
Texas Medical Center Library
DigitalCommons@TMC

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

5-2018

EPITHELIAL TO MESENCHYMAL
TRANSITION AS A PREDICTOR OF
RESPONSE TO POLO-LIKE KINASE 1
INHIBITION-INDUCED APOPTOSIS IN
NON-SMALL CELL LUNG CARCINOMA
Pavitra Viswanath

Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Cancer Biology Commons, and the Medicine and Health Sciences Commons

This Thesis (MS) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has
been accepted for inclusion in UT GSBS Dissertations and Theses (Open
Access) by an authorized administrator of DigitalCommons@TMC. For
more information, please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Viswanath, Pavitra, "EPITHELIAL TO MESENCHYMAL TRANSITION AS A PREDICTOR OF RESPONSE TO POLO-LIKE
KINASE 1 INHIBITION-INDUCED APOPTOSIS IN NON-SMALL CELL LUNG CARCINOMA" (2018). UT GSBS
Dissertations and Theses (Open Access). 856.
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/856

https://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/856?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu


 

EPITHELIAL TO MESENCHYMAL TRANSITION AS A PREDICTOR OF 

RESPONSE TO POLO-LIKE KINASE 1 INHIBITION-INDUCED APOPTOSIS IN 

NON-SMALL CELL LUNG CARCINOMA 

By 

Pavitra Viswanath, B.E 

 

APPROVED: 

 

 

_______________________________________    

Faye M. Johnson, M.D., Ph.D. 

Advisory Professor 

 

 

_______________________________________  

Don L. Gibbons, M.D., Ph.D. 

 

 

_______________________________________   

Joya Chandra, Ph.D. 

 

_______________________________________ 

Subrata Sen, Ph.D. 

 

 

 

_______________________________________  

Pierre D. McCrea, Ph.D. 

 

 

 

 

APPROVED: 

 

 

_______________________________________ 

Dean, The University of Texas  

MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences



 

EPITHELIAL TO MESENCHYMAL TRANSITION AS A PREDICTOR OF 

RESPONSE TO POLO-LIKE KINASE 1 INHIBITION-INDUCED APOPTOSIS IN 

NON-SMALL CELL LUNG CARCINOMA 

 

A 

THESIS 

Presented to the Faculty of  

The University of Texas  

MD Anderson Cancer Center 

 UTHealth Graduate School of Biomedical Sciences 

in Partial Fulfillment 

of the Requirements 

of the Degree of  

 

MASTER OF SCIENCE 

 

By 

Pavitra Viswanath, B.E 

Houston, Texas 

May 2018 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

Acknowledgements 

I would like to thank my supervisor, Dr. Faye M. Johnson, for giving me the opportunity 

to undertake this project, who guided, taught and encouraged me throughout and for that I will be 

eternally grateful. Thank you for being a fantastic mentor and for helping me in developing the 

skillsets of a scientist. I would also like to acknowledge and thank the current and former members 

of my lab for all their help and making my lab experience wonderful: Drs. Tuhina Mazumdar, 

Shaohua Peng, Ratnakar Singh, Vaishnavi Sambandam, Kyriante Henry, Nene Kalu and Hongyun 

“Jane” Zhao. A huge thank you to Dr. Shaohua Peng for teaching me to work with mice and 

helping with the PDX studies and orthotopic lung injections. I am going to miss tag teaming with 

you in the animal facility. Thank you Drs. Ratnakar Singh and Vaishnavi Sambandam for being 

there to answer all my questions and help in troubleshooting experiments. I would also like to 

extend my gratitude to Xin “Cindy” Lieu from Dr. Jonathan Kurie’s lab for teaching me orthotopic 

lung injections. Thank you Dr. Peter Balter, for helping me in Raystation issues and brainstorming 

possible CT analysis techniques, one of which is leading to a publication. Thank you Charles 

Kingsley, Vivien Tran, Kiersten Maldonado and Houra Taghavi at SAIF for the CT imaging and 

teaching me how to intubate mice and operate the XRad.  

Additionally, I would like to thank my advisory committee members (Drs. Don Gibbons, 

Joya Chandra, Subrata Sen and Pierre McCrea) for their guidance and support in helping me to 

cultivate and complete a thesis project that would improve our efforts in developing targeted 

therapies to treat various cancer types. Lastly, thank you to Dr. Lindsey Minter and my friends 

for creating a safe-haven where I could brainstorm and go to vent and attain peace without being 

judged. Thank you all for being there to advise and guide me during my academic tenure at GSBS.  

 

 

 



v 

 

Epithelial to Mesenchymal Transition as a Predictor of Response to Polo-Like Kinase 1 

Inhibition-Induced Apoptosis in Non-Small Cell Lung Carcinoma  

Pavitra Viswanath, B.E 

Faye M. Johnson, MD, PhD 

 

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death 

worldwide. Outcomes are poor for patients with recurrent, advanced or metastatic NSCLC. Polo-

like kinase 1 (PLK1), involved in the regulation of mitotic processes and the response to DNA 

damage, is overexpressed in NSCLC. Inhibiting PLK1 may be an effective treatment for NSCLC 

patients as it is involved in the mechanisms of resistance to several chemotherapy drugs. PLK1 

inhibition or knock-down has various effects in cancer cells, including mitotic arrest, apoptosis, 

and senescence. Predictive biomarkers have not been identified to select those patients who are 

likely to respond to PLK1 inhibitors although a small subset of NSCLC patients respond well to 

single agent therapy. 

Our lab found that mesenchymal NSCLC cell lines were more sensitive to PLK1 inhibitors 

than the epithelial cell lines in vitro. The induction of an epithelial phenotype using miR-200 

expression increased resistance to PLK1 inhibition, whereas the induction of a mesenchymal 

phenotype using ZEB1 expression or TGF-β increased PLK1 inhibition–induced apoptosis. To 

elucidate the mechanisms of resistance to PLK1 inhibition, our lab compared gene and protein 

expression in sensitive and resistant NSCLC cell lines and we identified β-Catenin, SMAD4 and 

PDK1 to be differentially regulated between epithelial and mesenchymal NSCLC cell lines after 

PLK1 inhibition. We tested the role of β-Catenin, SMAD4 and PDK1 in PLK1 inhibition induced 

apoptosis in NSCLC. 

Here, we demonstrate that mesenchymal NSCLC tumors are more sensitive to PLK1 

inhibition compared to epithelial NSCLC in vivo in patient derived-xenograft (PDX) models as 

well as orthotopic mouse models in which the EMT properties are manipulable by modulating the 

miR200/ZEB1 axis. To facilitate analysis of these in vivo studies, we developed a novel semi-

automated method of metastatic lung tumor burden calculation from computed tomography 

images by the calculation of the mass of the thoracic cavity. This method takes into account the 

aggregate tumor metastases in the thoracic cavity which significantly accounts for tumor burden 

in lung adenocarcinoma and provides details about the dynamic processes that occur in vivo over 

time.  
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Chapter 1: Introduction 
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1. Non-Small Cell Lung Cancer 

Lung cancer is one of the deadliest cancers in the world. It is estimated that there 

will be 154,050 deaths and 234,030 new cases of lung cancer in the United States (US) in 

2018 alone (1). The 5-year relative survival rate for lung cancer is 18% (15% for men and 

21% for women) (1). Non-small cell lung cancer (NSCLC) accounts for about 80-85% of 

lung cancers. NSCLCs are classified into three main subtypes by the World Health 

Organization based on histopathology: adenocarcinoma (40% of lung cancers), squamous 

cell carcinoma (25% lung cancers) and large cell carcinoma (10% of lung cancers) (2). 

Some of the rarer types of NSCLC include adenosquamous carcinoma, spindle cell 

carcinoma, giant cell carcinoma, carcinosarcoma, pulmonary blastoma, carcinoid tumors, 

mucoepidermoid carcinoma, adenoid cystic carcinoma and other unclassified carcinoma 

(2). Smoking is the biggest cause and risk factor for lung cancer and is responsible for 

around 80% of lung cancer deaths in the US (1). Some of the other risk factors include 

radon gas exposure, exposure to second-hand smoke, air pollution, asbestos, radiation, 

chromium and cadmium exposure as well as diesel exhaust (1).  

 

2. Known Genetic Alteration in Non-Small Cell Lung Cancer 

In the recent years, genotyping studies in addition to histology have been carried 

out to identify genetic or molecular abnormalities in the various subtypes of NSCLC (3, 

4). Some of the main driver mutations that have been identified include mutations or 

alterations in the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase 

(ALK), KRAS, HER2, BRAF, PIK3CA, and ROS1 (5, 6). These genetic alterations cause 

an increase in tumor cell proliferation, angiogenesis, metastasis as well as decreased 

apoptosis. Many targeted therapies have been developed, targeting these genetic 
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alterations and are outlined in Figure 1.  Many of the kinase inhibitors targeting each of 

these oncogenes are either the standard of care or undergoing active development in the 

clinic, providing a fertile ground for investigations of drug resistance. 

 

 

 

Figure 1: Frequency of molecular aberrations in various driver oncogenes in lung 

adenocarcinomas and current available drugs against these oncogenic proteins. 

Reprinted with permission from Journal of Thoracic Oncology. Tsao AS, Scagliotti GV, 

Bunn PA, Jr., Carbone DP, Warren GW, Bai C, et al. Scientific Advances in Lung Cancer 

2015. J Thorac Oncol. 2016;11(5):613-38. (6) 
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3. Current Systemic Treatments Available to NSCLC Patients 

3.1 Molecularly targeted Therapies 

One of the first driver mutations to be clinically targeted in NSCLC was the 

activating mutations in EGFR. Activating mutations in EGFR most commonly occur as 

either in-frame amino acid deletions in exon 19 or L858R substitutions in exon 21 (7). 

These EGFR mutations tend to make the cancer cells rely on EGFR for survival and this 

is known as oncogene addiction (8). This phenomenon allows the tumors to respond to 

EGFR-specific tyrosine kinase inhibitors (TKIs), such as Erlotinib, Gefitinib, Afatinib and 

Osimertinib. Additionally, the US Food and Drug Administration (FDA) approved kinase 

inhibitors that target ALK-fusion and these include Crizotinib, Ceritinib, and Alectinib. 

Other potential targeted therapies are listed in Figure 1. One of the main barriers that limits 

the effectiveness of kinase inhibitor therapy is the issue of resistance which develops in 

nearly all patients despite robust and durable responses in many (9). Therapy resistance is 

categorized as primary or intrinsic resistance and secondary or acquired resistance. In 

primary resistance, patients lack response to the targeted therapy. In secondary resistance, 

patients initially respond and achieve some benefit after which disease progression is 

observed (9). 

3.2 Cytotoxic Chemotherapy 

Cytotoxic chemotherapy is used as an anticancer treatment for the vast majority of 

NSCLC patients, especially those who do not have any targetable genetic alterations. The 

response to cytotoxic combination chemotherapy is influenced by histology, age, 

comorbidity and performance status (PS) (10). Based on American Society of Clinical 

Oncology (ASCO) standards, the treatment for a patient with PS 0 or 1 is a regimen of a 
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platinum (cisplatin or carboplatin) plus paclitaxel, gemcitabine, docetaxel, vinorelbine, 

irinotecan, or pemetrexed (11). Other chemotherapeutic agents such as paclitaxel, 

docetaxel, vinorelbine, gemcitabine, and irinotecan have shown significant single-agent 

activity in advanced NSCLC(12). As with targeted therapy resistance develops in nearly 

all NSCLC patients. 

3.3 Immunotherapy 

One of the latest breakthroughs in cancer treatment has been immunotherapy, 

which includes targeting the immune-modulating mechanisms that help cancer cells 

defend themselves against the immune system. This approach targets immune checkpoint 

pathways which include the blockade of cytotoxic T-lymphocyte-associated antigen 4 

(CTLA4), programmed cell death-1 (PD-1) and it’s ligand PD-L1, and others (13). 

