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Sarcomas	are	rare	mesenchymal	tumors,	making	up	15%	of	all	childhood	and	1%	of	all	adult	

tumors.		They	account	for	a	disproportionate	share	of	mortality	in	young	adults,	and	if	left	

untreated,	are	highly	likely	to	metastasize.		However,	sarcoma	etiology	is	poorly	

understood,	and	having	numerous	histological	subtypes	has	complicated	elucidation.		To	

better	understand	factors	underlying	sarcomagenesis,	we	leveraged	two	rare	inherited	

cancer	predisposition	syndromes,	Li-Fraumeni	Syndrome	(LFS),	and	LFS-like	(LFSL),	both	

with	a	high	incidence	of	sarcomas.		LFS	is	caused	by	mutations	in	the	tumor	suppressor	gene	

TP53	(p53),	but	has	variable	and	incomplete	penetrance,	suggesting	additional	acquired	

somatic	mutations	are	necessary	for	tumorigenesis.		In	contrast,	LFSL	has	no	known	cause,	

although	a	10-Mb	region	in	1q23	has	been	mapped	by	linkage	analysis	as	a	putative	LFSL	

locus.		Therefore,	to	better	identify	genetic	variation	underlying	LFS	and	LFSL	we	utilized	a	

2-pronged	approach.		First,	we	evaluated	LFSL	families	for	rare,	co-segregating,	germline	

mutations,	which	identified	a	mutation	in	ARHGAP30	that	was	present	in	four	LFSL	families.		

Moreover,	this	mutation	impacted	both	proliferation	and	migration	when	overexpressed	in	

vitro.		Subsequent	analysis	of	publicly	available	data	indicates	a	potential	role	for	ARHGAP30	
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in	sporadic	cancers.		Secondly,	we	endeavored	to	identify	somatically	acquired	drivers	of	

sarcomagenesis.		In	cancer,	passenger	events	are	acquired	concomitantly	with	driver	

mutations,	and	distinguishing	them	remains	a	key	challenge.		To	best	address	this,	we	used	

a	comparative	genomics	approach,	leveraging	a	“humanized”	mouse	model	of	LFS	with	a	

hotspot	mutation,	Trp53R172H,	analogous	to	TP53R175H	in	humans.		Hypothesizing	that	

sarcoma	etiology	is	similar	in	humans	and	mice,	we	then	catalogued	recurrent	changes	in	

the	genome,	transcriptome,	and	methlyome.	We	found	little	overlap	in	any	of	the	omics	

approaches	across	the	human	tumors,	which	came	from	diverse	p53	mutations	and	

sarcoma	types,	but	found	strong	overlap	in	the	mouse	tumors	(fibrosarcomas	and	

osteosarcomas).		Recurrent	data	discovered	in	the	mouse	was	mirrored	in	some	human	

sporadic	mesenchymal	tumors,	including	novel	genes	like	MROH2A,	and	MIR219A2.		Our	

results	emphasize	the	utility	of	a	model	disorder	and	comparative	omics	to	uncover	genes	

with	relevance	for	both	inherited	and	sporadic	tumors.	
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1 Introduction	

1.1 Introduction	to	cancer	

Cancer	is	a	multifactorial	genetic	and	epigenetic	disease	characterized	by	abnormal,	

unchecked	 cell	 growth.	 	 Cells	 typically	 progress	 gradually	 through	 a	 series	 of	 steps,	 from	

hyperplasia,	to	dysplasia,	to	neoplasia,	and	sometimes	malignancy,	usually	driven	by	genetic	

changes,	 that	 disrupt	 core	 processes	 that	 normally	 help	 regulate	 cell	 growth.	 	 These	

processes	 have	 been	 categorized	 into	 ten	 distinct	 functions,	 known	 as	 “the	 Hallmarks	 of	

Cancer.”		Initially,	Hanahan	and	Weinberg	postulated	that	cancer	cells	might	have	additional	

capabilities	 across	 six	 different	 categories:	 sustained	 growth	 signaling,	 evasion	 of	 growth	

suppressors,	 resistance	 to	 cell	 death,	 induction	 of	 angiogenesis,	 enabling	 of	 replicative	

immortality,	and	activation	of	invasion	and	metastasis	(Figure	1)	(1).		
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Figure	1:	Hallmarks	of	Cancer.	 	Original	 six	 canonical	ways	 that	 cancer	 cells	have	added	

abilities	(2).		Used	with	permission:	Hanahan,	D.,	and	R.	A.	Weinberg.	2011.	Hallmarks	of	

cancer:	the	next	generation.	Cell	144:	646-674.	L/N	4294491470430.	

Subsequent	 research	 has	 strongly	 indicated	 two	 other	 hallmarks:	 deregulating	 cellular	

energetics,	 and	 avoiding	 immune	 destruction,	 and	 two	 enabling	 characteristics:	 genome	

instability	and	mutation,	and	tumor-prone	inflammation	(Figure	2)	(2).		



	 3	

	

Figure	2:	Hallmarks	of	Cancer,	updated.		In	2011,	the	hallmarks	were	updated	to	include	

two	new	emerging	hallmarks,	and	two	enabling	characteristics	(2).		Used	with	permission:	

Hanahan,	 D.,	 and	 R.	 A.	Weinberg.	 2011.	 Hallmarks	 of	 cancer:	 the	 next	 generation.	Cell	

144:	646-674.	L/N	4294491470430.	

These	 ideas	 provide	 a	 framework	 for	 understanding	 how	 tumors	might	 arise,	 and	 how	

they	differ	from	normal	cells.	

The	changes	necessary	 for	 tumorigenesis	 can	be	acquired	 in	a	 variety	of	ways.	 	 In	

cancer	 predisposition	 syndromes,	 germline	mutations	 can	 be	 inherited	 from	 the	 parents.	

Alternatively,	changes	in	the	genome	can	be	acquired	somatically,	either	from	errors	during	

cell	division,	or	from	exposure	to	environmental	mutagens	such	as	smoking	or	UV	rays.		For	

example,	 in	 microsatellite	 instability	 syndromes,	 such	 as	 Lynch	 Syndrome,	 during	
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replication,	defects	 in	mismatch	repair	genes	lead	to	DNA	polymerase	slippage,	frameshift	

mutations	and	non-functional	proteins	 (3).	However,	not	all	 such	changes	may	be	cancer-

causing;	some	alterations	that	are	acquired	may	instead	be	passengers,	with	limited	or	even	

no	 functional	 impact.	 	 Distinguishing	 cancer-causing	 driver	 mutations	 from	 passenger	

events	remains	a	key	challenge	in	understanding	cancer	etiology	(4).	

Beyond	 just	 looking	 for	 genetic	 changes	 in	 the	 genome,	we	 increasingly	 find	 that	

changes	in	the	transcriptome	and	epigenome	can	also	lead	to	disease,	including	cancer	(5-

7).	 	Moreover,	 this	makes	 integrative	 approaches	 that	 seek	 to	 completely	 profile	 tumors	

across	 the	 genome,	 transcriptome,	 and	 epigenome	 uniquely	 powerful	 to	 quantify,	 and	

evaluate	as	many	changes	as	possible	(7).	For	example,	pairing	whole	genome	sequencing	

(WGS)	and	profiling	by	RNA-seq	 in	breast	cancer	allows	scientists	 to	determine	 if	 somatic	

point	mutations	are	being	highly	expressed	(8).	Our	goal	is	to	identify	any	such	changes	that	

may	be	important	in	the	genesis	of	cancer,	and	in	sarcomas	in	particular,	in	the	hopes	that	

they	may	prove	useful	therapeutically.		

1.2 Introduction	to	Sarcomas	

Sarcomas	 are	 a	 relatively	 rare	 mesenchymal	 cancer,	 making	 up	 ~1%	 of	 all	 adult	

tumors	and	15%	of	all	childhood	tumors	(9-11).	They	are	most	often	found	in	the	arms	or	

legs	 (60%),	 and	 chest	 or	 abdomen	 (30%),	 but	 they	 can	 be	 either	 soft	 tissue	 or	 bone	

depending	on	the	location	(11).	

The	large	majority	of	soft	tissue	and	bone	sarcomas	do	not	have	a	known	causative	

factor.	 	 There	are	 some	 isolated	 reports	 that	 suggest	 that	 soft	 tissue	 sarcomas	may	arise	

near	 scar	 tissue,	or	at	 fracture	 sites,	or	 that	 sarcomas	of	 the	bone	may	be	more	 likely	 to	
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arise	from	bone	infarctions	or	radiation	injury,	but	these	appear	to	be	the	exception	rather	

than	the	norm.		The	foremost	known	causes	are	related	to	genetic	susceptibility	(which	still	

represent	a	relatively	small	number	of	tumors)	such	as	individuals	with	germline	TP53	(p53),	

RB1,	 or	 NF1	 mutations,	 but	 for	 the	 most	 part,	 the	 etiology	 of	 sarcomas,	 genetic	 or	

otherwise,	remains	a	relative	mystery	(11).	

1.2.1 Sarcomas	and	clinical	outcomes	

Treatment	for	patients	with	advanced-stage	sarcomas	has	not	changed	dramatically	

in	 the	 past	 30	 years	 (12).	 The	 primary	 options	 for	 treatment	 are	 surgery,	 radiation,	

chemotherapy,	 and	 targeted	 therapy.	 	 Surgery	 remains	 the	 most	 commonly	 accepted	

therapeutic	 option,	 but	 requires	 removal	 of	 healthy	 tissue	 with	margins	 as	 wide	 a	 1	 cm	

because	 even	 microscopically	 small	 portions	 have	 been	 associated	 with	 recurrence,	

metastasis	and	death	(11).	Under	ideal	conditions	with	low	grade	sarcomas,	and	removal	of	

all	 tumorigenic	 tissue,	 local	 control	 is	 about	 93%	 (9).	 Clinicians	 are	 still	 searching	 for	 a	

consensus	 as	 to	 the	 best	 chemotherapy	 and	 radiotherapy	 options	 (11),	 raising	 the	

possibility	 that	 better	 molecular	 profiling	 to	 inform	 treatment	 options	 could	 improve	

patient	outcomes.		

Without	 treatment,	 sarcomas	 are	 highly	 likely	 to	 metastasize	 and	 are	 considered	

highly	 aggressive,	 accounting	 for	 a	 disproportionate	 share	 of	 mortality	 in	 young	 adults.	

(SEER	 Cancer	 Statistics	 Review	 1975-2008;	

http://www.seer.cancer.gov/csr/1975_2008/)(11,	 13).	 	 In	 fact,	 the	mean	 age	 of	 onset	 for	

sarcomas,	 in	 part	 due	 to	 hereditary	 syndromes,	 is	 earlier	 than	 for	 many	 other	 types	 of	

cancer	(14).	Therefore,	identification	of	sarcoma-related	genes,	either	germline	variants,	or	
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acquired	 somatic	 variants,	 is	 considered	 vitally	 important	 for	 diagnostic	 testing	 to	 help	

identify	 at-risk	 individuals,	 and	 for	 uncovering	 and	 developing	 potential	 therapeutic	

avenues.			

1.2.2 Challenges	in	understanding	sarcoma	etiology	 	

One	distinct	challenge	in	identifying	drivers	of	sarcomagenesis	is	the	sheer	number	

of	histological	subtypes	of	sarcomas.	 	According	to	the	World	Health	Organization	(WHO),	

there	are	over	80	subtypes	of	soft	tissue	sarcomas,	and	over	60	subtypes	of	bone	sarcomas	

(11).	 	 Because	 sarcomas	 are	 both	 rarer	 tumor	 types,	 and	 because	 they	 comprise	 such	 a	

heterogeneous	 grouping	 of	 tumors,	 it	 is	 challenging	 to	 isolate	 enough	 tumors	 of	 similar	

subtyping	 to	 generate	 sufficient	 statistical	 power	 to	 identify	 drivers,	 often	 requiring	

extensive	collaborations.	 	Moreover,	 these	data	are	 further	complicated	because	not	only	

are	sarcomas	very	diverse	(numerous	subtypes),	but	also	each	sarcoma	is	heterogeneous	in	

composition.		Sarcomas	are	frequently	composed	of	bone,	cartilage,	and	fat	(13),	which	may	

further	 obfuscate	 and	 hinder	 identification	 of	 important	 genes	 for	 tumorigenesis,	

particularly	if	a	driver	gene	need	only	be	present	in	one	of	these	tissues.	

Two	prominent	papers	were	 recently	published	on	soft	 tissue	sarcomas	 (STS).	 In	a	

Cell	 paper,	 out	 of	 the	 Cancer	 Genome	 Atlas	 network	 (TCGA),	 the	 authors	 sequenced	 six	

types	 of	 soft	 tissue	 sarcomas,	 the	 majority	 of	 which	 are	 leiomyosarcomas	 (LMS)	 and	

liposarcomas	(LPS)	(10).	LMS	were	again	a	focus	in	the	second	paper,	from	Chudasma	et	al.	

and	 published	 in	Nature	 Communications	 (15).	 Both	 studies	 found	 that	 adult	 STSs	 have	

heterogeneous	 mutational	 profiles	 with	 copy	 number	 aberrations	 (CNA)	 consistent	 with	



	 7	

chromothripsis	 being	 a	 common	 occurrence.	 	 CNAs	 tended	 to	 be	 deletions,	 rather	 than	

amplifications,	and	the	authors	found	relatively	few	point	mutations	(10,	15).	

In	particular,	the	data	from	TCGA	suggested	that	some	alterations	may	be	sarcoma-

subtype	specific.		These	differentiating	features	can	range	anywhere	from	genomic	changes	

(e.g.	CNAs	and	point	mutations),	 to	 changes	 in	 the	 transcriptome,	methlyome,	or	protein	

levels.		For	example,	most	LMS	have	elevated	signaling	in	PI3K/AKT	signaling,	and	over	70%	

have	 at	 least	 shallow	 deletions	 in	 TP53,	 RB1,	 and	PTEN.	 	 The	majority	 of	 LMS	 also	 have	

elevated	miR-143,	and	miR-145.		However,	two	subtypes	of	LMS,	gynecologic	LMS	(ULMS),	

and	 soft-tissue	 LMS	 (STLMS)	 have	 distinct	 differences	 in	 the	 methylome	 and	 in	 reverse	

phase	protein	array	(RPPA)	analyses.	ULMS	showed	hypomethylation	of	ESR1	target	genes,	

something	 not	 seen	 in	 STLMS.	 	 RPPA	 showed	 that	 the	 DNA	 damage	 pathway	 was	more	

active	 in	ULMS	over	 STLMS,	 but	 that	 the	HIF1	 inflammation	 pathway	was	more	 active	 in	

STLMS	over	ULMS	(10).			

Taken	together,	these	data	implicate	CNAs	as	a	key	player	in	both	LMS	and	LPS,	and	

indicate	 sarcoma	 subtypes	 have	 distinct	 molecular	 profiles,	 which	may	 drive	 therapeutic	

approaches	for	clinicians	 in	the	future.	 	Ultimately,	 the	data	suggest	that	all	sarcomas	are	

not	 likely	 to	 share	 the	 same	 etiology	 and	 that	 sequencing	 of	 similar	 sarcomas	 may	 be	

necessary	to	avoid	confounding	from	multiple	types	of	sarcomas.	

However,	the	authors	do	note	a	role	for	point	mutations	in	soft	tissues	sarcomas.		In	

addition	 to	 CNAs	 frequently	 occurring	 somatically	 in	 the	 MDM2-p53	 and	 p16-CDK4-RB1	

pathways,	the	most	recurrently	mutated	genes	across	sarcoma	types	in	both	studies	were	a	
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triumvirate	 composed	 of	 TP53,	 ATRX,	 and	RB1,	 further	 suggesting	 that	 these	 genes	 (and	

their	pathways)	play	important	roles	in	sarcomagenesis	(10,	15).	

1.2.3 Sarcomas	and	multiple	germline	drivers	 	

The	thrust	of	the	previous	works	by	the	TCGA	(10)		and	Chudasama	et	al.	(15)	focus	

on	 acquired	 somatic	 changes.	 A	 third,	 slightly	 older	 study,	 by	 Ballinger	 et	 al.	 looked	 at	

germline	genetic	risk	factors	for	sarcomas	(16).		These	included	a	mix	of	both	sporadic	and	

familial	sarcomas,	across	a	broad	spectrum	of	sarcoma	types,	including	soft	tissue	and	bone	

sarcomas,	 with	 publically	 available	 Caucasian	 data	 used	 as	 controls	 to	 eliminate	

polymorphic	 alleles	 from	 consideration.	 	 Using	 targeted	 exon	 sequencing	 of	 72	 genes,	

selected	for	known	impact	 in	cancer,	Ballinger	et	al.	found	that	risk	generally	fell	 into	two	

groups:	classic	monogenic	variation	(~80%),	such	as	p53	(1%	of	all	sarcomas),	and	polygenic	

rare	 variation	 (~20%).	 	 Individuals	 classified	 as	 having	 polygenic	 rare	 variation	 had	

comparable	 tumor-free	 survival	 to	monogenic	p53	variants,	 suggesting	 that	 two	 so-called	

weaker	effects	can	make	up	for	one	big	one	(16).		

Given	the	limited	gene	set	from	targeted	sequencing,	Ballinger	et	al.	do	not	identify	

any	specifically	novel	genes,	but	do	observe	2%	of	sarcoma-patients	to	have	rare	germline	

mutations	predicted	to	be	damaging	in	ERCC2.		ERCC2	is	a	helicase	involved	in	base	excision	

repair;	 the	authors	 argue	 that	 it	 should	now	be	 considered	a	 sarcoma	 susceptibility	 gene	

(16).	Ultimately,	more	 than	half	 of	 the	 patients	 had	 variants	 predicted	 to	 be	 deleterious,	

and	40%	of	 these	 (one-fifth	 overall)	 had	mutations	with	 known	pathogenicity,	 suggesting	

that	additional	genetic	risk	factors	for	sarcomagenesis	have	yet	to	be	discovered.	
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1.3 Introduction	to	p53	

p53	is	arguably	the	most	important	tumor	suppressor	gene	and	has	been	called	the	

“guardian	of	the	genome”	(17),	and	more	recently,	the	“guardian	of	the	epigenome”	(18).	

Over	half	of	all	cancers	have	alterations	in	it,	and	it	is	considered	the	most	mutated	gene	in	

human	cancers	(19).	It	has	roles	in	numerous	cancer-related	processes,	including	cell-cycle	

arrest	 and	 apoptosis.	 Moreover,	 germline	 mutations	 and	 deletions	 in	 p53	 lead	 to	 Li-

Fraumeni	Syndrome	(LFS),	a	rare	cancer	predisposition	syndrome	that	has	a	high	incidence	

of	sarcomas,	suggesting	that	p53	may	play	a	role	 in	sarcomagenesis	 (20,	21).	 	Probably	 in	

part	 due	 to	 LFS,	 it	 is	 considered	 to	 be	 the	 strongest	monogenic	 driver	 of	 sarcomas	 (16).	

Conversely,	based	on	publicly	available	data	 from	cBio,	p53	alterations	are	present	 in	 less	

than	60%	of	sporadic	sarcomas,	and	as	low	as	20%,	(10,	15,	22-25)	implying	that	disrupted	

p53	 may	 not	 be	 required	 for	 their	 formation,	 and	 that	 sarcoma	 etiology	 may	 be	

considerably	 varied.	 More	 specifically,	 sarcomagenesis	 may	 occur	 by	 two	 divergent	

mechanisms,	one	that	is	p53-mediated,	and	one	that	is	p53-independent,	and	consideration	

of	 only	 one	of	 these	mechanisms,	 such	 as	 in	 LFS	 tumors,	with	 germline	p53	drivers,	may	

improve	 detection	 of	 additional	 sarcoma	 risk	 factors.	 	 Normally,	 p53	 abrogates	 tumor	

growth	in	part	by	helping	cells	to	sense	cellular	stresses	such	as	hypoxia	and	DNA	damage,	

and	 limit	 cell	 proliferation	 under	 conditions	 where	 genomic	 integrity	 is	 likely	 to	 be	

compromised.		However,	when	p53	is	lost,	the	loss	of	these	protective	aspects	can	lead	to	

the	accumulation	of	oncogenic	mutations,	as	well	as	unchecked	cell	proliferation,	leading	to	

a	 positive	 feedback	 loop	 where	 these	 populations	 expand	 more	 rapidly,	 resulting	 in	

tumorigenesis	(17,	26).	
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1.3.1 p53	and	MDM2	

p53	 is	 known	 to	 be	 regulated	 by	 a	 variety	 of	 regulators,	 including	 the	 negative-

regulator	 MDM2.	 	 MDM2	 is	 an	 E3-ubiquitin	 ligase	 that	 specifically	 ubiquitinates	 p53,	

exporting	it	out	of	nucleus,	and	marking	it	for	degradation	(27-29).	Moreover,	MDM2,	as	a	

p53-inducible	 gene,	 is	 closely	 correlated	 with	 p53	 levels	 in	 normal	 cells.	 	When	 working	

appropriately,	 these	 combine	 to	 form	 an	 auto-regulatory	 loop,	 designed	 to	maintain	 low	

levels	 of	p53	 in	 the	 absence	of	 stress.	On	 the	 flip-side,	 during	 periods	 of	 stress	 and	DNA	

damage,	p53	and	MDM2	 are	both	phosphorylated,	preventing	 their	 interaction	with	each	

other,	thus	stabilizing	p53	(30-34).		In	some	cases,	this	stabilization	has	been	shown	to	be	an	

important	step	in	tumorigenesis,	particularly	when	there	is	mutant	p53,	such	as	in	LFS	(35).	

In	 addition,	 work	 by	 several	 groups	 has	 implicated	 a	 polymorphism	 in	 MDM2	

(SNP309)	as	a	risk	factor	across	several	cancer	types,	including	colorectal,	breast,	lung,	and	

brain	 among	many	 others	 (36-39).	 	 In	 conjunction	with	 LFS	 or	 in	 sporadic	 sarcomas,	 the	

presence	of	the	MDM2	SNP309	polymorphism	appears	to	accelerate	tumor	formation	(37,	

40-42).	The	results	of	meta-analyses	have	only	continued	to	affirm	that	there	is	evidence	for	

association	 between	 MDM2	 SNP309	 and	 the	 p53	 R72P	 polymorphism,	 suggesting	 that	

MDM2	may	act	as	a	modifier	gene	for	tumorigenesis	(29,	37).			

1.3.2 p53	gain-of-function	mutations	

Although	the	majority	of	mutations	in	p53	are	loss-of-function	(LOF),	several	groups	

have	demonstrated	that,	contrary	to	expectation	based	on	other	tumor	suppressor	genes,	

which	only	have	LOF	mutations,	some	p53	mutations	result	 in	gain-of-function	(GOF)	(43).		

This	 idea	was	 first	 noted	when	 some	 tumors	with	 point	mutations	 in	p53	were	 found	 to	
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have	elevated	levels	of	p53	in	cancer	cells	relative	to	controls	(43,	44),	suggesting	that	p53	

must	 have	 acquired	 additional	 properties	 capable	 of	 aiding,	 rather	 than	 hindering	 tumor	

progression.		The	majority	of	results	have	been	established	by	overexpressing	mutant	p53	in	

p53-null	cells,	with	GOF	features	associated	with	elevated	resistance	to	apoptosis	 (45-48),	

cell	migration	and	invasion	(49,	50),	or	alternatively	with	cancer	 in	animal	models	(43,	51,	

52).	

1.3.3 p53	mutation	incidence	

The	majority	of	tumor-relevant	mutations	 in	p53	occur	 in	the	DNA	binding	domain	

(DBD),	 which	 comprises	 exons	 5-8	 of	 the	 gene.	 	 The	 World	 Health	 Organization	 (WHO)	

based	IARC	database,	which	collects	and	compiles	published	data	with	p53	mutations	at	the	

germline,	and	at	the	somatic	level,	show	several	hotspots	(53).			
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Figure	 3:	 Compilation	of	 published	data	 containing	p53	mutations,	 as	 generated	by	 the	

IARC	 database	 (53).	 Data	 on	 the	 left	 (A,B)	 composed	 of	 pedigrees	 with	 germline	 p53	

mutations.	Data	on	the	right	(C,	D)	represents	individuals	with	somatic	mutations	in	p53.		

Data	indicate	that	for	both	germline	and	somatic	variants,	most	occur	between	exons	5-8,	

and	appear	to	have	similar	hotspots	to	one	another.	

1.3.4 Hotspot	mutations	in	p53	

These	data	also	suggest	one	other	way	in	which	p53	differs	from	most	other	tumor	

suppressor	 genes.	 	 In	 general,	 the	mutational	 landscape	 for	 tumor	 suppressor	 genes	 and	

oncogenes	 are	 considered	 to	 be	 different;	 tumor	 suppressor	 genes	 tend	 to	 have	 flat	

mutational	profiles,	while	oncogenes	tend	to	have	profiles	with	distinct,	sharp	peaks,	known	

as	hotspot	mutations	(54).		For	example,	in	common	tumor	suppressor	genes	(TSG)	like	RB1	
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and	NF1,	the	profiles	are	relatively	flat	(Figure	4).		In	contrast,	for	oncogenes	such	as	BRAF,	

there	are	often	hotspot	mutations,	i.e.	nucleotides	that	are	frequently	mutated	(Figure	4).	

Thus,	these	data	do	not	rule	out	the	possibility	that	other	cancer	predisposing	TSG	will	not	

have	mutation	hot	spots	like	TP53,	or	that	some	of	these	variants	may	be	GOF	mutations.	
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Figure	4:	Lollipop	diagrams	 from	cBio	 (22)	depicting	 the	mutation	 frequency	across	 four	

genes.		Three	are	tumor	suppressors	(RB1,	NF1,	and	TP53)	and	one	is	an	oncogene	(BRAF).		

The	profiles	 for	 the	 first	 two	TSG	are	 representative	of	most	TSG.	 	The	 third	TSG,	TP53,	

appears	 to	 have	mutation	 hot	 spots	 that	 are	more	 consistent	with	 a	 classic	 oncogene,	

such	as	BRAF.		Note	that	the	scales	are	considerably	different	across	the	four	genes.	
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2 Li-Fraumeni	Syndrome	(LFS)	and	LFS-like	(LFSL)	

2.1 LFS	

In	 order	 to	 better	 understand	 the	 underlying	 genetics	 and	 epigenetics	 behind	

sarcomagenesis,	 we	 propose	 to	 use	 LFS	 as	 a	 model	 disorder.	 	 LFS	 is	 a	 rare,	 inherited,	

heterogeneous,	 cancer	 predisposing	 syndrome	 caused	 by	 mutations	 in	 the	 tumor	

suppressor	gene	p53	(70-80%	of	cases)	(55,	56)	with	a	high	prevalence	of	sarcomas	(20,	56,	

57,	58{,	59).	In	a	classic	LFS	pedigree	(Figure	5),	we	see	characteristic	patterns	of	autosomal	

dominant	 inheritance	 (cancer	 is	 observed	 in	 every	 generation)	 and	 anticipation	 (age	 of	

onset	for	cancer	gets	younger	for	each	generation,	ranging	from	a	lung	cancer	at	age	61	in	

the	oldest	generation,	 to	a	variety	of	 cancers	 from	roughly	30-50	years	old	 in	 the	 second	

generation,	 to	 sarcomas	 in	 the	 first	 two	 decades	 of	 life	 in	 the	 third	 generation).		

	

Figure	 5:	 Canonical	 LFS	 pedigree	 with	 a	 TP53	 M133T	 mutation.	 	 The	 pedigree	 shows	

characteristic	patterns	of	autosomal	dominant	 inheritance,	anticipations,	a	broad	tumor	

spectrum,	 and	 a	 high	 prevalence	 of	 sarcomas,	 including	 a	 soft	 tissue	 sarcoma	 in	 the	

proband,	denoted	by	an	arrow.	Shaded	circles	represent	cancer,	with	the	age	of	diagnosis	
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and	cancer	type	noted	below.	p53	mutation	carriers	are	denoted	by	a	“*”,	and	individuals	

with	WT	p53	are	denoted	by	an	“^”.			

LFS	is	further	identified	by	the	high	prevalence	of	sarcomas,	which	account	for	about	

25%	of	all	LFS-tumors	(Figure	6)	(53).		The	remainder	of	tumors	seen	in	LFS	covers	a	diverse	

spectrum,	 including	 breast	 cancer,	 brain	 cancer,	 lung	 cancer,	 and	 adrenocorticoid	 cancer	

(Figure	 6)	 (53,	56).	Given	 that	p53	 is	 considered	 to	be	 the	most	preeminent	cancer	gene	

(17,	19),	it	is	hardly	a	surprise	that	p53	germline	mutations	predispose	to	so	many	types	of	

cancer.			

	

Figure	6:	Tumor	 incidence	by	type	as	compiled	by	the	IARC	p53	database	for	 individuals	

with	germline	p53	mutations	(53).	
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2.1.1 Clinical	criteria	for	LFS	

Several	different	clinical	criteria	have	emerged	for	LFS	over	the	years.			

