimulus time histogram for the same cell 
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showing total spikes per 100 ms bin across trials. (D) Summary data (n = 6 layer 2/3 neurons) 

showing acetylcholine-mediated decrease in neuronal activity. Error bars denote SEM. 

 

 

Figure 3.3: Acetylcholine release suppresses cortical recurrent activity evoked by 

stimulation of thalamocortical input. (A) Schematic of experimental setup. Thalamocortical 

afferents from the VB nucleus were stimulated electrically with brief bursts by means of a 

glass electrode placed within the adjoining TRN, and cortical recurrent activity was monitored 

by recording in layer 4. (B) Individual trials (gray) and average trace (black) from an example 

cell showing short latency between stimulus and EPSC onsets (black arrowheads). (C) 

Averaged EPSCs in paired and unpaired trials for the same cell, showing strong suppression of 

evoked cortical activity when paired with brief optical activation. (D) Summary data from 8 

cells. Shaded areas and error bars denote SEM. 
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3.2 Cholinergic transmission does not affect the balance of excitation and inhibition in 

cortical networks 

 

Next, we tested whether cholinergic signaling uniformly suppressed recurrent activity within 

the local network, by conducting simultaneous recordings from neighboring layer 2/3 neurons 

located within ~200 µm of one another (Figure 3.4A). This revealed strong covariation of 

cholinergic suppression of recurrent activity from trial to trial (Figure 3.4B,C), indicating that 

neurons that form part of the same local network are uniformly suppressed by cholinergic 

input.   

 

The rapid suppression of recurrent activity with optical stimulation could be mediated 

by a selective cholinergic-mediated activation of local cortical inhibitory interneurons, leading 

to a decrease in the ratio between excitation and inhibition in the local network (Lucas-

Meunier et al., 2009). To account for this possibility, we tested if cholinergic signaling equally 

reduced activity in local inhibitory neuronal networks by simultaneously recording EPSCs and 

inhibitory postsynaptic currents (IPSCs) in neighboring neurons, voltage-clamped at -70 and 0 

mV, respectively (Figure 3.5A). Suppression of recurrent activity varied widely across cell 

pairs, ranging from 71.1% to 1.2% compared to unpaired trials. However, suppression of 

excitatory and inhibitory activity was virtually identical for a given cell pair (R
2 

= 0.98; Figure 

3.5B,C). Thus, cholinergic signaling did not modify the balance of synaptic excitation and 

inhibition in layer 2/3 during recurrent activity. Taken together, these results suggest that 

synaptically released acetylcholine uniformly suppresses recurrent activity without 

significantly altering the excitation/inhibition ratio of cortical networks. 
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Figure 3.4: Magnitude and suppression of recurrent activity are tightly correlated within 

layer 2/3 local networks. (A) Recurrent activity evoked in layer 4 was recorded in voltage-

clamp from two neighboring layer 2/3 neurons (held at -70 mV to isolate EPSCs), with 

(paired) or without (unpaired) prior activation of cholinergic afferents. (B) Representative 

experiment showing overlaid responses from both neurons for two paired (blue) and two 

unpaired (black) trials recorded consecutively. (C) Magnitude of recurrent activity (measured 

as EPSC charge transfer) in individual trials (n = 22 trials) for the two cells shown in (B). 

Responses for each cell are normalized to the respective average recurrent activity across all 

unpaired trials. Filled circles denote average responses. Error bars denote SEM. 
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Figure 3.5: Acetylcholine release evoked by single light pulses does not alter 

excitation/inhibition balance in cortical networks. (A) Recurrent activity evoked in layer 4 

was recorded in voltage-clamp from two neighboring layer 2/3 neurons, held at -70 mV and 0 

mV to isolate EPSCs and IPSCs, respectively. (B) Recurrent activity recorded as EPSCs and 

IPSCs (black: unpaired, blue: paired) from pairs of neighboring layer 2/3 cells. (C) Summary 

data plotting normalized suppression of EPSCs and IPSCs, for all cell pairs (n = 8). Shaded 

areas and error bars denote SEM. 
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3.3 Cholinergic suppression is largely mediated by mAChRs 

 

Both nAChRs and mAChRs are expressed in different types of neocortical neurons (Muñoz 

and Rudy, 2014), but how these receptors are activated by endogenous acetylcholine to 

mediate cholinergic control of cortical circuits is not well understood. We found that bath 

application of atropine to block mAChRs significantly reduced cholinergic suppression 

(paired: 36.7 ± 5% compared to unpaired trials, atropine:  77.9 ± 4%, n = 10, p < 0.01, 

Wilcoxon signed rank test; Figure 3.6A,B), indicating that acetylcholine increases evoked by 

single light pulses can rapidly recruit mAChRs.  

 

Atropine application additionally led to a small increase in recurrent activity in 

unpaired trials (118.7 ± 9% compared to control, n = 15, p = 0.03, Wilcoxon signed rank test, 

Figure 3.7A), suggesting that cortical activity is also controlled via persistent activation of 

mAChRs.  To determine whether this reduction was due to enhanced levels of ambient 

acetylcholine in our transgenic mouse model (Kolisnyk et al., 2013), we repeated these 

experiments in slices derived from wild-type animals. Bath application of atropine still led to 

an increase in recurrent activity, although this effect did not reach statistical significance (120 

± 11% compared to control, n = 10, p = 0.07, Wilcoxon signed rank test, Figure 3.7B). This 

suggests that persistent activation of mAChRs might not be limited to ChAT-ChR2-EYFP 

mice. 

 

Compared to the effects of blocking mAChRs, washing in MLA and DHβE to block α7 

and non-α7 nAChRs, respectively, led to a smaller but significant reduction of cholinergic 
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suppression (paired: 27.5 ± 7% compared to unpaired trials; MLA and DHβE:  42.5 ± 6%, n = 

10, p < 0.01, Wilcoxon signed rank test; Figure 3.6C). Furthermore, MLA and DHβE 

application did not lead to an increase in recurrent activity in unpaired trials (96.4 ± 7% 

compared to control, n = 7, p = 0.25, Wilcoxon signed rank test) suggesting that tonic 

activation of nAChRs is not prominent.  

 

Although both α7 and α4β2 nAChRs are expressed in the superficial layers, activation 

of cortical cells by α7 nAChRs has not been widely reported (Arroyo et al., 2012). In 

agreement, we found that washing in MLA alone to selectively block α7 receptors while 

leaving non-α7 nAChR signaling intact had no effect on cholinergic suppression of recurrent 

activity (paired: 38.1 ± 5% compared to unpaired trials; MLA:  37.3 ± 3%, n = 5, p = 0.34, 

Wilcoxon signed rank test; Figure 3.8).  

 

In addition to evoking acetylcholine release, optical stimuli might lead to the liberation 

of GABA from BF afferents (Saunders et al., 2015) or from neocortical ChAT-positive 

GABAergic neurons (von Engelhardt et al., 2007) which express ChR2 in our transgenic 

mouse lines. However, we found that the combined application of both mAChR and nAChR 

antagonists completely eliminated suppression of recurrent activity (control: 30.4 ± 7% 

compared to unpaired trials; antagonists: 99.9 ± 8%, n = 8, p < 0.01, Wilcoxon signed rank 

test; Figure 3.6C), suggesting that light-evoked effects on recurrent activity were exclusively 

mediated by acetylcholine. 
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Figure 3.6: Cholinergic suppression of recurrent activity is mediated by both nAChRs 

and mAChRs. (A) Voltage-clamp recordings from a representative layer 2/3 cell showing that 

bath application of the mAChR antagonist atropine (10 μM) largely blocks cholinergic 

suppression of recurrent activity (blue: average EPSCs in paired control trials, red: average 

EPSCs in paired trials following atropine application, gray: average EPSCs in unpaired trials). 

