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Abstract 

 

Vascular type of Ehlers-Danlos Syndrome (vEDS) is an inherited cardiovascular disease affecting the 

middle to large sized arteries, with an incidence rate of 1/5000. vEDS patients also show a significant 

phenotype of easily bruised skin, indicating aberrant wound healing and injury repair ability. Over 70% 

of the patients carry a glycine mutation located in their COL3A1 gene, which encodes the propeptide of 

type III collagen. Mutations in glycine residues lead to a disruption in the assembly and maturation of 

type III collagen. The goal and significance of the current study was to investigate the potential role of 

COL3A1 haploinsufficiency in the development of vEDS and develop new potential therapies for vEDS 

patients. 

Carotid ligation was applied to the Col3a1+/- mouse as an injury model, and the results confirm that 

Col3a1+/- mice have aberrant arterial injury repair. Arteries from the injured Col3a1+/- mice showed 

increased cell proliferation, inflammation, and neovessel formation. In vitro, fibroblasts explanted from 

Col3a1+/- mice have persistent myofibroblast status after treatment with TGF-β1, which validates the in 

vivo findings. 

Finally, two treatments were tested on C o l 3 a 1 +/- mice after carotid ligation: bone marrow 

transplantation and celiprolol. Transplantation of Col3a1+/+ bone marrow to Col3a1+/- mice corrects the 

post-injury phenotypes, suggesting that bone marrow derived fibrocytes can be differentiated into 

myofibroblasts and produce sufficient type III collagen for successful wound healing. Celiprolol 

treatment on the Col3a1+/- mice also corrects the wound healing impairment by decreasing inflammation 

and cell proliferation. Therefore, this study validates a novel paradigm for vEDS that decreased supply of 

mature type III collagen fibrils affects fibroblasts in arterial wound healing and also provides evidence 

for bone marrow transplantation and celiprolol as potential new therapeutic approaches to the treatment 

of vEDS patients. 
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1.1  What is vEDS? 

        Vascular type of Ehlers-Danlos Syndrome (EDS) is prominent by thin, translucent and easily bruised 

skin; rupture of uterine, dissection of arterial or intestinal tissues and obvious facial appearance. These 

defects affect connective tissues like skin and joints, causing abnormalities in uterus, colon and other 

hollow organs1. vEDS is mostly resulted from the mutations in COL3A1 gene. Propeptide of type III 

collagen is encoded by COL3A1 gene. vEDS patients develop aneurysms and dissection of arteries 

throughout the body (Figure 1.1). Most patients with this syndrome develop when they are relatively 

young, their medium to large sized arteries are usually accompanied with spontaneous arterial 

complications. vEDS patients bruise easily and have spontaneous ecchymosis, which leads to chronic skin 

discoloration from hemosiderin deposition most commonly on the shins and knees. In addition, they also 

suffer from obstetric and gynecologic complications, including cervical insufficiency, vaginal tears and 

lacerations. Gastrointestinal complications occur in up to 25% of patients, and the majority of these are 

spontaneous rupture of the sigmoid colon2. The median life expectancy of vEDS patients is 40-50 years. 

Death is likely due to the secondary to complications associated with vascular and hollow organ rupture3.  



3 
 

  

 

 

 

 

 

Figure 1.1 Distribution of 132 vascular complications 

Reprinted with permission from Elsevier [The spectrum, management and clinical outcome of 

Ehlers-Danlos syndrome type IV:  a 30-year experience.  Oderich GS, Panneton JM, Bower TC, et 

al. Journal of Vascular Surgery.  2005]. 
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1.2 Diagnosis of vEDS 

        It is difficult to diagnose vEDS because many of the traits that vEDS patients have are subtle and 

nonspecific. Easy bruising is the most frequent manifestation and is present in childhood3. Other 

phenotypes such as premature rupture of the arteries, membranes of different hollow organs, or recurrent 

joint dislocation or subluxation. vEDS patients also have distinct facial features, like prominent and wide-

open eyes, pinched nose, small and thin lips as well as lobeless ears. Early clinical diagnosis is 

extraordinarily difficult without a diagnosis of familiar affection or major complication found in vascular 

or intestinal tissues4.  

1.3 Current therapeutic approaches and management to vEDS  

       vEDS is a rare genetic connective tissue disorder with life threatening complications that include 

arterial dissection and ruptures, and intestinal and uterine ruptures, currently, there have been no 

therapeutics with FDA-approval for vEDS patients in the United States, and physicians face the challenge 

of establishing an effective preventative treatment plan for their patients5. One problem with assessing 

treatment of vEDS patients is that the disease is relatively rare. Very few centers around the world have 

significant experience in treating and managing these patients. In addition, given the extreme fragility of 

the tissues, outcomes for interventions tend to be very poor, as even relatively simple diagnostic procedures 

have a high rate of catastrophic complications. To possibly create a milder treatment, Pierre Boutouyrie et 

al proposed a clinical trial for the drug, celiprolol, a  cardio-selective β blocker (β-blocker) with β2 agonist 

vasodilatory properties6. Because beta-blockers have historically been used for arterial diseases, it was 

surmised that celiprolol could also help alleviate vEDS patients’ arterial dissection or rupture. Surgical 

repair may decrease mortality caused by bowel rupture, arterial rupture, or uterus rupture. However, even 

if the tissues are friable, repair procedure is very difficult, vascular surgeons must pay special attention to 

these patients given their complicated vascular phenotypes and the complexities involved in repairing their 

tissues.  
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1.4 Vascular Structure and Aorta 

        In vertebrate mammals, the arterial system is a network of extensive and dynamic vessels that 

transport blood and deliver essential nutrients and oxygen to other parts of the entire body. Large arteries 

are important for proper cardiac function because they serve as important reservoirs. These large arteries 

enable the arterial tree to withstand great changes blood volume when there is barely pressure change7. 

Although blood vessels are different in size, function and anatomy, they share similar basic elements to 

form functional structure. Both arterial and muscular vessels are basically formed by three different layers, 

the intima, the media, and the adventitia in comparison to the central lumen. There is a thin layer with the 

lumen side of the intima which are lined by endothelial cells (ECs). ECs play a major role in development 

of vasculatures as well as recruitment of smooth muscle cells (SMCs) to the vascular wall upon arterial 

injury. The media is mainly composed of specialized vascular SMCs (vSMCs) and elastin. Under a variety 

of circumstances, SMCs serve both to contracture and to produce components of extracellular matrix 

(ECM). ECM mainly provide structures to resist forces generated by fluid flow and other mechanical 

strength to arteries. The elastin is arranged in fenestrated sheets, and the collagen fibers, SMCs and ECM 

float among the sheets. The adventitial layer is mainly composed of fibroblasts which also produce 

adventitia components such as connective tissues. The larger aortic and vascular arteries also contain the 

vasa vasorum which supply nutrients to the vessel walls themselves (Figure 1.2). 



6 
 

 

 

 

 

 

 

 

 

 

Figure 1.2 Schematic architecture of a representive medial in a muscular artery (left) and an elastic 

artery (right). 

The media of a muscular artery is bordered by the internal and external elastic laminae and contains 

overlapping and concentrically-oriented smooth muscle cells. The media of an elastic artery instead 

contains many elastic laminae alternating with muscular layers of smooth muscle cells that each 

span the full thickness. The adventitia in a larger elastic artery also contains small blood vessels 

(vasa vasorum) that nourish the outer layers of the wall. [Arteries, Smooth Muscle Cells, and 

Genetic Causes of Thoracic Aortic Aneurysms. Chapter 12: Inflammatory Diseases of the Blood 

Vessels, 2nd ed. Reid AJ and Milewicz DM1].  

Quoted text and figure reprinted with minimal modification and permission from John Wiley and 

Sons [Arteries, Smooth Muscle Cells, and Genetic Causes of 12 Thoracic Aortic Aneurysms. 

Chapter 12: Inflammatory Diseases of the Blood Vessels, 2nd ed. Reid AJ and Milewicz DM1]. 
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1.5 Structure of collagen and their function  

        Fibroblasts are the major cell type which synthesize and secrete collagens. Among the 17 collagen 

types, types I, III, IV, V and VI have the highest amount distributed in different tissues. Collagens I, III, 

and V are assembled into fibrillary structure, with types I and III collagens playing a major role in 

withstanding strength to the vessel wall. The fibrils are then formed according a self-assembly principle. 

A protein monomer with the correct structure may aggregate with itself following a precise manner8. The 

procollagens, also known as precursors, are first synthesized and then enzymatically cleaved to form the 

corresponding collagens (Figure 1.3). Difference in the distribution of collagens I and III also occur in 

different vascular vessel regions. In the ascending aorta’s media and adventitia, collagens I and III are 

common while in the descending and medial layer, they are different distribution of type I and III 

collagens7.          

        We will focus on type III collagen because only mutations in COL3A1 gene are widely studied as a 

potential factor to cause vEDS. The type III procollagen molecule is assembled from three identical pro 

α1 (III) chains. The N-pro-peptide domain contains specific structure which is part of the cleavage site. 

The enzymes function at the site to remove propeptide. The C-propeptides of the procollagen are entirely 

globular. After forming the triple helix structure, they are secreted to the extracellular area where they 

undergo post translational modification and assembly to form mature collagen fibrils (Figure 1.4) 

(Heritable diseases of collagen).  

1.6  Mutation of COL3A1 gene leading to deficiency of type III collagen 

        Causative mutations are mainly identified in vEDS patients in the COL3A1 gene which locates at 

position 31 of chromosome 2 (2q31)4 and encodes pro-type III collagen. Its transcription produces the pro-

αI chain of type III collagen. Three αI chains are strictly assembled into a triple helix. To successfully 

assemble a triple helix, a glycine residue is required the formation of a structure of (Gly-X-Y) n repeats. 

The glycine residue locates at every third amino-acid of the polypeptide chain. This motif ensures the three 
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αI chains forming a triple-helical structure (Figure 1.4). while residues X and Y adjacent the glycine 

residue locating outside on the surface, all the other residues are buried within the protein9. Also, this motif 

provides the stability of the collagen fibrils by increasing hydrogen bonding. The C-propeptide domain of 

the procollagen is critical in initiating the process of trimerization. There are two major events involved in 

trimerization: specific chain recognition and formation of a stable nucleus10. After folding into homo-

trimers, the collagen will be transported outside of the cells and into the extracellular matrix (ECM), where 

it is processed enzymatically with different enzymes mainly metalloproteinases which belong to the 

ADAMTS2 (a dis-integrin and a metalloproteinase with thrombospondin repeats)11. After the formation of 

procollagen, the final step for the biosynthesis and assembling of collagens is the stabilization of the 

supramolecular which is initiated by lysyl oxidases12. These super cross-links produce long, thin fibrils 

that comprise the intercellular space.  Individuals with COL3A1 gene mutations have severe defects in the 

overall structure of the type III pro-αI chain. Single nucleotide substitutions for the glycine residues are 

the most common mutations which have been found within the COL3A1 gene. Gly substitution destabilizes 

Figure 1.3 Fibroblast assembly of collagen fibrils 

Panel A shows intracellular post-translational modifications of pro-α-chains, association of C-

propeptide domains, and folding into triple-helical conformation. Gal denotes galactose, Glc glucose, 

GlcNac N-acetylglucosamine, and (Man)n mannose residues. Panel B shows enzymatic cleavage of 

procollagen to collagen, self-assembly of collagen monomers into fibrils, and cross-linking of fibrils. 

Reproduced with permission from [Heritable diseases of collagen. Prockop DJ, Kivirikko K. New 

England Journal of Medicine. 1984], Copyright Massachusetts Medical Society. 
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the structure of the triple helix. This results in decreased functional type III collagen. As of now, over 700 

COL3A1 gene mutations have been identified, another mutation is the splicing skipping mutation. Both 

types of mutations lead to equal production of abnormal and normal procollagen peptides, but because 

collagen III is a homsotrimer formed by three identical procollagen peptides, such mutations lead to 

production of a seven-to-one ratio of abnormal to normal collagen molecules, thus a minimal (MIN) 

amount (10%-15%) of normal collagen is produced. 

        Some other mutations such as splicing at the level of transcription, deletion of the gene, and null 

mutation have also been observed. Exon skip mutations result in an exon splicing error, which leads to a 

frame shift mutation during the translation process. This results in premature degradation of the mutant 

messenger RNA. This causes expression of a single gene thus termed haploinsufficiency (HI) which result 

in only 50% of the normal amount of type III procollagen13. Clinically, people with haploinsufficient 

COL3A1 mutations have a milder phenotype and an extended life expectancy as well as a later age at the 

time of their first complication.  
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1.7 Increased Carotid wall stress in vEDS   

        Studies from Boutouyrie et al14, used a biomechanical method to detect if there are changes in arterial 

wall mechanics that might predispose to dissection and rupture. In vEDS patients, there were 43% and 39% 

higher in intimal medial ratio (IMT) and either internal diameter or midwall diameter compared to that in 

control subjects. The feature seen in the arterial wall of vEDS patients may result from the reduction of 

collagen I fibers.  

Figure 1.4 Fibrillar procollagens and fibril assembly 

A. N- and C-terminal processing leads to spontaneous assemble of collagen fibrils, which are 

subsequently stabilized by the formation of covalent-cross-links. B Domain structures of fibrillar 

procollagen chains. Reproduced with permission from [Heritable diseases of collagen. Prockop DJ, 

Kivirikko K. New England Journal of Medicine. 1984], Copyright Massachusetts Medical Society. 
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1.8 vEDS and Col3a1 mice  

        The haploinsufficient Col3a1 mouse was generated by Liu et al. for study of the function of collagen 

III in fibrillogenesis of collagen I and in development of cardiovascular system. The first exon as well as 

the promoter of the Col3a1 gene was replaced  with a PGK-neo cassette (a eukaryotic promoter (PGK) 

with the expression of neomycin resistant gene in mammalian cells)15. The Col3a1-/- mouse was generated 

from intercrosses of heterozygous mice15. About only 10% of the Col3a1-/- animals survive to adulthood, 

while the rest of Col3a1-/-animals die with 3 days after birth. The most common reasons leading to the 

death of Col3a1-/- mice is the rupture of vasculatures and colons, which are very similar to complications 

in vEDS patients. Liu et al also performed ultrastructural analysis on tissues harvested from Col3a1-/- mice 

which revealed that type III collagen plays a critical role in normal type I collagen fibrillogenesis, in the 

development of cardiovascular as well as the function and development of other organs16.  

To find out other structural defects in Col3a1+/- mice, they also carried out a detailed analysis with 

electron microscopy for aorta and heart, (Figure 1.4) showing that the collagen fibrils were absent or 

significantly decreased in the media of the Col3a1+/- aorta. At the same time, they also found that the fibril 

number in Col3a+/- aorta decreased to even less than one third of that in Col3a1+/+ aorta while mean 

diameter was significantly increased in Col3a+/- mice (Figure 1.5). In addition to the vascular system, 

other tissues, such as the skin and lung of Col3a1+/- mice were also microscopically analyzed. It was found 
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that the collagen I fibrils in the Col3a1+/- skin were both highly variable in diameter and disorganized in 

structure. Their results suggested that type III collagen was important in regulating the formation and 

assembly of type I collagen fibrils, specifically the diameter.  They concluded that the phenotypes shown 

by the Col3a1-/- resembled to the clinical complications of vEDS patients. 

 

 

 

 

 

 

Figure 1.5 Comparison of the diameters of collagen fibrils in the adventitia of 

aorta of wild-type and mutant mice 

A 2 mm 32 mm area in the adventitia of either wild-type or mutant aorta was randomly chosen, and all 

the fibrils in this area were measured for their diameters and counted. Reproduced with permission 

from [Heritable diseases of collagen. Prockop DJ, Kivirikko K. New England Journal of Medicine. 

1984], Copyright Massachusetts Medical Society. 
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       Cooper et al expanded Liu’s study and demonstrated that the Col3a1+/-  could be used as a model for 

vEDS17. They found that the collagen content the heterozygotes was reduced in the abdominal aorta, and 

functional studies revealed diminished aortic wall strength in Col3a1+/- mice. There were also reduced 

strength and increased wall compliance in the heterozygotes via pressure test. However, the mice did not 

show life-threatening clinical signs nor did they develop gross vascular lesions which were similar to those 

happen to vEDS patients. Overall, they suggested to generate a new mouse model with a single glycine 

substitution which represent the severity of mutation for vEDS patients. However, few studies focus on 

the mechanisms by which deficiency of type III collagen can cause vascular disease. Reid et al 

(unpublished data) induced artificial injury of the left carotid artery by permanent ligation in both Col3a1+/- 

heterozygous and Col3a1+/+ mice. By comparing the histological changes in the ligated Col3a1+/- and 

Col3a1+/+ arteries, they found delayed thrombus resolution and increased formation of neo-vessels in the 

medial layer of the artery in the Col3a1+/- mice after both 14 and 21 days of carotid artery ligation.  

 

1.9  Myofibroblasts and wound healing   

        Numerous reports have investigated that cells derived from bone marrow (BMDs) or mesenchymal 

originated cells such as fibroblasts, are important for remodeling after arterial injury18,19. During tissue 

repair, fibrin clot formed at the injury site to further recruit inflammatory cells. The fibrin is soon followed 

by various migrating cells that modulate the fibrin matrix, resulting in a collagenous scar20. These activated 

fibroblasts produce critical components of ECM for the wound area. Then, the fibroblasts become 

myofibroblasts and gain the ability to contract and generate contractile forces during repair. After all the 

initial steps of wound repair, myofibroblasts disappear with the process of cell apoptosis. When 

myofibroblasts persistent into differentiated myofibroblasts instead of dying, there will be extra ECM 

components deposited, which are usually found in hypertrophic scar, as well as fibrotic processes in the 

kidneys, heart, and lungs21. 
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1.10 TGF-β signaling pathway and differentiation of fibroblasts 

      TGF-β1 is a cytokine secreted by platelets and fibroblasts and macrophages. In the classical TGF-β 

signaling, three isoforms in TGF-β family of ligands are bound to receptor TβRI and TβRII. TβRII is 

constitutively phosphorylated and further phosphorylates TβRI upon binding of the ligand. After that, the 

intracellular SMAD signaling pathway will be activated by the receptor-ligand-complex through Smad-2, 

Smad-3 and co-Smad4. SMAD proteins will then be translocated to the nucleus where they regulate 

expression of a number of genes22. However, the differentiation of myofibroblasts from fibroblasts, 

characterized by increased expression of SMA is first activated by TGF-β signaling and followed by FAK 

signaling pathway as results shown by Thannickal et al23. In this study, they demonstrated that both TGF-

β1 and FAK signals were required for a stable status of the myofibroblas. TGF-β1-induced myofibroblast 

differentiation would be inhibited in non-adherent cells even if TGF β -Smad2 phosphorylation signaling 

was active. Tyrosine phosphorylation of FAK induced by TGF-β1 which including Tyr-397 was also 

delayed in relative to early TGF-β1-Smad signaling. Blockage of FAK or induction of FAK mutation could 

inhibit expression of α-SMA, formation of stress fibers and cell proliferation induced by TGF-β1. 