Ipilimumab is a CTLA4 human IgG1 monoclonal antibody that targets the inhibitory 

interaction between CTLA4 and CD80 or CD86. It is said to deplete tumor-infiltrating 

regulatory T-cells through antibody-dependent cell-mediated cytotoxicity, producing 

elevated levels of cell surface CTLA4 (14). Pembrolizumab and nivolumab are FDA 

approved for the treatment of metastatic NSCLC. Both are humanized monoclonal 

antibodies that inhibit the interaction between the PD-1 coinhibitory immune checkpoint 

expressed on tumor cells and infiltrating immune cells and its ligands, PD-L1 and PD-L2 

(15). 

 

4. Animal Models of NSCLC  

Many genetically engineered mouse models (GEMMS) have been generated that 

encompass a number of mutations found in NSCLC. These include KRAS, BRAF, EGFR, 

LKB1, p53, NFκB (16). Most mouse models for NSCLC are focused on adenocarcinoma 
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where studies have been performed using a Lox-Stop-Lox conditional KRASG12D 

mutation engineered in the endogenous KRAS locus (17, 18). Combining KRASG12D 

activation along with the concomitant inactivation of p53 results in more aggressive 

tumors that also metastasize. The relationship between primary tumor nodules and 

individual metastases could be established in studies in which activation of KRASG12D 

and inactivation of p53 was achieved by infection of mouse lung with lentiviral Cre (19).  

The other type of mouse models that have been used and play a very important 

role in preclinical studies are human xenografts. These include cell line and patient-

derived xenografts (PDXs). In PDX models, direct implantation of small patient tumor 

fragments in immunocompromised mice leads to the development of tumors that may 

accurately represent the heterogeneity of the patient population. These models can be 

serially propagated in mice by subsequent passaging as explants (20). PDX models are 

generated in immunodeficient mice by engrafting patients’ cancerous tissues or cells (21-

26). PDX models are extensively used in preclinical screening and evaluation of drugs for 

various cancers as they accurately depict the patient’s tumors with respect to genetic 

mutations, response to systemic therapy, gene expression and histopathology.   

 

5. PLK Family 

Polo-like kinases (PLKs) are a family of serine-threonine kinases that regulate 

multiple processes such as mitosis, cytokinesis and DNA damage response. PLKs regulate 

the molecular signals that are integrated to initiate and maintain checkpoints that halt the 

progression of cell growth and allow time for DNA repair (27). There are five members 

of the PLK family, named PLK1 to PLK5. The proteins PLK1, PLK2, PLK3 and PLK4 

have similar structures: they have a conserved serine-threonine kinase domain the amino-
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terminal end. PLK1, PLK2 and PLK3 have two regulatory polo-box domains (PBDs) at 

the carboxy-terminal end while PLK4 has one PBD (28). PLK5 is different from the other 

family members as it is a protein that has a PBD but lacks the serine-threonine kinase 

domain (29). The PBD of PLK1 is critical for PLK1 function. Studies have shown that 

that a PBD-dependent protein-protein interaction is critically required for proper M-phase 

progression (30). The PBD functions as a molecular mediator by recognizing a p-Ser/p-

Thr consensus motif (31) and brings the kinase domain of PLK1 in proximity to its 

substrates by interacting with a phosphorylated motif on the substrate itself or its 

associated proteins (32). The PBD-dependent interaction with a phosphorylated target 

occurs by the generation of a phosphorylated binding motif and the binding of PLK1 with 

the resulting target protein (32). This PBD-dependent protein-protein interaction is 

thereby central to various PLK1-mediated biological processes. The structure of PLK 

family proteins is depicted in Figure 2 below. PLK1 is the best characterized of all the 

family members, it is expressed in NSCLC, and it has a well-established role in cancer 

progression. 
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Figure 2: Structure of PLK family proteins 

The open-reading frame amino-acid lengths are shown on the right. The kinase domain is 

depicted in blue while the polo-box domain is depicted in red. The residues that are critical 

for ATP-binding and enzymatic activation (T-loop) within the kinase domains and 

phospho-selectivity within the polo-boxes are indicated.   
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6. PLK1 Regulation 

Many studies have shown that PLK1 expression as well as activity during the cell 

cycle is regulated at the transcriptional level (33). PLK1 transcription is regulated by 

several transcription factors such as FOXM1, p53 and the E2F family during various 

stages of the cell cycle (34, 35). PLK1 protein activity is regulated by phosphorylation on 

a conserved threonine residue (Thr210) in the kinase domain and this phosphorylation is 

mediated by Bora and Aurora A during normal mitotic entry and after DNA damage 

checkpoint recovery (36). Before entry into mitosis, PLK1 is phosphorylated by Aurora 

A kinase together with Bora, at the Thr210 site, activating it. Bora is able to open up the 

closed formation of PLK1 and Aurora A is able to phosphorylate PLK1 for activation 

during the mitotic entry (37).  Other kinases such as PDK1 and phosphatases have also 

been identified to be involved in the regulation of PLK1 at this residue (34). PLK1 protein 

expression is cell cycle dependent. PLK1 expression is elevated in actively proliferating 

cells and is significantly different among different stages of the cell cycle (38). PLK1 

usually gathers in the centrosome of the spindle poles during the early period of mitosis 

and then migrates gradually from spindle poles to the equatorial plate after entering into 

middle and late period of mitosis. At the end of mitosis, PLK1 gathers in the midbody. 

Therefore, PLK1 expression is barely detectable in G1 and S phase, gradually increases 

in G2 phase, and peaks in M phase (38). PLK1 regulation is also carried out by 

ubiquitination and proteosomal degradation by APC/C which is the ubiquitin ligase for 

PLK1 at mitotic exit (39). 
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7. Role of PLK1 in Cell Cycle Regulation 

The PLK family of serine/threonine kinases are responsible for the control of 

mitotic regulatory networks (34, 38). Some of the cell cycle processes controlled by PLK1 

include mitotic entry (40-42), centrosome maturation (43), chromosome segregation (42, 

44, 45) and cytokinesis (46-48). At the time of cell division, PLK1 localizes to the 

cytoplasm and centrosomes in interphase and concentrates to the kinetochores and 

cytokinetic bridge (49). PLK1 when localized at the centromere contributes to ensure 

accurate chromosome alignment at metaphase and prevents lagging chromosomes at 

anaphase (49). At the time of mitotic entry, PLK1 regulates the activity of CDK1/Cyclin 

B complex and promotes G2/M cell cycle phase transition. The CDK1/Cyclin B complex 

is kept inactive by an inhibitory phosphorylation of CDK1 at Thr 14 and Tyr 15 by WEE1 

and MYT1 kinases respectively, leading to the accumulation of Cyclin B1 during G2 

phase of cell cycle. During the onset of mitosis, PLK1 activates the CDK1/Cyclin B 

complex by two means: by the activating phosphorylation of CDC25 phosphatase (50) 

which is a positive regulator and the inhibitory phosphorylation of MYT1 and WEE1 

kinases which are the negative regulators (51) . In late mitosis, PLK1 regulates the activity 

of APC/C which an E3 ubiquitin ligase responsible for the timely degradation of various 

mitotic regulators. This is also important for the regulation of chromosome segregation, 

mitotic exit and a subsequent stable G1 phase (52).  

 

8. Role of PLK1 in DNA Damage Response 

When DNA damage occurs, cells are unable to proceed into mitosis until the DNA 

is repaired– a process termed the G2 DNA damage checkpoint (53). Inactivation of PLK1 

is a key mediator of this checkpoint.  This checkpoint is particularly pertinent for double 
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stranded breaks as the duplicated DNA can be used as a template for homologous 

recombination; this opportunity is lost after mitosis.  In response to the DNA damage, two 

kinases: ATM (ataxia talangectasia mutated) and ATR (ATM and RAD3-related) are 

activated. ATM and ATR phosphorylate Bora at Thr 501, causing it to be recognized by 

the E3 ubiquitin ligase for degradation (53). Once degraded, however, Bora cannot 

cooperate with Aurora A to facilitate the activation of PLK1 (53).The loss of PLK1 

activity results in CDK1 inactivation, resulting in a G2 arrest. Following DNA repair, Bora 

expression is restored and PLK1 is again activated, allowing for the mitotic entry and 

recovery of cell division.  The DNA damage response is distinct during mitosis.  

Phosphorylation of 53BP1 by CDK1 and PLK1 during mitosis impairs its function by 

inhibiting its ability to bind to ubiqutinated histone H2A (54).  In this way, inhibition of 

PLK1 might enhance DNA repair by non-homologous end joining  during mitosis (55). 

 

9. Effect of PLK1 Inhibition in Cancer 

PLK1 is overexpressed in many cancers such as lung, breast, kidney, head and 

neck carcinoma to name a few (56).  PLK1 is implicated the development of genomic 

instability and aberrant cell proliferation and survival associated with tumorigenesis (57). 

PLK1 is a potential therapeutic target for cancer. PLK1 knockdown decreases cancer cell 

survival, induces apoptosis, and increases sensitivity a number of drugs and has a little 

effect in normal cells (58-60). PLK1 inhibition by RNA interference in cancer cells in 

vitro resulted in mitotic arrest and subsequent apoptosis (61). Some studies have shown 

that tumors with p53 deficiency and/or RAS mutations as well as PLK1 overexpression 

are sensitive to PLK1 inhibitors (62, 63). PLK1 has also been shown to facilitate survival 
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in PTEN depleted prostate cancer cells as PLK1 overexpression is required for PTEN-

depleted cells to adapt to mitotic stress for survival (64).  

 

10. Effect of PLK1 Inhibition in NSCLC 

The 5-year survival rate of the patients with tumors with moderate expression of 

PLK1 was higher (52%) than those with a high level of PLK1 transcript (24%) in the 

tumors (65), thereby making PLK1 a potential target for NSCLC therapy. Also, activating 

mutations in KRAS are common in NSCLC (66) and previous studies have shown that 

RAS mutant cancer cells are sensitive to PLK1 inhibitors (62, 63). Based on a study 

published by our lab, we did not observe a robust, consistent correlation between KRAS 

mutation and PLK1 inhibitor sensitivity in vitro (67).  

A study showed that short hairpin RNAs (shRNAs) against PLK1 reduced the 

growth of A549 NSCLC cells in mouse tumor xenografts and suppressed tumor PLK1 

expression (68). Another study showed that PLK1 inhibition using systemic treatment 

with siRNA inhibited the growth of A549 cells in the mouse liver, thereby showing a role 

for PLK1 in lung cancer liver metastasis (69). Previous studies in our lab showed that 

mesenchymal NSCLC cells were more sensitive to PLK1 inhibition in comparison to 

epithelial NSCLC cells based on differential E-Cadherin mRNA and protein expression 

as well as the 76-gene EMT score developed by the department (67, 70).   

Studies have also shown that PLK1 inhibition is effective in NSCLC with acquired 

EGFR-TKI resistance (71) as well as NSCLC with acquired EGFR-TKI resistance that 

had undergone EMT (72). 
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11. PLK1 Inhibitors in Clinical Development 

Two main types of PLK1 inhibitors have been developed: ATP-competitive kinase 

inhibitors and PBD inhibitors. The ATP-competitive inhibitors target the deep groove in 

the ATP binding serine-threonine kinase domain (73). One of the main drawbacks of the 

ATP-competitive inhibitors is the development of resistance due to high conservation of 

ATP binding domains of different kinases and frequent mutations in the ATP binding sites 

(74). Also, one of the major problems associated with the currently available ATP-

competitive inhibitors is their low degree of selectivity against other kinases, and their 

toxicity could be partly due to their interference with other kinases (75). In order to 

develop more specific inhibitors against PLK1, anti-PLK1 agents that target the PBD 

domain are currently being tested pre-clinically and have demonstrated improved 

specificity towards PLK1 (76). The PBD inhibitors are unique to polo-like kinases and are 

therefore much more specific than inhibitors that target the ATP-binding domain (77).  

