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IDENTIFYING SUBUNIT ORGANIZATION AND FUNCTION OF THE NUCLEAR 
RNA EXOSOME MACHINERY 

  

Jillian Strother Losh, A.S., B.S. 

 
Advisory Professor: Ambro van Hoof, Ph.D. 

 

The eukaryotic RNA exosome processes and degrades many classes of RNA. It is 

present in the nucleus and the cytoplasm, highly evolutionarily conserved, and essential for 

viability. Since the RNA exosome is such a significant component of the RNA degradation 

machinery, it is unsurprising that even single point mutations in a few of its subunits have 

been linked to human disease. For example, at least eight point mutations in a single 

subunit of the RNA exosome have been linked to pontocerebellar hypoplasia subtype 1b 

(PCH1b). My work has included the development of a laboratory model system to assess 

the specific effects of these mutations on the structure and function of the RNA exosome. 

My collaborators and I have employed the common model organism Saccharomyces 

cerevisiae for this work since both the RNA exosome and other components of RNA 

degradation machinery are conserved throughout eukaryotes. Our research has shown that 

at least one PCH1b-associated mutation negatively affects the stability of the RNA 

exosome, although it remains functional. The effect of this mutation is conserved between 

yeast and mouse cells. 

The RNA exosome requires various cofactors in both the nucleus and the cytoplasm 

for substrate delivery. The other half of my work focuses on a nuclear cofactor of the RNA 

exosome, the TRAMP complex. This complex is comprised of an RNA helicase and a 

poly(A) polymerase, as well as an RNA-binding subunit. However, it is currently unclear how 

the TRAMP complex is specifically assembled and moreover, if it is essential for life. The 

poly(A) polymerase subunit consists of a catalytic domain, as well as disordered regions that 
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are required for protein interactions. My work has shown that the catalytic core of the 

TRAMP complex is necessary and sufficient for its essential functions, although a specific 

interaction between the two enzymatic subunits is required for snoRNA biogenesis and 

possibly other cellular functions. These and future studies will help define the role of the 

TRAMP complex in the RNA degradation process and determine its importance for cellular 

viability. 
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BACKGROUND 

Eukaryotic RNA Degradation 

Despite the variety of RNA within cells, nearly every type of transcript requires 

processing before becoming fully functional. RNA surveillance mechanisms are required to 

safeguard against deleterious events because both transcription and post-transcriptional 

modifications are error-prone, despite tight regulation. Eukaryotic RNA metabolism is an 

intricate system of RNA synthesis, processing, quality control, and degradation pathways. 

While mature transcripts are broken down into nucleotide monophosphates when they are 

no longer needed, quality control mechanisms ensure that aberrant RNA species are 

degraded as well. 

In eukaryotes, there is a distinct difference between transcript and protein half-life, or 

the amount of time it takes for half of the original sample size to be degraded. For example, 

in Saccharomyces cerevisiae the average mRNA half-life is twenty minutes, in contrast with 

an average protein half-life of forty minutes (Wang et al., 2002; Belle et al., 2006). Moreover, 

the average mRNA half-life in human cells is ten hours, while the average protein half-life is 

thirty-six hours (Cambridge et al., 2011; Schwanhäusser et al., 2013). Cells must possess 

effective pathways of RNA degradation, as excess transcripts must be degraded in order to 

ensure continued cellular viability. In addition to out-competing necessary RNA for 

processing and interactions with transcription factors, surplus RNA in the nucleus can 

stimulate double-stranded breaks by binding to homologous regions on DNA (Wahba et al., 

2013). Therefore, cells must maintain mechanisms to rapidly clear even the most optimally 

transcribed and processed RNA species. 

Aberrant transcripts arise due to many types of faulty gene expression and typically 

have defective structure or incorrect associations with proteins. Genetic mutations can lead 

to the transcription of RNA species with premature stop codons or no stop codons at all. 

Defective processing events, such as improper splicing, can also result in aberrant 
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transcripts. Since mistakes at many steps in the process of RNA biogenesis can lead to the 

formation of faulty RNA species, it is not surprising that they are targeted by the same 

degradation machinery that is involved in normal RNA turnover. 

The Two Pathways of RNA Degradation 

RNA can be degraded in either a 5’-3’ or a 3’-5’ direction. Both of these essential 

pathways are present in both the nucleus and cytoplasm. Moreover, each pathway contains 

ribonucleases (RNases), which can be further classified as 5’ exoribonucleases, 3’ 

exoribonucleases, or endoribonucleases. These RNase enzymes are capable of cleaving 

transcripts from RNA polymerase I, II, and III. While RNA polymerase I and III transcripts 

can be rapidly degraded from either end, the degradation of RNA polymerase II transcripts 

includes additional steps.  Once an RNA polymerase II transcript has been deadenylated, 

which is a signal for degradation, 5’-3’ RNA decay begins with the removal of the transcript’s 

5’ cap. This allows for 5’-3’ exoribonucleases to start degrading at the now-exposed 5’ end. 