1. Classic	LFS,	first	defined	in	1988	(60),	requires	three	criteria	to	be	met:	

• Proband	with	a	sarcoma	before	the	age	of	45	

• First-degree	relative	with	cancer	before	the	age	of	45	

• Additional	 first	 degree	 relative	 with	 cancer	 before	 the	 age	 of	 45,	 or	 a	

sarcoma	at	any	age	

2. Chompret	LFS	(61,	62)	requires	one	of	the	following	to	be	met.		Unless	otherwise	

stated,	 tumors	 in	 the	 LFS	 spectrum	 are	 considered	 to	 be:	 soft	 tissue	 sarcoma,	

osteosarcoma,	 pre-menopausal	 breast	 cancer,	 brain	 tumor,	 adrenal	 cortical	

carcinoma,	leukemia,	or	lung	cancer	

• Tumor	belonging	to	LFS	spectrum	before	the	age	of	46	AND	at	least	one	first-

degree	or	second-degree	family	member	with	an	LFS-related	tumor	(except	

breast	 cancer	 if	 the	 individual	 has	 breast	 cancer),	 before	 the	 age	 of	 56,	 or	

with	multiple	tumors	

• A	 person	 with	multiple	 tumors,	 two	 of	 which	 belong	 to	 the	 LFS	 spectrum	

(excluding	multiple	breast	cancers),	the	first	of	which	occurs	before	the	age	

of	46.	

3. Eeles	definition	(63)	

• Two	first-degree	or	second-degree	relatives	LFS-related	tumors	at	any	age	

4. Birch	definition	(64)	requires	three	criteria	to	be	met:	
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• Proband	with	childhood	cancer,	sarcoma,	brain	tumor,	or	adrenal	cortical	tumor	

before	the	age	of	45	

• First-	or	second-degree	relative	with	a	tumor	in	the	LFS	spectrum	at	any	age	

• First-	or	second	degree	relative	with	any	cancer	before	the	age	of	60	

Individuals	and	 families	meeting	 these	criteria	 turn	out	 to	have	genetic	alterations	 in	p53	

(p53-LFS)	in	about	70-80%	of	cases	(55).	

2.2 Evidence	for	a	Li-Fraumeni	Syndrome-like	disorder	

However,	 several	 families	 that	 meet	 the	 clinical	 criteria	 for	 LFS	 appear	 to	 lack	

mutations	or	alterations	in	p53	(56,	65),	suggesting	the	presence	of	one	or	more	additional	

cancer/sarcoma-predisposition	gene(s).		Families	meeting	the	LFS	criteria	are	tested	across	

a	barrage	of	tests	to	definitively	rule	out	alterations	in	p53,	including	sequencing	and	testing	

for	 copy	 number	 aberrations.	 	 Notably,	 despite	 phenotypic	 similarities,	 the	 general	

consensus	seems	to	be	that	by	definition	LFS	and	LFSL	should	be	considered	distinct	from	

one	another,	that	is,	LFS-carriers	must	contain	a	p53	mutation	(56,	66).		

2.3 Alternative	risk	factors	for	LFS/LFSL	

2.3.1 CHEK2	

To	 date,	 no	 other	 mutations	 have	 been	 definitively	 associated	 with	 LFSL	 (56).	 In	

1999,	 Bell	 et	 al.	 advanced	 the	 idea	 that	 CHEK2	 could	 be	 a	 second	 LFS	 gene	 (67).	 	 They	

identified	a	specific	CHEK2	mutation	(CHEK2	1100delC)	that	co-segregated	with	disease	in	a	

family	that	met	the	criteria	for	classical	LFS,	but	lacked	a	p53	mutation,	as	well	as	two	other	

families	with	different	alterations	in	CHEK2	(67).	Moreover,	CHEK2	was	known	to	be	a	cell	
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cycle	 checkpoint	 kinase	 that	 interacted	with,	 and	 stabilized	 p53,	 and	 the	mutation	 itself,	

which	resulted	in	a	premature	stop	codon,	was	found	to	abolish	the	kinase	function	of	the	

CHEK2.		Combined,	these	initial	data	argued	strongly	for	the	probability	that	CHEK2	could	be	

an	LFSL	cancer	predisposition	gene.	

However,	 subsequent	 data	 accumulation	 on	 LFSL	 families	 did	 not	 find	 CHEK2	

1100delC	 to	 be	 a	 common	 cause	 of	 LFSL	 (68).	 Sequencing	 of	 additional	 LFSL	 families	

revealed	few	families	with	CHEK2	alterations	anywhere	in	the	gene	(69).	Additional	studies	

failed	to	detect	any	mutations	in	CHEK2	 in	LFSL	families	across	48	total	families	(70,	71).	A	

fourth	study,	by	Lee	et	al.	in	2001	found	three	missense	variants	across	10	LFS	and	49	LFSL	

pedigrees,	 including	 a	 polymorphism	 (Ile157Thr),	 and	 two	 that	 were	 somewhat	 rarer	

(Arg145Trp	 in	 a	patient	with	breast	 cancer	 and	a	 sarcoma,	 and	Arg3Trp	 in	 a	patient	with	

brain	cancer)	(72).	Sodha	et	al.	found	CHEK2	variants	in	3	of	26	families,	but	these	included	

a	synonymous	variant,	an	intronic	variant	which	does	not	appear	to	impact	splice	sites,	and	

a	 3-bp	 deletion	 in	 exon	 3,	 thus	 continuing	 to	 suggest	CHEK2	may	 not	 be	 an	 LFSL	 cancer	

predisposition	gene	(69).	

Expanding	the	pedigrees	tested	beyond	LFS/LFSL	for	CHEK2	mutations,	 including	 in	

familial	 breast	 cancer	 cohorts,	 did	 find	 excess	 risk	 for	 several	 cancers,	 including	 prostate	

(73),	colon	(74),	kidney	(73),	and	breast	cancer	(74,	75),	of	which	only	breast	is	a	canonical	

LFS/LFSL	 tumor	 (56).	 	However,	 they	did	not	 find	 similar	upticks	 in	 sarcomas	and	adrenal	

cortical	tumors	(73).		The	variant	is	fairly	common	in	the	general	population	(MAF	is	about	

1%),	and	therefore	present	 in	some	unaffected	women,	 leading	to	the	premise	that	 it	 is	a	

low-penetrance	 breast	 cancer	 risk	 allele.	 	 Moreover,	 the	 deletion	 is	 enriched	 in	 breast	
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cancer	families	that	are	BRCA1/BRCA2-negative	(74).	Therefore,	despite	some	ambiguity	in	

the	 literature,	 the	 general	 consensus	 has	 emerged	 that	 CHEK2	 should	 no	 longer	 be	

considered	a	cause	of	LFS/LFSL	(76).		

2.3.2 p53	UTR	

The	 majority	 of	 LFS-related	 research	 has	 focused	 on	 coding	 mutations	 in	 p53.		

However,	 recently,	Macedo	 et	 al.	 reported	 a	 rare	 germline	mutation	 (rs78378222)	 in	 the	

3’UTR	of	TP53	that	was	found	in	7	LFSL	probands	(5.4%)	and	was	correlated	with	reduced	

expression	of	p53	(77).	

2.3.3 Linkage	indicates	1q23	contains	an	LFSL	locus	

An	 additional	 locus	 for	 LFSL	 was	 mapped	 by	 linkage	 to	 1q23	 (65).	 	 In	 this	 study,	

linkage	 analysis	 using	 microsatellite	 markers	 was	 completed	 across	 62	 constitutive	 DNA	

samples	over	 four	 LFSL	pedigrees,	and	mapped	a	10-Mb	region	with	a	 significant	positive	

LOD	score	(Figure	7).		Moreover,	although	the	authors	assumed	that	these	four	families	did	

not	necessarily	have	the	same	predisposing,	 locus,	a	heterogeneity	LOD	score,	the	highest	

seen	across	 the	genome,	 suggested	 that	 two	 families	 (STS200	and	STS027)	 contributed	 in	

this	 region,	 with	 the	 STS200	 family	 showing	 stronger	 linkage.	 As	 of	 December	 2017,	

according	to	the	UCSC	genome	browser	 (hg19)	 (78),	 this	 region	contains	148	genes	and	5	

miRNAs.	
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Figure	7:	Linkage	map	showing	a	high	heterogeneity	LOD	(HLOD)	score	with	contribution	

from	 both	 STS200	 and	 STS027	 in	 the	 region.	 	 Used	 with	 permission	 from	 Dr.	 Linda	

Bachinski.	

3 Results	

3.1 Quality	Control	and	Choosing	a	Sequencing	Platform	

3.1.1 Sanger	sequencing	of	functional	positional	candidate	genes	
	

To	best	identify	putative	germline	cancer	predisposition	genes,	we	first	used	Sanger	

sequencing	 to	 look	 for	 single	 nucleotide	 variants	 (SNVs)	 and	 splicing	 variants	 across	 29	

functional	positional	candidate	genes:	AIM2,	ATF6,	C1orf226,	CADM3,	CD48,	CD244,	CREG1,	

DCAF8,	DDR2,	DEDD,	DUSP12,	DUSP23,	ESR1,	FCRL5,	 IFI16,	KLDHC9,	MNDA,	NHLH1,	NIT1,	

NUF2,	PEA15,	PRKAR1A,	PYHIN1,	SDHC,	SH2D1B,	TAGLN2,	UHMK1,	USP21,	VANGL2.		Genes	

were	 selected	 relative	 to	 known	 function	 and	 potential	 relevance	 to	 cancer.	 	 Sanger	

sequencing	 was	 performed	 across	 four	 primary	 individuals:	 STS200-000,	 STS200-017,	

Bachinski	et	al.,	2005 

STS200	=3.455		HLOD=3.573	

STS027=2.056	
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STS200-032,	 each	 of	 whom	 had	 cancer,	 as	 well	 as	 a	 fourth,	 STS200-009,	 a	 married-in	

founder,	which	served	as	a	negative	control	(Figure	8).	

	

Figure	 8:	 Non-p53	 LFS	 pedigree	 with	 linkage	 in	 1q23.	 	 Initial	 Sanger	 sequencing	 was	

performed	 on	 three	 individuals	 in	 the	 latest	 generation,	 all	 with	 cancer	 (STS200-032,	

STS200-017,	and	the	proband,	STS200-000),	plus	a	married-in	control	(STS200-009).			

To	analyze	Sanger	data,	we	used	a	program	called	“Mutation	Surveyor”	(79),	which	

automatically	 identifies	 variants	 using	 the	 chromatogram	 traces.	 	 To	best	 ensure	 that	we	

were	 not	 missing	 anything,	 we	 ran	 the	 program	 with	 both	 a	 stringent,	 normal	 set	 of	

parameters,	as	well	as	with	a	more	relaxed	set	of	criteria	designed	to	limit	false	negatives.		

Appropriate	 criteria	 were	 discussed	 with	 SoftGenetics	 after	 we	 discovered	 some	

inconsistencies	in	their	algorithms.		

After	 manual	 verification	 using	 the	 chromatograms	 for	 clean,	 double	 peaks,	 we	

identified	 61	 unique	 heterozygous	 variants	 across	 the	 three	 individuals	 (STS200-000,	
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STS200-017,	 and	 STS200-032).	 	 However,	 none	 of	 the	 variants	 appeared	 to	 co-segregate	

within	these	three	individuals.	

When	no	co-segregating	mutations	were	observed	in	the	Sanger	data,	we	then	used	

454	sequencing	data	of	these	same	four	individuals	to	do	longer,	targeted	sequencing	of	the	

region.	 	 Robust	 analysis	 was	 complicated	 by	 an	 intrinsic	 drawback	 of	 454-related	 data	 –	

difficulty	in	interpreting	homopolymers	–	and	no	strong	candidates	were	identified.	

3.1.2 Whole	genome	sequencing	to	identify	putative	mutations	
	

To	 best	 identify	 putative	 germline	 cancer	 predisposition	 mutations,	 we	 chose	 to	

employ	next	generation	sequencing	(NGS).		Given	the	lack	of	strong	candidates	discovered	

through	both	Sanger	sequencing	and	454-sequencing,	we	chose	to	leverage	whole	genome	

sequencing	(WGS)	over	whole	exome	sequencing	(WES),	because	of	the	ability	to	evaluate	

non-coding	 regions	 in	 addition	 to	 coding	 regions.	 	 Moreover,	WGS	 offered	 an	 improved	

ability	to	test	for	copy-number	changes.			

3.1.3 Establishment	of	a	Sequencing	Analysis	Pipeline	for	STS200	
	

Initially,	 we	 sequenced	 two	 individuals,	 STS032-011,	 and	 STS200-017	 across	 both	 the	

Illumina	 (GAIIX)	 and	 Complete	 Genomics	 (CGI,	 v.	 2.0)	 pipelines	 to	 determine	 which	

sequencing	technology	we	wanted	to	move	forward	with.		Subsequently,	we	sequenced	one	

individual	 on	 HS2000	 (STS200-000),	 and	 five	 additional	 individuals	 from	 STS200	 (STS200-

001,	STS200-008,	STS200-009,	STS200-019,	and	STS200-032)	via	Illumina	(H4000).	
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3.1.3.1 Illumina	Data	
	

For	 Illumina-based	 data,	 we	 implemented	 an	 in-house	 pipeline	 consistent	 with	 best	

practices	according	to	GATK	(80).	

	

Figure	9:	Final	pipeline	for	WGS	analysis,	modeled	after	best	practices	according	to	GATK.	

Briefly,	for	GAIIX,	HS2000	data,	we	wrote	some	custom	scripts	to	separate	out	FASTQ	files	

by	 lane.	Once	 separated,	 by	machine	 and	 lane,	 fastq	 files	were	 aligned	 using	 BWA-MEM	

(81).	 	 The	 resulting	 SAM	 files	 were	 cleaned	 and	 marked	 for	 duplicates	 using	 Picard	 to	

mitigate	potential	biases	introduced	during	amplification.		Samples	were	then	realigned	to	

adjust	for	potential	issues	near	indels,	followed	by	base-recalibration	using	GATK	(80).		For	

the	 initial	 comparative	 analysis	 between	 the	 two	 pipelines,	 variant	 calls	 were	 made	 via	

UnifiedGenotyper	(82),	but	the	most	recent	and	relevant	analysis	leverages	HaploCaller	and	

joint	genotyping	to	generate	gvcf	files	(80).	
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3.1.3.2 Complete	Genomics	Data	
	

For	CGI	data,	we	used	their	pipeline.			The	CGI	chemistry	was	unique	in	that	it	used	

adaptor	 ligation	 technologies	 that	 introduced	 known	 2-bp	 gaps	 into	 the	 sequence	 reads.		

Because	most	existing	tools	were	designed	around	Illumina’s	more	contiguous	sequencing	

and	 without	 explicit	 gaps,	 adaptation	 of	 existing	 tools	 to	 CG	 data	 was	 problematic	 and	

would	have	 likely	 yielded	 less	 accurate	 results.	 	 The	pipeline	 for	Complete	Genomics	was	

more	of	a	black	box,	and	tools	to	re-run	the	data	ourselves	were	not	provided.		Therefore,	

we	used	the	variant	calls	generated	by	their	internal	algorithms.		

3.1.3.3 Illumina	vs.	Complete	Genomics	
	

In	 order	 to	 determine	 which	 platform	 we	 wanted	 to	 move	 forward	 with,	 we	

compared	 across	 a	 variety	 of	metrics,	 including	 overall	 data	 quality,	 and	 ability	 to	 detect	

known	 positives,	 including	 the	 p53-mutation,	 and	 the	 Sanger	 sequencing	 data,	 where	

relevant.	Preliminary	analysis	of	the	Illumina-based	STS200-017	revealed	that	this	data	was	

of	poorer	quality	and	established	the	importance	of	checking	QC	data.	

3.1.3.3.1 Quality	Control,	GATK,	Picard	
	

All	samples	were	examined	across	several	quality	control	metrics	to	ensure	the	data	

could	be	used	 for	downstream	variant	 calling.	 	One	sample,	 STS200-017	 (Illumina)	was	of	

demonstrably	poorer	data	quality	than	the	others.		
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Figure	10:	One	Illumina	sample	shows	an	odd	bimodal	peak	when	looking	at	a	plot	of	the	

coverage.		Single	modal	peaks	without	fat	tails	are	the	best.	

Perhaps	 most	 strikingly,	 although	 most	 coverage	 plots	 depict	 a	 single,	 approximately	

normally	 distributed	 peak,	 this	 “poorer”	 STS200-017	 sample	 on	 Illumina	 produced	 a	

bimodal	peak	(Figure	10).	

Moreover,	we	also	saw	differences	when	looking	at	histograms	of	the	quality	scores	

(of	 each	 base	 of	 each	 read).	 	 This	 difference	 was	 not	 apparent	 when	 looking	 only	 at	

Illumina’s	original	quality	scores	but	was	when	using	GATK-based	tools	to	recalibrate	quality	

scores	empirically.		Virtually	all	of	the	empirically	determined	quality	scores	for	STS200-017	

were	less	than	30,	rendering	it	unsuitable	for	further	use	(Figure	11).			
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Figure	11:	Histogram	showing	frequency	of	bases	(y-axis),	with	varying	base	quality	scores	

(x-axis)	for	two	samples.		Data	on	the	top	are	the	reported	base	quality	scores	by	Illumina	

for	 the	good	sample	 (left,	 STS032-011),	and	bad	sample	 (right,	 STS200-017).	 	 These	 two	

graphs	are	nearly	identical.		When	adjusting	empirically	for	accuracy	(bottom),	the	poorer	

sample	fares	significantly	worse,	with	the	majority	of	data	falling	below	a	q-score	of	30.	

We	also	reviewed	additional	metrics	such	as	a	histogram	of	base	by	cycle,	and	base	

quality	by	cycle	 (Figure	 12).	 	Histograms	of	 these	data	comparing	STS032-011	to	STS200-
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017,	suggested	that	STS200-017	had	steep	drop-offs	in	quality	near	the	ends	of	the	reads	at	

higher	cycle	counts.	These	data	may	have	contributed	to	the	percentage	of	unmapped,	or	

singly	mapped	reads	found	in	STS200-017,	which	was	5X	higher	than	for	STS032-011.	

	

	

Figure	 12:	 Quality	 control	 of	 base	 quality	 by	 cycle	 after	 recalibration	 shows	 dramatic	

differences	between	the	good	sample	(STS032-011)	and	the	poorer	sample	(STS200-017).		

In	STS200-017	the	second	of	the	paired	reads	performs	especially	poorly,	with	empirical	

scores	being	up	to	10	worse	than	reported	score.	
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We	 then	 checked	 to	 see	 if	 the	 bottom-line	 was	 affected	 and	 if	 these	 apparent	

differences	in	quality	impacted	variant	calls.		Comparison	of	variant	calling	between	a	basic	

variant	calling	algorithm	setup	for	Illumina	(via	GATK,	UnifiedGenotyper	(82)),	and	Complete	

Genomics	 (Complete	 Genomics	 internal	 pipeline),	 saw	 dramatic	 differences	 when	

comparing	SNVs	for	STS200-017	(51%)	vs.	STS032-011	(85%).	

Taken	 together,	 these	 data	 suggested	 that	 the	 STS200-017	 sample	 for	 Illumina	

performed	 more	 poorly.	 	 Upon	 presentation	 to	 Illumina,	 they	 agreed	 to	 re-sequence	 a	

second	sample	from	the	same	individual	(now	on	HS2000),	and	this	second	sample	passed	

all	QC	metrics	and	was	in-line	with	the	metrics	generated	for	STS032-011	and	other	samples	

sequenced	at	the	same	time	with	Illumina.		These	data	strongly	support	the	value	of	QC	in	

sequencing	studies.	

3.1.3.4 Comparison	of	WGS	Technologies	Relative	to	Existing	Sanger	Data	
	
	 We	 next	 leveraged	 existing	 Sanger	 data	 for	 STS200-017	 that	 arose	 out	 of	 the	

functional	positional	candidate	screen.		Forty-eight	variants	in	the	Sanger	data	for	STS200-

017	 were	 identified	 using	 Mutation	 Surveyor,	 and	 were	 hand-validated	 individually	 by	

checking	the	chromatograms	for	double-peaks	in	both	the	forward	and	the	reverse	strand.		

Neither	 Illumina	 (44	 SNVs))	 nor	 Complete	 Genomics	 (45	 SNVs)	 identified	 all	 48	 SNVs;	

collectively	 they	were	able	to	 identify	46	total	SNVs.	All	“missed”	SNVs	were	homozygous	

for	the	reference	by	WGS.		The	data	suggest	that	both	Illumina	and	Complete	Genomics	are	

approximately	 equivalent;	 they	 both	 identify	 the	 majority	 of	 Sanger-ascertained	 SNVs.		

However,	assuming	Sanger	sequencing	as	the	Gold	standard,	the	data	did	suggest	that	the	

WGS	might	have	contain	some	false	negatives.		We	additionally	checked	the	other	sample,	
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STS032-011,	for	which	we	had	more	limited	Sanger	data	available,	because	it	had	a	known	

p53	mutation,	 for	 the	 expected	 variant,	 and	 confirmed	we	were	 able	 to	 identify	 the	p53	

R175H	mutation.	

3.1.4 Choosing	Illumina	as	a	Sequencing	Platform	
	

Several	 factors	 lead	 us	 to	 choose	 Illumina	 over	 Complete	 Genomics.	 	 First,	 the	

majority	of	the	Complete	Genomics	analysis	pipeline	is	not	well	understood,	and	exists	in	a	

black	 box.	 	 It	 requires	 the	 use	 of	 proprietary	 algorithms	 and	 analyses	 cannot	 be	 cross-

checked	with	 existing	 tools	 like	 BWA	 (81),	 Samtools	 (83),	 Picard	 (84),	 and	GATK	 (80,	 85).		

However,	at	the	time,	we	did	not	feel	as	 if	the	variant	calling	for	Complete	Genomics	was	

sub-par	or	compromised	due	to	these	differences.		Moreover,	although	Illumina	did	have	a	

slight	 hiccup	 during	 the	 initial	 phase	 of	 testing,	 subsequent	 resubmission	 of	 a	 different	

sample	from	the	same	individual	cleaned	up	the	data	and	QC	metrics	well.	

3.1.5 Additional	Sequencing	of	LFSL	Family	Members.			
	

Once	we	had	 selected	 Illumina	 to	move	 forward	with,	we	 sequenced	 the	proband	

STS200-000	 (HS2000).	 	 However,	 these	 data	 produced	 no	 compelling	 co-segregating	

variants	between	STS200-000	and	STS200-017.		To	better	ascertain	co-segregating	variants,	

we	 then	 sequenced	 five	 additional	 individuals	 (STS200-032,	 STS200-019,	 STS200-008,	

STS200-009,	and	STS200-001)	at	MD	Anderson	Cancer	Center	on	HS4000	at	100-bp	paired	

end	and	analyzed	according	to	the	previously	outlined	pipeline	(Figure	9)	
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3.1.6 Establishment	of	a	Variant	Prioritization	Strategy	
	

Given	 the	 STS200	 pedigree	 (Figure	 8),	 we	 expected	 that	 a	 germline	 cancer	

predisposition	 variant	 could	 be	 driving	 the	 cancer	 and	 sarcoma	 phenotypes	 seen	 in	 the	

latest	 generation.	 	 However,	 clinical	 testing	 suggested	 that	 a	 p53	 mutation	 was	 not	

responsible,	suggesting	the	presence	of	a	different,	LFSL	gene.	 	We	hypothesized	that	 the	

driver(s)	behind	LFS	and	LFSL	would	be	etiologically	similar.		

Therefore,	we	established	several	criteria	

(1) We	 expected	 the	 variant	 to	 co-segregate	 between	 affected	 individuals	

with	 cancer	 and	 obligate	 carriers	 because	 it	 resembles	 an	 inherited	

cancer	syndrome	

(2) The	variant	would	be	 in	1q23,	particularly	given	 the	relatively	high	LOD	

score	

(3) The	 mutation	 would	 be	 an	 SNV	 (70%-80%	 of	 p53	 LFS	 is	 driven	 by	

missense	mutations	

(4) The	mutation	would	be	predicted	to	be	damaging,	either	through	lack	of	

conservation,	or	through	a	big	change	in	the	amino	acid	properties	

(5) Lastly,	we	expected	the	variant	to	be	rare	because	LFS	is	rare.	

In	 summary,	 we	 initially	 focused	 on	 identifying	 co-segregating,	 rare	 (MAF<1%),	

heterozygous,	coding	SNVs	that	were	predicted	to	be	damaging	by	both	SIFT	 (<0.05),	 (86)	

and	Polyphen2	(PP2,	>0.453),	(87)	that	were	in	the	linked	region	in	1q23.			

Unfortunately,	 there	were	no	variants	 that	met	 these	 stringent	 criteria.	 	 To	better	

isolate	putative	mutations,	we	then	relaxed	the	criteria	in	several	ways	(Table	1).	
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Table	1:	Table	of	various	criteria	used	to	identify	putative	cancer	predisposition	variants	in	

1q23.	 	Under	 the	stringent	criteria,	no	putative	variants	were	 found.	 	We	 incrementally	

adjusted	criteria	to	be	more	relaxed	to	better	identify	candidate	mutations.	

		 Stringent	 More	Relaxed	

Minor	Allele	Frequency	(MAF,	1KG)	 <1%	 <5%	

SIFT/PP2	predictions	 Both	damaging	 Either	damaging	

Co-segregation	 Absolute	 FamSeq	(88)	

Variant	type	 SNV	only	 SNV	or	indels	

Location	(via	linkage	analysis)	 In	1q23	 Whole	genome	

	

3.2 Identification	of	ARHGAP30	as	an	LFSL	Predisposition	Gene	

3.2.1 Penetrance	and	Rarity	in	p53	and	LFS	
	

The	presence	of	multiple	LFS-related	criteria	suggests	uncertainty	in	the	field	about	

the	best	and	most	appropriate	definitions	for	LFS.	(60,	61,	63,	64)		Inevitably,	less	stringent	

definitions	of	LFS,	such	as	under	the	Chompret	criteria,	where	just	a	single	individual	can	be	

sufficient	 for	 an	 LFS	 diagnosis,	 imply	 that	 penetrance	 need	 not	 be	 significantly	 high	 in	

LFS/LFSL	families.		Moreover,	we	posit	that	given	the	overall	importance	and	prominence	of	

p53	in	cancer,	additional	LFSL	genes	are	likely	to	be	less	penetrant.		In	turn,	this	can	lead	to	

greater	 ambiguity	 in	 clinical	 ascertainment,	 and	 underreporting,	 such	 that	 in	 sum,	 less	

penetrant	 genes	 and	 mutations	 could	 be	 somewhat	 more	 prevalent	 in	 the	 general	

population	than	would	otherwise	be	expected	based	on	LFSL	(non-p53	LFS)	incidence.		If	we	
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do	consider	that	such	genes	may	be	 less	penetrant,	then	 it	may	make	sense	to	adjust	the	

cutoff	point	for	a	MAF-filter.		

3.2.1.1 Framework	for	Rare	Variation	

	
According	 to	several	databases,	 the	most	common	LFS	mutations	are	quite	 rare	 in	

the	 general	 population.	 	 We	 leveraged	 the	 IARC	 (89)	 database	 to	 determine	 the	 most	

frequently	mutated	codons,	and	then	looked	up	the	mutation	frequency	of	variants	in	these	

codons	 in	databases	such	as	Exome	Aggregation	Consortium	(ExAC)	 (90)	and	ESP	 (91).	 	 In	

Figure	 13	we	 show	 a	 histogram	of	 the	most	 commonly	mutated	 codons	 in	 families	 that	

have	been	clinically	ascertained	as	classic	LFS	(strictest	criteria).		For	the	nine	most	common	

codons,	 I	 have	 included	 the	 codon	 number,	 and	 codon	 sequence.	 	 Above	 these,	 where	

present,	are	the	“MAF”	of	a	variant	in	that	codon	as	indicated	in	the	ExAC	database,	as	well	

as	the	incidence.		At	the	time	of	inquiry,	ExAC	contained	60,706	individuals.		Despite	the	fact	

that	 ExAC	 attempts	 to	 remove	 individuals	 affected	 by	 severe	 pediatric	 disease,	 it	 is	 clear	

that	p53	 variants	 are	occurring	 at	 some	 relative	 frequency.	Under	 the	exome	 sequencing	

project,	 which	 covered	 7,000	 individuals,	 we	 saw	 exactly	 1	 individual	 with	 a	mutation	 in	

codon	273	(0.02%),	while	we	saw	28	with	a	mutation	in	codon	337	(0.56%).	
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Figure	13:	Histogram	from	IARC	(89)	showing	hotspot	mutations	in	p53	at	the	codon	level.		

For	the	nine	most	commonly	altered	codons,	the	codon	number	is	 listed,	along	with	the	

codon	sequence.	 	Above	that	 is	a	representation	of	the	 incidence	 in	the	ExAC	database,	

either	 as	 a	 percentage	 of	 all	 samples,	 or	 as	 the	 total	 number	 of	 individuals	 with	 a	

mutation	in	that	codon	(in	parentheses),	indicating	that	these	mutations	are	very	rare	in	

the	general	population.	

In	contrast	to	this,	recent	research	supports	the	idea	that	germline	TP53	mutations	

may	be	more	common	 than	previously	appreciated	based	on	LFS	 incidence.	 	A	perusal	of	

exome	 databases	 found	 131	 individuals	 (0.2%	 of	 samples)	 with	 TP53	 mutations.	 	 These	

mutations	largely	fell	in	the	DNA	binding	domain	(~80%),	and	included	some	that	are	known	

to	 cause	 LFS,	 suggesting	 that	 numerous	 individuals	 may	 be	 carrying	 a	 non-penetrant	
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deleterious	 p53	 allele	 (92).	 Overall	 penetrance	 through	 close	 examination	 of	 the	 IARC	

database	was	 found	 to	 be	 ~80%	 (tumors	 before	 the	 age	 of	 70),	with	 varying	 penetrance	

based	on	sex,	age,	and	which	p53	allele	was	mutated	(93).	

