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FUNCTIONAL SIMILARITY OF PRD-CONTAINING VIRULENCE REGULATORS IN  

BACILLUS ANTHRACIS  

Malik Jamaal Raynor, B.S. 

 
Advisory Professor: Theresa M. Koehler, Ph.D. 

 

 Bacillus anthracis produces three regulators, AtxA, AcpA, and AcpB, that control 

virulence gene expression and are members of an emerging class of regulators termed 

“PCVRs” (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing 

Virulence Regulators). AtxA controls expression of the toxin genes; lef, cya, and pag, and is the 

master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. AcpA 

and AcpB independently positively control transcription of the capsule biosynthetic operon 

capBCADE, and culture conditions that enhance AtxA activity result in capBCADE transcription 

in strains lacking acpA and acpB. RNA-Seq was used to assess the regulons of the paralogs in 

strains producing individual PCVRs at native levels. Plasmid- and chromosome-borne genes 

were PCVR-controlled, with AtxA, AcpA, and AcpB having a ≥4-fold effect on transcript levels 

of 145, 130, and 49 genes respectively. Several genes were co-regulated by two or three 

PCVRs. Results from transcriptional reporters of PCVR-regulated promoters fused to 

promoterless lacZ genes largely mirrored RNA-Seq data showing AtxA alone had activity on 

Plef-lacZ, and AcpA and AcpB had more activity than AtxA on PcapB-lacZ. Studies to test the 

effect of AtxA levels on virulence and sporulation used atxA mutants. A mutant that 

overexpressed atxA and exhibited elevated AtxA and toxin levels in vitro, was not increased for 

virulence in a murine anthrax infection model. AtxA levels also affected sporulation efficiency. 

Culture of B. anthracis in medium containing bicarbonate and elevated carbon dioxide 

increased PCVR activity compared to culture in ambient air in medium lacking bicarbonate. 

However, neither the solubility nor stability of the regulators was affected by carbon dioxide 

concentration. AcpA and AcpB form homomultimers and multimerization was dependent on the 
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EIIB-like domains, as shown previously for AtxA. Heteromultimers of AtxA-AcpA were detected 

and in co-expression experiments, AcpA activity was reduced by increased levels of AtxA. An 

AtxA orthologue in Bacillus cereus, AtxA2, had less activity than AtxA from B. anthracis 

potentially due to reduced dimer formation. The results provided in this dissertation increase 

our knowledge of virulence gene expression in B. anthracis, while advancing our understanding 

of this newly-discovered class of transcriptional regulators.  
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1.1 Gene expression modulated by environmental conditions 

 Bacteria occupy diverse habitats and must respond to changing environmental 

conditions, which may include nutrient availability, cell density, temperature stress, UV 

radiation, and desiccation, among others. To survive, bacteria may adapt to these conditions by 

altering their physiology through changes in gene expression. Environmental sensing and gene 

expression are often linked by specialized mechanisms that include cell surface receptors, 

phosphorelay pathways, and transcriptional regulators.  

 In quorum sensing, small molecules released into the extracellular medium by bacteria 

stimulate cell-surface or intracellular receptors and initiate gene expression changes. The 

concentration of these small molecules function as a proxy for cell density and modulate gene 

expression networks that produce phenotypes that could be beneficial when produced by many 

cells (1, 2). Quorum sensing coordinates processes related to biofilm formation, virulence, and 

antibiotic resistance in response to the local density of the bacterial population (3). 

 While quorum sensing enables bacterial communities to coordinate changes in gene 

expression, two-component systems allow bacteria to sense and respond to changes in the 

environment in a manner largely independent of other bacteria. These systems typically consist 

of a membrane-bound histidine kinase that responds to a specific environmental signal such as 

a nutrient, and a cognate response regulator that confers a cellular response, typically through 

regulation of target gene expression (4). Upon stimulation by an environmental signal the 

histidine kinase autophosphorylates a specific histidine and the cognate response regulator 

transfers the phosphate to a specific aspartate residue on the response regulator. The 

phosphorylated response regulator undergoes a conformational change that allows for 

activation (or repression) of target genes (5). Two-component systems have been adapted to 

sense and respond to changes in osmolarity, antibiotics, temperature, chemo attractants, and 

pH, in addition to other environmental conditions and stresses (6). 

 A third system, the phosphoenolpyruvate (PEP)-dependent phosphotransferase system 

(PTS), functions specifically as a carbohydrate sensor and is responsible for expression of 
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genes involved in both the uptake and catabolism of certain sugars (Figure 1-1). Glucose, 

mannose, fructose, and cellobiose are some of the sugars imported into bacteria by the PTS 

(7). The PTS has two general cytoplasmic components: Enzyme I (EI) and Histidine Protein 

(HPr) (Figure 1-1). EI autophosphorylates at a specific histidine in the presence of PEP aiding 

in the conversion of phosphoenolpyruvate to pyruvate (8). Phosphorylated EI transfers the 

phosphate to HPr at a specific histidine. HPr can then phosphotransfer to a carbohydrate-

specific Enzyme II (EII) complex which consists of one or two integral membrane domains 

(domains C and D) and two cytoplasmic domains (domains A and B). The multiple EII domains 

work together to transport and phosphorylate carbohydrates across the bacterial membrane to 

be used in catabolic pathways such as glycolysis (7). 

 In response to the availability of carbohydrates in the environment the PTS regulates 

the expression of catabolic genes. Phosphorylated HPr and several phosphorylated EIIBs, in 

addition to their role as phosphocarriers to phosphorylate imported carbohydrates, can 

phosphorylate transcriptional regulators to control their activity (Figure 1-1). These 

transcriptional regulators control expression of operons encoding carbohydrate-specific PTS 

components. Many of these PTS-controlled transcriptional regulators have similar domain 

organization. The amino termini contain motifs for nucleic acid binding, followed by two PTS 

regulation domains (PRD). The carboxy termini of these regulators generally contain motifs 

with homology to components of the EII complex (EIIA or EIIB). The homologous EII region of 

the transcriptional regulators often contain residues that can act as phosphoryl acceptors. In 

the absence of a cognate sugar to import some regulators are phosphorylated by membrane-

bound EII components sequestering them to the membrane where they remain inactive (9). 

The PRDs are unique domains with the specific function of controlling transcriptional activity of 

these proteins. PRDs are generally found in tandem pairs with each domain containing two 

histidine residues that can be phosphorylated by HPr or EIIB. 
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Figure 1-1. The phosphoenolpyruvate-dependent phosphotransferase system 
The phosphotransferase system is responsible for import and metabolism of many 
carbohydrates in both Gram + and Gram – bacteria. The system consists of two general 
proteins, Enzyme I (EI) and HPr and an Enzyme II complex usually consisting of 3 
components, EIIA, B, & C which are specific for each sugar imported. This cartoon depicts the 
glucose-specific EII. To begin the cycle, EI autophosphorylates using a phosphate from 
phosphoenolpyruvate or PEP, which is a product of glycolysis. The phosphate is transferred 
from EI to HPr. HPr transfers the phosphate to the sugar-specific EIIA. EIIA then transfers the 
phosphate to the sugar specific EIIB. EIIC is membrane spanning and translocates glucose 
inside the cell at which point EIIB phosphorylates the sugar leading to glucose-6-phosphate. G- 
6-P can then enter glycolysis continuing the cycle. HPr can also phosphorylate transcriptional 
regulators that control the expression of genes needed for cognate carbohydrate metabolism. 
Phosphorylation of these regulators occurs at conserved histidines within phosphotransferase 
regulatory domains, or PRDs.  
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Phosphorylation within PRDs can either be stimulatory or inhibitory with regard to 

transcriptional activity (7). 

 The PTS, in addition to two-component and quorum sensing systems, together 

represent some of the multitude of environmental sensing networks that are coupled with 

manipulation of gene expression, and underscore the importance of these networks for survival 

of bacteria in the environment. For pathogenic bacteria, the host environment represents a 

harsh environment lacking readily available nutrients such as iron. Many of these 

environmental sensing networks have evolved to function within the host environment. 

Moreover, in pathogens such as group A Streptococcus and uropathogenic Escherichia coli, 

the PTS has been associated with virulence. 

1.2 PRD-containing virulence regulators 

 Within the last several years a subset of PRD-containing transcriptional regulators has 

been associated with virulence (Figure 1-2). These PRD-Containing Virulence Regulators 

(PCVR) are present primarily in Gram-positive pathogens. In Streptococcus pyogenes, a group 

A Streptococci, the transcriptional activator Mga is required for adhesion, internalization, and 

immune evasion (10). The amino acid sequence of Mga is predictive of an amino terminal 

conserved Mga domain (CMD) and DNA-binding region, followed by two PRDs, and finally a 

carboxy-terminal domain with homology to EII of the PTS. Phosphorylation of Mga by the PTS 

has been demonstrated, and phosphomimetic mutations affect DNA-binding affinities of Mga-

regulated promoters (11). The RivR regulator, also in GAS, has two putative DNA-binding 

domains at the amino terminus followed by two PRDs. Expression of the protein-G-related α2-

macroglobulin-binding protein (GRAB), a cell wall-anchored virulence factor involved in 

inhibition of proteases in human plasma, and hyaluronic acid capsule are negatively regulated 

by RivR (12). The amino acid sequence of RivR has 22% identity and 49% similarity to that of 

Mga in S. pyogenes, and predicts two amino terminal helix-turn-helix domains in addition to a 

PRD (13). In Streptococcus pneumoniae, the MgaSpn transcriptional regulator plays a  
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Figure 1-2. PRD-Containing Virulence Regulators 

The AtxA crystal structure contains five domains: a winged helix-turn-helix (WH) motif, a helix-
turn-helix (HTH) motif, two PTS regulation domains (PRD1 & PRD2), and an Enzyme IIB-like 
(EIIB-like) motif. Cartoons of other PCVRs are shown for comparison to AtxA and many show 
similar domain organization. Mga contains a conserved Mga domain (CMD) that plays a role in 
target specificity. Phosphorylated histidines are indicated for PCVRs in which the 
phosphorylation state is known. A green label indicates a positive effect on activity, whereas a 
red label denotes a negative effect on activity. 
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significant role in both nasopharyngeal colonization and progression to pneumonia in murine 

infection models (14). The amino acid sequence of MgaSpn has 21.4% identity and 42.6% 

similarity to that of Mga produced by S. pyogenes. A putative domain search using the amino 

acid sequence of MgaSpn also predicts similar domains to Mga, including two PRDs. In 

uropathogenic Escherichia coli (UPEC), PafR is a transcriptional regulator with antiterminator 

activity, and is required for optimal urinary tract colonization in a murine infection model. PafR 

also inhibits biofilm formation and motility in UPEC (15). In silico analysis of the PafR amino 

acid sequence reveals at least one PRD. 

 Bacillus anthracis, the etiologic agent of anthrax, possesses three such PCVRs; AtxA, 

AcpA, and AcpB, that control expression of the major virulence determinants. The presence of 

three PCVRs in B. anthracis presents a unique opportunity to study the activity and interactions 

of multiple similar regulators that are native to a single organism. The work I present in this 

dissertation specifically examines PCVR activity, providing a global and specific analysis of the 

role of each B. anthracis PCVR homologue in virulence gene expression. 

 

1.3 Bacillus anthracis and anthrax disease 

 B. anthracis is a Gram-positive spore-forming bacterium that is commonly found in the 

soil. The genome consists of a 5.23-Mb chromosome and two large plasmids, pXO1 (182 kb) 

and pXO2 (96 KB) (16). Genes encoding the major virulence factors are located on the 

plasmids. The anthrax toxin structural genes; pagA (Protective Antigen, PA), cya (Edema 

Factor, EF), and lef (Lethal Factor, LF) are located on pXO1. The genes required for capsule 

biosynthesis (capBCADE) are encoded in an operon on pXO2 (17). 

 Plasmids with similarity to pXO1 and pXO2 have been found in other closely related 

Bacillus species. B. anthracis is a member of the Bacillus cereus group species which includes 

Bacillus cereus, a causative agent of food poisoning and opportunistic infections, and Bacillus 

thuringiensis, an insect pathogen. Plasmids similar to pXO1 and pXO2 have been identified in 

B. cereus strains (18–20). Given that all three species share DNA sequence similarity and gene 
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synteny, it is likely that horizontal gene transfer is a mechanism for sharing plasmids among 

closely related soil pathogens (21). 

 The soil habitat presents challenges such as temperature variation, desiccation, UV 

irradiation, and nutrient deprivation. B. anthracis forms spores to survive adverse 

environmental conditions. Spores exhibit minimal metabolic activity and retain viability when 

faced with multiple environmental challenges (22). In the soil environment, alkaline pH, high 

organic content, moisture, temperatures above 15˚C, and exudates from plant roots have been 

reported to promote spore germination (23, 24). 

 The B. anthracis spore is the infectious form of the bacterium. Spores can enter the 

body through cuts or scrapes on the skin, inhalation, or ingestion with each route of entry 

leading to a specific anthrax disease pathology. Regardless of the route of infection, B. 

anthracis spores are thought to be transported by macrophages to regional draining lymph 

nodes and then enter the blood stream, resulting in systemic dissemination (25). Cutaneous 

anthrax results from spore entry through skin abrasions and accounts for 95% of all anthrax 

cases (26). Patients with cutaneous anthrax present with a small blister surrounded by swollen 

tissue that develops into a painless black ulcer called an eschar (25). Gastrointestinal and 

inhalational anthrax result from ingestion or inhalation of spores, respectively. Gastrointestinal 

anthrax results in gastrointestinal pain, vomiting of blood, severe diarrhea, acute inflammation 

of the digestive tract, and loss of appetite (27). Inhalational anthrax symptoms are very similar 

to cold and flu symptoms and include fever, shortness of breath, cough, fatigue, and chills. 

Inhalational anthrax is distinguished by a characteristic widening of the mediastinum. 

Inhalational anthrax has the highest mortality rate of all forms of the disease, 45% with 

antibiotic therapy and more than 97% without treatment. Gastrointestinal has a similar mortality 

rate to inhalational anthrax, and cutaneous anthrax has the lowest mortality rate, 1% with 

antibiotic treatment and 20% with no treatment (28).  
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1.4 Virulence factors in anthrax pathogenesis 

 Following germination in the host, B. anthracis vegetative cells synthesize several 

factors associated with pathogenesis. Two of the most studied virulence factors are a tripartite 

toxin and a poly-γ-D-glutamic acid (PDGA) capsule. Capsule-negative or toxin-deficient 

mutants are highly attenuated in some animal models for anthrax (29, 30). 

 The anthrax toxins are classified as A/B-type bacterial toxins, with LF or EF comprising 

the enzymatic activity, or (A) moiety, and PA representing the binding component (B) (31). 

Initially, PA binds either of two proteinaceous cellular receptors; ANTXR1 and ANTXR2 (32), 

and is cleaved by a furin protease. PA is cleaved into two fragments, PA20 (20 kDa) and PA63 

(63 kDa) (33). PA63 remains bound to the cellular receptor and spontaneously heptamerizes on 

the cell surface (34). EF and LF bind to heptameric PA63 and the complex enters the cell by 

endocytosis (35–37). Once the endosome matures, the pH drops following the reversal of 

proton pumps in the endosomal membrane. Low pH triggers a conformational change in the PA 

complex resulting in the formation of a pore and escape of EF and LF  from the endosome (38, 

39). Lethal factor is a Zn2+ metalloprotease that cleaves mitogen-activated protein kinase 

kinases which results in suppression of pro-inflammatory cytokines and may induce apoptosis 

(40). Edema factor is a calmodulin- and Ca2+-dependent adenylate cyclase that elevates the 

intracellular cAMP concentration (41). Edema factor has been shown to inhibit phagocytosis of 

spores by human polymorphonuclear leukocytes in an in vitro infection model (42). 

 The proteinaceous PDGA capsule of B. anthracis is uncommon in bacteria, but is 

essential for establishing infection leading to anthrax. In vitro experiments show that the PDGA 

capsule is antiphagocytic, similar to capsule function in other bacteria (43, 44). The capBCADE 

operon on pXO2 encodes proteins required for capsule synthesis. CapB is an ATP-dependent 

ligase and functions with CapC to synthesize PDGA (45). Polymers of Ƴ-linked D-glutamic acid 

residues can reach up to 216 kDa (46). Polymers of PDGA are transported across the cell 

membrane by CapA and CapE (47). CapD is a γ-glutamyl transpeptidase (GGT)-family protein 
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that cleaves the γ-linked peptide bond of the polyglutamate capsule which is thought to serve 

two roles; anchoring capsule polymers to the cell wall, and the release of small PDGA polymers 

into the extracellular environment; the latter function is required for full virulence (47–49). The 

release of small PDGA polymers may contribute to pathogenesis by suppressing the responses 

of immune cells and disrupting the maturation of immature dendritic cells (50). 

 Although toxin and capsule are considered the primary virulence factors required for B. 

anthracis pathogenesis, several other factors may contribute to overall disease progression. 

The secreted chaperone/protease HtrA, for High temperature requirement A, is thought to aide 

in survival during heat, oxidative, ethanol, and osmotic stress. htrA mutants exhibit delayed 

growth in a macrophage infection assay, in addition to a ≥6-fold decrease in virulence relative 

to the parent strain in a guinea pig model of anthrax (51). MntA is the solute-binding component 

of a Mn2+ ATP-binding cassette transporter and is involved in optimal growth and survival of B. 

anthracis when incubated with cultured macrophages, or when the bacteria are exposed to 

oxidative stress. Moreover, the lethal dose (LD50) of mntA-null mutants was reported to be 104-

fold higher than that of the parent strain in a guinea pig model for anthrax in which spores were 

injected subcutaneously (52). The regulatory ATPase subunit of the ClpXP protease, ClpX, is 

required for hemolytic and proteolytic phenotypes observed when B. anthracis is cultured on 

blood and casein solid agar media, respectively. Strains lacking ClpX are attenuated in murine 

and guinea pig models of anthrax. Host substrates for extracellular proteolytic activity requiring 

ClpX functionality include cathelicidin and alpha-defensin antimicrobial peptides, in addition to 

lysozyme (53). Additionally, B. anthracis produces two siderophores, bacillibactin and 

petrobactin, but only petrobactin has been shown to be required for full virulence in a murine 

infection model (54). Lastly, the surface adhesin BslA, a protein found in the S-layer, a 

paracrystalline matrix distal to the peptidoglycan, is required for sufficient adhesion to host 

cells. Deletion of bslA results in a substantial increase in LD50, mean time-to-death, and 

decreased bacterial burden in host organs (55). So while the toxin and capsule may be the 
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major contributors to anthrax pathogenesis, other virulence determinants play smaller roles that 

contribute to overall disease progression. 

 

1.5 AtxA: The most well-characterized PCVR 

 The Anthrax Toxin Activator AtxA (56 kDa) is the master virulence regulator in B. 

anthracis, and controls expression of the anthrax toxin genes lef, cya, and pagA (49, 56, 57) 

(Figure 1-3). In addition to positive regulation of toxin gene expression, microarray studies to 

determine the AtxA regulon indicate that expression of the capsule biosynthesis operon and at 

least 38 other genes are affected by AtxA (56). How AtxA initiates transcription is unknown and 

a consensus sequence within AtxA-regulated promoters has not been identified. However, 

intrinsic curvature in AtxA-regulated promoters may play a role in AtxA-mediated gene 

expression (58). In agreement with positive regulation of toxin and capsule, an atxA-null mutant 

exhibits attenuated virulence in a murine model of anthrax (30). 

 Expression of atxA is governed by environmental signals and other trans-acting factors. 

Cultures of B. anthracis cultivated at 37˚C produce more atxA transcripts and higher AtxA 

protein levels than cultures incubated at 28˚C (59). Two small c-type cytochromes, which 

influence cellular redox state, were found to affect expression of atxA. Deletion of genes 

encoding c-type cytochromes and other constituents in the cytochrome c biogenesis pathway 

cause atxA expression to be dysregulated, and transcripts of atxA and toxin components were 

produced earlier in growth phase relative to the parent strain (60). Similar growth phase-

dependent dysregulation of atxA expression is mediated by AbrB. A well-characterized 

homolog of AbrB in Bacillus subtilis governs the timing of expression of multiple genes by 

binding to DNA sequences near the transcriptional start site and occluding RNA polymerase 

(61). In B. anthracis, AbrB is the only trans-acting factor known to interact directly with the atxA 

promoter to affect transcription. In batch culture, AbrB represses atxA during exponential 

growth and repression is relieved in transition-to-stationary phase (62).  Nutrient conditions also 

influence atxA expression. In batch culture the presence of glucose 
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Figure 1-3. Model for virulence gene regulation in B. anthracis 
AtxA is the master virulence regulator and controls expression of the anthrax toxin genes in 
addition to the capsule biosynthetic operon via transcriptional control of atxA. The atxA gene is 
located on plasmid pXO1. Culture in elevated CO2 atmosphere in medium containing dissolved 
bicarbonate increases AtxA activity and AtxA positively regulates expression of the anthrax 
toxin genes cya, pagA, and lef located on pXO1. In these culture conditions AtxA also positively 
affects expression of acpA located on pXO2. AcpA positively affects expression of capBCADE. 
There is a weak transcriptional terminator downstream of capE, but ~10% of transcripts include 
acpB. AcpB also promotes capBCADE expression resulting in a positive feedback loop. The 
overexpression of AtxA has on capBCADE expression when cultured in 20% atmospheric CO2  

is represented by the hashed red arrow.  
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increases atxA transcript levels in a catabolite control protein A (CcpA)-dependent manner 

indicating carbon catabolite activation (CCA) is involved (63). 

 The crystal structure of AtxA has been solved and functional roles for each of the five 

domains have been defined (Figure 1-2). A winged helix-turn-helix motif and a helix-turn-helix 

motif are present near the amino terminus indicative of a DNA-binding domain. The central 

region of the protein has two adjacent PRDs that govern AtxA activity. A domain with homology 

to Enzyme IIB of the PTS is located near the carboxy terminus and functions in 

homodimerization (64, 65). 

 Post-translational modifications, environmental conditions, and metabolic state affect 

AtxA activity. Histidines at position 199 in PRD1 and 379 in PRD2 are phosphorylated (Figure 

1-2). Phosphomimetic and phosphoablative mutations at positions 199 and 379 affect AtxA 

activity and suggest that phosphorylation at H199 allows AtxA to be active while 

phosphorylation at H379 functions as a dominant negative, with regard to the phosphorylation 

state of H199, and abolishes AtxA activity (65, 66). AtxA activity is also affected by in vitro 

culture conditions, specifically elevated carbon dioxide (CO2)/bicarbonate. Expression of AtxA-

dependent genes, including the anthrax toxin genes, is enhanced when cells are cultured in 5% 

atmospheric CO2 in medium containing dissolved bicarbonate, compared to culture in air in 

medium without bicarbonate added (56, 67). The increase in AtxA activity in response to 

culture in CO2/bicarbonate correlates with an increase in the AtxA dimer-to-monomer ratio. 

AtxA dimerization is imperative for activity, and mutants of AtxA that cannot dimerize have no 

activity (64). The elevated CO2/bicarbonate signal is thought to mimic the host physiological 

environment, and could provide a signal to promote virulence gene expression. AtxA steady 

state levels are affected indirectly by a transcriptional regulator, CodY. Studies in B. subtilis 

have elucidated factors influencing CodY activity as well as CodY-regulated genes. CodY 

senses the metabolic state of the cell by binding to GTP and branched chain amino acids 

(BCAA), two effectors that influence CodY DNA binding. CodY regulates expression of genes 

needed for survival in nutrient limited conditons, such as genes involved in sporulation and 
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survival in stationary phase (68). Deletion of codY in B. anthracis results in a decrease in AtxA 

steady state levels. Transcription and translation efficiency of atxA are unaffected in this mutant 

indicating that CodY affects AtxA post-translationally through an indirect mechanism (69). 

 

1.6 AcpA and AcpB: regulators of capsule expression 

 While regulation of atxA and factors that govern AtxA activity have been studied in great 

detail, less is known about the AtxA paralogues, AcpA and AcpB. The genes encoding AcpA 

and AcpB flank the capBCADE operon and control its expression via an unknown molecular 

mechanism (Figure 1-3). Either regulator can independently increase capBCADE transcript 

levels. AtxA positively regulates capsule gene expression via transcriptional control of acpA. 

Transcriptional read-through of capBCADE results in elevated expression of acpB and a 

positive feedback loop (29, 70). Overexpression of atxA, in the absence of acpA and acpB, has 

also been reported to produce capsular material when B. anthracis is cultured in 20% CO2 (71). 

Clues to understanding how the capsule regulators function may be gleaned from information 

obtained from AtxA. AtxA shares 26% amino acid sequence identity and 50% sequence 

similarity with each of the capsule regulators. Bioinformatic analyses indicate that both AcpA 

and AcpB possess amino terminal putative DNA-binding domains similar to that of AtxA. 

Specific DNA binding has not been tested with either capsule regulator. Two putative PRDs 

exist in the central region of both proteins, but the phosphorylation state of either protein has 

not been determined. Similar to AtxA, AcpA and AcpB also have carboxy termini with homology 

to Enzyme IIB. 

 

1.7 AtxA2, an AtxA homologue in Bacillus cereus strain G9241 

 Bacillus cereus, a pathogenic Bacillus species closely related to B. anthracis, is a 

frequent cause of food poisoning and has been associated with various opportunistic and 

nosocomial infections (72). Within the last 15 years, B. cereus strains carrying pXO1- and 

pXO2-like plasmids have been isolated from non-human primates and humans that succumbed 
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to an anthrax-like illness (18, 19, 73). B. cereus strain G9241 was recovered from a welder in 

Louisiana who presented with a severe anthrax-like respiratory illness. Strain G9241 contains 

two virulence plasmids, pBCXO1 that is highly similar to pXO1 and contains the three anthrax 

toxin genes in addition to a gene with sequence identity to atxA called atxA1, and pBC210 that 

encodes a protective antigen paralog, the ADP-ribosyltransferase Certhrax, and an AtxA 

homolog AtxA2. Plasmid pBC210 bears little sequence homology to pXO2 from B. anthracis. 

pBCXO1-encoded AtxA is identical in sequence to that from B. anthracis, and atxA2 79% 

identical and 91% similar  compared to B. anthracis AtxA (73). Finally, the B. cereus G9240 

genome does not code for AcpA and AcpB homologs.is  and no proteins with homology to 

AcpA and AcpB have been identified in the B. cereus G9241 genome. It is unclear how AtxA1 

and AtxA2 function in regulation of B. cereus virulence genes. 

 

1.8 Gaps in knowledge and significance of this work 

 AtxA, AcpA, and AcpB have some functional and amino acid sequence similarities, yet 

the regulons of these trans-acting factors are dissimilar. AtxA regulates 38 genes located on 

the virulence plasmids and the chromosome, while AcpA and AcpB are thought to affect 

expression of only a few genes. Previous PCVR regulon studies used PCVR-null mutants to 

detect global changes in gene expression (56). Given the interdependency of PCVR 

expression, it is difficult to discern the effects individual PCVRs have on global gene 

expression. Moreover, the relationship between PCVR loci and linkage of regulated genes has 

yet to be determined. Each regulator shares high amino acid identity and putative domains with 

homology to PTS components. AcpA and AcpB share more amino acid identity with each other 

than either does with AtxA. Whether greater sequence identity correlates with regulon similarity 

is unknown. Furthermore, it is unclear whether the DNA-binding regions alone are sufficient to 

provide target specificity to these regulators, or whether input from other intrinsic domains are 

required.  
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 B. anthracis is a model candidate for studying PCVRs because it presents a unique 

opportunity to study three of these regulators in the same organism. For my thesis work I have 

determined the regulons of each PCVR and identified relationships between PCVR amino acid 

sequence similarity and PCVR-controlled gene expression, including discernment of specific 

and co-regulated gene targets. I assessed PCVR multimerization states and determined how 

multimerization affects activity. These studies define PCVR roles in culture conditions that 

mimic the host environment, and provide data suggesting how these regulators may function. 
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2.1 Culture conditions 

 B. anthracis strains were cultivated at 37˚C in Brain Heart Infusion (BHI) (Becton, 

Dickson and Company, Franklin Lakes, NJ) or Casamino Acid medium containing 0.8% sodium 

bicarbonate (CA CO3) (74, 75). BHI broth cultures were incubated with agitation (200 r.p.m.) in 

air. CA broth cultures were shaken in 5% atmospheric CO2. Cells from stationary phase BHI 

cultures were sub-cultured into fresh CACO3 to an optical density at 600 nm (OD600) of 0.08. 