In contrast, exoribonucleases of the 3’-5’ RNA decay pathway begin degrading at the 

deadenylated 3’ end of transcripts. The RNA exosome contains the essential ribonuclease 

of the 3’-5’ RNA degradation and processing pathway. 

Functions of the RNA Exosome 

The highly ubiquitous RNA exosome is a ten-subunit complex that is present in both 

the nucleus and the cytoplasm of cells (Allmang et al., 1999a). Within multicellular 

eukaryotes, the RNA exosome is found within the cells of most types of tissues (Uhlén et al., 

2015). This complex contributes several essential functions to the intricate pathway of RNA 

metabolism. The RNA exosome processes precursor transcripts by trimming them at 

specific sites, leading to mature RNA products. It also contributes to the regulation of gene 

expression by degrading mature transcripts that are no longer needed. The RNA exosome 

is important for RNA quality control since it degrades aberrant transcripts as well.  
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Substrates of the RNA exosome for processing and/or degradation include nearly 

every type of RNA, including products of all three RNA polymerases (Allmang et al., 1999b; 

Mitchell et al., 1997; Wlotzka et al., 2011). Moreover, this 3’-5’ machinery targets transcripts 

produced by the additional two RNA polymerases found in plants (Shin et al., 2013). The 

broad targeting characteristic of the RNA exosome is conserved throughout eukaryotes, 

highlighting the importance of this complex.  

Nuclear Functions  

The RNA exosome machinery targets many known types of non-protein-coding RNA 

(ncRNA). This large class of RNA includes two important components of protein translation 

machinery, ribosomal RNA (rRNA) and transfer RNA (tRNA). After its transcription, rRNA 

requires multiple rounds of processing in order to become part of a functional ribosome. 

Specifically, sequences for several mature rRNA species are included within precursor 35S 

rRNA. This precursor is additionally flanked by an external transcribed spacer (ETS) at each 

end. The RNA exosome is required for the degradation of the 5’ ETS after it has been 

cleaved from the precursor RNA (de la Cruz et al., 1998). The 35S rRNA is then cleaved into 

shorter precursors, such as 7S rRNA. The RNA exosome machinery is additionally required 

for further processing 7S rRNA into 3’ extended precursor 5.8S rRNA (Briggs et al., 1998; 

Allmang et al., 1999b). The precursor 5.8S rRNA can then be exported to the cytoplasm, 

where is it further processed into its mature form (Thomson and Tollervey, 2010). The RNA 

exosome can also degrade the byproducts that arise when it processes rRNA. For example, 

it degrades 5’ extended 21S and 23S rRNA intermediates that result during the processing 

of mature 18S rRNA (Allmang et al., 2000). Additionally, precursor tRNA is one of the most 

highly targeted substrates of the nuclear RNA exosome (Schneider et al., 2012). It is 

processed at its 3’ end by the RNA exosome machinery, although the 5’ ends of these 

transcripts can also be threaded through the central channel of the RNA exosome for 

degradation (Delan-Forino et al., 2017). In addition to processing precursors or degrading 
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byproducts, the RNA exosome can degrade aberrant or unnecessary mature rRNA and 

tRNA in the nucleus (Zanchin and Goldfarb, 1999; Allmang et al., 2000; Kadaba et al., 2004; 

Wichtowska et al., 2013; Delan-Forino et al., 2017). 

Like rRNA and tRNA, other examples of functionally characterized ncRNA include 

small nuclear and small nucleolar RNA (snRNA and snoRNA). snRNA is important for 

mRNA maturation, while snoRNA induces chemical modifications that are important for the 

maturation of rRNA, tRNA, and snRNA. The snoRNA class can be divided into two main 

subsets, C/D box and H/ACA box, which guide methylation or pseudouridylation 

modifications, respectively. After precursor snRNA transcripts are cleaved by the nuclease 

Rnt1, their 3’ ends are exposed. This allows for specific bases to be removed by the RNA 

exosome machinery, leading to the formation of mature snRNA (Allmang et al., 1999b; van 

Hoof et al., 2000a). The RNA exosome machinery also trims the 3’ end of many precursor 

snoRNA transcripts, regardless of whether they are independently transcribed or derived 

from introns (Allmang et al., 1999b; van Hoof et al., 2000a). As with other classes of 

transcripts, the RNA exosome can degrade snRNA and snoRNA that is aberrant or no 

longer needed. 