Data were normalized to magnitude of recurrent activity in unpaired trials under the same 

conditions. (B) Magnitude of recurrent activity for the same cell across unpaired (black) and 

paired (blue) during atropine application. (C) Summary data of recurrent activity (normalized 

to activity in unpaired trials) prior to and after bath application of nAChR antagonists (500 nM 

DHβE + 5 nM MLA, n = 10 cells), atropine (10 μM Atr. n = 10 cells), or both (n = 8 cells). 

Shaded areas and error bars denote SEM. 
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Figure 3.7: Persistently active mAChRs suppress cortical activity in the absence of 

evoked acetylcholine release. (A) Summary data from BAC transgenic ChAT-ChR2-EYFP 

(BAC) mice. Evoked cortical recurrent activity, when averaged across unpaired trials that lack 

optical stimulation, shows a slight increase in magnitude when mAChRs are blocked (n = 15 

cells). (B) Summary data from wild-type (WT) mice shows a similar, albeit statistically 

insignificant, effect (n = 10). Error bars denote SEM. 
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Figure 3.8: α7 nAChRs play no role in cholinergic-mediated suppression of recurrent 

activity. (A) Voltage-clamp recordings from an example layer 2/3 cell, showing no change in 

cholinergic suppression of recurrent activity following the pharmacological blockade of α7 

nAChRs with 5 nM MLA (blue: average EPSCs in paired control trials, red: average EPSCs in 

paired trials following MLA application, gray: average EPSCs in unpaired trials). (B) 

Summary data of normalized recurrent activity from 5 cells. Shaded areas and error bars 

denote SEM. 
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3.4 Transient acetylcholine increases lead to prolonged suppression of recurrent activity 

 

The crucial role of mAChRs in the suppression of recurrent activity predicts that BF-evoked 

suppression should be long-lasting. To examine this possibility, we progressively increased the 

delay between optical activation of cholinergic afferents and extracellular stimulation to evoke 

recurrent activity. Suppression of recurrent activity was maximal for delays of 1 and 2 seconds 

and remained prominent even at 5 second delays, with delays of 8 seconds no longer yielding 

significant reductions in activity (Figure 3.9A,B). 

 

            A strong reduction of recurrent activity several seconds after the release of 

acetylcholine does not appear to be compatible with a role for nAChRs. Indeed, for 

experiments with delays of 5 seconds between optical and electrical stimulation, bath 

application of atropine or the M2/M4 mAChR antagonist AF-DX 116 completely eliminated 

cholinergic suppression (control: 46.1 ± 8% suppression, atropine/AF:  99.2 ± 5% suppression, 

n = 11, p < 0.01, Wilcoxon signed rank test; Figure 3.10A,B). Thus, nAChRs and mAChRs 

mediate cholinergic suppression of recurrent activity on distinct timescales, with nAChRs 

mediating transient reduction and mAChRs being responsible for long-lasting reduction of 

cortical activity. 
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Figure 3.9: Cholinergic-mediated suppression of recurrent activity is long-lasting. (A) 

Representative recording showing average EPSCs during unpaired (black) and paired (blue) 

trials, for a range of temporal delays (15 - 8000 ms) between optical and electrical stimulation. 

Data were normalized to magnitude of recurrent activity in unpaired trials under the same 

conditions. (B) Summary data quantifying light-evoked suppression of recurrent activity 

(normalized to responses in unpaired trials) as a function of temporal delay between and 

electrical stimulation (n = 5 cells). Summary data were fit by a third order polynomial 

(χ
2
=0.013). Shaded areas and error bars denote SEM. 
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Figure 3.10: Sustained suppression of cortical recurrent activity is mediated entirely by 

mAChRs. (A) Representative recording showing that for 5 s delays between optical and 

electrical stimulation, suppression of recurrent activity (blue) was entirely reversed by bath 

application of atropine. (B) Summary data showing elimination of light-evoked suppression of 

recurrent activation following of bath application of either atropine or 10 µM AF-DX 116 

(circles: atropine, n = 7 cells; triangles: AF-DX 116, n = 4 cells), for experiments as shown in 

(C). Shaded areas and error bars denote SEM. 
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3.5 Cholinergic suppression via mAChRs is prominent in layer 4 

 

Next, we tested if the contributions of nAChRs and mAChRs to cholinergic suppression could 

be localized to distinct cortical layers. To address this question, we surgically removed layers 

1-3 by performing cuts parallel to the pial surface just above layer 4, and carried out 

recordings from layer 4 neurons deemed excitatory (Figure 3.11A). Extracellular stimulation 

applied to the same barrel still led to recurrent activity, but with reduced magnitude (uncut 

slice: 105 ± 15 pC, n = 19, layer 4-6 slice: 54.9 ± 8 pC, n = 15). Furthermore, we still observed 

robust light-evoked suppression of recurrent activity (38.5 ± 5% compared to unpaired trials, n 

= 15, p < 0.001, Wilcoxon signed rank test; Figure 3.11B,C). However, in contrast to our 

findings in intact slices, atropine almost completely reversed cholinergic suppression (control: 

35.4±7% compared to unpaired trials, atropine:  92.8 ± 4%, n = 6, p = 0.01, Wilcoxon signed 

rank test; Figure 3.11B,C), while application of MLA and DHβE to block nAChRs no longer 

reduced cholinergic suppression (control: 35.1 ± 6% compared to unpaired trials, MLA and 

DHβE: 30.2 ± 5%, n = 6, p = 0.23, Wilcoxon signed rank test; Figure 3.11D,E). Furthermore, 

increasing the delay between optical and extracellular stimuli to 5 seconds still led to atropine-

sensitive suppression of recurrent activity (control: 46.4 ± 8% compared to unpaired trials, 

atropine: 124.6 ± 27%, n = 5, p = 0.02, Wilcoxon signed rank test; Figure 3.11F,G). These data 

indicate that cholinergic inputs to layers 4-6 can mediate robust and long-lasting mAChR-

mediated suppression of cortical activity. Furthermore, they suggest that the nAChR-

dependent suppression of network activity primarily occurs in more superficial layers. 

However, it is possible that severing dendrites and translaminar projections eliminated the 

contributions of nAChR activation in deeper cortical layers.  
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To further constrain the location of mAChR-mediated suppression, we performed 

recordings from layer 5 pyramidal neurons in slices with layers 1-4 surgically removed, and 

evoked recurrent activity using electrodes placed in the white matter (Figure 3.12A). The 

magnitude of recurrent activity was further reduced under these conditions (uncut slice: 105 ± 

15 pC, n = 19, layer 5-6 slice: 12.8 ± 3 pC, n = 6). Importantly, optical stimulation no longer 

reduced recurrent activity (90.9 ± 8% compared to unpaired trials, n = 6, p = 0.12, Wilcoxon 

signed rank test; Figure 3.12B,C), suggesting that fast synaptic acetylcholine release in the 

infragranular layers is not involved in the control of cortical activity, at least under our 

experimental conditions. 