For strains harboring atxA, acpA, and acpB alleles under control of the hyper-spank promoter 

(Phyper-spank) (76), expression was induced with isopropyl β-D-thiogalactoside (IPTG) during 

early exponential phase at 2 h and harvested at early stationary phase at 4 h. Optical densities 

for early exponential phase cultures ranged from OD600 0.25-0.35, and early stationary phase 

cultures ranged from 1.2 to 1.7.  

 Cultures were supplemented with antibiotics when appropriate at the following 

concentrations: spectinomycin (MP Biomedicals, Solon, OH) (50 µg ml-1 for  E. coli and 100 µg 

ml-1 for B. anthracis), erythromycin (Fisher Bioreagents, Fair Lawn, NJ) (150 µg ml-1 for E. coli 

and 10 µg ml-1 for B. anthracis), and carbenicillin (Research Products International Corp, Mt. 

Prospect, IL) (100 µg ml-1 for E. coli). 

 

2.2 Strain construction 

 B. anthracis strains and plasmids are shown in Table 2-1. The virulent Ames strain 

(pXO1+ pXO2+) (77) and isogenic mutants were used for RNA-Seq experiments and the 

assessment of capsule and edema factor production. The attenuated ANR-1 strain (Ames 

nonreverting) (pXO1+ pXO2-) and isogenic mutants were used for all other experiments. 

Escherichia coli strains TG1 (78), GM2163 (79), and SCS110 (Stratagene, San Diego, CA) 

were employed for cloning plasmids. General laboratory practices were used for amplification, 

manipulation, and purification of plasmid DNA. Non-methylated plasmid DNA was isolated from 

E. coli GM2163 or SCS110 for electroporation into B. anthracis (57, 79), (Stratagene).  
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 The Ames atxAacpAacpB-null mutant (UTA40) was created by sequential deletion of 

each gene using a markerless temperature-sensitive integration system described previously 

(80). Initially, the atxA coding sequence was removed using pUTE937. Details regarding 

pUTE937 construction can be found in Hammerstrom et al. (64). Subsequently, to remove 

acpA from the atxA-null strain Ames genomic DNA was amplified using the polymerase chain 

reaction (PCR) and primers MJR014-JR175a to produce a 990-bp DNA fragment 

corresponding to sequence -1 to -991 relative to the acpA translational start site. Primers 

MJR017-JR176s were used to amplify a 1021-bp DNA fragment corresponding to sequence 

+1452 to +2473 relative to the acpA translational start site. The two DNA fragments were fused 

via splicing by overlapping extension PCR (SOE-PCR) (81) and inserted into pHY304 using a 

SacII restriction enzyme site. pHY304 is a temperature-sensitive E. coli - B. anthracis shuttle 

vector that encodes an erythromycin-resistance cassette (80). B. anthracis containing the 

pHY304-derived construct was cultivated at 41˚C (the non-permissive replication temperature) 

in medium supplemented with erythromycin to select for isolates in which the plasmid 

incorporated into one of the acpA flanking regions via homologous recombination. Cultures 

were passaged successive times at 30˚C or 37˚C in medium lacking antibiotic to allow excision 

of the pHY304 derivative from the acpA locus. Individual colonies were tested using the PCR 

and sequencing to confirm removal of the acpA coding sequence. Finally, removal of the acpB 

coding sequence from the atxAacpA-null strain was accomplished in a manner similar to 

deletion of acpA. Primers MJR002-MT06 were used to amplify a 1008-bp DNA sequence -1 to -

1009 relative to the acpB translational start. A 1006-bp DNA sequence corresponding to 

sequences +1445 to +2441 from the acpB translational start site was amplified using primers 

MJR003-MT09. DNA fragments were joined by SOE-PCR, cloned into pHY304, and used to 

remove acpB as described above. 

 UT423 harbors the capB promoter sequence fused to a promoterless β-galactosidase 

gene (lacZ) incorporated into the plcR locus, a nonfunctional gene in B. anthracis. To construct 

UT423, a DNA fragment corresponding to approximately 1.2 kb upstream of the capB 
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translational start (-1 to -1249) was amplified using primers AB142 and AB143 and inserted into 

pHT304-18z (82) using BamHI and SacI restriction enzyme sites upstream of a plasmid-borne 

lacZ. The DNA sequence inclusive of the upstream capB region and lacZ gene was excised 

using XhoI and EcoRI restriction enzymes and cloned into an E. coli - B. anthracis shuttle 

vector pUTE744 which contains an Ωkanamycin cassette that is flanked by two 1.2 kb plcR 

flanking regions. pUTE744 confers chloramphenicol resistance and is unstable when B. 

anthracis strains are grown without selection. The capB-lacZ fusion was inserted upstream of 

the Ωkanamycin cassette adjacent to the plcR flanking region creating pUTE1067 and 

electroporated into UT374, a markerless atxA-deletion mutant in the ANR-1 (pXO1+ pXO2-) 

background, with chloramphenicol selection. Electroporants were passaged in medium without 

selection and screened for kanamycin-resistance and chloramphenicol-sensitivity. Appropriate 

isolates were confirmed by PCR. 

 B. anthracis Ames strain derivatives (UTA35, UTA36, UTA37) were constructed 

carrying recombinant alleles of atxA, acpA, or acpB engineered to express carboxy-terminal 

FLAG-tagged proteins from the respective native loci. To construct these strains, PCR was 

used to amplify regions flanking the 3' end of each PCVR open reading frame with primers 

engineered to attach the FLAG-tag coding sequence to the 3' end of each coding sequence, 

and to incorporate 5' and 3' restriction enzyme sites. Amplicons for atxA, acpA, or acpB were 

joined by SOE-PCR and ligated into pHY304. Flanking regions for acpA corresponded to +443 

to +1452 and +1453 to +2473, relative to the translational start codon. The acpB flanking 

regions were comprised of sequences +441 to +1444 and +1445 to +2474 relative to the start 

codon. Flanking regions for atxA included sequences +462 to +1424 and +1428 to +2481 from 

the start codon. The resulting plasmids containing the PCVR allele and respective flanking 

regions were individually electroporated into the B. anthracis Ames strain. Isolates in which the 

native PCVR allele was replaced with an allele encoding a FLAG-tagged PCVR were obtained 

as described above for the creation of UTA40. 
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2.3 Native and IPTG-induced PCVR expression 

 Steady state levels of the PCVR proteins were determined using strains expressing 

FLAG-tagged proteins from native PCVR loci. Strains UTA35, UTA36, and UTA37 were 

cultivated in CACO3 for 7 h. Cell lysates were prepared as described previously (64). Sample 

volumes for SDS-PAGE were normalized by OD600 readings at sample collection and loaded on 

12.5% poly-acrylamide gels. Samples were separated by PAGE and transferred to an 

Immobilon-P membrane (Millipore, Billerica, MA, USA) and subsequently blotted with α-FLAG 

antibody (Genscript, Piscataway, NJ, USA). 

 The IPTG concentrations necessary to express plasmid-borne Phyper-spank - controlled 

recombinant PCVR alleles at protein levels comparable to those found in strains producing 

PCVRs from native promoters were determined. B. anthracis strains harboring recombinant 

atxA, acpA, or acpB alleles encoding FLAG-tagged proteins under the control of Phyper-spank in 

pUTE657 were cultured in CACO3. Cultures were induced at early exponential phase with 5 

µM, 10 µM, 20 µM, 100 µM, 150 µM, or 200 µM IPTG and harvested at early stationary phase 

(OD600). Cell lysates were prepared and samples containing IPTG-induced FLAG-tagged 

PCVRs were loaded on 12.5% poly-acrylamide gels adjacent to lysates containing FLAG-

tagged PCVRs expressed from the native locus and harvested at early stationary phase. 

Samples were separated by PAGE, transferred to a membrane, and blotted with anti-FLAG 

antibody as described previously. IPTG concentrations that yielded PCVR expression similar to 

native PCVR expression were used for subsequent RNA-Seq experiments (5 µM for atxA, 5 

µM for acpA, and 150 µM for acpB). 

 

2.4 RNA isolation for RNA-seq 

 Cultures of B. anthracis strains Ames, the Ames-derived atxAacpAacpB-null mutant 

UTA40 containing pUTE657, UTA40 (pUTE1054), UTA40 (pUTE1056), and UTA40 (pUTE992) 

were grown in CACO3. PCVR expression was induced with IPTG (5 µM for atxA and acpA 

expression and 150 µM for acpB expression) at early exponential phase and 4-ml samples 
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were harvested at early stationary phase (OD600 = 1.2-1.7). Samples were centrifuged at 

10,000 g at 4˚C and resulting pellets were resuspended in 500 µl of CACO3. An equivalent 

volume of saturated acid phenol (pH 4.3; Fisher Bioreagents, Fair Lawn, NJ) at 65˚C was 

added to each sample and transferred to screw top tubes containing 400 µl of 0.1 mm 

Zirconia/Silica beads (BioSpec Products Bartlesville, OK). Samples were lysed mechanically 

for 1 min, incubated for 5 min at 65˚C, and subsequently lysed for an additional 1 min followed 

by centrifugation at 3,000 g at 4˚C. Supernates were transferred to 500 µl of saturated acid 

phenol at 65˚C. Samples were vortexed, incubated at room temperature (RT) for 5 min, and 

centrifuged at 16,000 g for 3 min at 4˚C. One-third volume of chloroform was added to the 

aqueous phase. Following incubation for 10 min at RT, samples were centrifuged at 16,000 g 

for 15 min at 4˚C.  The aqueous phase was transferred to a new tube and RNA was 

precipitated by the addition of one-half volume diethyl-pyrocarbonate (DEPC)-treated water and 

one total volume (aqueous phase + DEPC-treated water) of isopropanol followed by incubation 

at RT for 10 min. Samples were centrifuged at 16,000 g for 15 min at 4˚C, and pellets 

containing precipitated RNA were washed with 75% ethanol. Following removal of ethanol, 

pellets were air-dried and finally resuspended in DEPC-treated water. 

 

2.5 Creation of Next Generation Sequencing (NGS) libraries for RNA-seq and sequencing 

 RNA samples were quantified using a Qubit fluorescence assay (Thermo Scientific). 

Total RNA quality was assessed using an RNA 6000 chip on an Agilent 2100 Bioanalyzer 

(Agilent Technologies).  Creation of libraries for NGS analysis used total RNA (1.0 ug). 

Samples were treated with Ribo-Zero (Epicentre) to remove ribosomal RNA prior to 

fragmentation using divalent cations and heat (940 C, 8 minutes). Libraries were created using 

an Illumina TruSeq sample preparation kit following the protocol as recommended by the 

manufacturer. Briefly, RNA samples were converted to cDNA by random primed synthesis 

using Superscript II reverse transcriptase (Invitrogen). Second strand synthesis using DNA 

polymerase I and RNAse H was performed and the double-stranded DNAs were treated with 
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T4 DNA polymerase, 5’ phosphorylated and an adenine residue was added to the 3’ ends of 

the DNA. Adapters were ligated to the ends of these target template DNAs. The adapter 

structure used by Illumina is a key element in the sequencing strategy. One end of the adapter 

has a 5’ phosphorylation and a 3’ “T” overhang that is compatible with ligation to DNA 

templates. The other end of the adapter has non-complementary ends on each DNA strand, 

resulting in a “Y”-shaped structure for the adapter. After ligation, the template DNAs were 

amplified using primers specific to each of the non-complementary sequences in the adapter. 

All libraries were indexed. The final concentration of all NGS libraries were determined using a 

Qubit fluorescence assay (Thermo Scientific) and the fragment size of each library was 

assessed using a DNA 1000 chip and an Agilent 2100 Bioanalyzer.  qPCR analysis was used 

to determine the template concentration of each library prior to clustering.  NGS sequencing 

was performed as a paired-end 50 base sequence using an Illumina HiSeq 1500 following the 

protocol recommended by the manufacturer. Quality assessment of the sequencing run was 

assessed using FastQC (http://www.bioinformatics.bbsrc.ac.UK/projects/Fastqc). 

 

2.6 RNA-seq and bioinformatic analysis 

 The Integrative Genomics Viewer (IGV) (83) (for read mapping), and Cufflinks (84) (for 

the differential expression analysis) were used to analyze RNA-Seq results. Reads were 

aligned to the B. anthracis strain ‘Ames Ancestor’, accession AE017334.2, using bowtie2 

version 2.2.5 (85) with default parameters. The bedtools genomeCoverageBed command (84) 

was used to create bedgraph files from the aligned read files in bam format. The IGVtools 

function of the Integrated Genome Viewer (IGV) (83) was used to convert the bedgraph files to 

tdf format files for use in the IGV. Read maps from the different strains were fixed to a scale of 

“0-2000” for comparison. The featureCounts function of the subread software package (86) was 

used to count reads mapped to each gene with gene as the feature type, using the annotation 

file GCA_000008445.1_ASM844v1_genomic.gff downloaded from the NCBI website. A table of 

read counts per gene per sample (3 replicates per condition) was entered into the DESeq2 
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differential expression analysis program (87) and expression level differences between each 

condition were determined. For differential gene expression analysis, sequencing files (bam 

format) were imported into Cufflinks. Triplicate sequencing results of each strain were 

compared to calculate Fragments Per Kilobase of transcript per Million fragments mapped 

(FPKM) changes using the default setting. 

 Differentially expressed genes for each complementation strain were subjected to gene 

set enrichment analysis on annotated KEGG pathways using the PATRIC Comparative 

Pathway Tool (88). Genes were selected for pathway analysis using a filter of log ratio of 2.0 or 

greater and a Z-score of 2.0.  

 

2.7 Western blotting 

 Cell lysates for detection of PCVRs by Western blot were generated as described 

previously (64). Briefly, 4-ml samples from early stationary phase cultures were centrifuged at 

5000 g for 5 min at 4˚C. Cell pellets were resuspended in KTE-PIC (10 mM Tris-HCl pH 8.0, 

100 mM KCl, 10% ethylene glycol, and EDTA-free Complete proteinase inhibitor) to a final 

volume of 450 μl and transferred to a 1.5 ml screw-cap tube containing 400 µl 0.1 mm 

Zirconia/Silica Beads (BioSpec Products, Bartlesville, OK). Cells were lysed mechanically using 

a Mini BeadBeater (BioSpec Products), centrifuged, and resuspended in SDS loading buffer 

(final concentration of loading buffer was 0.05% bromophenol blue, 0.1M DTT, 10% glycerol, 

2% SDS, and 5 mM Tris-Cl pH 6.8). Suspensions were boiled and subjected to SDS-PAGE. 

 To detect edema factor protein levels, culture supernates were passed through a 0.22-

µM nylon filter (Fisher Scientific) and boiled for 10 min. Supernatant volumes to assess edema 

factor levels were normalized by OD600 readings at sample collection. Supernates were affixed 

to a 0.2 µM nitrocellulose membrane (GE Healthcare Life Sciences, Pittsburgh, PA) by vacuum 

blotting with a slot blot apparatus (Hoefer Scientific, San Francisco, CA). Membranes were 

blocked at 4°C in TBS-T (20 mM Tris base, 137 mM NaCl, 0.1% Tween 20; pH 7.6) containing 
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2.5% BSA. Anti-EF (gift of R. J. Collier, ) and goat anti-rabbit-horseradish peroxidase conjugate 

secondary antibody (Bio-Rad, Hercules, CA, USA) were used for edema factor detection. 

 

2.8 India ink exclusion assay 

 Encapsulated cells were visualized by India ink exclusion. To induce capsule 

production, B. anthracis cells were cultivated in NBY medium supplemented with 0.8% 

dissolved bicarbonate. Cultures were incubated in 5% atmospheric CO2 to early stationary 

phase (89). An equal volume of India ink was added to 1.5 µl of culture on a microscope slide 

and viewed at 1000x magnification using a Nikon Eclipse TE2000-U microscope (Melville, NY). 

Images were captured using Metamorph (Imaging Series 6.1) software (Molecular Devices, 

Sunnyvale, CA). 

 

2.9 Co-affinity purification 

 B. anthracis UT423 strains containing plasmids with IPTG-inducible genes encoding 

affinity-tagged AtxA, AcpA, AcpB, and GFP proteins were cultured individually in 25 ml of 

CACO3 at 37˚C in 5% atmospheric CO2. Protein expression was induced with IPTG (50 µM) 

during early exponential growth phase and 20 ml of each culture was collected at early 

stationary phase. Cultures were pooled in pairs as described in Fig. 7 and Fig. 8. Pooled 

cultures were pelleted and washed with 10 mL Binding Buffer (5 mM imidazole pH 7.9, 0.5 M 

NaCl, 20 mM Tris, pH 7.15, 5 mM β-mercaptoethanol containing EDTA-free Complete Protease 

Inhibitor (PIC; Roche, Indianapolis, IN)). Cell pellets were flash frozen and stored at -80˚C. 

 Co-affinity purification was performed as described previously (64). Briefly, soluble cell 

lysates from pooled B. anthracis cultures were incubated 20 min in 5% CO2 to facilitate CO2-

dependent interactions. Lysates were mixed with NTA-Ni2+ resin to bind 6xHis-tagged proteins. 

The resin was washed to remove any non-specifically bound proteins. 6xHis-tagged proteins, 

as well as any associated proteins, were eluted from the resin using imidazole and analyzed by 

Western blot using anti-His and anti-FLAG antibodies. 
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2.10 AcpA-His and AcpB-His purification 

 Recombinant AcpA-His and AcpB-His were purified from B. anthracis using affinity 

chromatography as described previously (64). Briefly, B. anthracis UT423 strains possessing 

pUTE1090 (AcpA-His) or pUTE1091 (AcpB-His) were cultured in CACO3 in 5% CO2. Cultures 

were induced with 50 µM IPTG at early exponential phase and cells were collected at early 

stationary phase by centrifugation. Cells were resuspended in Binding Buffer supplemented 

with 1x EDTA-free Complete proteinase inhibitor (Roche), 1 mM MgCl2 and 10 units DNase I 

(Ambion, Austin, TX). Cell lysis was achieved by three passages through a French Pressure 

Cell Press (SLM Instruments, Urbana, IL) and soluble lysates were collected following 

centrifugation. Lysates were incubated with 1 ml NTA-Ni resin (Qiagen, Hilden, Germany) in 

Binding Buffer (total volume 10 ml) and incubated end-over-end for 2 h at 4˚C. The resin was 

pelleted and washed with Binding Buffer and subsequently washed with Wash Buffer 1 (40 mM 

imidazole pH 7.9, 1.0 M NaCl, 20 mM Tris pH 7.2, 5 mM β-mercaptoethanol), Wash Buffer High 

Salt (40 mM imidazole pH 7.9, 1.5 M NaCl, 20 mM Tris pH 7.2, 5 mM β-mercaptoethanol), and 

Wash Buffer 2 (75 mM imidazole pH 7.9, 1.0 M NaCl, 20 mM Tris pH 7.2, 5 mM b-

mercaptoethanol). Proteins were eluted from resin using imidazole. Protein concentration and 

purity were determined using the Bradford reagent (Bio-Rad) and SDS-PAGE with Coomassie 

staining. 

 

2.11 Bis-maleimidohexane crosslinking 

 B. anthracis UT423 strains harboring plasmids encoding AcpA-FLAG (pUTE1079) or 

AcpB-FLAG (pUTE1093) were cultured and induced with IPTG (50 µM) at early exponential 

phase. After 2 h, 20 ml of each culture was collected by centrifugation at 5000 g for 10 m at 4˚C 

and washed twice with 5 ml PBS-EDTA (1X PBS pH 7.2 containing 10 mM EDTA). Cells were 

resuspended in PBS-EDTA and lysed by mechanical disruption. Cell lysates were centrifuged 

at 10,000 g for 5 m at 4˚C to pellet insoluble debris. For each experiment, 250 µl of soluble 
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lysate was mixed with 5 µl of 20 mM bis(maleimido)hexane (BMH, Thermo Scientific, prepared 

freshly in DMSO) and incubated at 4˚C with end-over-end mixing for 2 h. Control reactions 

lacking BMH contained DMSO only. Reactions were quenched by adding cysteine to a final 

concentration of 40 mM and vortexing for 15 min RT. Samples were boiled in 1X SDS loading 

buffer (5% glycerol, 100 mM DTT, 2% SDS, 40 mM Tris-Cl pH 6.8) and separated on 12.5% 

polyacrylamide SDS gels (Bio-Rad). AcpA-FLAG and AcpB-FLAG were detected by Western 

blotting using α-FLAG antibody (Genscript). 

 Preparations of affinity-purified AcpA-His and AcpB-His used for BMH crosslinking 

experiments were purified using NTA-Ni resin and eluted using imidazole. Equivalent 

concentrations of purified AcpA-His and AcpB-His were diluted with PBS-EDTA to a final 

volume of 250 µl and BMH crosslinking was performed as described above. 

 

2.12 Mouse infections 

 All mouse protocols were approved by The University of Texas Health Science Center 

Institutional Animal Care and Use Committee and performed using accepted veterinary 

standards. Female 6- to 8-week-old A/J mice were purchased from The Jackson Laboratory 

(Bar Harbor, ME) and maintained in a pathogen-free vivarium at The University of Texas Health 

Science Center. Food and water were supplied to the mice ad libitum. The mice were housed 

three per cage and were allowed to acclimate to their surroundings for 7 days prior to being 

used in experiments. Mice were infected intravenously by using a 30-gauge needle. The tail 

vein was injected with 50 µl containing between 102 or 103 heat-sensitive CFU (vegetative 

cells). 

 

2.13 Determination of heat-resistant CFU 

 One-ml samples were obtained from cultures during transition from exponential to 

stationary (4h), and stationary (7h, 12h) growth phases. Samples were serially diluted and 

plated on LB agar before and after suspensions were heat-shocked at 65°C for 45 min. 
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Colonies were counted after overnight incubation at 37°C. The percentage of heat-resistant 

CFU/ml was calculated by dividing the number of heat-resistant CFU (post heat-shock) by the 

number of total CFU (pre-heat shock). Total heat-resistant CFU/ml values were determined by 

calculating the number of CFU/ml following heat-shock. 

 

2.14 Real-time quantitative PCR (RT-qPCR) 

 Purified RNA samples (2.5 – 10 μg) were incubated with either 5U of RQ1 DNase 

enzyme (Promega, Madison, WI) for 30 min or with 2U of DNase I enzyme (New England 

Biolabs, Ipswich, MA) for 10 min at 37°C. RQ1 DNase reactions were stopped using 0.1 

volume or 5 μl (whichever was greater) RQ1 stop buffer (Promega) and incubated at room 

temperature for 2 min. EDTA was added to a final concentration of 5 mM to stop the DNase I 

reactions. DNase-treated RNA was precipitated with 0.1 volume of 3 M sodium-acetate pH 5.2 

(Ambion, Grand Island, NY) and 2 volumes of ice-cold 100% ethanol for a minimum of 30 min 

on ice. The mixture was centrifuged at 16,000 x g for 30 min at 4°C. RNA pellets were washed 

with 1 ml of ice-cold 75% ethanol, dried in an Eppendorf Vacufuge, and resuspended in DEPC-

treated water. RNA concentrations were determined using a NanoDrop ND-1000 

Spectrophotometer.  

 RT-qPCR cDNA was synthesized by incubating 5 µg of RNA, 250 ng of random 

primers, and 10 mM dNTP Mix (final concentration) at 65˚C for 5 min followed by incubation on 

ice. 1X First-Strand Buffer (Invitrogen), 0.1 M DTT, and 200 U of SuperScript III reverse 

transcriptase (Invitrogen) were added to the mixture and incubated at RT for 5 min. The cDNA 

synthesis reaction proceeded at 50˚C for 60 min. cDNA synthesis for each sample included a 

reaction lacking reverse transcriptase to test DNA contamination. qPCR consisted of 1X iTaq 

Universal SYBR Green Supermix (BioRad), 300 nM for both forward and reverse primers (final 

concentration) (IDT), and 100 ng cDNA template. Each qPCR plate contained a no-template 

control for each sample to ensure reagents were not contaminated. qPCR plates were covered 

with Microseal "C" Film (BioRad) and incubated in a CFX96 Real Time PCR Detection System 
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(BioRad) using the following cycling conditions: 95˚C, 2 min; followed by 40 cycles of 95˚C, 15 

sec and 60˚C, 30 sec. Melt curve analysis (65˚C-95˚C at 0.5˚C increments for 2-5 sec/step) 

was performed at the conclusion of amplification cycles. Data were analyzed by CFX Manager 

(BioRad) with FAM reporter and ROX as the reference dye. Relative changes in gene 

expression were determined using the double delta Ct (∆∆Ct) method with gyrB as the 

reference gene.  
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Table 2-1.  B. anthracis strains and plasmids 
 
Name  Descriptiona            Reference or source 
 
Strains 
 
Ames  B. anthracis, Parent strain, pXO1+ pXO2+   (90) 
 
UTA40  Ames atxAacpAacpB-null mutant    This work 
 
UTA35  Ames-derived mutant with recombinant AcpA-FLAG  
  expressed from the native locus.    This work 
 
UTA36  Ames-derived mutant with recombinant AcpB-FLAG  This work 
  expressed from the native locus. 
 
UTA37  Ames-derived mutant with recombinant AtxA-FLAG  This work 
  expressed from the native locus. 
 