The RNA exosome degrades several types of short, largely uncharacterized ncRNA, 

such as cryptic unstable transcripts (CUTs), promoter upstream transcripts (PROMPTs), and 

stable unannotated transcripts (SUTs) (Wyers et al., 2005; Preker et al., 2008; Marquardt et 

al., 2011). These short transcripts, derived from intragenic and intergenic regions, may be 

involved in eukaryotic gene regulation or silencing. Intergenic transcripts that are over 200 

nucleotides, known as long ncRNA (lncRNA), are also targeted by the nuclear RNA 

exosome (Wlotzka et al., 2011). Additionally, the human RNA exosome can degrade 

transcription start site-associated RNA (xTSS-RNA) and upstream antisense RNA (uaRNA) 

in the nucleus (Flynn et al., 2011; Pefanis et al., 2014). 
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Finally, protein-coding messenger RNA (mRNA) can also be processed and 

degraded by the nuclear RNA exosome. The RNA exosome machinery is important for 3’ 

end formation of some, but not all, precursor mRNA transcripts (Ciais et al., 2008; Roth et 

al., 2009). This 3’ end modification is required for the maturation of these transcripts. As with 

ncRNA species, the RNA exosome can also degrade precursor and mature mRNA that is 

aberrant or unnecessary (Bousquet-Antonelli et al., 2000). 

Cytoplasmic Functions  

In the cytoplasm, the RNA processing activity of the RNA exosome is not necessary. 

However, its role in cytoplasmic RNA degradation is important. The cytoplasmic RNA 

exosome will degrade mRNA that is no longer required, which helps regulate gene 

expression. Furthermore, it plays a role in cellular surveillance by degrading aberrant RNA 

species. These targets for cytoplasmic RNA exosome-mediated degradation include 

transcripts that cause long ribosomal pausing (no-go transcripts), possess premature stop 

codons (nonsense transcripts), lack in-frame stop codons (nonstop transcripts), or lack a 

poly(A) tail (van Hoof et al., 2002; Lejeune et al., 2003; Gatfield and Izaurralde, 2004; Orban 

and Izaurralde, 2005; Doma and Parker, 2006; Meaux and van Hoof, 2006). As in the 

nucleus, the cytoplasmic RNA exosome also targets CUTs and SUTs for degradation 

(Marquardt et al., 2011).   

Composition of the RNA Exosome 

All ten subunits of the RNA exosome are essential for cellular viability. Moreover, the 

structure of the RNA exosome is conserved throughout eukaryotes. Its composition remains 

the same, regardless if the complex is in the nucleus or the cytoplasm.  

RNA Exosome Structure  

In S. cerevisiae, six protein subunits (Mtr3, Rrp41, Rrp42, Rrp43, Rrp45, and Rrp46) 

comprise the non-catalytic core ring of the RNA exosome (Figure 1.1 A, B). An RNA 

substrate is threaded through the central channel of this ring with its 3’ end leading. Three 
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putative RNA-binding proteins (Csl4, Rrp4, and Rrp40) contact the core ring on the 

substrate’s side of entry (Figure 1.1 A, B). Rrp44, the catalytic subunit of the RNA exosome, 

resides on the opposite side of the core ring (Figure 1.1 A). This subunit provides the 

complex with both endo- and exoribonuclease activities (Dziembowski et al., 2007; Lebreton 

et al., 2008; Schaeffer et al., 2009; Schneider et al., 2009). 
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Figure 1.1 Composition of the RNA exosome. (A) The nine non-catalytic subunits of the 

RNA exosome are organized into the “cap” and “core” domains, through which an RNA is 

threaded through. The RNA substrate encounters the sole catalytic subunit, Rrp44, on the 

opposite side. The endo- or exoribonuclease activity of Rrp44 will ensure that the 

substrate is degraded or processed, as needed. (B) A view of the RNA exosome from a 

substrate’s site of entry. The three subunits of the RNA exosome cap (Csl4, Rrp4, Rrp40) 

possess RNA-binding capability and are believed to be important for feeding the substrate 

into the central channel of the core ring (Mtr3, Rrp41, Rrp42, Rrp43, Rrp45, Rrp46). 