The drug used in this study is Volasertib or BI6727, an ATP-competitive PLK1 

inhibitor derived from a dihydropteridinone lead structure (78). Volasertib potently 

inhibits PLK1 and PLK2 with IC50 values of 0.87 and 5 nM, respectively, and shows 

relatively lower potency on PLK3 (56 nM) but does not inhibit PLK4 (>20μM) (78). 

Volasertib inhibits PLK1 which leads to a disruption of the mitotic spindle assembly 

resulting in a distinct mitotic arrest phenotype (known as ‘Polo arrest’) in 

prometaphase, accumulation of phospho-histone H3 and formation of aberrant 

monopolar mitotic spindles followed by apoptosis (78-80). All the PLK1 inhibitors in 

clinical development have been summarized in the table below. 
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Table 1: PLK1 inhibitors in clinical development 

Inhibitor Status Company or Lab Class 

BI2536 Experimental Boehringer Ingelheim 

ATP-

competitive 

GSK461364 Experimental GlaxoSmithKline 

ATP-

competitive 

Volasertib 

(BI6727) 

Experimental Boehringer Ingelheim 

ATP-

competitive 

ZK-

thiazolidinone 

Experimental Bayer Schering Pharmacy 

ATP-

competitive 

Rigosertib 

(ON01910) 

Experimental Onconova Therapeutics Inc. 

ATP-

competitive 

Cyclapolin 9 Experimental Cyclacel 

ATP-

competitive 

GW 843682X Experimental GlaxoSmithKline 

ATP-

competitive 

NMS-937 Experimental Nerviano Medical Sciences 

ATP-

competitive 

SBE 13 

hydrochloride 

Experimental Institute of Organic Chemistry & 

Chemical Biology, Goethe-University 

ATP-

competitive 
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TAK960 

hydrochloride 

Experimental Takeda Pharmaceutical Company 

ATP-

competitive 

Poloxin Experimental Max Planck Institute of Biochemistry 

and Munich Center for Integrated 

Protein Science 

Non-ATP-

competitive 

Poloxin-2 Experimental Institute of Organic Chemistry, 

University of Leipzig 

Non–ATP-

competitive 

RO3280 Experimental Hoffmann-La Roche 

Non–ATP-

competitive 

 

12. Epithelial-to-Mesenchymal Transition (EMT) and Cancer 

Epithelial-to-mesenchymal transition (EMT) is a process that involves the 

transdifferentiation of epithelial cells into motile mesenchymal cells (81). The EMT 

phenomenon plays a very important role in tumor progression and metastasis (82). EMT 

results in the loss of cell–cell contacts and the reorganization of the intracellular 

cytoskeleton thereby leading to increased cell migration and invasion (83). EMT allows 

cancer cells to invade the stroma and vasculature, thereby leading to tumor dissemination 

and metastases (84). More importantly, EMT enables cancer cells to avoid apoptosis, 

anoikis, and oncogene addiction (85). EMT can be easily recognized in the molecular level 

by the reduced expression of epithelial markers such as E-Cadherin and β-Catenin, and 

the elevated expression of mesenchymal markers such as N-Cadherin and vimentin. One 

of the well studied proteins that induce EMT are the two-handed δEF1 family transcription 

factors ZEB1 and ZEB2 (86-88). These transcription factors induce EMT by the 
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suppression of E-Cadherin and other epithelial differentiation genes by binding to the E-

boxes of their promoters (89). MicroRNAs (miRs) are small non-coding RNAs that 

control development and maintenance by pleiotropic regulation of cellular functions 

(90). The microRNA-200 family are expressed in epithelial cells (91). In normal as well 

as cancer epithelial cells, the miR-200 family exists in a double negative feedback loop 

with the ZEB1 and ZEB2 transcriptional repressors (92-95). The ZEB/miR-200 balance 

is regulated by inducers of EMT such as TGFβ, which leads to the loss of miR -200 

expression and a shift to a mesenchymal phenotype (93). 

 A study carried in prostate cancer cells showed that forced overexpression of PLK1 

in prostate epithelial cells led to the downregulation of epithelial markers E-cadherin and 

cytokeratin 19 and upregulation of mesenchymal markers N-cadherin, vimentin, 

fibronectin, and SM22 (96). The studies carried out in our lab showed that mesenchymal 

NSCLC cell lines were sensitive while epithelial NSCLC cell lines were resistant to 

PLK1-inhibition induced apoptosis (67). The cells were defined as epithelial or 

mesenchymal based on a 76-gene EMT score developed by the department (70). 
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13. Hypothesis and Specific Aims 

NSCLC cell lines have diverse sensitivities to PLK1 inhibition, which is consistent 

with the results of clinical trials of PLK1 inhibitors.  However, predictive biomarkers have 

not been used to select patients likely to respond to PLK1 inhibitors, and the mechanisms 

of sensitivity and resistance to PLK1 inhibitors have not been elucidated, making these 

unknowns a major gap in knowledge.  The main goal of the project is to test the hypothesis 

that PLK1 inhibition will cause apoptosis in mesenchymal but not epithelial NSCLC in 

vivo.  Furthermore, to identify the mechanisms of PLK1 inhibitor-induced sensitivity, we 

will test the role of molecules that are differentially expressed or modulated in sensitive 

and resistant NSCLC cell lines. 

Aim 1: To test the hypothesis that PLK1 inhibition will cause apoptosis in 

mesenchymal NSCLC but not epithelial NSCLC in vivo. 

1(a). To test the effects of PLK1 inhibition in epithelial and mesenchymal patient 

derived xenograft (PDX) models. 

A minimum of 14 PDX models is required to have 80% power to detect a spearman 

correlation of 0.7 between the tumor size and E-cadherin score using a 2-sided test at a 

significance level of 0.05. For each model, tumors will be implanted in 25 mice and will 

be monitored daily. Once the tumor reaches a volume of ~150 mm3, the mice will be 

treated with 30 mg/kg of the PLK1 inhibitor Volasertib or vehicle. Tissue for RNA and 

protein analysis will be obtained from the PDX tumors to study gene and protein 

expression. The EMT score, protein and gene expression of E-Cadherin, E-Cadherin 

score, markers of apoptosis, proliferation and target inhibition will be measured. 

1(b). To determine if manipulation of EMT will affect PLK1 inhibition-induced 

apoptosis in an orthotopic, immunocompetent NSCLC mouse model. 



18 

 

Cell lines derived from a KrasLA1/+p53R172HΔG/+ (KP) genetically engineered mouse 

model that develop advanced lung adenocarcinomas have EMT properties that are 

manipulable by ectopic expression of ZEB1 or miR-200a/b. The stable 393P cell lines that 

express ZEB1 or the 344SQ cell lines that express miR200 will be injected into syngeneic, 

immunocompetent mice (6-8 week old 129S/V male mice). The induction of miR200 or 

ZEB1 expression will be done through doxycycline dissolved in water. Following 

injection, mice will be randomized into two groups to receive vehicle (control) or 30 

mg/kg Volasertib weekly for 4 weeks. The mice lungs will be imaged by micro-CT once 

a week to measure tumor volume. The lungs of the mice will be collected at the end of the 

experiment for analysis. 

Aim 2: To develop a method for accurate metastatic lung tumor burden calculation 

from CT in an orthotopic mouse model. 

To develop a novel method for accurate lung tumor burden calculation from CT in 

an orthotopic mouse model. The rationale for the development of this method is because 

there is no respiratory gating in the CT, no contrast agents are used to identify tumors thus 

making it difficult to distinguish between tumors and blood vessels and metastatic tumors 

(such as the tumors in the thoracic cavity) are not taken into consideration while 

calculating tumor burden.     

Hypothesis: Mass of Thoracic Cavity does not change over time and observed changes are 

due to tumor burden. 

Aim 3:  To test the hypothesis that molecules that are differentially expressed at 

baseline or differentially modulated following PLK1 inhibition mediate PLK1 

inhibitor-induced apoptosis. 
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Hypothesis: Higher β-Catenin expression in epithelial cells mediates PLK1 inhibition-

induced apoptosis in NSCLC by EMT and interacting with PLK1 in the centrosome. 

SMAD4 mediates sensitivity of mesenchymal NSCLC to PLK1 inhibition-induced 

apoptosis by activation of TGF-β Pathway. Differential modulation of PDK1 following 

PLK1 inhibition mediates PLK1 inhibitor-induced apoptosis by regulating downstream 

survival signaling pathways.  
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Chapter 2: Materials & Methods 
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1. Reagents and Antibodies 

The PLK1 inhibitor Volasertib was purchased from Selleck Chemicals (Houston, 

Texas) and a stock solution of 10mmol/L was prepared in DMSO. The non-targeting 

control, CTNNB1 and SMAD4 SMARTpool siRNAs were purchased from Dharmacon 

(GE Lifesciences) and the sequences are as outlined in Table 1 below: 

 

Table 2: List of siRNA used in the study 

 

GENE TARGET SEQUENCE 

Non-targeting Control 

1. UGGUUUACAUGUCGACUAA 

2. UGGUUUACAUGUUGUGUGA 

3. UGGUUUACAUGUUUUCUGA 

4. UGGUUUACAUGUUUUCCUA 

CTNNB1 

1. GAUCCUAGCUAUCGUUCUU 

2. UAAUGAGGACCUAUACUUA 

3. GCGUUUGGCUGAACCAUCA 

4. GGUACGAGCUGCUAUGUUC 

SMAD4 

1. GUGUGCAGUUGGAAUGUAA 

2. GUACAGAGUUACUACUUAG 

3. GAGUAUUGGUGUUCCAUUG 

4. GUAAUGCUCCAUCAAGUAU  

 

 

PDK1-EGFP overexpression plasmid was kindly provided by Dr. Gordon Mills. The 

antibodies that were used in the study were diluted in 5% BSA in TBST with 0.05% 

NaN3 and are outlined in the table below: 
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Table 3: Description of antibodies used in the study 

 

ANTIBODY COMPANY 
HOST 

SPECIES 
CATALOG NO. DILUTION 

PLK1 
Cell Signaling 

Technologies 
Rabbit 4513 1:1000 

p-PLK1 T210 
Cell Signaling 

Technologies 
Rabbit 9062 1:1000 

PARP 
Cell Signaling 

Technologies 
Rabbit 9532 1:1000 

Cleaved PARP 
Cell Signaling 

Technologies 
Rabbit 5625 1:1000 

Caspase 3 
Cell Signaling 

Technologies 
Rabbit 9665 1:1000 

p-Histone H3 (S10) 
Cell Signaling 

Technologies 
Rabbit 3377 1:1000 

TCTP 
Cell Signaling 

Technologies 
Rabbit 5128 1:1000 

p-TCTP (S46) 
Cell Signaling 

Technologies 
Rabbit 5251 1:1000 

NPM 
Cell Signaling 

Technologies 
Rabbit 3542 1:1000 

p-NPM (S4) 
Cell Signaling 

Technologies 
Rabbit 3520 1:1000 

γ-H2AX (S139) 
Cell Signaling 

Technologies 
Rabbit 9718 1:1000 

E-Cadherin 
Cell Signaling 

Technologies 
Rabbit 3195 1:1000 

Vimentin 
Cell Signaling 

Technologies 
Rabbit 5741 1:1000 

β-Catenin 
Cell Signaling 

Technologies 
Rabbit 8480 1:1000 
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SMAD4 
Cell Signaling 

Technologies 
Rabbit 38454 1:1000 

GAPDH 
Cell Signaling 

Technologies 
Rabbit 5174 1:10000 

Wee1 
Cell Signaling 

Technologies 
Rabbit 13084 1:1000 

p-Wee1 (S642) 
Cell Signaling 

Technologies 
Rabbit 4910 1:1000 

PDK1 
Cell Signaling 

Technologies 
Rabbit 13037 1:1000 

p-PDK1 (S241) 
Cell Signaling 

Technologies 
Rabbit 3438 1:1000 

CMYC 
Cell Signaling 

Technologies 
Rabbit 5605 1:1000 

p-CMYC (S62) 
Cell Signaling 

Technologies 
Rabbit 13748 1:1000 

AKT 
Cell Signaling 

Technologies 
Rabbit 4691 1:1000 

p-AKT (S473) 
Cell Signaling 

Technologies 
Rabbit 4060 1:1000 

4E-BP1 
Cell Signaling 

Technologies 
Rabbit 9452 1:1000 

p-4B-BP1 (S65) 
Cell Signaling 

Technologies 
Rabbit 13443 1:1000 

ZEB1 
Cell Signaling 

Technologies 
Rabbit 3396 1:1000 

PCNA 
Cell Signaling 

Technologies 
Mouse 2586 1:1500 

β-Actin 
Cell Signaling 

Technologies 
Mouse 3700 1:10000 
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2. Cell Culture 

Human NSCLC cell lines were obtained, maintained and genotyped by Short 

Tandem Repeat (STR) profiling as described previously (67). Murine 344SQ cell lines 

with an inducible miR200 expression was kindly provided by Dr. Don Gibbons’ lab. 