1.11  Neovascularization in arterial diseases 

        Rapid revascularization is essential in restoring organ function after injury, ischemia, or in 

regenerating organs. An angiogenic switch often initiates the revascularization process, and this starts the 

process of recruiting endothelial cells that assemble into neovessels24,25. However, because tissue injury 

often prevents pre-existing endothelial cells (ECs) from performing their original function, exogenous 

vascular progenitors might facilitate the restoration of re-vascularization. Adult bone marrow (BM) 

provides different tissue specialized stem cells and other progenitor cells. There is a small cell population 

known as epithelial progenitor cells (EPCs). These EPCs can circulate and contribute to the 

neovascularization processes that promote rapid organ revascularization.            
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          The concept of fibrocyte was first described by Richard et al. in 1994 as circulating monocyte-

derived cells, capable of expressing fibrotic phenotypes26. Monocytes derived fibrocytes show both 

macrophages features and the tissue remodeling properties27. They uniquely co-express the haematopoietic 

stem cell markers, CD45 and CD34. Fibrocytes also produce extracellular matrix (ECM) proteins. They 

adopt a spindle shape and are present in wound exudates. Fibroblasts have remarkable plasticity in in vitro 

studies, demonstrating their ability to be reprogrammed into haematopoietic appearance-wise, fibrocytes 

also appear to be an intermediate between fibroblasts and macrophages. This phenotypical overlap could 

be because fibrocytes are an intermediate population in the conversion of fibroblasts into macrophages, 

and vice versa27. In injured tissues or inflammatory locations, fibrocytes can be induced into fibroblasts by 

inflammatory factors to execute the function of ECM producing cells and function in injury repair or 

wound healing27. In fact, it may be more appropriate to call them “fibrophages” or “macroblasts.” 

Additionally, in injured tissues or locations of inflammation, fibrocytes can be induced to transform into 

fibroblasts when in the presence of inflammatory factors. These new fibroblasts can then execute the same 

functions of ECM-producing cells in injury repairing or wound healing. Studies from Desmoulière et al 

proposed that fibrocytes derived from circulating precursor cells in the blood could be induced to 

differentiate into fully functioning myofibroblasts; they express collagen and α-SMA, induce contractile 

proteins, and contribute to thrombus resolution. More and more studies discover that the BM not only 

originates hematopoietic cells for skin function, but dermal fibroblasts and myofibroblasts. Study from 

Carrie Fathke et al. shows that bone marrow is significant more important to normal skin function and 

healing cutaneous wounds than that had previously been recognized. In fact, of all dermal fibroblasts, 15-

20% were derived from the BM. This population of BM-derived dermal cells was more versatile than its 

normal counterpart.  

1.12  Previous studies in our lab on the Col3a1 mice 

       Prior in vivo studies by Dr. Amy Reid on the Col3a1 mice using an artificial arterial injury model at 

the left carotid artery found that: 1) There is increased inflammatory response in the Col3a1+/- artery 
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compared with that in the Col3a1+/+ artery; 2) There are persistent proliferative myofibroblasts in the 

Col3a1+/- artery compared with that in the Col3a1+/+ artery; 3) There is increased new vessel formed in 

the medial layer in the Col3a1+/- artery compared with that in the Col3a1+/+ artery. In vitro cellular studies 

using 3D fibrinogen gel experiments, by comparing the dermal fibroblasts from vEDS patients and normal 

control, demonstrating a dysfunctional matrix remodeling by myofibroblasts in vEDS patients. 

 

       

Based on the prior findings, we hypothesize that fibroblasts from the bone marrow of Col3a1+/+ mice 

can rescue the post-injury phenotypes in the Col3a1+/- mice and administration of celiprolol will be 

able to alleviate post-injury phenotypes in Col3a1+/- mice. My dissertation research focused on the 

following: 1. Confirm that haploinsufficiency in Col3a1 leads to aberrant wound healing after 

vascular injury of Col3a1+/- mice; 2. Determine if bone marrow transplant rescues the aberrant 

arterial injury repair of Col3a1+/- mice; 3. Assess if celiprolol treatment on the Col3a1 mice improves 

aberrant injury repair in this model; 4. Understand the role of myofibroblasts in injury repair by in 

vitro cellular study using cells explanted from Col3a1 mice. 
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2 Bone Marrow Transplantation Rescues the Phenotypes in Col3a1+/- Mice 
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2.1 Introduction  

Vascular Ehlers-Danlos Syndrome (vEDS) patients have aberrant healing of their skin, such as easy 

bruising, abnormal cutaneous scar appearance, and hypertrophic and fibrotic keloids28,29. The cutaneous 

wound healing process repopulates and remodels the structural matrix of the tissue following injuries20. 

There are three overlapping phases of the wound healing procedure (Figure 2.1): the inflammatory phase 

from 3 to 7 days after injury, the tissue formation/proliferative phase from day 7 to day 14 followed by the 

phase of tissue remodeling/contraction20,30.  

        The inflammatory phase includes the circulating inflammatory cells’ recruitment, infiltration and 

activation at the injury site, resulting in formation of fibrin clot via chemo-attractants such as platelets as 

well as activated macrophages produced transforming growth factor-β1 (TGF-β1)20. Monocytes infiltrate 

to the injury site in response to certain chemo-attractants, such as fragments of ECM protein, TGF-β1 and 

monocyte chemoattractant protein 1 (MCP-1). After infiltration, monocytes are activated and become 

macrophages. Macrophages function as the sources to produce and release PDGF and VEGF. Both PDGF 

and VEGF participate in initiating the formation of granulation tissue20. Signaling transduction by 

macrophages critically promotes downstream injury repair activity by local cells20,30,31. The tissue 

formation, also referred to as the proliferative phase, begins with the recruitment of macrophages followed 

by activation of fibroblasts into the wound area where fibroblasts proliferate. TGF-β1 can both promote 

the proliferation and differentiation of fibroblasts31. Myofibroblasts entails a great potency and striking 

capacity for synthesizing ECM proteins and cellular contractility32. It was demonstrated that formation of 

granulation tissues is a critical event in wound healing for vEDS patients and Col3a1+/- mice, because 

conversion of fibrin clot after injury into collagenous matrix relies heavily on newly produced type I and 

type III collagen32,33. As shown by a study in rats, along with neointimal formation after intraluminal injury, 

there was a similar production of type I and type III collagens which were examined by qPCR to measure 

the transcription of Col1a2 and Col3a1 genes34.   
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We have demonstrated aberrant thrombus resolution in the Col3a1+/- mice (Amy Reid, unpublished 

data). However, thrombus resolution progresses are similarly to wound healing, with evidence that the 

fibroblast-type cells, termed fibrocytes, come from the bone marrow35. It has been shown that bone 

marrow-derived (BMD) fibrocytes are important in wound healing35,36. Abe et al. also identified a potential 

pathway through which blood-borne fibrocytes differentiate into myofibroblasts. It was postulated that 

activated T cells could interact with circulating precursor cells of fibrocytes, triggering the early 

differentiation of fibrocytes (toward the fibrocyte phenotype). Fibrocytes then migrate to the wound site, 

where these early differentiated fibrocytes could further interact with T cells, which promote fully 

differentiation and maturation of fibrocytes, termed as myofibroblasts with stimulation of TGF-β1. These 

myofibroblasts then express α-Smooth muscle actin (α-SMA), produce collagen as well as other ECM 

proteins that promote contracture and wound healing37. Finally, studies by Han et al. also showed a distinct 

neointimal lineage cells that were originated from circulating BMD cells and participated in vascular injury 

repair. These BMD neointimal cells also resemble stem cell-like fetal/immature vascular smooth muscle 

cells (SMCs) or myofibroblasts38. 

Neointimal SMCs proliferation occurs in vascular injuries, and most proliferative cells may come 

from the arterial wall30. Many studies using the carotid injury model focus on resident SMCs proliferation 

from the arterial wall. As reviewed by Daniel et al. SMCs contributing to the neointima formation after 

arterial injury are primarily from the wall, and BMD progenitors rarely contribute to SMCs in neointima 

formation39.   

Fadini also reviewed that SMCs contributing to the formation of atherosclerosis are mostly from the 

local arterial wall40. A study by Kawasaki using a mouse carotid artery ligation model shows that thrombus 

formation and resolution is a prerequisite for neointimal formation41, and thrombus resolution also ensures 

successful arterial injury repair42. Based on the current information, we speculate that immediately after 

arterial injury, BMD fibrocytes circulate to the injury site to resolve the thrombi, followed by cells 

migrating from the arterial wall for neointima formation to secure successful injury repair.  
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Figure 2.1 Three over-lapping phases for wound healing 

Myofibroblasts are in the three over-lapping wound healing process. 
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2.2 Hypothesis 

We hypothesize that deficiency of type III collagen results in aberrant vascular injury repair in vEDS 

patients since their myofibroblasts are not producing sufficient type III collagen to effectively and 

efficiently resolve thrombi after vascular injury. In the Col3a1+/- carotid ligation mouse model, after 

induced ligation injury, arteries from Col3a1+/- mice show a persistent inflammation and proliferative cells, 

presumably myofibroblasts, and increased medial neovessel formation. We hypothesize that the extended 

thrombus resolution seen in Col3a1+/- arteries and the formation of neovessels in the wall, weaken that 

wall and predispose to arterial events like dissection. We further hypothesize that by introducing BMD 

fibrocytes with Col3a1+/+ genotype to Col3a1+/- mouse, these fibrocytes could then differentiate into 

myofibroblasts with full expression of procollagen type III and correct the aberrant wound healing in 

Col3a1+/- mice after carotid ligation. Therefore, we performed bone marrow transplant (BMT) of wildtype 

bone marrow into the Col3a1+/- mice to test this hypothesis.  

Specific aims： 

(1) To replicate Dr. Amy Reid’s study results in 12 to14-week-old mice instead of 22 to 24-

week-old mice. This will confirm that the younger mice can be used for these studies. 

(2) To perform a forward and reverse bone marrow transplant to rigorously address the stated 

hypothesis. 

a) Assess the response and pathological changes to vascular injury in Col3a1+/- mice after 

they receive bone marrow transplants (BMT) from Col3a1+/+ mice. 

b) Assess the response and pathological changes to vascular injury in reverse BMT, i.e., 

Col3a1+/+ mice after they receive a bone marrow transplant from Col3a1+/- mice. 
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2.3 Methods 

2.3.1 Carotid Ligation Injury 

       Mice used in the experiment (purchased from Jackson Laboratories, and bred in the animal facility of 

UT McGovern Medical School at Houston) weighed between 25-30g. The animal study protocol was 

approved by Animal Welfare Committee at UThealth at Houston. Mice were surgically ligated at the left 

common carotid artery at the age of 12-14 weeks (unless otherwise stated). This age corresponds to the 

mature adulthood phase in mice. The risk of fatal complications in vEDS patients increases within the age 

range. However, there is no significance difference in risks for either complication or survival between 

Col3a1+/+and Col3a1+/- mice. 

        The surgery procedure was modified from that described in Dr. Reid’s study (Amy Reid unpublished 

data). Briefly, surgical mice were induced to anesthesia with 4% isoflurane which was maintained at 2-

2.5% by a nose cone connected to the mouse. Aseptic techniques were used during the procedure and the 

fur at the neck area was shaved off with Nair gel and sanitized with alcohol swabsticks. Afterwards, 

analgesia with subcutaneous bupivacane (2.5 mg/kg) was applied immediately before making a midline 

incision of 3mm in length in the neck with sterilized scissors. Followed by dissecting away the left common 

carotid artery from the carotid sheath and vagus nerve. A ligature was made on the artery with 6-0 silk 

suture immediately at the bifurcation site where the internal carotid arteries separate from external carotid 

arteries. It was important to be gentle to avoid bleeding. The open skin area was irrigated with iodine 

alcohol and closed by 2 interrupted stitches with 5-0 suture which would be absorbed after about one week. 

       About 10% of animals experienced stroke symptoms of during the first 7 post-operative days (POD7). 

Mice which failed to maintain 80% of their body weight were sacrificed. About 5% of the mice died before 

ligation due to massive bleeding caused by the procedure of carotid artery dissection. Mice that did not 

show neurological phenotypes such as stroke were monitored and treated subcutaneous with ketoprofen 

(2-5mg/kg) twice a day for 2 days after surgery. They were weighed daily and injected mice as needed 

with 0.5-1ml lactated Ringer's solution based on their weight for over 10% drops. Normally mice would 



23 
 

survive 95% after POD7. Mice were sacrificed on 7, 14 and 21 days after surgery for the different following 

up experiments.  

 

2.3.2 Histology studies 

        For studies and analysis of POD7 arteries (N = 6 Col3a1+/+, 6 Col3a1+/-), POD14 (N = 6 Col3a1+/+, 

6Col3a1+/-), and POD21 (N = 5 Col3a1+/+, 5 Col3a1+/-), mice were first sacrificed, followed by puncturing 

of the left ventricles with a 27-gauge needle. An incision was made on the right atria to allow the outflow 

of perfusate. Mice were then perfused with phosphate-buffered saline (PBS) at <20 ml/min until blanching 

of the liver completely. Mice were then perfused with 10ml of 10% formalin at the similar rate to fix 

arteries in the native geometry. Both the entire lengths of carotid arteries were harvested for multiple 

experiments. 

         Arteries were followed by fixing in 10% buffered formalin for about 24 hours. After fixation, arteries 

were cleaned up and the connective tissues were removed followed by processing. After processing, the 

arteries were left in fridge to chill up. Then the arteries were cut three times with a scalpel: one cut was 

immediate to the ligature to remove the suture; a second cut was at the location of the descending aorta to 

remove extra descending aorta; the third cut was in   the mid-carotid artery. The remaining two pieces of 

the artery were embedded with careful attention to maintain correct orientation. The entire block with 

embedded artery was serial sectioned and three 5-µm-thick sections were collected per slide all through 

the entire length of the arteries. Every tenth slide from the entire slides sequence was then performed with 

hematoxylin and eosin (H&E) staining, followed by imaging a representative section on each slide. This 

set of sequential images were enough for us to build up an entire arterial length along the axis of the arteries. 

Each carotid artery could supply approximately 60 to 80 slides. All images in this dissertation were 

presented at 20x, unless otherwise stated, and scale bars represent 100µm. 
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2.3.3 Immunohistological (IHC) staining        

The IHC staining method was modified from Dr. Reid’s study (unpublished data) and most of the 

methods were similar with only minor corrections. Briefly, each arterial segments as obtained above from 

H&E-staining provided a relative location of each segment with neointima formation. Those unstained 

slide neighboring each neointima positive slide was subjected to IHC probes (Mac-2, pH3 and CD31) to 

investigate the amount of macrophages, the number of actively proliferating cells locate within the 

neointima and the neovascularization in the medial layer. The first slide was probed with Mac-2, which 

showed the number of macrophages. The second local slide was used to measure the number of pH3-

positive nuclei. The third slide was subjected to CD31 which was used to detect endothelial cells that are 

precursors for neovessels. Unstained sections were processed before heat-induced epitope retrieval (HIER 

citrate pH 6.0) followed by blocking for 1 hour at room temperature. 

For detecting the local macrophages, slides with arterial sections were probed with rat anti-mouse 

Mac-2 primary antibodies (Cedarlane, Burlington, NC) and incubated for 1 hour at room temperature. For 

detection of proliferative cells, slides with arterial sections were probed with with rabbit anti-mouse pH3 

primary antibodies (Millipore, Billerica, MA) followed by incubation overnight at 4˚C. To examine 

neovessel formation in formalin-fixed paraffin-embedded tissues, slides were left overnight at 4˚C with rat 

anti-mouse CD31 antibodies (Dianova, Hamburg, Germany). Slides with arterial sections were then 

washed with PBS, followed by incubation at room temperature for 1 hour with the appropriate biotinylated 

secondary antibodies, and then tissues were probed with peroxidase-conjugated avidin/biotin complexes 

(Vectastain ABC-AP Kit, Vector Laboratories, Burlingame, CA). Activity of peroxidase was detected 

using a 3, 3’--diaminobenzidine (DAB) chromogen (Dako, Glostrup, Denmark). Slides were 

counterstained with methyl green at the last step of staining. 

For statistical analysis, slides were counted one by one to get the number of positive cells or vessels 

independently. And then, for each genotype, a mean ±SD of positive cells was generated by averaging out 
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all the number from each group from the pooled neointima-positive slides, representing Col3a1+/+or 

Col3a1+/-. Significant differences were determined by the Student's t-test between the means (*p < .05).  

2.3.4 Bone marrow transplant  

Forward BMT by generating Col3a1/GFP chimeric mice 

The green fluorescent protein transgenic (GFP+) marker was used to track cells from the donor mouse. 

After BMT from Col3a1+/+ to Col3a1+/- mouse, the fibrocytes in the Col3a1+/- bone marrow would be 

replaced by the GFP+ marked fibrocytes from the Col3a1+/+ genotype. Using this procedure, we generated 

chimeric Col3a1+/+/GFP+ and Col3a1+/-/GFP+ mice. Engraftment of bone marrow was confirmed after 4-

8 weeks by flow cytometry with the blood drawn from the tail vein of each animal upon sacrificing. Further 

confirmation was done by immunofluorescent staining with GFP antibody to detect the expression of GFP 

in the carotid artery section.  