3.2.2 Allowing	for	more	common	variants	identifies	two	variants	that	co-segregate	
	

Given	these	emerging	data,	particularly	that	p53	variants	may	occur	as	much	as	0.2%	

in	the	general	population,	may	mean	that	a	MAF	threshold	of	1%	is	too	conservative	(92).	In	

order	 to	 cast	 a	wider	 net,	 and	 account	 for	 the	 possibility	 that	 variable	 penetrance	 could	

partially	explain	the	results,	we	opened	our	MAF	filter	to	account	for	variants	with	a	MAF	

less	 than	 5%.	 	 Although	 this	 could	 potentially	 lead	 to	 the	 identification	 of	 a	multitude	of	

variants,	 in	practice	maintaining	 the	absolute	 co-segregation	criterion	 is	highly	 restrictive.		

There	are	exactly	two	variants	that	both	co-segregate	with	a	MAF	threshold	of	less	than	5%,	

and	are	predicted	to	be	damaging	by	both	SIFT	and	Polyphen2	(Table	2).	

Table	2:	Table	 showing	all	 variants	 in	1q23	which	both	co-segregate,	have	a	MAF	<	5%,	

and	are	predicted	to	be	damaging	by	both	SIFT	and	Polyphen2	(PP2).	

	

SLAMF1	encodes	signaling	lymphocytic	activation	molecule	1.		It	is	involved	in	the	activation	

and	 differentiation	 of	 immune	 cells	 and	 has	 roles	 in	 both	 innate	 and	 adaptive	 immune	

response.	 	As	noted	 in	Table	 2,	although	the	SIFT	and	PP2	scores	are	both	promising	(i.e.	

predicted	to	be	deleterious	–	scores	are	close	to	0	and	1	respectively),	the	MAF	is	quite	high	

(close	 to	 4%	 in	 the	 1000	 genomes	 project	 (94),	 1KG)).	 	When	 considered	 under	 the	 ESP	
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(adjusted	 for	 ethnicity	 -	 the	 STS200	 family	 is	 of	Caucasian	descent),	 this	 number	 is	 about	

twice	as	high,	8.9%.		Such	a	high	MAF	is	perhaps	more	common	than	we	would	prefer	for	

what	 is	 theoretically	a	 rare	disease.	 	 SLAMF1	has	not	yet	been	associated	with	a	disease.		

Nevertheless,	the	role	of	the	immune	system	in	cancer	is	becoming	increasingly	apparent;	it	

is	a	new	hallmark	in	the	“Hallmarks	of	Cancer”	v2.	(2),	thus	making	it	a	plausible	functional	

candidate.	

NDUFS2	 encodes	NADH	dehydrogenase	ubiquinone	 iron-sulfur	protein	2.	 	NDUFS2	

catalyzes	 NADH	 oxidation	 within	 the	 mitochondria	 (including	 ubiquinone	 reduction	 and	

proton	 ejection).	 	 Much	 like	 SLAMF1,	 the	 MAF	 in	 both	 the	 1KG	 and	 ESP	 (for	 European	

Americans)	are	quite	high	for	what	is	understood	to	be	a	relatively	rare	disease.		Mutations	

in	 the	gene	NDUFS2	have	been	associated	with	Mitochondrial	Complex	 I	Deficiency.	 	This	

mitochondrial	 disorder	 has	 heterogeneous	 presentation,	 including	 macrocephaly	 (large	

head)	 and	 myopathies.	 	 However,	 cancer	 has	 never	 been	 associated	 with	 this	 disease,	

suggesting	that	NDUFS2	may	not	be	a	strong	candidate	for	additional	follow-up.	

To	 best	 determine	 if	 these	 variants	were	 viable	 candidates,	we	 performed	 Sanger	

sequencing	to	(a)	confirm	the	variant	in	the	7	individuals	with	WGS,	and	(b)	to	test	for	co-

segregation	 in	 additional	 members	 of	 the	 pedigree.	 	 In	 SLAMF1,	 the	 married-in	 founder	

turned	 out	 to	 have	 the	 mutation	 of	 interest.	 	 In	 NDUFS2,	 two	 obligate	 carriers	 and	 an	

affected	were	WT	for	 the	variant.	 	Thus,	neither	of	 these	variants	 is	of	significant	 interest	

moving	forward.	
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3.2.3 Less	stringency	in	SIFT/PP2	finds	four	new	variants	for	consideration	
	

A	 second	 possibility	 is	 that	 SIFT	 (86)	 and	 PP2	 (87)	 are	 imperfect	 prediction	

algorithms	and	that	requiring	a	mutation	to	be	“damaging”	across	both	algorithms	may	lead	

to	premature	exclusion	of	variants.		SIFT	predictions	are	based	on	amino	acid	conservation	

in	 closely	 related	 sequences.	 	 In	 contrast,	 PP2	 emphasizes	 the	 impact	 of	 the	 change	 on	

protein	structures.		In	practice,	SIFT	and	PP2	do	not	always	agree	with	one	another,	and	it	

may	 be	more	worthwhile	 to	 consider	 variants	 predicted	 to	 be	 damaging	 by	 one	or	more	

algorithm(s).	 	 Moreover,	 known	 LFS	 variants	 such	 as	 p53	 M133T	 sometimes	 may	 be	

predicted	to	be	relatively	benign	(initially	 the	variant	had	a	PP2	score	of	0.148,	but	under	

the	most	recent	iteration,	it	is	now	0.858).		For	example,	if	a	cancer	predisposing	germline	

mutation	 is	 human-specific;	 in	 this	 case,	 we	 would	 expect	 a	 SIFT	 score,	 which	 is	 based	

primarily	on	conservation	to	be	relatively	high	(i.e.	benign).		To	cast	the	widest	possible	net,	

we	then	changed	the	stringency	in	SIFT/PP2	to	not	require	any	thresholds,	although	we	did	

still	 require	 the	 variant	 to	be	exonic.	 	 In	 combination	with	 the	higher	MAF	 threshold,	we	

found	6	total	variants	(Table	3),	two	of	which	were	the	same	as	in	3.2.2.	

Table	3:	Table	of	all	variants	meeting	meeting	the	stringent	criteria,	except	for	rarity,	and	

SIFT/PP2	scores.		All	6	variants	are	relatively	common,	and	two	are	synonymous	SNVs.	
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Of	 these,	 there	were	 three	 new	 genes,	 IFI16,	 ADAMTS4	 and	OLFML2B.	 ADAMTS4	

encodes	disintegrin	and	metalloproteinase	with	thrombospondin	motifs	4	and	is	known	to	

degrade	 aggrecan	 in	 cartilage	 and	 brevican	 in	 the	 brain	 and	 has	 a	 thrombospondin	 type	

motif	(TSR)	that	binds	to	the	ECM.	(95)	ADAMTS4	is	thought	to	possibly	play	roles	in	arthritis	

(96)	 and	 potentially	 in	 glioma	 progression.	 (95)	 Similar	 to	 previous	 candidates,	 MAF	 for	

these	genes	are	comparatively	high,	around	5%	and	10%	for	1KG	and	ESP	respectively,	and	

make	the	variant	less	compelling.	

The	variant	in	Interferon	Gamma	Inducible	Protein	16	(IFI16)	is	synonymous,	and	like	

the	other	variants	considered	so	 far,	 is	 reasonably	polymorphic,	but	 is	actually	one	of	 the	

candidate	 genes	 previously	 identified.	 	 IFI16	 is	 a	 member	 of	 the	 p200	 family,	 known	 to	

inhibit	cell	cycle	progression.		Moreover,	loss	of	IFI16	has	been	associated	with	breast	and	

prostate	cancers	(97).			

There	 have	 been	 no	 papers	 published	 on	 Olfactomedlin-like	 2B	 (OLFML2B),	 but	

olfactomedlins	 have	 been	 implicated	 in	 development	 and	 organization	 of	 the	 nervous	

system,	 and	 are	 generally	 thought	 to	 facilitate	 protein-protein	 interactions	 and	 cell	

adhesion	(98).	Given	the	lack	of	immediately	compelling	candidates,	we	pushed	forward	to	

consider	additional	variants	rather	than	immediately	jump	to	consider	Sanger	sequencing.		

3.2.4 FamSeq	identifies	ARHGAP30	as	an	LFSL	candidate	gene	
	

Without	 any	 particularly	 strong	 candidates	 so	 far	 identified	 in	 1q23,	 we	 next	

implemented	 FamSeq	 (88)	 to	 help	 identify	 additional	 co-segregating	 variants	 and	 reduce	

the	risk	of	false	negatives.	FamSeq	leverages	pedigree	information	to	make	more	informed	

decisions	about	variant	zygosity.	Effectively,	FamSeq	places	a	probability	on	a	given	variant	
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call,	including	how	likely	it	is	to	be	heterozygous.		If	one	or	more	individuals	have	the	same	

weak(er)	 variant	 call,	 FamSeq	 helps	 to	 isolate	 that	 variant	 and	 flag	 it	 for	 additional	

consideration.	

We	then	used	FamSeq	on	the	six	affecteds/obligate	carriers,	requiring	complete	co-

segregation	of	the	same	heterozygous	mutation	of	interest.		At	this	time,	we	did	not	use	the	

married-in	control	as	a	negative	filter	since	this	could	be	crosschecked	later,	and	it	appeared	

the	filtering	criteria	were	already	particularly	stringent.	 	However,	under	these	conditions,	

we	found	no	new	rare,	or	semi-rare	coding	mutations	in	1q23,	even	when	considering	the	

more	lenient	parameters	discussed	in	3.2.2	and	3.2.3.			

One	other	possibility	 is	 that	 the	 family	 contains	 a(nother)	 phenocopy,	 or	 that	one	

affected	individual	could	be	homozygous,	or	even	hemizygous	for	the	mutation	of	interest.		

It	 would	 be	 unlikely,	 but	 not	 impossible,	 for	 example,	 for	 both	 parents	 to	 have	 the	

mutation,	 or	 for	 there	 to	 have	 been	 a	 gene	 conversion	 event	 prior	 to	 DNA	 sampling.		

Instead	 then	 of	 asking	 FamSeq	 to	 identify	 all	 variants	 that	 had	 possible	 heterozygous	

mutations	 in	 6	 of	 6	 affected/obligate	 carriers,	 we	 instead	 asked	 FamSeq	 to	 identify	 all	

variants	 that	 seemed	 to	 be	 heterozygous	 in	 5	 of	 6	 individuals.	 Under	 the	 more	 relaxed	

criteria	 listed	 above,	 we	 generated	 another	 list	 of	 candidate	 variants,	 with	 one	 notable	

addition,	a	mutation	in	ARHGAP30	(Table	4).	
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Table	 4:	 Table	 of	 FamSeq-derived	 variants	 that	 are	 semi-rare,	 and	meet	 strict	 SIFT/PP2	

requirements.	

	

The	ARHGAP30	variant	was	found	to	be	heterozygous	in	5	of	6	affecteds/obligate	carriers,	

but	in	the	sixth	sample,	the	variant	was	found	to	be	homozygous	mutant	(Figure	14).			

	

Figure	14:	Depiction	of	STS200	and	WGS	data,	showing	co-segregation	of	the	ARHGAP30	

mutation.		One	individual	is	homozygous	(STS032-011)	

ARHGAP30	encodes	a	RhoGTPase	that	has	been	linked	to	cancer	and	cell	migration	

(99,	 100),	with	 research	 indicating	 it	 acts	 like	a	 tumor	 suppressor	 gene,	making	 it	 a	 good	
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candidate	for	LFSL.	Although	the	MAF	was	somewhat	higher	than	initially	desired,	the	fact	

that	 it	was	a	tumor	suppressor	gene,	and	was	predicted	to	be	damaging	(coding),	and	co-

segregates	implicates	it	as	the	most	promising	candidate	identified.		We	then	confirmed	the	

results,	including	the	homozygous	result	by	Sanger	sequencing	for	these	seven	individuals,	

indicating	this	mutation	did	co-segregate	for	these	seven	individuals.		Subsequent	follow-up	

to	 sequence	 additional	 members	 of	 the	 pedigree	 confirmed	 that	 co-segregation	 was	

otherwise	 complete.	 	 There	 was	 one	 seeming	 outlier:	 a	 bladder	 cancer	 patient	 (STS200-

102),	who	was	WT	for	the	mutation.		However,	based	on	the	linkage,	he	shared	very	little	of	

the	 1q23	 haplotype	 and	 was	 expected	 to	 be	 a	 phenocopy,	 (i.e.	WT	 for	 the	 mutation	 of	

interest).	Thus,	these	data	further	cemented	ARHGAP30	as	a	candidate	for	future	studies.		
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Figure	 15:	 Sanger	 sequencing	 of	 additional	 members	 of	 the	 pedigree	 confirms	 co-

segregation	of	 the	mutation	 in	ARHGAP30,	 including	 the	homozygous	result	 for	STS200-

032.	 	 Based	 on	 the	 linkage,	 we	 expected	 one	 of	 STS200-108	 or	 STS200-109	 to	 be	 a	

phenocopy,	 of	 which	 STS200-108	 appears	 to	 be.	 	 Individuals	 with	WGS	 are	marked	 by	

green	boxes.	

3.2.5 Co-segregation	over	the	whole	genome	
	

In	 order	 to	 rule	 out	 the	 unlikely	 possibility	 that	 the	 linkage	 was	 incorrect,	 we	

expanded	 the	 search	 to	 include	 variants	over	 the	entire	 genome.	 	 This	 time,	 because	we	

were	not	in	the	linked	region,	we	changed	the	parameters	to	exclude	STS200-019,	because	

she	 was	 a	 probable	 carrier	 based	 on	 linkage,	 but	 has	 not	 yet	 developed	 cancer.	 	 We	

continued	to	leverage	FamSeq	to	reduce	the	risk	of	false-positives,	but	decided	to	be	more	

restrictive	using	FamSeq	by	not	allowing	any	phenocopies	or	homozygous	alternate	alleles,	
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and	requiring	five	of	five	individuals	to	carry	the	putative	mutation.		However,	we	continued	

to	use	the	less	stringent	criteria	(MAF	<	5%,	SIFT	or	PP2	predicted	to	be	damaging).	

We	 found	 seven	 coding	 variants	 that	 met	 these	 criteria	 over	 the	 whole	 genome,	

including	the	aforementioned	SLAMF1	and	NDUFS2,	as	well	as	 two	non-coding	variants	 in	

F11R	and	ARHGAP30	that	were	within	1q23.	

Table	5:	Table	of	variants	that	appear	to	completely	co-segregate	using	FamSeq	over	the	

entire	genome.	

	

To	 definitively	 determine	 if	 any	 of	 these	 variants	 were	 also	 candidate	 germline	 cancer	

predisposition	 variants,	 we	 tested	 additional	 samples	 from	 the	 pedigree	 to	 see	 if	 they	

maintained	co-segregation.			
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Table	 6:	 Table	 showing	 that	 additional	 variants	 elsewhere	 in	 the	 genome	 identified	 by	

FamSeq	largely	do	not	co-segregate	when	tested	by	Sanger	sequencing.	

	

Of	these,	only	the	variant	in	PKLR	was	found	to	completely	co-segregate	across	the	rest	of	

the	 STS200	 pedigree.	 	 However,	 this	 exact	 variant	 is	 annotated	 in	 the	 ClinVar	 database	

(101),	 as	 being	 associated	 with	 pyruvate	 kinase	 deficiency	 (PKD).	 	 PKD	 is	 an	 autosomal	

recessive	disease	in	which	red	blood	cells	break	down	too	easily	due	to	the	lack	of	pyruvate	

kinase.		It	has	never	been	associated	with	a	cancer	phenotype.		

3.2.6 No	non-coding	variants	are	immediately	compelling	
	

Next,	we	considered	variants	that	were	in	1q23,	but	were	not	in	coding	regions,	such	

as	those	 in	UTRs,	 introns,	or	that	were	upstream	or	downstream	of	the	gene	(with	2,500-

bp),	in	potential	regulatory	regions.		There	were	203	such	variants	that	were	not	considered	

to	be	polymorphic,	 the	majority	of	which	were	 intronic.	 	However,	we	note	 that	 some	of	

these	 are	 likely	 to	 be	 false	 positives	 because	 they	 existed	 in	 near	 regions	 that	 were	

homopolymers.	

We	then	applied	FunSeq2	(102),	to	better	narrow	down	the	 list.	 	FunSeq2	is	a	tool	

that	can	help	prioritize	non-coding	regions	by	looking	at	how	often	variants	appear	in	them.		
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The	 authors	 hypothesize	 that	 regions	 that	 almost	 never	 have	 a	 variant	 are	 somehow	

protected	 and	 therefore	 may	 be	 functionally	 important.	 	 However,	 we	 didn’t	 find	 any	

variants	in	these	so-called	ultra-conservative	regions.	

3.3 Cross-check	of	p53	confirms	that	p53	is	not	a	genetic	driver	in	STS200	

We	also	exhaustively	reviewed	p53	to	confirm	it	had	no	mutations,	or	copy-number	

loss	and	was	definitively	WT.		Moreover,	as	discussed	in	2.3.2,	recent	research	has	identified	

a	p53	UTR-variant	 that	 co-segregated	with	disease	 in	an	LFSL	 family	where	p53	had	been	

previously	 ruled	 out	 (77).	 	 To	 check	 to	 see	 if	 the	 STS200	 family	 contained	 this	mutation	

(rs78378222),	 we	 checked	 the	 WGS	 data,	 and	 used	 Sanger	 sequencing,	 finding	 that	 all	

tested	individuals	were	WT	for	the	UTR-variant.			

3.4 More	in-depth	investigation	of	“known”	sarcoma	risk	factors		

Several	 genes	 have	 been	 associated	 with	 sarcomas,	 either	 through	 a	 study	 of	

individual	 subtypes,	 or	 through	 broader	 analysis	 of	 targeted	 sequencing.	 When	 they	

analyzed	1,162	sarcoma	probands,	Ballinger	et	al.	found	that,	overall,	probands	were	more	

likely	 to	 have	multiple	 pathogenic	 variants	 relative	 to	 controls,	 and	 that	 these	were	 best	

clustered	 in	 TP53,	 ATM,	 ATR,	 BRCA2,	 and	 ERCC2	 (16).	 	 To	 supplement	 these	 data,	 we	

generated	a	genome-wide	list	of	genes	that	have	been	previously	associated	with	sarcomas	

through	both	a	literature	search,	and	a	perusal	of	the	data	put	together	by	the	WHO,	across	

both	CN	data	and	mutational	data	(11).	
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Table	 7:	 List	 of	 genes	 associated	 with	 sarcomas,	 either	 through	 hereditary	 cancer	

syndromes,	CN	changes,	or	as	fusion	transcripts.	

ACP5	 COL1A1	 GLMN	 NFATc2	 SMARCA4	
ACTB	 COL1A2	 GNAS	 NFIB	 SMARCA5	
ACVR1	 COL6A3	 H19	 NR4A3	 SMARCB1	
AIP	 CREB1	 HAS2	 NTRK3	 SOS1	
AKT1	 CREB3L1	 HEY1	 PATZ1	 SP3	
ALK	 CREBBP	 HMGA2	 PBX1	 SQSTM1	
ANTXR1	 CSF1	 HRAS	 PDGFB	 SS18	
ANTXR2	 CTNNB1	 IDH1	 PDGFRA	 SSX1	
APC	 CXCR7	 IDH2	 PIK3CA	 SSX2	
ASPSCR1	 DDIT3	 IGF1R	 PLAG1	 SSX4	
ATF1	 DICER1	 IGF2	 PMS2	 STARD13	
ATIC	 DUX4	 INI1	 PORCN	 T	
BCL2	 EBF1	 KCNQ1OT1	 POU5F1	 TAF15	
BCOR	 ERCC2	 KDR	 PRKAR1A	 TEK	
BLM	 ERG	 KIT	 PTCH1	 TFE3	
BRAF	 ETV1	 KRAS	 PTEN	 TIE1	
BUB1B	 ETV4	 LEMD3	 PTEN		 TNFRSF11A	
C11orf95	 ETV6	 LHFP	 PTH1R	 TNFRSF1A	
CAMTA1	 EWSR1	 MAP2K1	 PTPN11	 TP53	
CCNB3	 EXT1	 MDM2	 RANBP2	 TPM3	
CCND1	 EXT2	 MEN1	 RB1	 TPM4	
CCNE1	 FEV	 MID1	 RECQL3	 TSC1	
CDH11	 FGFR4	 MKL2	 RECQL4	 TSC2	
CDK4	 FH	 MTAP	 RET	 USP6	
CDKN1C	 FLI1	 MYH9	 ROR2	 VGLL3	
CDKN2A	 FLT1	 MYOCD	 SDD	 VHL	
CDKN2B	 FOSL1	 NBN	 SDHB	 WRN	
CHEK2	 FOXO1	 NCOA2	 SDHC	 WT1	
CIC	 FUS	 NF1	 SDHD	 WWTR1	
CLTC	 GLI1	 NF2	 SH3BP2	 		
	

However,	we	did	not	find	any	other	pathogenic	variants	in	the	germline	in	these	sarcoma-

related	genes	in	any	of	the	STS200	family	members.		It	is	possible	that	some	of	this	is	driven	

by	the	fact	that	many	of	the	listed	genes	are	part	of	fusion	transcripts.	
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3.5 STS200	has	no	co-segregating	indels	or	deletions	anywhere	in	the	genome	

Lastly,	LFS	can	be	caused	not	only	by	SNVs	in	p53,	but	also	by	indels	and	CN	changes	

(56).		To	best	determine	if	LFSL	in	the	STS200	family	could	also	be	caused	by	either	of	these,	

we	 leveraged	 both	 GATK	 and	 pindel	 (103)	 for	 calling	 indels,	 and	 ERDS	 (104)	 for	 CNVs.	

However,	we	found	no	recurrent	indels	or	CN	changes	suggesting	that	neither	indels	of	CN	

changes	were	responsible	for	LFSL	in	STS200.	

3.6 Sequencing	of	additional	LFSL	pedigrees	finds	three	other	cases	with	the	exact	same	

variant	

To	 next	 determine	 if	 this	 variant	 was	 more	 widely	 relevant,	 we	 used	 Sanger	

sequencing	to	test	probands	from	other	LFSL	pedigrees	(where	p53	was	ruled	out)	to	see	if	

they	had	 the	exact	 same	mutation	 in	ARHGAP30.	 	We	 tested	6	probands	 from	Creighton	

University,	27	probands	 from	MD	Anderson	Cancer	Center	 (including	STS200),	9	probands	

from	Ohio	State	University,	and	6	probands	from	the	National	Cancer	 Institute	 (NCI)	 for	a	

total	 of	 48	 probands.	 	 Of	 these,	 three	 additional	 probands	 contained	 the	 exact	 same	

mutation	in	ARHGAP30,	for	a	total	of	4	of	48	(8.4%),	suggesting	that	this	mutation	could	be	

a	potential	hotspot.			

Interestingly,	this	mutation	is	somewhat	analogous	to	hotspot	mutations	in	p53.		In	

p53,	 several	hotspot	mutations	occur	 in	CpG	sites,	 such	as	 those	at	codons	175,	248,	and	

273,	 with	 deamination	 and	 G!A	 transitions	 being	 common	 (105).	 	 Our	 variant	 in	

ARHGAP30,	 GTTCGGC[G/A]AACCCAG,	 also	 occurs	 in	 a	 CpG	 site	 and	 may	 arise	 due	 to	

deamination.	 	 This	 may,	 at	 least	 in	 part,	 explain	 why	 the	 mutation	 could	 be	 a	 hotspot,	

and/or	why	the	mutation	is	relatively	common	in	the	general	population.	
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3.6.1 Statistical	case	for	enrichment	of	ARHGAP30	R806Q/R1017Q	

To	 test	 statistically	 if	 these	 LFSL	 families	 were	 enriched	 for	 the	 mutation	 of	

ARHGAP30,	we	used	to	a	Poisson	approximation	based	on	two	reported	allele	frequencies.		

The	 dbSNP	 database	 contained	 the	 lowest	 reported	 MAF	 (0.86%),	 while	 the	 ESP	 (for	

European	 Americans)	 contained	 the	 highest	 MAF	 (2.72%).	 	 Using	 this	 information,	 we	

counted	 the	 number	 of	 cases	 we	 would	 expect	 to	 see	 on	 average,	 for	 48	 samples,	 and	

computed	a	one-sided	p-value	 to	determine	 the	 likelihood	 that	we	 saw	4	or	more	 cases.		

For	dbSNP,	this	corresponds	to	a	p-value	of	8.7e-4,	and	for	4.4e-2	for	ESP,	suggesting	that	

these	LFSL	pedigrees	are	enriched	for	the	mutation	in	ARHGAP30.	

The	 result	 of	 having	 multiple	 families	 with	 the	 same	 exact	 mutation	 in	 a	 tumor	

suppressor	 gene	 is	 unexpected,	 but	 not	 impossible.	 	 The	majority	 of	 well-studied	 tumor	

suppressor	 genes	 and	 oncogenes	 follow	 a	 specific	 pattern.	 	 Oncogenes	 are	 typically	

recurrently	 mutated	 at	 specific	 amino	 acids,	 while	 tumor	 suppressor	 genes	 have	 flatter	

mutational	 profiles,	 with	 mutations,	 especially	 protein-truncation	 mutations,	 occurring	

throughout	 the	 length	 of	 the	 gene	 (54).	 	 However,	p53	 is	 a	 notable	 exception	 for	 tumor	

suppressor	genes	where	hotspots	for	cancer	predisposition	are	observed	(1.3.4).			

3.6.2 Co-segregation	in	non-STS200	families	

Subsequent	testing	of	these	families	was	somewhat	limited.		Of	the	two	other	LFSL	

families	from	MDACC,	we	had	additional	DNA	from	only	one	of	the	families	(just	the	parents	

of	the	proband).		In	this	family,	of	which	the	proband	had	a	Wilms’	tumor,	one	parent	did	

contain	the	variant	of	interest	but	had	not	(yet)	developed	cancer.		The	other	was	wild-type.	
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3.6.3 Co-segregation	is	almost	complete	in	the	Creighton	pedigree	

The	pedigree	we	received	from	Creighton	University	is	substantial.	We	received	both	

DNA	 and	 formalin-fixed	 paraffin-embedded	 (FFPE)	 blocks	 from	 Dr.	 Lynch	 to	 test	 for	 co-

segregation	 in	 this	 family.	 	For	 the	DNA	samples,	we	used	Sanger	sequencing,	but	 for	 the	

FFPE	 blocks,	 we	 used	 pyrosequencing.	 	 Samples	 from	 this	 pedigree	 included	 FFPE	 blocks	

from	before	1972,	and	contained	highly	cross-linked	and	fragmented	DNA,	making	Sanger	

sequencing	 difficult.	 	 Therefore,	 using	 pyrosequencing,	 which	 amplifies	 a	 much	 smaller	

fragment	 (~100-bp	 vs.	 500-800-bp)	 was	 advantageous.	 	 Even	 with	 the	 use	 of	

pyrosequencing,	we	found	that	we	needed	to	use	a	nested	PCR	in	a	clean	room	to	generate	

sufficient	 DNA	 from	 these	 samples	 and	 additional	 optimizations	 for	 FFPE	 samples	 as	

described	by	Doyle	et	al.	(106),	including	enrichment	of	the	polymerase	(106).	

These	data	showed	that	co-segregation	was	almost	complete	in	this	family.		Three	of	

four	tested	family	members	contained	the	exact	same	mutation,	including	two	with	cancer.		

The	fourth	is	a	theoretical	obligate	carrier.		She	has	not	yet	developed	cancer,	but	had	two	

children	with	breast	cancer	 (F,	diagnosed	at	35	y.o.,	dead	at	36	y.o.)	and	 lung	cancer	 (M,	

diagnosed	 at	 32	 y.o.	 dead	 at	 32	 y.o.).	 	 We	 have	 requested	 a	 second	 sample	 from	 this	

individual	for	retesting,	but	have	not	yet	received	it.			

We	 received	 one	 FFPE	 tumor	 sample	 from	Creighton	University;	when	 tested	 this	

tumor	had	retention	of	heterozygosity	(ROH).		However,	we	note	that	loss	of	heterozygosity	

(LOH)	may	not	be	required	for	tumorigenesis.		First,	given	the	limited	number	of	studies	on	

ARHGAP30,	 it	 is	not	 clear	 if	 the	gene	could	be	haploinsufficient.	 	 Secondly,	 in	 sequencing	

both	 human	 and	mouse	 LFS	 tumors	 with	 p53	mutations,	 it	 is	 clear	 that	 p53	 LOH	 is	 less	
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common	 than	 otherwise	 appreciated.	 	 Therefore,	 we	 do	 not	 consider	 this	 single	 result	

showing	ROH	to	rule	out	ARHGAP30	from	additional	consideration.	

To	 summarize,	 the	 same	 ARHGAP30	 mutation	 is	 found	 across	 multiple	 LFSL	

pedigrees,	and	appears	to	be	enriched	in	LFSL	families	over	the	general	population.	For	the	

most	part	co-segregation	is	complete	in	the	families	we	have	tested	so	far.		Taken	together	

these	 data	 suggest	 that	 this	 specific	 variant	 in	 ARHGAP30	 is	 a	 strong	 candidate	 for	 a	

putative	 cancer	 predisposition	 mutation,	 or	 at	 the	 very	 least,	 a	 modifier	 for	 cancer	

predisposition.	