Murine 393P cell line with constitutively active ZEB1 was kindly provided by Dr. 

Jonathan Kurie’s lab. The cells were routinely tested for mycoplasma contamination using 

a Mycoplasma detection kit (Lonza). The cell lines were cultured in RPMI-1640 media 

containing 10% Fetal Bovine Serum (FBS) and 2% Penicillin/Streptomycin. The cells 

were maintained in a humidified atmosphere with 5% CO2 at 37°C. 

 

3. Cell Viability Assay 

CellTiter Glo (Promega) luminescent assay was used as per the manufacturer’s 

specifications to determine cell viability based on intracellular ATP levels. In brief, 800 

cells were plated in each well in a 384-well plate. The cells were incubated with 7 different 

concentrations (half-fold serial dilution) of the PLK1 inhibitor Volasertib, the highest 

being 500nM for 72h. The luminescence measured is proportional to the amount of 

intracellular ATP and is an index of cell number. 

 

4. Apoptosis Assay 

TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining 

(APO-BrdU kit; BD Biosciences) was used to measure apoptosis. In general, DNA breaks 

and total cellular DNA is labelled to detect apoptotic cells based on the manufacturer’s 

protocol and the data was generated using a flow cytometer (Gallios, Beckman Coulter). 

The data was analyzed using Kaluza (Beckman Coulter).  

 

5. Western Blot 

Sub-confluent NSCLC cell lines were lysed with 1X Cell Lysis Buffer containing 

20mM Tris-HCl (pH 7.5), 150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton, 

2.5mM sodium pyrophosphate, 1mM β-glycerophosphate, 1mM Na3VO4 and 1 μg/ml 
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leupeptin (Cell Signaling Technology) on ice, The lysed cells were collected and 

centrifuged at 14,000 x g for 15 minutes and the supernatant lysate was collected. The 

protein concentration of the lysates was measured using the Pierce bicinchonic acid (BCA) 

protein assay kit (ThermoFisher Scientific). Lysates of 1μg/μl concentration was prepared 

by mixing with Laemmli Sample Buffer (Bio-Rad Laboratories) and water. Equal amounts 

of proteins from the NSCLC lysates were separated using 4-20% SDS-PAGE gels and 

were immunoblotted with primary antibodies overnight. The proteins were detected with 

horseradish peroxidase-conjugated secondary antibodies and enhanced chemiluminescent 

substrate (ThermoFisher Scientific). The densitometric quantification of the protein 

normalized to β-Actin was carried out using ImageJ (NIH, Bethesda).  

 

6. Transfection 

For knockdown assays, 1.5 x 106 NSCLC cells were plated in 10cm 24 hours prior 

to transfection. The following day, Lipofectamine RNAiMAX transfection reagent 

(Invitrogen) was mixed in 1X OPTI-MEM Media (Gibco). In a separate tube, the 

SMARTpool siRNA which comprises of a predesigned set of 4 siRNA for the respective 

targets was mixed in 1X OPTI-MEM Media. The siRNA mixture was added to the 

Lipofectamine RNAiMAX mixture and incubated in room temperature for 5 minutes. This 

siRNA-liposomal mixture was then added to the cells and were incubated at 37°C for 72 

hours. Protein lysates were then collected at the aforementioned time point and analyzed 

via western blot. 

For stable transfection of the PDK1-EGFP plasmid, 1.5 x 106 cells were plated 24 

hours prior to transfection. 5μg of plasmid was transfected with the help of Liofectamine 

3000 transfection reagent (Invitrogen) in OPTI-MEM Media (Gibco) and the cells were 

incubated at 37°C for 48 hours. Fresh RPMI1640 medium with 10% FBS was added to 
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the NSCLC cell culture plates, and the NSCLC cells were allowed to recover for 24 hours. 

Transfected NSCLC cells were selected using 700μg/ml Geneticin. 

 

7. Subcutaneous Tumor Implantation for PDX Models 

All animal research was conducted in accordance with The University of Texas 

MD Anderson Cancer Center’s Institutional Animal Care and Use Committee. PDX 

tumors that were growing logarithmically were implanted into the right flank of female 

nude mice (Envigo Harlan Laboratories, Indianapolis). The tumors were measured twice 

a week with the help of Vernier calipers. Tumor volume was calculated by using the 

formula (length x width2)/2. Once the tumor volumes reached ~150mm3, the mice were 

randomized into two groups, control and Volasertib. The mice were treated with 30mg/kg 

of vehicle control or Volasertib intravenously (IV tail vein injection) once a week up to 4 

weeks. The mice were then euthanized and the tumors were excised. Protein was extracted 

from the tumor in order to check for target inhibition, apoptosis and proliferation. Multiple 

row t-tests was used in order to see the differences in tumor volume between the two 

groups over time. 

 

8. Orthotopic Lung Injection in immunocompetent mouse models 

All mice were manipulated and maintained conducted in accordance to UT MD 

Anderson’s Office of Research Administration and IACUC committee guidelines. 129/sv 

male mice at 4-6 weeks of age were purchased from Charles River Laboratory 

(Massachusetts). The mice were of 8 weeks of age and at the start of the experiment.  CT 

imaging of the lungs was carried out to serve as baseline study. The mice were fully 

anesthetized by 2-4% isofluorane inhalation throughout the entire procedure. 
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The mice were placed in a right lateral decubitus position. The lower edge of the 

right rib cage was identified by palpation and the area trimmed with a hair clipper. After 

cleaning with 70% ethanol solution, the area was shaved with a razor blade. Finally, the 

incision site was sterilized with Betadine solution. A 1-cm incision in the skin was be 

made along the lower edge of the rib cage. The cephalic edge of the skin was retracted 

with forceps to reveal the underlying subcutaneous tissue and fat. A second incision was 

made through the fatty tissue to reveal the rib cage and the thoracic cavity. The respiring 

lung was identified as a pale structure under the rib cage, whereas the more caudal spleen 

was identified as a dark read organ. 

Tumor cells (200,000 cells in 50 μl) were injected into the lower third of the left 

lung using an insulin syringe. The left lung was checked for an absence of intra-thoracic 

hemorrhage or collapse prior to closing the incision. Using forceps, the opposing skin was 

held together and stapled with an Auto-clip stapler using two to three 9-mm staples.  

The mice were given 0.05-0.10 mg/kg Buprenorphine analgesic following this 

procedure. The mice were kept warm under a heat lamp and monitored for recovery. The 

cage was returned to the rack when the mice were able to move on all four limbs. 

 

9. Endotracheal Intubation and CT Imaging 

The mice were placed in an inhalation anesthesia induction chamber (Isoflurane 

5% for induction, and 1.5% to 3% for maintenance).  When the mice were fully 

anesthetized, an endotracheal tube (22 gauge x 1 inch length) was placed using a BioLite 

mouse intubation system (Braintree Scientific). The mice were then placed onto a holder 

and moved to the CT system (Precision XRay Incorporated XRAD 225Cx). The CT 

parameters used were 60Kv 4mA and 3RPM.  The mice were mechanically ventilated at 

60BPM throughout the procedure and a 20 second breathe hold was applied during the 
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acquisition at 20cm/H20 (97). The pressure was monitored through an inline manometer. 

After the acquisition was complete, the mice were extubated, and recovered in a clean, 

warm cage until sternal. 

 

10. CT Image Analysis 

Tumor Mass from Mass of Thoracic Cavity  

The CT images were exported in Digital Imaging and Communications in 

Medicine (DICOM) format. The DICOM image sequence was uploaded in Raystation 

5.0.2 Research (Raysearch, Sweden). The lung volume with a constant threshold of -800 

to 0 was determined based on the lung region growing algorithm in order to remove bias. 

A Region of Interest (ROI) was drawn in the chest cavity from the base of the lung to the 

top of the trachea using the smart contour option of Raystation. Mass of the thoracic cavity 

(MTC) was calculated as a function of ROI Volume and CT Intensity. Tumor Mass was 

extrapolated by comparison with the MTC of the mice from the CT images at baseline.   

 

Sum of Cross-Product (SCP) Method 

The quantification of tumor burden by the manual cross-product analysis of micro 

CT images was carried out as previously described (98). The lung micro CT DICOM 

images were viewed in the coronal plane on Fiji (ImageJ) software (http://fiji.sc/Fiji). The 

tumors were visualized in the coronal plane and the largest cross-sectional plane of each 

tumor was identified. From this, the maximal tumor diameter (d1) and the largest 

perpendicular diameter (d2) was determined by placing a ruler on the screen. The total 

tumor burden was then calculated by the sum of cross products (SCP = ∑ (d1* d2)) of all 

tumors per animal. This method has been validated by ex vivo micro CT analysis (98).   

 

http://fiji.sc/Fiji
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Tumor & Vessel Volume (T&V) Method 

Tumor and vessel volume was calculated as previously described (99). In brief, the 

functional lung volume was calculated based on a region growing algorithm with a 

threshold value set -800 to 0 voxels chosen empirically based on visual inspection of a 

few mice on Raystation 5.0.2. the total chest space volume excluding the heart was 

calculated using the region growing algorithm and semi-automated contouring. The 

combined tumor and vasculature volume (T&V) was determined by subtracting the 

functional lung volume from total chest space volume (99). 

 

Ellipsoidal Tumor Volume Method 

The images were viewed on MicroView analysis + version 2.2 software (GE 

Healthcare). One to five tumors were identified and selected in each mouse on the axial 

view. The three greatest diameters of each tumor were measured on the axial, coronal and 

sagittal views (referred to as x, y, and z). These values were then used to calculate the 

volume of the tumor using the formula of an ellipsoid ([4/3][x/2][y/2][z/2]) (100, 101). 

 

Aerated Lung Volume Method 

Functional lung volume measurement is a fully automated method that utilized the 

gray-level, morphological and texture features to segment the aerated lung region using a 

region-growing algorithm (102). Measurement of the functional lung volume is an inverse 

surrogate measure of tumor burden (102). The measurement of aerated lung volume was 

done at the last time point of the studies due to lack of respiratory gating facilities.  
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11. Statistical Analysis 

Statistical analysis was carried out using GraphPad Prism 7 software (GraphPad, 

USA). Multiple row t-tests was used to compare changes in tumor volume between control 

and Volasertib treated mice. One-way anova and Tukey’s multiple comparison test was 

used to compare the changes in the mass of thoracic cavity of the disease-free mice. 