 

Forward BMT  

BMT was performed in Col3a1 mice (6-8 weeks in age). Briefly, recipient mice were irradiated with 

8Gy X-ray. The first 4Gy irradiation (usually 7pm) was given 12 hours before the second 4Gy irradiation 

(usually 7am). Donor mice (CByJ.B6-Tg (CAG-EGFP) 1Osb/J) were sacrificed humanely, the skin of the 

lower half was cut open, followed by spraying the animal down with 70% alcohol. The legs were removed 

and the skin and muscles were removed by cutting skin off. Kim wipes were used to remove the muscles 

by “rubbing”. Bones were transferred to a 100mm cell culture dish containing RPMI-1640 and the dish 

was brought to tissue culture hood. Bones were rinsed with fresh RPMI-1640 and transferred to a new dish 

with RPMI-1640. Femurs were separated from the tibia and fibula at the knee and the ends of the bones 

were cut off followed by transferring the bones to a new dish containing RPMI-1640. All the bone marrow 

cells were flushed out with a 27-gauge needle and syringe. This process was repeated with all bones until 

all the bone marrow cells were collected. Bone marrow cells were passed through a 22-gauge needle for 
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breaking up of all the clumps, then the large fragments in the cell suspension were removed by passing 

through a cell strainer (40m) and bone marrow was then collected in a 50ml tube. 100-200L iced PBS 

was added to the cells per mouse used, then the tubes were spun for 5 minutes at 500g or 1000rpm. Pellets 

were re-suspended in iced PBS, and then the number of cells from bone marrow was counted with a 

hemocytometer. Bone marrow was stored on ice until ready to inject. About 100-200l of bone marrow 

(roughly 5-10 million cells) was injected retro-orbitally into the venous plexus of each lethally irradiated 

and anesthetized recipient mouse 3-5 hours after second irradiation. Recipient mice were kept in irradiated 

room and fed with irradiated chow as well as baytril water for 2 weeks. The 8Gy dosage control mice 

would often die after 10-14 days, while the 4Gy dosage control mice could survive (100% survival). Bone 

marrow cells repopulated in the lethally irradiated mice after a 4-8 weeks recovery. 

Confirmation of chimera by flow cytometry 

        10l of blood from the tail vein was drawn from sacrificing mice. Blood was then lysed by cell lysis 

buffer, (recipe: 0.155M NH4Cl, 0.01M KHCO3, 0.1mM Na2.EDTA.2H2O). Cells were then washed two 

times with wash buffer (1% FBS in PBS) before conjugating with APC/Cy7 anti-mouse CD45 antibody 

(Bio Legend Inc., CA) at 1:100 dilution, incubated at 4 degrees for 1 hour. After incubation, cells were 

washed for two more times followed by loading onto Gallio’s Flow Cytometer (Beckman-Coulter Inc., 

CA) to detect the expression of GFP in the lymphocytes and analysis was achieved by using Kaluza 

software.  
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Reverse BMT 

       Similar to forward BMT, reverse BMT was performed in Col3a1 mice (aging 6-8 weeks). Briefly, 

male recipient mice were irradiated with 8Gy X-ray. The first 4Gy irradiation (usually 7pm) was given 12 

hours before the second 4Gy irradiation (usually 7am). The whole bone marrow cells were isolated from 

humanely sacrificed female Col3a1+/- donor mice as described above. Bone marrow cells (5 million to 

each recipient mouse) were re-suspended in sterile PBS and injected retro-orbitally into the recipient 

Col3a1+/+ or Col3a1+/- mice. Chimeric male Col3a1+/+ mice with the expression of type III collagen from 

circulating bone marrow cells of female Col3a1+/- donor mice were generated. 

 

Confirmation of reverse BMT 

        Since all donor mice are female and all recipient mice are male, we designed a method to detect the 

ratio of white blood cells from donor mice in recipient mice by measuring the ratio of mouse X and Y 

chromosome content in blood from recipient mice. The idea of this method was based on a traditional 

competitive RT-PCR for RNA quantification. By comparing homologous genes and sequences in mouse 

X and Y chromosomes, we designed a set of primers in Zfx and Zfy genes. The primer sequences on these 

genes were identical, forward primer: 5’- CATAGGCCTTCAGAACTCAAG and reverse primer: 5’- 

CTTTCGTATGAATGGAGATAACG. To further validate this result, we designed a set of primers in 

Usp9x and Usp9y genes and the primer sequences on these genes were identical, forward primer: 5’-

AACAGAATGAGCAGTCTGAAAG and reward primer: 5’- TCCACCATCTTTTCTGACGCC.  
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2.4 Results  

2.4.1 Increased neointimal formation after carotid arterial ligation in Col3a1+/- mice at POD21  

   To compare the injury response between Col3a1+/+ and Col3a1+/- mice, carotid ligation on the left 

carotid arteries was performed in Col3a1+/+ and Col3a1+/- mice at around 12 weeks of age. Neointima 

formation was examined over three weeks after surgery by H & E staining. On POD7 after ligation, the 

Col3a1+/+ mice’s tissues exhibited a thicker neointimal layer compared to their Col3a1+/- counterparts. By 

POD14 and POD21, the Col3a1+/+ mice had fully completed thrombus resolution, and the neointima of 

their arteries had formed scars. At the same time, the Col3a1+/- arteries were still thickening its neointimal 

layer. However, it has to be noted that the remodeling of neointima was slower in the arteries from 

Col3a1+/- mice compared with that from Col3a1+/+ mice (Figure 2.2).  To conclude, there was a slower 

neointima remodeling in the Col3a1+/- arteries after carotid injury. 

Figure 2.2 Slower neonitima remodeling in the Col3a1+/- mice  

 Representative cross sections of H&E-stained carotid arteries from both Col3a1+/+ and Col3a1+/- mice 

after carotid ligation at POD7 (top panel), POD14 (middle panel) and POD21 (bottom panel), original 

magnification, 100x 
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2.4.2 Increased myofibroblast proliferation in the Col3a1+/- mice after carotid ligation 

We next examined if there was difference in the accumulation of cells in the neointima using IHC 

with an anti-pH3 antibody, to detect the cell mitosis marker pH3, which indicated the proliferative cells 

within the arterial lumen. At POD7, there was no difference observed in cell proliferation comparing 

Col3a1+/+ to Col3a1+/- tissues (Figure 2.3). However, at POD14 and POD21, cell proliferation in the 

Col3a1+/- tissues was significantly higher. This indicated that Col3a1+/- mice have more neointimal 

hyperplasia at later time points after arterial injury.  
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(a) Representative cross sections with anti-p-H3 staining (pH3, for proliferative cells) of carotid 

arteries from both Col3a1+/+ and Col3a1+/- mice at 7, 14 and 21 days after carotid ligation. The 

cellular proliferation marker showed no difference between Col3a1+/+ and Col3a1+/-  arteries at 7 

days after ligation but there was significant increased pH3 positive cells in the Col3a1+/- arteries 

compared with that in the Col3a1+/+ arteries at both 14 and 21 days after ligation. Original 

magnification 400x, and scale bars: 50μm, red arrow was showing the pH3 positive cell (b) 

Quantitation: showed that there was increased cell proliferation in the arteries from Col3a1+/- mice 

by POD14 and POD21 compared with that from the Col3a1+/+ mice. n = 6 per group. **p<0.01，
p***<0.001 by Student’s t-test, NS: no significance.  

Figure 2.3  Increased cell proliferation within the Col3a1+/- arteries 
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2.4.3 Increased inflammation in Col3a1+/- mice after carotid ligation 

         In Dr. Amy Reid’s unpublished data, there was increased macrophage burden in the Col3a1+/- arteries 

at later time points. To determine if consistent phenotype existed in younger mice, we examined 

inflammation status with tissues from these mice. Arterial sections with tissues from POD7, POD14, and 

POD21 arteries were probed with mouse macrophage marker, Mac-2. Mac-2 positive cells in the 

neointima were counted in all sections. Result showed no significant difference in macrophage 

accumulation at POD7 (Figure 2.4b). However, we found a significantly increased number of 

macrophages in Col3a1+/- arteries per section at POD14 and POD21 arteries. There were very few 

remaining inflammatory cells in the Col3a1+/+ sections by POD21. By contrast, Mac-2 positive cells are 

still present at high numbers in the Col3a1+/- arteries through POD21 (Figure 2.4b). These results 

indicated the increased inflammation in the Col3a1+/- mice after carotid injury. 
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Figure 2.4 Increased inflammation within the Col3a1+/-arteries 

(a) Representative cross sections with anti-Mac-2 staining (Mac-2, for inflammatory cells) of 

carotid arteries from both Col3a1+/+ and Col3a1+/-
 mice at 21 days after carotid ligation. The 

inflammatory marker showed no difference between Col3a1+/+ and Col3a1+/- arteries at 7 days after 

ligation but showed an increase in Mac-2 positive cells in the Col3a1+/-
 arteries at both 14 and 21 

days after ligation, and there was a trend in increased Mac-2 stained cells in the Col3a1+/- arteries 

from 7 days after ligation and persistent up until 14 and 21 days while a significant decrease in 

Mac-2 stained cells from 7 days to 21 days in the Col3a1+/+
 
arteries. Original magnification 400x, 

scale bars: 50μm, red arrow was showing the Mac-2 positive cell (b) Quantitation: showed increased 

inflammation in the arteries from Col3a1+/- mice by POD14 and POD21. n = 6 per group. *p<0.05，
p**<0.01 by Student’s t-test, NS: no significance.  
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2.4.4 Persistent neovascularization in the media of injured Col3a1+/- arteries at POD21 

        Neovascularization was driven by VEGF and other cytokines secreted by platelets and macrophages. 

It plays an important role in venous thrombus resolution43,44. Dr. Reid observed some blood-filled 

neovessels within the media of Col3a1+/- arteries, while fewer or no neovessels were found in the arteries 

of the Col3a1+/+ mice. To determine if neovessel formation could also be observed in the younger mice, 

immunostaining for immature endothelial cells lined within the arterial lumen using an antibody directed 

against CD31 was conducted.  Data showed consistently increased numbers of neovessels in the medial 

layer at POD14 and POD21 in the Col3a1+/+ arteries (Figure 2.5). We speculate that persistent 

inflammation in the Col3a1+/- arteries drive continuous secretion of VEGF and further drive the formation 

of neovessels in the arterial wall which predispose the fragility of arterial wall in the Col3a1+/- mice. 
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(a) Representative cross sections with anti-CD31 staining (CD31, for vascular endothelial cells) of 

carotid arteries from both Col3a1+/+ and Col3a1+/- mice at 7, 14 and 21 days after carotid ligation. The 

endothelial marker didn’t showed any differences between Col3a1+/+
 
and Col3a1+/-

 arteries at 7 days 

after ligation but there was significant increased CD31 positive neovessels in the Col3a1+/- arteries 

compared with that in the Col3a1+/+
 
arteries at both 14 and 21 days after ligation. Original magnification 

400x, scale bar: 50μm, red arrow was showing the CD31 positive neovessel. (b) Quantitation: showed 

increased neovessels in the medial layer of the arteries from Col3a1+/- mice by POD14 and POD21 

compared with that from the Col3a1+/+ mice. n = 6 per group. *p < 0.05, by Student’s t test, NS: no 

significance. 

Figure 2.5  Increased medial neovessel formation in Col3a1+/- arteries 
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2.4.5 Bone marrow from the Col3a1+/+ mice recuses the ability of injury repair in Col31+/- mice  

Data from the first section of this chapter confirmed the aberrant injury repair in the Col3a1+/-mice. 

Myofibroblasts which produce collagens to the extracellular matrix are widely accepted to be critical in 

injury repair45. Fibrocytes, which can be differentiated into fibroblasts and further induced into 

myofibroblasts are  derived from fibrocytes in the bone marrow21. We hypothesize that deficiency of type 

III collagen results in an aberrant vascular injury repair in vEDS patients since their myofibroblasts are 

not producing sufficient type III collagen to effectively and efficiently resolve thrombi after vascular 

injury. In Col3a1+/- carotid ligation mouse model, after induced ligation injury, arteries from Col3a1+/- 

mice showed persistent inflammation and proliferative cells, presumably myofibroblasts, and increased 

medial neovessel formation. We hypothesize that the extended thrombus resolution seen in Col3a1+/- 

arteries and formation of neovessels in the wall weaken that wall and predispose to arterial events like 

dissection. We further hypothesize that introducing BMD fibrocytes with Col3a1+/+ genotype to 

Col3a1+/- mouse, these fibrocytes could then differentiate into myofibroblasts with full expression of 

procollagen type III and correct the aberrant wound healing in Col3a1+/- mice after carotid ligation. 

Therefore, we performed bone marrow transplant (BMT) of wildtype bone marrow into the Col3a1+/- 

mice to test this hypothesis.  

First, bone marrow from the Col3a1+/+ mice was collected and transplanted to both the Col3a1+/+ and 

Col3a1+/- mice. Figure 2.6 shows the flow chart of the forward BMT experiment. After waiting for 4-8 

weeks, irradiated mice were sacrificed and the efficiency of BMT was confirmed by flow cytometry to 

detect the expression of GFP marker on lymphocytes. Figure 2.7a showed the expression of GFP on 

more than 80% of the lymphocytes indicating successful BMT. IHC staining with an anti-GFP antibody 

(Abcam，Cambridge, United Kingdom) was performed to detect GFP positive cells within the neointima 

and the arterial lumen to confirm that a chimera was obtained (Figure 2.7b). GFP positive cells were 

detected within the lumen as well as the neointimal layer indicating a contribution of BMDCs to the 

formation of the neointimal layer. Following the confirmation of successful BMT, IHC staining as stated 
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in 2.2.1 was performed to examine the proliferation of myofibroblasts in the neointima, inflammation in 

the neointima and neo-vessel formation in the medial layer. But for this study we only looked at the 

POD14 and POD21 since the difference between Col3a1+/+ and Col3a1+/- at POD7 is not as dramatic as 

the difference seen at POD14 and POD21.    

 

 

 

Forward Bone Marrow Transplant (BMT) – F-BMT. Bone marrow was isolated from the 

Col3a1+/+mice and transplant to both X-ray lethally irradiated Col3a1+/+ and Col3a1+/- recipient 

mice. Bone marrow repopulated in the recipient mice for 4-8 weeks before performing carotid 

ligation, mice were sacrificed and carotid arteries harvested for following up histology studies. 

About 20μl mice peripheral blood from tail vein was saved for flow cytometry to detect the 

expression of GFP confirm the efficiency of BMT. F-BMT: Forward bone marrow 

transplantation, bone marrow from Col3a1+/+ mice was transplanted into both Col3a1+/+ and 

Col3a1+/- mice. 
 

Figure 2.6 Flow chart for Forward BMT 
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(a) Expression of GFP in the lymphocytes detected by flow cytometry, positive GFP signal 

indicated successful BMT. (b) IHC staining to confirm the efficiency of BMT with the detection 

of GFP in the neointima in ligated arteries. NC: negative control of GFP, PC: positive control 

of GFP staining. (c): red arrow was showing positive GFP cell. GFP positive cells showed in 

the neointima indicating that BMD cells circulated to the injury site. F-BMT: forward bone 

marrow transplantation, bone marrow from Col3a1+/+ mice was transplanted into both 

Col3a1+/+ and Col3a1+/- mice. 

a 

Figure 2.7 Confirmation of F-BMTF-BMT 
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To examine the difference in neointima remodeling between two groups of mice after forward BMT, 

H & E staining was also performed. Result showed no significant difference after forward BMT at POD14 

and POD21 in both Col3a1+/+ and Col3a1+/+mice, indicating the ability of neointimal remodeling was 

similar in both groups of arteries (Figure 2.8). Additionally, cell proliferation ability was again determined 

by pH3 staining. Again, the number of pH3 positive cells didn’t show significant difference within the 

neointima by POD21, indicating no dramatic difference in the proliferation of cells in the neointima 

(Figure 2.9) after 21 days of injury with forward BMT. Inflammation was also determined by Mac-2 

staining. Significant difference was still observed in the inflammation level in the neointima between 

Col3a1+/+ and Col3a1+/+mice at POD14 and POD21 (Figure 2.9 and 2.10). CD31 stained neovessels were 

also counted and results showed no significant difference in the capability of neovessel formation in the 

medial layer, indicating that the neovessel formation ability was also reduced back to Col3a1+/+ levels in 

Col3a1+/- BMT mice at POD14 and POD21 (Figure 2.11). These data indicate that transplantation of bone 

marrow from the Col3a1+/+ mice could normalize the injury repair in the Col3a1+/- mice especially by 

POD21.  

Representative H&E-stained cross sections of carotid arteries from both Col3a1+/+
 
and 

Col3a1+/- mice after carotid ligation at POD14 (top panel) and POD21 (lower panel), original 

magnification, 100x. F-BMT: Forward bone marrow transplantation, bone marrow from 

Col3a1+/+ mice was transplanted into both Col3a1+/+ and Col3a1+/- mice. 
 

Figure 2.8 Similar ability in neointimal remodeling after F-BMT 
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(a) Representative cross sections with anti-p-H3 staining (pH3, for proliferative cells) of 

carotid arteries from both Col3a+/+ and Col3a1+/- mice at 14 and 21 days after carotid ligation. 

There was still significant more pH3 positive cells in the neointima of Col3a1+/- arteries 

compared with that in the neointima of Col3a1+/+ arteries at 14 days after ligation. While there 

was no differences between Col3a1+/+ and Col3a1+/- arteries at 21 days after ligation from 

mice with F-BMT. And a significant decrease in pH3 positive cells in the neointima of 

Col3a1+/- arteries at POD21 arteries compared that from the POD14 arteries in Col3a1+/- mice. 

Original magnification 400x, red arrow was showing the pH3 positive cell (b) Quantitation: 

showed decreased cell proliferation in the Col3a1+/- arteries to the level of that in arteries from 

Col3a1+/+ mice from POD14 to POD21 indicating decreased neointimal formation after F-

BMT in Col3a1+/- arteries. n = 6 per group. *p < 0.05, p**< 0.01 by Student’s t test, NS: no 

significance. F-BMT: Forward bone marrow transplantation, bone marrow from 

Col3a1+/+ mice was transplanted into both Col3a1+/+ and Col3a1+/- mice. 
  
  

Figure 2.9 Decreased cell proliferation in Col3a1+/- arteries after F-BMT 
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(a) Anti-Mac-2 staining (Mac-2, for inflammatory cells) of representative cross sections of carotid 

arteries from both Col3a1+/+ and Col3a1+/- mice at 14 and 21 days after carotid ligation with F-BMT. 