3.7 Structure	of	ARHGAP30	
	

ARHGAP30	has	one	canonical	domain,	a	RhoGAP	domain	towards	the	5’	end	of	the	

gene	(codons	34-182),	and	two	primary	isoforms,	dubbed	here	as	a	long	isoform	(L-

ARHGAP30)	and	a	short	isoform	(S-ARHGAP30).		The	two	isoforms	differ	from	each	other	

only	by	a	glutamic	acid-rich	repeat.		The	ARHGAP30	mutation	is	marked	by	an	asterisk,	and	

lies	just	outside	this	region	(at	R806Q	in	the	short	isoform	and	at	R1017Q	in	the	long-

isoform).		
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Figure	16:	Depiction	of	important	elements	of	ARHGAP30	in	relation	to	the	mutation.		

ARHGAP30	has	only	one	known	domain.		The	long	and	short	isoforms	differ	only	by	a	

glutamic	acid	(E)	rich	element.		However,	the	putative	cancer	predisposing	mutation	

(marked	by	an	asterisk)	lies	outside	this	element.	

	

3.8 ARHGAP30	acts	like	a	tumor	suppressor	gene	
	

There	have	been	exactly	two	papers	published	on	ARHGAP30	to	date.		Both	papers	

suggest	that	ARHGAP30	 is	a	tumor	suppressor	gene	with	roles	consistent	with	cancer	(99,	

100).		In	the	first	paper,	the	majority	of	figures	lacked	controls,	and	few	conclusions	can	be	

drawn	 from	 it.	 	 However,	 data	 with	 controls	 indicate	 that	 when	WT	 ARHGAP30	 (short	

isoform)	 is	overexpressed,	PAE/PDGFRb	cells	are	 less	 spread	out,	and	more	 rounded,	and	

therefore	may	have	more	migratory	potential.	
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Figure	 17:	 Figure	 3a	 from	Naji	 et	 al.	 2011.	 	 In	 the	 presence	 of	 the	 overexpressed	 short	

isoform	of	WT	ARHGAP30,	cells	appear	significantly	more	rounded	relative	to	untreated	

controls,	 and	 may	 have	 more	 migratory	 capacity.	 	 Used	 with	 permission:	 Naji,	 L.,	 D.	

Pacholsky,	and	P.	Aspenstrom.	2011.	ARHGAP30	is	a	Wrch-1-interacting	protein	involved	

in	 actin	 dynamics	 and	 cell	 adhesion.	 Biochemical	 and	 biophysical	 research	

communications	409:	96-102.	L/N	4294720235318.	

The	 second	paper,	by	Wang	et	 al.	 is	 significantly	more	 comprehensive	 (100).	 They	

showed	 that	 ARHGAP30	 was	 significantly	 downregulated	 in	 colorectal	 cancer	 vs.	 normal	

tissues,	 and	 that	 it	was	 consistently	 associated	with	 poorer	 prognosis,	 having	both	 larger	

tumors	and	more	advanced	stages	of	cancer	on	average,	ARHGAP30	was	initially	identified	

via	a	microarray	analysis	of	TCGA	data	in	colorectal	cancer.	
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Figure	 18:	 Figure	 1a,c	 from	 Wang	 et	 al.	 2014.	 	 a)	 qRT-PCR	 data	 showing	 ARHGAP30	

expression	was	downregulated	 in	 colorectal	 cancer	 vs.	normal	 tissues.	 	 c)	Kaplan-Meier	

curve	 showing	 that	 higher	 ARHGAP30	 expression	 levels	 was	 correlated	 with	 survival.		

Used	with	permission:	Wang,	J.,	J.	Qian,	Y.	Hu,	X.	Kong,	H.	Chen,	Q.	Shi,	L.	Jiang,	C.	Wu,	W.	

Zou,	Y.	Chen,	J.	Xu,	and	J.	Y.	Fang.	2014.	ArhGAP30	promotes	p53	acetylation	and	function	

in	colorectal	cancer.	Nat	Commun	5:	4735.	L/N	4294720087364.	
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Importantly,	we	note	that	ARHGAP30	and	p53	mutations	should	not	be	considered	

to	be	mutually	exclusive.		Under	cBio	(22),	multiple	tumors	appear	to	have	alterations	in	

both	genes	(Figure	19),	including	a	very	small	subset	of	samples	that	have	truncating	

mutations	in	both	ARHGAP30	and	p53.

	

Figure	19:	ARHGAP30	and	p53	are	not	mutually	exclusive	according	to	data	from	cBio	

Oncoprint	(22).		Only	a	close	up	of	the	data	is	presented.	

	

3.8.1 ARHGAP30	has	a	role	in	cell	proliferation	and	migration	
	
Wang	 et	 al.	 tested	 the	 impact	 of	 stable	 overexpression	 of	 ARHGAP30	 across	 three	main	

ideas:	cell	proliferation,	cell	migration,	and	apoptosis,	finding	that	cells	transfected	with	WT	

ARHGAP30	 grew	 more	 slowly,	 moved	 less	 relative	 to	 controls,	 and	 promoted	 apoptosis	

(100).	
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Figure	20:	Figure	4a,b,c,e	from	Wang	et	al.	2014.	(100)	a)	MTT	assay	showing	proliferation	

of	 LoVo	 cells	 is	 decreased	 when	 ARHGAP30	 is	 over-expressed.	 	 Moreover	 this	

functionality	 seems	 to	be	 independent	of	 the	GAP	domain	 since	 the	effect	 in	 the	R55A	

mutant,	which	has	no	GAP-relation	functionality.		b)	HCT116	cells	also	grow	more	slowly	

in	 a	 GAP-independent	 manner.	 c)	 Both	 LoVo	 and	 HCT116	 cells	 showed	 increased	

apoptotic	activity	when	overexpressed,	and	e)	decreased	capacity	to	migrate	relative	to	

controls.		Used	with	permission:	Wang,	J.,	J.	Qian,	Y.	Hu,	X.	Kong,	H.	Chen,	Q.	Shi,	L.	Jiang,	

C.	Wu,	W.	Zou,	Y.	Chen,	J.	Xu,	and	J.	Y.	Fang.	2014.	ArhGAP30	promotes	p53	acetylation	

and	function	in	colorectal	cancer.	Nat	Commun	5:	4735.	L/N	4294720087364.	
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3.8.2 ARHGAP30	has	a	p53-dependent	role	in	cell	proliferation	and	migration	
	

The	authors	also	find	that	ARHGAP30	has	p53-dependent	effects.	Ectopic	expression	of	

WT	ARHGAP30	significantly	upregulates	p53-target	genes	like	p21,	NOXA,	BAX,	and	PUMA,	

an	effect	that	was	also	RhoGAP	domain-independent	in	HCT116	cells.		Moreover,	when	p53-

null	 HCT116	 cells	 were	 used,	 this	 effect	 was	 abrogated,	 and	 p53	 target	 genes	 were	 not	

upregulated.	 	 These	 effects	 extended	 to	 proliferation	 (Figure	 21j)	 and	 apoptosis	 assays	

(Figure	21k)	with	no	significant	effects	observed,	thus	suggesting	that	ARHGAP30	has	p53-

dependent	effects.	

	

Figure	21:	Figure	4.j,k	from	Wang	et	al.	2014	(100).	J;	 In	contrast	to	Figure	20b,	 in	a	p53	

null	HCT116	line,	ARHGAP30	overexpression	does	not	suppress	growth.		k;	similarly,	they	

observe	no	changes	in	apoptosis	in	a	p53	null	context.	Used	with	permission:	Wang,	J.,	J.	

Qian,	Y.	Hu,	X.	Kong,	H.	Chen,	Q.	Shi,	L.	Jiang,	C.	Wu,	W.	Zou,	Y.	Chen,	J.	Xu,	and	J.	Y.	Fang.	

2014.	ArhGAP30	promotes	p53	acetylation	and	function	in	colorectal	cancer.	Nat	Commun	

5:	4735.	L/N	4294740034573.	
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These	data	persisted	in	the	context	of	DNA	damage.	qRT-PCR	data	showed	that	cells	

treated	 with	 etoposide	 had	 upregulation	 of	 p53	 target	 genes,	 and	 that	 this	 effect	 was	

attenuated	 by	 knockdown	of	WT	ARHGAP30.	 	Moreover,	 chromatin	 immunoprecipitation	

(ChIP)	analysis	of	cells	with	ARHGAP30	knockdown	and	etoposide	treatment	found	reduced	

binding	 of	 p53	 to	 p21,	 BAX,	 NOXA,	 and	 PUMA.	 This	 effect	 seemed	 to	 be	 driven	 by	

acetylation	 of	 p53	 at	 Lys382	 (K382),	 which	 is	 known	 to	 activate	 p53.	 	 	 Additional	

experimentation	 found	 that	 this	 effect	 was	 abrogated	 by	 knockdown	 of	 p300,	 and	 that	

under	 co-immunoprecipitation,	 ARHGAP30	 can	 pull	 down	 both	p53	and	p300.	 	 However,	

these	p53-dependent	effects	were	found	to	be	long-isoform	specific,	rather	than	the	short-

isoform	of	ARHGAP30,	suggesting	a	functional	role	for	the	glutamic	acid	rich	element	in	the	

carboxy	terminus	of	the	gene.	

3.9 ARHGAP30		c.G161,017,761A/p.R>Q	has	cancer-like	functions	for	both	the	

long	isoform	(p.R1017Q)	and	the	short	isoform	(p.R806Q)	

	
Given	 our	 strong	 genetic	 evidence,	 including	 co-segregation	 and	 recurrence,	

implicating	ARHGAP30	R1017Q/R806Q	as	a	putative	cancer	predisposition	mutation,	as	well	

as	 the	 functional	 data	 presented	 by	 Wang	 et	 al.	 (100),	 we	 next	 tested	 if	 our	 mutation	

conferred	 any	 cancer-like	 advantages	 when	 transfected	 in	 vitro.	 	 In	 line	 with	 previous	

experiments,	we	first	sought	to	test	cell	migration	and	cell	proliferation.	

We	assayed	several	 sarcoma	cell	 lines,	plus	 the	HEK293T	cell	 line	as	a	 transfection	

control.		In	addition,	we	perused	the	Cancer	Cell	Line	Encyclopedia	(CCLE)	(107)	to	look	for	

cell	lines	with	no,	or	low	expression	of	ARHGAP30	to	better	test	the	potential	effects	of	the	
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mutation,	 but	weren’t	 able	 to	 find	 any.	 	Therefore,	we	 picked	 the	 cell	 line	with	 sarcoma	

lineage,	 and	 lowest	 expressing	 ARHGAP30,	 Hs	 863.T.	 	 No	 CCLE	 cell	 lines	 had	 reported	

mutations,	truncating,	missense,	or	otherwise	in	ARHGAP30.	

	

Table	8:	Table	of	sarcoma	cells	lines	used	for	transfection,	with	p53	status	and	ARHGAP30	

status	included.	

Cell	Line	 Tissue	 p53	status	 ARHGAP30	status	

HEK293T	 Kidney	 p53	R280S	(108)w	 WT,	Norm.	Expr.	

U-2	OS	 Osteosarcoma	 p53	WT	 WT,	Norm.	Expr.	

Saos-2	 Osteosarcoma	 p53	deletion	homozygous;	

c.1-1182del1182	(ATCC)	

WT,	Norm.	Expr.	

HT-1080	 Fibrosarcoma	 p53	WT	 WT,	High	Expr.	

Hs.	863T	 Ewing	Sarcoma	 p53	WT	 WT,	Low	Expr.	

	

Given	that	LFSL	arises	out	of	a	p53	WT	background,	we	would	certainly	expect	to	see	

an	effect	 in	cell	 lines	with	WT	p53.	 	However,	because	p53	mutations	are	so	 important	 in	

the	context	of	LFS,	and	because	ARHGAP30	has	been	demonstrated	to	interact	with	p53,	we	

felt	it	valuable	to	concurrently	consider	the	potential	ramifications	of	cooperativity	between	

the	two	genes.		Moreover,	p53	null	mice	seemed	to	abolish	the	effect	of	ARHGAP30	across	

several	phenotypes	(100).	
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To	generate	the	appropriate	mutant	plasmids,	we	acquired	expression	constructs	for	

the	short-	and	long-	isoforms	from	Origene	and	used	site-directed	mutagenesis	to	introduce	

our	putative	LFSL	mutation.	 	After	sequencing	the	WT	and	mutant	plasmids	to	ensure	the	

appropriate	sequence	and	mutation	were	present,	we	next	tested	transfection	across	both	

Lipofectamine	3000	(LPF)	and	FuGene	6	(FG6),	finding	overall	better	results	for	FG6	(FG6),	

especially	 for	 Saos-2.	 Indeed	 for	 Saos-2,	 when	 staining	 for	 ARHGAP30,	 we	 observed	

practically	no	transfection	when	using	LPF.		For	two	other	cell	lines	(HT-1080,	293T),	we	also	

observed	that	FG6	appeared	to	transfect	at	higher	efficiencies.		However,	for	the	fourth	cell	

line,	U-2	OS,	we	observed	the	reverse;	LPF	appeared	to	perform	better	(Figure	22).		For	the	

fifth	 cell	 line,	 with	 low-expressing	 ARHGAP30	 (Hs	 863.T),	 the	 cells	 did	 not	 survive	

transfection	with	either	FG6	or	LPF	and	therefore	could	not	be	pursued	further.		Given	that	

we	did	see	successful	transfection	with	FG6	for	U-2	OS	though,	to	best	include	Saos-2,	we	

decided	to	use	FG6	moving	forward.			
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Figure	 22:	 Western	 Blot	 performed	 in	 conjunction	 with	 Kevin	 Tracy	 (CPRIT	 summer	

student)	 comparing	 the	 efficacy	 of	 transfecting	 U-2	 OS,	 HT-1080,	 HEK293T,	 and	 Saos-2	

with	 either	 Lipofectamine	 3000,	 or	 FuGene	 6,	 across	 both	 wild-type	 and	 mutant	

ARHGAP30	(long-isoform).		Stained	with	an	ARHGAP30	antibody	specific	for	long-isoform.		

Control	was	selected	from	a	previous	experiment	with	positive	staining.		The	data	suggest	

that	overall,	cells	transfected	with	FuGene	6	appear	to	uptake	more	of	the	plasmid	and/or	

produce	 more	 protein.	 	 This	 is	 especially	 true	 for	 Saos-2	 (left	 edge	 of	 figure),	 where	

transfection	was	almost	non-existent	when	using	lipofectamine.	
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3.10 ARHGAP30	R806Q/R1017Q	have	increased	migratory	potential	

To	test	migratory	potential,	we	used	a	scratch	assay.			

3.10.1 HEK293T	

In	HEK293T	cells,	we	observed	that	cells	 transfected	with	mutant	ARHGAP30	appeared	to	

show	increased	migratory	capability.	 	Due	to	the	nature	of	the	cell	 line,	during	scratching,	

cells	 came	 off	 in	 sheets,	 and	 were	 unable	 to	 limit	 the	 scratch	 to	 a	 single	 field-of-view.	

	

Figure	 23:	 Scratch	 assay	 of	 HEK293T	 cells,	 transfected	 with	 either	 WT	 or	 mutant	 L-

ARHGAP30.		Cells	transfected	with	mutant	ARGHAP30	had	increased	migratory	potential.	
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3.10.2 U-2	OS	

U-2	OS	cells	are	WT	for	p53	and	therefore	fall	best	in	line	with	what	we	would	expect	to	see	

in	 an	 LFSL	 patient	 without	 inherited	 TP53	 mutations.	 	 In	 these	 cells,	 we	 see	 the	 most	

dramatic	 change	 of	 all	 tested	 cell	 lines	 when	 comparing	 the	 wound	 healing	 capability	

between	transfection	with	WT	and	mutant	plasmids.		Cells	transiently	transfected	with	WT	

ARHGAP30	 (both	 long-	 and	 short-isoforms)	 show	 limited	 ability	 to	 close	 the	 wound.	 	 In	

contrast,	 the	 mutant	 L-ARHGAP30	 shows	 pronounced	 ability	 to	 close	 the	 gap	 with	 the	

shorter	 isoform	 showing	more	 limited,	 but	 still	 significant	 ability	 to	 close	 the	 intervening	

space	(Figure	24).			Given	that	U-2	OS	cells	are	WT	for	p53,	these	data	demonstrate	that	the	

ARHGAP30	 mutation	 is	 sufficient	 to	 generate	 an	 effect	 even	 when	 p53	 is	 not	 disrupted,	

including	in	an	LFSL	patient-related	context.	
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Figure	24:	Scratch	assay	of	U-2	OS	cells	shows	dramatically	improved	ability	to	close	the	

gap	when	transfected	with	mutant	ARHGAP30,	particularly	for	the	long-isoform	compared	

to	WT-transfections.	
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3.10.3 Saos-2	

Saos-2	cells	are	p53-null,	but	we	again	see	increased	ability	of	the	cells	to	close	the	wound	

under	 transient	 transfection	of	 the	mutant	 relative	 to	WT	controls,	although	 this	effect	 is	

not	as	dramatic	as	in	U-2	OS.		One	distinct	difference	here	though	is	that	the	short-isoform	

shows	 increased	closure	 relative	 to	 the	 long-isoform	 (Figure	 25).	 	Given	 that	Saos-2	cells	

are	null	 for	p53,	these	data	suggest	that	the	effect	 is	present	even	 in	the	absence	of	p53.	

Although	 the	 result	 is	 not	 as	 accelerated	 as	 in	 U-2	 OS	 cells,	 taken	 together	 these	 data	

continue	to	point	towards	a	p53-independent	mechanism.	

	

Figure	25:	Scratch	assay	of	Saos-2	cells.		Mutant	ARHGAP30	was	not	able	to	close	the	gap	

entirely	 over	 48	 hours,	 but	 did	 show	 increased	movement	 relative	 to	 cells	 transfected	

with	WT	ARHGAP30.	 	
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3.10.4 HT-1080	

Similar	 to	U-2	OS	 cells,	 HT-1080	 cells	 are	WT	 for	p53	 (53,	 107).	 	 However,	 in	 contrast	 to	

previous	data,	the	endogenously	high	ARHGAP30	HT-1080	cells	closed	remarkably	quickly,	

including	when	the	WT-ARHGAP30	plasmids	are	overexpressed,	having	closed	after	just	24-

hours	 (Figure	 26).	 	 Notably,	 even	 the	 untreated	 (?)	 control	 (with	 endogenously	 high	

ARHGAP30	 levels)	 is	 able	 to	 somewhat	 close	 the	wound	 (though	not	 completely).	 	Again,	

mutant	 ARHGAP30	 shows	 increased	 ability	 to	 close	 relative	 to	WT	 transfections,	 but	 this	

effect	is	somewhat	muted	given	the	rapid	closing.	

	

Figure	26:	Scratch	assay	of	HT-1080	data.		Both	WT	ARHGAP30	and	mutant	ARHGAP30	are	

able	to	close	the	wound	over	30	hours.	Mutant	ARHGAP30	does	lead	to	marginally	faster	

wound	closure	relative	to	WT	ARHGAP30.	
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3.10.5 Summary	of	wound	healing	experiments	
	

These	data	can	be	summarized	either	qualitatively	(as	shown	in	Figure	27)	or	

quantitatively.			

	

Figure	27:	Qualitative	description	of	the	closure	results	across	the	four	cell	lines,	and	

various	transfection	conditions.		More	“+”,	implies	a	faster	closure	rate.	

Quantitative	representation	can	be	done	in	two	ways.		First,	we	can	try	to	find	the	size	

of	the	wound	by	finding	the	leading	edges	of	the	wound	and	using	a	lasso-type	tool	to	try	to	

determine	the	most	appropriate	area.		This	approach	has	challenges	when	the	leading	edge	

is	not	well	defined	–	either	from	being	slightly	out	of	focus,	or	from	live	cells	which	are	

migrating,	but	not	part	of	a	distinct	edge.		It	also	has	the	potential	to	be	subjective.		The	

second	approach	uses	a	threshold	tool;	since	cells	are	often	darker	than	the	unclosed	
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wound,	this	fact	can	be	used	to	identify	the	percentage	of	the	field	of	view	that	is	covered	

by	cells.		This	has	the	advantage	of	perhaps	being	more	unbiased,	and	is	better	at	picking	up	

lone	cells	in	the	middle	of	the	wound,	or	at	correcting	for	cases	where	cells	may	be	

migrating	more	than	proliferating	(leaving	some	areas	as	being	less	dense).	

We	have	used	the	first	method,	measuring	the	area	every	three	hours,	because	we	

found	it	to	be	less	error	prone	given	the	quality	of	pictures	that	we	obtained,	but	

quantification	makes	one	simple	fact	clear.		Despite	efforts	to	the	contrary,	it	is	difficult	to	

create	single	scratches	with	the	same	exact	width	–	see	different	starting	points	for	%	

Covered	for	various	treatments	(Figure	28).	

	

Figure	28:	Quantification	of	wound	closure	in	HT-1080	cells.			
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3.11 ARHGAP30	R806/1017Q	proteins	show	increased	proliferative	capacity	

3.11.1 HEK293T	

Consistent	with	ARHGAP30’s	status	as	a	tumor	suppressor	gene,	in	293T	cells	we	observed	

suppression	of	growth	when	cells	were	treated	with	WT	ARHGAP30,	but	when	treated	with	

mutant	ARHGAP30	we	saw	although	they	did	not	confer	a	proliferative	advantage	relative	

to	 a	 control,	 they	 did	 appear	 to	 abolish	 the	 slower	 growth	 rates	 observed	 when	

overexpressing	WT	ARHGAP30.	

	

Figure	 29:	 Proliferation	 assay	 of	 HEK293T	 cells	 showing	 reduced	 growth	 rates	 in	

conjunction	with	WT	ARHGAP30	transfection.	 	Cells	transfected	with	mutant	ARHGAP30	

in	contrast	show	increased	proliferation.	
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3.11.2 U-2	OS	

In	 contrast,	 in	 U-2	 OS	 cells,	 we	 saw	 a	much	more	muted	 response,	 although	 the	 overall		

phenotype	 is	 similar	 to	 293T	 cells.	 	 Cells	 transfected	with	WT	ARHGAP30	 did	 grow	more	

slowly	 relative	 to	 a	 control,	 and	 cells	 transfected	 with	 mutant	 ARHGAP30	 appeared	 to	

abrogate	some	of	that	response	bringing	it	nearly	in	line	with	the	control,	but	not	above	the	

control.	

	

Figure	 30:	 Proliferation	 assay	 of	 U-2	OS	 has	minimal	 differences	 between	 the	 different	

conditions.		However,	there	do	appear	to	be	slight	differences	consistent	with	ARHGAP30	

being	a	tumor	suppressor	gene,	and	the	mutant	abrogating	some	tumor	suppressor-like	

behavior	via	increased	growth	rates.	
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3.11.3 Saos-2	

Data	for	Saos-2	appears	to	run	somewhat	counter	to	the	previous	data.		We	saw	a	trend	for	

the	 long	 isoform	that	seems	to	be	similar	to	that	observed	for	293T	and	U-2	OS	cells,	but	

not	 for	 the	 short	 isoform.	 	 Namely	 transfection	 with	WT	ARHGAP30	 suppresses	 growth,	

while	 transfection	with	mutant	ARHGAP30	 leads	 to	higher	growth	 rates	more	 in	 line	with	

the	control.		However,	we	note	that	making	this	assumption	assumes	that	cells	were	seeded	

at	the	same	initial	concentration	at	time	of	zero	hours.	

	

Figure	31:	Proliferation	assay	of	Saos-2	showing	that	mutant	ARHGAP30	appears	to	have	

an	effect	in	the	long-isoform,	but	not	the	short-isoform.	
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3.11.4 HT-1080	

Similar	 to	 the	 scratch	 assay,	 in	 HT-1080	 cells,	 it	 is	 difficult	 to	 tease	 out	 a	 difference	 in	

proliferation	rates	between	transfecting	with	WT	or	mutant	ARHGAP30	 for	both	the	short	

and	long	isoforms.			

	

Figure	 32:	 Proliferation	 assay	 for	 HT-1080s	 showing	 minimal	 differences	 between	 the	

various	transfections.	

4 Discussion	
	

Co-segregation	 analysis	 was	 used	 to	 isolate	 a	 plausible	 LFSL	 gene.	 	We	 identify	 a	

reasonably	 rare,	 co-segregating	 mutation	 in	 1q23	 that	 is	 recurrent	 across	 multiple	 LFSL	

pedigrees.	 	Moreover,	 this	gene	has	demonstrated	significance	 in	colorectal	 cancer	 in	 the	

literature	(100),	and	our	functional	evidence	shows	the	mutation	itself	appears	capable	of	

inducing	cancer-like	phenotypes	such	as	proliferation	and	migration.	
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	 The	 functional	 data	 presents	 an	 interesting	 picture	 when	 juxtaposed	 against	 the	

results	from	Wang	et	al.	(100).	Previously,	these	authors	showed	ARHGAP30	overexpression	

was	found	to	have	no	effect	on	apoptosis,	proliferation,	and	expression	of	p53	target	genes	

in	p53	null	HCT116	cells	(100).		This	left	one	big	arm	of	their	functional	work	unexplored	–	

what	 happens	 to	migration	 in	 an	 ARHGAP30	 overexpression/p53	 null	 background.	 If	 cell	

migration	is	abrogated	alongside	apoptosis	and	proliferation	in	p53	null	HCT116	cells,	it	runs	

in	 direct	 contrast	 to	 what	 we	 observe	 in	 Saos-2	 cells.	 	 In	 Saos-2	 cells	 with	 the	 cancer	

predisposing	 mutation,	 cells	 are	 able	 to	 close	 the	 cap	 relative	 to	 overexpression	 of	 WT	

ARHGAP30.	 	This	suggests	 that	not	only	does	 the	ARHGAP30	p.R>Q	mutation	have	a	p53-

independent	means	of	 impacting	tumorigenesis,	but	also	that	 it	may	be	a	gain-of-function	

mutation.				

	 Consistent	 with	 this	 interpretation,	 we	 observe	 wound	 healing	 and	 proliferation	

phenotypes	 across	 both	 S-ARHGAP30	 and	 L-ARHGAP30,	 where	 as	 data	 from	Wang	 et	 al.	

(100)	suggest	that	p53	acetylation	is	L-ARHGAP30	specific.		If	our	mutation	were	to	impact	

phenotypes	through	acetylation,	we	would	not	expect	to	see	differences	in	S-ARHGAP30.	

Interestingly,	the	effect	on	wound	healing	is	greatest	in	WT	p53	U-2	OS	cells,	placing	

further	 weight	 on	 a	 p53-independent	 mechanism	 for	 mutant	 ARHGAP30.	 	 However,	 we	

acknowledge	 that	 some	of	 this	difference	could	be	due	 to	 reduced	 transfection	efficiency	

(Figure	22),	and/or	cell	properties.		Gaps	in	wound	healing	are	typically	closed	through	cell	

proliferation	and/or	cell	migration	and	of	the	cells	cultured,	Saos-2	cells	grew	the	slowest.	

Our	data	from	HT-1080	are	curious.	 	ARHGAP30	expression	is	constitutively	high	in	

this	 cell	 line	 relative	 to	 other	 cell	 lines	 that	 we	 used	 (Figure	 33),	 and	 has	 no	 known	
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mutation	 in	ARHGAP30	 according	 to	 the	 CCLE	 (107).	 Given	 that	ARHGAP30	 is	 a	 putative	

tumor	suppressor	gene,	and	the	previous	establishment	that	WT	ARHGAP30	can	negatively	

impact	cell	motility	(99,	100),	we	might	expect	these	cells	to	have	the	most	limited	response	

to	the	wound	healing	assay.		Instead,	they	have	the	most	pronounced	effect,	closing	within	

30	 hours,	 perhaps	 suggesting	 that	 these	 cells	 have	 acquired	 some	 sort	 of	 escape	

mechanism.	 	Moreover,	 additional	WT	ARHGAP30	exacerbates	 the	 closure	 relative	 to	no-

treatment	controls,	which,	on	its	own,	implies	ARHGAP30	acts	more	like	an	oncogene	in	this	

cell	 line.	 	Data	from	the	wound	healing	assay	 indicates	that	overexpression	of	the	mutant	

construct	slightly	improves	closure	relative	to	WT	ARHGAP30,	but	overall	these	data	suggest	

that	the	contribution	of	ARHGAP30	to	tumor	etiology	in	HT-1080	may	be	considerably	more	

complex	than	first	expected.	
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Figure	33:	qPCR	data	for	several	cell	lines,	showing	that	ARHGAP30	expression	in	HT-1080	

cells	 are	 significantly	 higher	 than	 healthy	 skin	 fibroblasts,	 a	 colorectal	 cancer	 cell	 line	

(HCT116)	osteoblasts	(hOB),	or	two	osteosarcoma	lines	(U2OS,	Saos-2).	

In	addition,	we	had	previously	begun	to	look	at	the	potential	effect	of	ARHGAP30	

mutations	on	downstream	effectors	of	p53	(Figure	34).		These	data	were	generated	by	Dr.	