Pearson correlation and linear regression was carried out to compute R value for the 

correlation graphs. Unpaired t-tests was used to compare changes in protein expression 

between the NSCLC cell lines. 
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Chapter 3: Results 
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1. EMT markers correlate with PLK1 inhibition in NSCLC cell lines in an independent 

dataset 

In order to identify novel biomarkers of response to PLK1 inhibition, reverse phase 

protein array (RPPA) protein expression data was downloaded from MD Anderson Cell 

Lines Project (MCLP) database (http://tcpaportal.org/mclp/#/) and PLK1 inhibitor 

sensitivity data for BI2536, GSK461364, BRD-K70511574 and GW-843682X were 

downloaded from The Cancer Therapeutics Response Portal V2 (Broad Institute, 

https://portals.broadinstitute.org/ctrp/) for  64-71 NSCLC cell lines (71 for BI2536, 69 for 

GSK461643, 68 for BRD-K70511574 and 64 for GW843682X). Spearman Correlation 

was applied to identify the correlation between drug sensitivity and protein expression 

using R package. Thirty three proteins correlated significantly with sensitivity to two or 

more PLK1 inhibitors (Figure 3). As seen in our previous study, E-cadherin (p<0.001, 

r>0.3), and β-Catenin (p<0.001, r>0.3) protein expression was higher and Snail (p<0.01, 

r>-0.3) and Twist (p>0.05, r<-0.3) protein expression was lower in the NSCLC cell lines 

resistant to the PLK1 inhibitors (103). 

 

 

 

 

 

 

 

 

 

http://tcpaportal.org/mclp/#/
https://portals.broadinstitute.org/ctrp/
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Figure 3: EMT markers correlate with PLK1 inhibition in a panel of NSCLC cell 

lines in an independent dataset. 

A: Dot plot showing correlation between PLK1 inhibitors (BI2536, GSK461364, BRD-

K70511574 and GW-843682X) sensitivity from CTRPv2 and RPPA data from MCLP 

(104). 

B: Correlations of E-Cadherin, β-Catenin, and Snail with area under the curve (AUC) of 

GSK461364 and BI2536 respectively. 
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2. Mesenchymal NSCLC tumors are more sensitive in comparison to epithelial NSCLC 

tumors to PLK1 inhibition induced apoptosis in patient-derived xenograft (PDX) 

mouse models 

In order to test the hypothesis that mesenchymal NSCLC tumors are more sensitive 

than epithelial NSCLC tumors to PLK1 inhibition induced apoptosis in vivo, 13, 29 or 84 

PDX models are required to have 80% power to detect Spearman correlations of 0.7, 0.5 

or 0.3 between the tumor size ratio and E-Cadherin score using a 2-sided t-test and a null 

hypothesis correlation of 0 at a significance level of 0.5. The PDX tumors were obtained 

from our lab and Dr. Bingliang Fang’s lab (23) and their EMT status was determined by 

E-Cadherin and vimentin protein expression. The tumors with high E-Cadherin protein 

expression were considered epithelial and those with high vimentin expression were 

considered mesenchymal PDX models (Figure 4). We implanted tumors of four different 

PDX models HLC4, TC402, TC424 and TC370 that have diverse EMT status and the mice 

were randomized into two groups, vehicle control and Volasertib. The tumors were 

measured twice a week for 4 weeks after which the tumors were resected.  

In HLC4 PDX model which has an intermediate EMT phenotype based on 

membrane E-Cadherin score which is calculated based on the intensity and completeness 

of membrane E-Cadherin immunostaining (105) (E-Cadherin score 67.4), there was no 

significant change in mean tumor volume at the end of the experiment between the vehicle 

and Volasertib treated mice (p=0.0947) based on Mann-Whitney t-test. Based on multiple 

row t-tests in order to compare tumor volumes between the groups over time, a significant 

decrease in tumor volume was observed from day 6 up to day 24 between vehicle and 

Volasertib treated mice (p<0.05) (Figure 5).  Two out of 10 mice in the Volasertib treated 

group had tumor regression and 8/10 grew on therapy (Figure 5). There was no change in 
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the levels of apoptosis or proliferation based on cleaved PARP and PCNA protein 

expression in the tumor tissues as seen in immunoblotting (Figure 6). PLK1 inhibition was 

demonstrated by the increase in the levels of phosphorylated histone H3 (Ser 10). 

In the epithelial TC402 PDX model, there was a significant decrease in tumor 

volume between the vehicle and Volasertib treated mice (p=0.012) at the end of the 

experiment based on Mann-Whitney t-test. Based on multiple row t-tests to compare 

tumor volumes between the groups over time, a significant difference in tumor volume 

was observed from day 6 until the end of experiment, i.e., day 34 (p<0.05) (Figure 5). Two 

out of 10 mice in the Volasertib treated group had tumor regression and 8/10 tumors grew 

on therapy (Figure 5). There was an increase in the level of phospho histone H3 (S10) in 

the Volasertib treated tumors. There was no significant difference in the levels of cleaved 

PARP or PCNA between the vehicle and Volasertib treated tumors (Figure 6).  

In the mesenchymal TC424 PDX model, there was a significant decrease in tumor 

volume between the vehicle and Volasertib treated mice (p<0.0001) based on Mann-

Whitney t-test. Based on multiple row t-tests to compare tumor volumes between the 

groups over time, a significant difference in tumor volume was observed from day 3 until 

the end of experiment, i.e., day 39 (p<0.05) (Figure 5). Eight out of 10 mice in the 

Volasertib treated group had tumor regression and 2/10 treated tumors grew on therapy 

(Figure 5). There was an increase in the level of phospho histone H3 (S10) in the 

Volasertib treated tumors. There was no significant difference in the levels of cleaved 

PARP or PCNA between the vehicle and Volasertib treated tumors (Figure 6).  

In the mesenchymal TC370 PDX model, there was a significant decrease in tumor 

volume between the control and Volasertib treated mice (p<0.0001) based on Mann-

Whitney t-test. Based on multiple row t-tests to compare tumor volumes between the 
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groups over time, a significant difference in tumor volume was observed from day 3 until 

the end of experiment, i.e. day 34 (p<0.05) (Figure 5). Six out of 10 mice in the Volasertib 

treated group had tumor regression and 4/10 treated tumors grew on therapy (Figure 5). 

There was no change in the level of phospho histone H3 (S10) between the vehicle and 

Volasertib treated tumors. There was no significant difference in the levels of cleaved 

PARP or PCNA between the control and Volasertib treated tumors (Figure 6).  

Together, these data demonstrate that tumor regression is observed in the 

mesenchymal TC424 and TC370 PDX models after PLK1 inhibition while slower tumor 

growth or growth arrest is observed in the intermediate HLC4 and epithelial TC402 PDX 

models (Figure 5). It also suggests that lung tumor heterogeneity might be playing a role 

in mediating response to PLK1 inhibitors.  
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Figure 4: PDX tumors have diverse EMT phenotypes 

The epithelial or mesenchymal phenotype of the PDX tumors were determined based on 

E-Cadherin and vimentin protein expression as seen in the immunoblot (lower). The bar 

plot is a quantification of the protein expression (upper). Those tumors with higher E-

Cadherin expression are considered epithelial (as depicted in red text) while those that 

have higher vimentin expression are considered mesenchymal (as depicted in blue text). 

The PDX tumors that express both are considered intermediate (as depicted in black text). 
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Figure 5: Mesenchymal NSCLC PDX tumors are more sensitive to PLK1 inhibition 

induced apoptosis in comparison to epithelial NSCLC PDX tumors 

A: The HLC4 intermediate PDX tumor volumes of control and Volasertib treated mice 

over time are depicted in the left. A significant difference in tumor volume was observed 

from day 6 to day 24. The waterfall plot on the right depict the percentage change in tumor 

burden of each individual mouse at the end point. 

B:  The TC402 epithelial PDX tumor volumes of control and Volasertib treated mice over 

time are depicted in the left. A significant difference in tumor volume was observed from 

day 6 to day 34. The waterfall plot on the right depict the percentage change in tumor 

burden of each individual mouse at the end point. 

C: The TC424 mesenchymal PDX tumor volumes of control and Volasertib treated mice 

over time are depicted in the left. A significant difference in tumor volume was observed 

from day 6 to day 39. The waterfall plot on the right depict the percentage change in tumor 

burden of each individual mouse at the end point. 

D: The TC370 mesenchymal PDX tumor volumes of control and Volasertib treated mice 

over time are depicted in the left. A significant difference in tumor volume was observed 

from day 6 to day 42. The waterfall plot on the right depict the percentage change in tumor 

burden of each individual mouse at the end point. 

E: The overall percent change in tumor volume between the vehicle and Volasertib treated 

mice at the end of the experiment for all the PDX models is depicted. Each data point 

represents one mouse in the respective group. 
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Figure 6: Western blot analysis of PDX tumors for markers of apoptosis, 

proliferation and target inhibition 

Western blot analysis of PDX tumors collected at the end of the experiment was carried 

out to measure protein expression for markers of apoptosis (cleaved PARP), proliferation 

(PCNA) and target inhibition (pHH3 (S10)). The graphs on the right are quantification of 

the markers relative to control.  
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3. Mesenchymal PDX models demonstrate improved survival and sustained tumor 

growth inhibition after cessation of PLK1 inhibition treatment 

In order to assess the potential of PLK1 inhibition to result in sustained tumor 

suppression, 5 mice in both vehicle and Volasertib treated groups of TC424 and TC370 

mesenchymal PDXs were monitored for up to 100 days after the 4-week Volasertib 

treatment ceased. Tumors were measured once a week up to day 100 after which the mice 

were monitored for survival analysis.    

Volasertib treatment was stopped at day 41 after which tumors were measured 

once a week for 100-103 days. Sustained tumor growth inhibition was observed in the 

Volasertib treated mice while the tumors continued to grow in the vehicle-treated mice 

(Figure 7). A significant difference in survival was observed between the two groups in 

both TC424 (p=0.004) and TC370 (p=0.012). The control mice were euthanized within 

108 (TC424) to 140 (TC370) days due to tumor burden while the Volasertib mice were 

alive up to day 150 (TC424) to 140 (TC370) (Figure 7). 
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Figure 7: Sustained tumor growth inhibition is observed in TC424 and TC370 

Mesenchymal PDX models after cessation of Volasertib treatment 

The graphs on the left depict tumor volume over time (up to day 101 or 103) after cessation 

of Volasertib treatment. The mice were then monitored for survival. A significant 

difference in survival between vehicle and Volasertib treated mice was observed.  
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4. Expression of EMT markers are heterogeneous in PDX tumors 

The PDX tumors have diverse EMT expression. The EMT status of the PDX 

tumors were validated at the end of the experiment. Two out of 4 mice in HLC4 PDX 

model have a high expression of E-cadherin in comparison to Vimentin (Figure 6). Based 

on the overall E-Cadherin and Vimentin expression, HLC4 has an intermediate phenotype. 

In TC402 PDX model, the 4 mice have high E-Cadherin expression in comparison to 

vimentin protein expression and thus has an epithelial phenotype. Overall, TC424 and 

TC370 have high vimentin expression in comparison to E-Cadherin and is considered to 

have a mesenchymal phenotype. Interestingly, there are some mice in each PDX model 

that have varying expressions of E-Cadherin and Vimentin (Figure 8). The quantification 

of E-Cadherin and vimentin protein in the different PDX models is depicted in Figure 8 

The H&E stains of the PDX tumors also depicts heterogeneous populations of tumor cells 

(Figure 8).  