The Mac-2 staining showed significant difference in the number of Mac-2 stained cells in the Col3a1+/- 

arteries compared with that in the Col3a1+/+
 
arteries at both 14 and 21 days after ligation with F-

BMT. Original magnification 400x, scale bars: 50μm. Red arrow was showing the inflammatory Mac-

2 positive cell (b) Quantitation: shows decreased inflammation in the Col3a1+/- arteries to the level of 

that in arteries from Col3a1+/+ mice POD21 indicating similar ability in neointimal inflammation after 

F-BMT in both Col3a1+/+ and Col3a1+/- arteries at both POD14 and POD21. n = 6 per group. NS: no 

significance by Student’s t-test, F-BMT: Forward bone marrow transplantation, bone marrow from 

Col3a1+/+ mice was transplanted into both Col3a1+/+ and Col3a1+/- mice. 
  

Figure 2.10 Decreased neointimal inflammation in Col3a1+/- arteries after F-BMT 
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2.4.6 Reverse Bone Marrow Transplantation worsens the phenotypes shown in the Col3a1+/+ 

mice 

        Results from the forward BMT showed the potential for Col3a1+/+ bone marrow to correct the injury 

repair ability of Col3a1+/- mice. This indicated that bone marrow-derived cells from the Col3a1+/+ mice 

became myofibroblasts that secrete and lay down collagen fibrils to accelerate the arterial injury repair 

process which was delayed in the Col3a1+/- mice before transplant. Based on these results, we then asked 

whether bone marrow from Col3a1+/- mice would worsen post-injury phenotypes in the Col3a1+/+ arteries.         

Reverse BMT was performed on both Col3a1+/+ and Col3a1+/- mice. Shown in Figure 2.12 was the 

flow chart for the reverse BMT. As before, the recipient mice were lethally irradiated with 8Gy X-ray and 

bone marrow from female Col3a1+/- donor mice was collected and injected retro-orbitally into the recipient 

male mice. After recovery for 4-8 weeks, carotid artery ligation was also made with the recipient mice.  

        Carotid arteries from the ligated recipient mice were collected as described before at both POD14 and 

POD21. Upon harvesting samples, blood was collected from the heart in order to isolate DNA to be used 

for confirmation of a successful reverse BMT. Liver tissues were collected for isolating DNA to confirm 

the success of the reverse BMT. Confirmation of reverse BMT was shown in Figure 2.13. Sanger 

sequencing assay on the PCR fragments showed that DNA from a female mouse is homozygous Zfx while 

DNA from a male mouse was heterozygous on some nucleotides that were from the sequence diversity 

between Zfx and Zfy (Figure 2.13, the first row). The different alleles of each heterozygous nucleotide 

have similar peak height based on Sanger sequencing, which indicated that the primers had similar 

efficiency to amplify fragments in Zfx and Zfy (Figure 2.13, the first row).     
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PCR and sequencing assay were performed with DNA extracted from the blood samples of recipient 

mice. The results showed that Y chromosome Zfy was undetectable in recipients’ blood samples (Figure 

2.13, left column, row 2-4). To validate this finding, we performed PCR and sequencing assay with DNA 

extracted from livers of recipient mice. The result showed that the amount of Y chromosomes in livers of 

 (a) Representative cross sections with anti-CD31 staining (CD31, marker of endothelial cells) of 

carotid arteries from both Col3a1+/+ and Col3a1+/- mice at 14 days after carotid ligation with F-

BMT. The CD31 staining showed that there was no significant difference in the number of CD31 

positive neovessels in the Col3a1+/-arteries compared with that in the Col3a1+/+
 
arteries at both 14 

and 21 days after ligation from mice with F-BMT. Original magnification 400x, and scale bars: 

50μm. Red arrow was showing the CD31 positive neovessels in the medial layer (b) Quantitation: 

showed similar number of neovessels in the Col3a1+/- arteries compared to Col3a1+/+ mice after F-

BMT. n = 6 per group. NS: no significance, by Student’s t-test. F-BMT: Forward bone marrow 

transplantation, bone marrow from Col3a1+/+ mice was transplanted into both Col3a1+/+ and 

Col3a1+/- mice. 
  

Figure 2.11 Decreased neovessel formation in the Col3a1+/- arteries after F-BMT 
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the recipient mice were similar to that of X chromosomes (Figure 2.13, right column, row 2-4). To further 

validate this result, we designed a set of primers in Usp9x and Usp9y genes and the primer sequences on 

these genes were identical, forward primer: 5’-AACAGAATGAGCAGTCTGAAAG and reward primer: 

5’- TCCACCATCTTTTCTGACGCC. The sequencing results confirmed our previous finding that the 

majority of white blood cells in recipient mice were from donor animals 4-8 weeks after transfusion. 

(Figure 2.13, row 5). Overall, this result suggested that the majority of white blood cells in the recipient 

mice were from donors 4-8 weeks after the bone marrow transfusion, indicating a successful reverse BMT. 
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Bone marrow was isolated from the Col3a1+/-
 
female mice and transplanted to both X-ray lethally 

irradiated Col3a1+/+ and Col3a1+/- male recipient mice, the bone marrow repopulated in the 

recipient mice for 4-8 weeks before performing carotid ligation, mice were sacrificed and carotid 

arteries harvested for following up histology studies. 500ul mice peripheral blood and liver tissue 

from both donor and recipient mice was saved for the confirmation of R-BMT.  R-BMT: reverse 

Bone Marrow Transplant, bone marrow from Col3a1+/-
 
female mice was transplanted to both 

Col3a1+/+ and Col3a1+/-
 
male mice. 

Figure 2.12 Flow chart for Reverse Bone Marrow Transplant (BMT) 

– R-BMT 
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PCR and sequencing assay were performed with DNA extracted from both blood and livers of recipient 

mice. M: male; F: female; b: blood; l: liver, numbers are the mouse identification number. PCR and 

sequencing results showed that there was donor originated Zfx and Zfy detected in the DNA extracted 

from recipient blood samples, but not detected in the DNA extracted from recipient liver tissue 

indicating the repopulation of donor bone marrow in the recipient mice. R-BMT: reverse Bone 

Marrow Transplant, bone marrow from Col3a1+/- female mice was transplanted to both Col3a1+/+ and 

Col3a1+/- male mice. 

 

Figure 2.13 Confirmation of R-BMT 
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Representative H&E-stained cross sections of carotid arteries from both Col3a1+/+
 
and 

Col3a1+/- mice after carotid ligation at POD14 (top panel) and POD21 (lower panel). Results 

show similar ability in neointimal remodeling in the Col3a1+/+
 
and Col3a1+/- mice after carotid 

ligation with R-BMT at both POD14 and POD21. Original magnification, 100x. R-BMT: 

Reverse bone marrow transplantation, bone marrow from Col3a1+/- female mice was 

transplanted to both Col3a1+/+ and Col3a1+/- male mice. 

Figure 2.14 Similar ability in neointimal remodeling after R-BMT 
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 (a) Representative cross sections with anti-p-H3 staining (pH3, for proliferative cells) of 

carotid arteries from both Col3a1+/+ and Col3a1+/- mice at 14 and 21 days after carotid ligation 

with R-BMT. No difference between Col3a1+/+ and Col3a1+/- arteries at both 14 and 21 days 

after ligation from mice with R-BMT was observed. Original magnification: 400x, scale bars: 

50μm, red arrow was showing the pH3 positive cell (b) Quantitation: shows no difference in 

the pH3 positive cell of arteries from both Col3a1+/+ and Col3a1+/- at POD14 and POD21 

indicating similar ability in cell proliferation within the arterial lumen after R-BMT. n = 6 per 

group. NS: no significance by Student’s t test. R-BMT: Reverse bone marrow 

transplantation: bone marrow from Col3a1+/- female mice was transplanted to both Col3a1+/+
 

and Col3a1+/- male mice.   

Figure 2.15 No significant difference in cell proliferation after R-BMT 
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 (a) Representative cross sections with anti-Mac-2 staining (Mac-2, for inflammatory cells) of carotid 

arteries from both Col3a1+/+ and Col3a1+/- mice at 14 and 21 days after carotid ligation with R-BMT. 

The inflammatory marker showed that there was not significant difference in Mac-2 stained cells in the 

Col3a1+/- arteries comparing to that in the Col3a1+/+ arteries at both 14 and 21 days after ligation with 

R-BMT, but there was significant increase in Mac-2 positive cells from POD14 to POD21 in the arteries 

from Col3a1+/+ compared with that in the Col3a1+/- after R-BMT. Original magnification 400x, and 

scale bars: 50μm, red arrow is showing the inflammatory Mac-2 positive cell (b) Quantitation: shows 

no difference in the neointimal inflammation in arteries from both Col3a1+/+ and Col3a1+/- after R-

BMT. n = 6 per group. ***p < 0.001, by Student’s t-test, NS: no significance. R-BMT: Reverse bone 

marrow transplantation, bone marrow from Col3a1+/-
 
female mice was transplanted to both Col3a1+/+ 

and Col3a1+/- male mice.   

Figure 2.16 No significant difference in neointimal inflammation after R-BMT 
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        After reverse BMT, the formation of neointima, cell proliferation, inflammation in the neointima, and 

neovessel formation in the medial layer were all investigated. First, H&E staining was still performed to 

examine the neointima hyperplasia. Results from the H&E staining showed increased neointima in sections 

from both groups of mice from POD14 to POD21 (Figure 2.14) and results from the pH3 staining showed 

that there were significantly more pH3 stained cells in the neointima of arteries from Col3a1+/+ mice at 

POD21 compared with that in the neointima of arteries from Col3a1+/+ arteries at POD14, indicating 

increased cell proliferation in the Col3a1+/+ arteries after 21 days of injury (Figure 2.15). Interestingly, 

there was increased quantity of Mac-2 positive cells detected in the neointima layer in Col3a1+/+ mice after 

reverse BMT at POD21 compared with that in the Col3a1+/+ arteries at POD14 (Figure 2.16), suggesting 

increased inflammation in Col3a1+/+ mice after reverse BMT. There was no difference in neovessel 

formation after reverse BMT at both POD14 and POD21 in both groups of arteries (Figure 2.17).   To 

conclude, after reversal BMT, we found an increase in cell proliferation in the Col3a1+/+ mice at POD21 

compared to POD14, an increase in inflammation in the neointima in the Col3a1+/+ mice at POD21 

compared to POD14, but we were not able to see any difference in the neovessel formation in both groups 

of mice at both time points. 
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 (a) Anti-CD31 staining (CD31, for endothelial cells) of representative cross sections of carotid 

arteries from both Col3a1+/+ and Col3a1+/- mice at 14 and 21 days after carotid ligation with R-

BMT. The CD31 staining shows that there was no significant difference in the number of CD31 

positive neovessel in the Col3a1+/- arteries compared with that in the Col3a1+/+
 
arteries at both 

14 and 21 days after ligation with R-BMT. Original magnification 400x, scale bars: 50μm. Red 

arrow was showing CD31 positive neovessel (b) Quantitation: showed the neovessel formation 

in the medial layer in the Col3a1+/- arteries was similar to the level of that in arteries from 

Col3a1+/+ mice both POD14 and POD21 after R-BMT. n = 6 per group, NS: no significance by 

Student’s t-test. R-BMT: Reverse bone marrow transplantation, bone marrow from 

Col3a1+/-
 
female mice was transplanted to both Col3a1+/+ and Col3a1+/-

 
male mice. 

  

Figure 2.17 No significant in neovessel formation arteries after R-BMT 
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Representative sections of the Col3a1+/+and Col3a1+/-
 

mice after carotid ligation with No BMT (top 

panel), F BMT (middle panel) and R BMT (bottom panel) at both POD14 (left panel) and POD21 (right 

panel). Showing decreased neointima formation after F-BMT while increased neointima formation after 

R-BMT compared with that in arteries from mice with no BMT at both POD14 and POD21, especially 

in Col3a1+/- mice at POD21. Scale bar: 100μm. (BMT: bone marrow transplant, F-BMT: forward BMT, 

R-BMT: reverse BMT). 

Figure 2.18 H&E staining indicating changes in the neointima remodeling 
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(a) pH3 staining showed representative sections of arteries from both Col3a1+/+ and 

Col3a1+/- mice, after carotid ligation with No-BMT (top panel), F-BMT (middle 

panel) R-BMT (bottom panel) at both POD14 (left panel) and POD21 (right panel) 

original magnification 200x. (b) Quantitation showed significantly higher number 

of pH3 positive cells in arteries from Col3a1+/- mice compared with that in arteries 

from Col3a1+/+
 
mice in No-BMT group at both POD14 and POD21. There was no 

difference in the number of pH3 positive cells in arteries from both Col3a1+/+ and 

Col3a1+/- mice at both POD14 and POD21 after F-BMT. There was significantly 

decreased number of pH3 positive cells in arteries from Col3a1+/- mice after F-

BMT compared with that in No-BMT at POD 21. However, there was significant 

increase in the number of pH3 cells in arteries from Col3a1+/+ mice after R-BMT 

compared with that from No-BMT arteries at POD21. (BMT: bone marrow 

transplant, F-BMT: forward BMT, R-BMT: reverse BMT), *p<0.05, 

**p<0.01, ***p<0.001 by Student’s t-test, NS: no significance. 

  

Figure 2.19 Comparison of cell proliferation in the neointima for all groups 
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(a) Mac-2 staining showed representative sections of arteries from both Col3a1+/+ and 

Col3a1+/- mice, after carotid ligation with No-BMT (top panel), F-BMT (middle panel) and 

R-BMT (bottom panel) at both POD14 (left panel) and POD21 (right panel). (b) Quantitation 

showed that there was significantly higher number of Mac-2 positive cell in arteries from 

Col3a1+/- mice compared with that in arteries from Col3a1+/+
 
mice at both 14 and 21 days 

after ligation in No-BMT group, and there was no significant difference in the number of 

Mac-2 positive cells in arteries from Col3a1+/+ mice compared with Col3a1+/- arteries at 

POD21 after F-BMT. There were significantly more Mac-2 cells in arteries from Col3a1+/+ 

mice with R-BMT compared with those from Col3a1+/+ mice in No-BMT and F-BMT group 

at POD21. (BMT: bone marrow transplant, F-BMT: forward BMT, R-BMT: reverse 

BMT), *p<0.05, **p<0.01, ***p<0.001 by Student’s t test, NS: no significance. 

Figure 2.20 Comparison of inflammation in the neointimal layer for all groups 
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(a) Representative sections of arteries from both Col3a1+/+ and Col3a1+/- mice after carotid 

ligation with No-BMT (top panel), F-BMT (middle panel) and R- BMT (bottom panel) at both 

POD14 (left panel) and POD21 (right panel) (b) Quantitation showed that there was 

significantly higher number of new vessels in arteries from Col3a1+/-
 
mice compared with that 

from Col3a1+/+ mice in no BMT group at 14 and 21 days after ligation and there was no 

significant difference in the number CD31 positive neovessel in arteries from Col3a1+/+ mice 

compared with arteries from Col3a1+/- mice after F-BMT and R-BMT groups at both POD14 

and POD21, indicating no difference in neovessel formation in the medial layer after F- and R-

BMT. *p<0.05 by the Student’s t test, NS: no significance. 

Figure 2.21 Comparison of medial neovessel formation 

for all groups 



55 
 

Discussion  

      Data generated from Col3a1+/- mice showed a decreased expression and production of mature type III 

collagen by fibroblasts/myofibroblasts in injured carotid arteries, leading to delayed thrombus resolution 

as described in Dr. Reid’s study (Unpublished data). The study described herein confirmed and expanded 

the finding of delayed thrombus resolution in the Col3a1+/- mice. In Col3a1+/+ mice, there was an initial 

response that lead to the appearance of thrombus at POD7. This was accompanied by the presence of 

macrophages in the lumen space. However, by POD14, the size of the neointima was already decreasing, 

and by POD21 the neointima has decreased to a relatively thin layer. By contrast, in the Col3a1+/- mice the 

initial response was slower, such that at POD7 there was actually less neointima than in the Col3a1+/+. 

However, the number of proliferating and infiltrating cells was higher in the Col3a1+/- mice. At POD14 

and POD21 the size of the neointima continued to increase in the Col3a1+/- mice. The thickening of 

neointimal layers in Col3a1+/- tissues at POD14 and POD21 was consistent with results from Dr. Reid’s 

study (Unpublished data). This delayed wound healing in Col3a1+/- mice suggested that expression of 

correct type III collagens was necessary for quick and complete thrombus resolution. Taken together, these 

results showed that the Col3a1+/- mice have delayed thrombus resolution as a result of reduced type III 

collagen production.  

Macrophage participation in inflammation was critical in successful wound healing by secreting 

inflammatory factors and pro-angiogenic factor-VEGF. Both secure a normal and successful wound 

healing46. However, when there is not enough type III collagen laid down at the wound site, there is a 

continuous need for myofibroblast proliferation, resulting in a persistent existence of macrophages and 

inflammation. Extra TGF-β  from macrophages are involved in the differentiation of myofibroblasts to 

produce procollagen type III, while extra VEGF result in medial neovessel formation, which predisposes 

the arterial dissection and rupture47. Macrophages have different functions in wound healing. Expression 

of growth factors and/or angiogenic factors such as TGF-β and VEGF by macrophages are both critical in 

persistent wounding and scarring46. 
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        We proposed that myofibroblasts functioning at the injury site originated from the circulating 

fibrocytes in the bone marrow, and therefore hypothesized that BMT could be a potential strategy to correct 

the defective injury repair in Col3a1+/- mice. In principal, transplanted BMD cells from Col3a1+/+ mice 

could circulate to the injury site, expressed and lay down mature type III collagen48, thus accelerating the 

process of thrombus resolution. Results from the forward BMT showed that at POD14 and POD21 the 

neointimal thickening in Col3a1+/- arteries was reduced back to the level that was observed in the arteries 

from Col3a1+/+mice (Figure 2.18). Additionally, the proliferation and inflammation in the Col3a1+/- 

arteries was reduced to similar levels as Col3a1+/+ arteries (Figure 2.19 and 2.20). Less neovessel 

formation in the medial layer was also observed, suggesting that preventing the exaggerated proliferative 

and inflammatory response also reduced expression of angiogenic factors (Figure 2.21). These results 

support our hypothesis that after receiving bone marrow from the Col3a1+/+mice, fibrocytes circulate to 

the wound area and produce type III collagen to promote wound repair by decreasing aberrant cell 

proliferation and inflammation as well as neovessel formation in the Col3a1+/- arteries. 