 

 Taken together, our findings show that the contributions of nAChRs and mAChRs to 

the suppression of network activity are not uniform across cortical layers. Instead, they 

indicate that nAChR-dependent suppression is primarily mediated by layers 1-3, while 

mAChR-dependent suppression is particularly prominent in layer 4. 
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Figure 3.11: Cholinergic suppression of recurrent activity is layer-specific. (A-G) 

Recordings were carried out in slices following surgical removal of layers 1-3.  (A) Left: 

Schematic indicating recording arrangement. Right: brightfield image of slice preparation, with 

layer 4 barrels outlined. Asterisk denotes stimulating electrode. Scale bar: 150 µm. (B) 

Representative recording of layer 4 neuron showing that cholinergic suppression of recurrent 

activity is entirely mAChR-mediated. (C) Summary data (n = 6 cells) showing complete 
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reversal of cholinergic suppression following atropine application. (D) Representative 

recording showing that nAChR antagonist application no longer reduces cholinergic 

suppression (n = 4 cells, DHβE alone: n = 2, DHβE+MLA: n = 2). (E) Summary data (n = 5 

cells) for experiments as shown in (D). (F) Cholinergic suppression of recurrent activity is 

maintained for long delays (5 s) between optical and electrical stimuli and mediated my 

mAChRs. (G) Summary data (n = 5 cells) for experiments as shown in (F). Shaded areas and 

error bars denote SEM. 

 

 

 

 

 

Figure 3.12: Surgical removal of layers 1-4 eliminates cholinergic suppression. (A) Layers 

1-4 were surgically removed prior to recording. Recordings were carried out from layer 5 

neurons and activity was evoked in the white matter below the same column. (B)  

Representative recording showing EPSCs averaged across paired and unpaired trials. (C) 

Summary data (n = 6 cells) for recordings as shown in (H). Shaded areas and error bars denote 

SEM. 
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3.6 Cholinergic postsynaptic responses are largely nAChR-mediated in the superficial 

layers 

 

Our results described so far are consistent with the activation of nAChRs expressed in layer 

2/3 GABAergic interneurons, leading to transient suppression of cortical activity. In addition, 

they suggest a prominent recruitment of mAChRs in layer 4, resulting in a long-lasting 

depolarization of GABAergic interneurons, a long-lasting inhibition of excitatory neurons, or 

both. Next, we carried out recordings from neurons in layers 1-4 using a K
+
-based recording 

solution and determined the nature and frequency of light-evoked postsynaptic responses in 

different cell types. Neurons were classified as either regular-spiking (RS) cells considered 

excitatory, or as fast-spiking (FS) or non-fast-spiking (non-FS) cells considered inhibitory, 

based on their intrinsic firing properties (Beierlein et al., 2003) (Figure 3.13A, Table 3.1). In 

agreement with previous findings (Arroyo et al., 2012), neurons in layer 1 showed nAChR-

mediated EPSCs (nEPSCs, 11/12 neurons) that were fully blocked by a combination of MLA 

and DHβE. In layer 2/3, a large percentage of inhibitory interneurons displayed nEPSCs that 

were blocked by DHβE (FS: 39%, non-FS: 77%; Figure 3.13B,C), while a minority of neurons 

displayed long-lasting mAChR-dependent currents (FS: 23%, non-FS: 5%; Figure 3.13B,C).  

 

Table 3.1: Average values of intrinsic properties for different cell types in layers 2/3 

(L2/3) and 4 (L4). 

Column1 L2/3 RS L4 RS L2/3 non-FS L4 non-FS L2/3 FS L4 FS 

Input resistance (MΩ) 162.2 ± 14 343.5 ± 22 313.7 ± 69 283.2 ± 134 125.9 ± 46 85.3 ± 14 

Membrane τ (ms) 22.4 ± 2 28.3 ± 2 18.4 ± 2 14.2 ± 4 9.7 ± 1 8.1 ± 1 

Spike half-width (µs) 931.0 ± 45 919.0 ± 53 600.7 ± 47 640.6 ± 66 383.7 ± 26 342.4 ± 28 

Sag recovery (%) 9.1 ± 1 12.7 ± 1 17.8 ± 3 10.8 ± 2 18.1 ± 2 16.5 ± 2 

n 10 10 10 5 11 8 
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Although optical activation mostly generated nEPSCs in layer 2/3 non-FS cells, they 

have been reported to express mAChRs (Chen et al., 2015).  To confirm the existence of 

functional mAChRs in non-FS neurons as shown previously, we used a picospritzer to apply 

brief puffs of muscarine. For all neurons examined (n = 9) which showed a light-evoked 

nEPSP only, muscarine application led to a robust depolarization which was blocked by 

atropine (Figure 3.14). These data indicate that while mAChRs are prominently expressed in 

layer 2/3 non-FS neurons, they do not appear to be recruited by brief activation of cholinergic 

afferents. 

 

While non-FS cells in the superficial layers can inhibit local pyramidal cells (Arroyo et 

al., 2012), their nAChR-mediated activation in vivo has been reported to cause disinhibition 

(Letzkus et al., 2011, Pi et al., 2013). To examine which paradigm was prevalent under our 

conditions, we recorded from layer 2/3 RS cells to detect GABAergic inputs in response to 

optical activation. In a small number of cells (n=2), cholinergic stimulation generated IPSCs 

with relatively long latencies and significant jitter from trial to trial, suggesting they were 

mediated by disynaptic mechanisms (Figure 3.15). Thus, non-FS interneurons engaged by 

cholinergic input were capable of driving inhibition of layer 2/3 excitatory cells. 

 

In contrast to interneurons, most RS cells in layer 2/3 did not show light-evoked 

postsynaptic responses (75%; Figure 3.13B,C), with the remaining neurons displaying small-

amplitude mAChR-dependent IPSCs (mIPSCs, 25%). Taken together, these findings indicate 

that the synaptic release of acetylcholine in superficial layers can suppress cortical activity via 

the recruitment of nAChRs in distinct types of interneurons. 
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Figure 3.13: Cholinergic postsynaptic responses are layer-specific. (A) Cells in layer 2/3 

and layer 4 were classified as either inhibitory FS, or non-FS cells or excitatory RS cells based 

on their intrinsic firing characteristics. (B) Example voltage-clamp recordings carried out in 

the presence of NBQX (10 µM), D-APV (25 µM), picrotoxin (50 µM) and CGP 55845 (5 µM) 

showing typical light-evoked responses. Most cells in layer 2/3 (left column) showed either no 

response or fast EPSCs (blue traces) blocked by DHβE (black traces). In layer 4 (right column) 
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the majority of neurons displayed slow postsynaptic responses (red traces) that were blocked 

by atropine (black traces). (C) Summary data showing likelihood of nAChRs and mAChR-

mediated responses for each cell type. Numbers above bars indicate total number of cells 

recorded. Data generated in part by Frederik Seibt, used with permission. 

 

 

 

 

Figure 3.14: Synaptic release of acetylcholine primarily recruits nAChRs in layer 2/3 

non-FS neurons. (A) Responses to hyperpolarizing and depolarizing current steps in an 

example layer 2/3 non-FS neuron. (B) Average response in current-clamp from layer 2/3 non-

FS cells (n = 4) to 5 ms optical activation (blue bar) followed by a 200 ms puff of muscarine 

chloride (1 mM, red bar). (C) Summary data (n = 4 cells), showing that responses evoked by 

muscarine were completely blocked by atropine. Shaded areas and error bars denote SEM. 