  



48 

 

A 

 



49 

 

B 

  



50 

 

Figure 8: Expression of EMT markers are heterogeneous in PDX tumors 

A: Quantification of E-Cadherin and vimentin expression in the PDX tumors shows that 

HLC4 and TC402 have a more epithelial phenotype with higher E-Cadherin expression in 

comparison to vimentin expression.  

B: The H&E images of the PDX tumors in the vehicle and Volasertib-treated mice depict 

the heterogeneous population of cells present in the lung tumors. 
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5. Epithelial-to-mesenchymal transition by expression of ZEB1 leads to increase in 

sensitivity to PLK1 inhibition induced apoptosis in an orthotopic, syngeneic NSCLC 

mouse model 

To test the hypothesis that PLK1 inhibition will cause apoptosis in mesenchymal 

NSCLC but not epithelial NSCLC in vivo, we used syngeneic murine cell lines derived 

from a KP GEMM in which EMT properties are manipulable by the ectopic expression of 

miR200 a/b and ZEB1 (106).  

393P cells transfected with vector alone (epithelial) or ZEB1 (mesenchymal) were 

injected into 55 mice with 5 mice serving as negative control, i.e., mice with no cancer 

cells injected. CT imaging was carried out at baseline and once a week for 4 weeks. Pilot 

experiments demonstrated that mice developed tumors by day 10.  The two groups of mice 

(vector, ZEB1) were each randomized into 2 groups at day 10 (Volasertib, vehicle).  This 

design resulted in 4 groups: 393P vector + vehicle, 393P vector + Volasertib, 393P ZEB1 

+ vehicle and 393P ZEB1 + Volasertib. Each group consisted of 9-10 mice. The mice were 

treated with vehicle or 30mg/kg of Volasertib by IP injections once a week for 4 weeks. 

The mice were euthanized at the end of the experiment and the lungs were collected. 

In the epithelial 393P vector model, Volasertib led to a decrease in tumor mass 

(method described in detail below) on day 31 but the change was not statistically 

significant (p=0.08) using Mann-Whitney t-test statistical method. The 393P cells with 

ZEB1 overexpression were slower growing in vivo in comparison to the 393P Vector cells. 

We observed a significant decrease in tumor mass in the 393P ZEB1 mice treated with 

Volasertib in comparison to the 393P ZEB1 vehicle control mice (p=0.011) as determined 

by one way anova (Figure 9A, C). In the 393P vector mice treated with Volasertib, 3/10 

tumors regressed while 7/10 tumors grew on therapy. In the 393P ZEB1 mice treated with 
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Volasertib, 7/10 tumors regressed and 3/10 tumors grew on therapy. The overall percent 

change in tumor mass at day 31 in the four groups is depicted in Figure 9B which 

demonstrates that tumor regression was observed in the mesenchymal 393P ZEB1 mice 

treated with Volasertib in comparison to the 393P Vector group where growth arrest of 

tumors was observed. Representative CT images as well as 3D representation of changes 

in tumor mass in all the four groups is also depicted (Figure 9E). The results are 

recapitulated in the H&E staining. It can be seen that the 393P vector mice treated with 

Volasertib still have tumor cells present in the lung while the 393P ZEB1 mice treated 

with Volasertib has very few or no cancer cells present (Figure 9F). 
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Figure 9: Disease progression in 393P Vector and 393P ZEB1 orthotopic mouse 

model treated with vehicle control or Volasertib 

A: The figure represents the tumor mass of mice in the 4 over groups over time. The dotted 

line represents the start of Volasertib or vehicle control treatment, i.e. day 10. 

B: The bar graph represents the percent change in tumor mass in the 4 groups at day 31. 

Tumor regression was observed in the 393P ZEB1 mice treated with Volasertib. 

C: The graph depicts the percent change in tumor mass in the 393P vector group treated 

with vehicle control or Volasertib and the 393P ZEB1 group treated with vehicle control 

or Volasertib.  

D: The waterfall plot depicts the percent change in tumor mass at day 31. 

E: The figures on the left depict the CT images of the lung tumors in the four groups 393P 

Vector control, 393P Vector treated with Volasertib, 393P ZEB1 control and 393P ZEB1 

treated with Volasertib. Also shown is the 3D representation of the MTC calculated to 

measure tumor mass.  

F: The figure represents the H&E staining of lungs from negative control, 393P vector and 

393P ZEB1 mice treated with either vehicle or Volasertib. 
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6. Tumor mass calculated from the Mass of Thoracic Cavity (MTC) of mice with 

metastatic lung adenocarcinoma gives an accurate quantification of metastatic 

tumor burden. 

To address the need for a semi-automated, unbiased method for the in vivo 

quantitative assessment of lung tumor mass in mice, we used micro CT without respiratory 

gating to estimate the tumor mass. With a basic assumption that aerated MTC of the adult 

mice does not change over time unless due to disease progression, our imaging and 

analysis protocol permits comparison between different groups, enables evaluation over 

time in individual animals and provides specific information on the progress of metastases. 

Moreover, we confirm the validity and thereby extend the applicability of our lung tumor 

mass analysis in an orthotopic lung xenograft mouse model. 

In order to test the assumption that the MTC does not change over time unless 

there is change in tumor burden, five healthy mice with no tumors were imaged 

periodically at the same time as the mice with the metastatic lung adenocarcinoma (details 

below) and the MTC was calculated over time by drawing the region of interest (ROI) 

from the base of the lungs to the top of the trachea. There was no change in the MTC over 

time, and the percent change in the mass of thoracic cavity was ±0.2, p>0.9999 based on 

one-way anova and Tukey’s multiple comparison analysis (Figure 10). No changes in 

MTC were observed despite breath hold stage of the mice.  The summary of the anova 

results is outlined in Table 4.  
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Table 4: Tukey’s multiple comparison results for changes in MTC 

Tukey's multiple 

comparisons test 

Mean 

Diff. 

95.00% CI of 

diff. 

Significant? Adjusted P 

Value 

0 vs. 12 -0.5499 -763.4 to 762.3 No >0.9999 

0 vs. 19 -3.183 -766 to 759.6 No >0.9999 

0 vs. 26 -1.919 -764.7 to 760.9 No >0.9999 

0 vs. 33 -2.15 -765 to 760.7 No >0.9999 

12 vs. 19 -2.633 -765.4 to 760.2 No >0.9999 

12 vs. 26 -1.369 -764.2 to 761.4 No >0.9999 

12 vs. 33 -1.6 -764.4 to 761.2 No >0.9999 

19 vs. 26 1.264 -761.5 to 764.1 No >0.9999 

19 vs. 33 1.033 -761.8 to 763.8 No >0.9999 

26 vs. 33 -0.2314 -763 to 762.6 No >0.9999 

 

To test the proposed method we used the orthotopic KP GEMM model in which 

the mice were imaged at baseline and the MTC was calculated. The 344SQ mouse lung 

adenocarcinoma cells were then injected into the left lung of the mice via orthotopic 

injection. The mice were then serially imaged and the MTC was calculated on days 12, 

19, 26 and 33 to study the course of tumor development.  The tumor mass was then 

calculated by subtracting the MTC on the specific day from the MTC at baseline. The 

workflow is as depicted (Figure 11). The mice survived for an average of 3 weeks after 

the orthotopic injection of the metastatic mouse lung adenocarcinoma cells. The mice were 

euthanized when they were moribund or at the end of 4 weeks on day 33 immediately after 

the last micro-CT imaging session. The mice were necropsied, the number of primary and 

metastatic tumors were counted and the lungs were collected and weighed.  
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Figure 10: The Mas of Thoracic Cavity does not change over time 

The graph on the left depicts that the MTC of adult mice does not change over time. The 

graph on the right depicts the percent change in the MTC of mice. No changes in MTC 

were observed irrespective of breath hold stage of mice.  
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Figure 11: Tumor mass calculated from the Mass of Thoracic Cavity of mice with 

metastatic lung adenocarcinoma gives an accurate quantification of metastatic 

tumor burden 

The flowchart depicts the workflow used to calculate MTC from CT Images and tumor 

mass calculation. 
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7. Lung tumor burden quantification of MTC method as well as existing methods 

significantly correlated with lung weight 

We compared multiple methods of lung tumor burden measurement: MTC 

method, the RECIST-like Sum of Cross-Products (SCP) method (98), segmentation of 

aerated lung volume (102) without respiratory gating, volumetric measurement of 

combined tumor and vasculature from a threshold-based region growing algorithm with 

manual and semi-automated segmentation (99)  as well as ellipsoid tumor burden 

measurement (107). In order to determine the intrinsic accuracy of each method to 

measure tumor burden, the tumor burden of 10 mice with lung adenocarcinoma was 

calculated from each method was correlated with the gold standard, i.e., lung weight. The 

correlation values of lung weight with MTC (r=0.78, p=0.005), tumor burden from SCP 

(r=0.63, p=0.03), ellipsoid tumor volume (r=0.78, p=0.004), tumor and vessel volume 

(r=0.65, p=0.02) as well as aerated lung volume (r=-0.69, p=0.01) validated the ability of 

these methods to accurately determine tumor burden in mice with lung adenocarcinoma 

(Figure 12). 

The tumor burden values from all these methods was plotted against tumor mass 

calculated by the proposed MTC method.  Tumor burden calculation from the SCP method 

significantly correlated with tumor mass calculated from MTC method (p=0.0085, r=0.74) 

(Figure 13). The SCP method is very similar to the RECIST guideline which is a 

standardize measure of tumor response, especially in clinical trials (108). There was no 

significant correlation between ellipsoid tumor volume and tumor mass (p=0.13, r=0.48), 

tumor & vessel volume and tumor mass (p=0.12, r=0.49) and end point lung volume and 

tumor mass (p=0.12, r=-0.48). This may be due to the small sample size (n=10) (Figure 
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13). Table 5 outlines the various features of the MTC method as well as the other CT 

analysis methods that have been used for tumor burden measurement.  
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Figure 12: Lung tumor burden quantification of existing methods besides the MTC 

method significantly correlated with lung weight 

A: Tumor mass calculated from MTC significantly correlated with lung weight. 

B: Tumor burden calculated by SCP Method significantly correlated with lung weight. 

C: Ellipsoid tumor volume significantly correlated with lung weight. 

D: Tumor & Vessel volume significantly correlated with lung weight. 

E: End point lung volume significantly correlated with lung weight. 
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Figure 13: Correlation of tumor mass with tumor burden from SCP method, 

ellipsoid tumor volume, tumor + vessel volume and end point lung volume 

A: Tumor burden calculated from the RECIST-like MCP method significantly correlated 

with tumor mass calculated from MTC 

B: Ellipsoid tumor burden correlated with tumor mass calculated from MTC 

C: Tumor + Vessel volume correlated with tumor mass calculated from MTC 

D: End point lung volume correlated with tumor mass calculated from MTC 
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Table 5: Summary of MTC and other CT analysis methods 
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8. Validation study for MTC method shows that Volasertib treatment reduced tumor 

mass in a mesenchymal metastatic, orthotopic mouse model 

In order to test the MTC method in an independent dataset, we tested the effect of 

the PLK1 inhibitor Volasertib in an orthotopic mouse model. 25 mice were imaged at 

baseline. We injected 344SQ cells which were derived from a KP mouse model into the 

left lung of 20 mice. 5 mice served as negative control, i.e., mice in which cancer cells 

were not injected. The mice were then serially imaged at days 12, 19, 26 and 33. At day 

12, the mice had tumors of treatable size and were randomized into two groups, and treated 

with vehicle control or 30mg/kg of Volasertib intravenously for 4 weeks. The percent 

tumor mass increased more than 10 fold in the vehicle treated mice while the percent 

change in tumor mass increased approximately 2.4 fold in the Volasertib treated mice over 

the 4 week period. There was significant difference in percent change in tumor mass 

between the control and Volasertib treated mice on days 19 (p=0.035), 26 (p= 0.008) and 

33 (p=0.004) based on multiple t-test analysis (Figure 14). The percent change in tumor 

mass at day 33 was significantly different between the control and Volasertib treated mice 

(p=0.03) based on non-parametric Mann-Whitney t-test analysis (Figure 14). The H&E 

images show that the lungs of the vehicle treated mice have many tumor cells present 

while the lungs of the Volasertib treated mice have very few tumor cells remaining. This 

data also supports the hypothesis that mesenchymal NSCLC tumors are sensitive to PLK1 

inhibition in vivo in an orthotopic, immunocompetent mouse model. 