Yu	Deng	in	the	Krahe	Lab.			She	used	lymphoblastoid	cell	lines	(LBCLs)	from	STS200,	three	

with	the	ARHGAP30	p.R>Q	mutation,	and	one	with	WT	ARHGAP30	(“009”).		She	cultured	all	

four	lines,	and	then	treated	each	with	and	without	radiation.		Focusing	only	on	the	

untreated	samples,	we	see	that	as	expected,	levels	of	p53	are	about	the	same	across	all	

individuals.		However,	the	levels	of	p21	are	not	the	same.		In	patient-derived	LBCLs	with	the	

mutant	ARHGAP30,	we	saw	lower	levels	of	p21.		Thus,	it	is	possible	that	ARHGAP30,	in	

addition	to	interacting	with	p53,	may	also	be	part	of	a	p21,	p53-independent.	
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Figure	34:	Western	blot	of	p53	and	p21.	Data	generated	by	Yu	Deng,	Ph.D.	 (A)	Western	

blot	 showing	protein	 levels	of	p53	and	p21	 in	 STS200-derived	 cells.	 	 LBCLs	 from	STS200	

were	 untreated	 (-)	 or	 irradiated	 (+)	 to	 check	 for	 p53	 acetylation	 in	 response	 to	 the	

stressor.		Concomitantly,	we	checked	for	a	response	in	a	p53	downstream	target,	p21.	(B)	

Quantification	of	the	protein	levels	of	p53	and	p21	in	non-irradiated	cells	shows	reduced	

p21	levels	in	cancer	patients.	ARHGAP30	genotypes	are	provided	above/below	patient	IDs	

to	aid	interpretation:	AA	–	homozygous	WT,	AB	–	heterozygous	mutant,	BB	–	homozygous	

mutant.	

We	 next	 considered	 potential	 relevance	 to	 sporadic	 sarcomas.	 	 Under	 cBio,	

ARHGAP30	 is	 recurrently	 mutated	 in	 just	 0.7%	 of	 all	 samples,	 and	 our	 specific	 germline	

variant	 has	 not	 yet	 been	 called	 in	 publicly	 available	 somatic	mutation	 data.	 	 However,	 it	

turns	out	that	our	mutation	is	assayed	by	SNP	arrays.	 	We	worked	with	Dr.	Keith	Baggerly	

and	 Dr.	 Ying	 Wang	 to	 acquire	 these	 data	 and	 to	 generate	 a	 list	 of	 tumors	 and	 their	

genotypes.		We	sorted	by	genotype,	letting	the	A-allele	stand	for	the	WT-allele,	and	the	B-

allele	 for	 the	mutant-allele.	 	We	 then	 counted	 total	 alleles,	 and	 ran	 a	 one-sided	 Poisson	



	 76	

approximation	 to	 see	 how	 likely	we	were	 to	 uncover	 at	 least	 that	many	 alleles.	 	We	 ran	

these	 data	 under	 two	 conditions,	 once	 for	 the	 lowest	 reported	MAF	 (0.86%,	 dbSNP)	 and	

once	 for	 the	 highest	 (2.72%,	 ESP-EA).	 	 At	 the	 lower	 allele	 frequency,	 multiple	 cancers	

appear	to	be	enriched	for	the	mutation,	but	when	using	the	ESP	as	a	baseline,	there	is	just	

one	 showing	 statistical	 significance,	 colorectal	 adenocarcinoma	 (COAD).	 	We	 further	note	

that	 for	 COAD	 tumors,	 there	 are	 seven	 tumors	with	 a	 “BB”	 genotype,	 versus	 six	with	 an	

“AB”	genotype	–	 these	data	 imply	 that	LOH	may	be	a	 reasonably	common	event	 in	 these	

tumors.	
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Table	 9:	 Table	 showing	 allele	 incidence	 of	ARHGAP30	 c.G>A,	 p.R>Q	 in	 TCGA	 SNP	 array	

data	 (data	 generated	 by	 the	 TCGA:	 “http://cancergenome.nih.gov”).	 	 p-values	 are	

calculated	 via	 a	 Poisson	 approximation	 to	 determine	 if	 we	 saw	 enrichment	 for	 the	

number	 of	 mutant	 alleles	 relative	 to	 expectation	 based	 on	 MAF	 (dbSNP,	 0.86%;	 ESP,	

2.72%).		Data	highlighted	in	red	have	p-values	less	than	0.05.	
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Despite	 these	 data,	 there	 are	 a	 couple	 of	 mitigating	 questions	 remaining	 to	 be	

answered.	 	 First,	 the	 co-segregation	 analyses	 suggest	 that	 co-segregation	 may	 not	 be	

canonically	complete.		However,	we	believe	there	are	plausible,	if	rare,	scenarios	that	could	

explain	these	seemingly	“outlying”	individuals.			

First,	 for	 the	 one	 individual	 in	 STS200	 that	 is	 homozygous	 for	 the	 mutation	 of	

interest	 (STS200-032),	 it	 is	 unlikely,	 but	 not	 impossible	 that	 she	 received	 a	mutant	 allele	

from	 both	 parents.	 	 Alternatively,	 she	 could	 have	 experienced	 an	 extremely	 early	 gene	

conversion	event	that	resulted	in	an	extended	stretch	of	LOH.		To	address	this	possibility	we	

used	our	WGS	data	and	looked	in	the	region	near	ARHGAP30	and	plotted	whether	variants	

were	 homozygous	 for	 the	 alternate	 allele	 (blue),	 or	 heterozygous	 for	 the	 alternate	 allele	

(red).	 	 If	 the	 sample	was	 homozygous	WT,	we	 left	 it	white/blank.	 	 In	 this	 region,	 it	 does	

appear	 as	 if	 the	 STS200-032	 sample	 is	 on	 average	more	 homozygous	 for	 the	 SNVs/SNPs	

interrogated	(Figure	35),	though	it	impossible	to	say	for	sure.		A	third,	related	possibility	is	

uniparental	 disomy	 (UPD),	 in	which	 two	 copies	 of	 the	 chromosome	 come	 from	 the	 same	

parent.		This	may	also	help	explain	some	of	the	other	heterozygous	mutations	in	this	region	

in	 STS200-032,	 the	majority	 of	 which	 are	 rare.	 	 Unfortunately,	 to	 definitively	 distinguish	

between	all	possibilities	is	 impossible	in	the	absence	of	an	available	DNA	sample	from	the	

mother.	



	 79	

	

Figure	35:	CIRCOS	plot	showing	possible	gene	conversion	event.		Homozygous	events	are	

in	 blue	 and	white/blank.	 	 Heterozygous	 events	 are	 red.	 	 The	majority	 of	 samples	 have	

significant	 heterozygous	 variants	 in	 this	 region,	with	 the	 exception	 of	 STS200-032.	 	We	

feel	that	this	data	could	be	consistent	with	a	gene	conversion	event.	

In	 addition	 to	 STS200,	 one	 other	 co-segregation	 question	 remains	 under	

investigation.	 	One	theoretical	obligate	carrier	 in	 the	Creighton	pedigree	did	not	have	the	

ARHGAP30	mutation.	 	She	had	two	children	with	LFSL-associated	cancers	(breast	and	lung	

cancer,	 both	 before	 the	 age	 of	 40).	 	 However,	 she	 is	 in	 a	 more	 distant	 branch	 of	 the	
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pedigree,	 and	 it	 is	 possible	 that	 she	 has	 a	 second,	 non-ARGHAP30	 cancer	 predisposition	

gene.	 	 Alternatively,	 it	 is	 possible	 that	 the	 father	may	have	 carried	 a	 cancer-predisposing	

mutation;	however,	no	information	is	known	about	his	family.	

	 However,	 we	 do	 not	 consider	 the	 MAF	 a	 major	 sticking	 point.	 	 As	 previously	

discussed,	 emerging	 research	 suggests	 that	 germline	p53	variants	may	 be	more	 common	

than	previously	expected.	 	Thus,	 it	may	be	perfectly	 reasonable	to	have	a	more	common,	

less	 penetrant	 allele	 (p53	 or	 non-p53),	 even	 for	 a	 rare	 disease.	 	 Interestingly,	we	 do	 not	

observe	any	variants	 in	known	cancer	genes	–	 this	 implies	either	 that	ARHGAP30	has	 the	

potential	 to	 have	 a	 strong	 monogenic	 effect,	 or	 that	 there	 are	 additional	 yet	 to	 be	

uncovered	polygenic	or	modifier	genes	that	further	modulate	sarcomagenesis.		For	example	

MDM2	SNP309,	with	a	high	MAF,	affects	tumorigenesis	(1.3.1).	

	

5 Future	Directions	in	ARHGAP30	R806Q/R1017Q	
	

Our	evidence	strongly	supports	that	ARHGAP30	and	the	p.R806/1017Q	mutation	is	a	

recurrent,	 co-segregating,	 cancer	predisposition	gene	 in	 LFSL	 families.	 	However,	we	note	

that	 these	 data	 do	have	 some	mitigating	 question	marks.	 	 The	 variant	 is	 not	 overly	 rare,	

putting	it	in	line	with	a	previous	purported	LFSL	gene/mutation	CHEK2	1100delC,	and	in	the	

STS200	pedigree	has	an	unexpected	outlier,	 a	 single	homozygous	 case.	 	Moreover,	 in	 the	

one	tumor	we	have	been	able	to	sequence,	we	were	not	able	to	detect	LOH.		However,	we	

feel	that	there	are	plausible	explanations	for	each	of	these	scenarios	and	thus	do	not	derail	

the	 underlying	 genetic	 and	 functional	 evidence	 presented.	 	 We	 further	 note	 functional	
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experiments	would	best	be	done	in	backgrounds	of	null	ARHGAP30	to	determine	if	this	was	

a	GOF	mutation.	

We	 propose	 two	 fundamental	 ways	 to	 move	 forward	 with	 this	 project:	 First,	

sequence	 (non-p53)	 LFSL	 pedigrees	 lacking	 p.R806/1017Q	 mutations	 for	 additional	

mutations	 elsewhere	 in	 ARHGAP30.	 	 If	 ARHGAP30	 follows	 the	 pattern	 of	 other	 tumor	

suppressor	genes,	including	p53,	 it	should	have	mutations	elsewhere	in	the	gene	that	also	

give	rise	to	LFSL.		Identification	of	further	families	with	additional	mutations	would	greatly	

strengthen	the	argument	that	ARHGAP30	is	an	LFSL,	cancer-predisposition	gene.		Secondly,	

explore	 the	 functional	 implications	 in	 vivo	 through	 the	 use	 of	 a	 mouse	 model.	 	 CRISPR	

technology	 has	 greatly	 impacted	 the	 ease	 and	 feasibility	 of	 generating	 mice	 with	 single	

point	mutations	such	as	in	the	ARHGAP30	RQ	variant.		Following	generation	of	appropriate	

mouse	model	 and	 cohort	with	 the	mutation(s)	 of	 interest,	we	 can	 the	 track	 and	observe	

tumor	 formation	 in	 the	mice.	 	Moreover,	 in	 conjunction	with	 this,	 it	will	 be	 important	 to	

check	 for	 LOH	 in	 tumors,	 both	 in	 the	 mice,	 or	 in	 humans,	 where	 tumor	 samples	 are	

available,	to	look	for	characteristic	LOH.	

We	note	that	there	are	many	other	possible	in	vitro	experiments	that	could	be	run,	

to	explore	other	potential	functional	implications.		For	example,	we	have	not	yet	looked	at	

apoptosis,	in	which	ARHGAP30	plays	a	known	role.	(100)		More	to	the	point,	we	have	so	far	

focused	on	overexpression	of	ARHGAP30	in	cells	with	endogenous	ARHGAP30;	therefore,	it	

may	 be	 worth	 interrogating	 the	 results	 in	 an	 ARHGAP30	 null	 background,	 or	 comparing	

results	against	the	cell	lines	when	ARHGAP30	has	been	silenced.		
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6 Introduction:	Sarcomagenesis	and	Somatic	Mutations	

6.1 LFS	is	a	model	for	identifying	acquired	somatic	mutations	in	sarcomagenesis	

Cancer	 has	 been	 attributed	 to	 a	 variety	 of	 factors,	 including	 germline	 cancer	

predisposition	 mutations,	 as	 well	 as	 somatic	 alterations.	 	 In	 the	 first	 portion	 of	 the	

dissertation,	we	leveraged	LFSL	to	identify	a	novel	germline	cancer	predisposition	mutation	

in	ARGHAP30.	 	 In	 the	second	portion,	we	 leverage	 tumors	 from	LFS	patients,	with	known	

p53	mutations,	 to	address	 the	potential	 contributions	of	 somatic	alterations.	 	Despite	 the	

ubiquity	of	p53	mutations	 in	human	cancers,	 some	 individuals	 in	 LFS	pedigrees	 (with	p53	

mutations)	do	not	develop	cancer	(56,	93),	or	develop	cancer	very	late,	suggesting	that	the	

p53	mutation	alone	 is	 insufficient	 for	 tumorigenesis	and	that	additional,	acquired	somatic	

changes	are	necessary.	 	Thus,	we	propose	to	use	p53-LFS	as	a	model	for	 identifying	these	

changes,	particularly	those	involved	in	sarcomagenesis.	

6.2 Sarcomas	are	incredibly	diverse	

The	 rarity,	 heterogeneous	 composition,	 and	numerous	 subtypes	of	 sarcomas	have	

complicated	 elucidation	 of	 genetic	 risk	 factors	 and	 driver	 mutations.	 	 A	 recent	 study	

implicates	ATM	and	ATR	as	risk	factors	(16),	but	lacked	the	statistical	power	to	definitively	

determine	one	way	or	the	other.		Moreover,	sequencing	done	by	the	TCGA	has	shown	that	

different	 sarcoma	 subtypes	 tend	 to	 have	 distinct	mutational	 profiles	 across	 the	 genome,	

methylome,	 transcriptome,	 and	 proteome	 (10),	 implying	 sample	 selection	 is	 critical	 to	

achieve	statistical	power.		Thus,	researchers	are	faced	with	a	conundrum	–	sequence	many	

more	disparate	sarcomas,	and	try	to	work	around	confounding	from	multiple	subtypes,	or	
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attempt	to	acquire	additional	sarcomas	of	more	similar	subtypes,	of	which	samples	may	be	

limited,	even	in	large	consortiums.	

6.3 Benefits	and	Disadvantages	of	working	with	Human-LFS	sarcomas		

Under	 LFS,	 sarcomas	 are	 a	 fairly	 common	 cancer,	 representing	 about	 25%	 of	 all	

tumors	 (13%	STS	 and	10%	OS,	Figure	 6)	 (53),	 suggesting	 perhaps	 that	 sarcomagenesis	 is	

largely	 driven	 by	 p53.	 	 However,	 p53	

alterations	 are	 present	 in	 only	 about	 half	 of	

all	sporadic	sarcomas	(10),	and	data	from	cBio	

seems	to	suggest	that	even	this	50%	number	

may	 be	 somewhat	 of	 an	 overestimate	

(depending	on	ascertainment)	(Figure	36).			

	

Figure	 36:	 Five	 sarcoma	 studies	 have	 been	

recorded	 in	 cBio,	 covering	 bone	 sarcomas	 (Ewing),	 and	 soft	 tissue	 sarcomas	 (mostly	

liposarcomas	 and	 leiomyosarcomas).	 	 From	 left	 to	 right,	 these	 comprise	 249,	 265,	 207,		

107,	 and	 43	 samples.	 	 These	 data	 suggest	 that	 alterations	 in	 p53	 are	 not	 particularly	

common	in	sarcomas,	topping	out	at	~60%.	

We	also	leveraged	cBio	to	check	for	tumors	with	alterations	in	any	of	MDM2,	MDM4,	and	

TP53	with	 about	 45%	 of	 sarcomas	 having	 an	 alteration	 in	 at	 least	 one	 of	 these	 genes,	

including	 a	 high	 percentage	with	MDM2	 amplification	 (Figure	 37).	 	 Taken	 together,	 and	
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considering	 the	 prevalence	 of	 sarcomas	 in	 LFS-patients/pedigrees,	 these	 data	 seem	 to	

indicate	a	role	for	p53	in	sarcomagenesis.	

	

	

Figure	37:	cBio	Oncoprint	plot	showing	distribution	of	MDM2/MDM4/TP53	alterations	in	

sarcomas,	covering	45%	of	tumors.		
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Figure	38:	IARC	data.	(89)		Histogram	of	p53	mutations	that	have	reported	families	

meeting	the	classical	criteria	for	LFS	(n=442).		Of	these,	mutations	in	codon	248	(~14%)	are	

the	most	common,	followed	by	mutations	in	codon	175	(~8%),	analogous	to	codon	172	in	

the	mouse.	

Working	with	LFS-sarcomas	may	harbor	one	distinct	advantage	over	that	of	sporadic	

sarcomas	alone;	they	all	involve	disruption	of	the	tumor	suppressor	gene	p53	increasing	the	

likelihood	that	these	sarcomas	arise	out	of	a	p53-dependent	manner.		However,	aside	from	

rarity,	 it	 is	not	clear	if	all	p53	alterations	should	be	treated	equivalently	–	indeed	different	

p53	alleles	have	different	penetrance	(93).		It	remains	to	be	seen	if	tumor	etiology	is	similar	

for	 mutations	 in	 p53	 that	 are	 LOF	 (either	 by	 deletion,	 or	 point	 mutation)	 vs.	 GOF	 p53	

mutations.	 	Despite	 these	potential	 issues,	 it	 is	our	 long-term	hope	 that	 identifying	genes	
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associated	 with	 sarcomagenesis	 in	 LFS	 patients,	 will	 also	 have	 relevance	 to	 sporadic	

sarcomas,	and	other	cancer	types.	

6.4 A	Mouse	Model	of	LFS	May	Help	Identify	Important	Sarcomagenesis	Genes	

To	 overcome	 some	 of	 the	 limitations	 associated	 with	 sequencing	 only	 human	

tumors,	we	elected	to	pursue	and	take	advantage	of	a	mouse	model	of	LFS.		Several	mouse	

models	exist,	 including	p53-/-	mice	in	which	cancer	penetrance	is	100%,	with	most	cancers	

occurring	before	6	months.	 	These	mice	had	tumor	profiles	similar	 to	 that	of	LFS-patients	

(109).		However,	since	the	majority	of	LFS	patients	have	heterozygous	point	mutations,	we	

instead	elected	to	pursue	a	different	mouse	model.		This	model,	from	Dr.	Lozano,	contains	

the	 Trp53	 R172H	 mutation	 that	 is	 analogous	 to	 the	 TP53	 R175H	 hotspot	 mutation	 in	

humans	((51)		Of	the	p53	mutations	associated	with	classical	LFS,	the	TP53	R175H	mutation	

is	the	second-most	common	(Figure	38),	and	is	known	to	be	a	GOF	mutation).		This	mouse	

model	was	also	known	to	develop	sarcomas	(53%),	particularly	osteosarcomas	(28%,	most	

frequent	tumor	type	reported)	(51).	

The	overall	relevance	of	modeling	the	human	TP53	R175H	mutation	can	be	further	

emphasized	with	 the	use	of	 a	downloaded	copy	of	 the	 IARC	database	 (53)	 for	additional,	

more	granular	analysis.		These	data	include	a	“topography”	column,	which	contains	the	site	

of	 the	original	neoplasm,	as	well	as	 the	 type	and/or	codon	of	 the	p53	mutation.	 	We	can	

generate	similar	histograms	as	to	Figure	38,	except	selected	for	tumors	arising	out	of	“soft	

tissue”	 and	 “bone”	 –	 the	 majority	 of	 which	 are	 sarcomas,	 to	 see	 if	 germline	 R175H	

mutations	are	prominent	in	these	tumors.		Although	the	overall	mutation	profile	is	different	

than	 compared	 to	 all	 tumors	 (Figure	 38),	 the	 histograms	 in	 Figure	 39	 indicate	 that	
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alterations	at	codon	175	are	still	prominent	 in	both	osteosarcomas	 (Figure	 39A)	and	soft	

tissue	sarcomas	(Figure	39B).	

	

Figure	 39:	 Histogram	 of	 p53	 mutations	 based	 on	 IARC	 data	 (53)	 and	 split	 by	 tumor	

pathology	(soft	tissue	and	bone).	
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6.4.1 Comparative	approaches	to	identifying	sarcoma	drivers	

One	accepted	approach	to	identifying	drivers	is	to	look	for	recurrent	changes,	either	

through	gains	or	 losses,	due	to	gross	amplifications	or	deletions,	or	SNVs	 in	critical	genes.		

These	 ideas	 underlie	 several	 efforts,	 including	 COSMIC,	 and	 TCGA	 to	 catalog	 somatic	

variation	across	a	wide-range	of	tumors	(5,	110(111).	

However,	recurrence	alone	may	be	a	poor	metric.		Some	genes	or	genomic	regions	

may	be,	or	appear	 to	be,	hypermutable,	but	may	have	 little	 functional	 consequence.	 	For	

example,	olfactory	genes	and	large	muscle	genes	(e.g.	TTN)	often	appear	to	be	represented	

in	 lists	of	significantly	 recurrently	mutated	genes	 in	cancer	 (112,	113).	Respectively,	 these	

gene	 families	 are	 either	 not	 expressed	 in	 tumors,	 or	 due	 to	 their	 size	 are	 likely	 to	 have	

acquired	somatic	changes	by	chance	alone,	suggesting	that	recurrence	alone	is	insufficient	

or	 that	 it	 may	 misclassify	 some	 genes.	 	 Thus,	 separating	 out	 drivers	 from	 passengers	

remains	a	key	challenge.	

Therefore,	 to	 better	 assist	 in	 separating	 passengers	 from	 drivers,	 we	 used	 a	

comparative	genomics	approach,	leveraging	a	mouse	model	of	LFS	(6.4).	We	hypothesized	

that	recurrent	alterations	in	key	genes	and	pathways,	across	both	humans	and	mice,	were	

more	likely	to	be	functionally	important	drivers	of	sarcomagenesis.	

Using	the	mouse	model	confers	several	advantages.		First,	it	provides	an	avenue	to	

more	 readily	 generate	 LFS-associated	 sarcomas.	 	 Secondly,	 the	 mice	 will	 all	 have	 been	

raised	 in	 the	 same,	 shared	 environment,	 the	mouse	 facility.	 	 Thirdly,	 the	mice	will	 come	

from	 reasonably	 similar	 backgrounds,	 and	 have	 the	 same	 exact	 cancer	 predisposition	

mutation,	potentially	improving	the	ability	to	identify	recurrent	changes.		Fourthly,	by	using	
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humans	and	mice,	 it	provides	additional	context	for	recurrent	variation	such	as	CNVs	that	

arise	 out	 of	 species-specific	 genomic	 context.	Moreover,	 this	 comparative	 approach	 was	

previously	 successful	 in	 acute	 promyelocytic	 leukemia,	where	 authors	 also	 used	 a	mouse	

model	to	help	implicate	JAK1	V657F	as	being	important	in	disease	progression	(114).	

6.5 Complete	tumor	profiling	as	a	goal	

Although	many	sequencing	studies	have	focused	on	looking	at	genomic	information	

via	 WGS	 or	 WES,	 it	 is	 clear	 that	 other	 changes,	 such	 as	 those	 in	 the	 transcriptome	 or	

methylome	 may	 significantly	 contribute	 to	 cancer	 (5,	 6,	 115).	 	 In	 fact,	 these	 data	 can	

support	each	other	when	done	 in	concert,	 to	provide	a	more	 layered,	nuanced	picture	of	

the	tumor	by	testing,	such	as	by	testing	to	see	 if	mutations	are	being	expressed	(114).	 	 In	

addition,	fusion	proteins	have	been	implicated	in	several	types	of	sarcomas,	such	as	Ewing	

sarcomas	(116),	suggesting	that	sequencing	DNA	alone	may	miss	key	drivers.	Transcriptomic	

sequencing	may	be	particularly	key	for	identifying	these	fusion	proteins.	

6.6 Open-ended	Expectations	for	Sequencing	Sarcomas	

For	most	cancers	the	number	of	driver	mutations	is	thought	to	be	between	1-10	(19,	

54),	 occurring	 in	 a	 subset	 of	 reasonably	 predictable	 genes	 (e.g.	 TP53,	 NF1,	 RB1,	 PTEN,	

BRCA1,	BRAF,	and	so	on).		However,	there	is	considerable	ambiguity	regarding	the	expected	

mutational	profile	of	LFS	sarcomas.	 	Many	LFS-associated	soft	 sarcomas	appear	 to	exhibit	

chromothripsis	and	CNAs,	particularly	soft	tissue	sarcomas	(10,	15),	and	exome	sequencing	

of	osteosarcomas	also	reveals	CNAs	to	be	common	(117,	118).		On	the	other	hand,	several	

genes	 with	 SNVs	 that	may	 impact	 osteosarcomagenesis	 have	 been	 identified	 (117,	 118).	
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Other	papers	have	 identified	point	mutations	and	deletions	 in	genes	 such	as	NF1,	ERCC2,	

and	PTEN	that	should	be	associated	with	sarcomas	(119,	120),	further	cementing	the	need	

for	a	multi-omics	approach.	
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However,	 in	 many	 p53-associated	 non-sarcoma	 tumors,	 we	 observe	 a	 mutator	

phenotype,	related	to	p53’s	function	as	the	guardian	of	the	genome,	in	which	these	tumors	

appear	 to	 acquire	 a	 plethora	 of	 variants,	 some	 of	 which	

	

Figure	40:	Tumor-free	survival	curve	of	p53+/H	(n=50)	and	p53+/+	 (n=20)	mice	from	our	

cohort,	 showing	 that	 that	 p53H/+	mice	 were	 more	 prone	 to	 develop	 tumors	 (p-value:	

6.37-e7).		Some	p53+/+	mice	developed	lymphomas,	particularly	in	the	thymus.	
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may	only	be	passengers	 (121,	122).	 	Thus	 it	may	be	unclear	what	we	should	expect	when	

looking	 at	 p53-LFS	 sarcomas,	 chromothripsis,	 characteristic	 of	 sarcomas,	 or	 a	 mutator	

phenotype	consistent	with	p53	mutations,	or	some	mixture	of	the	two.	

7 Results		

7.1 Description	of	Mouse	Cohort	Results	

	 Our	original	cohort	consisted	of	50	mice	with	the	p53	R172H	mutation,	and	20	mice	

that	 were	 p53	 WT.	 	 These	 mice	 were	 followed	 for	 a	 period	 of	 up	 to	 two	 years,	 with	

euthanasia	 performed	 for	 tumors,	 or	 other	 health	 conditions	 as	 needed.	 	 We	 collected	

multiple	 tissues	 from	 every	 mouse	 for	 pathology	 (including	 vastus	 lateralis,	 duodenum,	

pectoral	 and	 stomach	 muscles,	 diaphragm,	 kidney,	 spleen,	 heart,	 lung,	 liver,	 femur,	 and	

spine),	 thus	 allowing	 us	 to	 interrogate	 tumors	 that	may	 not	 have	 been	 obvious	 to	 gross	

observation.			
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Figure	41:	Pie	graph	of	 tumor	distribution	 in	 the	p53	R172H	 cohort	 (n=50)	shows	a	high	

prevalence	of	lymphoma,	with	a	variety	of	sarcoma	types.	

Overall,	 mice	 with	 the	 LFS	 cancer-predisposition	 did	 develop	 tumors	 and	 had	

reduced	survival	 relative	 to	control	mice.	 	However,	we	did	observe	several	p53	WT	mice	

that	had	to	be	sacrificed	due	to	hyperpnea.		In	all	such	cases,	mice	were	visibly	hunched	and	

had	 lymphoma	 in	 the	 thymus	upon	dissection,	 suggesting	 that	 the	p53	WT	 C57BL/6	mice	

might	 have	 a	 predilection	 towards	 lymphomas,	 consistent	 with	 published	 results	 by	

Donehower	et	al.	(123).	

7.1.1 Lymphomas	and	sarcomas	were	the	most	common	tumor	types	

	 We	 sent	 all	 our	 tissues	 to	 Dr.	 Elizabeth	 Whitley	 (Pathogenesis,	 LCC)	 for	 full	

pathology.		The	majority	of	tumors	that	we	observed	in	our	mice	were	lymphoma	(including	



	 94	

in	 some	p53-WT	mice),	 or	 sarcoma,	with	 the	majority	 of	 these	 being	 osteosarcomas	 and	

histiocytic	 sarcomas.	 	Consistent	with	 the	notion	 that	 sarcoma	 types	 could	have	different	

etiologies,	we	 attempted	 to	minimize	 the	 types	 of	 sarcomas	we	 observed	 during	 sample	

selection.	

7.1.2 Choice	of	sarcoma	type	for	sequencing	

The	most	common	sarcoma	type	we	observed	in	the	mice	was	histiocytic	sarcomas,	

a	 neoplasia	 composed	 of	 hematopoietic	 cells,	 that	 has	 historically	 been	 classified	 as	

lymphoma,	 and	 is	 typically	 ascertained	 only	 after	 extensive	 immunophenotypic	

characterization	 (124),	 making	 it	 a	 less	 compelling	 candidate.	 	 In	 addition,	 histiocytic	

sarcomas	are	not	considered	to	be	among	the	most	common	tumor	types	associated	with	

LFS	 in	 humans;	 in	 fact,	 in	 the	 IARC	 TP53	 database,	 there	 are	 no	 germline	 p53	 variants	

associated	 with	 histiocytic	 sarcomas.	 	 Therefore,	 we	 instead	 chose	 to	 sequence	

osteosarcomas	 and	 fibrosarcomas,	 leveraging	 additional	 samples	 that	 were	 previously	

generated	 in	 the	 Krahe	 Lab	 with	 a	 p53	 R172H	 mutation.	 	 In	 total,	 these	 comprised	 two	

additional	osteosarcomas,	and	four	additional	fibrosarcomas,	for	eight	osteosarcomas,	and	

six	fibrosarcomas	in	total	for	omics	analysis.	