Data generated in part by Frederik Seibt, used with permission. 
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Figure 3.15: Brief optical activation leads to disynaptic inhibition of layer 2/3 excitatory 

neurons. (A) Recordings were made from identified layer 2/3 pyramidal cells using a K
+
-

based internal solution containing a low concentration of Cl
-
, producing a Cl

-
 reversal potential 

of ~-82 mV. (B) Responses to depolarizing and hyperpolarizing current steps in a layer 2/3 

cell, showing RS phenotype. (C) In the same cell, optical activation evoked long-latency 

GABAergic IPSCs with significant latency jitter. Shown here are individual trials in gray, and 

average trace in black.  
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3.7 Cholinergic postsynaptic responses are largely mAChR-mediated in layer 4            

 

Recordings in layer 4 yielded dramatically different results. Almost all FS cells displayed 

atropine-sensitive mIPSCs (94%; Figure 3.13B,C), and never showed nAChR dependent 

responses. Non-FS interneurons responding to acetylcholine release displayed either isolated 

nEPSCs (33%), or biphasic responses consisting of nEPSCs and mAChR EPSCs (mEPSCs, 

38%; Figure 3.13B,C). Furthermore, the large majority of RS cells showed mIPSCs (92%) that 

were blocked by atropine and AF-DX 116. mAChR-mediated responses were also detected in 

slices derived from ChAT-Cre/Ai32(ChR2-YFP) mice  (FS: n = 2 cells, non-FS: n = 1 cell, 

RS: n = 29 cells). Postsynaptic mAChR-dependent responses displayed large cell type-specific 

differences in their kinetics (Figure 3.16). While mIPSCs in FS had relatively fast kinetics 

(rise time: 165.9 ± 10 ms, decay time constant: 844.2 ± 78 ms, n = 20), mIPSCs in RS cells 

were considerably slower (rise time: 328.3 ± 23 ms, decay time constant in voltage-clamp: 

3281.7 ± 157 ms, n = 21, p < 10
-5

, ANOVA). In non-FS cells, optical activation evoked 

mEPSCs that displayed extremely slow kinetics (rise time: 1248.3 ± 125 ms, decay time 

constant: 23.7 ± 5.4 s, n = 7, p < 10
-5

, ANOVA; Figure 3.16), and caused increased spiking 

when paired with depolarizing current injections to induce action potentials (Figure 3.17). 

Taken together, these results suggest that brief cholinergic activation leads to the recruitment 

of mAChRs on most layer 4 neurons, leading, in turn, to postsynaptic activity in various cell 

types on dramatically different time scales. 
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Figure 3.16: Postsynaptic mAChR-mediated responses in layer 4 have cell-type specific 

kinetics. (A) Rise times of mIPSCs plotted against their decay time constants from example 

layer 4 RS (n = 21) and FS (n = 20) cells, along with the same values for mEPSCs in layer 4 

non-FS cells (n = 7). Note logarithmic scale on both axes. Error bars denote SD. (B) Summary 

of mAChR-mediated postsynaptic responses for the same cells as in (A). Error bars denote 

SEM. 
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Figure 3.17: Brief cholinergic input excites layer 4 non-FS cells at long latencies. (A) 

Responses to depolarizing and hyperpolarizing current steps from an example layer 4 cell 

showing non-FS phenotype. (B) In the same cell, brief optical activation produced atropine-

sensitive EPSCs with extremely slow rise and decay kinetics. (C) Peristimulus time histogram 

for the same cell showing spiking activity evoked by 3 s depolarizing current steps (black 

trace). Pairing this with cholinergic activation at a delay of 500 ms (blue trace) led to an 

increase in spike output, but with a latency of ~500 ms, presumably owing to the slow rise 

time kinetics of the underlying EPSCs. 
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3.8 mAChR-mediated IPSCs are most prominent in layer 4            

 

Our data suggest that excitatory neurons in layer 4 are much more likely to receive cholinergic 

inputs compared to excitatory neurons in layer 2/3. Next, we compared the strength of 

cholinergic postsynaptic responses in excitatory neurons located in distinct layers. To account 

for postsynaptic response variability due to differences of ChR2 expression between slices and 

animals, we performed dual recordings from RS neurons in layer 4 and layer 2/3 or layer 4 and 

layer 5 in the same cortical column (Figure 3.18A). For almost all pairs examined, mIPSC 

amplitudes in layer 4 were larger compared to responses in either layer 2/3 or layer 5 (layer 

2/3: 21.5 ± 10 % compared to layer 4, n = 11 pairs, p < 0.001; layer 5: 16.0 ± 5% compared to 

layer 4, n = 14 pairs, p < 0.0001, two-tailed paired t-test; Figure 3.18A,B). Finally, mIPSC 

amplitudes in layer 4 RS cells were indistinguishable between the two transgenic mouse lines 

(Cre/Ai32(ChR2-YFP):  9.0 ± 1.0 pA, n = 8 cells; ChAT-ChR2-EYFP: 11.0 ± 1.0 pA, n = 23 

cells, p = 0.38, two-tailed unpaired t-test) suggesting that VAChT overexpression does not 

lead to a significant enhancement of response amplitudes. Thus, mAChR-mediated 

suppression of excitatory cells is a prominent feature of layer 4, the principal thalamorecipient 

layer of primary somatosensory cortex. 
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Figure 3.18: mIPSCs in RS cells are strongest in layer 4. Recordings were obtained in the 

presence of antagonists for GABAergic and glutamatergic synaptic transmission. (A)  Left: 

Average IPSCs for simultaneously recorded pairs of layer 2/3 and layer 4 neurons (n = 11 

pairs). Right: Summary data (11 layer 2/3 & 4 pairs). (B) Left: Average IPSCs for 

simultaneously recorded pairs of layer 4 and layer 5 neurons (n = 14 pairs). Right: Summary 

data (14 layer 4 & 5 pairs). All shaded areas and error bars denote SEM. 
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3.9 mAChR-mediated IPSCs in layer 4 RS cells are mediated by the activation of GIRK 

channels            

 

Next, we probed the mechanisms mediating mIPSCs in layer 4 RS neurons. Synaptic currents 

had onset latencies of 30.6 ± 1 ms (n = 19 cells), reversed at ~-96 mV, displayed strong inward 

rectification and could be blocked by bath application of barium
 
(15.11 ± 2% of control, n = 4 

cells, p = 0.05, two-tailed paired t-test; Figure 3.19A,B), indicating the mIPSCs were mediated 

by GIRK conductances. By contrast, bath application of the small conductance calcium-

activated potassium (SK) channel antagonist apamin had little effect on mIPSC amplitudes 

(93.0 ± 4% of control, n = 6 cells, p = 0.09, two-tailed paired t-test; Figure 3.19C,D) and 

recordings using an internal solution containing 5 mM BAPTA did not attenuate mIPSCs (n = 

4 cells), suggesting that SK channel activation is not involved in mediating mIPSCs in layer 4 

neurons. 

 

Taken together, our data show that the synaptic release of acetylcholine in layer 4 leads 

to the recruitment of mAChRs in the large majority of RS cells, suggesting that the 

monosynaptic inhibition of excitatory neurons via the opening of K
+
 conductances contributes 

to the prolonged suppression of recurrent activity. 
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Figure 3.19: mIPSCs in layer 4 RS cells are mediated by GIRK conductances. (A) Light-

evoked mIPSC in a layer 4 RS cell was blocked following Ba
2+

 (200 µM) application. (B) 

Summary data quantifying mIPSC reduction following Ba
2+ 

application (n = 4 cells). (C) 

Application of the SK channel antagonist apamin (10 – 100 nM) has no effect on mIPSCs, as 

shown for layer 4 RS neuron. (D) Summary data quantifying mIPSC responses prior to and 

following apamin wash-in (circles: 10 nM, n = 3 cells; triangles: 100 nM, n = 3 cells). Error 

bars denote SEM. 
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3.10 Synaptic acetylcholine reduces neuronal firing in layer 4 RS cells  

 

Next, we determined the impact of light-evoked mAChR IPSPs (mIPSPs) on postsynaptic 

action potential activity in RS cells, in the absence of recurrent activity. For RS neurons held 

at -70 mV, mIPSPs had amplitudes of 2.9 ± 0 mV and decay time constants of 5140.5 ± 427 

ms (n = 25). When mIPSPs were paired with action potential firing evoked by depolarizing 

current steps, firing frequencies were rapidly (<100 ms) and persistently reduced compared to 

unpaired trials (n = 11, Figure 3.20A-C).  