       Bone marrow-derived cells as well as resident fibroblasts contribute to the arterial injury process after 

tissue injury38,49. However, it is still controversial whether the circulating cells or the resident cells 

contribute to repairing at the injury site. From our forward BMT study, we demonstrated by GFP staining 

that cells from circulation migrate to the injury site (Figure 2.7). To confirm the discoveries, we 

hypothesized that transplanting bone marrow from the Col3a1+/- mice into the Col3a1+/+ mice would 

exacerbate the phenotypes in the Col3a1+/+ arteries by contributing circulating Col3a1+/- fibrocytes which 

will be induced and differentiated into myofibroblasts, this will lead to a delayed arterial injury in the 

Col3a1+/+ arteries. To test our hypothesis, reverse BMT was performed.  

Results from the reverse BMT validated our hypothesis. We observed increased cell proliferation 

in the neointima layer in the Col3a1+/+ mice after reverse BMT at POD21 compared with arteries from 

non-BMT Col3a1+/+ mice (Figure 2.18 and 2.19). Furthermore, we observed increased inflammation 

levels in the neointima in the Col3a1+/+ mice after reverse BMT at POD21 (Figure 2.20). 
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In conclusion, the current study confirmed a novel mechanism for the vascular phenotypes in 

vEDS patients. More importantly, we have tested a novel therapeutic approach of BMT to treat the vascular 

complications of vEDS by correcting injury repair ability of vEDS patients. This study provided a  

possibility to dramatically improve the length and quality of life for vEDS patients and decrease the 

incidence of sudden death caused by arterial events, including dissections and arterial rupture4.  
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3 Celiprolol Trial on Col3a1+/- Mice to Modulate the Thrombus Resolution 
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3.1 Introduction  

3.1.1 β-adrenergic receptors (β-ARs) and wound healing 

        Beta-adrenergic receptors (β-ARs) are playing a central role to the regulation in cardiac function50. 

These receptors are located on the surface of many cell types and bound to endogenous hormones such as 

catecholamine and norepinephrine51. The “β2-AR subtype” of β-ARs is distributed on the membrane of 

fibroblasts, keratinocytes and melanocytes52. Although the expression of β2-AR subtype on skin tissues 

has been identified for more than three decades, their functional significance was not recognized until 

recently53. 

        The complicated skin wound healing process requires a series of coordinated procedures. Temporal 

and orchestration of numerous cell types which parallel with thrombus resolution, as discussed in Chapter 

2, all together, they provide a successful wound healing mice model. Although different studies have 

provided evidences that a β2-AR autocrine/paracrine singling pathway exists, a clear understanding of the 

specific role for β2-AR signaling in wound healing requires more investigation. Studies by Pullar et al. 

have shown that β2-ARs could regulate  migration and re-epithelialization of keratinocytes54, and that 

blockade of β2-ARs increases keratinocyte migration. Antagonism of β2-ARs has many other effects 

including enhancing angiogenesis, increasing secretion of vascular endothelial growth factor (VEGF) from 

human keratinocytes, increasing the migration rate of human dermal fibroblasts (HDFs) in vitro, and 

increasing expression of SM-α-actin, production of collagen III. Mice without β2-ARs have faster wound 

healing, at least within the first few days post-injury55. Studies from the same group demonstrated that 

antagonists of β2-AR could promote wound re-epithelialization by increasing phosphorylation and 

activation of ERK signaling, increasing migration rate of keratinocytes, and increasing electric field-

directed migration. To conclude, blockade of β2-ARs with β-blockers appeared to be a promising strategy 

for promoting skin wound healing (Figure 3.1)56. 
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Agonists and antagonists in keratinocyte cell migration. Agonists of β2-AR inhibit directional migration 

of keratinocytes while antagonists promote the migration, leading to increased wound repair. Reprinted 

with the permission from Elservier [β-Adrenergic receptor modulation of wound repair] Volume 58, 

Issue 2, August 2008, 158-164 

 

Figure 3.1 Schematic representation of interaction of the β2-AR 
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3.1.2 Drug: celiprolol 

      Celiprolol is a relatively cardio-selective β1-adrenoceptor blocker, possessing intrinsic 

sympathomimetic activity, acting as a partial agonist on β2-receptors and having a direct vasodilator effect. 

It is applied clinically for the treatment of mild to moderate level of hypertension57. Boutouyrie et al. 

demonstrated that vEDS patients showed a decrease in the thickness intima to media. This decrease 

resulted from the mechanical stress especially when the stress was against extremely fragile tissues14. They 

postulated that treatment with celiprolol could decrease the mechanical stress which was loaded to the 

arterial collagen fibrils coming from continuous and pulsatile pressure, ultimately preventing arterial 

dissection and rupture. Following this publication, Ong et al. initiated a prospective randomized open 

blinded-endpoint trial to systematically investigate the role of celiprolol in vEDS patients. Patients were 

classified by their age (≤32 years or >32 years) randomly into two groups with an established and blinded 

information. Fifty-three patients in this study were randomly grouped for either treatment with celiprolol 

or as the control group. It is important to emphasize that at the initiation of the trial only thirty-three patients 

had undergone genetic testing to confirm a mutation in COL3A1 gene. The dosage of celiprolol was 

increased from100mg to a maximum of 400mg twice daily every six months. There was only 100mg for 

each increase during the six months period. Primary endpoints were set to include rupture or dissection of 

major arteries, and fatal or not. Results of this clinical trial showed that treatment of vEDS patients with 

celiprolol reduced arterial events, such as rupture or dissection, three folds when compared with vEDS 

patients in the control group. Thus, they recommended treating vEDS patients with celiprolol to prevent 

major complications. However, the mechanisms by which celiprolol was effective at reducing arterial 

events in vEDS patients was not determined6.        

In the early wound repair process, myofibroblasts synthesize collagen III but was later replaced by 

collagen I as the scars mature58. Studies by Pullar et al. showed that β2-AR antagonist treatment increased 

the content of collagen III significantly in the wound area compared with no antagonist54. Xu et al. showed 

that a stiffer arterial wall might result from an increase in the expression of type I as well as type III 

collagen59. Celiprolol shows stronger β-1 selective activity compared with β2 agonist activity60 while Ong 



62 
 

et al. showed an increased stiffness of arterial wall in their clinical patients after celiprolol administration6, 

indicating that there was increased production of collagens in the arterial wall of vEDS patients after taking 

celiprolol. Disrupted arterial wound healing and thrombus resolution after artificial injury were 

demonstrated in chapter 2 of this dissertation. In conclusion, all the data suggested that celiprolol 

administration might be able to induce the production of type III collagen to promote injury repair. 

 

Hypothesis: we hypothesize that celiporolol administration in the Col3a1+/- mice would increase type III 

collagen production after arterial injury and correct the aberrant injury repair in the Col3a1+/- mice.  

Specific aims:  

Celiprolol was used to treat both the Col3a1+/+ and Col3a1+/- mice and histology studies were performed 

to compare the injury repair ability by detecting inflammation, cell proliferation and neovessel formation 

in Col3a1+/- mice after celiprolol administration.     
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To modulate arterial injury repair in Col3a1+/+ and Col3a1+/- mice with celiprolol. 

Figure 3.2 Flow chart of celiprolol trial 
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3.2 Methods 

3.2.1 Measurement of basic blood pressure for Col3a1 mice 

      The animal study protocol was approved by Animal Welfare Committee at UThealth at Houston. Mice 

were surgically ligated at the left common carotid artery at the age of 12-14 weeks (unless otherwise stated) 

and were weighed between 25 and 30g (same to that described in Chapter of this dissertation). 

        Experiments were carried out according to the flow chart (Figure 3.2). On day 1, basal blood pressure 

was measured with the Kent Scientific CODA tail-cuff blood pressure machine (Kent Scientific 

Corporation, CT). Mice were placed into the restraint tubes according to their weight and cuffs were placed 

on the animal. They then were moved to the Animal Warming Platform that came with the machine and 

the CODA cover was lifted to measure the tail temperature by pointing an infrared thermometer at the tail 

base. The temperature was between 32°C and 35°C. The entire length of the animal’s tail rested on the 

warming surface. Mice were measured with the machine for 3 consecutive days to get an average blood 

pressure value. Mice were treated with celiprolol on day 3 (Friendly gift from Dr. Julie De Backer, M.D., 

Ph.D., Center for Medical Genetics, Ghent University Hospital, Belgium.) at a dose of 100mg/kg/day by 

oral gavage delivery for 3 consecutive days. The drug was dissolved in purified water and the dosage was 

determined in accordance with multiple studies61,5,62. On day six, blood pressure was measured again.  

 

3.2.2 Carotid artery ligation and sample harvesting           

        The surgery procedure was modified from that described in Dr. Reid’s study (Amy Reid unpublished 

data). Briefly, surgical mice were induced to anesthesia with 4% isoflurane which was maintained at 2-

2.5% by a nose cone connected to the mouse. Aseptic techniques were used during the procedure and the 

fur at the neck area was shaved off with Nair gel and sanitized with alcohol swabsticks. Afterwards, 

analgesia with subcutaneous bupivacane (2.5 mg/kg) was applied immediately before making a midline 

incision of 3mm in length in the neck with sterilized scissors. Followed by dissecting away the left common 
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carotid artery from the carotid sheath and vagus nerve. A ligature was made on the artery with 6-0 silk 

suture immediately at the bifurcation site where the internal carotid arteries separate from external carotid 

arteries. It was important to be gentle to avoid bleeding. The open skin area was irrigated with iodine 

alcohol and closed by 2 interrupted stitches with 5-0 suture which would be absorbed after about one week. 

       About 10% of animals experienced stroke symptoms of during the first 7 post-operative days (POD7). 

Mice which failed to maintain 80% of their body weight were sacrificed. About 5% of the mice died before 

ligation due to massive bleeding caused by the procedure of carotid artery dissection. Mice that did not 

show neurological phenotypes such as stroke were monitored and treated subcutaneous with ketoprofen 

(2-5mg/kg) twice a day for 2 days after surgery. They were weighed daily and injected mice as needed 

with 0.5-1ml lactated Ringer's solution based on their weight for over 10% drops. Normally mice would 

survive 95% after POD7. Mice were sacrificed on 7, 14 and 21 days after surgery for the different following 

up experiments.  

3.2.3 Histological Analysis: Morphology 

        For studies and analysis of POD7 arteries (N = 6 Col3a1+/+, 6 Col3a1+/-), POD14 (N = 6 Col3a1+/+, 

6Col3a1+/-), and POD21 (N = 5 Col3a1+/+, 5 Col3a1+/-), mice were first sacrificed, followed by puncturing 

of the left ventricles with a 27-gauge needle. An incision was made on the right atria to allow the outflow 

of perfusate. Mice were then perfused with phosphate-buffered saline (PBS) at <20 ml/min until blanching 

of the liver completely. Mice were then perfused with 10ml of 10% formalin at the similar rate to fix 

arteries in the native geometry. Both the entire lengths of carotid arteries were harvested for multiple 

experiments. 

         Arteries were followed by fixing in 10% buffered formalin for about 24 hours. After fixation, arteries 

were cleaned up and the connective tissues were removed followed by processing. After processing, the 

arteries were left in fridge to chill up. Then the arteries were cut three times with a scalpel: one cut was 

immediate to the ligature to remove the suture; a second cut was at the location of the descending aorta to 
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remove extra descending aorta; the third cut was in   the mid-carotid artery. The remaining two pieces of 

the artery were embedded with careful attention to maintain correct orientation. The entire block with 

embedded artery was serial sectioned and three 5-µm-thick sections were collected per slide all through 

the entire length of the arteries. Every tenth slide from the entire slides sequence was then performed with 

hematoxylin and eosin (H&E) staining, followed by imaging a representative section on each slide. This 

set of sequential images were enough for us to build up an entire arterial length along the axis of the arteries. 

Each carotid artery could supply approximately 60 to 80 slides. All images in this dissertation were 

presented at 20x, unless otherwise stated, and scale bars represent 100µm. 

 

3.2.4 Immunohistochemical (IHC) staining 

The IHC staining method was modified from Dr. Reid’s study (unpublished data) and most of the 

methods were similar with only minor corrections. Briefly, each arterial segments as obtained above from 

H&E-staining provided a relative location of each segment with neointima formation. Those unstained 

slide neighboring each neointima positive slide was subjected to IHC probes (Mac-2, pH3 and CD31) to 

investigate the amount of macrophages, the number of actively proliferating cells locate within the 

neointima and the neovascularization in the medial layer. The first slide was probed with Mac-2, which 

showed the number of macrophages. The second local slide was used to measure the number of pH3-

positive nuclei. The third slide was subjected to CD31 which was used to detect endothelial cells that are 

precursors for neovessels. Unstained sections were processed before heat-induced epitope retrieval (HIER 

citrate pH 6.0) followed by blocking for 1 hour at room temperature. 

For detecting the local macrophages, slides with arterial sections were probed with rat anti-mouse 

Mac-2 primary antibodies (Cedarlane, Burlington, NC) and incubated for 1 hour at room temperature. For 

detection of proliferative cells, slides with arterial sections were probed with with rabbit anti-mouse pH3 

primary antibodies (Millipore, Billerica, MA) followed by incubation overnight at 4˚C. To examine 
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neovessel formation in formalin-fixed paraffin-embedded tissues, slides were left overnight at 4˚C with rat 

anti-mouse CD31 antibodies (Dianova, Hamburg, Germany). Slides with arterial sections were then 

washed with PBS, followed by incubation at room temperature for 1 hour with the appropriate biotinylated 

secondary antibodies, and then tissues were probed with peroxidase-conjugated avidin/biotin complexes 

(Vectastain ABC-AP Kit, Vector Laboratories, Burlingame, CA). Activity of peroxidase was detected 

using a 3, 3’--diaminobenzidine (DAB) chromogen (Dako, Glostrup, Denmark). Slides were 

counterstained with methyl green at the last step of staining. 

For statistical analysis, slides were counted one by one to get the number of positive cells or vessels 

independently. And then, for each genotype, a mean ±SD of positive cells was generated by averaging out 

all the number from each group from the pooled neointima-positive slides, representing Col3a1+/+or 

Col3a1+/-. Significant differences were determined by the Student's t-test between the means (*p < .05).  

 

3.3 Results 

3.3.1 No difference in basal systolic or diastolic blood pressure of Col3a1+/+ and Co3a1+/- mice  

        Celiprolol is known to have β2 agonist properties, and therefore blood pressure was assessed to 

determine whether celiprolol lowers mouse blood pressure. We chose a dose of celiprolol based on studies 

from rat, mice and human beings61,5,62. In these studies, dosages were between 50 to 200mg/kg/day for 

mice or rats, but celiprolol was given to vEDS patients twice daily at doses from 100mg to 400mg. We 

therefore chose of 100mg/kg/day for each mouse based on their body weight, a dosage that was 

encompassed by both of these ranges. Blood pressure (BP) was measured before initiating the trial in 11 

to 12-week-old mice. An average value of BP was generated by measuring on three consecutive days. 

There was not a significant difference in the BP value between the Col3a1+/+ and Col3a1+/- mice at basal 

level (Figure 3.3). Celiprolol was given for three days prior to carotid ligation, and BP was measured again 

on post treatment day three (POT3), one day before ligation. In both genotypes, there was an average drop 
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of 15mmHg in basal systolic BP after three days of celiprolol treatment; however, this result was not 

statistically significant so we cannot conclude that celiprolol lowers blood pressure in mice.    

We were curious whether celiprolol might be effective in lowering BP after a longer period of 

treatment. Therefore, BP value was measured a third time, at POD14 (data not shown) and POD21 (post 

treatment day 24 (POT24)), immediately before harvesting arteries (Figure 3.3). However, there was no 

dramatic difference in the BP value after celiprolol administration for 24 days either.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data representing 3 post days of treatment (POT3) and 24 days post treatment 

(POT24) in Col3a1 mice, NS indicating no significant difference. 

Figure 3.3 Comparison of the systolic blood pressure after celiprolol administration 
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3.3.2 Decreased neointimal layer formation in Col3a1+/- mice carotid arteries after celiprolol 

treatment  

        As proposed in Chapter 2, to determine if celiprolol corrected the arterial injury repair process in the 

Col3a1+/- mice, neointima formation was first examined by H&E staining. Since there were only 

significant differences in pathological changes at POD14 and POD21 when comparing Col3a1+/+ and 

Col3a1+/- mice at basal level, we only looked at these timepoints after celiprolol treatment.  Compared with 

arteries from mice without celiprolol treatment, there was decreased neointima formation in arteries from 

both Col3a1+/+ and Col3a1+/- mice with celiprolol treatment at both POD14 (POT17) and POD21 (POT24) 

as shown in (Figure 3.4).  

 

 

Representative sections of the Col3a1+/+ and Col3a1+/- mice both without (top panel) and with 

celiprolol treatment (bottom panel), showing decreased neointima formation after celiprolol 

treatment in mice from both groups at both POD14 and POD21. Scare bar: 100μm. 

Figure 3.4 Remodeling of neointimal by H&E staining after celiprolol administration 
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3.3.3 Altered cell proliferation and inflammation in the neointimal layer after celiprolol 

treatment 

        We further stained the arterial sections with anti-pH3 antibody to detect the cell mitosis marker pH3, 

which indicated the proliferative cells in the neointima. There were decreased pH3 positive cells in the 

arteries from celiprolol treated Col3a1+/- mice compared with arteries from untreated Col3a1+/- mice 

(Figure 3.5a). No significant difference in pH3 positive cells was observed comparing Col3a1+/+ arteries 

from no celiprolol and celiprolol treated mice at both POD14 and POD21 (Figure 3.5b). This result 

indicated that celiprolol was more effective in decreasing cell proliferation in the arteries from Col3a1+/- 

mice than in the arteries of Col3a1+/+ mice.  