7.1.3 List	of	mouse	sarcomas	for	sequencing	

The	table	below	(Table	 10)	 contains	a	 list	of	 samples,	 their	ages,	gender,	 types	of	

tissue	sequenced,	and	whether	or	not	the	mouse	was	also	diagnosed	with	lymphoma.	
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Table	 10:	 Table	 of	 Mouse	 Sarcomas	 for	 NGS.	 	 VL	 –	 vastus	 lateralis,	 FR	 –	 femur,	 FS	 –	

fibrosarcoma,	OS	–	osteosarcoma.	 	 Several	mice	were	 found	 to	 also	have	 lymphoma	 in	

addition	to	sarcomas	–	these	are	noted	in	the	table.	

Sample	 Age	(mo)	 Sex	 Normal	Type	 Tumor	Type	 Lymphoma	
F8-23	 13.0	 M	 VL	 FS	 Yes	
F1-13	 11.8	 M	 VL	 FS	 No	
F2-3	 9.1	 M	 VL	 FS	 No	
F8-17	 14.2	 M	 VL	 FS	 No	
F3-8	 15.5	 F	 VL	 FS	 No	
F2-4	 16.1	 M	 VL	 FS	 Yes	
F8-70	 10.9	 F	 FR	 OS	 No	
F8-51	 13.4	 F	 FR	 OS	 Yes	
F3-20	 14.3	 F	 FR	 OS	 No	
F7-12	 17.3	 F	 FR	 OS	 Yes	
F3-98	 16.5	 F	 FR	 OS	 No	
F8-49	 13.0	 M	 FR	 OS	 Yes	
F7-2	 19.1	 F	 FR	 OS	 Yes	
F3-35	 13.5	 F	 FR	 OS	 No	
	

These	data	show	one	remarkable	trend.		The	majority	of	fibrosarcomas	were	found	in	male	

mice	(5:1	male	to	female),	while	the	majority	of	osteosarcomas	were	found	in	female	mice	

(7:1	 female	 to	 male).	 	 We	 have	 no	 reason	 to	 believe	 that	 this	 is	 anything	 more	 than	 a	

statistical	 anomaly,	 but	 may	 be	 worth	 continuing	 to	 monitor	 in	 future	 cohorts.	 	 We	

otherwise	found	no	distinct	trends	for	age	and/or	lymphomas	

7.2 Mouse-specific	variation	necessitates	the	use	of	N/T	pairs	

Initially,	 we	 had	 hoped	 to	 use	 a	 pool	 of	 normal	mice	 to	 serve	 as	 control	 tissues,	

under	the	assumption	that	the	mice	were	isogenic.	 	However,	during	initial	analysis	of	the	
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normal	pool,	we	found	these	mice	had	pockets	of	variation	that	were	typically	unique	to	a	

given	mouse,	 and	 could	 be	 due	 to	 being	 on	 a	 mixed	 background.	 	 These	 patterns	 were	

visible	 grossly,	 at	 the	 chromosome	 level	 when	 looking	 at	 variant	 density	 plots,	 and	 by	 a	

background	check	of	the	mouse.	

When	 generating	mouse	models,	 there	 is	 risk	 for	 introducing	 additional	 variation	

during	the	process,	particularly	when	using	embryonic	stem	cells	(ESC)	for	targeting	(125).	

In	 this	 case,	 especially	 in	 early	 generations,	 the	 flanking	 regions	 around	 the	mutation	 (or	

gene)	often	come	from	the	ESC,	rather	than	the	original	mouse	strain.		This	flanking	region	

can	be	reduced	through	backcrossing,	but	even	after	10	successive	backcrosses,	as	much	as	

1	 cM	 on	 either	 side	 of	 the	 target	 (~40	 genes	 on	 average)	 is	 likely	 to	 retain	 donor	

sequence(125)	(125),	leading	to	the	presence	of	passenger	mutations	around	the	region	of	

interest,	particularly	since	variation	is	generally	called	against	the	background	of	the	original	

mouse	 strain.	 	 Thus,	 it	 is	 possible,	 if	 unlikely,	 that	 germline	 variation	 in	 these	 flanking	

regions	may	contribute	to	the	outcome,	and	strictly	considering	only	somatic	variation	may	

be	somewhat	of	an	oversimplification	when	trying	to	uncover	genetic	contributions	towards	

sarcomagenesis.	

In	fact,	in	sequencing	normal	controls	from	our	p53	mice,	we	seemed	to	observe	this	

phenomenon.	 When	 we	 looked	 at	 overall	 variant	 density	 profiles	 for	 some	 mice	 in	 our	

cohort	(called	against	the	reference,	a	C57BL/6	mouse),	we	found	variation	in	the	flanking	

regions	on	chr11	(Figure	42)	that	was	present	in	mice	with	a	p53+/H	background	(red,	blue),	

but	not	WT-controls	with	wild-type	p53	(orange,	yellow,	purple).			
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Figure	42:	Variant	density	plot	(#	of	variants/100kb)	from	a	pilot	study	designed	to	

determine	if	using	a	normal	pool	was	reasonable	under	the	hypothesis	that	the	mice	were	

sufficiently	isogenic.		We	sequenced	two	tissues	from	a	p53+/H	mouse,	and	three	femurs	

from	three	other	mice	with	WT	p53.		These	data	show	distinctly	different	variant	profiles	

for	the	p53H/+	mice	vs.	the	p53	WT	mice,	and	even	hints	that	the	p53	WT	mice	may	not	be	

isogenic	with	each	other		

7.2.1 Multiple	chromosomes	appear	to	have	non-C57BL6	background	

Moreover,	we	found	potentially	confounding	background	from	the	129-mouse	in	other	

chromosomes	as	well.		We	worked	with	Dr.	Benavides	(MDACC	–	Smithville,	TX;	Research	

Animal	Support	Facility	–	Smithville),	to	characterize	the	mouse	background	using	strain-

specific	SNPs.		A	subset	of	chromosomes	in	the	mice	we	tested	had	no	129-alleles,	but	a	
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subset	of	chromosomes,	such	as	13,	and	14	had	fairly	extensive	contamination.		Overall,	the	

data	seemed	to	indicate	that	just	over	80%	of	the	alleles	were	from	the	C57BL/6	

background.	

	

	

Figure	 43:	 SNP	 data	 checking	 the	 background	 of	 the	 p53	 R172H	 mice	 showing	 that	

although	 the	majority	 of	 the	 alleles	 were	 from	 the	 C57BL/6	 background	 (>80%),	 there	

were	some	chromosomes	that	had	extensive	heterozygous	alleles.		The	data	also	strongly	

suggest	that	these	mice	should	not	be	considered	isogenic.	

Consistent	with	these	data,	we	also	looked	at	variant	density	plots	(line	graph	of	

variants/100	kb)	across	other	chromosomes	across	five	tissues	from	different	mice	(Figure	

44),	finding	that	mice	appeared	to	be	less	isogenic	than	originally	expected.		Several	mice	

had	unique	variation/variant	profiles,	such	as	“GL_1_N…”	(grey)	on	chromosomes	1,	7,	11,	

and	13,	or	“GL_7_N…”	(orange)	on	chromosome	11.	
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Figure	 44:	 Variant	 density	 plots	 (#	 variants/100	 kb	windows),	 continue	 to	 support	 that	

these	mice	are	should	not	be	considered	isogenic.	

These	data	support	the	previous	evidence	from	the	background	check	that	these	mice	were	

not	isogenic,	and	necessitated	the	switch	from	a	normal	pool	to	only	sequencing	matched	

normal/tumor	pairs	to	better	ascertain	somatic	risk	factors.		

For	 fibrosarcomas,	 we	 elected	 to	 use	 the	 vastus	 lateralis	 (VL,	 muscle)	 and	 for	

osteosarcomas	 (OS),	we	used	a	 femur	 (FR,	bone)	as	a	normal	 control.	 	We	expected	 that	

such	 considerations	matter	 less	 for	 the	 genomic	 analysis,	 but	more	 for	 transcriptomic	 or	

epigenetic	analyses	where	tissue	specificity	matters	more	(126).	 	 In	all	cases,	we	chose	to	

sequence	normal	tissue	that	was	distal	 to	the	tumor	to	better	delineate	acquired	somatic	

changes.	
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7.3 LOH	and	Pyrosequencing	

7.3.1 Initial	WGS	data	suggests	not	all	sarcomas	have	LOH	
	

The	general	consensus	in	the	field	is	that	the	majority	of	p53-tumors	have	eventual	

LOH	 (127).	 However,	 in	 our	 pilot	 study,	 in	which	we	 sequenced	 2	 human	 tumors,	 and	 2	

mouse	 tumors	 by	 WGS,	 we	 observed	 one	 tumor	 with	 LOH	 and	 one	 with	 ROH	 for	 each	

organism.	 	 Alerted	 to	 the	 possibility	 that	 LOH	might	 not	 be	 as	 common	 as	 expected,	we	

used	pyrosequencing	 to	quantitatively	determine	 the	extent	of	 LOH	 in	our	mouse	 tumors	

and	 found	 two	 initially	 unexpected	 results.	 	 First,	 we	 saw	 LOH	 in	 some	 normal	 tissues.		

Secondly,	in	contrast	to	the	general	consensus	described	in	Rivlin	et	al.	(127)	of	the	majority	

of	tumors	having	eventual,	we	saw	LOH	in	p53	in	mouse	sarcomas	only	about	half	the	time.		

However,	we	acknowledge	that	previously	published	LOH	data	by	Lang	et	al.	is	also	around	

50%	(51).	

7.3.2 Some	normal	tissues	appear	to	have	LOH	
	

In	 addition	 to	 pyrosequencing	 tumor	 tissues,	 we	 also	 sequenced	 the	 matching	

constitutive	tissues	from	the	same	mouse	as	controls,	finding	two	outliers.		We	found	two	

femurs	that	appeared	to	be	normal	at	gross	observation,	but	had	relatively	advanced	LOH	

by	 pyrosequencing	 (Figure	 45).	 In	 both	 cases,	 LOH	was	more	 pronounced	 in	 the	 tumor,	

relative	to	the	supposedly	normal	femur.	Moreover,	these	femurs	were	not	adjacent	to	the	

osteosarcoma.	 	One	osteosarcoma	was	 located	 in	 the	 ribs,	while	 the	other	osteosarcoma	

was	in	the	left	leg	(with	the	femur	being	from	the	right	leg).	
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Figure	 45:	 Pyrograms	with	 peak	heights.	 	 These	 data	 suggest	 that	we	had	 LOH	 in	what	

appeared	 to	 be	 normal	 femurs	 upon	 gross	 observation.	 	Moreover,	 these	 femurs	were	

distal	 from	 the	 primary	 tumor	 site,	 suggesting	 that	 LOH	 may	 not	 be	 sufficient	 for	

tumorigenesis.	

To	 rule	 out	 the	 possibility	 that	 all	 constitutive	 tissues	 had	 this	 same	 behavior,	 we	

pyrosequenced	 additional	 tissues	 from	 the	 same	mouse,	 including	 the	 pectoralis	muscle.		

These	other	tissues	all	had	ROH,	suggesting	that	the	LOH	was	relatively	unique	to	the	femur	

(Figure	46).	
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Figure	46:	Graphical	depiction	of	pyrosequencing	data	of	additional	constitutive	tissues	in	

mice	with	LOH	in	the	femur.		On	the	x-axis	is	a	number-scale	representing	the	%H-allele,	

with	circles	trending	towards	the	left	side	of	the	graph	having	greater	LOH.		Circles	near	

50%	 have	 ROH	 (i.e.	 have	 retained	 the	WT-allele).	 	 These	 data	 suggest	 the	 majority	 of	

normal	(N)	samples	have	ROH,	with	the	exception	of	these	two	FR	samples,	which	show	

relatively	advanced	LOH,	though	not	exceeding	the	tumors.	 	

These	data	are	consistent	with	the	idea	that	p53	LOH	at	the	Trp53	R172H	locus	is	not	

sufficient	for	tumorigenesis.		However,	because	we	typically	send	one	femur	for	pathology,	

and	 reserve	 the	 other	 for	 experiments,	 such	 DNA	 extractions,	 it	 is	 possible	 that	 the	

sequenced	 femur	 had	 cancerous	 or	 pre-cancerous	 lesions	 that	 were	 not	 visible	 at	 gross	

observation.	 	We	did	not	observe	such	a	pattern	to	be	the	case	for	any	VL/FS	pairs;	no	VL	

samples	had	LOH.	

These	 data	 are	 juxtaposed	 against	 p53-/-	 and	 p53+/-	mice.	 	 In	 p53-/-	 null	 mice,	 the	

penetrance	 of	 tumors	 is	 100%,	 suggesting	 that	 LOH	 alone	 would	 be	 sufficient	 for	
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tumorigenesis.	 	 In	 p53+/-	 mice,	 the	 data	 indicate	 p53	 should	 be	 considered	 to	 be	

haploinsufficient.		Only	half	of	all	tumors	in	mice	under	the	age	of	18	months	had	LOH,	and	

this	 number	 dropped	 to	 just	 15%	 in	 tumors	 over	 18	 months.	 (128)	 However,	 no	 such	

comprehensive	analysis	of	LOH	has	been	done	 in	p53H/+	mice	and	 it	 is	not	clear	 if,	or	how	

the	GOF	mutation	may	impact	such	behavior.	

7.3.3 Use	of	toe	tissue	as	normal	controls	
	

Due	to	observations	that	some	tissues,	which	on	gross	observation	appeared	to	be	

normal,	had	LOH,	we	wanted	to	find	better	control	tissues	to	best	determine	a	baseline	that	

represented	 ROH.	 	 We	 elected	 to	 use	 toe	 tissue,	 originally	 collected	 for	 genotyping,	

between	days	7-10	when	it	is	still	cartilaginous.		Theoretically,	these	tissues	should	have	had	

minimal	 time	 to	 acquire	 additional	 somatic	 changes	 and	 therefore	 serve	 as	 a	 more	

appropriate	benchmark	than	constitutive	tissues	collected	at	time	of	sacrifice.	

Data	from	toe	tissue	collected	across	our	mouse	tumors	suggests	that	the	totality	of	

the	experiment	and	analysis	has	a	slight	bias	for	the	mutant	A-allele.		Whether	this	occurs	

during	the	PCR	amplification,	or	as	part	of	the	pyrosequencing	process,	which	is	known	to	

favor	 the	 A-allele	 is	 unknowable.	 	 Using	 the	 toe	 data	 as	 a	 whole,	 we	 set	 up	 our	 own	

classification	 scheme.	 	 We	 averaged	 the	 allele	 %	 from	 all	 toes,	 and	 then	 calculated	 a	

standard	 deviation.	 	 Anything	 within	 two	 standard	 deviations	 from	 the	 average	 was	

considered	ROH.			
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7.3.4 Pyrosequencing	shows	that	LOH	occurs	in	only	about	50%	of	mouse	LFS-sarcomas	
	

Pyrosequencing	of	all	tumors	and	matched	normals	suggested	that	LOH	was	present	only	

in	 about	 half	 of	 all	 sarcomas	 (Figure	 47),	 indicating	 the	 LOH	 (at	 the	 R172H	 locus)	 is	 not	

required	for	sarcomagenesis.		These	data	are	also	somewhat	consistent	with	previous	data	

suggesting	that	LOH	is	less	common	in	older	tumors.		Using	an	arbitrary	cutoff	point	of	15	

months,	this	provides	a	clear	delineation	 in	fibrosarcomas.	 	For	osteosarcomas	the	data	 is	

less	clear.		There	are	two	osteosarcomas	(F8-49	and	F3-35)	at	about	13	months	that	did	not	

appear	to	have	LOH,	and	two	older	ones	with	more	pronounced	LOH	(F7-12	and	F3-98).		We	

also	did	not	observe	any	trends	for	LOH	as	it	relates	to	lymphoma	status.	
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Figure	 47:	 Depiction	 of	 pyrosequencing	 results	 plotted	 against	 %	 of	 mutant	 and	 WT	

alleles.	 	Mouse	 name,	 tumor	 type	 (fibrosarcoma	 –	 FS,	 osteosarcoma	 –	 OS)	 sex,	 age	 at	

sacrifice,	and	 lymphoma	status	are	 listed	at	 left-hand	column.	 	Data	 indicate	where	 the	

matching	normal	 is	 (always	 femur,	or	vastus	 lateralis	 for	 corresponding	 tumors),	with	a	

solid	line	indicating	the	extent	of	LOH	in	the	tumor.		Additional	dashed	lines	account	for	

tumor	purity	as	indicated	by	the	pathologist	where	available.		The	black,	solid	vertical	line	

indicates	 ROH.	 	 Black	 dot-dash	 line	 bisecting	 graph	 in	 two	 separates	 out	 fibrosarcomas	

from	osteosarcomas.		Table	at	top	provides	summary	based	on	tumor	type	and	ROH/LOH	

status.	
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8 Results:	Sequencing	of	Mouse	Samples	
	

We	then	looked	at	several	different	kinds	of	sequencing.	For	DNA,	we	looked	at	WES	

(at	40X/80X	N/T	coverage,	Nimblegen	2.0,	capture	region	54.3	Mb)	and	low-coverage	WGS.		

For	RNA,	we	were	unable	to	isolate	high-quality	RNA	from	fresh	frozen	tissues.		Despite	our	

best	 attempts	 to	 snap	 freeze,	 RNA	 appeared	 degraded	 after	 isolation.	 	 For	 methylation	

data,	we	used	reduce	representation	bisulfite	sequencing	(Illumina).			

	

8.1 WES	variant	calling	pipeline	

We	did	all	WES	and	somatic	variant	calling	 in-house	according	 to	best	practices	as	

outlined	by	GATK.	(80)	We	additionally	used	five	different	somatic	variant	callers,	MuTect,	

(129)	MuTect2,	(80)	VarScan2,	(130)	Somatic	Sniper	(131)	and	MuSE,	(132)	again	using	the	

default	recommended	settings.		Historically,	somatic	variant	callers	have	generally	showed	

poor	agreement	with	one	another,	and	are	continuing	to	undergo	refinement.	(133)	(134)	

(135)	

	



	 107	

	

Figure	 48:	 Krahe	 lab	 pipeline	 for	 identification	 of	 somatic	 variation	 in	 WES	 data.	 	 We	

found	somatic	variant	callers	to	produce	widely	disparate	calls	–	to	compensate	for	this,	

we	 looked	 at	 all	 somatic	 variants	 that	 were	 found	 by	 at	 least	 two	 algorithms	 to	 best	

balance	false	positives	and	false	negatives.	

8.1.1 Filtering	for	high-quality	somatic	variants	

In	 our	 pipeline,	 using	 the	 recommended	 best	 practices,	 and	 selecting	 only	 for	

variants	 each	 considered	 to	 be	 high	 confidence,	 we	 saw	 poor	 agreement	 between	 the	

samples	when	looking	at	somatic	SNVs	(Figure	 49).	A	significant	proportion	of	the	 lack	of	

agreement	 seems	 to	 be	 due	 to	 the	 high	 number	 of	 variants	 found	 by	 both	mutect1	 and	

Varscan2,	which	call	the	most	variants.		Of	all	the	variant	callers,	MuSE	shows	the	greatest	

overlap	with	other	algorithms.		
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Figure	 49:	 Representative	 Venn	 diagram	 of	 agreement	 between	 five	 different	 somatic	

variant	callers	in	our	mouse	samples.		All	variants	were	called	according	to	best	practices	

as	 outlined	 in	 the	 documentation	 and	 were	 considered	 to	 be	 high	 confidence	 by	 the	

individual	variant	caller.	 	Overall,	the	key	data	trends	that	we	observe	are	that	Mutect1	

and	Varscan2	call	the	most	variants,	and	that	MuSE	shows	the	most	agreement	with	other	

somatic	variant	callers.	
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The	lack	of	agreement	underlies	a	key	question:	which	somatic	variant	calls	are	true	

positives?	 How	 should	 researchers	 balance	 retaining	 false	 positives,	 with	 true	 positives	

occurring	at	lower	allele	frequencies	(e.g.	arising	by	tissue	heterogeneity).	Consideration	of	

variants	 found	 by	 all	 algorithms	 is	 almost	 certainly	 too	 restrictive	 –	 they	 represent,	 on	

average,	just	0.1%	of	all	somatic	variant	calls	(by	any	algorithm).		In	contrast,	consideration	

of	 variants	 found	 in	 any	 one	 algorithm	 may	 lead	 to	 spurious	 association.	 	 Brief	 visual	

inspection	indicates	that	these	one-algorithm	mutations	contain	a	mix	of	plausibly	true	and	

likely	to	be	false	variants.			

To	get	a	sense	for	an	appropriate	cutoff,	we	counted	the	number	of	variants	found	

by	 exactly	 one	 algorithm,	 by	 exactly	 two	 algorithms	 (any	 pair	 was	 fine),	 by	 any	 three	

algorithms,	and	so	on.		On	average,	about	5%	of	total	somatic	variants	are	called	are	found	

by	3+	algorithms,	and	about	10-15%	of	 total	 somatic	 variants	are	 found	by	2+	algorithms	

(Table	11).	

Table	 11:	 Table	 showing	 overlap	 of	 five	 different	 somatic	 variant	 callers.	 	 The	 top	 half	

counts	the	number	found	by	exactly	1,	2,	3,	4,	or	5	algorithms	for	16	N/T	pairs	across	14	

mice.	The	second	half	translates	these	into	percentages.	
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8.1.2 Somatic	mutation	burden	in	sporadic	sarcomas	

The	most	 recent	 reported	 overall	 somatic	 mutation	 burden	 for	 human	 adult	 soft	

tissue	sarcomas	is,	on	average,	1.06	per	Mb,	with	the	highest	reported	being	33.5	mutations	

per	 Mb,	 where	 mutations	 are	 considered	 to	 be	 non-synonymous	 SNVs	 (10).	 Back	

referencing	the	data	against	the	cBio	portal	reveals	that	the	samples	with	the	three	highest	

mutation	 loads	 (>350	 total	 mutations)	 have	 somatically	 acquired	 likely	 loss-of-function	

mutations	 in	p53:	 TCGA-DX-AB2E-01	 (R342*,	 age	 53,	myxofibrosarcoma),	 TCGA-3B-A9HT-

01(W91*,	 age	 53,	 leiomyosarcoma),	 and	 TCGA-DX-AB32-01	 (L252del,	 age	 62,	

undifferentiated	 pleomorphic	 sarcoma),	 consistent	 with	 the	 possibility	 that	 p53	 LOF	

alterations	 can	 increase	 mutational	 load.	 	 Four	 patients	 had	 somatic	 mutations	 at	 p53	

R175H,	analogous	to	the	mouse	model;	these	had	36,	59,	62,	and	101	mutations,	at	ages	44,	

73,	64,	and	62	respectively	(10,	22).			

We	 then	 took	 variants	 that	 had	 been	 identified	 by	 two	 or	 more	 algorithms,	 and	

annotated	with	ANNOVAR	 (136),	 SIFT,	 (86)	 and	PROVEAN	 (137)	 to	 further	 select	 for	non-

synonymous	variants	to	see	if	our	mice	were	in	line	with	these	data	(Table	12).	
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Table	12:	Table	 showing	 the	number	of	non-synonymous	SNVs	 found	 in	each	mouse	by	

two	 or	 more	 algorithms	 (2+),	 or	 three	 or	 more	 algorithms	 (3+).	 	 Results	 are	 roughly	

consistent	 with	 published	 data	 on	 mutation	 rates	 (by	 non-synonymous	 SNVs)	 in	 soft	

tissue	sarcomas.	

	

At	a	capture	region	of	54.3	Mb	in	the	mouse,	if	the	same	mutation	rates	hold	in	the	

mice,	we	would	expect	to	see	an	average	of	58	mutations.		To	estimate	an	upper	bound,	we	

took	 the	highest	mutational	burden	 in	an	adult	 soft	 tissue	 sarcoma	 from	the	TCGA	paper		

(10),	33.5	mutations	per	Mb.	 	Applying	this	rate	to	the	mouse	exome	(33.5	mutations	per	

Mb	*	54.3	Mb),	gives	an	upper	bound	of	1,819	somatic	mutations.		Choosing	either	2+	or	3+	

is	therefore	roughly	within	the	same	order	of	magnitude.			

Because	we	were	unsure	of	how	a	germline	GOF	p53	mutation	in	the	mouse	could	

contribute	 to	 somatic	 mutation	 rates,	 we	 decided	 that	 it	 was	 worthwhile	 to	 at	 least	

consider	somatic	variants	 identified	by	2+	algorithms,	especially	when	using	recurrence	as	

an	endpoint.		
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8.2 Whole	Exome	Sequencing	Results	

8.2.1 Recurrence	in	Somatic	SNV	Data	

We	 initially	 looked	 at	 recurrence	 of	 SNVs	 across	 all	 mouse	 tumors,	 finding	 one	

recurrent	 SNV,	 in	 Mroh2a.	 	 This	 variant	 (c.C4088T,	 p.T1363M)	 was	 predicted	 to	 be	

damaging	 (PROVEAN=-4.02,	 threshold	 <	 -2.5;	 SIFT=0.046,	 threshold	 <	 0.05)	 but	 may	 be	

polymorphic;	it	has	an	rsID	but	no	reported	allele	frequencies.		Secondly,	we	looked	to	see	if	

there	were	any	genes	 that	were	 recurrently	mutated	 (using	only	variants	predicted	 to	be	

deleterious).		There	were	nine	genes	that	recurred	across	three	or	more	tumors	(Table	13).	

	

Table	13:	Table	of	recurrent	somatically	mutated	genes	in	mouse	tumors	(three	or	more	

tumors).		For	a	gene	to	be	considered,	it	had	to	have	a	mutation	predicted	to	have	

functional	consequence.			Shading	indicates	where	two	comparisons	for	the	same	tumor	

were	made,	one	to	a	femur	(FR),	and	one	to	a	muscle	(VL).	
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With	the	exception	of	Arid1A,	 these	recurrently	somatically	mutated	genes	do	not	appear	

be	well-known	players	in	cancer.		They	are	not	found	in	any	of	our	human-based	gene	lists	

(covering	cancer,	the	p53	network,	and	sarcomas).	 	Therefore,	these	genes	may	represent	

either	 good	 novel	 candidates	 to	 pursue	 further,	 or	 false-positives,	 arising	 perhaps	 out	 of	

multiple	testing	of	the	entire	exome.	

8.2.1.1 Arid1a	

ARID1A	 (in	 humans)	 is	 known	 to	 be	 a	 haploinsufficient	 tumor	 suppressor	 and	 is	 a	

SWI/SNF	 chromatin	 remodeling	 gene	 that	 has	 been	 linked	 to	 several	 cancers,	 including	

ovarian,	gastric,	and	breast	tumors,	but	not	including	sarcomas.		In	fact,	in	one	paper	by	Wu	

et	 al.	 the	 authors	 specifically	 claim	 they	 are	 not	 aware	 of	 any	 ARID1A	 mutations	 being	

detected	in	human	sarcomas	(138).		Moreover,	the	majority	of	cancer-causing	mutations	in	

ARID1A	 that	 have	 so	 far	 been	 identified	 are	 stopgain	 or	 frameshift	 mutations	 (138),	 as	

opposed	 to	 the	 non-synonymous	 SNVs	 we	 identified	 in	 Arid1a	 in	 the	 mouse.	 	 Taken	

together,	these	data	raise	some	doubt	as	to	whether	or	not	these	mutations	could	impact	

sarcomagenesis,	 but	 do	 allow	 that	 ARID1A	 may	 be	 an	 intriguing,	 if	 not	 immediately	

compelling,	candidate	for	follow-up.	

8.2.1.2 Mroh2a	

Mroh2a	 is	 the	most	common	somatically	mutated	gene	across	our	mouse	 tumors.		

These	comprise	seven	non-synonymous	variants,	and	one	stop	gain	variant,	some	that	have	

been	flagged	as	potentially	being	polymorphic.	
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Table	14:	Table	of	somatic	variants	in	Mroh2a	across	all	mice.		Mice	not	listed	here	do	not	

have	somatic	alterations	predicted	to	be	damaging.	

	

The	function	of	MROH2A	in	humans	has	not	been	characterized	and	there	have	been	no	

published	papers	on	the	gene	(https://www.ncbi.nlm.nih.gov/gene/339766).		By	cBio,	

MROH2A	has	a	somatic	mutation	frequency	of	just	0.1%,	suggesting	it’s	not	a	superb	

candidate	for	follow-up.		But,	examination	of	recently	added	TCGA	sarcoma	data	finds	that	

MROH2A	has	a	deep	deletion	in	more	than	5%	of	sarcomas	(22).	

	

Figure	50:	cBio	data	for	MROH2A	(22).		Most	notably,	sarcomas	are	the	fourth	most	

common	tumor	with	MROH2A	alterations,	with	the	majority	of	these	being	deletions.	
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We	also	note	that	MROH2A	is	a	relatively	large	gene,	spanning	almost	60	kb,	and		

1,800	codons.		Therefore,	it	may	not	be	unexpected	to	have	acquired	somatic	variants	by	

chance	alone.		Despite	this,	the	combination	of	it	being	the	most	recurrently	mutated	gene,	

and	recent	CN	data	as	seen	in	cBio	make	it	an	interesting	candidate	for	additional	functional	

follow-up.	