 

To examine cholinergic control under more physiological conditions, we paired optical 

stimulation with action potential activity (t = 1s) evoked by extracellular stimulation of 

glutamatergic afferents (4 stimuli at 40 Hz). For these experiments, we added the NMDAR 

antagonist APV (25 µM) to block recurrent activity and to isolate fast monosynaptic responses 

(Beierlein et al., 2002). Light-evoked mAChR IPSPs (mIPSPs) reduced synaptically-evoked 

action potential activity (57.9 ± 5% compared to unpaired trials, n = 10 cells, p < 0.01, 

Wilcoxon signed rank test; Figure 3.21A-C). 

 

To test if these effects were mediated in part by a reduction of glutamate release, we 

paired glutamatergic and cholinergic inputs but performed voltage-clamp recordings using a 

Cs
+
-based internal solution to block postsynaptic mIPSCs. Glutamatergic EPSCs were slightly 

but not significantly reduced (91.5 ± 2% compared to unpaired trails, n = 8 cells, p = 0.13, 

two-tailed paired t-test; Figure 3.22A), in an atropine-sensitive manner (atropine: 103.0 ± 2% 

compared to unpaired trails, n = 3 cells; Figure 3.22B). These data suggest that cholinergic 
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inputs trigger a rapid and long-lasting reduction of layer 4 RS cell activity by activating 

postsynaptic mAChRs. 

 

 

 

Figure 3.20: Cholinergic synaptic inputs to layer 4 reduce neuronal firing in RS cells. (A) 

Top: mIPSC in layer 4 RS cell. Middle: Multiple overlaid trials showing neuronal activity 

evoked by 2 s depolarizing current step paired with light stimulation applied with a 500 ms 

delay (indicated by blue bar). Scale bar: 20 mV. Bottom: Raster plot showing timing of action 

potentials over multiple trials, for the same neuron. (B) For the same cell as in (A), 

peristimulus time histogram (PSTH) for paired (blue) and unpaired (gray) current steps. (C) 

Average PSTH (n = 11 RS cells), normalized to average of first five 100 ms time bins for each 

cell. Shaded areas denote SEM. 
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Figure 3.21: Cholinergic afferents to layer 4 RS cells suppress synaptically-evoked 

spiking. (A) Schematic of experimental setup. Glutamatergic EPSPs in layer 4 neuron were 

paired with single optical stimulus (5 ms), applied 1 s prior to electrical stimulation. (B) 

Glutamatergic-evoked spikes are significantly suppressed or delayed, as shown for several 

trials in control (black) or with paired optical stimulation (blue). (C) Summary data showing 

cholinergic-mediated suppression of spiking suppression (n = 10 cells).  
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Figure 3.22: Cholinergic activation produces a small but insignificant mAChR-

dependent reduction in glutamatergic EPSCs. (A) Electrically evoked glutamatergic EPSCs 

in an example layer 4 cell recorded using a Cs
+
-based internal. EPSCs showed a slight 

reduction in amplitude when paired with brief cholinergic activation 1 s prior to electrical 

stimulation (left), that was blocked by the bath application of atropine (right). (B) Summary 

data of control-normalized EPSCs that were paired with optical activation, in the absence (n = 

8 cells) or presence of atropine (n = 3 cells). Error bars denote SEM. 
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3.11 Synaptic acetylcholine suppresses layer 4 RS cells via hyperpolarizing inhibition 

 

How does postsynaptic mAChR signaling influence the processing of subthreshold synaptic 

inputs? Activation of mAChRs and the opening of GIRK conductances will lead to a 

hyperpolarization of membrane potential and in addition, to an increase in membrane 

conductance generating a potential “shunt” (Eggermann and Feldmeyer, 2009). Shunting 

inhibition is thought to be a prominent mechanism underlying the spatiotemporal summation 

of excitatory and inhibitory synaptic inputs in neocortex and other brain areas (Koch, 1999). 

When probed with brief (300 ms) hyperpolarizing current steps, mIPSPs led to a significant 

reduction in input resistance of the postsynaptic RS cell (86.2 ± 3% compared to control, n = 

14 cells, p < 0.001, Wilcoxon signed rank test; Figure 3.23A,B).  

 

Next, we examined if subthreshold glutamatergic EPSPs are controlled by mAChR-

mediated shunting inhibition, by activating glutamatergic afferents (4 stimuli at 40 Hz) during 

light-evoked mIPSPs (t = 1s; Figure 3.24A). Surprisingly, we found that both glutamatergic 

EPSP amplitude and area of the paired postsynaptic response were on average nearly identical 

to the linear sum of the EPSP and the mIPSP evoked separately (EPSP amplitude: 100.1 ± 2% 

compared to linear sum, n = 16, p = 0.16, EPSP area: 99.6 ± 2%, n = 16, p = 0.34, Wilcoxon 

signed rank test; Figure 3.24A,B). To test whether the lack of EPSP shunting was caused by 

biases in the sampling of cells, we paired evoked EPSPs and current steps with mIPSPs in the 

same cell. Although somatic current injections were consistently shunted across cells (89.6 ± 

1% compared to control, n = 4 cells), paired EPSPs did not show any obvious trends (107.9 ± 
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9% compared to control, n = 4 cells; Figure 3.25). Together, our data suggest that cholinergic 

inputs to layer 4 RS cells reduce neuronal firing primarily via hyperpolarizing inhibition. 

 

 

 

 

Figure 3.23: Voltage deflections evoked by somatic current steps are shunted by mIPSPs. 

(A) Top: Optically evoked mIPSP in a layer 4 RS cell was paired with a hyperpolarizing 

somatic current injection with a delay of 400 ms. Bottom: close-up of the hyperpolarizing step 

(blue trace) along with the linear sum of the mIPSP and somatic hyperpolarization generated 

separately (red trace), revealing significant shunting under paired conditions. (B) The 

magnitude of the shunt, quantified as the proportion of the control hyperpolarization that was 

lost when paired with mIPSP, shows a strong linear relationship when plotted as a function of 

the amplitude of the mIPSP (n = 14 cells). Error bars denote SEM. 
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Figure 3.24: Cholinergic inputs to layer 4 RS cells mediate hyperpolarizing inhibition. 

(A) mIPSPs do not cause shunting of glutamatergic EPSPs. Top: light-evoked mIPSP was 

paired with a train (40 Hz) of electrically evoked glutamatergic EPSPs (delay: 1 s). Recordings 

were carried out in the presence of D-APV (25 µM) to prevent recurrent activity. Bottom, 

close-up of EPSPs in top trace showing that paired response (blue trace) is identical to linear 

sum of mIPSP and EPSPs evoked separately (red trace). (B) Summary data quantifying both 

area under the paired EPSPs and amplitude of the first paired EPSP, normalized to their 

respective unpaired controls (n = 16 cells). (C) Normalized EPSC area (left) and amplitude 

(right) data from (B) plotted as a function of mIPSP amplitude, showing no significant trend. 

Error bars denote SEM.  
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Figure 3.25: mIPSPs mediate shunting of somatic current injections but not EPSPs. (A) 

Although paired EPSPs show no change on average, paired current steps are consistently 

shunted. Top: EPSPs in layer 4 RS cells, paired with optically evoked mIPSPs at a delay of 1 s 

(blue trace), shown along with linear sum of EPSPs and mIPSPs evoked separately (red trace). 