        It was shown by Rough et al. that β2-AR blockade could decrease the hyper-inflammatory reaction 

after traumatic injury in mice63. To look at the inflammation level at the neointima after celiprolol 

administration, IHC with anti-Mac-2 antibody was used to detect the number of macrophages in the 

neointima (Figure 3.6a). At basal level, prior to celiprolol treatment, there were significantly more Mac-

2 stained cells in Col3a1+/- arteries compared with arteries from Col3a1+/+ mice at both POD14 and POD21 

(Figure 3.6b). However, after celiprolol treatment, a significant decrease was observed after analyzing 

Mac-2 positive cells in Col3a1+/- arteries comparing with those from untreated Col3a1+/- arteries (Figure 

3.6b). No difference was observed for Mac-2 stained cells when comparing Col3a1+/+ arteries from no 

celiprolol and celiprolol treated mice at both POD14 and POD21. Again, results showed that celiprolol 

was more effective in lowering inflammation level in the arteries from Col3a1+/- mice. 
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(a) Representative sections of arteries from both Col3a1+/+ and Col3a1+/- mice, both without (top 

panel) and with (bottom panel) celiprolol treatment, (b) Higher power images, red arrow showed 

the neointimal pH3 positive cells, (c) Quantitation showed significantly decreased number of pH3 

positive cells after celiprolol treatment in arteries from Col3a1+/- mice at both POD14 and POD21 

indicating decreased cell proliferation in the Col3a1+/- arteries after celiprolol treatment. NS: no 

significance, **p<0.01，***p<0.001 by Student’s t-test. 

Figure 3.5 Decreased cell proliferation in Col3a1+/- arteries after celiprolol administration 
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(a) Representative sections of arteries from both Col3a1+/+ and Col3a1+/- mice, both without (top 

panel) and with celiprolol treatment (bottom panel) (b) Higher power images, red arrow was showing 

the neointimal Mac-2 positive cell (c) Quantitation showed significantly decreased number of Mac-2 

positive cells after celiprolol treatment in arteries from Col3a1+/- mice at both POD14 and POD21 

indicating decreased inflammation in the Col3a1+/- arteries after celiprolol treatment. NS: no 

significance, **p<0.01, ***p<0.001 by Student’s t-test. 
 

Figure 3.6 Decreased neointima inflammation in Col3a1+/- arteries after celiprolol 

administration 
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3.3.4 No difference in the formation of new vessels in the medial layer after celiprolol treatment 

at both POD14 and POD21 

         Similarly, IHC with anti-CD31 antibody was used to detect the presence of CD31 for assessing the 

formation of neovessels in the medial layer after administration of celiprolol. At basal level, when there 

was no celiprolol treatment, there were significantly more CD31 positive neovessels in the arteries from 

Col3a1+/- mice compared with those from Col3a1+/+ mice at both POD14 and POD21 (Figure 3.7a).  

However, after celiprolol treatment, no significant difference was found in the formation of neovessels 

comparing arteries from Col3a1+/+ mice with those from Col3a1+/- arteries. There was also no statistical 

difference between the number of neovessels in Col3a1+/- arteries treated with or without celiprolol. These 

results indicated a potential partial blunting of neovessel formation in Col3a1+/- mice with celiprolol 

treatment, but more studies need to be done to confirm the role of celiprolol in affecting neoangiogenesis. 

(Figure 3.7b).  
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 (a) Representative sections of arteries from both Col3a1+/+ and Col3a1+/- mice, both without (top 

panel) and with celiprolol treatment (bottom panel) (b) Higher power images and red arrow was 

showing medial layer neovessel by CD31 staining (c) Quantitation showed no difference in the 

potential of new vessel formation in both mice genotypes after celiprolol treatment. NS: no 

significant difference by Student’s t-test. 

Figure 3.7 No significant difference in neovessel formation after celiprolol 

administration 
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3.4 Discussion  

To better understand the mechanisms leading to vEDS and to discover a possible therapeutic approach 

for vEDS patients, previous work of Dr. Reid (unpublished data) and studies in the first part of Chapter 2 

of this dissertation were conducted which showed a consistent defective in injury repair in Col3a1+/- mice 

compared to that in Col3a1+/+ mice. These results confirmed a defect of injury repair in the Col3a1+/- mice 

when there was not sufficient type III collagen. This suggested that there was aberrant injury repair in 

vEDS patients, resulting in both aberrant skin wound healing and also problems with arterial injury repair 

causing frequent arterial events such as dissection or aneurysms of vEDS patients and leading to a 

decreased life expectancy for these patients64.  

Ong et al. speculated that patients taking celiprolol would have alleviated high blood pressure in 

hypertensive people which could lead to a decreased in stress formed against arterial collagen fibers 

resulting in decreased incidence of arterial dissections and ruptures, and showed that taking celiprolol, a 

β-blocker, could decrease the arterial events in vEDS patients threefold6. They initiated a clinical trial to 

investigate the effects of celiprolol on vEDS patients. Instead however, their findings proved that celiprolol 

could have demonstrated more stable haemodynamic resistance which lead to a more strenuous arterial 

wall. Data generated from this current study did not show the effect of celiprolol to lower blood pressure 

at both 3 days and 24 days after administration, which was consistent with the discoveries by Ong et al.  

However, we could not conclude that celiprolol did not show β2 agonist activity in this study due to absent 

data from a critical group-regular ligation without celiprolol treatment, as the ligation procedure itself 

might have lead to an increase in systematic blood pressure.  

Inflammation following arterial injury plays a critical role in both cutaneous and arterial injury 

repair20. Secretion of TGF-β by macrophages and platelets would induce the differentiation of 

myofibroblasts from fibroblasts both of local origin and from bone marrow derived (BMD) fibrocytes37. 

After the expression of type III collagen by myofibroblasts, contracting cells would pull open the fibrin 

clot resulting in successful thrombus resolution after arterial injury. Unpublished data from our laboratory 
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has shown a significant increase in inflammation of POD14 and POD21 arteries in the Col3a1+/- mice 

without celiprolol treatment, compared with that in the Col3a1+/+ mice in the neointima layer (p<0.05).  

Morissette et al. harvested both plasma as well as dermal fibrobalsts from vEDS patients and 

investigated the role of inflammation and the expression of proteins for TGF-β pathways65. They 

demonstrated that vEDS patients usually have a chronic inflammation going on all through their life. 

Results from the pathological data of the current study also showed that there was decreased inflammation 

in the neointima in the Col3a1+/- arteries after ligation indicating the potential of Col3a1+/- mice in 

repairing arterial injury after celiprolol treatment. 

       Other studies  have shown that celiprolol was effective in cardiovascular diseases effects through the 

antioxidative properties to increase the function of vascular endothelial progenitor cells (EPCs), resulting 

in a decreased intimal thickening after vascular injury66.67. Previous data showed in Chapter 2 of this 

dissertation that there was an increase in the potential of cell proliferation POD14 and POD21 with carotid 

injury in the Col3a1+/- mice when comparing to that in the Col3a1+/+ mice in the neointimal layer. However, 

after treating both groups of mice with celiprolol, a dramatic decrease was observed in cell proliferation in 

injured Col3a1+/- arteries with celiprolol treatment compared with that of no celiprolol injured Col3a1+/- 

arteries (Figure 3.7). Yao et al. also showed the decreased proliferative cell activity in the vein graft 

neointima after celiprolol administration66, which was consistent with data from the current study. 

However, we were not able to determine the mechanism beyond the pathological change with celiprolol 

administration.  

        From our unpublished study, there was dramatic neovessel formation in the medial layer after carotid 

injury at both POD14 and POD21 in Col3a1+/- mice, compared to that in Col3a1+/+ mice in the medial 

layer. This neovessel formation may to predispose arteries to fragility, resulting in dissection and arterial 

rupture. We sought to use celiprolol to modulate the thrombus resolution and neovessel formation 

procedure in the Col3a1+/- mice, we didn’t get any difference in neovessel formation in the media with 

celiprolol treatment. Although the neovessel data is inconclusive, we were able to decrease the 
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inflammation and cell proliferation in the Col3a1+/- mice. Though there were limitations for the current 

study in that no cellular/molecular work has been done to prove why and how celiprolol does these things.  

Pullar et al. concluded that β-adrenergic receptor modulation of wound repair through a variety of 

signaling pathways by both in vivo and in vitro models50,56 (Figure 3.1). As with their studies, future studies 

should be focused on investigating the role of celiprolol on inflammatory responses and cell proliferation 

by in vitro models. Cells should be explanted from Col3a1+/+ and Col3a1+/- mice to understand the 

cellular/molecular mechanisms and explain the data generated from the current study.  

        In conclusion, celiprolol was effective in decreasing the inflammation and persistent cell proliferation 

in the neointima of the Col3a1+/- arteries but not in decreasing the neovessel formation in the medial of 

those arteries. Indicating that it might be used to alleviate the symptoms of vEDS patients.  
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4 Dysregulated Myofibroblasts from Col3a1+/- Mice Contribute to the Abnormal Injury Repair 
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4.1 Introduction 

4.1.1 Myofibroblasts in wound healing   

Characteristics of vascular Ehlers-Danlos Syndrome (EDS) include thin, translucent, and often, 

bruised skin. This easy bruising indicates aberrant injury repair in vEDS patients64. Myofibroblasts are key 

players in normal injury repair37. After a tissue has been wounded, myofibroblasts are involved in a few 

events in remodeling tissues68: (1) secretion of ECM proteins (2) tension sensation and transduction and 

(3) apoptosis, through which they disappear from the wounding area.  

Myofibroblasts are differentiated from fibroblasts demonstrated by the expression of α-SMA, which 

is one of the major mechanosensitive proteins that is recruited to stress fibers under high mechanical stress.  

With the expression of α-SMA, myofibroblasts gain highly contractile potential69. Myofibroblasts can not 

only produce procollagen type I and III, but also other ECM components, such as collagens70. With the 

expression α-SMA, myofibroblasts assemble bundles of contractile microfilaments that stretch across the 

cell and attach to different cell surface  protein complexes that link the intracellular filaments to the 

surrounding area of extracellular matrix (ECM)71.  

Secondly, contraction of myofibroblasts is accomplished by the motor mechanism of the myosin head 

domain sliding along the actin filaments, and this sliding mechanism creates a tension that is transferred 

to the surrounding ECM70. An extended network of stress fibers results in the formation of large focal 

adhesion sites, also called super-mature focal adhesions (FAs)72. The size of the FAs is critical to control 

differentiation and contracture of myofibroblasts69. 

Lastly, after wound closure, myofibroblasts undergo automatic cell apoptotic procedure and disappear 

gradually from the site of injury. Normal procedure of myofibroblasts apoptosis results in formation of 

scar from granulation tissues while abnormal apoptosis leads to the development of pathological scarring73. 

This balance ensures to tissue integrity31. Disturbances such as abnormality in tissue contraction to 

excessive deposition of ECM, could severely impair skin function. Common problems include 

hypertrophic scar formation, scleroderma, skin contractures after a burn73. Fibrosis in the  in the kidney, 
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heart or lung also rely on these same cells functioning in the same way, but pahologically21. It is promising 

that many studies suggest that myofibroblasts are bone marrow-derived (BMD), as perhaps modulating 

the bone marrow could address many of these health problems37.  

 

4.1.2 Role of TGF-β in differentiation of fibroblasts and arterial injury 

        TGF-β1 is a cytokine secreted by platelets, fibroblasts and macrophages. Injection of TGF-β1 to rats 

subcutaneously resulted in a granulation tissue formation in which there are particularly abundant amount 

of myofibroblasts with α-SMA expressing while injection of other growth factors or cytokines such as 

TNF-α or PDGF did not induce α-SMA expression in myofibroblasts74. This suggests the importance for 

TGF-β1 in myofibroblast differentiation in the procedure of wound healing and fibro-contractive diseases 

by the regulation of α-SMA expression in those cells. A study from James et al. also demonstrated that 

TGF-β1 played a significant role in cutaneous wound repair: wounds were made by an incision on the skin 

of a pig and expression of TGF-β1 and integrin was examined. Expression of TGF-β1 within the 

extracellular matrix area was finely coordinated with an increased expression of different integrin 

subunits75. Thus, they concluded that in the different steps of wound repair procedure, TGF-β1 could 

induce the expression of integrins by epidermal keratinocytes to facilitate the migration for re-

epithelialization.  

In the classical TGF-β signaling, three different isoforms of TGF-β ligands are believed to bind two 

TGF-β receptors (TβRI and TβRII) through which signal is transduced (Figure 4.1). TβRII is constitutively 

phosphorylated and they phosphorylate TβRI once bind to the ligand. Once phosphorylated, the ligand and 

receptor complex will activate the intracellular SMAD signaling pathway. The SMAD proteins will then 

be translocated to the nucleus for regulation of other targets genes22. 

Studies by Roberto et al. proposed that TGF-β1 secreted by macrophages and platelets at sites of 

injury would not only recruit fibroblast but also induce the differentiation of them to form myofibroblasts. 

Formation of myofibroblasts ensures the production of major ECM components such as collagens and the 
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contraction to close the wound76. Taken together, these studies and others showed that TGF-β1 is one of 

the key players in modulating the wound healing process described above, in part by regulating the function 

of myofibroblasts. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Summary of TGF-β signaling in hypertrophic scarring 
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4.1.3 Focal adhesions (FAs) and focal adhesion kinase (FAK) in the differentiation of fibroblasts  

        Focal adhesions are located at the convergence of integrin receptors. They transduce signal to other 

cell adhesions and actin cytoskeleton72. They are within the site where integrin receptors and proteoglycan 

attach to cytoskeleton formed by actin. According to the subcellular location, composition and size, focal 

adhesions are mainly classified into four different groups: focal adhesions, focal complexes, three-

dimensional (3D) matrix adhesions, and fibrillary adhesions77. 

Thannickal et al. showed that in addition to TGF-β1, myofibroblast phenotype was dependent on 

adhesion-dependent signals23. Increased expression of α-SMA is first activated by TGF-β signaling and 

followed by FAK signaling pathway. In this study, they demonstrated that both TGF-β1 and adhesion-

dependent signals were required for a stable expression of the myofibroblast phenotype. TGF-β1-induced 

myofibroblast differentiation would be inhibited in non-adherent cells even if the existence of TGF-

receptor-Smad2 phosphorylation signaling. Tyrosine phosphorylation of FAK induced by TGF-β1 which 

including Tyr-397 was also delayed in relative to early TGF-β1-Smad signaling. Blockage of FAK or 

induced expression of kinase-mutated FAK, inhibited expression of α-SMA as well as stress fiber 

formation and cellular hypertrophy induced by TGF-β1. Their working model was illustrated in Figure 

4.2. 

4.1.4 MRTFA and fibroblasts differentiation 

Myocardin-related transcription factor-A (MRTF-A) and -B (MRTF-B) are widely distributed. Both 

of them interact with G-actin and are sequestered in the cytoplasm78,79. Once there is stress, the actin 

dynamics would be altered for the formation of F-actin fibers and further enhance nuclear MRTFs 

accumulation80. Within nuclear, SRF/MRTF binding together to form a complex which specifically binds 

to short element of CArG locating within the promoters of contractile related genes. Smooth muscle α-

actin (SMA, ACTA2) and transgelin (TAGLN, SM22) are the two genes most responsive to stress81. Thus, 

MRTFs play a critical role for SMCs to respond to stress. It was also shown that MRTFA contributes to 

myofibroblast differentiation and contractility82. 
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TGF-β receptor(s) signaling is primarily mediated by rapid phosphorylation/activation of Smad 

proteins, which occurs by an adhesion-independent mechanism. Other unidentified non-Smad 

pathways may also be activated early post-TGF-β receptor(s) activation. FAK 

autophosphorylation/activation is delayed relative to Smad signaling and is associated with 

TGF-β1-induced expression of both integrin subunits and fibronectin/collagens. Integrin 

signaling via FAK autophosphorylation/activation is essential for induction/maintenance of the 

stably differentiated myofibroblast phenotype. With permission from American Society for 

Biochemistry and Molecular Biology. 

Figure 4.2 Schematic of the proposed regulatory pathways involved in 

myofibroblast differentiation. 
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4.1.5 Studies with fibroblasts from Col3a1+/- mice and unpublished data on mice embryonic 

fibroblasts (MEF) and fibroblasts from vEDS patients  

       Studies by Volk et al. showed that deficiency of type III collagen promoted differentiation of 

myofibroblast and increased scar formation after cutaneous wounding. They showed that aged Col3a1+/- 

mice had was quicker in wound healing comparing with Col3a1+/+ mice using an in vivo wounding model. 

Wounds were made on both Col3a1+/+ and Col3a1+/- mice, and wound area (WA) was measured at 

different time points. By using fibroblasts explanted from Col3a1+/+ and Col3a1+/- mice skin tissues, they 

demonstrated that Col3a1+/- mice showed increased ability in wound closure compared with that of 

Col3a1+/+ mice83. The in vitro data showed that fibroblasts from Col3a1+/- and Col3a1-/- mice express more 

α-SMA compared with cells from Col3a1+/+ mice by immunofluorescent staining (Figure 4.3). In 

conclusion, their study demonstrated that a type III collagen was importantin modulating myofibroblast 

differentiation and activity during cutaneous repair. They also identified a possible mechanism in vivo for 

an increased scar formation in wounded Col3a1 deficient skin. Unpublished in vitro data from Dr. Reid 

showed dysregulated fibroblasts in the Col3a1+/- mice by increasing expression of α-SMA, increasing 

collagen I fibril formation in 3D fibrinogen gel experiment. Finally, results from Chapter 2 in this 

dissertation demonstrated that BMD fibrocytes were critical in the correction of injury repair in Col3a1+/- 

mice. 

 

SMCs：  

As we discussed in chapter 2, introduction section that SMCs migrating from arterial wall contribute 

to the neointima formation followed by thrombus resolution39.  

Hypothesis 

Taken together, we hypothesize that myofibroblasts from the Col3a1+/- mice predispose a persistent 

differentiated status due to the defects in contracture, leading to an aberrant wound healing in the Col3a1+/- 

mice after arterial injury. To address the hypothesis, fibroblasts from mouse lungs were explanted 
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according to protocol adapted from Dr. Blackburn’s laboratory, and in vitro studies were performed with 

the fibroblasts. SMCs were explanted from the ascending aorta of Col3a1+/- mice84.  