UTA9  Ames-derived skiA-nullc; Spr     This work 
 
UTA22  Ames-derived atxA-null      This work 
 
UTA26  Ames-derived atxA-up mutant (transversion mutation This work 
  of sequences +14 to +22)b 
 
UTA31  Ames-derived skiA-nullc/atxA-up mutant; Spr   This work 
 
ANR-1  B. anthracis, Parent strain, pXO1+ pXO2-   (77) 
 
UT423  ANR-1-derivative, capB promoter - lacZ fusion   This work 
  (PcapB-lacZ) incorporated in the plcR locus, atxA-null; Knr 
 
UT374  ANR-1-derivative atxA-null     (91) 
 
UT376  ANR-1-derivative, lef promoter - lacZ fusion (Plef-lacZ) (64) 
  at native lef locus, atxA-null 
 
Plasmids 
 
pUTE657 Expression vector derived from pDR111 and pBC16  (80) 
  with IPTG-inducible Phyper-spank; Spr Apr  
 
pUTE1054 pUTE657-derived expression vector for AcpA-FLAG This work 
  (FLAG-epitope on the C-terminus of AcpA); the acpA  
  ribosome binding site and coding region controlled by  
  Phyper-spank      
 
pUTE1079 pUTE657-derived expression vector for AcpA-FLAG This work 
  (FLAG-epitope on the C-terminus of AcpA) the atxA 
  ribosome binding site and acpA coding region controlled 
  by Phyper-spank  
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pUTE1090 pUTE657-derived expression vector for AcpA-His   This work 
  (6xHis-epitope on the C-terminus of AcpA) the atxA 
  ribosome binding site and acpA coding region controlled 
  by Phyper-spank  
 
pUTE1125 pUTE657-derived expression vector for AcpA-ΔEIIB-His  This work 
  (6xHis-epitope on the C-terminus of AcpA- ΔEIIB) the 
  acpA ribosome binding site and acpA coding region 
  controlled by Phyper-spank  
 
pUTE1056 pUTE657-derived expression vector for AcpB-FLAG This work 
  (FLAG-epitope on the C-terminus of AcpB) the acpB 
  ribosome binding site and coding region controlled by 
  Phyper-spank 
 
pUTE1093 pUTE657-derived expression vector for AcpB-FLAG  This work 
  (FLAG-epitope on the C-terminus of AcpB) the atxA 
  ribosome binding site and acpB coding region controlled 
  by Phyper-spank  
 
pUTE1091 pUTE657-derived expression vector for AcpB-His  This work 
  (6xHis-epitope on the C-terminus of AcpB) the atxA 
  ribosome binding site and acpB coding region controlled 
  by Phyper-spank 
 
pUTE1126 pUTE657-derived expression vector for AcpB-ΔEIIB-His This work 
  (6xHis-epitope on the C-terminus of AcpB-ΔEIIB) the acpB 
  ribosome binding site and acpB coding region controlled by 
  Phyper-spank  
 
pUTE992 pUTE657-derived expression vector for AtxA-FLAG  (64) 
  (FLAG-epitope on the C-terminus of AtxA) the atxA 
  ribosome binding site and coding region controlled by 
  Phyper-spank  
 
pUTE991 pUTE657-derived expression vector for AtxA-His  (64) 
  (6xHis-epitope on the  C-terminus of AtxA) the atxA 
  ribosome binding site and coding region controlled by 
  Phyper-spank  
 
pUTE1013 pUTE657-derived expression vector for GFP-FLAG             (64) 
  (FLAG-epitope on the C-terminus of GFP); the gfpmut3a 
  ribosome binding site, coding region, and sequence 
  encoding FLAG controlled by Phyper-spank 
 
pAW285 Xylose-inducible expression vector; Cmr              (92) 
 
pUTE1099 pAW285-derived expression vector for AcpA-FLAG            This work 
  (FLAG-epitope on the C-terminus of AcpA) the acpA 
  coding region controlled by PxylA 
 
pUTE1100 pAW285-derived expression vector for AcpB-FLAG            This work 
  (FLAG-epitope on the C-terminus of AcpB) the acpB 
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  coding region controlled by PxylA 
 
pUTE1096 pUTE657-derived expression vector for AtxA2-His  (93) 
  (6xHis-epitope on the C-terminus of AtxA2) the atxA 
  ribosome binding site and coding region controlled by 
  Phyper-spank 
 
pUTE1122 pUTE657-derived expression vector for AtxA2-FLAG (93) 
  (FLAG-epitope on the C-terminus of AtxA2) the atxA 
  ribosome binding site and coding region controlled by 
  Phyper-spank 
 
a Apr, ampicillin resistant; Cmr, chloramphenicol; Knr, kanamycin; Spr, spectinomycin 
b Numeric values relative to atxA P1 transcriptional start site 
c skiA was known previously as pXO2-0075 and pXO2-61 (White 2006) 
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Table 2-2. Primers used in this dissertation 
 

Name Sequence (5' to 3') Brief Description 

MJR014 CCGCGGACAAGTACATAATTGGCATTC SacII - acpA markerless deletion 

JR175a GCGTATCAAAATAAATTATCACCCTTAGTT
ATTTATTTC 

acpA markerless deletion (overlap 
primer) 

MJR017 GGCGCCGTATTTTAGATGCAACAGTG SacII - acpA markerless deletion 
& recombinant AcpA-FLAG gene 
insertion 

JR176s GGGTGATAATTTATTTTGATACGCAATAGC
TAGATTG 

acpA markerless deletion (overlap 
primer) 

MJR002 ATTGATACTACATATATCGATATCCCTTGC
TTTTAAG 

acpB markerless deletion (overlap 
primer) 

MJR015 CCGCGGTGTCTTAATTACTGGAAAGTAAC
A 

SacII - acpB markerless deletion 

MJR003 TCGATATATGTAGTATCAATAATATAGAAA
AAGCCACTT 

acpB markerless deletion (overlap 
primer) 

MT09 GGCGCCTTAATTTTAAGCAATAAAATACAT
AG 

SacII - acpB markerless deletion 

AB142 GGATCCGTCTTCTCGCACTATCAAGG BamHI - PcapB insertion 

AB143 GAGCTCTTTAGAAACAATTCACTCGCT SacI - PcapB insertion 

MJR037 CTATTTATCATCATCATCTTTATAATCTTTG
CTTGCAAAGATTCCTATTTC 

recombinant AcpA-FLAG gene 
insertion (overlap primer) 

MJR038 GGCTCGAGTAGGGGATGAATTTCAAATTA
TAC 

XhoI - recombinant AcpA-FLAG 
gene insertion 

MJR039 GATTATAAAGATGATGATGATAAATAGTAT
TTTGATACGCAATAGCTAGAT 

recombinant AcpA-FLAG gene 
insertion (overlap primer) 

MJR040 TACTCGAGAAACCTCTTAGACTTGAGGG XhoI - recombinant AcpB-FLAG 
gene insertion 

MJR041 CTATTTATCATCATCATCTTTATAATCACCA
TCTTGTAAATCTAGATAATA 

recombinant AcpB-FLAG gene 
insertion (overlap primer) 

MJR042 CCGCGGGAACAATATTTTCATTGCTCCTT
CC 

SacII - recombinant AcpB-FLAG 
gene insertion 

MJR043 GATTATAAAGATGATGATGATAAATAGTAT
CAATAATATAGAAAAAGCCAC 

recombinant AcpB-FLAG gene 
insertion (overlap primer) 

MJR095 AAAGGCGCCATTTATCTTAAGGTTATATTG
CAATATTCC 

SacII - recombinant AtxA-FLAG 
gene insertion 

MJR096 CTATTTATCATCATCATCTTTATAATCTATT
ATCTTTTTGATTTCATGAAAATCTCTTTC 

recombinant AtxA-FLAG gene 
insertion (overlap primer) 

MJR097 ATAGATTATAAAGATGATGATGATAAATAG
ATGCCCTTTAAATATTTGTTTAATGACAC 

recombinant AtxA-FLAG gene 
insertion (overlap primer) 

MJR098 AAACTCGAGCATTAGCCTTAATGTGAGTA
GAATC 

XhoI - recombinant AtxA-FLAG 
gene insertion 

MT01 GGTAGTCGACAACTAAGGGTGATAATTAT
G 

SalI - acpA rbs start codon 
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MJR056 GTCGACAGGAAAGGAGAATCAATTATAGA
CATGGAAAAAGATATTAGCCGAAAAATTG
ATTTG 

SalI - atxA rbs acpA open reading 
frame 

MJR005 AAGCATGCTAGTGGTGATGGTGATGATGT
TTGCTTGCAAAGATTCCTATTTC 

acpA His6 stop codon - SphI 

MJR001
1 

AAGCATGCTATTTATCATCATCATCTTTAT
AATCTTTGCTTGCAAAGATTCCTATTTC 

acpA FLAG stop codon - SphI 

MT05 AAGCATGCAAGCAAGGGATATCGATATAT
G 

SphI - acpB rbs start codon 

MJR057 AACTCGAGAGGAAAGGAGAATCAATTATA
GACATGGAAAAAGATATAAAAAGACAAAT
CCAAATC 

XhoI - atxA rbs acpB open 
reading frame 

MJR004 AAGCATGCTAGTGGTGATGGTGATGATGA
CCATCTTGTAAATCTAGATAATA 

acpB His6 stop codon - SphI 

MJR010 AAGCATGCTATTTATCATCATCATCTTTAT
AATCACCATCTTGTAAATCTAGATAATA 

acpB FLAG stop codon - SphI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

 

 

Chapter III. 

 
 
 
 
 

Regulons of PRD-containing  
Bacillus anthracis virulence regulators 

reveal overlapping but distinct functions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: A portion of this chapter is derived from work published in 2018  which is cited below. I 
am first author on this publication. I have received permission by the publisher of Molecular 
Microbiology, John Wiley and Sons, to reproduce all of the manuscript in print or electronically 
for the purposes of my dissertation (License Numbers: 4284271503886 & 4342040215509). 
 
Raynor, M.J., Roh, JH., Widen, S.G., Wood, T.G., Koehler, T.M. (2018) Regulons and protein-
protein interactions of PRD-containing Bacillus anthracis virulence regulators reveal 
overlapping but distinct functions. Molecular Microbiology. doi: 10.1111/mmi.13961. 
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3.1 Introduction 

 Three PRD-Containing Virulence Regulators (PCVR), AtxA, AcpA, and AcpB, have 

been identified in Bacillus anthracis, the causative agent of anthrax. A defining characteristic of 

PCVRs is the presence of phosphoenolpyruvate:carbohydrate phosphotransferase system 

regulatory domains (PRD). The phosphotransferase system, generally involved in the transfer 

of phosphate to incoming sugar molecules, may also play a role in virulence. AtxA is the master 

virulence regulator and the most well-studied PCVR. AtxA controls transcription of the anthrax 

toxin genes, pagA (protective antigen), lef (lethal factor), and cya (edema factor). AtxA also 

affects expression of the capsule biosynthesis operon capBCADE and other genes (29, 30, 57, 

59, 64, 67). Expression of atxA is subject to complex regulation. Transcription of atxA, located 

on virulence plasmid pXO1 (182 kb), is affected by temperature, carbohydrate availability, 

redox potential, metabolic state, and growth phase (59–61, 66, 69). 

 The other two PCVRs in B. anthracis, AcpA and AcpB, are encoded by genes on 

virulence plasmid pXO2 (95 kb). AcpA and AcpB positively regulate capBCADE (29, 70). The 

amino acid sequences of these regulators are similar to that of AtxA, but structure/function 

studies of AcpA and AcpB are lacking. Initial investigations of AtxA, AcpA, and AcpB employed 

atxA-, acpA, and acpB-null mutants in a genetically reconstituted virulent pXO1+ pXO2+ strain. 

The data revealed that the regulons of the three PCVRs are partially overlapping and not 

limited to expression of the toxin and capsule genes (70). For example, in addition to the toxin 

and capsule genes, AtxA negatively regulates some chromosomal genes, including genes 

predicted to be involved in branched chain and aromatic amino acid synthesis (56). AcpA 

affects expression of pXO1-114, a gene predicted to encode a spore germination 

protein/permease. Also, AtxA and AcpA have a synergistic effect on expression of amiA, a 

peptidoglycan hydrolase, located on pXO2. AcpB appears to play a larger role in virulence than 

AcpA. In a murine model of anthrax, an acpB mutant exhibited a higher LD50 and reduced 

dissemination compared to an acpA mutant (70). 
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Extensive analyses of capBCADE regulation support a model in which all three B. 

anthracis PCVRs positively affect cap operon transcription. Data from experiments employing 

null-mutants reveal that expression of the regulators is inter-dependent and suggest functional 

similarity of AcpA and AcpB. The primary means for AtxA control of capBCADE is via positive 

regulation of acpA transcription (70). The acpA gene is located upstream of the cap locus and 

in the opposite orientation. AcpA can positively affect transcription of capBCADE in the 

absence of AtxA and AcpB. The acpB gene, located downstream of capBCADE and in the 

same orientation, is expressed as a monocistronic transcript initiated from a weak constitutive 

promoter. AcpB, like AcpA, can positively affect capBCADE expression in the absence of the 

other PCVRs. A weak transcription terminator located between capE and acpB results in co-

transcription of acpB with capBCADE in roughly 10% of transcripts, thus forming a positive 

feed-back loop.  

 It is unknown how AtxA, AcpA, and AcpB affect transcription of target genes or what 

factors influence target specificity. Clues to determining targets of some transcription factors 

can often be found in cis-acting elements upstream of the gene. Many transcription factors 

recognize particular DNA sequences, or consensus sequences, in the promoters of genes they 

regulate (94). A consensus sequence in the control regions of PCVR-regulated genes has not 

been identified and specific DNA-binding activity by AtxA has not been demonstrated. 

However, DNA structure has been implicated in AtxA gene regulation. In silico modeling of the 

toxin gene promoters predicts common structural characteristics. A region of high curvature is 

positioned near the AtxA-dependent transcriptional start sites. Two other AtxA-regulated genes, 

pXO1-90 and pXO1-91 which are positively regulated 61-fold and 25-fold, respectively, are also 

predicted to contain promoter regions of high curvature (58). These data suggest that intrinsic 

DNA curvature of AtxA-regulated promoters may contribute to AtxA-mediated gene expression. 

 The presence of three paralogous PCVRs in B. anthracis presents a unique opportunity 

to study similarities and differences in PCVR function in a single pathogen. Previously 

published investigations of the roles of AtxA, AcpA, and AcpB in B. anthracis transcription 
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employed PCVR-null mutants (29, 70). The more recently discerned inter-dependence of 

PCVR expression complicates interpretation of the data generated using individual null-

mutants. In this chapter, I show native protein expression levels of AtxA, AcpA, and AcpB in a 

fully virulent clinical isolate of B. anthracis. I created recombinant strains expressing individual 

PCVRs and determined the regulons of each factor using RNA-Seq. I identified genes 

controlled by one or more regulators, and whether PCVRs preferentially controlled genes within 

pathogenicity islands. I also examined the effects of individual regulators on expression of 

established virulence genes.  

3.2 Results 

3.2.1 Amino acid sequence and predicted domain similarity of the B. anthracis PCVRs 

 A comparison of the amino acid sequences of the B. anthracis PCVRs is shown in 

Figure 3-1A. Overall, AtxA shares about 27% amino acid sequence identity and close to 50% 

amino acid sequence similarity with AcpA and AcpB. AcpA and AcpB have 40% amino acid 

sequence identity and 62% similarity, and are more similar to each other than to AtxA. 

Structural models of AcpA and AcpB generated using Phyre2 (13) predict similar domain 

organization to AtxA (Figure 3-1B). Sequence homology between the three PCVRs is highest 

in the predicted DNA-binding domains which are comprised of two helix-turn-helix motifs at the 

amino termini. Within this region, AcpA and AcpB share 48% amino acid identity, AtxA and 

AcpA are 33% identical, and there is 29% identity between AtxA and AcpB. At the carboxy-

terminal regions of the PCVRs, the predicted EIIB-like domains of AcpA and AcpB are 32% 

identical to each other, and each share approximately 30% amino acid identity and 50% 

similarity with the respective domain within AtxA.  

Of the five predicted domains associated with each of the AcpA and AcpB amino acid 

sequences, the PRDs are the most divergent from AtxA. Although the amino acid sequences of 

the AcpA and AcpB PRD regions share 36% identity, they are 20% and 22% identical to the 

sequences of the PRDs revealed in the AtxA crystal structure. Phosphorylation of H199 and 

H379 within AtxA PRD1 and PRD2, respectively affect regulator activity (66). Phosphorylation 
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of AcpA and AcpB has not been demonstrated and histidine residues within the putative PRDs 

of AcpA and AcpB do not align with phosphorylated residues of AtxA (Figure 3-1A).  
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A. 

 
B. 

             

     

 
Figure 3-1. Amino acid sequence alignment and structures of Bacillus anthracis PCVRs 
(A) Domains identified in the AtxA crystal structure are shown as solid bars directly above the 
respective amino acid sequence. Histidines at positions 199 and 379 within AtxA, which have 
been shown to be subject to phosphorylation, are shown with black background. Potential sites 
for histidine phosphorylation within the putative PRDs of AcpA and AcpB are shown with a gray 
background. Amino acid identity and similarity are denoted by asterisk (full conservation), colon 
(strongly similar properties), or period (weakly similar properties). Alignments were completed 
using the Clustal X2 program. (B) Crystal structure of AtxA and protein threading structural 
predictions of AcpA and AcpB. Domains are color coded, and H199 and H379 of AtxA are 
labeled. Histidines within PRDs of AcpA and AcpB are indicated by blue and yellow spheres.  
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3.2.2 Native PCVR protein and transcript levels 

 The importance of AtxA, AcpA, and AcpB in expression of toxin and capsule has been 

appreciated, but individual contributions by each regulator have not been fully defined. As an 

initial step I determined the relative level of each PCVR when the parent strain was cultured in 

optimal conditions for virulence gene expression. To determine native PCVR protein levels, I 

created strains that expressed AtxA-FLAG, AcpA-FLAG, or AcpB-FLAG from the respective 

native locus. The FLAG epitope did not affect function of the native protein in in vivo reporter 

strains designed to test AtxA, AcpA, or AcpB activity. (Figure 3-2 and (64)). Strains were 

cultured in either CACO3 or NBY-CO3 in atmospheric 5% CO2. Culture in CACO3 and 5% CO2 

is ideal for atxA-mediated toxin gene expression (30), and growth in NBY-CO3 and 5% CO2 

allows optimal capsule production. Strains were harvested at the transition to stationary growth 

phase and cell lysates prepared. Cell lysates were separated by SDS-PAGE and FLAG-tagged 

proteins were visualized by western blot using α-FLAG antibody. In both media, AtxA was the 

most abundant PCVR detected (Figure 3-3). AcpA-FLAG and AcpB-FLAG were detected at 

levels much lower than AtxA-FLAG in strains cultured in CACO3 medium. Nevertheless, 

capsule production was apparent (Figure 3-3A). AcpA-FLAG and AcpB-FLAG had higher 

steady state levels when strains were cultivated in NBY-CO3 compared to culture in CACO3 

with AcpB-FLAG detected in higher abundance than AcpA-FLAG (Figure 3-3B). These results 

assume equal accessibility of the FLAG epitope by the α-FLAG antibody for each recombinant 

protein. Capsule production from cultures grown in NBY-CO3 was also more robust and 

resulted in cells with thicker capsule than from CACO3 cultures. These results indicate that 

AtxA is the most abundant of the three PCVRs in soluble cell lysates. 

 I used RNA-Seq to define the regulon of each PCVR and to determine the extent each 

PCVR plays in expression of genes related to virulence and general metabolism, and to identify 

co-regulated genes. In order to circumvent the influence of AtxA on acpA and acpB expression, 

and to ascertain the significance of each PCVR in a clinical isolate of B. anthracis, I created an  
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Figure 3-2. In vivo activity of recombinant His-tagged and FLAG-tagged AcpA and AcpB 
In an atxA-null pXO1+ pXO2- strain (UT423), expression of native, -His6, and –FLAG tagged 
recombinant AcpA and AcpB was induced with IPTG during growth in CACO3. The empty 
vector (EV) lacks both acpA and acpB. Samples were collected at the transition to stationary 
phase (4h; OD600 1.2-1.8). All strains carried the PcapB:lacZ reporter and β-galactosidase 
activity was measured as described previously (95). Error bars represent  standard deviation.  
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atxAacpAacpB-null mutant from the pXO1+ pXO2+ Ames strain (Table 2-1) and expressed 

individual PCVR-encoding genes in trans under the control of an IPTG-inducible promoter. 

PCVR expression was induced with a concentration of IPTG that yielded near-native protein 

levels.  

 To determine IPTG concentrations that yield near-native PCVR protein levels, I grew 

cultures that expressed individual FLAG-tagged PCVRs from the native locus, and cultures of 

the atxAacpAacpB-null strain carrying plasmid-borne atxA, acpA, or acpB under the control of 

an IPTG inducible promoter. Expression of each PCVR was induced at early exponential 

growth phase using a range of IPTG concentrations and all cultures were harvested at the 

transition to stationary phase. Cell lysates from strains that expressed an individual PCVR, 

either from the native locus or from the IPTG-inducible expression vector, were separated by 

SDS-PAGE and FLAG-tagged proteins were detected by western blot with anti-FLAG antibody. 

The IPTG concentration that yielded PCVR expression that most closely mirrored expression 

from the native locus was used for future experiments. 

 For RNA-Seq experiments I grew cultures of the parent strain, atxAacpAacpB-null 

strain, and atxAacpAacpB-null strains expressing individual PCVR genes from the IPTG-

inducible promoter. Cells were grown in toxin-inducing conditions, and expression of each 

PCVR in the atxAacpAacpB-null complementation strains was induced with IPTG. RNA was 

extracted for sequencing when cultures reached the transition to stationary phase. 
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Figure 3-3. Native PCVR expression and capsule production 
Strains of B. anthracis expressing AtxA-FLAG (UTA37), AcpA-FLAG (UTA35), AcpB-FLAG 
(UTA36) from the respective native locus, and the parent strain Ames were cultivated in either 
(A) CACO3 or (B) NBY-CO3 in 5% atmospheric CO2 and harvested (8 mLs per culture) at 
transition to stationary phase (OD600 1.2-1.7). Cell lysates were diluted 5-fold or 25-fold in KTE-
PIC and load volumes were normalized by OD600 reading at collection prior to separation by 
SDS-PAGE. FLAG-tagged proteins were detected by western blot with α-FLAG antibody. 

Capsule production was assessed at collection and visualized using Differential Interference 
Contrast (DIC) microscopy and India Ink staining. 
 

α-FLAG 

India Ink 

α-FLAG 

India Ink 
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 Prior to examining gene expression changes mediated by each PCVR, I assessed the 

expression levels of atxA, acpA, and acpB in the parent strain and complementation strains to: 

A) determine the relative abundance of PCVR transcripts, and B) to assess how well PCVR 

expression in each complementation strain mirrored native expression. I compared the 

fragments per kilobase of transcript per million reads (FPKM) for each PCVR in the parent, 

atxAacpAacpB-null, and complementation strains (Figure 3-4). In the parent strain, atxA and 

acpA transcripts were present at similar levels. Transcripts of acpB were roughly two-fold more 

abundant than atxA or acpA transcripts, potentially due to transcriptional read through from 

capBCADE to acpB (Figure 1-3). Expression of atxA, acpA, and acpB in the atxAacpAacpB-

null strain was not detected and complementation with either atxA or acpA expressed from an 

IPTG-inducible promoter yielded near-native expression. Expression of acpB from the IPTG-

inducible promoter yielded acpB expression several-fold higher than native acpB expression 

(Figure 3-4). Nevertheless, the IPTG concentration used to induce acpB expression generated 

AcpB protein levels commensurate with acpB expressed from the native locus. These data 

suggest that acpB transcripts expressed from the IPTG-inducible promoter may be less stable 

and/or translated less efficiently than acpB transcripts expressed from the native locus.  

3.2.3 Overlapping regulons of AtxA, AcpA, and AcpB 

 To discern differential effects mediated by each PCVR on global gene expression, I 

compared RNA sequencing reads obtained using cultures from the different strains. 

Comparison of the transcriptional profiles of the parent strain and the atxAacpAacpB-null 

mutant revealed vast differences in gene expression. Four-fold or greater differences in 

transcript levels were found for 716 genes, representing 11.6% of the genome. Gene 

expression changes of two-fold or greater were observed for 1440 genes representing 23.4% 

of the genome.   

 To determine the effects of individual PCVRs on gene expression I compared 

transcripts from the atxAacpAacpB-null mutant to those obtained from mutants expressing one 

PCVR. Venn diagrams of the PCVR regulons illustrate that B. anthracis genes can be 
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Figure 3-4. PCVR transcript levels 
Transcripts of atxA, acpA, and acpB in the parent, atxAacpAacpB-null (∆∆∆), and 
complementation strains expressing atxA (∆∆∆/atxA), acpA (∆∆∆/acpA), or acpB (∆∆∆/acpB) 
were determined by RNA-Seq following culture in CACO3 in 5% CO2. Error bars represent high 
and low confidence intervals.  
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controlled by one, two, or all three regulators (Figure 3-5). AtxA had a four-fold or greater effect 

on expression of 145 genes (Figure 3-5A); 80 were positively controlled by AtxA, while 65 

were negatively affected by AtxA. Table 3-1 lists PCVR-regulated genes with a 16-fold or 

greater change in expression (log2-fold change of 4 or greater) in the presence of at least one 

PCVR, and illustrates specific and co-regulated genes. I found several examples of genes with 

expression changes that were strongly AtxA-dependent, but unaffected by AcpA or AcpB 

(Table 3-1). For example, expression of pagAR, lef, and GBAA_pXO1_0171 was strongly 

induced by AtxA, but not affected by the other PCVRs. AtxA regulated independently a greater 

number of genes (≥4-fold) than either AcpA or AcpB. AcpA affected expression of 130 genes; 

83 were positively regulated and 47 were negatively regulated, and AcpB controlled expression 

of 49 genes; 17 were up-regulated and 32 were down-regulated. AcpA-alone controlled 

expression of amiA, an autolysin encoded by pXO2. AcpB controlled expression of 

GBAA_pXO2_0119, a pseudogene annotated as a truncated transposase. The data set 

included co-regulated genes that were affected similarly by AcpA and AcpB, but to a different 

degree by AtxA. Both AcpA and AcpB positively affected expression of GBAA_pXO2_0059, but 

expression of this gene was not affected by AtxA.  

Expression of GBAA_pXO2_0061 and GBAA_pXO2_0122 was strongly affected by AcpA and 

AcpB, yet weakly controlled by AtxA. For co-regulated genes, there was a predominance of 

genes controlled by AtxA and AcpA. For genes regulated four-fold or greater, 31 genes were 

controlled by AtxA and AcpA, 15 genes were co-regulated by AtxA and AcpB, and 5 genes 

were co-regulated by AcpA and AcpB. Many genes were controlled by all three regulators, and 

in some cases each PCVR had comparable effects on target genes. The numbers of genes in 

the regulons increased substantially when I included genes with expression that changed two-

fold or greater. These results reveal the vast effects of the PCVRs on B. anthracis gene 

expression and indicate a high degree of functional similarity among the regulators.  
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Figure 3-5. Venn diagrams of PCVR regulons 
(A) Gene expression changes of ≥2-fold, ≥4-fold, and ≥16-fold in the atxAacpAacpB-null strain 
(UTA40) complemented with AtxA, AcpA or AcpB. (B) Gene expression changes of ≥4-fold 
organized by genetic element. 
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3.2.4 Loci of PCVR-regulated genes 

 To determine if genes controlled by AtxA, AcpA, or AcpB are linked, I first determined 

whether highly-regulated genes mapped to pXO1, pXO2, or the chromosome. Table 3-1 lists 

PCVR-regulated genes with a 16-fold or greater change in expression (log2-fold change of four 

or greater) in the presence of at least one PCVR. Figure 3-5B shows Venn diagrams of the 

PCVR regulons associated with each genetic element for genes regulated at least four-fold. Of 

203 transcripts associated with pXO1, 15 were altered at least four-fold: 13 by AtxA and 2 by 

AcpA. No pXO1-derived transcripts were affected four-fold or greater by AcpB. Transcripts 

regulated by more than one PCVR were not detected, with the exception of cya and bslA, 

which were highly regulated by AtxA and showed a relatively small level of control by AcpA 

(see Table 3-1). 

Read maps (Figure 3-6) revealed that many of the regulated transcripts from pXO1 

were associated with the 35-kb region that lies within a larger 44.8-kb pathogenicity island (96). 

Of the 47 genes from which I detected transcripts in this region, 12 were AtxA-controlled. 

These genes included the three toxin genes and the spore germination genes gerXA, gerXB, 

and gerXC, encoding germination receptors (97). The native atxA locus is also within this 35-kb 

region. The bslA gene, encoding an S-layer protein that mediates adhesion to host cells (55) is 

the only highly expressed AtxA-regulated gene on pXO1 located outside of the pathogenicity 

island. 