 



  9 

RNA Exosome Subunits  

 Several subunits of the RNA exosome, as well as RNA cofactors, were 

independently identified by multiple studies several years before the identification of the 

complex itself. Eight of the ten subunits of the RNA exosome now have an Rrp (ribosomal 

RNA processing) designation, although many of them were initially identified in a genetic 

screen for yeast mutants that were defective in nuclear mRNA transport (Kadowaki et al., 

1994). One subunit has retained its initial Mtr3 (mRNA transport) designation and was 

further identified in a screen for yeast mutants that accumulated polyadenylated RNA in the 

nucleolus (Kadowaki et al., 1995). Another one of these subunits was later identified in a 

screen for yeast mutants that were not able to carry out the final step of rRNA maturation. 

This study designated this protein as Rrp44 and also characterized it as a 3’-5’ ribonuclease 

(Mitchell et al., 1996). Additionally, two RNA exosome subunits, Rrp41 and Csl4, were 

initially identified in a screen for yeast mutants that expressed viral toxins (Ridley et al., 

1984). In hindsight, these two mutant strains were likely expressing these toxins because 

their altered RNA exosomes were not able to degrade viral RNA.  

The first study describing the RNA exosome as a multi-subunit complex comprised of 

these previously identified proteins was published twenty years ago (Mitchell et al., 1997). 

Further studies indicated that it is the yeast homolog of the human PM-Scl complex, 

identified over a decade earlier (Reimer et al., 1986; Allmang et al., 1999a). However, the 

function of this human complex had not been well-characterized so the identification and 

detailed study of the yeast RNA exosome was a breakthrough in the field of RNA 

metabolism. 

The six subunits of the core ring all have significant sequence homology to 

Escherichia coli RNase PH, a 3’-5’ exoribonuclease that processes precursor tRNA into its 

mature form (Allmang et al., 1999a; Wen et al., 2005). Moreover, the barrel structure of the 

eukaryotic RNA exosome core is similar to the hexameric ring structure of RNase PH (Liu et 
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al., 2006). The archaeal RNA exosome also shares similar structure and 3’-5’ catalytic 

activity with RNase PH (Evguenieva-Hackenberg et al., 2003; Lorentzen et al., 2005). 

However, unlike in archaea, the core subunits in yeast and animals do not maintain the 

catalytic function of this bacterial enzyme. Although they were also initially thought to be 

active ribonucleases, conserved mutations in their RNase PH-like catalytic sites have 

rendered the core subunits inactive in many eukaryotic genomes (Dziembowski et al., 

2007). Interestingly, a recent study using the common laboratory plant model, Arabidopsis 

thaliana, has shown that the RNA exosome core remains catalytic in this organism and 

perhaps in other plants as well. This study also included sequence analysis, which indicated 

that core RNA exosome subunits may have retained catalytic activity in several amoeboid 

protists (Sikorska et al., 2017). Therefore, it is possible that loss of this catalytic activity in 

the RNA exosome core is unique to the animal and fungal branches of Eukaryota, although 

significant sequence and functional analyses would be required to elucidate this.  

Rrp4, Rrp40, and Csl4 comprise the “cap” of the RNA exosome. Each of these 

attach to two specific subunits of the core ring (Figure 1.1 B) (Liu et al., 2006). These three 

proteins have putative individual RNA-binding activity, which is enhanced by their 

cooperative binding. Rrp4 and Rrp40 both contain similar terminal and central domains. 

Specifically, their central S1 domain and C-terminal KH domains are the most likely sites for 

RNA-binding (Oddone et al., 2007). Yet despite their general structural similarity, both full-

length proteins are required for viability (Schaeffer et al., 2009). Csl4 has the same N-

terminal and central domains as Rrp4 and Rrp40, but its C-terminus contains a zinc-ribbon 

domain. Interestingly, the zinc-ribbon domain is the only essential region of Csl4. Moreover, 

this domain is only required for cytoplasmic mRNA decay, but not for RNA exosome 

structure or its nuclear functions (Schaeffer et al., 2009). By interacting with an RNA and/or 

the cofactor protein that is delivering it to the RNA exosome for processing or degradation, 
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these three cap subunits independently provide the RNA exosome with the ability to accept 

different substrates.  

Rrp44, the catalytic subunit of the RNA exosome, has been identified as a homolog 

of E. coli RNase R, a 3’-5’ exoribonuclease that selectively targets mRNA (Mitchell et al., 

1997; Cheng and Deutscher et al., 2005). As previously stated, Rrp44 functions as both an 

endo- and exoribonuclease. These domains are at least partially redundant, since only one 

functional ribonucleolytic domain is required to maintain cellular viability (Lebreton et al., 

2008; Schaeffer et al., 2009). The endoribonuclease domain is located within the N-terminus 

of Rrp44. However, this region also has an essential structural function since it is required 

for attaching Rrp44 to the core ring of the RNA exosome (Schaeffer et al., 2009; Schneider 

et al., 2009). The C-terminus of Rrp44, which contains the exoribonuclease domain, resides 

at the exit site of the complex’s central channel. 