Data were normalized and averaged across 4 cells. Bottom: For the same cells, normalized 

average traces of somatic hyperpolarizations, either paired with optical stimulation (blue trace) 

or linearly summed with an mIPSP evoked separately (red trace). (B) Summary data of EPSP 

and step amplitudes, revealing no clear trend for EPSPs but shunting of hyperpolarizing steps. 

Shaded areas and error bars denote SEM. 
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3.12 Summary 

 

We investigated the mechanisms of cholinergic control of cortical activity in vitro by 

employing a combination of slice electrophysiology and optogenetics. By pairing electrically 

evoked recurrent activity with optical stimulation of cholinergic afferents, we demonstrated 

that brief cholinergic activation led to rapid and robust suppression of cortical activity. This 

suppression was achieved by the engagement of both nAChRs and mAChRs. In the 

supragranular layers, nAChR-mediated recruitment of inhibitory interneurons led to disynaptic 

inhibition of pyramidal cells and a transient suppression of activity. In layer 4, brief 

cholinergic stimulation reliably engaged postsynaptic mAChRs, leading to the activation of 

inhibitory cells and hyperpolarizing inhibition of excitatory neurons. This, in turn, mediated a 

prolonged suppression of recurrent activity, lasting several seconds. Taken together, these 

results show that even brief activation of cortical cholinergic afferents can cause rapid 

mAChR-mediated suppression of synchronous cortical activity, in contrast to the traditional 

view of mAChRs being slow and spatially imprecise neuromodulators. 

 

 

 

 

 

 

 

 



84 

 

Chapter 4: Discussion 

 

Acetylcholine has a long and established literature as a potent regulator of cognitive function 

(McCormick, 1992, Hasselmo, 2006, Ballinger et al., 2016). Yet, the circuit mechanisms by 

which endogenous acetylcholine controls cortical function have been largely unexplored. 

Partly, this has been due to the persistent view of acetylcholine as a neuromodulator with 

signaling modes that are distinctly slower and less spatially precise than that achieved by 

classical neurotransmission (Lucas-Meunier et al., 2003). While tonic neuromodulatory effects 

of acetylcholine in the neocortex certainly exist (see, for instance, Figure 3.7), cholinergic 

signaling also mediates transient, temporally precise and cell-type specific effects. This is 

perhaps not surprising, given the critical role acetylcholine plays in such cognitive tasks as 

attention (Herrero et al., 2008) and learning of reward timing (Chubykin et al., 2013) which 

require extremely precise control over when and which cell types are activated or inhibited. 

Moreover, the activity patterns of BF cholinergic projection neurons are anything but tonic, 

showing highly correlated firing with behavioral states (Eggermann et al., 2014, Reimer et al., 

2016), cortical rhythms (Lee et al., 2005) and behaviorally relevant stimuli (Hangya et al., 

2015). Combined with recent evidence of fast cholinergic signaling in vivo (Pinto et al., 2013), 

there is an ongoing paradigm shift in the how cholinergic function in the neocortex is viewed. 

 

Our results provide a mechanistic basis for fast and precise cholinergic control of 

cortical network activity in vitro (Dasgupta et al., 2018). To our knowledge, we provide the 

first evidence that even brief activation of cholinergic afferents can rapidly (within 100 ms) 

switch cortical circuits to a state that strongly disfavors synchronized Up-state-like activity 
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(Figure 3.1). Because attention-demanding tasks are associated with rapid fluctuations in 

acetylcholine levels in the neocortex (Parikh et al., 2007), there likely exist temporally precise 

cholinergic signaling mechanisms that can modulate cortical states at sub-second to seconds 

timescales. Our results provide evidence for such mechanisms. Interestingly, the rapid effects 

of synaptic acetylcholine were mediated largely by metabotropic receptors, suggesting that 

both nAChRs and mAChRs are capable of spatiotemporally precise signaling (Figure 4.1). 

 

4.1 Brief cholinergic activation evokes long-lasting mAChR-mediated currents in layer 4 

 

Rapid cholinergic suppression of cortical activity was largely mediated by the activation of 

mAChRs (Figure 3.6). Optogenetic stimulation evoked mAChR-mediated IPSCs in the vast 

majority of excitatory neurons of layer 4. These responses had fast onset latencies (30.6 ms) 

but were slow-decaying, with >5 s decay time constants in current-clamp recordings, 

suggesting that they are a principal mechanism of long-lasting cholinergic-mediated 

suppression of recurrent activity. The fast and reliable recruitment of postsynaptic mAChRs 

with brief cholinergic activation is similar to findings in the TRN (Sun et al., 2013), where 

cholinergic input produces a biphasic nAChR- and mAChR-mediated response. Furthermore, 

mIPSCs were sensitive to the M2/M4 specific antagonist AF DX-114. Subcellularly, M2/M4 

mAChRs are coupled to Gi/o proteins; upon receptor activation, the β/γ subunit of the G-protein 

is able to diffuse through the membrane and bind to various ion channels, activating or 

inhibiting them. M2/M4 mAChRs have previously been reported to activate GIRK K
+
 

channels with exogenous acetylcholine application (Eggermann and Feldmeyer, 2009). In 

agreement, mIPSCs in layer 4 RS cells showed strong inward rectification and could be 
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blocked by the application of BaCl2 (Figure 3.19), suggesting a GIRK-mediated mechanism. 

They could not, however, be blocked by apamin or the inclusion of BAPTA in the internal 

solution, suggesting that Ca
2+

-activated SK K
+
 channels were not involved, contradicting 

previous reports (Gulledge and Stuart, 2005, Gulledge et al., 2007). 

 

In addition to hyperpolarizing the membrane, the opening of additional K
+
 channels 

should lead to a reduction in membrane resistance, thereby creating shunting inhibition of 

concurrent EPSPs (Koch, 1999). Shunting effects are particularly prominent for inhibitory 

synapses that are located between the glutamatergic synapses and the soma but diminish 

rapidly as the number of dendritic branch nodes between the synapses increase (Gidon and 

Segev, 2012). To test whether the opening of GIRK channels produced shunting inhibition in 

layer 4 RS cells, we paired optical activation of cholinergic input with glutamatergic EPSPs 

evoked via electrical stimulation within the same barrel. Because thalamocortical and 

corticocortical glutamatergic synapses are uniformly distributed over the entire lengths of RS 

cell dendrites (Schoonover et al., 2014), we expected to see a substantial reduction in the 

amplitude of the paired EPSPs resulting from shunting. Surprisingly, paired EPSPs were 

unaltered on average (Figure 3.24), although membrane conductance was clearly increased 

(Figure 3.23). It is possible that the electrical stimulation we used was biased towards 

recruiting more proximally located glutamatergic synapses, and/or brief optical activation 

preferentially recruited cholinergic synapses on distal dendritic regions, thereby precluding a 

significant shunt. Alternatively, mAChRs may have activated additional dendritic biochemical 

pathways that counteracted the effects of shunting. The dynamics of the dendritic currents 

resulting from mAChR activation in layer 4 RS cells remain elusive. 
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Figure 4.1: Synaptic acetylcholine suppresses recurrent activity by engaging both 

nAChRs and mAChRs. Our findings demonstrate that cholinergic receptor subtypes 

contribute to suppression of cortical activity in a layer-specific manner. In layer 2/3, 

cholinergic transmission engages nAChRs expressed on the majority of non-FS interneurons. 

This, in turn, leads to disynaptic inhibition of pyramidal cells, thus mediating transient 

suppression. In layer 4, most excitatory cells are directly inhibited by the rapid engagement of 

mAChRs, leading to a more prolonged form of suppression that lasts several seconds. 

Together, they serve as a circuit mechanism for the rapid cholinergic-mediated suppression of 

synchronous cortical activity observed during high arousal in vivo. 