 I detected transcripts for 110 genes on pXO2, of which 21 were regulated four-fold or 

greater by at least one of the three PCVRs (Figure 3-5B). The highly-regulated genes 

clustered within a 35.5-kb region of the plasmid which includes the capsule biosynthetic operon 

capBCADE followed by the weakly co-transcribed acpB gene. Other PCVR-controlled genes in 

this region of pXO2 include pagR2, a paralog of the pXO1-encoded transcription factor pagR1 

(98, 99), and multiple genes of unknown function (Figure 3-6 and Table 3-1). The acpA and 

acpB genes are also located in the 35.5-kb region.                                             
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Table 3-1. Genes most highly regulated by the PCVRs 
Genes listed showed a Log2-fold change of ≥4 (≥16-fold) in at least one complementation 
strain; AcpA (UTA35), AcpB (UTA36), and AtxA (UTA37) when compared to the 
atxAacpAacpB-null strain (UTA40).  Genes that appear to be co-transcribed indicated by 
bracket. 
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Figure 3-6. Sequencing reads mapping to PCVR-regulated loci 
Bedgraphs show normalized sequencing reads mapped to pXO1 (A), pXO2 (B), and the 
chromosome (C). Regions enriched for PCVR-regulated genes indicated above graph in 
kilobases.   
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 With the exception of pagR2, for pXO2 genes controlled by all three PCVRs, AcpA and 

AcpB exerted comparable effects, while AtxA had a lower level of control (Table 3-1). Other 

highly-regulated genes on pXO2 included the surface-layer N-acetylmuramoyl-L-alanine 

amidase gene, amiA, controlled solely by AcpA, and a gene of unknown function pXO2_0119, 

which was only affected by AcpB.  

 A significantly smaller proportion of PCVR-regulated genes mapped to the 

chromosome. Of 5593 transcripts, 198 were altered four-fold or greater by one or more PCVRs. 

Clustering of PCVR-regulated chromosome genes was not apparent, however transcript reads 

suggested some operons (Table 3-1) and functional relationships. PCVR-controlled 

chromosomal genes included multiple genes predicted to be associated with metabolic 

networks. Among the most highly-regulated chromosomal genes were many genes associated 

with branched chain amino acid (BCAA) synthesis and uptake (Table 3-1).  Previous reports 

show that AtxA negatively affected expression of genes involved in branched chain amino acid 

synthesis (56). My analysis identified AcpB as an additional negative regulator of these genes. 

Of the 17 genes implicated in BCAA biosynthesis, expression of 13 of these genes is repressed 

by AtxA and AcpB. 

I examined the read maps for evidence of autogenous control of the PCVR genes. For 

each of the PCVR genes, levels of transcripts mapping to sequences directly upstream of the 

native open reading frame did not differ in the null mutant, parent strain, and complemented 

strain, indicating no autogenous control. However, in agreement with previously published 

studies (29), AtxA positively affected acpA transcript levels and AcpA positively increased acpB 

transcripts. Notably, the level of acpB transcripts originating from the IPTG-inducible 

expression vector in the acpB complementation strain was higher than that generated by the 

native locus in the parent strain. Yet, both strains produced comparable amounts of AcpB (data 

not shown), suggesting that acpB transcripts expressed from the inducible promoter have 

reduced stability or are not translated as efficiently as transcripts expressed from the native 

locus.  
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Figure 3-7. Heat map and dendrogram of hierarchical  clustering among PCVR regulons 
Gene expression on pXO1 (A), pXO2 (B), and the chromosome (C) in each complementation 
strain; AcpA (UTA35), AcpB (UTA36), and AtxA (UTA37) relative to the atxAacpAacpB-null 
strain (UTA40). Relative fold changes in expression are presented in Log2 scale with up-
regulated genes in red and down-regulated genes in green. Hierarchical clustering analysis of 
completed by GENE-E.  
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 Overall, with the exception of the large number of highly AtxA-regulated genes on 

pXO1, I did not observe notable relationships between specific PCVRs and genetic elements 

(plasmids and chromosome loci). Moreover, hierarchical clustering of the PCVRs and their 

regulons did not reveal a correlation between relative PCVR similarity and co-regulated genes  

 (Figure 3-7). The data indicate that AcpA and AcpB elicit similar gene expression patterns for 

regulated genes on pXO1 and pXO2 genes, whereas the AtxA effect is more distinct. 

Interestingly, for regulated genes on the chromosome AtxA and AcpA caused similar 

expression changes, while AcpB elicited more distinct changes in gene expression. I also noted 

that highly-regulated genes on the plasmids were affected positively by the PCVRs, while 

chromosomal genes displaying 16-fold or greater regulation were affected negatively. 

 

3.2.5 Effects of individual PCVRs on established virulence genes 

 The genes most highly-regulated (log2-fold change of 4-fold or greater)by at least one 

PCVR are listed in Table 3-1. In agreement with previous reports of AtxA control of toxin gene 

transcription (30, 49, 57, 71, 100–103), transcripts of lef, cya, and the pagAR operon exhibited 

a log2-fold change of 4.47 or higher in the presence of AtxA. AcpB did not affect toxin gene 

expression, while AcpA had a modest, yet statistically significant effect on expression of cya, 

encoding EF. In other studies, AcpA was found to have no effect on toxin expression (56, 101). 

To further investigate AcpA control of cya, I tested culture supernates for EF using western 

blotting (Figure 3-8). EF production by the atxAacpAacpB-null mutant was markedly less than 

that of the parent strain. Cultures of the null mutant harboring individual PCVR genes were 

induced with varying concentrations of IPTG to approximate native levels of PCVR expression, 

or over-expression of the PCVRs. At both levels of induction, EF was detected in supernates of 

the null mutant complemented with atxA. Interestingly, EF was not detected in culture 

supernates when either AcpA or AcpB were induced to native or high levels. These results 

support my RNA-Seq data that AtxA is the major regulator of cya expression. Despite a small 

effect on cya transcript levels by AcpA, edema factor was not  
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Figure 3-8. Edema Factor Production by the individual PCVRs 
Expression of recombinant atxA, acpA, and acpB was induced with IPTG to yield either native 
or overexpressed steady state protein levels (Native - 5 µM, 5 µM, 150 µM respectively;  
Overexpressed - 50 µM, 50 µM, 500 µM respectively) during growth in CACO3 in 5% CO2.  
Samples of culture supernatants were subjected to slot blot Western analysis using rabbit  
anti-EF serum raised against B. anthracis edema factor.  
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detected in culture supernates of the null mutant complemented with acpA. Further, the 

increase in edema factor production resulting from overexpression of AtxA indicates AtxA 

levels are limiting for cya expression.  

 Expression of the capsule biosynthetic operon was positively affected by all three 

PCVRs, with AcpA and AcpB having the strongest effect. The influence of AtxA on capsule 

operon expression was surprising because it was shown previously that native atxA 

transcription in pXO1+ pXO2+ strain UT500 deleted for acpA and acpB, did not produce 

capsulated bacilli (29).  However, another study demonstrated that in a Pasteur II derivative 

lacking pXO2 (thus missing acpA and acpB) and harboring plasmid-encoded capBCA under the 

control of the native promoter, overexpression of atxA results in the production of capsule 

material by cultures incubated on LB agar supplemented with bicarbonate in 20% atmospheric 

CO2 (71). Typically, to induce capsule synthesis B. anthracis is cultured in 5% CO2, which is 

thought to model the host environment (104, 105). I cultured the atxAacpAacpB-null mutant 

and PCVR-complemented strains in 5% CO2 and 20% CO2 to test for encapsulated bacilli 

(Figure 3-9A, B). In both CO2 environments, robust capsule production was observed in strains 

complemented with acpA or acpB, but not in the strain expressing only atxA. Moreover, over-

expression of atxA did not result in visible capsule formation (Figure 3-9). Combined with the 

RNA-Seq data, these results indicate that although AtxA can elevate capBCADE transcript 

levels, either transcription is not high enough to detect capsule microscopically or robust cell-

associated capsule formation by the virulent Ames strain requires additional factors that are 

regulated by AcpA and AcpB, but not AtxA.  

 Other genes related to virulence were affected by AtxA, AcpA, and AcpB. The pXO2 

pagR2 gene, which has been implicated in the attenuation of virulence in the Pasteur II vaccine 

strain (99), was positively regulated 32- to 64-fold by all three PCVRs (Table 3-1). In addition, 

transcription of the β-lactamase gene bla2, reported previously to be controlled by the 

extracytoplasmic function sigma factor–anti-sigma factor gene pair, sigP-rsiP (106), was  
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Figure 3-9. Capsule production by the individual PCVRs 
Expression of recombinant atxA, acpA, and acpB was induced with IPTG to yield native steady 
state protein levels (5 µM, 5 µM, 150 µM respectively) during growth in CACO3 in 5% CO2 (A). 
(B) Expression of recombinant atxA induced with 30 µM IPTG in UTA40 during growth in  
CACO3 in 20% CO2. (C) Overexpression of atxA with 50 µM IPTG during culture in CACO3 in  
5% CO2 . The UTA40 derivatives were induced at early exponential phase  
(2h; OD600 0.25-0.35) in during  growth in CACO3. Samples were collected at the transition to 
stationary phase (4h; OD600 1.2-1.8), stained with India Ink, and visualized using DIC  
microscopy.  
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also increased 5- to 7-fold in the AtxA, AcpA, and AcpB complementation strains compared to 

the atxAacpAacpB-null mutant.  

 

3.3 Discussion 

 In this chapter, I have reported similarities and differences of the B. anthracis PCVRs at 

the amino acid level, determined the regulon of each PCVR using RNA-Seq, examined linkage 

relationships between PCVRs and their targets, and studied the specific activity of each PCVR 

on toxin and capsule expression. 

 Native transcript levels of atxA, acpA, and acpB from B. anthracis cultured in CACO3 as 

determined using RNA-Seq show that transcripts of atxA and acpA are present at roughly 

equivalent levels, while transcripts of acpB are two-fold more abundant. These data are 

consistent with previous qRT-PCR data which examined atxA, acpA, and acpB transcript levels 

in a genetically reconstituted strain of B. anthracis (70). However, relative levels of atxA, acpA, 

and acpB transcripts do not correlate with protein abundance (Figures 3-3 & 3-4). Despite 

having transcript amounts equivalent to that of acpA, AtxA is far more abundant in soluble cell 

lysates than AcpA. Transcripts of acpB are expressed two-fold more highly than atxA or acpA, 

but AcpB is still less prevalent than AtxA in cell lysates. The ribosomal binding site (RBS) 

among the three genes is not conserved and is likely the cause for the non-linear relationship 

between PCVR transcripts and protein levels. The ribosomal binding sequence, as well as 

spacing to the ATG start codon, differs for each of the three genes. Production of AcpA and 

AcpB increases when the atxA RBS and 5' untranslated sequence are used to drive translation 

of acpA and acpB (See Chapter IV and Figure 4-1). Differences in the RBS among PCVR 

genes demonstrate post-transcriptional regulation of PCVR protein levels. It may be 

advantageous for B. anthracis to keep AcpA and AcpB protein levels at levels much lower than 

AtxA during infection. Both AcpA and AcpB are limiting for capsule production and 

overexpression of either acpA or acpB in the atxAacpAacpB-null strain produced cells with 

capsule radii much thicker than the wild-type strain. An acpAacpB mutant is avirulent in a 
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murine model of anthrax, and single deletions of either acpA or acpB result in decreased 

capsule thickness or virulence relative to the parent strain. Reduced dissemination is observed 

in an acpB-null mutant, but not in an acpA-null mutant indicating that other factors controlled by 

these two regulators are important for infection (107). The virulence of B. anthracis strains 

overexpressing acpA or acpB has not been tested, but it is likely that increased capsule 

thickness or other factors regulated by either regulator would not attenuate virulence. 

 One of the overarching questions with regard to PCVR function is what features of the 

proteins mediate target specificity. Hierarchical clustering shows there is little to no correlation 

between amino acid conservation among regulators and what genes they control. AcpA and 

AcpB generated similar expression patterns for genes located on pXO1, which were distinct 

from AtxA-mediated gene expression on pXO1. Gene expression profiles for all three 

regulators were very similar for genes located on pXO2. For chromosome-encoded genes, the 

expression profiles for AtxA and AcpA were most similar. These data suggest that other factors 

aside from amino acid sequence similarity are involved in PCVR target specificity.  

 The Koehler lab published previously that phosphorylation at H199 within AtxA is 

thought to reposition the linker between PRD1 and HTH2 of AtxA thereby affecting the HTH2-

DNA interaction (65). The phosphorylation state of AcpA and AcpB has not been determined. 

The putative PRDs of AcpA and AcpB are the most dissimilar domains when compared to the 

AtxA amino acid sequence. Histidine residues within the PRDs of AcpA and AcpB do not align 

with phosphorylated histidines at position 199 nor 379 within AtxA (Figure 3-1, (66)). 

Differential positioning of histidine residues within the PRDs of AcpA and AcpB relative to AtxA 

may be cause for differences in target specificities between these three PCVRs. It is possible 

that if phosphorylated histidine residues exist within PRD1 of AcpA and AcpB, differences in 

the location of these residues relative to the HTH2 of the DNA-binding domain may account for 

differences in target specificities observed among AtxA, AcpA, and AcpB. 

 Metal binding might also play a role in PCVR target specificity, as was demonstrated for 

Mga, the PCVR of Group A Streptococcus. Mga DNA-binding specificity is influenced by Zn2+ 
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and Ni2+ (108). The involvement of metal ions in AtxA, AcpA, and AcpB DNA-binding has not 

been tested. However, if metal ions play a similar role in B. anthracis PCVR function, amino 

acid differences between AtxA, AcpA, and AcpB could influence the DNA-binding specificity of 

these regulators. 

My data show that PCVR-regulated genes on pXO1 and pXO2 cluster within defined 

loci. On pXO1, PCVR-controlled genes clustered within a 35-kb region identified previously as 

a pathogenicity island. The pathogenicity island is flanked by IS1627 insertion elements (ISs) 

with near identical sequence similarity. This region harbors loci for several other putative ISs, 

transposases, and integrases (109) and inversions of this pathogenicity island have been 

observed in other B. anthracis strains (96). Similarly, the 35.5-kb region on pXO2 that contains 

a cluster of PCVR-regulated genes has also been suggested as a pathogenicity island (110). In 

line with PCVR control of genes within pathogenicity islands, MgaSpn, a PCVR expressed in S. 

pneumoniae, represses expression of the 12-kb rlr pathogenicity islet. This region encodes 

three sortases and a cognate transcriptional regulator which mediate bacterial colonization in 

the host pulmonary and nasopharyngeal environments (14, 111). In GAS, Mga controls 

expression of genes localized to a 47-kb region that is inclusive of emm which encodes M-

protein, as well as other Mga-regulated virulence factors. In addition to genes related to 

virulence, features associated with mobile elements, such as transposases and multiple short 

direct repeats, are also within this region (112). To my knowledge, RivR and PafR have not 

been associated with regulation of any pathogenicity islands in their respective host organisms. 

 The capsule biosynthetic operon is located within an apparent pathogenicity island on 

pXO2. The capBCA genes are not unique to B. anthracis as homologs are present in other 

members of the Bacillus genus (113). In other species capBCA homologues are regulated by 

factors other than AcpA and AcpB homologues. In B. subtilis IFO 16449, which harbors 

chromosome-encoded capBCA homologues and produces large quantities of Ƴ-polyglutamic 

acid, activity of a PcapB-lacZ reporter increases five-fold with the addition of L-glutamic acid to 

cultures of Spizizen minimal medium (114). Homologs of AtxA, AcpA, or AcpB have not been 
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identified in this strain of B. subtilis. In B. anthracis, culture in medium supplemented with 

bicarbonate in 5% atmospheric CO2 is required for capsule formation (105). Other Bacillus 

species that produce a cell-associated poly-Ƴ-D-glutamic acid capsule harbor pXO2-like 

plasmids that include the capD and capE genes at the 3' end of the capBCA operon. CapD is 

required for cell-wall anchoring of polyglutamate to the cell wall, and CapE has been proposed 

to form a complex with CapA to transport D-glutamic acid polymers across the cell membrane 

(47–49). The presence of pathogenicity islands on pXO1 and pXO2 provide evidence for 

horizontal gene acquisition in Bacillus anthracis. Considering that many virulence factors are 

acquired by horizontal gene transfer and plasmid acquisition, it is reasonable to postulate that 

these factors are added gradually over time and that transcriptional regulators associated with 

these factors both gain and loose functionality. Given that atxA, acpA, and acpB are located in 

apparent pathogenicity islands, over the course of evolution they may have gained functionality 

to control expression of genes outside of their original/initial targets providing a fitness 

advantage.  

Perhaps the most interesting disparity between the B. anthracis PCVR regulons and the 

PCVR regulons of other species is within the collection of target genes that do not encode 

classic virulence factors. Prior to my results, metabolic gene targets of PCVRs have frequently 

included genes associated with carbohydrate utilization. The S. pyogenes Mga regulon 

includes genes involved in fermentation, the mannose PTS, fructose PTS, and maltose 

utilization (115). RivR of S. pyogenes positively regulates genes required for metabolism of 

sucrose (116). In uropathogenic E. coli, PafR represses expression of genes required for 

maltose utilization (15). My data indicate that the B. anthracis PCVRs do not play a significant 

role in carbohydrate utilization. Rather, AtxA, AcpB, and to a lesser extent AcpA negatively 

regulate operons and genes associated with branched chain amino acid biosynthesis and 

transport. The physiological significance of PCVR control of metabolic genes has been 

purported to be related to diverse microenvironments of pathogens during infection. S. 

pyogenes can colonize the skin, pharynx, soft tissues, and cause invasive infections (117, 
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118). Uropathogenic E. coli can colonize both the colon and urinary tract (119). Like these 

bacteria, B. anthracis can thrive in diverse host environments, including the dermis, blood, 

cerebral spinal fluid, and many organs (120, 121). However, the significance of branched chain 

amino acid (BCAA) metabolism in these environments is not clear.  

Although minimal media for culture of B. anthracis have been described, there are few 

reports of nutritional requirements of the bacterium during infection. B. anthracis mutants 

deficient in synthesis of aromatic amino acids were less virulent than a wild-type Sterne strain 

in models of anthrax infection (90). Also, a recent study suggested that B. anthracis requires 

exogenous valine to grow in a medium that mimics serum (122). There are few reported links 

between BCAA metabolism and virulence in other pathogens. In Staphylococcus aureus, single 

deletions of brnQ alleles, predicted to encode BCAA transporters, have affected virulence. A 

brnQ1 mutant was attenuated compared to the parent strain in a murine infection model. In 

contrast, a brnQ2 mutant had a significant increase in virulence relative to parent (123). In 

Listeria monocytogenes CodY, a BCAA-responsive transcriptional regulator that has been well 

characterized in B. subtilis (68, 124), binds the coding sequence of the master virulence 

regulator, prfA, resulting in up-regulation of prfA transcription in low BCAA conditions. Mutation 

of the CodY binding sequence in prfA attenuated bacterial virulence in a murine infection model 

(125). I determined that AtxA and AcpB down-regulate expression of brnQ3 and brnQ6, which 

are annotated as BCAA transport system II carrier proteins (126). AtxA and AcpB also repress 

expression of BCAA synthetic operons. Interestingly, CodY has been implicated in AtxA protein 

stability in B. anthracis (69).  
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Chapter IV 
 
 
 
 
 
 

Carbon dioxide, protein stability,  
and PCVR interactions 
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4.1 Introduction 
 
 Based on in vitro experiments designed to study virulence gene expression in response 

to culture conditions, it is surmised that when B. anthracis enters a host at least two important 

cues, temperature and bicarbonate/carbon dioxide (HCO3/CO2, abbreviated as CO2), induce 

expression of toxin and capsule. When B. anthracis is cultured in vitro, expression of atxA is 

greater when cells are grown at 37˚C relative to 30˚C. (59). The effect of carbon dioxide on 

virulence gene expression by B. anthracis in culture has been well documented, and the 

production of toxin and capsule is highly dependent on growth in elevated CO2 relative to air. 

Cultures incubated in 5% atmospheric CO2 show a 10-fold increase in transcription of the three 

toxin genes and an increase of more than 20-fold in expression of the capsule operon (67, 

100). Carbon dioxide and bicarbonate are in dynamic equilibrium within the cell and 

concentrations of each are regulated by carbonic anhydrase and other factors. B. anthracis has 

two putative carbonic anhydrases but these enzymes do not appear to be associated with 

CO2/bicarbonate-induced toxin production because toxin gene expression is unaffected in a 

mutant in which both carbonic anhydrase genes are deleted (Koehler lab, unpublished data). 

The CO2/bicarbonate effect on virulence gene expression is specific and not simply a matter of 

the buffering capacity of dissolved bicarbonate during bacterial culture. Elevated toxin and 

capsule synthesis is not observed when cultures are grown in highly buffered media in air (41, 

105). Carbon dioxide concentrations are often higher in mammalian tissues compared to other 

environments which may be a reason why CO2 functions as a signal to promote virulence gene 

expression (16). Carbon dioxide is present at a concentration of 5.5% in human blood (127) 

which is very close to the concentration required for optimal toxin and capsule synthesis in B. 

anthracis. The mechanism for the CO2 effect has not been discerned, but the effect of 

bicarbonate in culture medium may be comparable with its physiological role. Bicarbonate is 

used by animals to guard against pH fluctuations in the blood where it is at equilibrium with CO2 

and buffers extracellular fluids (128). This functionality marks bicarbonate concentration as a 
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good indicator for the host environment, and potentially acts as a signal to modulate the activity 

of proteins involved in virulence factor expression.  

 AtxA is required for the CO2 effect on toxin and capsule induction. The effect of CO2 on 

AtxA-mediated virulence gene expression is not at the level of atxA expression because 

transcripts of atxA are unchanged in cultures incubated in ambient air, 5% CO2, or 20% CO2 

(59). Roles for CO2 in AtxA activity have been defined as described in Chapter 1 (1.5). Briefly, 

AtxA activity on the lethal factor promoter fused to lacZ increases when strains are incubated in 

medium containing dissolved bicarbonate and 5% atmospheric CO2 compared to strains grown 

in ambient air in medium lacking bicarbonate. Growth in 5% CO2 also increases the AtxA 

dimer-to-monomer ratio compared to growth in ambient air (64). Whether CO2 affects AcpA and 

AcpB activity has not been determined.  

 Multimerization by transcription factors increases the specificity of these proteins for 

their DNA target sequences and provides a mechanism to control the activity of these proteins. 

Dimerization allows for the proper orientation of DNA-binding regions of each monomer to 

facilitate efficient DNA-binding. This is especially relevant when the transcription factor must 

recognize a palindromic DNA sequence (129). The activity of many transcription factors is also 

governed by multimerization in response to cofactor/ligand binding, phosphorylation, or other 

signals that convey the physiological state of the cell. In actinomycete bacteria, dimerization of 

the BldD transcription factor, which controls multicellular differentiation progression in 

sporulating bacteria, is mediated by tetramers of c-di-GMP (130). Finally, multimerization of 

Mga, is controlled by phosphorylation (11).  

 In B. anthracis, the ability of AtxA to form dimers is essential for activity, such that 

mutants of AtxA that cannot dimerize are inactive (described in detail in Chapter 1 (1.5)). The 

EIIB-like domain at the carboxy terminus of AtxA is required for dimer formation (Figure 1-2). 

AtxA crystallized as a dimer with each monomer in an anti-parallel arrangement. The dimer 

interface occurred mainly between PRD2 of monomer one and the EIIB-like domain of 

monomer two (64, 65).  The importance of dimerization for AtxA activity provides rationale to 
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study the multimerization states of AcpA and AcpB. Moreover, if AcpA and AcpB are able to 

form homomultimers, the amino acid conservation among the regulators may allow 

heteromultimers to form. 

 Phosphorylation of PRD-containing proteins can control multimerization, as well as 

interactions with other PTS components. There are several cases where the phosphorylation 

state of the PEP-dependent phosphotransferase system (PTS) EIIB component can mediate 

interactions with PRD-containing transcriptional regulators (9). In at least one system, the 

transcriptional regulator interacts with a membrane-bound EIIB component thereby 

sequestering the regulator to the membrane. In B. subtilis the transcriptional activator of the 

mannitol operon, MtlR, interacts with the nonphosphorylated EIIBMtl domain of the membrane-

bound mannitol-specific PTS permease. The interaction of MtlR with the EIIBMtl domain occurs 

via the carboxy-terminal EIIB-EIIA region of MtlR and is required for MtlR activation (131).  

 In B. anthracis, phosphorylation of histidines within AtxA at positions 199 and 379 in 

PRD1 and PRD2, respectively has been demonstrated. Additionally, phosphomimetic and 

phosphoablative mutations at positions 199 and 379 affect AtxA activity and dimerization (65, 

66). It has yet to be determine what factor(s) phosphorylate AtxA, and experiments to identify 

any proteins that interact with AtxA were largely restricted to soluble proteins. It is unknown 

whether AtxA interacts with any membrane components. 

 In this chapter I show that like AtxA, the activity of AcpA and AcpB is CO2-responsive, 

but that CO2 does not affect protein stability or solubility. I also present data that answer 

questions about homomeric and heteromeric interactions among the PCVRs and how these 

interactions influence activity.  

 

4.2 Results 

4.2.1 Induced expression of acpA and acpB in B. anthracis cultures 

 I determined previously that native protein levels of AtxA, AcpA, and AcpB in the fully 

virulent Ames strain were not equivalent and AtxA was detected in far greater quantity than 
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AcpA or AcpB (Figure 3-3). To directly compare the activities of the three regulators in vivo, I 

wanted to express the individual regulators at comparable levels. In order to overcome 

differences in PCVR steady state levels and to uncouple PCVR gene expression for differing 

transcriptional control elements, I used an inducible expression system to study PCVR function. 

Each PCVR open reading frame with the respective native ribosomal binding site (RBS) and 5' 

leader sequence was cloned downstream of an IPTG-inducible hyper-spank promoter encoded 

by a low-copy plasmid. Each PCVR was engineered to express a carboxy-terminal 6xHis or 

FLAG epitope to facilitate detection by western blot. IPTG-inducible expression constructs were 

introduced into an atxA-null mutant of the ANR-1 strain (pXO1+ pXO2-) to alleviate the need to 

work in the fully virulent Ames strain (pXO1+ pXO2+). Strains were cultured in CA medium 

supplemented with 0.8% bicarbonate in 5% CO2 atmosphere (CACO3) and protein expression 

was induced with the indicated IPTG concentrations at early exponential growth phase (Figure 

4-1A, B, C). Samples for western blots were collected at the transition to stationary phase. 

PCVR protein levels increased following IPTG addition. AtxA-His was detected with IPTG 

concentrations of 40µM and 400µM. AcpA-His and AcpB-His were only detectable when 

cultures were induced with 400 µM IPTG, and both proteins were less abundant than AtxA-His 

induced with the same IPTG concentration.  

 The RBS among the three genes is not conserved and is likely the cause for the 

differences in protein levels (Figure 4-1D). The ribosomal binding sequences, as well as 

distances from the ATG, differ for each of the three genes, likely affecting translation efficiency. 

To improve acpA and acpB translation efficiency and increase protein expression I created 

IPTG-inducible expression constructs in which the native RBS and 5' leader sequence was 

replaced with the complementary sequence from atxA. Production of AcpA-His and AcpB-His 

increased when the atxA RBS and 5' leader sequence is used to drive translation of acpA and 

acpB (Figure 4-1E, F). These data show that in addition to several factors affecting 

transcription of these regulators, regulation occurs at the level of translation. 
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4.2.2 AcpA and AcpB activity in B. anthracis cultures 

 I developed a system to quantitatively assess AcpA and AcpB activity in B. anthracis. 