In addition to the well-characterized model of a substrate’s entry and exit through the 

central channel of the RNA exosome, recent models have shown that RNA can come into 

direct interaction with Rrp44 without passing through the rest of the complex (Liu et al., 

2014; Han and van Hoof, 2016). This requires a conformational change of the RNA 

exosome. While direct interaction with the catalytic Rrp44 subunit seems like a more 

straightforward process than entering the central channel, this alternative RNA exosome 

conformation has limited activity. Specifically, it is only reported to be important for the 

degradation of 5S rRNA and tRNA within the nucleus (Han and van Hoof, 2016). However, 

this highlights the multifaceted specificity of the RNA exosome, in terms of its cellular 

location, substrates, and ability to process or degrade. 

Diseases Linked to RNA Exosome Dysfunction 

Since the RNA exosome is such a significant component of the RNA processing and 

degradation machinery, it is not surprising that even single point mutations in a few of its 

subunits have been linked to deleterious phenotypes in humans (Table 1.1). Humans have 
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three Rrp44 variant orthologs, known as DIS3, DIS3L (Dis3-like), and DIS3L2. Although 

yeast Rrp44 is associated with both the nuclear and cytoplasmic RNA exosome, DIS3 is 

specifically nuclear. DIS3L and DIS3L2 are cytoplasmic, although only DIS3L is believed to 

interact with the human RNA exosome core (Lubas et al., 2013; Malecki et al., 2013). While 

DIS3L2 does not bind to the RNA exosome core, inactivation of the DIS3L2 gene results in 

Perlman syndrome, a serious disorder characterized by enlarged organs and increased risk 

for kidney tumors (Astuti et al., 2012).  

Mutations in DIS3 are associated with multiple myeloma (Tomecki et al., 2014). 

Recurrent mutations in this gene have also been implicated in acute myeloid leukemia 

relapse (Ding et al., 2012). Decreased DIS3 gene expression was recently linked to an 

increased risk of pancreatic cancer (Hoskins et al., 2016). As this is the only catalytic subunit 

of the RNA exosome, it is not unexpected that it is linked to such serious phenotypes. 

However, several subunits of the RNA exosome cap and barrel have been connected to 

very different symptoms, mainly neurological.  

Mutations in at least two RNA exosome subunits lead to pontocerebellar hypoplasia 

(PCH), a rare group of neurodegenerative conditions that are all primarily characterized by 

an atrophied cerebellum and pons. Autosomal recessive mutations in the RNA exosome cap 

subunit EXOSC3 and core subunit EXOSC8 cause PCH type 1b and 1c, respectively (Wan 

et al., 2012; Boczonadi et al., 2014). These proteins are the human orthologs of yeast Rrp40 

and Rrp43. A recessive mutation in another core subunit, EXOSC9/Rrp45, has recently 

been shown to result in PCH phenotypes as well, although it has not yet been definitively 

linked to a PCH subtype (Donkervoort et al., 2017). In addition to brain abnormalities, PCH 

patients typically exhibit spinal motor neuron degeneration and widespread muscular 

atrophy. Most patients do not live past early childhood. 

Recently, a third structural subunit of the RNA exosome was associated with human 

phenotypes. Mutations in cap subunit EXOSC2/Rrp4 cause premature aging, retinal 
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deformities, hypothyroidism, and other mild physical and mental disabilities (Di Donato et al., 

2016). Collectively, these phenotypes are now considered to be a unique disorder, recently 

termed SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). 

Interestingly, these symptoms are very different from those caused by mutations in the 

EXOSC3/Rrp40 subunit of the RNA exosome cap. This is somewhat unexpected, due to the 

functional and structural similarities between these two cap proteins. One possibility for 

explaining these phenotypic variations is that these disease-associated mutations may 

interfere with different interactions that take place between the RNA exosome and its many 

cofactors. Human diseases that are associated with RNA exosome cofactors will be 

discussed later in this chapter. 
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Table 1.1 RNA exosome subunits and cofactors implicated in human disease 

Human Disease RNA Exosome-
Associated Protein 

Reference 

Acute myeloid leukemia DIS3 (Ding et al., 2012) 
Multiple myeloma DIS3 (Tomecki et al., 2014) 
Pancreatic cancer DIS3 (Hoskins et al., 2016) 
Perlman syndrome DIS3L2 (Astuti et al., 2012) 