88 

 

Besides mIPSCs on RS cells, a large proportion of non-FS cells in layer 4 also showed 

slow mAChR-mediated EPSCs (Figure 3.13). From our data, we cannot rule out that layer 4 

non-FS interneurons contributed to cholinergic-mediated suppression. However, rise-times of 

mEPSCs in non-FS cells were exceptionally slow (Figure 3.16) and optical stimulation led to 

increased spike output only after a significant delay (Figure 3.17), making it unlikely that layer 

4 non-FS interneurons contributed to suppression of recurrent activity at short delays. In a 

recent study, Muñoz et al. found that periods of whisking are associated with a strong 

mAChR-mediated activation of layer 4 SOM cells in S1 (Muñoz et al., 2017). Combined with 

reports of mEPSCs in SOM cells in other layers (Fanselow et al., 2008, Chen et al., 2015), it is 

tempting to speculate that the mAChR-activated non-FS cell group we identified were SOM-

expressing. Regardless, layer 4 SOM cells in S1 tend to preferentially target other interneurons 

and their activation leads to disinhibition of cortical activity (Xu et al., 2013). Taken together, 

mAChR-mediated suppression of recurrent activity was likely mediated by the direct 

suppression of excitatory cells in layer 4. 

 

4.2 nAChR-mediated activation of interneurons leads to inhibition of cortical activity  

 

Rapid cholinergic-mediated suppression of recurrent activity was also dependent, to a lesser 

extent, on nAChR-signaling (Figure 3.6). In agreement, we observed prominent nAChR-

mediated EPSCs in the majority of non-FS interneurons in the superficial layers (Figure 3.13), 

leading to inhibition of RS cells. There is, however, a significant body of in vivo work 

demonstrating that nAChR-mediated activation of inhibitory neurons leads to disinhibition of 

layer 2/3 excitatory cells (Letzkus et al., 2011, Pi et al., 2013, Fu et al., 2014). Although it 
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remains unclear how our data reconcile with those results, it is possible that different cortical 

areas are governed by completely distinct mechanisms of cholinergic action (Shimaoka et al., 

2018). A likelier alternative is that both inhibition and disinhibition act concurrently. During 

high arousal states in vivo, layer 2/3 pyramidal cell responses to somatosensory input show 

long-tailed distributions, i.e., a small number of cells respond to whisker touch with high firing 

rates while the majority of neurons show sparse action potentials (O'Connor et al., 2010, 

Petersen and Crochet, 2013). This suggests that active waking is marked by sparse encoding of 

sensory input, engendered by the selective excitation/disinhibition of a small subset of neurons 

coupled with general inhibition of network activity (Kuchibhotla et al., 2017, Shimaoka et al., 

2018). These phenomena may underlie the increase in signal to noise ratio of sensory encoding 

commonly associated with cholinergic neuromodulation (Reimer et al., 2014). Viewed in this 

context, our results serve to provide a circuit mechanism of cholinergic-mediated network 

suppression that may act in conjunction with disinhibition reported elsewhere. 

 

Although cholinergic suppression of recurrent activity was no longer dependent on the 

contribution of nAChR-signaling in the isolated layers 4-6 (Figure 3.11), we nevertheless 

observed reliable nAChR-mediated EPSCs in a significant proportion of L4 non-FS 

interneurons (Figure 3.13). The cause for this apparent discrepancy remains unclear. It is 

possible that either: (i) nAChR-mediated responses in most layer 4 non-FS cells are not large 

enough to significantly affect their firing output, or (ii) most non-FS interneurons that are 

recruited by nAChR-signaling preferentially inhibit other interneurons and avoid inhibiting 

excitatory cells (Xu et al., 2013). Some of our observations appear to indicate that one or both 

of these possibilities may be true: optical stimulation could evoke disynaptic GABAergic 
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IPSCs in some layer 2/3 pyramidal cells (Figure 3.15), but similar PSCs were never observed 

in layer 4 RS cells. Future work will have to determine the exact circuit functions of nAChR-

mediated excitation of layer 4 non-FS neurons. 

 

4.3 Cholinergic signaling modes in the neocortex 

 

Does cortical cholinergic signaling act primarily by means of classical or volume 

transmission? Decades of research has failed to arrive at a definitive answer. Structurally, very 

few studies have reported the presence of cholinergic receptors in close apposition to 

acetylcholine release sites (Descarries and Mechawar, 2000, Turrini et al., 2001), which is 

often considered to be a prerequisite for the fast point-to-point signaling typified by classical 

neurotransmission. This is particularly true for mAChRs, which do not appear to be expressed 

near sites of release (Yamasaki et al., 2010), and are thus thought to be reliant on volume 

transmission. Yet functionally, cholinergic, and more specifically mAChR-signaling underlies 

fast temporally precise cortical state transitions in vivo (Pinto et al., 2013). Our findings 

demonstrate that even brief activation of cholinergic afferents is sufficient to engage mAChRs 

reliably and at short latencies. How can such spatiotemporally precise signaling be achieved 

without the benefit of ultrastructurally defined synapses? There are two possibilities: either (i) 

ultrastructurally defined cholinergic synapses do exist, but lack some of the markers exhibited 

by classical synapses of other neurotransmitters (Smiley et al., 1997) and have thus evaded 

detection in most studies, or (ii) cholinergic afferents employ specialized forms of 

transmission that allow rapid and precise signaling without classical synapses (Bennett et al., 

2012, Arroyo et al., 2014). It remains unclear which, or if both, of these is true. 
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Irrespective of the nature of fast cholinergic signaling, slower and spatially imprecise 

forms of cholinergic neuromodulation in the neocortex certainly exist (Figure 3.7). Prior 

studies have identified presynaptically expressed nAChRs and mAChRs that influence release 

probability (Kimura and Baughman, 1997, Disney et al., 2007, Amar et al., 2010, Urban-

Ciecko et al., 2018). Although we did not find convincing evidence of such effects under our 

conditions (Figure 3.22), this could simply be because our brief 5 ms optical activation 

paradigm (which is unlikely to evoke >2 spikes in cholinergic afferents) did not allow for 

spillover of acetylcholine beyond the immediate vicinity of the release site and precluded 

subsequent engagement of presynaptic receptors. Indeed, at least some functional mAChRs 

could not be activated by optical stimulation (Figure 3.14). The presence of spatially and 

functionally distinct classes of cholinergic receptors raises the intriguing possibility that 

cortical cholinergic signaling may act via at least two distinct modes (Sarter and Kim, 2015): 

(i) a spatiotemporally precise form described here that is necessary for the rapid changes in 

cortical states observed in vivo, and (ii) a slower less specific form that affects cortical 

processing via volume transmission. 

 

4.4 Cholinergic control of cortical circuit activity 

 

Our findings are broadly consistent with previous reports of cholinergic-mediated inhibition of 

evoked Up-states in slices (Favero et al., 2012, Wester and Contreras, 2013). However, since 

these studies employed exogenous application of acetylcholine or cholinergic agonists, they 

failed to reveal the underlying spatiotemporal dynamics. Here, we provide evidence that 

cholinergic control of cortical recurrent activity occurs reliably within 100 ms and involves the 
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participation of both nAChRs and mAChRs. It is important to note here that although recurrent 

activity in our experiments was evoked by means of extracellular electrical stimulation within 

layer 4, it may not necessarily have been initiated there. The spontaneous generation of 

internal cortical rhythms is critically reliant upon pyramidal cells in layer 5 (Beltramo et al., 

2013) and it is possible that evoked recurrent activity in our experiments was initiated via 

similar mechanisms. In any case, suppression of synchronous cortical activity appears to be a 

robust feature of cholinergic signaling, as it has now been demonstrated under a host of 

different experimental conditions, both in vitro and in vivo.   