Transcriptional analyses indicate AcpA and AcpB strongly regulate expression of the 

capBCADE operon, which encodes genes required for synthesis of the poly-γ-D-glutamic acid 

capsule. A region inclusive of 1 kb upstream from the capB translational start codon was fused 

to a promoter-less lacZ gene and incorporated into the nonfunctional plcR locus on the 

chromosome of an atxA-null B. anthracis strain to create the PcapB-lacZ transcriptional 

reporter strain UT423. Activity assays were performed in the ANR-1 strain background (pXO1+ 

pXO2-) (Table 2-1). Plasmids bearing IPTG-inducible alleles of acpA or acpB engineered to 

express a carboxy-terminal 6xHis tag were introduced into UT423. 

 I first tested whether AcpA and AcpB had dose-dependent activity on PcapB-lacZ and 

determined the linear range for activity (Figure 4-2A-D). Expression of acpA and acpB was 

induced using IPTG and translation occurred via the respective native ribosomal binding site 

and 5' leader sequence (Figure 4-2A, B), or the atxA ribosomal binding site and 5' leader 

sequence (Figure 4-2C, D) which increases protein production. Dose-dependent production of 

AcpA-His and AcpB-His was observed for all expression constructs, and AcpB-His translated 

using the atxA RBS and 5' leader sequence was more abundant in cell lysates than AcpB-His 

translated from the native RBS and 5' leader sequence (Figure 4-2B, D). However, dose-

dependent β-galactosidase activity was not observed when the atxA RBS and 5' leader 

sequence was used for translation (Figure 4-2C, D). It is unclear how the atxA RBS and 5' 

leader sequence disrupts the link between protein abundance in cell lysates and AcpA and 

AcpB activity on the PcapB-lacZ reporter. Only AcpB-His that was translated from the native 

RBS and 5' leader sequence yielded dose-dependent β-galactosidase activity. Given that the 

acpB RBS and 5' leader sequence yielded dose-dependent AcpB activity on PcapB-lacZ, I 

tested whether expression of acpA with the acpB RBS and 5' leader sequence would result in 

dose-dependent AcpA activity (Figure 4-2E, F). Expression of acpA with the acpB RBS and 5' 
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leader sequence yielded dose-dependent AcpA-His expression as well as dose-dependent 

activity.  

 

4.2.3 Carbon dioxide effect on regulator activity 

 AtxA, AcpA, and AcpB are paralogous transcriptional regulators that share a high 

degree of amino acid sequence similarity, and the regulons of these proteins indicate some 

functional similarity. The molecular mechanism by which these proteins promote transcription is 

unknown, but AtxA activity has been shown to increase when B. anthracis strains are cultivated 

in medium containing dissolved bicarbonate and 5% CO2 (64). Given that the B. anthracis 

PCVRs are paralogues and that CO2 concentration is an important host-related signal that 

promotes expression of virulence genes in B. anthracis and some other mammalian pathogens, 

I wanted to investigate whether AcpA and AcpB were also CO2-responsive. Initially, I compared 

β-galactosidase activity from strains producing AcpA-His or AcpB-His cultivated in 

CACO3 in 5% CO2 (Figure 4-2B, F) or CA-Air (CA medium lacking bicarbonate in ambient air) 

(Figure 4-2G, H). Production of His-tagged proteins was variable, including when the same 

amount of IPTG was used to induce the same protein in CACO3 or CA-Air. However, a 

comparison of activity from CACO3 and CA-Air samples with proteins present at similar levels 

regardless of the amount of IPTG shows that AcpA-His activity on PcapB-lacZ is higher when 

cells are cultured in CACO3. The same was true for AcpB-His. To more definitively test the 

effects of culture in elevated CO2 versus culture in ambient air on AcpA and AcpB activity, I 

cultured strains separately in three growth conditions: 1) CA-Air, 2) CACO3 in 5% atmospheric 

CO2, and 3) CACO3 in 20% atmospheric CO2. In an attempt to have consistent protein levels in 

all growth conditions, different amounts of IPTG dependent on the protein being expressed and  
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Figure 4-1. Induced PCVR expression 
B. anthracis strains containing PCVR proteins translated from the native ribosomal binding site; 
AtxA-His (pUTE991), AcpA-His (pUTE1055), or AcpB-His (pUTE1092), or the atxA ribosomal 
binding site AcpA-His (pUTE1090), AcpB-His (pUTE1091) were cultivated in CACO3. Protein 
expression was induced at indicated IPTG concentrations during early exponential growth 
phase and samples were collected at the transition to stationary phase. Cell lysate load 
volumes were normalized to the OD600 reading at collection. AcpA-His and AcpB-His proteins 
were detected by immunoblotting with α-His antibody. 
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growth medium were used to induce expression. Cultures were induced at early exponential 

growth phase and samples were harvested for protein detection and measurement of β-

galactosidase activity at the transition to stationary phase. Figure 4-3 shows AcpA-His and 

AcpB-His levels in the different growth media and corresponding β-galactosidase activity. 

AcpA-His activity increased 8- to 10-fold when cells were cultured in CO2 compared to culture 

in ambient air. AcpB-His appeared to follow the same trend, but inconsistent protein levels 

complicate data interpretation. Interestingly, both AcpA-His and AcpB-His required much more 

IPTG to yield detectable amounts of protein when cultures were cultivated in CA-Air compared 

to CACO3. 

 To determine whether culture in CA-Air reproducibly results in diminished steady state 

PCVR levels, and to test whether AtxA levels are also affected, I grew cultures of UT423 

harboring IPTG-inducible plasmids engineered to express acpA, acpB, or atxA in CA-Air, 

CACO3 in 5% CO2, and CACO3 in 20% CO2. Expression of acpA, acpB, and atxA was induced 

with 40 µM IPTG in all media to observe medium-dependent changes in protein abundance. 

Indeed, levels of AcpA-FLAG, AcpB-FLAG, and AtxA-FLAG were all severely diminished when 

strains were cultured in CA-Air compared to culture in either concentration of atmospheric CO2 

in CACO3 (Figure 4-4).  

 The B. anthracis PCVRs are soluble proteins and my experiments examining how CO2 

affects the activity of these regulators have focused on the soluble fraction of cell lysates. 

However, some PRD-containing proteins are sequestered to the membrane as a means of 

modulating activity (131). Therefore, I tested whether AcpA-FLAG and AcpB-FLAG were 

being sequestered to the insoluble fraction during culture in CA-Air. I grew strains containing  

AcpA-FLAG or AcpB-FLAG in CA-Air, CACO3 in 5% CO2, and CACO3 in 20% CO2. Cell lysates 

were generated and the soluble and insoluble fractions were separated by centrifugation. The 

insoluble fraction was washed and resuspended in 8M urea to increase solubility. Lysates were 

separated by SDS-PAGE and proteins were detected by western blot.  
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Figure 4-2. In vivo activity of AcpA-His and AcpB-His 
The β-galactosidase activity of AcpA-His and AcpB-His was measured in an atxA-null strain 

harboring a PcapB-lacZ reporter (pXO1+ pXO2-) (UT423) during culture in CACO3 (A-D, F) or 
CA-Air (G, H). Translation of acpA and acpB occurred from the native RBS (A) pUTE1055, (B) 
pUTE1092, the atxA RBS (C) pUTE1090, (D) pUTE1091, or the acpB RBS (G) pUTE1103, (H) 
pUTE1092. Putative RBS (in red) and 5' leader sequences (sequence between RBS and ATG) 
used to drive translation of PCVRs (E). Protein expression was induced at indicated IPTG 
concentrations during early exponential growth phase and samples were collected at the 
transition to stationary phase. β-galactosidase activity of B. anthracis strains was determined 

as described previously (95). Cell lysate load volumes were normalized to the OD600 Neither 
AcpA-FLAG nor AcpB-FLAG were detected in the soluble or insoluble fractions  
following culture in CA-Air. reading at collection. AcpA-His and AcpB-His proteins were 
detected by immunoblotting with α-His antibody.  
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 To ensure that the IPTG-inducible promoter, Phyperspank, used to express atxA, acpA, and 

acpB was not sensitive to culture in CA-Air or CACO3 I grew B. anthracis strains containing an 

IPTG-inducible GFP-FLAG expression plasmid. Individual cultures were incubated in both 

media and GFP-FLAG expression was induced with IPTG. Western blots of cell lysates 

showed that GFP-FLAG was present at equivalent levels when B. anthracis was cultured in 

either CA-Air or CACO3. In summary, I have shown that culture in CA-Air dramatically 

decreases steady state levels of the B. anthracis PCVRs when expressed from an IPTG-

inducible promoter, these proteins were not detected in either the soluble or insoluble fraction 

of cell lysates when cultured in CA-Air, and that the IPTG-inducible Phyperspank promoter used to 

express the PCVRs functioned equivalently in CA-Air and CACO3. 

 One possibility for the significant reduction in steady state levels of the B. anthracis 

PCVRs during culture in CA-Air is that the proteins were degraded in these growth conditions. 

Transcriptional regulators are a part of the main regulatory proteins in the cell and their activity, 

as well as their concentration, are often tightly regulated. The half-lives of some bacterial 

transcription factors can be as short as one minute, as is the case with cII in Escherichia coli 

(132). It is therefore possible that the stability of the B. anthracis PCVRs is affected by growth 

conditions.  

 To test PCVR protein stability I performed a modified pulse-chase experiment in which I 

grew cultures induced for expression of AcpA-FLAG or AtxA-FLAG in CACO3. One hour after 

induction with IPTG I pelleted, washed, and resuspended the cells in an equivalent volume of 

either spent CA-Air or spent CACO3 medium, both lacking IPTG and containing a sub-inhibitory 

concentration of chloramphenicol to inhibit nascent protein synthesis. Spent media consisted of 

filter sterilized media from separate same-age cultures that were harvested at the time of media 

change. Cultures were incubated for five hours following media change. Samples were 

collected for western blot analysis at hourly time points. I compared FLAG-tagged protein levels 

from the CACO3 → CA-Air cultures to cultures never shifted from CACO3 (Figure 4-5). AcpA-

FLAG and AtxA-FLAG levels in cultures cultivated entirely in CACO3 were not significantly 
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diminished following removal of IPTG and the addition of chloramphenicol. This result suggests 

that AcpA-FLAG and AtxA-FLAG are stable proteins in these growth conditions. Interestingly, 

shifting CACO3 cultures to CA-Air did not dramatically affect AcpA-FLAG or AtxA-FLAG protein 

levels indicating culture CA-Air does not negatively affect protein abundance. My inability to 

detect the B. anthracis PCVRs expressed from the IPTG-inducible promoter when strains are 

cultivated in CA-Air does not seem to be physiologically relevant, and may be an artifact of 

using the atxA RBS and 5' leader sequence to drive translation. Moreover, experiments 

designed to examine AtxA production from the native promoter in CA-Air, and CACO3 in 5% 

and 20% CO2 indicate that AtxA is present at the same level in all growth conditions (59).  

 

4.2.4 Relative activities of the B. anthracis PCVRs on in vivo reporters 

 The Plef-lacZ reporter (UT376) has been used to measure in vivo activity of AtxA (64). 

With the creation of the PcapB-lacZ reporter (UT423) I was able to measure the in vivo 

activities of AtxA, AcpA and AcpB. My RNA-Seq data indicate AtxA alone positively regulates 

lethal factor expression. AcpA and AcpB were the major regulators of capsule expression, with 

AtxA having a smaller effect. In the RNA-Seq experiment, the genes encoding AtxA, AcpA, and 

AcpB were induced with IPTG to produce near-native protein levels. Given the relatedness of 

the PCVRs I tested whether PCVR overexpression would reveal functional similarity among the 

regulators with regard to activity on Plef and PcapB. I grew cultures of UT376 and UT423 

harboring IPTG-inducible expression plasmids for AcpA-FLAG, AcpB-FLAG, and AtxA-FLAG in 

CACO3 and overexpressed each regulator with a concentration of IPTG that induced higher 

than native protein expression levels. I harvested cells and measured β-galactosidase activity 

in each strain. Figure 4-6 shows the β-galactosidase activity mediated by each regulator from 

the two reporters. Importantly, there is no β-galactosidase activity in strains harboring only the 

empty vector indicating no other factors have activity on either reporter. As expected, AtxA-

FLAG alone controlled expression of Plef; neither AcpA-FLAG nor AcpB-FLAG had activity on 

this promoter (Figure 4-6A). These results 



75 
 

                
 
Figure 4-3. AcpA and AcpB CO2-dependent activity 
Cultures of UT423, containing expression plasmids for AcpA-His (pUTE1103) and AcpB-FLAG 
(pUTE1092) were cultivated in CA-Air, CACO3 in 5% CO2 atmosphere, and CACO3 in 20% CO2 
atmosphere. Protein expression was induced by varying concentrations of IPTG (pUTE1103-
Air [200 µM], -CO2 [50 µM]; pUTE1092-Air [300 µM], -CO2 [150 µM]) at early exponential 
growth phase and cells were harvested two hours after induction at the transition to stationary 
phase. Empty vector represents the expression plasmid. β-galactosidase activities resulted 

from expression of the PcapB-lacZ reporter. Cell lysate load volumes were normalized for 
OD600 reading at collection, and proteins were detected via immunoblot with α-His antibody or 

an antibody for the β subunit of RNA polymerase; a load control. 
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Figure 4-4. Effects on steady state protein levels by culture in CA-Air vs. CACO3 
(A) Cultures of UT423 containing expression plasmids for AcpA-FLAG (pUTE1090), AcpB-
FLAG (pUTE1091), or AtxA-FLAG (pUTE992) were cultivated in CA-Air, CACO3 in 5% CO2, or 
CACO3 in 20% CO2. Expression of FLAG-tagged proteins was induced with 40 µM IPTG at 
early exponential growth phase and cells were harvested at the transition to stationary phase. 
Cell lysate load volumes were normalized to OD600 reading at collection and proteins were 
detected by immunoblotting with α-FLAG antibody. UT423 cultures expressing AcpA-FLAG 

(pUTE1090) (B) or AcpB-FLAG (pUTE1091) (C) were induced with IPTG and harvested as 
indicated above; EV = Empty Vector (pUTE657). Cell lysates were centrifuged to pellet the 
insoluble fraction. The soluble fraction was removed and the insoluble fraction was then 
washed and resuspended in 8M urea for one hour to increase solubility. Proteins were then 
separated by SDS-PAGE and visualized by immunoblotting with α-FLAG antibody. (D) UT423 

cultures harboring an IPTG-inducible GFP-FLAG expression plasmid (pUTE1013) were 
cultivated in either CA-Air or CACO3 in 5% CO2. Protein expression was induced with 30 µM 
IPTG at early exponential growth phase and cells were harvested at the transition to stationary 
phase. Cell lysates were used for immunoblotting with α-FLAG antibody as stated above. 
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are consistent with my RNA-Seq data. Both AcpA-FLAG and AcpB-FLAG had activity on the 

PcapB-lacZ reporter (Figure 4-6B). These data are also consistent with my dose-dependent 

activity experiments using the PcapB-lacZ reporter, as well as my RNA-Seq results. However, 

AtxA-FLAG did not have activity on PcapB-lacZ. My RNA-Seq data indicate AtxA increased 

expression of capB by a log2-fold change of 3.86 (~14 fold). To ensure that the DNA sequence 

necessary for AtxA-mediated control of capB expression was present in the reporter construct I 

compared the DNA sequence at which capBCADE transcripts initiated using transcript read 

maps generated by my RNA-Seq experiment. Transcripts of capBCADE generated by 

complementation with acpA, acpB, and atxA start ~500 bp upstream of the capB translational 

start codon. Our lab and others published previously that PCVR control of capBCADE occurs 

primarily from two transcriptional start sites, 530 bps and 424 bps upstream of the capB 

translational start site, and a third less active start site 595 bps upstream of capB (70, 71). The 

PcapB-lacZ reporter included 1 kb upstream of the capB translational start codon indicating the 

DNA sequence required for AtxA control of capB is present in the reporter. It is possible that an 

unknown pXO2-encoded factor is required for AtxA activity on PcapB.  

Taken together, these results indicate that PCVR control of Plef is in agreement with 

RNA-Seq results such that AtxA positively regulates Plef, and that overexpression of acpA or 

acpB does not result in activity of this promoter. Moreover, my results suggest that additional 

factors may be required for AtxA activity on PcapB. 

 

4.2.5 B. anthracis PCVR homomultimerization and the role of the intrinsic functional 

domains 

 The importance of AtxA multimerization with regard to activity has been 

explained in detail in Chapter 1 (1.5) and above (4.1). The significance of AcpA or AcpB 

multimerization has 
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Figure 4-5. Stability of AcpA-FLAG and AtxA-FLAG in CACO3 and CA-Air 
B. anthracis cultures containing IPTG-inducible expression plasmids for AcpA-FLAG and AtxA-
FLAG were cultivated in CACO3 medium. Protein expression was induced with 30 µM IPTG at 
early exponential growth phase. One hour after induction, cells were pelleted, washed, and 
resuspended in an equivalent volume of either spent CACO3 or spent CA-Air medium, both 
containing a sub-inhibitory concentration of chloramphenicol (15 µg/ml) and no IPTG. Cultures 
were incubated in spent medium for five hours and samples were taken for western blot 
analysis at hourly time points. (A & B) OD600 readings throughout the growth curve. Western 
blots of samples taken hourly of AcpA-FLAG (pUTE1090) (C) or AcpB-FLAG (pUTE1091) (D) 
blotted with α-FLAG antibody.  
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Figure 4-6. Activities of B. anthracis PCVRs on PcapB-lacZ and Plef-lacZ  
Cultures of UT376 (Plef-lacZ) (A) and UT423 (PcapB-lacZ) (B), harboring genes encoding 
AcpA-FLAG (pUTE1090), AcpB-FLAG (pUTE1091), and  AtxA-FLAG (pUTE992) driven by an 
IPTG-inducible promoter were cultured in CACO3. EV = empty vector (pUTE657). Cells were  
collected 2 h after induction with IPTG.   
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not been tested. AcpA and AcpB have been shown to: 1) have amino acid sequence similarity 

to AtxA, 2) co-regulate a subset of genes in the AtxA regulon, and 3) have increased activity 

when cultures of B. anthracis are cultivated in 5% CO2 in medium containing bicarbonate. To 

explore protein-protein interactions involving AcpA or AcpB I first tested whether these proteins 

self-associate. 

 To determine if AcpA and AcpB multimerize, I employed co-affinity purification and 

chemical crosslinking methods. First, I tested whether FLAG-tagged AcpA and AcpB were able 

to co-purify with 6xHis-tagged counterparts via nickel affinity purification. I grew individual 

cultures in CACO3 expressing recombinant AcpA or AcpB with either a carboxy terminal 6xHis 

or a FLAG epitope. Strains expressing FLAG-tagged GFP served as controls. Recombinant 

proteins were expressed from a plasmid-borne IPTG-inducible promoter in an atxA-null B. 

anthracis strain lacking pXO2, the native plasmid carrying the acpA and acpB genes. Cultures 

were pooled in the following pairs: (1) AcpA-His and AcpA-FLAG, (2) AcpA-His and GFP-

FLAG, and (3) AcpA-FLAG and GFP-FLAG, (4) AcpB-His and AcpB-FLAG, (5) AcpB-His and 

GFP-FLAG, and (6) AcpB-FLAG and GFP-FLAG. Lysates generated from pooled cultures were 

subjected to affinity purification using NTA-Ni resin and proteins were detected using western 

blotting. In Figure 4-7A, B lanes 1-3 show that prior to affinity purification all tagged proteins 

were present in the appropriate pool. Lanes 4-6 show eluates from the NTA-Ni resin. AcpA-

FLAG coeluted with AcpA-His and AcpB-FLAG coeluted with AcpB-His (Figure 4-7A, B). GFP-

FLAG functioned as a negative control for non-specific interactions. These results demonstrate 

that AcpA and AcpB form homomultimers in vitro. 

 I also used chemical crosslinking to test for multimerization of the tagged proteins. Bis-

maleimidohexane (BMH) crosslinks free cysteine residues irreversibly within 13 Å and was 

employed previously to demonstrate AtxA multimerization (64). AcpA has cysteine residues at 

positions 33, 321, 342. Cysteine residues of AcpB are at positions 33, 34, 332, and 465. Cell 

lysates containing either AcpA-FLAG or AcpB-FLAG were treated with BMH, and proteins were 

separated by SDS-PAGE and visualized using western blotting with α-FLAG antibody (Figure 
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4-7C). For each protein, a single band was detected slightly above the 50-kDa marker in BMH-

treated and untreated lysates. A band near the 100-kDa marker was detected only in lysates 

treated with BMH. The predicted molecular weight for each PCVR is 57 kDa; therefore the 

approximate 100-kDa bands suggested dimers of AcpA or AcpB crosslinked by BMH. To 

confirm that the observed complexes were indeed homomeric, I affinity-purified AcpA-His and 

AcpB-His using NTA-Ni resin and crosslinked using BMH. The migration pattern of crosslinked 

purified AcpA-His was similar to that of AcpA-FLAG present in crosslinked cell lysates with 

bands near 50 kDa (monomer) and 100 kDa (dimer) (Figure 4-7D). The comparable 

experiment using AcpB was not possible because affinity-purified AcpB-His became insoluble 

following treatment with BMH. These data provide further evidence that like AtxA, AcpA and 

AcpB form homomultimers and crosslink as dimers. 

 To determine if the EIIB-like domains of AcpA and AcpB are required for dimerization 

and activity, as is true for AtxA (64), I created carboxy-terminal truncation mutants lacking the 

EIIB-like domain. The EIIB-like domain of AtxA is defined by amino acids 385-475. Structural 

modeling using the amino acid sequence of AcpA and AcpB predict the EIIB-like domain to be 

amino acids 390 - 483 for AcpA and 391 - 482 for AcpB. I deleted the respective domain in 

AcpA and AcpB and engineered the recombinant truncated proteins to have a carboxy-terminal 

6xHis tag. Cell lysates containing either full-length or truncated His-tagged AcpA or AcpB were 

subjected to BMH crosslinking. The full-length proteins displayed the typical dimer bands (~100 

kDa). The migration of AcpA-∆EIIB-His and AcpB-∆EIIB-His was unaffected after crosslinking; 

only a ~40 kDa band was present (Figure 4-8A), indicating lack of dimer formation in the 

absence of the C-terminal domains. 

 To test the activity of the AcpA and AcpB truncation mutants I used the PcapB-lacZ 

reporter strain UT423. Plasmids encoding full-length and truncation mutants of AcpA-His and 

AcpB-His, were expressed individually in the reporter strain via an IPTG-inducible promoter. 

Activity of the full-length and truncation mutants was quantified by measuring β-galactosidase 

activity in cell lysates following IPTG induction of each gene. Figure 4-8B shows relative 
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Figure 4-7. Homomultimerization AcpA and AcpB 
Lysates from B. anthracis atxA-null pXO1+ pXO2- strains (UT423) containing plasmids that 
encode IPTG-inducible (A) AcpA-His (pUTE1090), AcpA-FLAG (pUTE1079), or GFP-FLAG 
(pUTE1013); (B) AcpB-His (pUTE1091), AcpB-FLAG (pUTE1093), or GFP-FLAG (pUTE1013) 
were co-incubated as indicated, then co-affinity purified with Ni2+-NTA resin. Proteins present in 
the mixed lysates prior to (Load, lanes 1-3) and after purification (Eluate, lanes 4-6) were 
subjected to SDS-PAGE and Western blot with α-His and α-FLAG antibodies as indicated. 
Arrows indicate the predicted sizes of AcpA-His, AcpA-FLAG, AcpB-His, AcpB-FLAG, and 
GFP-FLAG; (C) FLAG-tagged AcpA (pUTE1079) and AcpB (pUTE1093) were induced by IPTG 
in a B. anthracis atxA-null pXO1+ pXO2- strain. Lysates were incubated with or without the 
crosslinking agent BMH and subjected to SDS-PAGE and Western blot. Proteins were detected 
with α-FLAG antibody. (D) Affinity purified AcpA-His  from B. anthracis ANR-1 (pUTE1090) 
incubated with or without BMH and subjected to SDS-PAGE and Western blot. Proteins were 
detected with α-His antibody. 
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activities of both full-length and truncated AcpA-His and AcpB-His. β-galactosidase activity was 

observed for full-length AcpA-His and AcpB-His, but neither EIIB truncation mutant showed 

activity. This indicates that, like AtxA, AcpA and AcpB require the EIIB-like domain for 

multimerization and activity. 

 After confirming that the EIIB-like domain has similar function among the three 

regulators, I designed experiments to determine how the other PCVR functional domains 

contribute to regulator activity. The DNA-binding domains of the three B. anthracis PCVRs 

have the highest sequence similarity with AcpA and AcpB sharing 48% amino acid identity, 

33% identity between AtxA and AcpA, and 29% identity between AtxA and AcpB. It is unclear 

whether the DNA-binding domain alone confers target specificity for PCVR-regulated genes, or 

whether input from other domains is required. Analysis of the AtxA crystal structure suggest 

that phosphorylation at H199 within PRD1 may influence positioning of the DNA-binding 

domain, thereby affecting target specificity (65).  

To test whether the DNA-binding domains alone are sufficient for target specificity I 

created chimeric proteins in which I exchanged DNA-binding domains (DBD) among the 

PCVRs. In total I created four chimeras, AtxADBDAcpAPRD+EIIB, AtxADBDAcpBPRD+EIIB, 

AcpADBDAtxAPRD+EIIB, AcpBDBDAtxAPRD+EIIB. To make the AtxADBDAcpAPRD+EIIB and 

AtxADBDAcpBPRD+EIIB chimeras I used the AtxA crystal structure to identify an unstructured linker 

region between the DBD and PRDs (Figure 4-9), consisting of amino acids 164 to 176 (13 

amino acids). Genes encoding chimeric proteins were engineered to express a carboxy-

terminal 6xHis epitope to facilitate detection, and were under transcriptional control of an IPTG-

inducible promoter. Strains of the PcapB-lacZ reporter and the Plef-lacZ reporter harboring 

individual chimera expression plasmids, were cultured in CACO3 and cells were harvested at 

the transition to stationary phase to assess β-galactosidase activity (Figure 4-10). Both the 

AtxADBDAcpAPRD+EIIB and AtxADBDAcpBPRD+EIIB chimeras were detected in soluble cell lysates 

following induction with IPTG (Figure 4-10A-D). However, neither chimera had activity on Plef-
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lacZ nor PcapB-lacZ. Neither the AcpADBDAtxAPRD+EIIB nor AcpBDBDAtxAPRD+EIIB chimeras were 

stably produced (Figure 4-10E, F).  