 

Specific aims: 

1. Is there any difference in phenotype between Col3a1+/+ and Col3a1+/- fibroblasts/myofibroblasts? 

a) Test the myofibroblasts differentiation and compare if there is any difference between Col3a1+/+ 

and Col3a1+/- fibroblasts by detecting the expression of RNA and protein for SMC markers, 

collagens and integrins. 

b) Examine the formation of F-actin of fibroblasts by actin IF staining and F/G actin assay.  

2. Is there any difference in phenotype of Col3a1 SMCs? 

a) Expression of RNA and protein for SMC markers, collagens and integrins. 

b) Test the potential of SMC proliferation by BrdU assay, MTT assay. 

c) Examine the formation of stress fiber by F-actin IF staining.  

3. Why there is the difference between cells explanted from both Col3a1+/+ and Col3a1+/- cells? Is 

there any focal adhesions link collagen and actin expression/polymerization in both, is there any 

difference? 

a) Focal adhesion staining by vinculin IF  

b) Focal adhesion signaling to detect activity of pFAK by both Western blots and IF staining 
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Cells from all 3 genotypes, utilized in the attached fibroblast-populated collagen gel assay, were 

immune-stained for α-SMA (green) and counterstained with DAPI (blue). Collagen lattices 

seeded with cell isolates from at least 3 embryos per genotype were analyzed. a Myofibroblasts 

within collagen lattices were identified by α-SMA expression. α-SMA incorporation into stress 

fibers (arrows) could be visualized in cells from all 3 genotypes. b-d Representative images 

showing the percentage of myofibroblasts in cultures of Col3+/+ (b), Col3+/– (c), and Col3–/– 

(d) . Copyright (1997) National Academy of Sciences, U.S.A 

Figure 4.3 Increased α-SMA expression by Col3+/– and Col3–/– cells compared to Col3+/+ cells 
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4.2 Methods 

4.2.1 Fibroblast explant from mouse lung tissues 

        To explant fibroblasts, mice were sacrificed humanely at 4-6 weeks. Mouse was then perfused with 

10ml cold-sterile PBS at the right ventricle, the whole lung tissues were taken out and put into a clean 

petri-dish with PBS. Then tissues were rinsed to remove blood cells, cleaned up to remove connective 

tissues and brought to tissue culture hood. The tissues were rinsed with 70% ethanol and PBS followed by 

cutting into very small pieces (0.1-0.5mm) with an autoclaved blade. Small pieces of lung tissues were re-

suspended with 10ml PBS and transferred to 75mm2 flask. PBS was aspirated and the tissues were left to 

attach to the bottom of the flasks, followed by leaving the flasks vertically in the incubator for 2 hours. 

After incubation, extra PBS was aspirated from the bottom of the flask followed by adding10ml high 

glucose DMEM with 10% FBS and 1% antibiotics. Leave the flasks incubated for 14 days and media was 

changed very other day. Cells were split from one T75 flask to two T75 flasks when they were about 80-

90% confluence and labelled as passage 1(P1). Experiments were set up for harvesting protein, RNA, 

immunofluroscent (IF) and BrdU samples with cells which were at 90% confluence and less than P4.  

       Two independent cell lines were generated from Col3a1+/+ and Col3a1+/- mice, using lungs pooled 

from two mice for each genotype per explant. Results presented in this dissertation were representative of 

two independent experiments replicated on each line of fibroblasts. Fibroblasts used in this study were 

passage- and sex-matched explanted from Col3a1+/+ and Col3a1+/- mice. Fibroblasts were used at no more 

than passage 3.  

4.2.2 Isolation of Vascular SMCs from Col3a1+/+ and Col3a1+/- mice 

4-6-week old Col3a1+/+ and Col3a1+/- mice were used for isolating mouse aortic SMCs according to 

the protocol developed by our lab84. Briefly, aortas were pooled from at the aortic root and up until the 

bifurcation of the renal artery. Whole aortas collected were treated under sterile techniques and transferred 

to media for collecting biopsy. (Table 1). Ascending aorta was collected from each mouse. Followed by 
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removing the connective tissues. The aorta was washed and then cut into 1mm pieces.  All the aortic tissues 

were collected and put into digestion medium for 16 hours. The medium was prepared as shown in Table 

1. Followed by spinning down cells and small tissues.  Cells and tissue pallets were then re-suspended in 

complete SMC medium and put into petri-dishes for another 14 days of incubation. The expression of α-

actin was used to define the cell identity explanted.  

Two lines of fibroblasts from Col3a1+/+ and Col3a1+/- mice were generated independently, using 

aortas pooled from four mice for each genotype per explant. The results presented in this study were 

representative of two independent replicates.  Passage-and-sex-paired SMCs from Col3a1+/+ and Col3a1+/- 

mice were used at no more than passage 4 for all the experiments.   

Table 1  Media and buffer used in this project 

 

4.2.3 Isolation of RNA and q-PCR 

        RNA extraction kit (Invitrogen, Carlsbad, CA) was used to collect entire cellular RNA. Briefly, RNA 

lysis buffer with 1% β-Mercaptoethanol was prepared, cells cultured in 6cm petri-dish were washed with 

PBS for 2 times. 700ul lysis buffer was put into each petri-dish and incubated at 4ºC or on ice for 30 

minutes. The mixture was transferred to 1.5ml eppendorf tube, thoroughly mixed with 21gauge syringe 

for 10 times, followed by adding 0.7 volume 70% ethanol and vortexing to mix thoroughly. The mixture 
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was transferred to the mini-column with the kit, spun down at 12,000 rpm for 15 seconds, the column was 

washed 3 times before adding 30-100ul sterile water to dissolve RNA on the column. The concentration 

of the samples was between 100-300ng/ul. IScript supermix kit (Bio-rad laboratories, Hercules, CA) was 

applied for reverse transcription directed by protocol from the manufacturer. Q-PCR analysis was applied 

for target genes expression with TaqMan probes. TaqMan probes for target genes were purchased from 

Applied Biosystems and results of q-PCR was analyzed with an Applied Biosystems Prism 7900 HT 

Sequence Detection System (Applied Biosystems, Foster City, CA) using the manufacture’s protocol. 

Results were generated by three independent times. Endogenous control was referred to the expression of 

Gapdh. Data was analyzed by 2-ΔΔCT method to generate a p-values Student’s t-test. 

 

4.2.4 Protein preparation and Western blotting 

        Cells cultured in 6cm petri-dish were washed 2 times with PBS. After washing, 120ul cell lysis buffer 

for western blot was added to each petri-dish then lysed cells cultured in petri-dish. Samples were 

incubated at 4ºC in fridge or on ice for 30 minutes and followed by manually vortexed 3 times. Supernatant 

was collected and then quantitated by a Bradford assay. After quantitation, equal amount (5ug or 10μg) of 

protein was prepared and loaded onto 4-20% protein gels (Bio-Rad laboratories, Hercules, CA). A standard 

way of western-blotting in this laboratory was used. Briefly, membranes with complete proteins from SDS 

page gel were put into 5% non-fat milk blocking buffer for 1 hour. After blocking, the membranes were 

probed with appropriate primary antibodies, usually 1:1000 dilution in 5% TBST/milk buffer followed by 

washing before probing with appropriate secondary antibodies, usually 1:5000 dilution in 5% TBST/milk 

buffer. See Table 2 for information of antibodies. Immunoblots were developed to see the expected bands 

of target proteins using regular or enhanced chemiluminescence technique (GE Healthcare, Piscataway, 

NJ).  
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4.2.5 Cell proliferation assay  

        5,000 cells (Mice lung fibroblasts or SMCs) were put in a 96-well plate and incubated 20-24 hours 

before serum-starvation with DMEM containing 1% FBS. After starving  24 hours, TGF-β1 (2 ng/mL)  

was added and kept for 24 hours before addition of BrdU reagent to each well and incubating for 24  more 

hours. BrdU ELISAs assay was performed with the instruction from the manusfacture (Millipore, Bedford, 

MA.) BrdU ELISA assay was applied in replicates. p*<0.05 using Student’s t-tests was generated as 

Table 2 Antibody information 
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statistical significance. 

 

4.2.6  TGF-β1 administration to fibroblasts and immunofluorescent staining (IF) 

        Fibroblasts or SMCs were seeded onto 18mm glass coverslips. And about 5,000 cells suspended in 

complete media were seeded on a single coverslip. Cells were starved with 1% FBS media after incubation 

for 20-24 hours. Fresh media containing 1% FBS with TGF-β1 (2ng/mL) was used to replace the starvation 

media. 4% paraformaldehyde (PFA) was added to fix cells after 72 hours TGF-β1 induction. For focal 

adhesion staining, PBS with 0.2% saponin and 10% FBS was applied to permeabilize cells on coverslips, 

which were incubated at room temperature for 10 minutes before blocking in PBS with 5% donkey serum 

for 30 minutes. Coverslips were then probed with vinculin antibody (1:200, Sigma-Aldrich, St. Louis, MO) 

at 4ºC overnight. The following day, coverslips were washed before adding Vectashield mounting medium 

with DAPI (Vector Labs, Inc., Burlingame, CA). Then nail polish was used to seal coverslips which were 

then stored in cold room until they were taken out for images. Table 1 provides information of the 

antibodies used.  

Analysis of Immunofluorescence Images  

        For vinculin staining and pFAK staining, images were obtained on Olympus Fluoview 300 confocal 

microscope using a PL APO LSM2 40x water immersion objective with NA=0.9. The image statistics and 

masking tools coming with the SlideBook software (Intelligent Imaging Innovations, Denver, CO) were 

used to measure area of cell and focal adhesions. To compare sufficient cell number, area of vinculin 

staining and focal adhesions was normalized to each total cell area of each cell followed statistical analysis. 

A p < 0.05 was generated by the Student’s t-test and was determined as significant difference. 
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RNA was isolated from both TGF-β1 treated and control cells at different time points. 

qPCR was performed according to the protocol, statistics was generated by Student’s t 

test and *p<0.05, NS: no significance.     

Figure 4.4 Expression level of contractile proteins 
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4.3 Results  

4.3.1 Both the Col3a1+/+ and Col3a1+/- fibroblasts respond to stimulation by TGF-β1 

        At the injury site, immediately after thrombi formation, there is increased secretion of TGF-β1 by 

platelets and activated macrophages46, resulting in a TGF-β1 rich environment. TGF-β1 is widely accepted 

as a chemokine that promotes differentiation of myofibroblasts from fibroblasts as assayed by expression 

of contractile proteins. To examine the differentiation of fibroblasts, in vitro experiments were conducted 

by examining the expression of contractile proteins with fibroblasts explanted from mouse lung tissues. 

Expression of three most common contractile proteins, Acta2 (SM-actin), Cnn1 (calponin), and SM22 

(transgelin) were detected. Both Acta2 and SM22 genes were expressed at significantly higher levels after 

24 hours of TGF-β1 treatment (Figure 4.4a). But Cnn1 gene was only expressed significantly higher in 

the Col3a1+/- cells. The expression of all the contractile proteins decreased at 48 hours. We next examined 

their protein accumulation by westernblot. Interestingly, there was increased expression for all three 

proteins after 48 hours of TGF-β1 treatment and persistent up until after 72 hours in Col3a1+/- cells (Figure 

4.4b). The results indicating stable increased protein accumulation of contractile targets in the Col3a1+/- 

fibroblasts after TGF-β1 treatment.  

        We then examined the expression of collagens genes, Col1a1, Col1a2 and Col3a1 as well as collagen 

receptors, Itga2 and Itgb1 (Figure 4.5a). There was not any significant difference between Col3a1+/+ and 

Col3a1+/- cells after TGF-β1 for either 24 or 48 hours for both Col1a1 and Col1a2, but there was significant 

decreased expression of Col3a1 in Col3a1+/+ cells after 24 hours treatment.  

        There was significant less Itga2 expression in Col3a1+/- cells compared to that in Col3a1+/+  
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cells at basal level while expression of Itga2 decreased dramatically in Col3a1+/+ cells after 48 hours. And 

there was significantly increased expression of Itgb1 in Col3a1+/- cells compared to that in Col3a1+/+after 

both 24 and 48 hours treatment (Figure 4.5b). 

 

         

 

 

 

 

 

RNA was isolated from both TGF-β1 treated and control cells at different time points. qPCR 

was performed according to the protocol, statistics was generated by Student’s t test and *p 

<0.05, **p<0.01, NS: no significance.     

Figure 4.5 Expression of collagens (a) and two collagen receptors(b) 
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4.3.2 More formation of stress fibers in Col3a1+/- cells at basal level but not after TGF-β1 

stimulation 

To validate the more differentiated status of Col3a1+/- cells after TGF-β1 stimulation, we performed 

IF staining to examine the F-actin polymerization in both Col3a1+/+ and Col3a1+/- fibroblasts (Figure 4.6). 

It was shown that both Col3a1+/+ and Col3a1+/- cells significantly expression more a-actin, but in Col3a1+/- 

cells, a-actin were not assembled into F-actin fibers normally.  

 

4.3.3  Significantly increased activity of focal adhesion signaling in the Col3a1+/+ cells after TGF-

β1 stimulation for 72 hours 

        Focal adhesions (FAs) are widely distributed at the plasma adjacent to the membrane area and to 

sense forces against cells. Size of FA and maturation of them has been shown to demonstrate the degree 

of myofibroblasts differentiation72. We then asked whether the FAs in Col3a1+/- cells might be more mature 

compared to those from the Col3a1+/+ cells. Vinculin is one of the components of FAs and has been used 

as a marker of FAs. IF of vinculin was used to show the size and location of focal adhesions. Results 

Abnormal actin polymerization in Col3a1+/-
 
fibroblasts after treatment with TGF-β1 for 72hrs. 

Images are from IF staining showing merge
 
of a-actin (green), DAPI (blue) and F-actin (red). 

Figure 4.6 Abnormal actin polymerization in Col3a1+/- myofibroblasts  
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showed an increase in area of vinculin/area of cell in Col3a1+/- comparing with that in Col3a1+/+ fibroblasts 

at basal level, but there was significant increase in vinculin area/cell area in Col3a1+/+ cells compared with 

that in Col3a1+/- cells with 72 hours TGF-β1 induction. (Figure 4.7a), indicating the size of FAs in the 

Col3a1+/-cells was not increased after TGF-β1 treatment.  

 

 

4.3.4  No activation of pFAK in in vitro tissue culture of Col3a1+/- fibroblasts  

        Focal adhesion kinase (FAK) locates at FAs and function as a protein to transduce signaling. A group 

of different signaling pathways are activated by FAK, such as MAPK and PI3K-AKT. Activity of FAK 

was assayed to determine if there was increased kinase activity in the Col3a1+/- fibroblasts. Western blot 

analyses showed that there was not significant difference in phosphorylation of FAK comparing Col3a1+/+ 

cells to Col3a1+/- cells after TGF-β1 treatment (Figure 4.7c). However, immunofluorescent staining (IF) 

of pFAK revealed a smaller pFAK area/cell area in Col3a1+/- cells compared with Col3a1+/+ cells at both 

basal level and after TGF-β1 treatment for 72 hours (Figure 4.7b). This indicated that Col3a1+/- cells were 

not further responding to TGF-β1 compared to Col3a1+/+ cells.  
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4.3.5 Increased translocation of MRTFA into the nucleus of Col3a1+/- myofibroblasts 

 

MRTFA which was shown to be responsible TGF-β1 induced myofibroblasts differentiation by 

multiple studies82. In order to find out the reason for the differentiation of Col3a1+/- fibroblasts, we 

(a) Immunofluorescent staining (IF) to detect vinculin, marker for focal adhesions, results 

showed an increase in vinculin area/cell area in Col3a1+/- cells compared to that in Col3a1+/+ at 

basal level, but there is significant increase in vinculin area/cell area in Col3a1+/+ cells compared 

with that in Col3a1+/- cells after TGF-β1 treatment for 72 hours (b) IF to detect pFAK results 

showed that there was increase in pFAK area/cell area in Col3a1+/+ cells compared with that in 

Col3a1+/- cells at both basal level and after TGF-β1 treatment for 72 hours. Cells were treated 

with TGF-β1, followed by IF staining, and images were obtained on Olympus Fluoview 300 

confocal microscope using a PL APO LSM2 40x water immersion objective with NA=0.9. 

Significance was evaluated at p *< 0.05. 

Figure 4.7 Altered focal adhesions in both Col3a1+/+ and Col3a1+/- cells 
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conducted IF staining of MRTFA with Col3a1+/+ and Col3a1+/- fibroblasts with 72-hour TGF-β1 induction 

to determine the translocation of MRTFA from cytoplasma to nucleus. Quantitation was done by 

measuring the intensity of the staining. Result showed the increased MRTFA intensity in the nucleus of 

Col3a1+/- cells compared with the Col3a1+/+ cells (Figure 4.8), indicating that after stress exposed to 

fibroblasts, Col3a1+/- cells were more dependent on MRTFA signaling to further drive differentiation 

instead of FAK signaling.   
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Immunofluorescent staining (IF) to detect MRTFA, marker for focal adhesions, results showed that 

there was an increase in translocation of MRTFA in Col3a1+/- cells compared to that in Col3a1+/+ 

cells after TGF-β1 treatment for 72 hours. Significance was evaluated at *p < 0.05. 
 

Figure 4.8 Increased translocation of MRTFA into the nucleus of Col3a1+/- myofibroblasts 
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4.3.6 Increased differentiation of Col3a1+/- SMCs after stimulation with TGF-β1 

 

Since SMCs migrated from arterial wall also play a critical role in neointimal formation, we also 

examined phenotypes of SMCs in both Col3a1+/+and Col3a1+/- mice. Multiple experiments were 

performed with SMCs explanted from both Col3a1+/+and Col3a1+/- aortas. As with fibroblasts, expression 

of contractile markers was also detected. Results showed more dramatic increased messenger RNA 

(Figure 4.9a) and protein accumulation (Figure 4.9b) of contractile markers in Col3a1+/- SMCs after 

stimulation with TGF-β1 for 24 hours. 

 

RNA was isolated from both TGF-β1 treated and control SMCs cells at different time points. There 

was increased messenger RNA expression of contractile proteins and accumulation of protein level in 

both Col3a1+/- SMCs after TGF-β1 stimulation compared with control cells, but was more dramatic in 

SMCs. qPCR was performed according to the protocol, p**<0.001, by the Student’s t-test. 