SHRF disorder EXOSC2 (Di Donato et al., 2016) 
Pontocerebellar hypoplasia type 1b EXOSC3 (Wan et al., 2012) 
Pontocerebellar hypoplasia type 1c EXOSC8 (Boczonadi et al., 2014) 

Pontocerebellar hypoplasia-like 
phenotypes 

EXOSC9 (Donkervoort et al., 2017) 

Spinal motor neuropathy RBM7 (Giunta et al., 2016) 
Trichohepatoenteric syndrome SKI2 (Fabre et al., 2012) 
Trichohepatoenteric syndrome SKI3 (Hartley et al., 2010) 

 

Table 1.1 RNA exosome subunits and cofactors implicated in human disease. Mutations in 

the genes encoding components of the RNA exosome machinery have been linked with a 

variety of human phenotypes. Catalytic subunits (DIS3, DIS3L2) are primarily associated 

with cancerous symptoms, while mutations in several non-catalytic subunits (EXOSC3, 

EXOSC8, EXOSC9) and a nuclear cofactor (RBM7) are associated with neurological 

abnormalities. However, mutations in an additional RNA exosome subunit (EXOSC2) and 

components of a cytoplasmic cofactor complex (SKI2, SKI3) are implicated in diseases with 

widespread, varied phenotypes. 
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Cofactors of the RNA Exosome 

While the structure and composition of the RNA exosome remain the same in both 

the nucleus and the cytoplasm, the cofactors that interact with this complex differ between 

these cellular locations (Figure 1.2). Furthermore, substrates of the RNA exosome vary 

greatly in length, sequence, and structure so it has long been hypothesized that interactions 

with cofactors help determine the fate of a targeted transcript. Several in vitro assays with 

purified RNA exosome have indicated that this complex only possesses distributive 

enzymatic activity, meaning that it catalyzes only one reaction upon encountering a 

substrate before disassociation occurs. The supports the hypothesis that the RNA exosome 

is dependent upon cofactors for its catalytic activation (Chlebowski et al., 2010). Indeed, the 

RNA exosome appears to be mostly catalytically inactive in the absence of cofactors, which 

may be a method of preventing inappropriate reactions with RNA substrates (Mitchell et al., 

1997). Here I will discuss the most characterized RNA exosome cofactors although, due to 

its importance and functional variety, the RNA exosome likely has cofactors which have yet 

to be identified. 
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Figure 1.2 RNA exosome activity depends on many nuclear and cytoplasmic cofactors. 

Collectively, these cofactors carry out several functions, including identifying, binding, 

tagging, unwinding, and delivering substrates to the RNA exosome. Direct interaction or 

substrate handoff between cofactors and the RNA exosome are indicated by solid arrows. 

While several cofactors have been identified as assembled complexes, others directly 

interact with each other. For example, interactions between the N-termini of Mtr4 and the 

N-termini of the Rrp6-Rrp47 heterodimer, as well as with Mpp6, presumably occur when 

Mtr4 is and is not incorporated into the TRAMP complex. Mtr4 also contains conserved 

residues on its bottom face that may allow for direct interaction with the RNA exosome 

cap, although this interaction has not yet been definitively identified (dashed arrow). In 

addition to incorporation within the TRAMP complex, homologs of Mtr4 are also present 

within other human and fungal complexes, which will be discussed later in this chapter. 
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Nuclear Cofactors  

Yeast Rrp6 is a prominent RNA exosome cofactor, as is its human homolog PM/Scl-

100 (Briggs et al., 1998; Allmang et al., 1999a). To ensure continued efficiency, RNA 

processing and degradation pathways typically contain RNases with overlapping activities. 

Rrp6 is one such example as it is a 3’-5’ exoribonuclease, although it is nonessential (Briggs 

et al., 1998). As previously mentioned, many subunits of the RNA exosome maintain 

homology with E. coli RNA degradation machinery. Interestingly Rrp6 is homologous to 

RNase D, one of the seven 3’-5’ exoribonucleases present in E. coli (Briggs et al., 1998). 

Rrp6 is important for the processing of 5.8S rRNA, snRNA, and snoRNA (Allmang et al., 

1999b; van Hoof et al., 2000a). Upon binding to an additional small protein, Rrp47, it can aid 

the nuclear RNA exosome in both processing and degradation activities (Mitchell et al., 

2003). During this interaction with Rrp6, Rrp47 is able to bind structured regions of RNA, as 

well as DNA, although this binding affinity is not particularly strong (Stead et al., 2007). 