 A possible reason for the lack of activity by the two chimeras is that they were folded 

improperly. One way to measure PCVR activity, and by extension activity of the chimeras, is to 

test their ability to multimerize. Multimerization is required for activity of all three B. anthracis 

PCVRs, and at least for AtxA, contact between two monomers occurs between the EIIB-like 

domain of one monomer and PRD2 of the other monomer (65). As an indirect method of 

measuring proper protein folding by each chimera, I tested whether full-length AcpA-FLAG 

could interact with AtxADBDAcpAPRD+EIIB-His using co-affinity purification. I tested 

AtxADBDAcpAPRD+EIIB-His for interaction with AcpA-FLAG because it was the most stable of the 

two chimeras. I combined culture lysates of B. anthracis strains containing full-length AcpA-

FLAG and AtxADBDAcpAPRD+EIIB-His. AcpA-His and GFP-FLAG were used as controls. Lysates 

were pooled in the pairs as shown in Figure 4-11. Pooled lysates were incubated with a NTA-

Ni resin, washed, eluted with imidazole, and detected by western blot. Lanes 1-5 show that all 

proteins are present in lysates prior to incubation with the NTA-Ni resin. Eluates from the NTA-

Ni resin are shown in lanes 6-10. Lane 6 shows that AcpA-FLAG did not co-elute with 

AtxADBDAcpAPRD+EIIB-His, however AcpA-FLAG co-eluted with the positive control AcpA-His 

(lane 7). The model for AtxA multimerization is that the EIIB-like domain of one monomer 

interacts with PRD2 of the other monomer. If this holds true for AcpA, then the domains 

required for AcpA-AcpA interaction remain intact in the AtxADBDAcpAPRD+EIIB-His chimera and 

theoretically should not disrupt multimerization. These data suggest that although the 

AtxADBDAcpAPRD+EIIB-His chimera is stably produced, it is not properly folded. 
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Figure 4-8. Multimerization and activity of AcpA and AcpB EIIB-like domain truncation mutants 
UT423 strains expressing AcpA-ΔEIIB-His (pUTE1125), AcpA-FLAG (pUTE1079), AcpB-ΔEIIB-
His  (pUTE1126), or AcpB-FLAG (pUTE1093) were cultured in CACO3 in 5% CO2 atmosphere 
and induced with 30-50 µM IPTG. (A) Cell lysates containing IPTG-induced proteins were 
treated with crosslinking agent BMH or vehicle alone (DMSO). Molecular weights of protein 
standards are listed. (B) The β-galactosidase activity of B. anthracis strains harboring the 
PcapB-lacZ reporter and IPTG-induced AcpA and AcpB variants was determined as previously 
described (95).  Errors represent ±1 SD.  
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Figure 4-9. AtxA crystal structure and structural models of B. anthracis chimeric PCVRs 
(A) Crystal structure of AtxA with the five domains indicated by color: winged helix-turn-helix 
(WH) motif, a helix-turn-helix (HTH) motif, two PTS regulation domains (PRD1 & PRD2), and 
an Enzyme IIB-like (EIIB-like) motif. Black arrow points to the unstructured region of AtxA 
(cyan) that was used to link the AtxA DBD to PRD1 of either AcpA or AcpB, and to link AtxA 
PRD1 to the DBD of AcpA or AcpB. (B) pUTE1123, (C) pUTE1114, (D-E) Structural models of 
chimeric PCVRs, domain color indicates the donor protein. 
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Figure 4-10. Dose-dependent expression and activity of PCVR chimeras 
Cultures of B. anthracis reporter strains UT376 (Plef-lacZ) (A, C) and UT423 (PcapB-lacZ) (B, 
D, E, F) containing expression plasmids for AtxADBDAcpAPRD+EIIB (pUTE1123) (A, B), 
AtxADBDAcpBPRD+EIIB (pUTE1114) (C, D), AcpADBDAtxAPRD+EIIB (E), AcpBDBDAtxAPRD+EIIB were 
induced with IPTG. Cells were collected in the transition to stationary phase for chimera activity 
assays and western blotting with α-His antibody. Chimera activity was measured as β-

galactosidase activity from either Plef-lacZ or PcapB-lacZ. Cell lysate load volumes for western 
blots were normalized to OD600 reading at time of collection. 
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Figure 4-11. PCVR chimera multimerization 
Lysates from B. anthracis strains producing AtxADBDAcpAPRD+EIIB-His (pUTE1123), AcpA-His 
(pUTE1090), AcpA-FLAG (pUTE1073), and GFP-FLAG (pUTE1013) induced with 50-100 µM 
IPTG were used in co-affinity purification with a NTA-Ni resin. Westerns blots of soluble cell 
lysates (lanes 1-5) and eluted proteins (lanes 6-10) were probed with α-His and α-FLAG 

antibodies. 
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4.2.6 Heteromultimerization of PCVRs 

 Given the amino acid sequence similarity between AtxA, AcpA, and AcpB and the 

formation of homomultimers, I questioned whether the PCVRs could interact with each other to 

form heteromultimers. As done for the homomultimerization assays, I tested mixed culture 

lysates containing recombinant proteins with C-terminal 6xHis or FLAG epitopes for co-affinity 

purification with NTA-Ni resin. The lysates contained pairs of differentially tagged PCVRs. 

Results are shown in Figure 4-12. AcpA-FLAG co-eluted from the NTA-Ni resin with AtxA-His 

(lane 5), indicating that these two proteins can interact. The amount of co-eluted AcpA-FLAG 

was small compared to the amount of eluted AtxA-His. Increasing the ratio of AcpA-FLAG to 

AtxA-His by using a higher IPTG concentration to induce the AcpA-FLAG (lane 2) level yielded 

an increased amount of co-eluted AcpA-FLAG (lane 6). AcpA-FLAG was not detected in 

eluates lacking AtxA-His (lane 7) indicating non-specific resin binding did not account for the 

presence of AcpA-FLAG in eluates. In similar experiments, I tested for AtxA-AcpB and AcpA-

AcpB interactions, but no heteromeric protein interactions were detected. 

 The complex interdependent control of atxA, acpA, and acpB gene expression and the 

formation of PCVR homo- and hetero-multimers suggest that the stoichiometry of the 

regulators is important for optimal transcription of target genes. I tested for the effect of AtxA 

over-expression on transcription from the capB promoter, which in my RNA-Seq experiments 

was highly regulated by AcpA and AcpB, but showed a much lower induction by AtxA (Table 3-

1). We cultured strains that co-expressed AtxA and AcpA (Figure 4-13A), or AtxA and AcpB 

(Figure 4-13B) in strain UT423 which carries the transcription reporter PcapB::lacZ. AtxA 

expression was controlled by an IPTG-inducible promoter, while AcpA and AcpB expression 

was under the control of a xylose-inducible promoter. AcpA and AcpB levels were monitored 

using western blotting, and capB promoter activity was quantified as β-galactosidase activity. 

Increasing levels of AtxA relative to AcpA correlated with a decrease in β-galactosidase activity   
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Figure 4-12. Heteromultimerization by PCVRs 

Lysates from B. anthracis atxA-null pXO1+ pXO2- strains (UT423) 

containing plasmids that encode IPTG-inducible AtxA-His (pUTE991), AcpA-FLAG 
(pUTE1079), or GFP-FLAG (pUTE1013); were co-incubated as indicated, then co-affinity 
purified with Ni-NTA resin. Proteins present in the mixed lysates prior to (Load, lanes 1-3) 
and after purification (Eluate, lanes 4-6) were subjected to SDS-PAGE and Western blot with 
α-His and α-FLAG antibodies as indicated. Arrows indicate the predicted sizes of AtxA, 
AcpA, and GFP. 
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Figure 4-13. AtxA effect on AcpA and AcpB activity 
UT423 strains co-expressing AtxA-His (pUTE991) from an IPTG inducible promoter 
and AcpA-FLAG (pUTE1099) or AcpB-FLAG (pUTE1100) from a xylose inducible promoter 
were cultured in CACO3 in 5% CO2 atmosphere.  Across six cultures IPTG was added in the  
indicated concentrations to incrementally increased AtxA-His expression, while AcpA-FLAG 
or AcpB-FLAG expression levels were kept constant with 1% xylose in all cultures.  Asterisks  
represent a significant decrease in activity at the indicated [IPTG] compared to 10 µM IPTG 
 (P value <0.05). β-galactosidase activity of these strains harboring the PcapB-lacZ reporter  
was  determined as described previously (95). Error bars represent ±1 SD.  
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(Figure 4-13A). At IPTG concentrations of 30 µM, 40 µM, and 50 µM, AtxA significantly 

decreased AcpA activity on PcapB::lacZ compared to an uninduced culture (0 µM). Although 

the data trended toward a modest affect of AtxA overexpression on AcpB activity, no 

statistically significant difference was observed (Figure 4-13B). These data indicate that PCVR 

function is affected by regulator stoichiometry in cell cultures. 

 

4.3 Discussion 

 My data reveal that atxA, acpA, and acpB are regulated at the translational level, and 

culture in 5% atmospheric CO2 positively affects AcpA and AcpB activity, as shown previously 

for AtxA. Neither the solubility nor stability of the PCVRs was affected by culture in ambient air 

relative to elevated CO2. I have determined that AcpA and AcpB form homomultimers, and like 

AtxA, multimerization is required for activity of these two proteins. Importantly, I show that 

heteromultimers of AtxA and AcpA could be detected in vitro, and this interaction may result in 

modulation of AcpA activity. 

 Culturing in 5% or greater CO2 atmosphere in medium supplemented with 0.8% 

bicarbonate results in optimal toxin and capsule synthesis (57) presumably by increasing the 

activities of AtxA, AcpA, and AcpB. Culture in 20% CO2 did not significantly increase regulator 

activity above the level observed during culture in 5% CO2 suggesting that the effect CO2 has 

on activity is saturated at a concentration of 5%. The molecular mechanism by which CO2 

affects the activity of these regulators is unknown. With regard to AtxA, B. anthracis cultures 

grown in elevated CO2-bicarbonate contain more dimers of AtxA compared to cultures grown in 

air leading to an increase in AtxA activity (64). It is possible that AtxA binds bicarbonate or CO2. 

There are precedents for CO2/bicarbonate affecting protein activity. With regard to transcription 

factors, the Citrobacter rodentium protein RegA is a regulator that has increased binding affinity 

for target DNA in the presence of bicarbonate (133). Bicarbonate is thought to enhance the 

DNA binding affinity of RegA by inducing a conformational change, however a defined 

bicarbonate binding pocket has yet to be identified (134).  RegA does not share significant 
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amino acid sequence homology to AtxA, AcpA, nor AcpB, and it is unknown whether similar 

conformational changes occur in these regulators when bicarbonate is present. 

 Another possible mechanism for CO2-controlled PCVR activity is that CO2 competes 

with another ligand at a binding pocket within AtxA, AcpA, and AcpB. AtxA dimerization occurs 

constitutively in ambient air, but it is the ratio of dimers to monomers that increases with 

elevated CO2. It is possible that a small molecule binds to AtxA causing some level of 

constitutive dimerization that is increased competitively by CO2 at high concentration. The 

enzyme RuBisCo which functions in carbon fixation in some species of bacteria competitively 

binds oxygen and CO2 at its active site. Increasing the CO2 concentration increases the carbon 

fixation ability of RuBisCo (135). AtxA structural predictions have not identified any regions 

similar to the RuBisCo CO2 binding pocket, leaving the mechanism of CO2/bicarbonate 

influence on AtxA dimerization unknown. 

 Clues to how CO2 influences dimerization may be found in the family of enzymes called 

β-carbonic anhydrases. These enzymes catalyze the reversible interconversion of CO2 and 

HCO3
−. A member of the β-carbonic anhydrase family in Pseudomonas aeruginosa, psCA3, 

was crystallized in complex with CO2 using pressurized cryo-cooled crystallography. The 

enzyme crystallized as a dimer with a CO2 molecule in the active site of each monomer. A third 

CO2 molecule was detected buried in the dimer interface. The location of the third CO2 

molecule was expected to be more stable due to multiple stabilizing interactions compared to 

the CO2 molecule in the active site  (136). The AtxA crystal structure was not solved using 

these crystallization conditions, but it is possible that CO2 may bind within the AtxA dimer 

interface providing increased stability. 

 Previous investigations and my current results show that the increase in regulator 

activity observed when B. anthracis is cultivated in elevated CO2 compared to ambient air is 

likely due to increased dimer stabilization and not changes in PCVR stability or solubility. 

Modified pulse-chase experiments designed to assess whether PCVR stability was affected by 

culture in CACO3 in 5% CO2 compared to CA-Air showed switching cultures from CACO3 in 5% 
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CO2 to CA-Air did not affect the stability of these proteins compared to cultures maintained in 

CACO3 in 5% CO2 throughout growth. In fact, both AcpA and AtxA appear to be very stable 

following removal of IPTG and cessation of protein synthesis by chloramphenicol. These 

results are similar to steady state AtxA-FLAG and AcpA-FLAG levels expressed from their 

respective native loci throughout the growth phase in fully virulent B. anthracis Ames strain 

(pXO1+ pXO2+). During culture in CACO3, samples taken at hourly intervals from one hour after 

the start of culture to six hours after culture initiation show that AcpA-FLAG levels are 

consistent at all time points. AtxA-FLAG levels increase from one hour to three hours after 

culture initiation and then remain steady through six hours. I could not detect AcpB-FLAG in 

these experiments. These data indicate that atxA and acpA expressed from their respective 

native loci produce proteins that are detectable throughout exponential and stationary growth 

phase, suggesting that the activities of these proteins are beneficial to the cell during these 

stages of growth in these culture conditions. 

 Structure/function studies to elucidate the function of intrinsic domains within the 

PCVRs indicate that, like AtxA, the EIIB-like domain of AcpA and AcpB functions in 

multimerization, and that multimerization is required for activity. Predictions from the AtxA 

crystal structure relate phosphorylation of H199 within PRD1 may affect positioning of the DNA-

binding domain and influence target specificity. Phosphorylation of AcpA and AcpB has not 

been demonstrated. Although comparisons of the AcpA and AcpB amino acid sequences and 

structure predictions are highly suggestive of the presence of PRDs, the placement of 

histidines within the PRDs differ between the three regulators, suggesting large differences in 

the potential phosphorylation sites (Figure 3-1) (66). If indeed the AcpA and AcpB PRDs 

control PCVR function, the relationships between phosphorylation and protein structure may 

differ between the PCVRs, affecting their target specificity and relative activity. 

 Experiments designed to test the target specificity of chimeric regulators in which the 

DNA-binding domain was swapped with that of other PCVRs were unsuccessful. The 

AtxADBDAcpAPRD+EIIB and AtxADBDAcpBPRD+EIIB chimeras were detected in soluble cell lysates but 
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did not have activity on either in vivo reporter possibly due to improper folding. Chimeras with 

either the AcpADBD or AcpBDBD were not detected in soluble cell lysates. The lack of AcpA and 

AcpB crystal structures complicates identification of unstructured regions in which to make 

domain boundaries to generate chimeras. Once the crystal structures of AcpA and AcpB are 

solved, accurate domain interfaces can be determined which will likely increase the stability of 

chimeric proteins.  

 In addition to experiments designed to assess how individual domains affect PCVR 

activity, I also examined interactions between different PCVRs and assessed affects of 

interactions on PCVR activity. Results from my co-affinity purification experiments reveal that 

AtxA can interact with AcpA, and the relative amounts of FLAG-tagged PCVRs in eluates 

suggested that AtxA has a stronger affinity for itself than for AcpA. I was unable to detect AtxA-

AcpB or AcpA-AcpB interactions in the same conditions. The AtxA homodimer structure 

suggests interactions between amino acids within PRD2 of one monomer and amino acids of 

the EIIB-like domain of the other monomer (65). Of the eight amino acids implicated in the 

AtxA-AtxA interaction; L375, T382, L386 and N389 of one monomer, and I403, Y407, E413 and 

K414 of the second monomer, three of these residues are dissimilar in AcpA and AcpB. T382 

of AtxA is a glutamic acid residue in AcpA and AcpB, and L386 of AtxA is a lysine in AcpA and 

AcpB. N389 of AtxA is an isoleucine residue in AcpA and a serine in AcpB. These differences 

may contribute to the apparent weak heteromeric interaction between AtxA-AcpA relative to the 

AtxA-AtxA interaction. 

 I artificially altered AtxA/AcpA stoichiometry and assessed the effect on expression of 

the co-regulated gene, capB. In my experiment, increasing AtxA expression decreased AcpA 

activity on the PcapB–lacZ reporter. The data support a model in which in vivo PCVR 

stoichiometry can alter expression of PCVR targets. My RNA-Seq data show that capB 

transcription is more strongly affected by AcpA than by AtxA. When both PCVRs are present, 

an in vivo heteromeric interaction may result in reduced AcpA activity. Interestingly, AcpB 

activity on the transcriptional reporter was not significantly decreased by co-expression of AtxA, 
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in agreement with a model in which AtxA-AcpB heteromultimer formation is weak or does not 

occur. Alternatively, AtxA may compete with AcpA, but not AcpB, for occupancy of the capB 

promoter. Further investigation of protein-protein and protein-DNA interactions will probe the 

molecular basis for cap operon control by the three PCVRs. 
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Chapter V 
 
 
 
 
 
 

The roles of AtxA orthologs in an anthrax-
like Bacillus cereus strain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: This work was performed in collaboration with Dr. Allison O'Brien's group at The 
Uniformed Services University of the Health Sciences. In the Introduction of this chapter (5.1) I 
summarize work performed in the O’Brien laboratory. My work is presented in the Results (5.2). 
Portions of the writing in this chapter were drawn from:   
 
Scarff, J.M., Raynor, M.J., Seldina, Y., Ventura, C.L., Koehler, T.M., O'Brien, A.D. (2016) The 
Roles of AtxA Orthologs in Virulence of Anthrax-like Bacillus cereus G9241. Molecular 
Microbiology. doi: 10.1111/mmi.13478 
 
I have received permission by the publisher of Molecular Microbiology, John Wiley and Sons, to 
reproduce all of the manuscript in print or electronically for the purposes of my dissertation 
(License Number: 4284271503886)  
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5.1 Introduction 

 Bacillus anthracis and Bacillus cereus are pathogenic members of the B. cereus 

subgroup of related Bacilli. B. anthracis is the causative agent of anthrax, and B. cereus is 

frequently associated with food poisoning as well as opportunistic and nosocomial infections. 

Many virulence factors produced by these organisms are plasmid-associated, and plasmid 

number in B. cereus group members varies ranging from 1 to 12 with sizes from 2 to 600 kb 

(137). The anthrax toxin structural genes and capsule biosynthesis operon are located on 

plasmids pXO1 and pXO2, respectively in B. anthracis. B. cereus produces an emetic toxin, 

cereulide, the gene of which is encoded by plasmid pCER270 (16, 138).  

 Plasmids with high sequence identity to pXO1 and pXO2 have been found in other B. 

cereus group members. Several B. cereus isolates from food, dairy, and clinical samples carry 

plasmids with large regions of homology and synteny to pXO1, but lack the 44.8-kb 

pathogenicity island containing the toxin structural genes and atxA (137). Plasmids with high 

identity to pXO1 and pXO2 have been detected in B. cereus strains recovered from great apes 

that succumbed to an anthrax-like disease. These plasmids contained genes encoding the 

anthrax toxins, poly-γ-D-glutamic acid capsule, and the respective regulatory genes (atxA, 

acpA, and acpB) (18).  

 One particular B. cereus strain with a pXO1-like plasmid is of particular interest as it 

contains two atxA alleles. B. cereus strain G9241 was obtained from a welder in Louisiana 

afflicted by an anthrax-like respiratory illness. Strain G9241 contains three plasmids, pBCXO1, 

pBC210, and pBClin29. Plasmid pBCXO1 has high sequence similarity to pXO1 and encodes 

homologues of the anthrax toxin genes with more than 96% amino acid identity to the B. 

anthracis toxin genes. An atxA allele (atxA1) is also encoded by pBCXO1, producing AtxA1 

predicted to have 100% amino acid identity to AtxA produced by B. anthracis. Genes required 

for synthesis of a hyaluronic acid capsule are encoded by the hasACB operon also located on 

pBCXO1. Plasmid pBC210 does not have homology to pXO2 and does not encode acpA, 

acpB, nor genes to produce a polyglutamate capsule. In addition to genes encoding a 
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protective antigen paralogue, PA2, an ADP-ribosyltransferase, Certhrax, and the bps locus 

required for synthesis of a tetrasaccharide capsule, pBC210 harbors an atxA allele, atxA2. The 

atxA2 gene product has 79% amino acid identity and 91% similarity to AtxA produced by B. 

anthracis (Figure 5-1). The discovery of AtxA2, an orthologue of AtxA, provides an opportunity 

to assess how amino acid differences between the two proteins affect activity and 

multimerization. 

 To study the roles of the AtxA orthologs in capsule and toxin expression, Dr. O'Brien's 

group created isogenic single and double mutants of atxA1 and atxA2 in strain G9241. The 

impact of AtxA1 and AtxA2 on production of the hyaluronic acid (HA) capsule encoded by 

hasACB, and the tetrasaccharide (TS) capsule encoded by the bps locus was assessed using 

the quantitative real-time polymerase chain reaction (qRT-PCR) and by observing capsule 

phenotypes of the mutants. AtxA1 positively affected expression of hasACB and bpsA. AtxA2 

promoted expression of bpsA, but did not affect expression of hasACB. Capsule visualization 

data were consistent with the qRT-PCR results. The HA capsule was only produced in strains 

containing AtxA1. The TS capsule was detected in strains containing either AtxA1 or AtxA2 

indicating functional similarity with respect to expression of this capsule. The atxA1atxA2 

double mutant had reduced transcripts of hasACB and bpsA compared to the parent, and 

neither capsule was produced by the double mutant. These data demonstrate that AtxA1 

regulates HA capsule production, and that either AtxA1 or AtxA2 is adequate for TS capsule 

production. 

 To assess the roles of AtxA1 and AtxA2 in toxin expression in strain G9241, Dr. 

O'Brien's group measured transcript levels of the protective antigen homologue pagA located 

on pBCXO1 in the atxA1 and atxA2 mutants. Transcripts of pagA were reduced by 19-fold in 

the atxA1 mutant and 58-fold in the atxA1atxA2 mutant, relative to the parent strain. The atxA2 

mutant did not affect pagA expression. However, complementation of the atxA1atxA2 mutant 

with either atxA1 or atxA2 restored parent levels of pagA. Western blots of culture supernates 

from the different strains show that toxin levels from the atxA1 and atxA1atxA2 mutants were 
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less abundant than from the parent. The atxA2 mutant and parent strains produced similar 

toxin levels. These data indicate that toxin production is primarily regulated by AtxA1 in B. 

cereus strain G9241. 

 Given the different effects of AtxA1 and AtxA2 on toxin and capsule production, Dr. 

O'Brien's group tested the virulence of the different mutants in two murine models of anthrax; 

A/J mice which are immunodeficient and susceptible to toxigenic but noncapsulated B. 

anthracis strains, and C57BL/6 mice which are immunocompetent and susceptible to B. 

anthracis strains that produce toxin and capsule (139–143). A/J mice inoculated 

subcutaneously with spores of the atxA1 mutant exhibited a mean time-to-death (MTD) that 

was approximately two days later than that observed for mice inoculated with an equivalent 

dose of parent strain spores. The MTD for A/J mice challenged with spores from the atxA2 

mutant did not differ from the parent strain. There were no survival differences following 

intranasal inoculation of A/J mice with spores of the parent, atxA1, and atxA2 mutants. The 

atxA1atxA2 mutant was avirulent when inoculated subcutaneously or intranasally. 

 Immunocompetent C57BL/6 mice challenged intranasally with spores of the atxA1 

mutant had a significantly longer MTD relative to the parent strain, but no difference in MTD 

was observed when spores of the parent and atxA2 strains were administered. There was no 

difference in MTD of C57BL/6 mice challenged subcutaneously with spores of the parent, 

atxA1, or atxA2 strains. In vivo capsule production in mice challenged subcutaneously with 

spores of the parent and mutant strains indicate that AtxA1 is required for HA capsule 

formation and either AtxA1 or AtxA2 is sufficient for elaboration of the TS capsule. These 

virulence studies show that at least one AtxA ortholog is required for virulence in B. cereus 

strain G9241, and that AtxA1 may play a larger role in virulence than AtxA2. 

 In this chapter I discuss my contributions to the collaborative effort to investigate the 

roles of AtxA1 and AtxA2 in the regulation of capsule and toxin expression in B. cereus strain 

G9241. I measured and compared AtxA1 and AtxA2 activity on the lethal factor promoter. I also 

assessed the multimerization capabilities of AtxA2. 



102 
 

 

5.2 Results 

5.2.1 Activity of AtxA and AtxA2 

 To assess whether AtxA2 can act as a transcriptional regulator I used the Plef-lacZ 

reporter (UT376) to measure transcriptional activity, as was done previously for AtxA in B. 

anthracis (Hammerstrom 2011).  I measured the activity of AtxA-His and AtxA2-His expressed 

from a plasmid-borne IPTG-inducible promoter in cultures of UT376.  Previous investigations 

showed that addition of the 6xHis epitope to the carboxy terminus of AtxA did not affect activity 

of AtxA (Hammerstrom 2011).  Expression of AtxA-His and AtxA2-His was induced to similar 

levels with IPTG (30 µM and 100 µM, respectively) as shown by western blot probed with an 

antibody against the 6xHis epitope (Figure 5-2). I found that β-galactosidase activity in the 

AtxA2-His expression strain was approximately five-fold lower than activity in the AtxA-His 

expression strain (Figure 5-2). These data indicate that AtxA positively affects lef transcription 

to a significantly greater degree than does AtxA2-His.  Moreover, AtxA2-His required three-fold 

more IPTG to reach levels comparable to AtxA-His, which suggest that AtxA2-His is less stable 

than AtxA in B. anthracis. 

5.2.2 Multimerization of AtxA proteins. 

 AtxA activity requires dimerization of the protein and mutants that fail to dimerize are 

inactive (Hammerstrom 2011). To test homomultimer formation by AtxA2, I used co-affinity 

purification to detect protein-protein interactions. B. anthracis ANR-1 atxA-null strains that 

expressed AtxA-His, AtxA-FLAG, AtxA2-His, AtxA2-FLAG, or GFP-FLAG were pooled and 

lysed in pairs:  (1) AtxA2-His and AtxA2-FLAG, (2) AtxA-His and AtxA-FLAG, (3) AtxA2-His and 

GFP-FLAG, and (4) AtxA2-FLAG and GFP-FLAG, as indicated in figure 5-3A.  AtxA 

dimerization has been demonstrated previously, so pair (2) served as a positive control (64).  

GFP-FLAG was used as a negative control.  His-tagged proteins were 
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Figure 5-1. Amino acid alignment of AtxA homologues 
Domains identified in the AtxA crystal structure are shown as solid bars directly above the 
respective amino acid sequence. Histidines at positions 199 and 379 within AtxA, which have 
been shown to be subject to phosphorylation, are shown enlarged and in bold. Amino acid 
identity and similarity are denoted by asterisk (full conservation), colon (strongly similar 
properties), or period (weakly similar properties). Alignments were completed using the Clustal 
X2 program.  
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Figure 5-2. In vivo activity of AtxA-His and AtxA2-His  
The β-galactosidase activity of B. anthracis strains harboring the Plef-lacZ reporter  and IPTG-
inducible atxA alleles was determined as described previously (95). In an atxA-null strain 
(UT376), production of AtxA-His (pUTE1097) and AtxA2-His (pUTE1096) was induced using 30 
µM and 100 µM IPTG respectively during growth in CaCO3. The empty vector sample was 
derived from UT376 (pUTE657) that lacks atxA. Samples were obtained at the transition to 
stationary phase (4h; OD600 1.2-1.7). Standard error shown.  
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captured with NTA-Ni resin, eluted with imidazole, and detected by western blot. All of the 

appropriate tagged proteins were present in pooled lysates prior to incubation with the NTA-Ni 

resin (Figure 5-3A, lanes1-4).  Protein complexes that contained a 6xHis epitope bound to the 

NTA-Ni resin were eluted with imidazole (Figure 5-3A, lanes 5-8). As expected, AtxA-FLAG co-

eluted with AtxA-His (Figure 5-3A, lane 6). AtxA2-FLAG co-eluted with AtxA2-His, represented 

by a faint band in the anti-His western blot (Figure 5-3A, lane 5).  The AtxA2-FLAG band was 

much less intense than that of the AtxA-FLAG band that co-eluted with AtxA-His (Figure 5-3A, 

lane 5 versus lane 6).  These data suggest that AtxA2 can form homomultimers, but that the 

AtxA2 homomeric interaction is weaker than that of AtxA homomultimers. 