 

Figure 4.9 Increased expression of contractile proteins in Col3a1+/- myofibroblasts 
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4.3.7 Altered focal adhesion by vinculin staining and increased differentiation of Col3a1+/- SMCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Immunofluorescent staining (IF) to detect vinculin, marker for focal adhesions, results showed 

that there was an alteration in distribution of focal adhesions in Col3a1+/- cells compared to that 

in Col3a1+/+ with TGF-β1 treated for 48 hours. 

Figure 4.10 Altered focal adhesion signaling in Col3a1+/- SMCs 
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Whether the FAs in Col3a1+/- cells might be more mature compared to those from the Col3a1+/+ SMC 

cells? To answer this question, IF of vinculin was conducted to show the size and location of focal 

adhesions. Results showed an increase in vinculin intensity in Col3a1+/- SMCs visually (Figure 4.10), 

indicating activation of FAK signaling and the maturation of FAs in the Col3a1+/- SMCs after TGF-β1 

treatment. 

 

 

 

RNA was isolated from both TGF-β1 treated and control SMCs cells at different time points. There was 

increased Col3a1 and Col1a1 expression after TGF-β1 stimulation compared with in Col3a1+/- SMCs. 

And decreased of Itga2 and Itgb1 in Col3a1+/- SMCs qPCR was performed according to the protocol, 

p**<0.001, by the Student’s t-test. 

Figure 4.11 Expression of collagens and collagen receptors at RNA level in SMCs 
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4.3.8 Altered production of collagen and their receptors Col3a1+/- SMCs 

As with fibroblasts, expression of collagens, Col3a1, Col1a1 as well as collagen receptors Itga2, 

Itgb1 was also detected.  results showed a dramatic increase in expression of both Col3a1 and Col1a1 after 

24 hours stimulation with TGF-β1 in both Col3a1+/- SMCs compared with Col3a1+/+ SMCs (Figure 4.11a), 

a decreased expression of Itga2 and Itgb1 in Col3a1+/- SMCs compared with Col3a1+/+ SMCs after 

stimulation with TGF-β1 for 24 hours (Figure 4.11b). Indicating a decreased integrin signaling 

transduction in the Col3a1+/- SMCs. 

 

 

 

4.3.9 Decreased cell proliferation and increased viability of Col3a1+/- SMCs 

To determine the difference of SMCs in proliferation, BrdU assay and MTT assay on cells stimulated 

with TGF-β1 for 24 hours (Figure 4.12a and b) were conducted. Data showed decreased Col3a1+/- SMCs 

BrdU and MTT assay was performed according to assay protocols, and absorbance was 

generated with plate reader at different wave length. There was decreased Col3a1+/- SMCs 

proliferation compared to that of Col3a1+/+ SMCs (a) however, there was increased cell 

viability in Col3a1+/- SMCs compared with Col3a1+/+ SMCs after stimulation with TGF-β1 for 

24 hours (b). Statistical analysis: Student’s t-test, *p<0.05 

Figure 4.12 Decreased cell proliferation while increased viability of Col3a1+/- SMCs 
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proliferation compared to Col3a1+/+ SMCs. However, there was increased cell metabolic activity in 

Col3a1+/- SMCs compared with Col3a1+/+ SMCs after stimulation with TGF-β1 for 24 hours. Indicating 

their difference in cell metabolism (Figure 4.12 b).  
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4.4 Discussion  

        Dysregulated function of myofibroblasts was shown from in vitro data by Dr. Amy Reid previously 

(unpublished data from our lab). In her 3D fibrinogen culture model, there was increased contractile protein 

expression as well as increased assembly of fibrillar collagens in the Col3a1+/- cells after induction with 

TGF-β1. Results from Reid’s study and another study showing the differentiated Col3a1+/- fibroblasts 

phenotype83 lead to the hypothesis that in the Col3a1+/-  mouse model after carotid ligation, fibroblasts 

might be showing a persistent differentiation status at the injury site due to the diminished content of type 

III collagen resulting in delayed thrombus resolution and aberrant injury repair. To further elucidate the 

phenotype of Col3a1+/- fibroblasts, we studied myofibroblast differentiation more closely. 

        Results showed that there was increased contractile protein expression at both RNA and protein level 

the Col3a1+/- fibroblasts which was consistent with results from Amy’s study. The F/G actin assay showed 

an increased proportion of F-actin polymerized in the Col3a1+/- cells after TGF-β1 treatment (Figure 4.5). 

Under normal condition, fibroblasts will be activated and recruited to the injury site where they will be 

differentiated into myofibroblasts by TGF-β186. TGF-β1 as a chemokine secreted mostly by platelet and 

macrophages is critical for the entire process of wound healing87. Secretion of TGF-β1 at an early stage of 

the healing prompts recruitment of inflammatory cells into the injury site, which are later involved in a 

negative feedback via macrophages88. At the same time, TGF-β1 induced the expression of ECM 

components like collagens by myofibroblasts. All these behaviors secure a successful wound healing after 

injury. This is what we speculate to be happening in the Col3a1+/+ mice after carotid injury. In mice lung 

tissues, this process is accompanied by the activation of pFAK signaling pathway followed the activation 

of TGF-β1 and SMAD signaling pathway23. Therefore, we also looked at the size of the focal adhesions 

(FAs) using IF staining of a representative FA marker, vinculin, as well as pFAk72,69. There was increased 

vinculin area/cell area in Col3a1+/- cells compared to that in Col3a1+/+ at basal level, which indicated that 

Col3a1+/- fibroblasts were more differentiated even when there was no stimulation with TGF-β1, which 

was not shown by the data for the contractile proteins. But a dramatic increased vinculin area/cell area 

(Indicating size of FAs) in Col3a1+/+ cells compared with that in Col3a1+/- cells after 72-hour TGF-β1 
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induction. Also, there was significantly increased pFAK area/cell area in Col3a1+/+ cells compared with 

that in Col3a1+/- cells at both basal level and after TGF-β1 treatment for 72 hours, indicating continuous 

response of Col3a1+/+cells to drive expression of α-SMA to form stress fibers, as shown by IF data (Figure 

4.6). When it was related to the in vivo situation, Col3a1+/+ myofibroblasts proliferate and produce normal 

procollagen type III with help from TGF-β1 for the earlier wound healing phase and followed by producing 

contractile proteins, especially α-SMA for a wound contracture and normal wound healing23.  By contrast, 

we hypothesize that in vivo in the Col3a1+/- mouse, although there is sufficient TGF-β1 secreted by the 

persistent activated macrophages, the myofibroblasts are not producing enough procollagen type III. Thus, 

although the cells are able to respond to TGF-β1 to stimulate pFAK and FA growth as well as initial 

expression of contractile proteins (Figure 4.7), the FAs are linking up to aberrant collagen in the 

extracellular matrix and they are unable to stimulate stress fiber formation to complete the differentiation. 

Instead they activate MRTFA signaling pathway for F-actin formation and keep the producing α-SMA 

(Figure 4.8). Even though, they are still not confident for contracture. We hypothesize that not only are 

the cells failing to complete contracture due to the lack of collagen, but the myofibroblasts are failing to 

undergo apoptosis and instead persistent differentiation and attempting to heal the wound long after the 

process should be completed (Figure 4.13) 

        Due to the contribution of SMCs from arterial wall to the remodeling of arterial wall after injury89, 

we also investigated if there is any difference between SMCs from Col3a1+/+ and Col3a1+/- mice. Results 

showed that Col3a1+/- SMCs present a more differentiated status by increasing expression of contractile 

markers at both RNA and protein level compared with the Col3a1+/+ SMCs (Figure 4.9). Although there 

was a decrease in Col3a1+/- SMCs proliferation, there was increased cell metabolic activity of Col3a1+/- 

SMCs (Figure 4.12). Proliferation of SMCs is critical in intimal hyperplasia after arterial injury90. Results 

from the SMC data showed that deficit of type III collagen impaired the neointima hyperplasia procedure 

after arterial injury.  

        In conclusion, I was able to find consistently demonstrated that there was persistent myofibroblasts 

differentiation status in the Col3a1+/- mice by the in vitro study. And study from the SMCs validate that 
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the impaired arterial injury wound healing in the Col3a1+/- mice. In the future, studies should be focused 

on whether any approaches could be applied to modulate the secretion of type III collagen in Col3a1+/- 

fibroblasts, and then put the cells back to mouse model to correct their aberrant injury repair. Another 

future study should be directed to more completely (mechanistically) link the collagen defect to the cellular 

defects seen in the current study.  

 

 

 

 

 

 

 

 

Figure 4.13 Proposed mechanisms for the persistent Col3a1+/- myofibroblasts status  
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5 Discussion 
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5.1 Discussion of the project 

vEDS is the most severe type of EDS, with no effective therapeutic approach for patients. The widely 

accepted dogma of vEDS pathogenesis is that defective production and a deficit of type III collagen leads 

to a weakened arterial wall64. The deficit of collagen is mainly caused by the mutation at the Gly-X-Y site 

of the type III collagen gene, Col3a1. Multiple studies suggest that arterial wall weakness and fragility are 

the main causes of arterial aneurysm and dissection.  

A review by Oderich el al. found 90 vEDS patients who showed bruised and translucent skin3, 

indicating their aberrant injury repair ability. The focus of this dissertation research is to confirm how the 

deficiency of type III collagen contributes to the pathogenesis of vEDS. Specifically, we explored the 

mechanisms of aberrant arterial wound healing. We used a haploinsufficient Col3a1+/- mouse model, which 

resembles vEDS patients by showing arterial and other phenotypes as seen in human patients17.Previous 

studies from our lab linked vEDS with dysfunctional fibroblasts in the Col3a1+/- mice. Additionally, 

fibrocytes that are bone marrow-derived (BMD) differentiate into wound-healing myofibroblasts with the 

expression of α-SMA27,48. Thus, we hypothesized that a bone marrow transplant (BMT) could correct the 

ability of injury repair and alleviate the phenotypes in the Col3a1+/- mice after induced injury. 

Previous studies from our lab have proposed a dis-regulated arterial wound healing process in the 

Col3a1+/- mouse model.  Our bone marrow transplant (BMT) data confirmed this finding. In the in vitro 

study on fibroblasts, explanted Col3a1+/- mice validated our in vivo findings by showing a less mature 

myofibroblasts phenotype. 

The work presented in this dissertation showed the effectiveness of two potential approaches for 

vEDS treatment, bone marrow transplantation and celiprolol trial, both of which improved post-injury 

phenotypes in the Col3a1+/- mice.  

        Studies by Morissette et al. demonstrated that a chronic inflammation in vEDS patients91. They 

detected markers of the TGF-β signaling pathways, using both patients’ plasma and dermal fibroblasts. 
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According to the classification of vEDS severity and a correlation of phenotype-genotype as well as and 

fat deposited in patients, they discovered an increased amount of TGF-β1, TGF-β2, MCP-1, CRP, ICAM-

1), VCAM-1 in vEDS patients. A higher mean platelet volume was also found in vEDS patients, which 

suggested an increase in their platelet turnover result from persistent vascular damage, and adiposity65. 

Results from the current study could be partially explained by persistent inflammation in vEDS patients. 

In this current study, we also performed an ELISA assay on plasma to detect inflammatory factors in the 

Col3a1+/- mice. We specifically detected ICAM1, VCAM-1 and MCP-1 at different time points, basal level, 

POD3, POD7 and POD14. However, we were not able to show any conclusive findings from the ELISA 

assays (Data not shown). Therefore, we cannot confirm increased circulating inflammatory factors in this 

mouse model, and we cannot conclude that inflammation plays a role in the disease process. 

Attention should be paid to our use of the painkiller drug ketoprofen which was administered to these 

mice. There are multiples studies showed ketoprofen had anti-platelet activity of aspirin92,93. In contrast, 

ibuprofen showed effects in inhibiting the platelet aggregation potency of aspirin compared with other 

nonsteroidal anti-inflammatory drugs (NASIDs)94. Immediately after injury, platelets aggregation ensures 

a normal thrombus formation and initiates successful wound healing31; thus while ketoprofen might 

promote the very early stage of wound healing, ibuprofen inhibits it. As a result of this early difference, 

for future studies, attention should be paid to which painkiller drug to use and to interpret the results very 

accurately.  

The findings from the current study can also be applied to cerebrovascular diseases, which have been 

manipulated by endovascular techniques95. But there have to be other techniques used at the same time to 

minimize complications such as thromboembolic events, which is as high as 12.5%96. Platelets contribute 

to both hemostasis and thrombosis95. Thromboembolic events also happen to people with acute coronary 

diseases95.  Although approaches for antiplatelet activity drugs have been applied, they can lead to either 

ischemic or bleeding complications, respectively due to the different potency of the antiplatelet drugs and 

their interactions97. For stroke happen to patients especially who are not older than 45 years, spontaneous 
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dissection of brain vascular plays a huge role. Patients have vascular pathologies usually have experienced 

trivial trauma, which resembles the carotid ligation we induced to Col3a1+/- mice98, through which a wound 

healing process was initiated, persistent inflammation, not timely resolved thrombus leading to the medial 

neovessel formation, finally predispose the rupture or dissection of the artery. And there was no optimal 

medical treatment for cerebrovascular dissection. Currently, there are no data from clinical trials who has 

confirmed antithrombotic with either anticoagulation or antiplatelet drugs98. To conclude, two big 

problems in cerebrovascular disease are thrombosis and trauma, which are both relevant to the arterial 

injury repair pathways described in this dissertation. The findings from this current study could therefore 

be applied to those patients with cerebrovascular diseases, specifically, to reduce the inflammation and 

decrease thrombosis by increasing resolution of thrombus after arterial injury.  

        On a broader scale, the therapies proposed in the current study can also be used to treat those diseases 

which are characterized by defects in wound healing or disrupted scar formation, such as defective burn 

wound healing, persistent burns with type II diabetes and fibrosis by modulating the hyperactivity of 

fibroblasts/myofibroblasts21. Study by Duchesneau et al. showed that BMT could rescue function of lung 

tissue using a cystic fibrosis (CF) model99, which is a fatal genetic disease resulting from mutation in CFTR 

protein.. They found that transplant of wild type bone marrow into CFTR deleted recipient rescued the 

phenotypes in CFTR-/- mice. Taken together, their results suggest that BMC can improve overall lung 

function and may have potential therapeutic benefit for the treatment of CF. Thus, we further propose that 

together with their studies, findings from the current study could be applied to multiple of other diseases.  

However, there were still limitations to the current study. First, transgenic mouse model(s) with 

specific Col3a1 mutation(s) are still not available, instead we used a haploinsufficient Col3a1 mouse 

model. Although Col3a1-/- mice recapitulate syndromes of vEDS more closely, these mice rarely survive 

after birth. Col3a1+/- mice have a milder phenotype100. Second, although BMT rescued the phenotypes 

showed in the Col3a1+/- mice, we were not able to examine or exclude the immune responses after BMT. 

Third, there might be some technique limitations of the BMT procedure. Since we transplanted the whole 
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bone marrow cells into each recipient mouse without isolating specific a fibrocyte population, even though 

we speculate that BMD fibrocytes are involved in wound healing, we cannot whether it was possible for 

there to be other cells like macrophage or other BMD cells actually participating in rescuing the phenotypes. 

There is therefore still a lot of work to be done before a clinical study on vEDS patients could be initiated. 

The mouse model used for this current project provides a basic idea which will direct future studies 

on vEDS patients with severe mutations and their roles in the disease. It also provides a strong early data 

which links mechanisms of vEDS patients and the role of decreased production of type III collagen. Most 

importantly, the current work provides us with two potential therapeutic approaches for this deadly disease. 

In the long run, we expect that these studies will be applied to clinical use after further work solving the 

above stated limitations.  

 

5.2 Future direction 

5.2.1 In vitro studies on Col3a1+/+ and Col3a1+/- fibroblasts to test their metabolism and cell 

interaction 

        The in vitro data from chapter 4 showed increased MTT incorporation in Col3a1+/- fibroblasts; it could 

be possibly explained by the changes in cell metabolism, which is regulated mainly by the mammalian 

target of rapamycin (mTOR) signaling101. We will look at differences in mTOR signaling between 

Col3a1+/- and Col3a1+/+ fibroblasts, and will do further studies to mechanistically link these signaling 

changes with adhesion-based pathways. 

5.2.2 Investigating the role of specific bone marrow derived cell types in Col3a1+/- mouse model 

        There are multiple different functions of macrophages in wound healing, including host defense, the 

inflammatory responses, cell apoptosis and tissue restoration46. Specifically, first, it would be of great 

interest to isolate fibrocytes, macrophages and fibroblasts from Col3a1+/- and Col3a1+/+ mice by flow 
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cytometry with their differentiated cell surface markers102,103. We could use these cells in vitro to study any 

changes in phenotype and any interaction between these cell types. We expect macrophage phenotype not 

to be affected and fibrocyte phenotype to be similar to the reported findings in Chapter 4 for lung 

fibroblasts. Finally, after in vitro culture of isolated fibrocytes, both Col3a1+/+ and Col3a1+/- 

fibroblasts/macrophages would be injected into both two groups of mice respectively, and then compare if 

there is any correction in the injury repair ability of Col3a1+/- mice by using the carotid ligation injury 

model. 

5.2.3 Specialized cell therapy for vEDS.  

In developmental biology and cancer biology as well as vascular biology, cell therapy has been widely 

studied and accepted as an effective approach for a variety of diseases104. It is of great interest for us to try 

similar method for vEDS patients. First, gene cloning technique should be used to establish the stable 

protein expression system of procollagen type III. Then the system could be induced into immortalized 

fibroblasts/myofibroblasts, followed by injecting the cells into both Col3a1+/+ and Col3a1+/- mice, to check 

if there is increased injury repair ability of Col3a1+/- mice by same mouse model.  

5.2.4 Effects of celiprolol on cells explanted from Col3a1 mouse. 

One last, but not least future study is highly proposed to investigate the role of celiprolol using in vitro 

tissue cultured fibroblasts or even macrophages. Phenotypes such as cell migration, proliferation and the 

secretion of inflammatory factors as well as neo-angiogenesis of these cells should be examined on both 

Col3a1+/+ and Col3a1+/- cells. This study is of great importance to illustrate the mechanisms underlie how 

celiprolol could decrease the severity of vEDS and how celiprolol could be best applied for vEDS patients. 
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