However, it has been previously shown that Rrp6 alone lacks the ability to fully degrade 

transcripts that contain secondary structures (Liu et al., 2006). Therefore, it is possible that 

this catalytic function of Rrp6 is significantly improved when bound to Rrp47, despite a weak 

interaction between Rrp47 and a structured substrate. In addition to targeting RNA, an Rrp6-

Rrp47 dimer that is already bound to an RNA exosome can also bind to the N-terminus of 

an essential RNA helicase, Mtr4, allowing it to interact with the RNA exosome as well 

(Schuch et al., 2014) (Figure 1.2).  

Another RNA exosome cofactor, Mpp6, targets aberrant precursor mRNA, rRNA, 

and other ncRNA species for degradation in the nucleus (Milligan et al., 2008). Mpp6 is not 

essential, although deleting it results in transcript accumulation. Studies in both humans and 

yeast have revealed its unique binding preference for poly(U) and poly(C) regions (Schilders 

et al., 2005; Milligan et al., 2008). Recent structural assays confirmed that Mpp6 directly 

binds to Rrp40, one of the cap subunits of the RNA exosome, as well as to the Rrp6-Rrp47 
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heterodimer (Figure 1.2). Interestingly, when Mpp6 is bound to the Rrp6-Rrp47 heterodimer, 

the Mtr4 helicase delivered transcripts to the RNA exosome more efficiently (Wasmuth et al., 

2017; Falk et al., 2017a). This indicates that, in addition to its own RNA-binding capabilities, 

Mpp6 is also able to position the Rrp6-Rrp47 heterodimer and Mtr4 in such a way that 

improves substrate delivery into the central channel of the RNA exosome. 

Mtr4 was one of the first proteins considered to be a possible nuclear cofactor of the 

RNA exosome because the levels of RNA that accumulated in a temperature sensitive mtr4 

mutant yeast strain were similar to the levels detected in RNA exosome mutant strains 

(Kadowaki et al., 1994; Liang et al., 1996). This essential RNA helicase is required for 5.8S 

rRNA maturation because it must unwind 7S rRNA, which allows the precursor transcript to 

be processed by the RNA exosome and subsequently, exported from the nucleus for final 

maturation steps (de la Cruz et al., 1998; Schuller et al., 2018). Furthermore, it has an 

important role in snRNA and snoRNA processing (van Hoof et al., 2000a).  

Although Mtr4 can directly bind RNA, it is also able to directly bind other nuclear 

proteins, such as the previously mentioned Rrp6-Rrp47 dimer. Mtr4 also interacts with 

ribosomal biogenesis proteins, Nop53 and Utp18, indicating that it is involved in the delivery 

of pre-ribosomal substrates to the RNA exosome (Thoms et al., 2015) (Figure 1.2). In 

addition to its importance in 3’-5’ RNA processing, Mtr4 also has a role in 3’-5’ RNA 

degradation. It can bind with Trf4/5 and Air1/2 to form the heterotrimeric TRAMP complex, 

which will be discussed in detail later in this chapter (Figure 1.2). This RNA exosome 

cofactor adds a short poly(A) tail to its bound targets, which promotes appropriate and 

specific 3’-5’ RNA degradation (LaCava et al., 2005). Within the TRAMP complex, the 

helicase activity of Mtr4 unwinds these targets, resulting in the delivery of a linear, 

polyadenylated substrate to the RNA exosome. 

The TRAMP complex can additionally assist another nuclear RNA exosome cofactor, 

the heterotrimeric Nrd1-Nab3-Sen1(NNS) complex, by polyadenylating and unwinding 
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substrates of the NNS complex that are destined for degradation (Tudek et al., 2014; 

Fasken et al., 2015) (Figure 1.2). The NNS complex is important for the termination of 

various types of non-coding RNA transcribed by RNA polymerase II (Thiebaut et al., 2006; 

Schulz et al., 2013). Nab3 and Nrd1 bind transcripts at specific sequences that are four 

bases long (Carroll et al., 2004). The helicase, Sen1, carries out ATP hydrolysis to 

dissociate the targeted transcript from the RNA polymerase II complex (Porrua and Libri, 

2013). The transcripts targeted by the NNS complex are then delivered to Rrp6 and/or the 

RNA exosome to be processed or degraded (Vasiljeva and Buratowski, 2006; Fox et al., 

2015) (Figure 1.2). Yet while the NNS complex has been well characterized in S. cerevisiae, 

it is not clear if this RNA exosome cofactor is conserved in other eukaryotes. SETX has 

been described as the human homolog of Sen1, but no homologs of Nab3 and Nrd1 have 

been identified in the human genome. Interestingly, at least ten mutations in the SETX gene 

cause phenotypes similar to those associated with EXOSC3, EXOSC8, and EXOSC9 

mutations in the RNA exosome (Moreira et al., 2004). 