 As a parallel approach to test AtxA2 homomultimerization, I employed protein 

crosslinking with bis(maleimido)hexane (BMH).  BMH reacts specifically with free cysteines 

within 13 Å to irreversibly crosslink the residues.  AtxA has cysteines at positions 96, 161, 202, 

356, 370, and 402, and crosslinking by BMH at C402 results in homomeric protein dimers (64). 

AtxA2 has the same cysteine residues as AtxA, except for C161, which is an alanine residue. 

Cell lysates from individual cultures that expressed 6xHis-tagged recombinant AtxA, AtxA-

H379D, and AtxA2 were treated with BMH, subjected to SDS-PAGE, and probed with an anti-

His antibody via western blot.  In the absence of the crosslinker, AtxA-His migrated as a dense 

band near the 50-kDa marker in each of the lysates (Figure 5-3B). The predicted molecular 

weights of the three AtxA variants is 55.6 kDa. The crosslinking of two AtxA-His proteins was 

indicated by a band of the size commensurate with an AtxA dimer (110 kDa) detected in the 

AtxA-His lysate treated with BMH (Figure 5-3B).  The H379D amino acid mutation in AtxA 

abolishes dimerization (65), and only monomer was detected in the BMH-treated lysate from 

the AtxA-H379D-His mutant (Figure 5-3B).  Similarly, BMH treatment of lysates containing 

AtxA2-His did not produce a band suggestive of a dimer.  Smears of apparent high molecular 

weight cross-reactive protein were present in the cross-linked AtxA-His and AtxA2-His lysates, 

an observation that suggests that each AtxA protein has the capacity to form some higher-

ordered protein-protein interactions. 
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 The capacity for AtxA and AtxA2 to form heterodimers was also investigated with co-

affinity purification.  B. anthracis ANR-1 atxA-null strains that expressed AtxA-His, AtxA-FLAG, 

AtxA2-His, or GFP-FLAG via an IPTG-inducible expression plasmid were pooled and lysed in 

pairs as depicted in figure 5-4.  Lysates were incubated with NTA-Ni resin and eluted with 

imidazole, then separated by SDS-PAGE and analyzed by western blot.  As expected, AtxA 

multimerization was demonstrated by detection of AtxA-FLAG in AtxA-His eluates (Figure 5-4; 

lane 6).  GFP-FLAG was not detected in any eluates, which indicated that non-specific proteins 

were washed from the NTA-Ni resin and that the 6xHis and FLAG epitopes did not interact.  

The presence of AtxA-FLAG in AtxA2-His eluates revealed that, in these conditions, AtxA-

FLAG formed a stable interaction with AtxA2-His.  Taken together, the BMH crosslinking and 

co-affinity purification data suggest a model in which AtxA2 forms weak or unstable 

homomultimers relative to AtxA homomultimers, and AtxA2 forms a relatively stable 

heteromultimer with AtxA. 
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A. 

 
 

B. 

 
 
Figure 5-3. Dimerization of AtxA2 
(A) Lysates from B. anthracis atxA-null strains (UT376) containing AtxA2-His (pUTE1096), 
AtxA2-FLAG (pUTE1122), AtxA-His (pUTE991), AtxA-FLAG (pUTE992), or GFP-FLAG 
(pUTE1013) induced with IPTG were subjected to co-affinity purification using NTA-Ni resin. 
western blots probed with α-His or α-FLAG were performed on soluble cell lysates (Load, lanes 
1-4) and purified proteins (Eluate, Lanes 5-8). (B) Cultures of UT376 containing AtxA-His, AtxA-
H379D-His, or AtxA2-His (pUTE1096) were induced with 50 µM, 50 µM, and 100 µM IPTG 
respectively. Cell lysates were treated with cross-linking agent BMH. SDS-PAGE (4-15%) and 
western blots using anti-His antibody were used to detect AtxA-His and AtxA2-His. 
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Figure 5-4. Specific binding of AtxA2-His to AtxA-FLAG 
Lysates from B. anthracis atxA-null strains (UT376) containing AtxA-His (pUTE991), AtxA2-His 
(pUTE1096), AtxA-FLAG (pUTE992), or GFP-FLAG (pUTE1013) induced with IPTG were 
subjected to co-affinity purification using NTA-Ni resin. Western blots probed with α-His or α-
FLAG were performed on soluble cell lysates (Load, lanes 1-5) and purified proteins (Eluate, 
Lanes 6-10).  
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5.3 Discussion 

 In this chapter I have presented my data comparing the activity and multimerization 

states of the AtxA orthologs, AtxA1 and AtxA2, from B. cereus strain G9241. My data reveal 

differences in activity and multimerization of the two AtxA orthologs which are likely mediated 

by dissimilarities in the amino acid sequences of AtxA and AtxA2. 

 There are clear similarities with regard to functional relationships that exist among the 

B. anthracis PCVRs and the B. cereus strain G9241 AtxA orthologs. In B. anthracis, my RNA-

Seq and transcriptional reporter data indicate that AtxA controls toxin gene expression, with 

AcpA and AcpB having little to no effect (-), yet several other genes are coregulated by all three 

proteins. Toxin western blots from atxA1- and atxA2-null B. cereus strains indicate that AtxA1 

primarily regulates toxin expression with AtxA2 having no effect on toxin production. 

Considering that AtxA1 and AtxA2 share 76% amino acid identity and 91% similarity, and share 

greater sequence conservation than AtxA has to AcpA and AcpB, the molecular requirements 

for toxin expression appear considerably stringent. Despite AtxA2 having no effect on toxin 

expression, either AtxA1 or AtxA2 was sufficient for expression of the TS capsule indicating 

functional similarity with regard to expression of the bps locus and suggests that AtxA2 

functionality is promoter dependent.  

 A linear representation of the five domains of AtxA and a comparison of AtxA and AtxA2 

amino acid sequences is shown in figure 5-1. There are 37 amino acids that are not conserved 

between AtxA and AtxA2, only four of which are in the amino-terminal DNA-binding domains of 

the protein. The remainder of the non-conserved amino acids are located in the PRDs and the 

EIIB-like multimerization domain. Notably, the phosphorylation sites of AtxA, H199 of PRD1 

and H379 of PRD2, that are known to affect AtxA activity (65, 66) are conserved in AtxA and 

AtxA2 (represented in bold in figure 5-1). In the current model for AtxA structure and function, 

phosphorylation of H199 enhances AtxA activity, while phosphorylation at H379 prevents 

dimerization and abrogates AtxA function (65). The crystal structure of AtxA shows that several 

amino acids interact at the dimer interface, and, with the exception of the asparagine to serine 
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change at position 389, these residues are conserved among the proteins. Nevertheless, 

despite this conservation of residues, I was unable to detect robust homomultimerization of 

AtxA2 using coaffinity purification and crosslinking. Amino acid differences in AtxA2 may result 

in conformational changes that affect accessibility of the histidine residues for phosphorylation 

and/or alter the positions of residues that interact at the dimer interface and lead to reduced 

dimerization and activity of AtxA2. It is also possible that a slight alteration in the AtxA2 

structure changes the position of C402, a residue that is required for BMH-mediated 

crosslinking of two AtxA molecules (64).  

My data also suggest that AtxA2 may be less stable than AtxA. When atxA and atxA2 

expression were controlled by the same IPTG-inducible promoter, three-fold more IPTG was 

required to induce AtxA2 to a level comparable to AtxA. Finally, it is also possible that, for 

reasons not yet clear, dimerization may not be essential for AtxA2 function. Future studies of 

AtxA2 should involve phosphomimetic and phosphoablative mutations at positions 199 and 379 

to determine whether potential phosphorylation at these sites affects AtxA2 in a manner 

comparable to AtxA in B. anthracis. 

 My data support a model in which AtxA/AtxA homomultimers have the highest activity 

and AtxA2/AtxA2 homomultimers have the lowest activity. I propose that AtxA/AtxA2 

heteromultimers have an intermediate activity that does not have a dramatic impact on AtxA-

mediated transcriptional regulation due to low abundance and/or stability of the heteromultimer. 

Given that it is unknown how the amino acid differences alter activity between the two AtxA 

orthologs it is important to identify other pXO1-like plasmids harboring atxA alleles with 

sequence changes from atxA in B. anthracis. Examining amino acid conservation between 

orthologs coupled with activity assays could identify specific amino acids required for optimal 

activity. 

 Plasmids with homology to pXO1 and pXO2, encoding PCVR orthologs, have been 

identified in pathogenic bacilli other than B. anthracis. In Cameroon and the Ivory Coast, B. 

cereus strains harboring pXO1-like and pXO2-like plasmids were recovered from great apes 
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that succumbed to an anthrax-like disease. These strains contained homologues of the anthrax 

toxin genes, poly-γ-D-glutamic acid capsule biosynthesis genes, in addition to atxA, acpA, and 

acpB. However, regulation of capsule expression in these strains is distinct from that of B. 

anthracis. Culture of the CA and CI B. cereus strains on bicarbonate agar in a CO2-enriched 

atmosphere resulted in encapsulated cells. Interestingly, capsule formation was also observed 

when the CA and CI strains were cultured on blood or LB agar in ambient air, while B. anthracis 

control cultures did not form capsules in these culture conditions. The ability to synthesize a 

capsule in subclones of the CA and CI strains correlated with the presence or absence of 

capBCADE suggesting that the observed capsule is not the result of other capsule biosynthesis 

genes. Toxin production by the CI strain was akin to that of B. anthracis and dependent on 

culture conditions inclusive of bicarbonate and elevated CO2  (18). The uncoupling of capsule 

formation and culture conditions containing bicarbonate and CO2 is both novel and interesting, 

and suggest that regulatory elements aside from AcpA and AcpB control capsule expression in 

the CA and CI strains. My research into AcpA and AcpB function show that these two 

regulators have low activity in strains cultured in medium lacking bicarbonate and ambient air. It 

is unlikely that the capsule regulators in the B. cereus  have gain of function mutations enabling 

increased activity in ambient air as the sequence conservation with the B. anthracis 

homologues is almost identical. Future studies on capsule expression in this strain should 

compare the regulatory region of capBCADE from the CA and CI strains with that of B. 

anthracis. Clues to cis and/or trans-acting factors that influence capBCADE expression could 

be identified. 
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Chapter VI 
 
 
 
 
 
 

Dual role for AtxA: control of sporulation 
and anthrax toxin production 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: This work was performed in collaboration with Dr. Jennifer Dale and others at The 
University of Texas Health Science Center at Houston. In the Introduction of this chapter (6.1) I 
summarize work performed with the coauthors. My work is presented in the Results (5.2). 
Portions of the writing in this chapter were drawn from: 
 
Dale, J.L., Raynor, M.J., Dwivedi, P., and Koehler, T.M. (2012) cis-acting Elements Controlling 
Expression of the Master Virulence Regulatory Gene atxA in Bacillus anthracis. Journal of 
Bacteriology. doi:10.1128/JB.00776-12. 
 
Dale, J.L., Raynor, M.J., Ty, M.C., Hadjifrangiskou, M., Koehler, T.M. (2018) A dual role for the 
Bacillus anthracis master virulence regulator AtxA: control of sporulation and anthrax toxin 
production. Frontiers in Microbiology. doi: 10.3389/fmicb.2018.00482. 
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6.1 Introduction 

 

 While B. anthracis is commonly thought of as the anthrax pathogen, this bacterium also 

occupies niches outside of mammalian hosts. Vegetative cells of B. anthracis have been 

recovered on and around plant roots in the soil, and from the guts of earthworms (24, 144). The 

spore, however, is thought to be the primary form of B. anthracis outside the host environment. 

Spores are resistant to heat, desiccation, and other environmental conditions. The spore is the 

infectious form of the bacterium and enters the host via inhalation, ingestion, or skin abrasion 

leading to different types of anthrax dependent on the route of infection. Spores of B. anthracis 

have not been observed within infected hosts where conditions that promote virulence factor 

expression, such as high partial pressure of CO2, diminish sporulation efficiency (145). It is not 

until the host succumbs to anthrax and begins to decompose, exposing B. anthracis to the 

exterior environment, that vegetative cells begin to form spores. The cycling between spore 

and vegetative forms is an important part of the bacterial lifestyle and is necessary for transfer 

of the bacterium to new hosts. 

 Control of sporulation is managed by several trans-acting factors that have been 

characterized primarily in the model Bacillus, Bacillus subtilis. CodY is a pleiotropic regulator of 

stationary phase genes and is highly conserved in Bacillus species. In B. subtilis, CodY 

repressed expression of genes required for sporulation during exponential growth phase when 

nutrients were in excess (146). AbrB is a transition-state regulator that prevents untimely 

expression of genes required for survival in stationary phase, including sporulation genes 

(147). During the transition into stationary phase, AbrB-mediated repression of genes 

necessary for sporulation is relieved by inhibition of abrB expression by Spo0A (148). Spo0A is 

the master response regulator for expression of genes required for survival in stationary phase. 

Spo0A is activated following phosphorylation by a complex phosphorelay that is initiated in 

response to nutrient limitation (149). The phosphorelay is triggered by autophosphorylation of 

sensor histidine kinases, and the specific signal of nutrient limitation required for induction is 
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unknown. Homologues of CodY, AbrB, and Spo0A are present in B. anthracis and are thought 

to play similar roles to those demonstrated in B. subtilis. 

 B. anthracis produces a unique pXO2-encoded element of the sporulation pathway, 

pXO2-0075 annotated as SkiA for "sporulation kinase inhibitor" (the gene encoding SkiA is 

referenced in the literature as pXO2-61). SkiA shares homology with the signal sensor domain 

of the B. anthracis sensor histidine kinase BA2291, and overexpression of skiA negatively 

affects sporulation. It is hypothesized that overexpression of skiA titrates away a signal from 

BA2291 negatively affecting the phosphorelay required to phosphorylate and activate Spo0A 

(150). Expression of skiA was shown to be positively regulated by AtxA in previous microarray 

studies (56) and in my RNA-Seq experiment, thus SkiA may provide a mechanism for AtxA to 

regulate sporulation. 

 In a joint effort with Dr. Jennifer Dale, Dr. Maria Hadjifrangiskou, and Maureen Ty we 

used two different culture conditions to model growth of B. anthracis in the host and ex vivo 

environments and examined sporulation efficiency, toxin production, and atxA expression. Dr. 

Dale is the primary author of the publication resulting from these experiments. To examine 

sporulation in B. anthracis two culture conditions were employed: a rich medium in air (PA-air), 

and a semi-defined minimal medium containing dissolved bicarbonate and incubated in 5% 

atmospheric CO2 (CACO3). Culture in PA-air has been shown to promote efficient sporulation 

as observed outside the host environment, whereas culture in CACO3 has been used to model 

the host environment and is conducive to toxin and capsule expression (44, 49, 151, 152). 

Culture in PA-air resulted in an increase heat-resistant colony forming units (CFU) over time, a 

result consistent with sporulation. However, culture in CACO3 yielded heat-resistant CFU less 

than 1% of that measured in PA-air cultures indicating growth in CACO3 is not conducive for 

sporulation. Western blots to show lethal factor levels in culture supernates indicate lethal 

factor is not detectable in samples taken from PA-air cultures, but were abundant in CACO3-

grown cultures. Consistent with AtxA control of lethal factor production, AtxA was detected in 

low levels and decreased over time during culture in PA-air. Conversely, AtxA levels increased 
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during culture in CACO3 and peaked at the transition to stationary growth phase. These data 

reveal an inverse relationship between sporulation and toxin production. Morever, production of 

AtxA is dependent upon culture conditions. 

 To delineate the relationship between AtxA and sporulation in the fully virulent B. 

anthracis Ames strain (pXO1+ pXO2+) mutants that express AtxA at different levels were 

employed. Parent, atxA-null, and atxA-up (contains a mutation in the atxA promoter resulting in 

5- and 7-fold increases in lethal factor and AtxA levels, respectively, relative to the parent) 

strains were grown in CACO3 and PA-air and spores were visualized by phase contrast 

microscopy. Compared to the parent and atxA-null strains, the atxA-up mutant exhibited both a 

delay and decrease in sporulation efficiency in both culture conditions. In the ANR-1 

background (pXO1+ pXO2-) the atxA-up mutant did not exhibit a defect in sporulation, 

suggesting that factors on pXO2 contribute to the atxA-up sporulation defect in the Ames strain. 

 A pXO2-encoded gene, pXO2-0075 (previously designated pXO2-61), is predicted to 

encode a protein with homology to the signal sensor domain of sporulation sensor histidine 

kinase, an integral component of the sporulation phosphorelay. Previous studies indicate that 

AtxA positively regulates pXO2-0075, and that pXO2-0075 overexpression results in a 

significant decrease in sporulation (56, 150). A pXO2-0075-null mutant exhibits sporulation 

patterns similar to the parent and atxA-null strains when cultured in PA-air, and early 

endospore formation in CACO3 cultures. Importantly, the sporulation defect in the atxA-up 

mutant is suppressed by deletion of pXO2-0075, indicating pXO2-0075 mediates the defect in 

sporulation. Given this activity pXO2-0075 was renamed skiA for "sporulation kinase inhibitor". 

 The possible link between AtxA and sporulation extends beyond regulation of skiA 

expression. Many regulators that control expression of genes necessary for sporulation also 

influence atxA at the level of transcription or posttranslationally. CodY, which represses genes 

needed in stationary phase during exponential growth, controls AtxA protein levels 

posttranscriptionally by an unknown mechanism. A codY-null mutant has diminished AtxA 

levels and is avirulent in a murine model of anthrax (69). AbrB is the only trans-acting factor 
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demonstrated to bind directly to the atxA promoter region, and represses transcription during 

early exponential growth phase. An abrB-null mutant exhibited increased AtxA levels in soluble 

cell lysates compared to the parent. Spo0A also increases atxA expression by repressing 

transcription of abrB (61, 62, 75). 

 The atxA promoter region provides limited clues about other factors affecting atxA 

expression. Transcription of atxA initiates from two start sites; P1, the dominant start site, 

positioned 99 nucleotides upstream of the translational start codon, and P2 located 650 

nucleotides upstream of P1 (30, 66) (Figure 6-1A). The AbrB consensus sequence consists of 

43 nucleotides and resides 25 to 67 nucleotides upstream of the P1 transcriptional start site 

(61). A putative consensus sequence for the housekeeping sigma factor SigA is upstream of 

the P1 and P2 transcription start sites (30), 

 In a collaborative effort involving Dr. Jennifer Dale, Dr. Prabhat Dwivedi, and me, we 

sought to delineate roles for cis-acting elements associated with regulation of atxA 

transcription, and to test for other trans-acting factors affecting atxA expression. Dr. Dale is the 

primary author for this work and completed the majority of the experiments. As an initial 

experiment to determine roles for cis-acting elements in the atxA promoter the putative SigA 

consensus sequence at the dominant atxA transcription start site, P1, was mutated. Mutation of 

the consensus sequence abolished transcription from P1. These results suggest that SigA-

RNAP transcribes atxA from the P1 transcription initiation site. 

 Next Dr. Dale tested whether trans-acting factors other than AbrB bind the atxA 

promoter. Electrophoretic mobility shift assays (EMSA) using abrB- and sigH-null soluble cell 

lysates and a radiolabeled atxA promoter probe indicated a trans-acting factor other than AbrB 

and SigH bound specifically to the atxA promoter resulting in a DNA mobility shift. Similar 

experiments with an atxA probe containing a mutated SigA consensus sequence resulted in a 

DNA mobility shift indicating the trans-acting factor was a regulatory element other than SigA-

RNAP.  
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 To map the putative binding site of the trans-acting factor, 5' and 3' deletions of the atxA 

promoter were fused to a promoterless lacZ gene. Loss of DNA sequences -13 to +31, relative 

to the P1 transcription start site (+1) resulted in a 15-fold increase in β-galactosidase activity 

compared to the full length promoter, suggesting a repressor binds downstream of the atxA 

promoter. In EMSA experiments deletion of sequences -13 to +31 resulted in a nonspecific 

DNA shift suggesting the sequence is required for repressor site binding.  

 In silico analysis of the atxA promoter revealed an imperfect 9-bp palindrome within the 

sequences -13 to +31. A specific DNA shift was not observed in EMSAs using an atxA 

promoter probe containing a partial mutation of the palindromic sequence. Mutation of the 

palindromic sequence resulted in a 7-fold increase in β-galactosidase activity when the mutated 

atxA promoter was transcriptionally fused to a promoterless lacZ gene and introduced into B. 

anthracis.  

  To test whether the increase in atxA promoter activity results in elevated AtxA protein 

levels the palindromic sequence was mutated in the native atxA promoter. AtxA protein levels 

in the mutant (renamed atxA-up) were 6.6-fold higher than that of the parent. Toxin levels in 

culture supernates of the atxA-up mutant increased relative to the parent; lethal factor (5.4-

fold), edema factor (8.9-fold), and protective antigen (2-fold). These data show that a partial 

mutation of the atxA repressor binding site results in elevated production of AtxA and the 

anthrax toxin genes. 

 In this chapter, I present my data in which I examined the effect AtxA has on sporulation 

through transcriptional control of skiA. I show sporulation efficiencies of skiA and atxA mutants 

in conditions favorable to toxin expression and conditions that favor sporulation. I measured 

transcript levels of skiA in atxA mutant backgrounds in both culture conditions. I also assessed 

the virulence of the atxA-up mutant in a murine model of anthrax. 
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6.2 Results 

6.2.1 AtxA modulates sporulation efficiency through SkiA 

 To elucidate the relationship between AtxA, SkiA, and sporulation I cultured strains 

harboring deletions of atxA or skiA, or that overexpressed atxA in culture conditions conducive 

to either sporulation or toxin expression and quantified the respective sporulation efficiencies at 

different time points. Sporulation efficiency was quantified by enumeration of heat-resistant 

(HR) colony forming units/ml (CFU). During culture in PA medium in ambient air (PA-air) 

(sporulation conditions), the most striking observation is the dramatic difference in HR CFU 

between the atxA-up mutant and the parent strain (Ames) (Figure 6-2A). Cultures of the parent 

strain produced approximately 1 x 105 HR CFU to 1 x 108 HR CFU over the time course, while 

the atxA-up mutant produced 2- to 3-log fewer HR CFU. As stated in section 6.1, the atxA-up 

mutant exhibited increased steady state AtxA levels relative to the parent strain.  Deletion of 

skiA in the atxA-up background resulted in near parent levels of HR CFU. Complementation 

with skiA in the ∆skiA/atxA-up background restored the sporulation defect demonstrating that 

increasing atxA expression negatively affects sporulation efficiency via SkiA. Single and double 

mutants of atxA and skiA did not cause dramatic alterations in sporulation efficiencies. 

 I measured skiA expression levels in the different atxA mutants to examine whether 

increases and decreases in atxA expression modulated skiA transcription. Reverse 

transcriptase polymerase chain reaction (RT-PCR) results show skiA transcripts were 5-fold 

more abundant in the atxA-up mutant and seven-fold lower in the atxA-null mutant compared to 

the parent strain at 4h (Figure 6-2B). At 7h, skiA transcripts were more abundant than at 4h. 

Transcripts of skiA were 11-fold greater in the atxA-up mutant relative to the parent strain, while 

skiA transcripts in the atxA-null mutant were comparable to those of the parent strain. These 
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Figure 6-1. Schematic representation of the atxA promoter region 
(A) Transcription start sites are indicated as P1 or P2. The nine base pair palindrome is 
indicated between +3 and +21 relative to the P1 transcription start site. (B) The palindromic 
sequence is denoted by bold, underlined letters. Nucleotides mutated using site-directed 
mutagenesis are denoted by lowercase, gray lettering. Modified from a publication I co-
authored with Jennifer Dale. She created this schematic and I have used it with her permission. 
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     B. 

                          
 
Figure 6-2. Spore quantification and skiA transcript levels in PA-air 
(A) Heat-resistant CFU/ml of parent and mutant derivatives. (B) RT-qPCR of skiA transcripts at 
transition-to-stationary (4h) and stationary (7h) phases of growth normalized to the parent 
control. These data represent average values of detectable transcripts from three independent 
cultures. Asterisks denote p-values ≤ 0.05 relative to parent.     
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results demonstrate when B. anthracis is cultured in PA-air (sporulation conditions) 

overexpression of atxA leads to an increase in skiA transcription, causing a skiA-dependent 

defect in sporulation efficiency. 

 Next, I quantified sporulation efficiencies of the atxA and skiA mutants in CA medium 

supplemented with bicarbonate in 5% CO2 atmosphere (CACO3) (toxin-inducing conditions).  

Culture in CACO3 yielded less HR CFU, indicative of reduced sporulation efficiency, compared 

to culture in PA-air. Numbers of HR CFU for CACO3 cultures were 1- to 2-log fewer than PA-air 

cultures. Interestingly, cultures of the atxA-up strain did not have a defect in sporulation 

efficiency until stationary phase (7h) (Figure 6-3A). The atxA- and skiA-null mutants had 

significantly higher sporulation efficiency than the parent at 7h. A 2-log difference in HR CFU 

was observed between the mutants and the parent strain. As observed during culture in PA-air, 

the ∆skiA/atxA-up mutant produced HR CFU similar to that of the parent strain, and 

complementation with skiA restored the sporulation defect. 

 To assess skiA expression in the mutant backgrounds during culture in CACO3 I 

measured transcript levels using RT-PCR. Transcript levels of skiA produced by the parent and 

atxA-up mutant were similar, with less than a 2-fold difference in relative levels (Figure 6-3B). 

The atxA mutant showed a dramatic decrease in skiA transcript levels, roughly 57-fold lower at 

transition phase (4h) and 25-fold lower at stationary phase (7h) compared to the parent strain. 

In summary, strains with low or undetectable skiA transcripts (atxA- and skiA-null strains) 

exhibited increased numbers of HR CFU compared to strains with native or elevated skiA 

expression (parent and atxA-up strains). These data suggest that culture in conditions 

mimicking the host environment (toxin induction conditions) results in decreased sporulation 

efficiency relative to culture in conditions conducive to sporulation, and the influence AtxA has 

on sporulation is likely mediated through SkiA.  
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6.2.2 Elevated atxA expression does not result in increased virulence. 

 Given the increases in AtxA and toxin levels observed in samples from the atxA-up 

mutant (91), in addition to the sporulation defect, we tested whether the mutant exhibited 

increased virulence in a murine model of anthrax (Figure 6-4). I injected vegetative cells of B. 

anthracis parent strain (ANR-1), and isogenic atxA-null and atxA-up strains into the tail veins of 

6- to 8-week old female A/J mice. A/J mice are complement deficient and therefore more 

susceptible to toxigenic B. anthracis strains compared to murine models with intact immune 

systems (141). Mean time to death (MTD) did not differ significantly between mice inoculated 

with 102 CFU of the parent or atxA-up mutant. Mice succumbed to infection with the parent and 

atxA-up strains with a MTD of approximately 113 and 119h, respectively. The atxA-null mutant 

was avirulent. These results indicate that increases in AtxA protein and toxin levels observed in 

the atxA-up mutant in vitro do not result in a virulence phenotype. 