 

 

Acetylcholine has been suggested to alter the balance of excitation and inhibition in 

cortical circuits, either in favor of inhibition (Lucas-Meunier et al., 2009) or disinhibition of 

excitatory cells (Kuchibhotla et al., 2017). We examined whether suppression of recurrent 

activity by synaptic acetylcholine involved similar mechanisms by monitoring the inhibitory 

and excitatory activity in the local network simultaneously using dual voltage-clamp. We 

found that optical activation suppressed EPSCs and IPSCs by the same ratio overall, 

suggesting that cholinergic transmission did not significantly change the balance of excitation 

and inhibition in the cortical circuit (Figure 3.5). There are three possible ways for achieving 

this:  

(i) Synaptic acetylcholine acts primarily by directly inhibiting excitatory cells. Since local 

inhibitory interneurons derive most of their excitatory drive from neighboring cells, direct 

inhibition of excitatory cells will lead to a proportionate decrease in the activity of local 

inhibitory interneurons, thus leaving the excitation/inhibition ratio unchanged. We provide 
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strong evidence that this may be a major mechanism: optical stimulation produced mIPSCs in 

the vast majority of layer 4 excitatory cells (Figure 3.13). 

(ii) Synaptic acetylcholine activates inhibitory cells which, in turn, equally inhibit local 

glutamatergic and GABAergic neurons. SOM cells in the auditory and visual cortices fulfill 

this criterion (Kato et al., 2015, Adesnik, 2017), and could therefore be a good candidate for 

mediating such balanced inhibition. Indeed, a sub-group of layer 4 non-FS cells showed robust 

mEPSCs in our recordings (Figure 3.13). However, in the somatosensory cortex, SOM cells 

are primarily disinhibitory (Xu et al., 2013) and so this is unlikely to be a major mechanism. 

(iii) Cholinergic suppression transiently increases inhibitory drive during the initiation of 

recurrent activity. Because short-lived increases in the ratio of excitation to inhibition are 

thought to be important in the generation of cortical recurrent activity (Shu et al., 2003), a 

cholinergic-mediated blockade of this process could lead to a large suppression of overall 

levels of activity. Such transient dynamics would not be apparent in measures of charge 

transferred over the entire duration of activity. As a potential mechanism, we observed 

nAChR-mediated activation of GABAergic interneurons in the superficial layers. 

A combination of these circuit mechanisms probably underlies cholinergic signaling, thereby 

allowing synaptic acetylcholine to control cortical gain levels while leaving basic properties of 

the network intact. 

 

4.5 Implications for sensory processing in vivo 

 

Efficient encoding of sensory stimuli during high arousal states requires reliable gain 

modulation of cortical responses. As a means to achieve this, cholinergic signaling may 
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mediate a powerful gate on the horizontal corticocortical propagation of sensory activation. 

For instance, application of acetylcholine or the cholinesterase inhibitor donepezil limits the 

spread of excitation in visual cortex (Kimura et al., 1999, Silver et al., 2008). Furthermore, 

passive whisker deflections during attentive periods produce cortical responses that are far 

more spatially restricted than those evoked during quiet wakefulness (Ferezou et al., 2006), 

suggesting that this maybe a general feature of attentional modulation of cortical activity. 

Here, we show that layer 2/3 pyramidal neurons are rapidly and transiently inhibited by brief 

cholinergic activation, providing a circuit mechanism for temporally precise cholinergic 

control over corticocortical communication. 

 

Synaptically released acetylcholine evoked postsynaptic responses that were highly 

cell-type specific and varied both qualitatively and quantitatively. Combined with the distinct 

circuit functions of each cell type, this could provide cholinergic signaling the 

spatiotemporally precise control over cortical circuit dynamics necessary for the rapid 

modulation of cortical states observed in vivo (Gentet et al., 2010). In addition to cell-type 

specificity, cholinergic-mediated suppression also showed remarkable layer-specificity (Figure 

4.1): while recurrent activity in the superficial layers is controlled over a few hundred 

milliseconds, in layer 4, inhibition persists for several seconds. The exact computational 

purpose of this temporal dichotomy remains mysterious. One may speculate that this paradigm 

enables a long-lasting suppression of noise correlations in layer 4 (Goard and Dan, 2009), 

while simultaneously allowing for more rapid computations involving horizontal interactions 

in layer 2/3 (Pluta et al., 2017). 
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4.6 Conclusions and future directions 

 

Wakefulness features rapid transitions to high arousal states that are characterized by the 

abolition of slow synchronous cortical activity. Although a plethora of in vivo evidence 

recognizes cholinergic signaling as a crucial mediator of state transitions, the underlying 

mechanisms remain unclear. Here, we propose a circuit model for fast cholinergic control of 

cortical network activity (Figure 4.1). We show that brief cholinergic activation is sufficient to 

robustly suppress cortical recurrent activity. Furthermore, both nAChRs and mAChRs 

contribute to this suppression, and importantly, they do so via mechanisms that are 

spatiotemporally distinct. While nAChRs mediate a transient form of suppression by activating 

GABAergic cells in the superficial layers, mAChRs mediate prolonged suppression by 

inhibiting layer 4 excitatory cells. One of our principal findings is the identification of 

thalamorecipient layer 4 as a major target of rapid and reliable mAChR-mediated inhibition. 

Contrary to the prevalent view that mAChR-signaling is slow and diffuse, we show that they 

can be rapidly activated and mediate long-lasting inhibition. Thus, cholinergic signaling is able 

to effectively suppress recurrent activity, thereby reducing the influence of cortically generated 

firing on neuronal output and potentially improving the efficacy of sensory processing. 

 

While our findings are an important contribution to the understanding of cholinergic 

function in the neocortex, a number of pertinent questions remain unanswered. For example: 

(i) How do our results relate to in vivo situations? Employing an in vitro model of cortical 

activity in acute brain slices enabled us to make precise manipulations of recurrent network 

dynamics and cholinergic signaling. However, in vivo, there are dynamic interactions 
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involving several other signals, such as long-range glutamatergic and other neuromodulatory 

inputs to the neocortex. How the circuit mechanisms we identified here relate to cortical 

functions and behavior in vivo remains to be explored. 

(ii) How do trains of cholinergic input influence evoked recurrent activity? For this study, we 

focused on brief cholinergic activation and the fast point-to-point signaling that it is likely to 

mediate. However, numerous examples of cortical cholinergic receptors, such as presynaptic 

receptors, require more sustained cholinergic input in order to be recruited. Further work is 

required to assess their specific contributions. 

(iii) What is the advantage of layer-specific cholinergic control to cortical processing? Our 

results identified important distinctions in the circuit mechanisms of cholinergic signaling in 

layers 2/3 and 4. It remains unclear what computational purpose is served by such layer-

specificity, especially in the context of the unique cortical functions served by each layer. 

(iv) How does synaptic acetylcholine influence dendritic computations in layer 4 RS cells? We 

show that glutamatergic EPSPs avoid being shunted by concurrent mIPSPs, suggesting that 

optical activation preferentially recruits mAChRs located on distal dendritic regions. The 

structural features of cholinergic afferentation that give rise to this curious circumstance and 

its functional consequences for dendritic computation are unknown. 

 

Answering these and other questions will be crucial towards arriving at a 

comprehensive network model of cholinergic function in the neocortex, and also help establish 

acetylcholine as a potent neurotransmitter in its own right. The development of powerful new 

tools for cell-type specific manipulation and monitoring (Mardinly et al., 2018) offers quite a 

few exciting possibilities. 
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