 

  



68 

 

 

  



69 

 

 

 

 

 

 

 



70 

 

E 

  



71 

 

Figure 14: Validation study for MTC method shows that Volasertib treatment 

reduced tumor mass in a mesenchymal metastatic, orthotopic mouse model 

A: The graphs depict the percent change in tumor mass over time from day 12 to day 33. 

Volasertib treatment significantly reduced tumor mass in the 344SQ mouse model 

B: The waterfall depicts the percent change in tumor mass between the vehicle and 

Volasertib treated mice at the end of the experiment. Each bar represents mouse. 

C: The graph depicts a significant difference in percent change in tumor mass between the 

control and Volasertib treated mice on day 33.  

D: The figure depicts tumor progression in the Control and Volasertib treated mice at 

baseline and days 12, 19, 26 and 33. The CT images and the 3D representation of MTC is 

depicted.  

E: The figure represents the H&E staining of lungs from negative control, 344SQ mice 

treated with either vehicle or Volasertib. 
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9. β-Catenin knock-down (KD) did not reverse resistance to PLK1 inhibition induced 

apoptosis in epithelial NSCLC cell lines that express high levels of β-Catenin  

Because of the striking differential expression of β-Catenin between sensitive and 

resistant NSCLC cell lines, we hypothesized that β-Catenin might mediate resistance to 

PLK1 inhibitors (67).  In order to elucidate the mechanism for EMT-induced sensitivity 

to PLK1 inhibition, Dr. Ratnakar Singh compared changes in 303 protein/phosphoprotein 

expression after PLK1 inhibition using RPPA in 3 epithelial and 3 isogenic pairs (treated 

with TGFβ) and two additional mesenchymal sensitive cell lines (Calu-6 and H1792). In 

order to identify the molecule or signaling pathway responsible for driving resistance to 

PLK1 inhibition, we looked for common proteins that were differentially expressed in 

epithelial and mesenchymal NSCLC cell lines after Volasertib treatment.  A decrease in 

β-Catenin protein expression was observed in mesenchymal but not epithelial NSCLC cell 

lines after PLK1 inhibition (Figure 15A). β-Catenin mRNA expression was higher in a 

panel of epithelial NSCLC cell lines in comparison to mesenchymal NSCLC cell lines 

(p=0.0106).  (Figure 15B). 

We hypothesized that knockdown of β-Catenin in the epithelial NSCLC cell lines 

would make them more sensitive to PLK1 inhibition induced apoptosis.  siRNA was used 

to silence β-Catenin. 2 mesenchymal (Calu6 and H1792) NSCLC cell lines was treated 

with 10nM of siRNA targeting β-Catenin (CTNNB1) for 72h. Two epithelial (H1975 and 

HCC366) NSCLC cell lines were treated with 20nM of siRNA targeting β-Catenin 

(CTNNB1) for 72h. The control groups of the cell lines were treated with 10nM of non-

targeting siRNA. The cells were also treated with 50nM of the PLK1 inhibitor Volasertib 

or vehicle for 48h. The drug was added 24 hours after the siRNA transfection. Protein 

lysate was collected from the cells and β-Catenin, PARP, Caspase 3, and phospho-
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nucleophosmin (Ser 4), which is a downstream target of PLK1, were measured by western 

blot analysis (Figure 15C). There was no significant difference in the levels of cleaved 

PARP or cleaved Caspase 3 after β-Catenin KD and PLK1 inhibition despite achieving 

good knockdown of the protein (Figure 15C).  Likewise, there was no significant 

difference in the percentage of apoptotic cells measured by Apo BrdU TUNEL assay 

between the control and β-Catenin KD cells after PLK1 inhibition (Figure 15 D).  
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Figure 15: β-Catenin knock-down (KD) did not reverse resistance to PLK1 inhibition 

induced apoptosis in epithelial NSCLC cell lines that express high levels of β-Catenin  

A: RPPA data depicting the changes in β-Catenin protein expression after PLK1 inhibition 

in epithelial and mesenchymal (as well as isogenic mesenchymal, i.e., epithelial cells 

treated with TGFβ) NSCLC cell lines 

B: Differential β-Catenin mRNA expression between epithelial and mesenchymal NSCLC 

cell lines 

C: Western blot showing that there is no significant difference in the levels of cleaved 

PARP or cleaved Caspase 3 after β-Catenin KD and PLK1 inhibition 

D: Apo BrdU TUNEL assay measuring PLK1 inhibition induced apoptosis after β-Catenin 

KD in NSCLC cell lines. No difference in BrdU positive cells is observed after β-Catenin 

KD and Volasertib treatment. 
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10. SMAD4 knock-down (KD) did not change sensitivity to PLK1 inhibition induced 

apoptosis in NSCLC cell lines 

SMAD4 mutant head and neck squamous cell carcinoma (HNSCC) cell lines were 

more sensitive to Volasertib than SMAD4 wt HNSCC cell lines (109). The same 

correlation could not be carried out in NSCLC cell lines due to the small number of 

SMAD4 mutant cell lines (n=4) but there was  a negative correlation between SMAD4 

mRNA expression and the AUCs of 3 different PLK1 inhibitors Volasertib (p<0.0001, r 

= -0.8841), GSK461362 (p<0.0001, r = -0.5556) and NMS-937 (p<0.0001, r = -0.6595) , 

the AUC calculated from an in house drug study in 70 NSCLC cell lines (67) (Figure 

16A). There was no difference in SMAD4 mRNA expression in a panel of epithelial and 

mesenchymal NSCLC cell lines (p=0.4827).  (Figure 16B). We treated three pairs of 

epithelial NSCLC cell lines that had been treated with TGF and two additional 

mesenchymal NSCLC cell lines with 50nM Volaserib for 24 hours and then subjected the 

cells to RPPA.  No change in SMAD4 protein expression was observed in NSCLC cell 

lines after PLK1 inhibition (Figure 16C).  

We hypothesized that knockdown of SMAD4 in the mesenchymal NSCLC cell 

lines would make them more sensitive to PLK1 inhibition induced apoptosis.  siRNA was 

used to silence SMAD4. 2 mesenchymal (Calu6 and H1792) and 2 epithelial (H1975 and 

HCC366) NSCLC cell lines was treated with 10nM of siRNA targeting SMAD4 for 72h. 

The control groups of the cell lines were treated with 10nM of non-targeting siRNA. The 

cells were also treated with 50nM of the PLK1 inhibitor Volasertib or vehicle for 48h. The 

drug was added 24 hours after the siRNA transfection. Protein lysate was collected from 

the cells and SMAD4, PARP, Caspase 3, and phospho-nucleophosmin (Ser 4), which is a 

downstream target of PLK1, were measured by western blot analysis (Figure 16D). There 
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was no significant difference in the levels of cleaved PARP or cleaved Caspase 3 after 

SMAD4 KD and PLK1 inhibition despite achieving good knockdown of the protein.  

(Figure 15D).  Likewise, there was no significant difference in the percentage of apoptotic 

cells measured by Apo BrdU TUNEL assay between the control and SMAD4 KD cells 

after PLK1 inhibition (Figure 16 E).  
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Figure 16: SMAD4 knock-down (KD) did not change sensitivity to PLK1 inhibition 

induced apoptosis in NSCLC cell lines 

A: Correlation of SMAD4 mRNA Expression with AUCs of Volasertib, GSK461364 and 

NMS-937 

B: There is no differential SMAD4 mRNA expression between epithelial and 

mesenchymal NSCLC cell lines 
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C: RPPA data depicting the changes in SMAD4 protein expression after PLK1 inhibition 

in epithelial and mesenchymal (as well as isogenic mesenchymal, i.e., epithelial cells 

treated with TGFβ) NSCLC cell lines 

D: Western blot showing that there is no significant difference in the levels of cleaved 

PARP or cleaved Caspase 3 after β-Catenin KD and PLK1 inhibition 

E: Apo BrdU TUNEL assay measuring PLK1 inhibition induced apoptosis after SMAD4 

KD in NSCLC cell lines. No difference in BrdU positive cells is observed after SMAD4 

KD and Volasertib treatment 
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11. PDK1 overexpression in a sensitive mesenchymal NSCLC cell line leads to resistance 

to PLK1 inhibition induced apoptosis 

In order to elucidate the mechanism for EMT-induced sensitivity to PLK1 

inhibition, we compared changes in 303 protein/phosphoprotein expression after PLK1 

inhibition using RPPA using the same set up as mentioned previously. Thirty three 

proteins/phosphoproteins were differentially regulated at cutoff p<0.05. These data 

revealed differential effects on both the cMET/FAK/SRC signaling axis (103) (and the 

PI3K/AKT pathway. Western blot analysis of the members of the PI3K/AKT pathway 

confirmed a significant decrease in PDK1 and 4E-BP1 phosphorylation and total protein 

levels in mesenchymal cell lines but not in epithelial cell lines after Volasertib treatment 

(Figure 17).  

In order to test the hypothesis that PDK1 is a driver of resistance to PLK1 

inhibition induced apoptosis, we created a stable PDK1 overexpressing mesenchymal 

NSCLC cell line. The PDK1-EGFP plasmid was kindly provided by Dr. Gordon Mills and 

was stably transfected into the H1792 mesenchymal NSCLC cell line. Overexpression of 

PDK1 protein was biologically active in H1792 cell line as evinced by increased 

downstream S6 (S235/236) phosphorylation (Figure 18A). Overexpression of PDK1 in 

H1792 cell line increased resistance to PLK1 inhibition compared to parental cell lines as 

seen by decrease in cleaved PARP (p=0.007) and γH2AX levels (p=0.003) (Figure 18A-

B). We also observed an increase in percent cell viability in the PDK1 overexpressing 

cells in comparison to the parental cells as tested by CellTitre Glo assay but it was not 

statistically significant (p=0.31). This result was recapitulated using APO BrdU TUNEL 

assay where H1792 PDK1 overexpression cells showed less apoptosis in comparison to 

parental cells after treatment with Volasertib (p=0.003) (Figure 18D). 
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Figure 17: PDK1 protein expression is altered after PLK1 inhibition in mesenchymal 

but not epithelial NSCLC cell lines 

A: 33 proteins are differentially regulated between epithelial and mesenchymal (including 

isogenic) NSCLC cell lines after Volasertib treatment, one of them being PDK1. 

B: 70 proteins are differentially expressed between parental epithelial and mesenchymal 

NSCLC cell lines after Volasertib treatment, including PDK1.  

C: RPPA data shows the changes in pPDK1 (S241) and total PDK1 after Volasertib 

treatment in epithelial and mesenchymal NSCLC cell lines 

D: Western blot shows differential protein expression in certain PI3K proteins such as 

PDK1 and 4E-BP1 between epithelial (cell lines depicted in red) and mesenchymal (cell 

lines depicted in blue) NSCLC cell lines after Volasertib treatment.  