8.2.2 Inspection	of	multiple	hits	in	the	p53	pathway	may	be	meaningful	
	

Disruption	 of	 key	 pathways	 is	 often	 considered	 to	 be	 a	 hallmark	 of	 cancer	 (2,	 54,	

139).		However,	pathways	often	have	built-in	redundancies,	and	a	single	alteration	may	be	

insufficient	for	tumorigenesis	(140).		For	example,	in	renal	carcinoma,	loss	of	VHL	or	PBRM	

alone	 are	 not	 sufficient	 for	 tumorigenesis,	 but	 co-occurring	 VHL,	 PBRM1,	 and	 SETD2	

mutations	are	observed,	the	latter	two	of	which	are	both	involved	in	chromatin	remodeling	

via	the	SWI/SNF	complex	(141,	142).	

This	 runs	 counter	 to	 the	 classic	 idea	 that	 mutations	 in	 the	 same	 pathway	 are	

redundant	and	therefore	unlikely,	and	the	concept	of	mutual	exclusivity	for	some	gene	pairs	

(139).		For	example,	in	glioblastoma,	TP53	and	MDM2	were	found	to	be	mutually	exclusive	

(143).			

Emerging	data	from	melanoma	presents	a	more	nuanced	picture.		Classically,	NRAS	

hot-spot	mutations	are	 known	 to	be	mutually	exclusive	 from	BRAF	 hot-spot	mutations	at	

codons	600	and	601.	 	That	 is,	each	 is	 strong	enough	on	 its	own	to	 lead	to	 tumorigenesis.		

However,	 some	 hotspot	 NRAS/KRAS/HRAS	 mutations	 have	 been	 shown	 to	 appear	

concomitantly	with	 recurring	mutations	 in	BRAF	 (not	at	 codons	600/601),	 suggesting	 that	

two	 alterations	 in	 the	 same	 pathway	 are	 possible	 or	 even	 required	 (144).	 	 These	
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observations	 indicate	 that	 two	 variants,	 with	 possibly	 weaker	 effects,	 could	 combine	 to	

create	a	similar	effect	as	one	strong	mutation.	

Moreover,	 in	 malignant	 peripheral	 nerve	 sheath	 tumors	 (MPNST),	 a	 soft	 tissue	

sarcoma,	 evidence	 suggests	 that	 activation	 of	 the	 Ras	 pathway	 takes	 multiple	 hits.	 	 In	

addition	to	a	germline	mutation	 in	NF1	 (coupled	with	somatic	 loss),	multiple	MPNSTs	had	

additional	 somatic	 variants,	 predicted	 to	 be	 pathogenic	 (e.g.	 PIK3CA,	 KIT,	 PTPN11,	 and	

FGFR1,	 among	 others)	 (145).	 	 However,	 no	 single	 gene	 has	 emerged	 as	 being	 highly	

recurrent	in	conjunction	with	mutant	NF1.	(145).	 	Taken	together,	these	data	suggest	that	

looking	 for	multiple	 hits	 in	 the	p53	 pathway	 (or	 any	 cancer	 pathway)	 has	 intrinsic	 value,	

although	 this	would	best	be	done	with	a	high	number	of	 samples	 to	allow	 for	potentially	

weaker	effects	to	be	more	evident.	

8.2.3 Notable	somatic	variants	in	individual	tumors	

To	better	ascertain	variants	more	likely	to	be	true	somatic	mutations,	we	increased	

the	threshold	for	inclusion	to	require	three	or	more	algorithms.		We	took	the	following	lists:	

1. Krahe	Lab	p53	network	genes	(n	=	131	genes)	

2. Krahe	Lab	Sarcoma	gene	list	(Table	7)	(n	=	147	genes)	

3. 	Cancer	Gene	Census	(146)	(n	=	609	genes)	

	to	 prioritize	 our	 search	 for	 known	 additional	 genetic	 risk	 factors.	 	 These	 lists	 are	 not	

redundant	with	each	other	 (Figure	 51),	with	at	 least	some	of	the	differences	due	to	how	

the	 lists	were	curated.	 	For	example,	some	genes	on	the	sarcoma	 list	are	based	on	only	a	

few	case	reports.	
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Figure	51:	Venn	diagram	of	overlap	of	three	gene	lists:	Cancer	Gene	Census,	Krahe	Lab	p53	

network,	and	Krahe	lab	sarcoma	list.		Figure	not	to	scale.	

Several	mouse	sarcomas	had	somatic	mutations	in	known	sarcoma-	or	cancer-risk	

genes	(Table	15).		Investigation	of	p53	network	genes	found	potentially	deleterious	alleles	

in	about	half	of	tumors	(Table	15),	suggesting	that	the	p53	network	does	not	need	to	be	

compromised	in	multiple	places	in	the	context	of	the	Trp53R172H	mutation.	
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Table	15:	Partial	table	of	hits	in	known	sarcoma,	cancer	or	p53	network	genes.	

	

8.2.4 Notable	germline	variation	in	sarcoma-related	genes	

Given	 previous	 reports	 that	 some	 LFS	 patients	 may	 have	 multiple	 cancer-

predisposing	 mutations	 or	 that	 differing	 p53	 alleles	 have	 different	 penetrance	 (6.3),	 we	

looked	 at	 the	 germline	 mutation	 profiles	 for	 each	 of	 the	 mice	 using	 variants	 called	 by	

HaploCaller.	 	We	 took	 the	 lists	 (146)	 previously	 outlined	 in	 8.2.3	 to	 prioritize	 looking	 for	

known	additional	risk	factors.	

The	majority	of	mice	contain	germline	variants	(non-synonymous,	non-frameshift,	or	

frameshift)	 across	 three	genes	associated	with	 sarcomas,	Cdk4,	Blm,	and,	Myocd	 the	 first	

two	of	which	are	associated	with	osteosarcomas,	the	 last	of	which	 is	associated	with	LMS	

(11).		
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Figure	 52:	 Germline	 variants	 in	 sarcoma	 predisposition	 genes	 in	mice.	 	 These	 data	 are	

compressed;	all	variants	indicated	are	predicted	to	be	damaging,	but	may	not	necessarily	

be	the	same	between	mice.		These	data	raise	the	possibility	that	they	could	contribute	to	

tumorigenesis.	 	However,	we	observe	no	LOH	of	these	variants	 in	the	tumor,	suggesting	

they	may	 be	 haploinsufficient	 (in	 conjunction	with	mutated	p53,	 or	 passengers.	 	 Key	 –	

“0/1”	 indicates	 a	 heterozygous	 variant,	 with	 the	 reference	 allele	 (“0”)	 and	 the	 most	

common	minor	allele	(“1”).		“./.”	indicates	insufficient	data	to	make	a	genotype	call,	often	

due	to	insufficient	coverage.		“0/0”	indicates	a	homozygous	reference/WT	genotype.	

The	overall	 relevance	of	 these	mutations	 is	difficult	 to	determine.	 	 It	 is	possible	 that	such	

germline	variants	contribute	to	the	osteosarcomas	observed	in	the	R172H	mouse	(51),	but	

we	do	not	see	LOH	at	these	positions	in	the	tumor,	suggesting	that	these	mutations	may	be	

haploinsufficient	(in	conjunction	with	mutant	p53),	or	that	they	could	be	merely	passengers.		

We	 also	 do	 not	 observe	 any	 strong	 predilection	 for	 mice	 in	 our	 cohort	 with	 germline	

variants	 in	Blm	and	Cdk4	 to	develop	osteosarcomas	over	 fibrosarcomas,	suggesting	at	 the	

very	least	they	are	not	driving	the	sarcoma	spectrum	towards	osteosarcomas.	
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Table	16:	Distribution	of	germline	variants	 in	Blm	and	Cdk4	by	 tumor	 type.	 	Both	genes	

have	 been	 previously	 associated	 with	 osteosarcomas,	 but	 in	 our	 mice,	 show	 no	

predilection	towards	OS	over	FS.	

	

Moreover,	 it	 is	 not	 known	 if	 these	 variants	may	 be	 polymorphisms	 (though	 they	 do	 not	

carry	dbSNP	IDs).	

We	 also	 examined	 our	mouse	 cohort	 for	 non-recurrent	 variation,	 looking	 at	 each	

mouse	individually	for	mutations	in	key	genes.		Three	mice	from	our	cohort	have	germline	

variants	 in	 sarcoma	 predisposition	 genes,	 and	 LOH	 in	 the	 tumor.	 	 RsH-F7-2	 (OS)	 has	 a	

nonsynonymous	SNV	in	Chek2	that	is	predicted	to	be	damaging	(p.G263C,	SIFT=0.04).		Both	

RsH-F7-12	 (OS)	 and	RsH-F8-70	 (OS)	 have	 the	 same	germline	mutation	 in	Bub1b,	 (p.L726I,	

SIFT=0.033),	 a	 gene	 associated	 with	 embryonal	 rhabdomyosarcoma	 and	 aneuploidy	 in	

humans	 (147),	 and	 LOH	 in	 the	 tumor.	 	 Interestingly,	 in	 humans,	 both	CHEK2	 and	BUB1B	

have	been	associated	with	chromosomal	 instability	(147-150).	 	Although	alterations	 in	the	

two	 genes	 are	 not	 considered	 sufficient	 for	 chromosomal	 instability	 (CIN)	 on	 their	 own	

(151),	these	mice	all	have	the	germline	mutation	in	p53	(and	LOH	in	the	tumor).	Thus,	it	is	

probable	that	some	germline	variants	in	these	genes	contributed	to	tumorigenesis	in	these	

mice,	 especially	 given	 their	 LOH	 in	 the	 tumors.	 	 While	 an	 accurate	 estimation	 of	 the	

penetrance	 of	 these	 germline	mutations	 in	 the	 context	 of	 an	 underlying	p53	mutation	 is	

preliminary,	 given	 the	 small	 sample	 size,	 no	 other	mice	 had	 these	 exact	 same	mutations	
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(including	as	a	germline	mutation	with	ROH	in	the	tumor),	suggesting	100%	penetrance	for	

these	specific	variants.				

8.3 RNA-seq	

Unfortunately,	 RNA	 extractions	 from	 fresh	 frozen	 tissues	 in	 the	 mouse	 produced	

sub-par	 RNA	 for	 the	 majority	 of	 tumors	 and	 could	 not	 be	 subjected	 to	 RNA-seq	

transcriptome	profiling.	

8.4 RRBS/Methylation	data	

RRBS	data	was	analyzed	in	conjunction	with	Dr.	Yue	Lu.	 	Data	for	RRBS	was	largely	

high	quality,	but	two	samples	did	not	pass	QC	(RsH-F2-4	FS,	RsH-F1-13	VL).		Therefore,	these	

were	eliminated	from	further	analyses.	

8.4.1 Principal	Components	Analysis	

Principal	components	analysis	(PCA)	of	top	1%	most	variable	sites,	across	all	

samples,	showed	roughly	three	distinct	groups	(Figure	53).		There	was	good	separation	

between	normal	femur	(FR)	and	muscle	(VL)	samples,	consistent	with	tissue-specific	

methylation.		Meanwhile,	the	majority	of	tumors	(FS,	OS)	seem	to	coalesce	into	a	third	

group	(towards	the	bottom	of	the	plot).		The	OS	that	are	not	part	of	this	third	group	do	

group	with	their	matched	tissues,	normal	femurs.	
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Figure	 53:	 PCA	 of	 RRBS	 methylation	 data.	 	 Samples	 cluster	 into	 three	 distinct	 groups,	

generally	comprised	of	FRs,	VLs,	and	tumors	(OS	and	FS).	 	A	couple	of	OS	do	group	with	

the	FR	samples.	

When	we	further	plotted	this	PCA	data	against	p53	LOH	status	from	the	

pyrosequencing	data,	we	do	not	see	much	additional	granularity	in	separating	the	tumor	

samples	(Figure	54).			Tumors	with	more	moderate	LOH	did	seem	to	group	together,	but	

there	continued	to	be	several	tumors	that	appeared	to	have	more	significant	LOH	that	

speckle	the	left	side	of	the	plot	and	were	grouped	with	the	femurs.		These	data	also	make	
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clear	that	two	presumably	normal	FRs	that	previously	showed	LOH	by	pyrosequencing	still	

appeared	to	group	with	normal	FRs	by	methylation,	suggesting	that	changes	to	the	

methylome	did	not	act	as	a	precursor	to	tumorigenesis.		

	

Figure	 54:	 PCA	 analysis	with	 the	 pyrosequencing	 LOH	 data	 laid	 over	 the	 top.	 	 There	 is	

some	modicum	of	 grouping	 of	 the	 samples	with	 pLOH	 that	 indicate	 the	 possibility	 of	 a	

dosage	effect,	but	one	FS	and	three	OS	sarcoma	samples	dot	the	left	side.	
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8.4.2 Recurrence	in	the	methylation	data	

Unlike	for	somatic	SNV	data,	we	see	many	of	the	same	changes	across	different	

mouse	tumors	from	a	methylation	perspective.		Due	to	tissue-specific	differences,	we	

considered	genes	that	were	differentially	methylated	across	all	tumors,	or	across	each	of	

FR/OS	and	VL/FS	pairs.		Multiple	genes	show	significant	hypermethylation	across	all	tumors,	

including	Hic1	(hypermethylated	in	cancer,	Table	17).		However,	of	more	immediate	note	is	

that	we	observed	substantial	hypermethylation	of	Mir219a-2	across	all	mouse	tumors.			

Table	17:	Methylation	data	in	the	mice	shows	significant	recurrence.		Overall,	recurrence	

was	much	higher	via	for	hypermethylation	vs.	hypomethylation.	Key:	NS	–	not	significant.	

	

There	have	been	no	published	studies	on	Mir219a2.		However,	in	human	cancers,	a	type	of	

sarcoma,	malignant	peripheral	nerve	sheath	tumors	(MPNST)	are	frequently	associated	with	

deep	deletions	(>6%,	Figure	55).		Therefore,	loss	of	Mir219a-2/MIR219A2	may	represent	a	

novel	key	player	in	sarcomagenesis.	
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Figure	55:	cBio	data	of	MIR219A2	(22).		Although	alterations	are	not	particularly	common	

across	all	tumor	types	and	studies	(partially	due	to	not	being	assayed),	deep	deletions	of	

MIR219A2	occur	in	almost	7%	of	MPNSTs,	a	type	of	sarcoma	and	mesenchymal	tumor.	

	 Several	other	genes	also	show	hypermethylation	across	multiple	tumors,	including	

Klf14,	Cdx1	and	Tcf15.			

8.4.2.1 KLF14	

KLF14	(Kruppel-like	factor	14)	has	been	identified	as	a	tumor	suppressor	gene.		In	

mice,	disruption	of	the	gene	leads	to	aneuploidy	and	spontaneous	tumorigenesis,	

particularly	via	centrosome	amplification,	a	common	event	in	cancer	resulting	the	presence	

of	extra	centrosomes.		Klf14	directly	targets	Polo-like	kinase	4	(Plk4),	considered	to	be	a	

master	regulator	of	centriole	replication.		In	MEFs,	Fan	et	al.	found	that	loss	of	KLF14	led	to	

genome	instability,	and	tumorigenesis,	while	gain	of	KLF14	led	to	cell	cycle	arrest	(152).		In	

contrast	to	published	work	on	KLF14,	a	big-picture	view	taken	from	the	cBio	database,	
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suggests	a	different	role.		Instead,	KLF14	appears	to	be	amplified	in	the	majority	of	cancers,	

including	sarcomas	(Figure	56).

	

Figure	56:	Alteration	frequency	of	KLF14	in	the	top	35	tumor	studies	in	cBio	((22)).	Contrary	

to	published	experiments,	suggesting	that	KLF14	acts	like	a	tumor	suppressor	gene,	multiple	

tumors	have	amplifications.	

Therefore,	given	recurrence	in	our	mouse	data,	and	strong,	published	functional	evidence	

indicating	a	role	in	genome	instability,	considered	a	hallmark	of	many	sarcomas,	KLF14	may	

be	particularly	interesting	for	additional	follow-up.	

8.4.2.2 Cdx1	

CDX1	has	a	known	role	in	gut	homeostasis	and	induction	of	Cdx1	speeds	up	cell	

proliferation	in	colon	cells,	suggesting	an	in	vitro	oncogenic	role.		Consistent	with	this,	the	

majority	of	colon	cancer	polyps	have	highly	expressed	CDX1	(153).		Moreover,	CDX1	is	a	

target	of	the	oncogenic	pathways	Ras	and	Wnt/β-catenin	pathway	as	well	as	being	a	known	
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regulator	of	the	Rho,	Ras,	and	PI3-Kinase	pathways	(153).		However,	our	data,	which	

indicate	Cdx1	is	hypermethylated	across	our	mouse	tumors,	is	not	consistent	with	this	view.	

Recent	research	indicates	the	role	of	Cdx1	may	be	considerably	more	complex.		For	

example,	although	the	majority	of	colon	polyps	have	highly	expressed	Cdx1,	about	20%	

have	lower	expression	of	Cdx1	(154).		Moreover,	in	mice	without	both	Cdx1	and	Cdx2,	

tumors	were	found	to	be	less	invasive,	and	less	differentiated	(154).		Coupled	with	LOF	

function	mutations	also	being	found	in	other	tumor	types,	such	as	carcinomas,	this	suggests	

that	CDX1	has	a	complex	role	in	tumorigenesis,	with	both	tumor	suppressive	and	oncogenic	

effects.			

8.4.2.3 TCF15	

_TCF15	(transcription	factor	15)	is	found	to	be	altered	in	about	1%	of	all	tumors	

catalogued	by	cBio	(22).		However,	the	available	data	somewhat	contradicts	each	other	–	in	

MPNSTs	(a	mesenchymal	tumor/sarcoma),	6.2%	harbor	deletions.		In	contrast,	in	the	TCGA	

sarcoma	(mostly	adult	STS)	study,	2%	of	cases	show	amplification	(5	cases),	while	0.5%	(1	

case)	show	deletions.		Additional	data	from	a	Memorial	Sloan	Kettering	Cancer	Center	

(MSKCC)	sarcoma	study	aligns	with	the	TCGA	data	(1.2%	(4	cases)	have	amplification,	0.3%	

(1	case)	has	a	deletion),	potentially	implying	that	TCF15	has	tumor	subtype	specific	

relevance.		Given	that	we	observe	hypermethylation	in	our	mice,	our	data	most	closely	line	

up	with	the	MPNST	data.		However,	this	runs	contrast	to	expectation	relative	to	known	

function.		Previously,	TCF15	has	been	associated	with	priming	and	accelerating	pluripotent	

cells	for	differentiation	through	repression	of	NANOG		(155).		Thus,	a	lack	of	TCF15,	such	as	
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via	hypermethylation	could	promote	tumorigenesis	through	evasion	of	a	more	limited	

replicative	potential	associated	with	differentiated	cells.	

9 Results:	Sequencing	of	Human	Samples	
	
We	received	several	human	sarcomas	from	Dr.	Strong,	spanning	a	variety	of	p53	mutations	

and	tumor	types	(Table	18).	

Table	18:	Table	of	human	LFS	sarcomas	and	omics	analyses	performed.	 	The	majority	of	

WGS/WES	data	was	generated	on	Illumina,	except	for	STS170-038	(Complete	Genomics).	

	

We	then	looked	at	several	different	kinds	of	next	generation	sequencing	(NGS).		For	

DNA,	 we	 looked	 at	 either	 at	 WGS,	 or	 at	 WES	 in	 conjunction	 with	 low-coverage	 WGS	

(lcWGS).	 	 The	 majority	 of	 the	 normal/tumor	 pairs	 were	 assayed	 on	 Illumina	 at	 40X/80X	

coverage	 respectively.	 	 One	 sample	 was	 assayed	 on	 the	 Complete	 Genomics	 platform	

(STS170-038).	Analysis	 for	 Illumina	samples	was	done	with	the	pipeline	outlined	 in	Figure	

48.	

For	RNA,	we	were	unable	to	isolate	high-quality	RNA	from	fresh	tissues,	presumably	

due	 to	handling	at	 the	 time	of	 tumor	extraction	 (and	understandable	prioritization	of	 the	

patient),	 but	we	were	able	 to	 leverage	FFPE	 tissues	 instead	 to	acquire	 suitable	RNA.	 	 For	
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methylation	 data,	 we	 used	 the	 EPIC	 array	 (Illumina),	 and	 analyzed	 the	 data	 via	 the	 R-

package	minfi	 (156).	 	 Although	we	 still	 considered	 recurrence	 as	 an	 endpoint,	 analysis	 of	

both	RNA	and	methylation	data	is	further	complicated	by	sample	availability.		For	example,	

for	osteosarcomas,	we	would	ideally	sequence	a	tissue-matched	normal	bone,	rather	than	

the	muscle,	due	 to	 tissue	 specificity	 in	RNA	and	methylation.	 	We	can	get	around	 this	by	

sequencing	more	appropriate	 tissue	 controls	 (e.g.	 a	normal	osteoblast	 cell	 line),	but	 then	

these	normal	cell	line	controls	lack	the	underlying	p53	mutations	present	in	the	constitutive	

tissue.		Moreover,	recurrence	analysis	is	potentially	confounded	by	the	variety	of	underling	

tumor	 types	 and	 germline	 p53	 mutations,	 making	 it	 more	 likely	 that	 they	 could	 have	

different	underlying	mechanisms	of	sarcomagenesis.		Thus,	it	was	also	essential	to	consider	

individual	tumor	analysis	(6.2	&	6.3).	

9.1 Analysis	of	human	tumors	alone	reveals	minimal	recurrence	in	somatic	mutations	

Similar	 to	mouse	 samples,	we	 saw	 little	 overlap	 between	 the	 five	 somatic	 variant	

callers.		Using	similar	reasoning	as	8.1.1,	we	used	variants	that	were	found	by	two	or	more	

somatic	variant	callers.	

Table	19:	Table	showing	agreement	between	variant	callers	on	the	WES	human	data.	
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Initial	 analysis	 of	 the	 human	 tumors	 for	 recurrent	 somatic	 changes	 in	 the	DNA	 found	 no	

overlap,	either	at	the	mutation	or	gene	level,	with	the	exception	of	p53.				

The	 lack	of	overlap	could	arise	out	of	 several	 scenarios.	 	First,	given	 the	variety	of	

germline	mutations	and	tumor	types,	these	tumors	may	have	distinct	etiologies	from	each	

other.	 	 Secondly,	 tumor	 heterogeneity,	 clonality,	 and	 contamination	 from	 normal	 tissue	

may	obfuscate	variant	calling.	 	 Such	mutations,	occurring	 in	 just	a	 fraction	of	 the	sample,	

could	be	missed	without	using	deep	sequencing.	 	Thirdly,	 tumorigenesis	 in	 these	patients	

may	be	driven	by	something	other	than	somatically	acquired	SNVs	or	indels,	such	as	CNAs	

or	epigenetic	changes.	

Therefore,	 to	work	around	the	 fact	 that	 these	potentially	confounding	variables	as	

best	 as	 possible,	 we	 examined	 each	 of	 the	 tumors	 individually	 for	 both	 germline	 and	

somatic	variants.			

9.2 Some	human	tumors	had	additional	germline	variants	in	cancer	genes	

Analysis	 of	 germline	 variation	 did	 find	 two	 individuals	 with	 rare	mutations	 in	 key	

cancer-related	 genes.	 	 MGC900-001	 (p53	 R273H,	 breast	 cancer)	 had	 a	 mutation	 in	 the	

breast	cancer	predisposition	gene	CHEK2	(p.R180C,	MAF	<0.01%)	that	was	predicted	to	be	

damaging	 (SIFT=0.18,	 PP2=1).	 	 Notably,	 CHEK2	 had	 previously	 been	 associated	 with	 LFS	

(2.3.1).		A	second,	different	individual	(SMN119-000,	p53	del	ex	1-9)	had	a	mutation	in	the	

DNA	 repair	 gene	 MLH3	 (p.V741F),	 that	 was	 also	 relatively	 rare	 (MAF	 ~2%),	 and	 also	

predicted	to	be	deleterious	(SIFT=0.38,	PP2=0.933).		Although	neither	tumor	showed	of	the	

remaining	WT	allele,	they	may	still	contribute	to	the	overall	risk	profile	of	the	individuals	on	
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a	mutant	TP53	germline	background.		These	data	demonstrate	the	utility	in	looking	not	only	

at	acquired	somatic	mutations,	but	also	at	germline	variation.	

9.3 Individual	human	tumors	had	mutations	in	known	sarcoma	genes	

Individual	analysis	of	human	tumors	was	useful	not	only	at	 the	germline	 level,	but	

also	at	 the	somatic	 level.	 	 Individual	 sarcomas	had	notable	 somatic	mutations	 in	 sarcoma	

related	genes.		One	tumor	had	an	early,	heterozygous,	somatic	stop-gain	mutation	in	PTEN	

(p.G20X).		Given	that	PTEN	is	a	haploinsufficient	TSG	(157,	158),	such	a	mutation	would	be	

expected	 to	have	 functional	 consequences.	 	A	 second	 tumor	had	a	 stop-gain	mutation	 in	

NOTCH1.	 	 NOTCH1	 is	 a	 transmembrane	 receptor	 that	 is	 typically	 considered	 to	 be	 an	

oncogene,	 having	 been	 found	 to	 be	 up-regulated	 in	 synovial	 sarcomas	 and	

rhabdomyosarcomas	 (159)	 and	 abnormalities	 in	 Notch	 signaling	 have	 been	 linked	 with	

pediatric	sarcomas	(159).	

However,	in	the	majority	of	solid	tumors,	genetic	alterations	are	rare	in	any	member	

of	the	Notch	signaling	pathway.		Instead,	deregulation	of	Notch	signaling	may	play	a	larger	

role	 in	 tumor	 maintenance	 (159).	 	 Indeed,	 the	 role	 of	 Notch	 signaling	 is	 becoming	

considerably	more	complex	than	initially	suspected.		For	example,	NOTCH1	has	been	shown	

to	be	activated	in	some	osteosarcomas	(160),	but	in	other	cases,	it	has	also	been	shown	to	

have	 tumor	 suppressive	 properties	 (161),	 suggesting	 a	 highly	 context-dependent	 role	 for	

Notch	signaling	that	may	be	either	oncogenic	or	tumor-suppressive	(161).	

Overall,	 the	 lack	 of	 consensus	 in	 the	 human	 samples,	 possibly	 due	 to	 tumor	 type	

heterogeneity,	may	argue	for	a	different	approach.		Rather	than	use	the	human	samples	as	

a	 discovery	 set,	 and	use	 the	mouse	model	 to	 confirm	 recurrent	 changes,	 do	 the	 reverse.		
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Use	tumors	from	the	mouse	model,	where	the	mutation,	tumor	types,	and	environment	are	

more	consistent,	to	look	for	recurrence,	and	follow-up	in	the	human	tumors.	

9.4 Copy	number	analysis	in	human	data	

Alternatively,	other	 types	of	 alterations	may	explain	 the	 lack	of	 consensus	 seen	 in	

somatic	mutations.		Chromosomal	instability	is	considered	to	be	hallmark	of	sarcomas	(10).		

We	 worked	 with	 Dr.	 Nicholas	 Navin	 and	 a	 graduate	 student	 of	 his,	 Naveen	 Ramesh,	 to	

generate	 copy	 number	 analyses	 using	 our	 WES	 and	 lcWGS	 data	 and	 their	 pipeline.		

Consistent	with	previously	published	data,	we	observed	copy	number	alterations,	especially	

across	our	tumors	with	point	mutations	in	p53	(Figure	57).		Our	data	is	generally	consistent	

with	 reported	 data	 for	 sarcomas	 in	 that	 deletions	 are	more	 common	 than	 amplifications	

(10).		Both	MGC900-001	and	SMN669-000	tend	to	have	more	deletions	than	amplifications,	

but	 this	was	 less	 true	 for	 SMN1012-000	 and	 STS170-000,	where	 amplifications	may	 have	

been	more	prevalent.	

This	effect	was	less	pronounced,	or	even	non-existent	in	tumors	we	sequenced	that	

had	p53	deletions	(Figure	 58).	 	These	data	may	partially	explain	the	lack	of	somatic	point	

mutations	observed	 in	our	human	tumor;	 larger	events	may	be	driving	sarcomagenesis	 in	

these	patients.	
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Figure	57:	Copy	number	analysis	of	human	tumors	with	point	mutations	in	p53	indicates	

significant	 copy	 number	 aberrations	 in	 human	 LFS	 tumors.	 	 Data	 generated	 in	

collaboration	with	Naveen	Ramesh	(Dr.	Nicholas	Navin	lab).	 	Grey	lines	represent	ploidy	

determinations,	 while	 blue	 lines	 represent	 copy	 number	 calls.	 	 Red	 horizontal	 lines	

represent	1N,	2N,	3N,	and	4N	from	bottom	to	top	respectively.	



	 135	

	
Figure	 58:	 Copy	 number	 analysis	 of	 human	 tumors	 with	 deletions	 in	 p53	 indicates	

relatively	 few	copy	number	aberrations	 in	 some	human	LFS	 tumors.	 	Data	generated	 in	

collaboration	with	Naveen	Ramesh	(Dr.	Nicholas	Navin	lab).	 	Grey	lines	represent	ploidy	

determinations,	 while	 blue	 lines	 represent	 copy	 number	 calls.	 	 Red	 horizontal	 lines	

represent	1N,	2N,	3N,	and	4N	from	bottom	to	top	respectively.	