 

6.3 Discussion 

 In this chapter, I have presented data indicating atxA expression levels are important for 

proper cell development in different environments. Conditions within the mammalian host 

environment are ideal for both atxA expression and activity. Body temperatures within 

mammals can range from 36˚C to 39˚C and expression of atxA increases six-fold when B. 

anthracis is incubated at 37˚C compared to 30˚C (59). Carbon dioxide concentrations within the 

blood of mammals is around 40 mmHg, which is close to 5% and 85-90% of CO2 within 

mammals exists in the form of bicarbonate HCO3
- (153). AtxA dimerization and activity increase 

when B. anthracis is cultured in medium containing dissolved bicarbonate in 5% CO2 

atmosphere (64). The availability of nutrients in the host environment due to the activity of 

lethal toxin and other virulence factors produced by B. anthracis (see section 1.4) may lead to a 

physiological state in which genes required during stationary phase, notably sporulation genes, 

are repressed by transition state regulators. Nutrient availability, temperature, and high partial 

pressure of CO2 may result in 
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Figure 6-3. Spore quantification and skiA transcript levels in CACO3 
(A) Heat-resistant CFU/ml of parent and mutant derivatives. (B) RT-qPCR of skiA transcripts at 
transition-to-stationary (4h) and stationary (7h) phases of growth normalized to the parent 
control.  These data represent average values of detectable transcripts from three independent 
cultures. Asterisks denote p-values ≤ 0.05 relative to parent.     
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Figure 6-4. Virulence of parent and atxA mutants 
Survival curves of A/J mice inoculated intravenously with vegetative B. anthracis are shown. 
Mice were injected via the tail vein with inocula of following strains: parent (circles; n = 6) 
inoculum = 1.5 x 102 CFU, atxA-up (triangles; n = 6) inoculum = 1.9 x 102 CFU, and atxA-null 
(squares; n = 3) inoculum = 1.5 x 103 CFU. I performed the animal infections used to generate 
these data. Jennifer Dale created this figure and I have used it with her permission. 
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increased atxA expression and protein activity, resulting in expression of skiA and inhibition of 

sporulation. Moreover, the cerebrospinal fluid and blood from mammals that succumbed to 

anthrax corroborate in vitro studies as vegetative bacilli have been detected in these samples, 

but not spores (154). 

 In contrast to culture conditions that induce toxin expression, conditions conducive to 

sporulation (PA-air) include low CO2 partial pressure (145). The CO2 concentration in ambient 

air is at roughly 0.04%, more than 100-fold lower than what is observed within the host 

environment (155). AtxA activity is low in these conditions as referenced by the absence of 

lethal factor in culture supernates from B. anthracis strains cultured in PA-air. Interestingly, 

AtxA protein levels are also reduced in B. anthracis strains cultured in PA-air compared to 

culture in CACO3 despite incubation of both cultures at 37˚C (156). Transcription of skiA in the 

parent strain during culture in PA-air is similar levels observed in the atxA-null strain indicating 

that skiA expression is low in these culture conditions. These data are particularly relevant 

since B. anthracis resides in the soil environment where environmental conditions can quickly 

become unfavorable for survival of vegetative cells. The low CO2 concentration of ambient air 

in the soil environment may result in B. anthracis vegetative cells with low AtxA activity, and by 

extension low skiA expression. The transition state regulators, which respond to nutrient 

availability, could function as the primary key holders for sporulation when B. anthracis is in the 

soil environment. In the host environment, when AtxA is more active, positive regulation of skiA 

could function as an added inhibitor of sporulation. 

 In addition to the influence AtxA has on sporulation via skiA, a more well-known role for 

AtxA is as a positive regulator of toxin expression. Mutation of a putative repressor binding site 

in the atxA promoter led to a seven-fold increase in β-galactosidase activity from a PatxA-lacZ 

reporter. Importantly, AtxA protein levels and toxin production were increased in the "atxA-up" 

strain harboring the repressor site mutation compared to the parent strain (91). Despite 

elevated toxin production detected during in vitro culture of the atxA-up mutant, an increase in 

virulence was not observed in this strain relative to the parent in a murine model of anthrax. It is 
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possible that the increases in atxA expression and toxin production observed in vitro do not 

occur in vivo. Alternatively, AtxA and toxin production by the parent strain in vivo may not be 

limiting for anthrax disease progression, and increases in toxin levels have no effect.  

 The other B. anthracis PCVRs, AcpA and AcpB, do not have a significant effect on skiA 

expression. Sporulation efficiency in strains with altered acpA or acpB expression has not been 

quantified, however abnormalities in sporulation have not been observed in sporulating cultures 

of these strains. Capsule production was unaffected in the atxA-up and skiA mutants. It is 

curious that lethal factor levels were elevated in the atxA-up mutant relative to the parent, but 

capsule thickness was unaffected. Expression of acpA was not measured in the atxA-up 

mutant, and it is possible that the 6.6-fold increase in AtxA in this mutant does not result in an 

increase in acpA transcripts which would suggest AtxA levels are not limiting for acpA 

expression. My data support the interpretation that overexpression of AcpA results in cells with 

increased capsule thickness compared to native acpA expression. 

 With respect to PCVR function, these data suggest a model in which AtxA plays an 

important role in toxin expression and suppression of sporulation in toxin inducing conditions 

through control of skiA. AcpA and AcpB appear to play more limited roles and function primarily 

in capsule production having no apparent effect on sporulation. Future studies should focus on 

in silico analysis of genes with unknown functions in the AcpA and AcpB regulons. Analysis of 

the predicted amino acid sequences for these AcpA- and AcpB-regulated genes may reveal 

homology to proteins of known function ascribed to specific gene networks or cellular 

processes. These studies could highlight other impacts AcpA and AcpB have on cellular 

physiology. 
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7.1 Noteworthy results and significance of B. anthracis PCVRs 

 Bacillus anthracis produces three proteins that are members of an emerging class of 

Gram-positive transcriptional regulators termed PRD-containing Virulence Regulators (PCVRs). 

A defining characteristic of this class of regulators is the presence of 

phosphoenolpyruvate:carbohydrate phosphotransferase system regulatory domains (PRD). 

The phosphotransferase system, generally involved in the transfer of phosphate to incoming 

sugar molecules, may also play a role in virulence. AtxA, named for its control of anthrax toxin 

gene expression, is the master virulence regulator in B. anthracis and is the archetype PCVR. 

Cells lacking atxA are significantly attenuated in murine models of anthrax (30, 91). AtxA 

shares amino acid similarity with two less well-studied regulators, AcpA and AcpB, which 

independently positively control transcription of the capsule biosynthetic operon, capBCADE. 

Deletion of acpA results in cells with smaller capsule diameters, and acpB-null strains have 

reduced dissemination compared to the parent strain in a murine model of anthrax. An 

acpAacpB mutant is non-capsulated and avirulent in a murine infection model (29, 107). 

 My research has revealed similarities and differences among AtxA, AcpA, and AcpB 

with regard to gene regulation and structure-function relationships. In chapter three I describe 

my efforts to determine the regulons of the PCVRs in strains expressing individual regulators at 

near native levels. My data show that multiple plasmid and chromosomal genes are PCVR 

controlled, with AtxA, AcpA, and AcpB having a ≥4-fold effect on transcript levels of 145, 130, 

and 49 genes respectively. Several genes are coregulated by two or three PCVRs. In chapter 

four I present data concerning the relative in vivo activities of each PCVR on PcapB-lacZ and 

Plef-lacZ reporter fusions in B. anthracis, the effect of CO2 on the solubility and stability of the 

PCVRs, the impact functional domains have on regulator activity, and finally multimerization 

studies. In vivo reporter results are largely consistent with RNA-Seq data such that AtxA alone 

had activity on Plef-lacZ, and AcpA and AcpB had more activity on PcapB-lacZ than AtxA. The 

concentration of CO2 during culture did not affect PCVR stability nor solubility. Similar to AtxA, 

homodimer formation was observed for AcpA and AcpB and was dependent on the EIIB-like 
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domains. In co-expression experiments, AcpA activity was reduced by increased levels of AtxA. 

Experiments presented in chapter five characterize the activity and multimerization potential of 

an atxA orthologue, AtxA2, identified in a virulent B. cereus. Compared to AtxA from B. 

anthracis, AtxA2 has less activity. The reduced activity of AtxA2 is potentially due to reduced 

homodimer formation. Data presented in chapter six further define the effects of AtxA 

expression levels on virulence and sporulation. B. anthracis mutants that overexpress atxA, 

resulting in increased AtxA and toxin production in vitro, do no not have increased virulence in 

a murine model of anthrax. Finally, AtxA proteins levels can alter sporulation efficiency through 

control of skiA expression. 

 The presence of three PCVRs in B. anthracis provides the opportunity to perform a 

comparative analysis of paralogues with shared and different functions. My studies, focusing on 

the mechanistic basis for overlapping and distinct target genes of AtxA, AcpA, and AcpB 

advance our knowledge of virulence gene expression in B. anthracis, while contributing to our 

understanding of this newly-discovered class of transcriptional regulators.  My work defining the 

regulons of these proteins combined with protein-protein interaction experiments hone our 

model for PCVR-mediated gene expression in B. anthracis. PCVR activity is increased in the 

presence of bicarbonate and high CO2 concentration affecting expression of genes located on 

the chromosome, pXO1, and pXO2. Expression of co-regulated genes can be affected 

differently by each PCVR. Homodimers of each PCVR are the most prevalent, but a small 

percentage of AtxA-AcpA heteromultimers may be present affecting expression of select 

genes. In Figure 7-1 I present a model for virulence gene expression in B. anthracis which is 

based on previous data and new revelations discovered during my dissertation research. 

 

7.2 Model for virulence gene regulation in B. anthracis 

 AtxA is epistatic to AcpA and AcpB, and transcription of atxA is influenced by 

environmental and physiological signals. Many of these signals are related to conditions  
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Figure 7-1. Comprehensive model of virulence gene regulation in B. anthracis 
CO2-dependent transcriptional start sites are red, and low-level constitutive start sites are black. 
Thickness of arrows from proteins to transcript start sites show degree of regulation with thick arrows 
indicating a large effect and thin arrows representing a small effect on expression. The multicolored 
arrow from AtxA-AcpA to the capBCADE transcript start site denotes the AtxA-mediated decrease of 
AcpA activity on PcapB. Protein interactions determined for each PCVR are denoted. The broken arrow 
from capE to acpB transcriptional start site represents a low level of transcriptional read through. 
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encountered within the host environment. The median range for mammalian body temperature 

is between 35˚C and 37.9˚C (157), and glucose is the energy source used for cellular 

respiration in animals.  Growth of B. anthracis at 37˚C and in medium containing glucose are 

two environmental conditions that promote atxA transcription (59, 63). Temporal regulation of 

atxA expression is affected by cellular redox state and growth phase such that AtxA levels 

increase during early exponential growth phase (60, 61). An undefined repressor also affects 

atxA expression and is thought to function primarily in conditions favoring sporulation ((91), 

Dale 2018 in revision). 

 Following translation, AtxA is subject to other mechanisms that alter steady-state 

protein levels and activity. The transition-state regulator CodY indirectly influences AtxA protein 

levels post-translationally in soluble cell lysates. In a codY-null strain, AtxA was not detected in 

cell lysates by western blot (69). AtxA activity is affected by phosphorylation of H199 and H379 

within PRD1 and PRD2, respectively. Phosphomimetic and phosphoablative mutations at H199 

and H379 suggest that phosphorylation at H199 allows for optimal AtxA activity, whereas 

phosphorylation at H379 abolishes AtxA activity (65, 66). Carbon dioxide/bicarbonate are 

physiological signals positively affecting AtxA activity by increasing the dimer-to-monomer ratio 

(64). When conditions required for optimal expression and activity of AtxA are met, AtxA-

regulated genes, including the toxin structural genes, are expressed.  

 Expression of acpA and acpB is presumed to be much less complex than atxA. A low 

basal level of expression of acpA and acpB is maintained by constitutive promoters at each 

gene locus. This low level of expression is insufficient for capsule production (29, 70). In 

conditions suitable for AtxA activity (an environment with elevated CO2/bicarbonate), AtxA 

promotes acpA expression from an AtxA-dependent promoter. My RNA-Seq data show that 

AtxA promotes transcription of acpA; transcripts increase by a log 2-fold change of 4.2. AcpA 

promotes expression of the capsule biosynthetic operon, capBCADE, and increases transcripts 

by a log 2-fold change of 8.7. Cotranscription of acpB with capBCADE was reported to occur in 
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roughly ten percent of capBCADE transcripts (70). AcpB increased transcripts of capBCADE by 

a log 2-fold change of 8.2.  

AtxA positively affects capsule synthesis indirectly through control of acpA and acpB, 

yet some capsule production is observed in strains lacking AtxA. In a B. anthracis strain 

containing pXO1 and pXO2, deletion of atxA results in cells that produce little to no capsule 

when cultured in CA medium supplemented with bicarbonate in 5% CO2 atmosphere (capsule-

inducing conditions) (29, 56). Although expression of acpA and acpB is significantly lower in the 

atxA-null strain compared to the parent, AcpA and AcpB are likely present in low abundance. 

My results show culture in CACO3 increases AcpA and AcpB activity compared to culture in 

CA-Air, and suggest that the thin capsule produced by an atxA-null strain is due to "active" 

AcpA and AcpB present in low quantities.  

 

7.3 AtxA, AcpA, and AcpB: a case for divergent evolution 

 Similarities with regard to PCVR activity and protein interactions suggest the PCVRs 

have related ancestry. Analysis of the amino acid sequence of AtxA, AcpA, and AcpB indicate 

that AcpA and AcpB are more closely related to each other than either is to AtxA. AcpA and 

AcpB have 40% amino acid sequence identity and 62% similarity, while AtxA shares about 

27% amino acid sequence identity and close to 50% amino acid sequence similarity with AcpA 

and AcpB. Consistent with amino acid sequence conservation, structural models of AcpA and 

AcpB suggest that both proteins have similar domain organization to AtxA. Functionally, the 

three proteins are all able to form homodimers and their respective activities are increased 

when cells containing each protein are cultured in 5% CO2 in medium containing dissolved 

bicarbonate. Strong sequence similarity alone is considered to be sufficient evidence for 

common ancestry (158). Phylogenetic analysis of amino acid sequences models the 

substitutions that have occurred over the course of evolution and derives a representation of 

evolutionary relationships between sequences (159–161).   
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Figure 7-2. Phylogram of AtxA, AcpA, and AcpB 
Numbers indicate phylogenetic distances. Phylogenetic analysis completed using Simple 
Phylogeny.  
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Analysis of the AtxA, AcpA, and AcpB amino acid sequences supports AcpA and AcpB being 

more closely related to each other, than either are to AtxA (Figure 7-2). 

 Gene duplication and successive divergence is a mechanism to generate genes with 

novel functions within genomes, and acpA and acpB likely result from an atxA gene duplication 

event. Gene duplication can occur by at least two mechanisms: homologous recombination and 

replicative transposition. For homologous recombination to occur, >100 bp direct-order 

sequence repeats must exist between potential sites for recombination (162). B. anthracis is 

characterized as a low G-C organism with an average A-T content of 66.5%. Some loci 

encompassing genetic rearrangements can have enriched A-T content as high as 70% (163). 

It's a miracle B. anthracis can keep its genome together. Given the abundance of A-T rich loci 

in the B. anthracis genome it is possible that regions of homology exist between the atxA locus 

on pXO1 and the capBCADE locus on pXO2 allowing for homologous recombination to occur 

and duplication of atxA. This initial gene duplication event likely resulted in the progenitor gene 

for acpA as AtxA and AcpA coregulate more targets than AtxA and AcpB. A second duplication 

event likely created acpB from acpA. 

 Alternatively, atxA gene duplication could have occurred by replicative transposition. 

Transposition is dependent upon a recognizable target sequence and insertion elements (ISs), 

and a functional transposase. Several putative ISs and genes annotated as integrases and 

transposases have been identified on pXO1 (109). In replicative transposition, DNA sequences 

containing atxA could be duplicated and inserted into a target DNA sequence on pXO2. In this 

model, DNA sequences containing atxA would be duplicated by replicative transposition and 

inserted into a target upstream of the capBCADE locus on pXO2 to create the progenitor for 

acpA. Successive replicative transposition or homologous recombination events could have led 

to duplication of acpA to create acpB. This potential mechanism for gene duplication is 

plausible because pXO2 also contains several annotations for putative ISs and transposases, 

many near the capsule biosynthetic operon locus. Interestingly, transposable elements can 

also support homologous recombination by serving as movable regions of homology (162).  
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 Following duplication of atxA, I propose that the resulting copy (the progenitor of acpA) 

assumed both novel and shared functionality compared to AtxA through the accumulation of 

mutations over time. Following some degree of functional divergence of AcpA from AtxA, a 

duplication event created the progenitor of acpB which accumulated mutations to have shared 

and unique function compared to AtxA and AcpA. Phylogenetic analysis of PCVR amino acid 

sequences and RNA-Seq support my model for the order of PCVR gene duplication events in 

B. anthracis (Figures 7-2, 3-5). AtxA and AcpA significantly coregulate expression of 31 genes 

(log 2-fold ≥4), compared to 15 genes controlled by both AtxA and AcpB. Five genes were 

coregulated by AcpA and AcpB. Assuming symmetrical divergence, equivalent accumulation of 

mutations over time between paralogues, I would have expected AcpA and AcpB to have a 

greater number of shared targets. However, the number of coregulated genes is likely low due 

to the dramatically fewer number of genes controlled by AcpB compared to AtxA and AcpA.  

 Future studies aimed at understanding the divergence of AtxA, AcpA, and AcpB should 

focus on identifying genes targets that are regulated directly by the PCVRs. My regulon studies 

were unable to differentiate direct versus indirect effects on gene expression. ChIP-Seq would 

identify direct PCVR targets and would define more clearly regulon profiles. Hierarchical 

clustering data presented in figure 3-6 is likely skewed by genes regulated indirectly by the 

PCVRs. Hierarchical clustering of gene expression profiles regulated directly by each PCVR 

may more closely align with amino acid sequence conservation, such that AcpA and AcpB 

expression profiles are the most similar on all three genetic elements. 

 

7.4 Evolutionary advantage to cross-talk between genetic elements 

 The influence of plasmid-encoded PCVRs on chromosome-encoded branched chain 

amino acid genes is one of several examples of cross-talk between genetic elements in B. 

anthracis. My RNA-Seq data reveal that cross-talk appears to be multi-directional. In one 

direction, plasmid-encoded AtxA, AcpA and AcpB affect expression of genes located on the 

chromosome. In another direction, the well-studied chromosome-encoded transition state 
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regulator, AbrB, affects expression of atxA on pXO1 (61). It is unclear whether chromosome-

encoded factors regulate any pXO2-encoded genes. However, intra-genomic gene regulation 

may serve as a mechanism to coordinate expression of several gene networks required for 

host colonization. Given that many virulence factors are acquired by horizontal gene transfer 

and plasmid acquisition, it is reasonable to postulate that these factors are added gradually 

over time and that transcriptional regulators associated with these factors both gain and loose 

functionality. Considering atxA, acpA, and acpB are located in apparent pathogenicity islands, 

over the course of evolution they may have gained functionality to control expression of genes 

outside of their original/initial targets providing a fitness advantage. 

 

7.5 PCVR paralogues in other organisms may have shared functionality 

 The B. anthracis PCVRs represent a unique opportunity to study the interplay of three 

paralogues in one organism. My research regarding AtxA, AcpA, and AcpB functionality has 

identified functions unique to each regulator as well activities shared among all three proteins. 

However, B. anthracis is not the only bacterium to produce PCVR paralogues. Group A 

streptococcus (GAS) is a pathogenic bacterium that causes several diseases including strep 

throat, impetigo, and necrotizing fasciitis. Like Bacillus anthracis, GAS can colonize a wide 

range of host tissues and must regulate virulence factor expression in response to host cues 

(117). Virulence determinants produced by GAS include a hyaluronic acid capsule, secreted 

proteases, and cell wall-anchored proteins that inhibit host defenses (12). GAS produces two 

PCVRs, Mga and RivR, that share 22% amino acid sequence identity and 49% similarity. Mga 

is the most well-characterized PCVR in GAS, and regulates expression of M protein; a major 

adhesin used during host colonization, a complement factor C5a peptidase, and other virulence 

factors (117). RivR is a negative regulator of the hasABC operon, encoding a hyaluronic acid 

capsule, and grab which encodes a protein G-related α2-macroglobulin-binding protein (GRAB) 

that binds a human protease inhibitor. There are conflicting reports of RivR having either a 
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positive effect or no effect on expression of two genes in the Mga regulon; scpA, encoding the 

C5a peptidase, and the gene encoding M protein emm (12, 116). 

 Comprehensive transcriptomic studies and biochemical assays elucidated the Mga 

regulon and molecular mechanism for activity. While RivR has not been studied to the same 

extent as Mga, similarities and difference between the B. anthracis PCVRs and GAS PCVRs 

are apparent. Both Mga and AtxA promote expression of adhesins in their respective 

organisms; M protein in GAS, BslA in B. anthracis. PCVRs of both organisms affect capsule 

expression; B. anthracis regulators promote capsule production and RivR of GAS negatively 

affects capsule synthesis. Negative regulation of capsule production by RivR is thought to play 

an important role in GAS infection. A GAS rivR deletion mutant has reduced adherence to a 

keratinocyte cell line relative to that of the parent strain due to the enhanced capsule 

elaborated by the mutant strain. Treatment with hyaluronidase restored adherence of the rivR 

mutant indicating that capsule production is a tradeoff between immune avoidance and 

adherence to host cells (12). Considering my data demonstrating that AtxA alone cannot 

promote capsule expression and can negatively affect AcpA activity on PcapB-lacZ, similar 

considerations regarding optimal capsule expression may be applicable to B. anthracis. 

 

7.6 Concluding remarks 

 Future studies of the B. anthracis PCVRs should aim to build on my work to uncover 

molecular mechanisms that account for the overlapping and divergent function of the 

regulators. AtxA is likely the progenitor PCVR in B. anthracis and acpA and acpB genes likely 

arose from gene duplication events. The regulators retained some initial functionality, but also 

developed specific functions through the accumulation of mutations over time. Undoubtedly, 

the molecular basis behind functional similarity and differences resides in amino acid 

conservation among the regulators. Amino acid differences exist in all five predicted domains 

among AtxA, AcpA, and AcpB, but I propose that dissimilarities in the DNA-binding domains 

and/or PRDs are responsible for PCVR functional differences. My approach to determine the 
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specific effects of the DNA-binding domains and PRDs on PCVR activity involved creation of 

protein chimeras. However, my results were inconclusive due to two chimeric regulators, 

AcpADBDAtxAPRD+EIIB and AcpBDBDAtxAPRD+EIIB, that were not detectable in soluble cell lysates. 

The two other chimeras, AtxADBDAcpAPRD+EIIB and AtxADBDAcpBPRD+EIIB, were detectable in cell 

lysates, but did not have activity on PcapB-lacZ or Plef-lacZ.  

 Future studies to define the impact the DNA-binding domain and PRDs have on PCVR 

activity would be aided by two advancements: (1) the crystal structures of AcpA and AcpB need 

to be solved, and (2) the phosphorylation states of AcpA and AcpB need to be determined. 

Crystal structures for AcpA and AcpB would define domain boundaries and unstructured 

regions more definitively than structural predictions and alignments with the AtxA crystal 

structure. These data would facilitate the creation of more stable, and potentially more active, 

chimeras. It is possible that the redesigned chimeras would be transcriptionally inactive as was 

observed with the AtxADBDAcpAPRD+EIIB and AtxADBDAcpBPRD+EIIB proteins. These results would 

suggest that specific DNA-binding-domain - PRD1 pairing is required for activity. 

Heteromultimerization experiments with chimeric and full-length PCVR proteins could indicate 

whether the chimeras are folded properly. 

 Determination of the phosphorylation states of AcpA and AcpB would complement any 

results relating the PRDs of these proteins with activity. PRD-containing transcriptional 

regulators have been shown to be phosphorylated at specific histidines within the PRDs and in 

EIIA- and EIIB-like domains (9). If AcpA and AcpB are phosphorylated, phosphoablative 

mutations at amino acids likely to be phosphorylated (histidines within PRDs, and cysteines or 

histidines within the EIIB-like domain) would indicate at which residue phosphorylation 

occurred. These data, combined with AcpA and AcpB crystal structures, would illuminate how 

phosphorylation ultimately affects PCVR activity. Predictions from the AtxA crystal structure 

suggest that phosphorylation of H199 within PRD1 may affect positioning of the DNA-binding 

domain and influence target specificity. It is hypothesized that phosphorylation of H379 

abolishes dimer formation by destabilizing the interaction between PRD2 of monomer one and 
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the EIIB-like domain of monomer two (65). Amino acid alignments show that histidines within 

the PRDs of AcpA and AcpB do not align with phosphorylated histidines in AtxA, and whether 

or not the residues occupy similar locations in 3D space has not been determined. Differences 

in the locations of phosphorylated histidines in AcpA and AcpB could affect positioning of the 

respective DNA-binding domains, and/or the stability of multimeric protein interactions. 

Alternatively, AcpA or AcpB may not be phosphorylated suggesting that the DNA-binding 

domain alone confers target specificity. 

 PCVR expression is complex and different cis- and trans-acting factors contribute to 

different relative amounts of AtxA, AcpA, and AcpB within cells of B. anthracis (Figure 3-3). My 

results show that artificially altering PCVR stoichiometry can effect expression of target genes 

(Figure 4-13). One way to test whether the complex regulation of PCVR expression is relevant 

for virulence is to swap PCVR gene loci. PCVR open reading frames could be swapped among 

PCVR loci such that cis- and trans-acting factors that control the expression of one PCVR 

would control the expression of a different PCVR (Figure 7-3). This would likely lead to altered 

PCVR protein levels in addition to dramatic changes in virulence gene expression. In the strain 

depicted in Figure 7-3B, acpA is in the native atxA locus, acpB is in the native acpA locus, and 

atxA is in the native acpB locus. Given the relative PCVR protein levels observed in the parent 

strain (Figure 7-3A, 3-3), I would expect AcpA to be the most abundant PCVR during culture in 

CACO3. High levels of AcpA would lead to elevated expression of capBCADE as well as 

cotranscription of atxA. AtxA would positively regulate acpB expression and AcpB would further 

promote capsule production. This strain would likely exhibit a thicker capsule and reduced toxin 

expression compared to the parent strain. The strain represented in Figure 7-3C would 

presumably have high levels of AcpB leading to high expression of capBCADE and 

cotranscription of acpA. The atxA gene is in the native acpA locus and AtxA positively regulates 

acpA expression. Thusly, in this mutant AtxA would be in a positive feedback loop. I predict this  
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Figure 7-3. PCVR locus-activity relationships 
CO2-dependent transcriptional start sites are red, and low-level constitutive start sites are black. Arrows 
from proteins to transcript start sites indicate positive regulation. The broken arrow from capE to acpB 
transcriptional start site represents a low level of transcriptional read through. (A) PCVR loci in the parent 
strain. (B & C) Strains in which the open reading frames encoding AtxA, AcpA, and AcpB have been 
exchanged. 
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strain would express a thicker capsule than the parent strain, in addition to higher toxin levels. 

 The impact these locus mutations could have on various cellular processes would be 

extremely interesting to explore. Modulation of AtxA levels has already been demonstrated to 

impact sporulation efficiency. The effects on virulence of these mutant strains could be tested 

in animal models of anthrax. The results of these studies could indicate an optimal level of 

expression for each PCVR that allows the bacterium to thrive in the host and soil environments.

 The ability of an organism to thrive depends to a large extent on its ability to adapt to 

changing environments and successfully colonize new niches. Adaptation can spawn the 

creation of genes with new functions to cope with the environmental changes. For the two most 

well-characterized virulence factors in B. anthracis, AtxA has sole control over expression of 

anthrax toxin, but is a poor regulator of capsule expression. Duplication of atxA eventuated the 

creation of acpA and acpB. Positive regulation of acpA by AtxA allows for AtxA control of toxin 

and capsule synthesis. AcpA and AcpB expanded their roles beyond regulators of capsule 

production to control expression of non AtxA-regulated genes. Future investigations addressing 

domain-specific differences among the regulators will broaden our understanding of the 

molecular bases for PCVR activity and provide insight into the physiological and evolutionary 

significance of these major gene control elements of B. anthracis and other pathogens. 
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