 

NOTE: 17 A-C printed with permission from R.Singh 
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Figure 18: PDK1 overexpression in a sensitive mesenchymal NSCLC cell line leads 

to resistance to PLK1 inhibition induced apoptosis 

A: Western blot of H1792 parental and PDK1 overexpression cell lines treated with 50nM 

Volasertib for 48h. A decrease in cleaved PARP and γH2AX levels are observed in H1792 

PDK1 cell line compared to parental cell line after Volasertib treatment. The PDK1 is 

functional as seen by increase in pS6 (S235/236) and PLK1. 

B: Quantification of cleaved PARP and γH2AX protein levels in H1792 PDK1 and 

parental cell lines after Volasertib treatment. The H1792 PDK1 cells seem to be more 

resistant to Volasertib treatment in comparison to the parental cells. 

C: CellTitre Glo data shows that H1792 PDK1 cells are more resistant to Volasertib in 

comparison to parental cells. 

D: APC BrdU TUNEL assay shows that the H1792 PDK1 cells are resistant to Volasertib 

in compared to parental cells by around 10%.  
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Discussion 

Accurate preclinical models are an essential component to performing translational 

cancer research, including discerning molecular pathways of oncogenesis and evaluating 

therapeutics. One of the main rationales for developing PDX models is based on the 

expectation that these models will be more predictive of human cancer biology and patient 

response to treatments. These models are useful for the study of cancer biology, biomarker 

development, drug screening, and the preclinical evaluation of personalized medicine 

strategies. PDX models tend to retain the histological characteristics of donor tumors such 

as tissue structure and gland architecture, mucin production or cyst development. PDX 

models of NSCLC have similar gene copy number (110), mRNA (22) and protein (111) 

and retain specific ‘driver’ mutations of the matching primary tumor (26, 112).  

Our studies demonstrated surprising heterogeneity in PDX tumors derived from 

the same, established models. It is now well established that cancer is genetically 

heterogeneous in an inter- and intra-individual manner and that there is a genetic evolution 

in cancer as the tumor progresses (113). Thus, a PDX model generated from one individual 

lesion at a single time point is indeed a snapshot view of a tremendously dynamic process 

and may not be representative of the full diversity of the disease.  The resulting inter-

tumoral heterogeneity of PDX models is a double edged sword.  It recapitulates the clinical 

environment, but also adds confounding factors.  One such confounding factor is the 

potential role of mutations, such as TP53 and KRAS, in PLK1 inhibitor sensitivity. 

Many studies have shown that generation of a PDX model in a murine host leads 

to clonal selection which may eventually result in a xenograft that differs from the original 

patient’s tumor (26, 114, 115). In the case of our study, the EMT status of mice was 

determined at an earlier passage before the experiment was carried out and clonal 
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evolution might have played a role in determining tumor response. The sample size for 

assessing EMT in each individual PDX model (n=4) is too low to make a correlation 

between EMT and response to PLK1 inhibitors. Another limitation of the PDX studies 

was that we only completed 4 PDX models and out statistical design dictated that at least 

13 models were needed to test our hypothesis.  Given the degree of intra-tumoral EMT 

heterogeneity, more PDX models may indeed be needed than calculated in the original 

study design.  

Although my data support my hypothesis that PLK1 inhibition leads to apoptosis 

in mesenchymal NSCLC but not in epithelial NSCLC, there are several limitations in the 

current data that need to be addressed in future studies, A few more PDX models must be 

used to check for PLK1 inhibition induced apoptosis in order to make a correlation 

between EMT status and response to PLK1 inhibitors. PDX models are highly 

heterogeneous and the response to PLK1 inhibitors might be difficult to correlate. The 

experiments might need to be carried out in early passage PDX models in order to reduce 

the clonal evolution of PDXs. The EMT status of the PDXs is defined by only two markers 

in the study, E-Cadherin and vimentin. A panel of markers will be used to determine the 

EMT phenotype of the PDX models. RNASeq analysis can be carried out in the PDX 

tumors to calculate the EMT score as well as identify novel biomarkers of response to 

PLK1 inhibition induced apoptosis in NSCLC.  

The 393P Vector cells, though inherently epithelial showed a decrease in tumor 

mass after PLK1 inhibition but it was not significant. The 393P ZEB1 cells, which are 

mesenchymal showed tumor regression after PLK1 inhibition. EMT related transcription 

factor ZEB1 and miR-200 are repressors and activators of E-cadherin expression 

respectively. The previous studies of our lab showed that manipulation of ZEB1 or 
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miR200 in vitro only slightly reversed sensitivity or resistance while a more robust 

response was seen with EMT induced by  TGFβ (67) (103).  Another finding from our 

previous study shows that epithelial NSCLC cells show cell arrest while the mesenchymal 

NSCLC cells undergo apoptosis after PLK1 inhibition (67) which needs to be confirmed 

in the PDX models.  

GEMMs that are created by introducing oncogenes or altering tumor suppressor 

genes in the mouse genome are widely used to study cancer biology (116). The KRAS and 

the KRAS/p53 conditional knock-in mouse models are two GEMMs that recapitulate 

characteristics of the human lung adenocarcinoma disease (117). The murine cell lines 

that were used in the study harbored KRAS and p53 mutations and had diverse EMT 

phenotypes. One limitation in our study was that we used a mouse model with two 

mutations that may increase sensitivity to PLK1 inhibition.   The previous study in our lab 

showed that there was no correlation between TP53 mutation status and PLK1 inhibitor 

sensitivity using 63 NSCLC cell lines.  Although KRAS mutation did predict sensitivity 

for 2 of the 3 PLK1 inhibitors tested, the correlation was not robust (67).  

Evaluation of lung cancer progression is often based on tumor measurements at 

the end of treatment. Histopathological analysis of lung tissue is the gold standard for 

assessment of lung tumorigenesis. Although these ex vivo procedures offer many 

opportunities to perform molecular and cellular analyses, they are limited to only one 

measurement and do not provide details about the dynamic processes that occur over time 

in vivo. Micro-computed tomography (micro-CT) has been incorporated to study the 

dynamic changes of tumor progression in preclinical models in a non-invasive manner 

(118). Although CT is technically challenging due to respiratory movement artifacts, it 

provides visual and quantitative information about the whole lung in a three-dimensional 
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manner with high resolution and sensitivity. More importantly, CT allows for longitudinal 

assessment of therapeutic interventions between different groups and the extent of disease 

in each individual mouse. CT is safe and there is no radiotoxicity to the lungs in mice with 

weekly CT imaging up to a period of 12 weeks despite receiving a relatively large radiation 

dose per micro-CT acquisition (119). For quantification of metastatic tumor burden, the 

methods that have been previously used relied on a Response Evaluation Criteria in Solid 

Tumors (RECIST)-like criteria wherein the maximal tumor diameter and the largest 

perpendicular diameter were measured in the coronal plane to calculate the tumor burden 

from the sum of cross products (98), tumor nodule segmentation (120), segmentation of 

aerated lung volume for tumor load quantification with respiratory gating (102), manual 

segmentation of chest space (121), individual nodule tracking (122), modeling tumors as 

ellipsoids (107) and volumetric measurement of combined tumor and vasculature from a 

threshold-based region growing algorithm with manual and semi-automated segmentation 

(99). The main drawbacks of these methods are that they are labor intensive, require 

specific skill sets in radiology and do not take all the thoracic metastases into 

consideration. We developed a micro-CT image analysis method to quantitatively measure 

tumor mass as a measure of metastatic tumor burden in lung cancer. This method of tumor 

mass calculation takes into account the metastatic tumors present in the thoracic cavity 

from the base of the lung to the top of the trachea. As the CT imaging is not respiratory 

gated, the probability of air escaping into the lungs and variance in the breathing period is 

high despite breath hold at the time of imaging. Also, tumor tissue and vasculature cannot 

be distinguished in the non-contrast micro-CT imaging as they have similar X-Ray 

densities. Thereby, one could expect that the tumor burden is proportional to the changes 

in the MTC in the adult mice. 
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Though β-Catenin was highly expressed in the resistant/epithelial NSCLC cell 

lines in comparison to the mesenchymal NSCLC cell lines, knockdown of β-Catenin was 

not sufficient to sensitize epithelial cells to PLK1 inhibition. This might be due to the fact 

that KD of β-Catenin alone does not change the epithelial phenotype. It is possible that β-

Catenin may be downstream to the key protein or pathway that mediates resistance to 

PLK1 inhibitors. Also, though SMAD4 is a member of the TGFβ pathway and studies 

have shown that increased expression of SMAD4 induces EMT or enhances the induction 

of EMT, KD of did not mediate resistance to PLK1 inhibitors in the mesenchymal NSCLC 

cell lines. This implies that there may be other factors in the TGFβ pathway that govern 

the mesenchymal phenotype of NSCLC cells. We identified PDK1 to decrease after PLK1 

inhibition in mesenchymal NSCLC but not epithelial NSCLC cell lines. PDK1 is a 

serine/threonine kinase which acts as a master kinase, phosphorylating and activating a 

subgroup of the cAMP-dependent, cGMP-dependent and protein kinase C (AGC) family 

of protein kinases such as AKT, p70RSK, p90RSK, SGK1, PAK1 to name a few. PDK1 

plays a central role in the transduction of signals from insulin by providing the activating 

phosphorylation to PKB/AKT1, thus propagating the signal to downstream targets 

controlling cell proliferation and survival, as well as glucose and amino acid uptake and 

storage. A stable PDK1 overexpressing mesenchymal NSCLC cell line was established. 

It was observed that PDK1 overexpression slightly reduced sensitivity to the PLK1 

inhibitor Volasertib as observed by reduction in the expression of cleaved PARP and 

γH2AX. The limitation of this study is that only one NSCLC cell lines was used to study 

to the role of PDK1 overexpression in PLK1 inhibition-induced apoptosis. The response 

observed was minimal and it is possible that PDK1 may not be critical component in 

mediating resistance to PLK1 inhibitors. This might be due to the possibility that PDK1 
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is regulated by SRC which is downstream to the CMET-FAK-SRC signaling pathway 

which has been identified by our lab to mediate PLK1-inhibition induced apoptosis in 

NSCLC (103).  

A study in our lab showed that epithelial NSCLC cell lines are more resistant to 

PLK1 inhibition in comparison to mesenchymal NSCLC cell lines due to the differential 

regulation of CMET (103). The study shows that this is because of ligand independent 

activation of CMET in mesenchymal NSCLC cells in Integrin β1 due to increase in 

vimentin expression. Thus CMET activation can be used as a biomarker of response to 

PLK1 inhibition induced apoptosis (103).  

 In order to measure PLK1 inhibition induced apoptosis, TUNEL assay is being 

carried out to measure apoptotic cells in the vehicle and Volasertib treated PDX tumors 

and the epithelial and mesenchymal lung tumors. Pathological response will be used to 

correlate with PLK1 inhibitor sensitivity in the in vivo studies. Some of the additional 

studies that can be carried out includes inducing a mesenchymal-to-epithelial transition 

(MET) in mice by using mesenchymal cells with inducible miR200 expression. Other 

modalities by which EMT can be manipulated in vivo may be used to study PLK1 

inhibition induced apoptosis in NSCLC.  

 In conclusion, preliminary data suggests that mesenchymal NSCLC tumors are 

more sensitive to PLK1 inhibition in comparison to epithelial NSCLC tumors as seen in 

the PDX studies, the 344SQ mouse model and the 393P with ZEB1 overexpression mouse 

models. Though β-Catenin and SMAD4 KD did not reverse resistance or sensitivity to 

PLK1 inhibitors, it is a possibility that these are downstream to some key elements that 

drive resistance or sensitivity to PLK1 inhibitors. 
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