	

9.5 Analysis	of	methylation	data	showed	two	distinct	profiles	
	

For	 human	 methylation	 data,	 we	 used	 Illumina’s	 HumanMethylationEPIC	 (EPIC)	

array	 on	 the	 same	 DNA	 that	 we	 used	 to	 perform	 WES	 and	 lcWGS.	 	 To	 analyze	 human	

methylation	 data,	 we	 used	 the	minfi	 R-package	 and	 ssnoob	 pre-processing,	 followed	 by	

bumphunter	 to	 find	differentially	methylated	 regions	 (DMRs)	as	described	by	Fortin	et	 al.	

(162).	
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The	method	calls	 for	a	minimum	default	 cutoff	of	0.2	 (i.e.	a	20%	difference	 in	 the	

beta-values	 between	 normal/tumor),	 but	 for	 some	 samples	 this	 led	 to	 hundreds	 of	

thousands	of	candidate	bumps	and	long	compute	times.		Since	past	a	certain	point,	results	

are	 less	 likely	 to	 be	 considered	 significant	 after	 adjusting	 for	 multiple	 testing	 and	

permutations,	the	general	consensus	is	to	increase	the	cutoff	(in	our	case	up	to	about	a	50%	

difference	 in	 beta	 values),	 in	 order	 to	 drive	 the	 number	 of	 candidate	 bumps	 (without	

consideration	of	p-value)	down	to	~30,000-40,000.	 	We	can	see	then	some	normal/tumor	

pairs	 have	 very	 few	 DMRs	 (SMN1119-000,	 and	 STS170-000),	 while	 others	 must	 have	

exceedingly	 high	 thresholds	 for	 the	 difference	 between	 beta-values	 (up	 to	 54%,	 STS170-

038),	as	seen	in	Table	20.	
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Table	20:	Table	of	human	samples	with	EPIC	array	data,	 indicating	sex,	age,	and	normal	

and	tumor	tissue	types,	and	the	number	of	bumps	and	DMRs	identified	by	the	pipeline.		

We	note	that	the	#	of	DMRs	may	be	somewhat	artificial	since	the	pipeline	uses	#	of	DMRs	

to	help	generate	appropriate	parameters.		PBL	–	peripheral	blood	leukocytes,	BR	–	breast,	

FR	–	femur,	MLPS	–	myxoid	liposarcoma,	OS	–	osteosarcoma,	SC	–	sarcomatoid	carcinoma,	

SCC	–	spindle	cell	carcinoma,	LPS	–	liposarcoma,	MFS	–	myofibrosarcoma,	RCC	–	renal	cell	

carcinoma.	

	

However,	 some	 of,	 or	 perhaps	 even	 the	 majority	 of	 these	 DMRs	 may	 be	 due	 to	 tissue-

specific	differences	(163).	 	As	an	alternative,	 it	may	be	better	to	ascertain	DMRs	against	a	

tissue-matched	control	from	a	different	person,	or	cell	line.	

9.6 Recurrence	analysis	in	human	methylation	data	
	

Confounding	 information	 aside,	 there	 did	 appear	 to	 be	 some	 recurrence	 at	 the	

methylation	level.	We	found	no	DMRs	that	were	consistent	across	all	pairs,	with	the	top	five	

hypomethylated	genes	including	LHFPL2,	PTPRN2,	NRG1,	ESR1,	and	JARID2,	and	the	top	five	
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hypermethylated	genes	including	FOXN3,	TWIST1,	TCF4,	ST7,	and	MICAL3.		However,	we	did	

not	see	any	overlap	with	the	mouse	data.			

These	methylation	data	represent	an	interesting	cross-section	of	genes	of	the	genes	

that	are	hypomethylated,	 LHFPL2	 is	a	 transmembrane	protein	 that	 is	 lightly	altered	when	

examined	 in	cBio	 (<10%	of	any	tumor	type	affected),	across	both	amplification,	deletions,	

and	mutations,	suggesting	potentially	tumor	or	environment	specific	effects.	PTPRN2	 is	an	

oncogene	that	has	been	associated	with	promoting	migration	in	breast	cancer	(164),	while	

ESR1	is	thought	to	act	as	a	tumor	suppressor	gene	(165).		NRG1	has	also	been	connected	to	

breast	cancer	where	it	has	been	shown	to	induce	stem-like	properties	(166).		Recently,	Xi	et	

al.	 demonstrated	 that	 knock	 down	 of	 JARID2	 inhibited	 invasiveness	while	 overexpression	

promoted	 in	 in	 bladder	 cancer	 cells	 (167).	 	 Thus,	 many	 of	 the	 genes	 that	 are	

hypomethylated	appear	to	have	oncogenic	functions.	

In	concert	with	this,	some	of	 the	hypermethylated	genes	generally	appear	to	have	

tumor	suppressor-like	functions.		Loss	of	FOXN3	in	colon	cancer	was	found	to	activate	beta-

catenin	signaling	and	promote	cell	growth	and	migration	(168).		ST7	has	been	identified	as	a	

tumor	 suppressor	 gene	 in	 prostate	 cancer	 (169).	 	 On	 the	 other	 hand,	 TWIST1	 is	 more	

commonly	considered	an	oncogene	that	induces	EMT	(170).		MICAL2	 is	also	considered	an	

oncogene	and	has	been	associated	with	metastatic	progression	and	a	potential	regulator	of	

EMT	(171).	
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9.7 Individual	analysis	in	human	methylation	data	
	

SMN669-000	 had	 significant	 hypermethylation	 upstream	 of	 MLH1	 (shore,	 p-

value=7.30e-4),	and	a	CpG	island	of	PTEN	that	is	upstream	of	the	transcription	start	site	by	

less	than	1,500	bp	(p-value:	5.26E-04).			

	
10 Discussion	and	Future	Directions	

Overall,	when	looking	at	the	data	we	saw	little	recurrence	between	human	samples,	

but	significant	recurrence	between	the	mouse	samples.		This	is	consistent	with	the	idea	that	

different	p53	 alleles	 have	 different	 penetrances,	 and	 considering	 that	 different	 sarcomas	

may	 have	 different	 etiologies	 (10,	 15,	 172),	 this	 may	 not	 be	 too	 surprising.	 	 An	 overall	

examination	 of	 the	most	 recurrent	 hits,	 including	 prioritizing	 for	 variation	 found	 in	 both	

humans	and	mice	emphasizes	this	(Table	21).	
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Table	21:	Recurrence	across	both	human	and	mouse	sarcomas,	across	all	data	types.	

	

Thus,	these	data	underscore	the	power	of	our	comparative	–omics	approach	–	not	

necessarily	because	of	the	ability	to	cross-compare	human	and	mouse	data	and	determine	

overlapping	recurrence	between	the	two,	but	because	the	mouse	platform	is	so	much	more	

stable.	 	 For	 rare	 diseases/tumors	 such	 as	 LFS/sarcomas,	 the	 reduction	 of	 confounding	

factors	 (e.g.	 genetic	 heterogeneity)	 can	 be	 a	 powerful	 discovery	 space.	 	 For	 example,	

MIR219A2	 is	 recurrently	 hypermethylated	 in	 all	 mouse	 tumors,	 which	 we	 then	 found	 to	

have	a	deep	deletion	in	sporadic	MPNSTs.			

In	 contrast,	 many	 tumors	 across	 mice	 and	 human	 showed	 alterations	 at	 the	

germline,	somatic	or	methylation	level	in	well–known	sarcoma	genes	like	PTEN.		If	these	are	
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sufficient	 on	 their	 own	 to	 lead	 to	 sarcomagenesis,	 it	 reduces	 the	 value	 in	 looking	 for	

recurrence	 in	 trying	 to	 identify	novel	 cancer	 genes.	 	However,	 this	 does	not	mean	 that	 a	

comparative	approach	 is	without	merit.	 	The	Cancer	Gene	Census	currently	 identifies	610	

genes	 (https://cancer.sanger.ac.uk/census),	 and	 represents	 a	 good	 baseline	 for	 the	 low-

hanging	fruit.		However,	it	is	important	to	note	that	there	likely	are	additional	undiscovered	

cancer	genes	 that	can	be	 found,	particularly	using	a	case	study	approach.	 	 Increasingly,	 it	

appears	that	cancer	subtypes	may	have	distinct	etiologies,	including	in	sarcomas	(10,	15).			

Additionally,	 one	 way	 to	 further	 identify	 novel	 cancer	 genes	 may	 be	 to	 look	 for	

genes	 that	 cooperate	 with	 known	 players	 such	 as	 p53.	 	 Previously,	 we	 discussed	 the	

possibility	 that	while	 disruption	 of	 key	 pathways	 is	 often	 considered	 to	 be	 a	 hallmark	 of	

cancer	(2,	54,	139),	pathways	often	have	built-in	redundancies,	and	a	single	alteration	may	

be	 insufficient	 for	 tumorigenesis	 (140).	 	 Alternatively,	 it	 may	 be	 that	 additional	 p53	

cooperating	mutations	may	contribute	to	tumor	type	and/or	spectrum.		Although	we	found	

no	evidence	for	this	in	our	data	–	we	had	no	mutations/alterations	that	were	found	only	in	

fibrosarcomas	vs.	osteosarcomas,	 it	 is	possible	that	a	relative	small	sample	size	somewhat	

obscures	 these	 data,	 or	 that	 considering	 multiple	 alterations	 may	 have	 more	 predictive	

power.		

Overall,	our	data	agrees	with	previously	published	data	–	sarcomas	have	relatively	

low	 point	mutation	 burdens,	 but	many	 have	 significant	 copy	 number	 aberrations	 (CNAs)	

(10,	15).	 	 Intriguingly,	 in	our	data,	patients	with	germline	point	mutations	 in	p53,	 tend	 to	

have	more	 CNAs	 than	 those	 with	 large	 deletions.	 	 It	 is	 not	 clear	 if	 this	 could	 be	 due	 to	

sample	purity,	or	if	p53-deletion	sarcomas	are	simply	more	CN-stable.		One	other	possibility	
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is	that	the	type	of	mutation	may	matter;	while	point	mutations	may	be	either	GOF	or	LOF,	

deletions	are	 LOF	only.	 	 This	 concept	 is	not	addressed	 in	 the	TCGA	paper	and	may	be	an	

interesting	point	for	follow-up.	

Overall,	the	data	from	TCGA	(10)	highlight	the	need	to	consider	tumor	subtypes	an	

important	factor	in	all	sequencing	analyses.		This	significantly	complicates	sarcoma	research	

moving	 forward,	 requiring	 expertise	 across	 a	 variety	 of	 fields,	 ranging	 from	 accurate	

sarcoma	 subtyping	 from	 the	 pathologist	 to	 doctors	 to	 comprehensive	 sequencing	 and	

analysis	by	bioinformatics	specialists.		Moreover,	our	data	and	published	TCGA	data	indicate	

that	any	of	a	number	of	factors	from	point	mutations,	to	CNAs,	to	methylation	profiles	likely	

contribute	to	sarcomagenesis.	

If	 all	 sarcoma	 subtypes	 have	 different	 drivers,	 this	may	make	 it	 a	 cost-prohibitive	

endeavor	or	time-insensitive	project,	due	to	the	need	to	acquire	dozens	of	samples	of	the	

same	type.		Our	data	indicate	a	role	for	using	a	mouse	model	to	identify	potential	sarcoma	

drivers,	but	we	have	 focused	on	osteosarcomas	and	 fibrosarcomas	–	generating	a	mouse	

model	 for	 even	 rarer	 types	 may	 not	 be	 possible.	 	 Alternatively,	 given	 sufficient	 time	

clinicians	 may	 collect	 enough	 samples	 from	 human	 patients	 to	 complete	 such	 a	 study.		

Importantly	though,	we	have	used	our	data	to	 identify	potential	 impact	players	which	are	

both	 novel	 (e.g.	MIR219A2,	 and	 with	 known	 roles	 in	 other	 cancers	 such	 as	 PTEN	 and	

BUB1B).	 	 Some	 of	 these	 have	 appeared	 to	 be	 common	 to	 both	 osteosarcomas	 and	

fibrosarcomas,	 suggesting	 the	 potential	 that	 some	 drivers	 may	 be	 common	 to	 multiple	

sarcomas.	 	 Thus,	 a	 comparative	 omics	 approach	 gives	 tremendous	 value	 to	 focusing	 on	

sequencing	 more	 common	 sarcoma	 types	 first.	 	 Given	 that	 the	 end	 goal	 is	 to	 identify	
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important	genes,	which	in	turn	may	impact	clinical	outcomes,	this	may	be	sufficient	to	begin	

impact	treatment.	

Secondly,	 our	 data	 indicate	 that	 genetic	mutations	 even	 in	 known	 sarcoma	 genes	

such	 as	PTEN	 are	 generally	 rare	 across	 our	 samples,	 underlying	 an	 important	 point	 –	 the	

majority	 of	 sarcomas	 have	 low	 point	mutation	 loads	 and	 instead	 are	 considered	 to	 have	

significant	 copy	 number	 aberrations	 (10).	 	 In	 addition,	 some	 sarcoma	 subtypes,	 such	 as	

synovial	 sarcoma	 subtypes	 had	 relatively	 uniform	methylation	 profiles	 (10).	 	We	 noticed	

consistent	 patterns	 in	 our	 mouse	 methylation	 data,	 including	 some	 genes	 that	 were	

recurrently	 hypermethylated	 and	 a	 PCA	 analysis	 that	 grouped	 both	 osteosarcomas	 and	

fibrosarcomas	together.	 	Moreover	several	of	 the	top	hits	 in	 the	human	methylation	data	

had	known	functions	in	cancers.		We	highlighted	four	oncogenes	that	were	hypomethylated	

(e.g.,	 PTPRN2,	 JARID2),	 and	 two	 tumor	 suppressor	 genes	 were	 hypermethylated	 (e.g.,	

FOXN3,	 ST7).	 	 Thus,	 we	 feel	 that	 future	 sarcoma	 studies	 should	 consider	 focusing	 on	

methylation	data	over	genomic	sequence	analysis	of	point	mutations.	

We	continue	to	look	for	ways	to	iterate	over	this	process	to	better	understand	this	

dichotomy	of	looking	for	recurrence	first,	or	characterizing	an	individual	tumor.	

11 Conclusions	
	

In	conclusion,	we	have	identified	a	novel	germline	LFSL	mutation	in	ARHGAP30	that	co-

segregates	with	 disease	 across	multiple	 LFSL	 families	 (four	 total	 to	 date).	 	Moreover,	we	

have	demonstrated	that	this	mutation,	ARGAHP30	(c.G161,017,761A,	p.R806Q/p.R1017Q),	

has	 functional	 impact	when	 overexpressed	 in	 vitro	 for	 both	 the	 short	 and	 long	 isoforms,	
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suggesting	that	ARHGAP30	may	have	p53-independent	functions.		To	further	strengthen	our	

case,	 we	 are	 currently	 sequencing	 additional	 LFSL	 families	 to	 see	 if	 they	 contain	 other	

mutations	 in	 elsewhere	 in	ARHGAP30,	 and	 testing	 tumors	 to	 see	 if	 they	have	 LOH.	 	 Both	

results	 substantially	 strengthen	 the	 identification	 of	 ARHGAP30	 as	 an	 LFSL	 gene	 and	 an	

important	gene	for	clinical	testing	for	patients	and	families	with	LFS/LFSL	phenotypes.		Our	

hope	 and	 intention	 is	 that	 this	 will	 allow	 for	 genetic	 testing	 and	 improved	 tumor	

surveillance	in	individuals	who	have	this	genetic	germline	cancer	predisposition.		

Secondly,	 we	 have	 demonstrated	 the	 utility	 of	 a	 comparative	 –omics	 approach	 to	

identify	 potential	 key	 players	 in	 sarcomagenesis.	 	 Recent	 research	 by	 TCGA	 emphasizes	

tissue	 specificity	 in	 adult	 soft	 tissue	 sarcomas	 (10),	 and	 suggests	 significant	 value	 in	

sequencing	 similar	 sarcoma	 types.	 	We	 were	 able	 to	 leverage	 a	 mouse	model	 of	 LFS	 to	

identify	 two	novel	genes,	Mroh2a,	 and	Mir219a-2	as	potential	players	 in	 sarcomagenesis,	

the	 latter	 of	which	 has	 relevance	 to	MPNSTs	 (145).	 	 Strikingly,	 although	we	 observe	 few	

overlaps	in	somatic	mutations	(at	the	base	or	gene	level),	we	do	observe	significant	overlap	

at	 the	 methylation	 level,	 including	 between	 tumor	 types,	 suggesting	 that	 epigenetic	

instability	may	be	critically	important,	consistent	with	p53	as	the	guardian	of	the	epigenome	

(18).	 	Across	both	our	mouse	and	human	tumors,	we	see	recurrent	epigenetic	changes	 in	

both	novel,	and	known	cancer	genes.	

However,	 our	 data	 also	 indicate	 that	 all	 types	 of	 -omics	 approaches	 can	 point	 to	

alterations	 in	key	genes,	and	 that	 these	may	be	 relatively	private.	 	 In	 combination	with	a	

large	 existing	 knowledge	 base	 in	 cancer,	 these	 “private”	 alterations	 may	 be	 considered	

generally	sufficient	to	explain	tumorigenesis.		We	note	that	it	is	possible	that	these	tumors	
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have	 other	 mutations	 that	 contribute	 to	 cancer	 in	 smaller	 ways,	 or	 may	 be	 involved	 in	

cancer	 initiation	 as	 opposed	 to	 cancer	 progression.	 	 However,	 that	 these	 mutations	 are	

found	in	bulk	tumor	suggests	that	they	occur	 in	a	 large	proportion	of	sequenced	cells	and	

may	be	more	likely	to	be	key	drivers	rather	than	late-comers.		Thus,	recurrence	should	not	

be	used	as	the	only	endpoint	when	considering	sequencing	studies.	

In	 conclusion,	 based	 on	 our	 collective	 data	we	would	 argue	 that	 to	 best	 understand	

sarcomagenesis	moving	 forward,	one	 should	 focus	on	 complete	 tumor	profiling	 in	 as	 few	

subtypes	as	possible.		Furthermore,	we	would	recommend	an	emphasis	on	evaluating	CNAs	

and	methylation	profiles,	ultimately	 suggesting	 there	 is	 still	 strong	utility	 in	using	LFS	and	

LFSL	as	model	disorders	 to	 identify	 variation	 that	 is	 important	not	only	 for	 sarcomas,	but	

potentially	other	tumors	as	well.	

12 Materials	and	methods	

12.1 Subjects		

Tissues	and	genomic	DNA	were	kindly	provided	by	Dr.	Louise	Strong’s	lab	(MD	Anderson	

Cancer	Center),	Dr.	Henry	Lynch’s	lab	(Creighton	University),	Dr.	Albert	de	la	Chapelle’s	lab	

(Ohio	State	University),	and	Dr.	Mai	Phuong’s	lab	(National	Cancer	Institute).	

12.2 WGS/WES	

WGS	data	were	sequenced	at	100bp	PE	across	three	platforms	GAIIX	(STS200-017),	HS2000	

(STS200-000,	STS200-017,	STS032-011),	and	HS4000	(STS200-001,	STS200-008,	STS200-009,	

STS200-019,	STS200-108)	at	30-40X.		Remaining	normal/tumor	pairs	on	mice	were	
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sequenced	on	HS3000	at	40X/80X	respectively.	Samples	were	analyzed	according	to	best	

practices	as	described	by	GATK	or	individual	algorithms.	

12.3 Sanger	sequencing	

Primers	were	designed	in-house,	and	PCR	performed	according	to	standard	protocols	

(HotStarTaq	Master	Mix	kit,	QIAGEN).		PCR	products	were	cleaned	using	Diffinity	RapidTIps	

(Sigma)	for	small	experiments,	or	via	ethanol	precipitation	for	full	plates	before	submission	

to	the	Sequencing	and	Microarray	Facility	(SMF)	at	MD	Anderson	Cancer	Center.		

Sequencing	was	generated	in	both	directions.		Traces	were	analyzed	with	Mutation	

Surveyor.	

	

hARHGAP30	R806Q	F	CCACAGTTTGCCAAGATGCC	

hARHGAP30	R806Q	R	GGTCCTAATCACAGTCCTTCAC	

	

hARHGAP30-UTR	F	 tgtaaaacgacggccagtTCTCTTCCTTATTTCCTGACC	

hARHGAP30-UTR	R	 caggaaacagctatgaccCCCTAAGATACCTCCTGTCC	

	

hF11R	F	 	 tgtaaaacgacggccagtTCTAAGGAGGAAGTAGGAAAGG	

hF11R	R	 	 caggaaacagctatgaccTCTGCTCTTCCCAAGTTGTG	

	

hMROH9	F	 	 tgtaaaacgacggccagtATGACCAATATGAACCTCTTCC	

hMROH9	R	 	 caggaaacagctatgaccAAGACATTGTTGGACTTCCC	
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hMUC5B	F	 	 tgtaaaacgacggccagtAGTTCCAAAGCCACTTCCTC	

hMUC5B	R	 	 caggaaacagctatgaccCTGTAAAGCTGGTAGCTGTG	

	

hNDUFS2	F	 	 tgtaaaacgacggccagtAAGACTACAGGGTTTATATGGG	

hNDUFS2	R	 	 caggaaacagctatgaccCAGAAGAATTGCTTGAACCTG	

	

hPARP4	F	 	 tgtaaaacgacggccagtCCATAGAATAACAAACTCTGCGTC	

hPARP4	R	 	 caggaaacagctatgaccTCTGGATGGAGCATTGAAAGAG	

	

hPKLR	F	 	 tgtaaaacgacggccagtTGATACAAATGGTAGGAGTGG	

hPKLR	R	 	 caggaaacagctatgaccGCCCAGAGAAGTATGATGAC	

	

hRETSAT	F	 	 tgtaaaacgacggccagtCCTGTCAGATAGAGGTTGGG	

hRETSAT	R	 	 caggaaacagctatgaccTGTTTCTGCCCTTTCCTTGAG	

	

hSLAMF1	F	 	 tgtaaaacgacggccagtCAACACAAAGATGGAACGCTG	

hSLAMF1	R	 	 caggaaacagctatgaccATGCTTATGCTTGGAAGGGAG	

	

hTP53-UTR3	F		 tgtaaaacgacggccagtTTAAATCCCGTAATCCTTGGTGAG	

hTP53-UTR3	R		 caggaaacagctatgaccTTACATTCTGCAAGCACATCTG	
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12.4 Mutation	Surveyor	

We	ran	both	the	default,	recommended	settings,	as	well	as	a	set	of	hyper-relaxed	criteria	

that	picked	to	pick	some	true	positives	at	the	cost	of	a	lot	of	false	positives.	

Because	some	genes	are	highly	homologous	(e.g.	PYHIN1),	we	supplied	known	sequence	to	

the	program	for	such	genes	to	force	the	correct	mapping	and	eliminate	erroneous	variant	

calls.			

12.5 454	sequencing	

Pyrosequencing	was	performed	on	a	PSQ	96	machine,	according	to	manufacturer’s	

instructions.	20ng	of	DNA	was	amplified	by	PCR	before	use	with	pyrosequencer.	For	FFPE	

samples,	we	used	three	times	as	much	polymerase	as	we	would	for	a	normal	PCR,	and	ran	

the	annealing	step	in	the	cycle	for	two	minutes.	

	

hARHGAP30	F		TAAGACGACTCCGGGATCCAG		

hARHGAP30	R		 GACGGGACACCGCTGATCGTTTATCCCGAGCTTCTCGATCCT	 	

hARHGAP30	Seq		 TCAGTACAGGTCTGGGT	 	 	

	

mP53H	F	 	 GGCCATCTACAAGAAGTCACAGCA	

mP53H	R	 	 GACGGGACACCGCTGATCGTTTAAGGCGGTGTTGAGGGCTTA	

mP53H	Seq	 	 GACGGAGGTCGTGAGA	
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12.6 Cell	lines	

Four	cell	lines	(HEK293T,	Saos-2,	U-2	OS,	and	HT-1080)	were	acquired	from	the	

characterized	cell	line	core	facility	at	MD	Anderson	Cancer	Center.		The	core	provides	

mycoplasma-free,	and	fingerprinted	cell	lines.	

	

12.7 Mice.		

Existing	Trp53	R172H	mice	were	bred	to	create	a	total	cohort	of	50	mice	with	a	

heterozygous	background.		Twenty	WT	mice	were	kept	as	controls.		Mice	were	monitored	

continuously	for	tumors	and	other	health	issues,	and	sacrificed	when	necessary.		Original	

mice	were	received	from	Dr.	Guillermina	Lozano	and	are	on	a	predominantly	C57BL/6	

background.	

12.8 Genotyping	

Mouse	toes	are	collected	at	7-10	days	and	digested	with	KAPA	enzyme	(Sigma)	in	15uL	total	

volume.		Final	volume	is	brought	up	to	100uL.		DNA	is	then	assayed	by	PCR	and	run	on	an	

agarose	gel	to	look	for	band	separation	in	heterozygotes.	

	

mp53H	F		 ACCTGTAGCTCCAGCACTGG	
	

mp53H	R		 ACAAGCCGAGTAACGATCAGG	
	

12.9 Tissue	collection	

Mice	were	euthanized	by	cervical	dislocation	to	best	preserve	RNA	(over	CO2	inhalation).		

Tissues	were	then	immediately	collected	by	snap	freezing	in	liquid	nitrogen:	pectoralis,	
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vastus	lateralis,	femur,	gastrocnemius,	kidney,	spleen,	liver,	stomach,	duodenum	or	fixed	in	

paraformaldehyde	for	pathology:	gastrocnemius,	reproductive	organs,	digestive	tract,	

heart,	lung,	thymus,	head/brain,	kidney,	liver,	spleen,	leg,	sternum,	spine.		Lymph	nodes	

and	tumors	were	collected	where	possible.		All	tissues	were	sent	to	Elizabeth	Whitley	

(Pathogenesis	LCC)	for	pathology	

	

12.10 DNA	isolation	

DNA	was	harvested	from	fresh	frozen	tissues	using	a	mini-prep	kit	(Zymo)	according	to	

manufacturers	instruction,	with	one	exception.		Lysis	was	accomplished	through	gentle	

rotation	in	a	LabQuake	shaker	to	avoid	shearing	of	high-molecular	weight	DNA	during	

inversion,	or	vortexing.	DNA	was	assayed	for	genomic	integrity	by	agarose	gel	(0.8%,	20V),	

and	quantitated	using	PicoGreen	(Molecular	Probes)	

	

12.11 FFPE	RNA	isolation	

We	cut	10,	10um	sections	with	a	microtome.		RNA	was	isolated	according	to	kit	instructions	

for	ReliaPrepTM	FFPE	Total	RNA	Miniprep	System.	

	

12.12 Plasmids	

We	acquired	constructs	for	the	short	isoform	(NM_181720,	Origene	C/N	RC208825)	and	the	

long	isoform	(NM_0010255598,	Origene	C/N	RC217735).		Sanger	sequencing	was	used	to	
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confirm	the	appropriate	sequence	in	the	original	plasmid.			Plasmids	were	expanded	using	

Ultra	Competent	XL10	cells	(Stratagene),	and	DNA	was	isolated	using	

Maxi	kits	(QIAGEN),	as	per	kit	instructions.	

	

12.13 Site	Directed	Mutagenesis	

Plasmids	containing	the	mutant	were	generated	through	site-directed	mutagenesis	(Agilent)	

according	to	the	kit,	and	checked	for	correct	sequence	via	Sanger	sequencing.	Plasmids	

used	for	mutagenesis:		

F:	CTCAAGGAGTTCGGCGAACCCAGACCTGTAC	

R:	GTACAGGTCTGGGTTTGCCGAACTCCTTGA	

	

12.14 Scratch	Assay	

Cells	were	initially	seeded	in	12-well	plates	at	~60-70%	confluency.		Following	overnight	

attachment,	transfection	reagent	(Lipofectamine	2/3000,	or	FuGene	6)	and	plasmid	were	

added	at	3:1	ratio	according	to	kit	instructions.		24	hours	post	transfection,	cells	were	

checked	to	see	if	they	had	achieved	near	100%	confluency.		A	single	vertical	scratch	was	

made	with	a	P20	pipette	tip.		Cells	were	then	washed,	and	imaged	immediately	with	a	live-

cell	imaging	microscope	(Zeiss,	3i).		Images	were	taken	every	30	minutes	for	a	period	up	to	

48	hours.			
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12.15 Proliferation	Assay	

Cells	were	seeded	in	triplicate	in	96-well	plates	at	low	density	at	an	average	concentration	

of	approximately	10,000	cells/well.		Once	cells	attached,	we	transfected	according	to	the	kit	

instructions	(Lipfectamine	2/3000,	ThermoFisher;	FuGene6,	Promega).		Cells	were	then	

trypsinized,	and	counted	twice/well	using	a	hemacytometer	and	trypan	blue	(GIBCO).		Cells	

were	counted	approximately	every	24	hours.	

	

12.16 Western	Blots	

Protein	extracts	(30ug)	from	transfected	cells	were	run	on	pre-made	polyacrylamide	gels	

(Invitrogen),	transferred	to	nitrocellulose	(BioRad)	and	probed	with	antibodies	for	

ARHGAP30	(Abcam,	ab101965)	and	FLAG	(Sigma,	F3165).		Appropriate	secondary	antibodies	

came	from	Odyssey.		Blots	were	imaged	on	a	Li-Cor	(Odyssey).	
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