Cytoplasmic Cofactors  

The SKI complex, a cytoplasmic RNA exosome cofactor, has a somewhat similar 

composition to the TRAMP complex and also plays a role in RNA degradation. In fact, the 

RNA exosome requires the SKI complex for all of its cytoplasmic activities (Jacobs 

Anderson and Parker, 1998; van Hoof et al., 2002; Mitchell and Tollervey, 2003; Doma and 

Parker, 2006).  Like the TRAMP complex, it is multimeric and contains an RNA helicase, 

Ski2, which belongs to the same protein family as Mtr4 (Jacobs Anderson and Parker, 1998; 

Brown et al., 2000). Its other subunits are the scaffolding protein Ski3 and a dimer of Ski8 

(Wang et al., 2005; Synowsky and Heck, 2008). However, unlike the TRAMP complex, the 

SKI complex does not polyadenylate its targets nor can it make direct deliveries to the RNA 

exosome on its own. For the latter function, it requires Ski7 (Araki et al., 2001) (Figure 1.2). 
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Ski7 is not essential, but its deletion does cause a significant defect in mRNA 

degradation (van Hoof et al., 2000b). This protein brings the SKI complex in proximity with 

the cytoplasmic RNA exosome so that substrate degradation can occur. Specifically, the N-

terminus of Ski7 binds to Ski3 and Ski8, as well as to the cytoplasmic RNA exosome (Araki 

et al., 2001; Wang et al., 2005).  

Function of the TRAMP Complex 

The Trf4/Air2/Mtr4 polyadenylation complex was first identified in 2005 and additional 

subunits, Trf5 and Air1, were isolated soon after (LaCava et al., 2005; Houseley and 

Tollervey, 2006). Its unique ability to add a short poly(A) tail, which acts as a signal for 

degradation, and further unwind the substrate in preparation for the RNA exosome 

highlights its usefulness in promoting efficient RNA degradation. 

The TRAMP complex targets products from RNA polymerases I, II, and III (Wyers et 

al., 2005; Wlotzka et al., 2011). Specifically, these substrates include aberrant mRNA, rRNA, 

snRNA, snoRNA, and tRNA transcripts (LaCava et al., 2005; Rougemaille et al., 2007; 

Grzechnik and Kufel, 2008; San Paolo et al., 2009). Additionally, this complex has been 

implicated in the degradation of the relatively uncharacterized transcripts, CUTs and SUTs 

(Wyers et al., 2005; San Paolo et al., 2009; Xu et al., 2009). Like the RNA exosome, this 

wide variety of substrates emphasizes the importance of the TRAMP complex in the process 

of RNA degradation. 

Composition of the TRAMP Complex 

Each TRAMP complex is comprised of one non-canonical poly(A) polymerase (Trf4 

or Trf5), one RNA-binding protein (Air1 or Air2), and the RNA helicase Mtr4 (Figure 1.3).  
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Figure 1.3 Composition of the TRAMP complex. (A) Each subunit of the TRAMP complex 

has defined domains, which provide the complex with its overall ability to bind an RNA 

(Air1/2), add a poly(A) tail (Trf4/5), and unwind it (Mtr4) so that it can be more easily 

threaded into the RNA exosome. (B) There are three possible conformations of the 

TRAMP complex. While Mtr4 is present in every conformation, only one 

poly(A)polymerase (Trf4 or Trf5) and one RNA-binding subunit (Air1 or Air2) are needed 

to complete the heterotrimer. Air1 forms a complex with both Trf4 and Trf5, but Air2 has 

only been shown to interact with Trf4. 
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Trf4 and Trf5 are Poly(A) Polymerases 

 Trf4 and Trf5 (DNA topoisomerase I-related function) are paralogs that arose from a 

whole-genome duplication event that occurred 100 million years ago in an ancestor of S. 

cerevisiae (Kellis et al., 2004; Byrne and Wolfe, 2005). They share 55% identity and 72% 

sequence similarity. Although single deletion strains are viable, the loss of both polymerases 

results in lethality (Castaño et al., 1996).  

While we now know their role in 3’-5’ RNA degradation, Trf4/5 were first associated 

with topoisomerase activity, as indicated by their name. Topoisomerase I and II work 

together as a swiveling apparatus that prevents supercoils, which can impede DNA 

replication. In yeast, these enzymes also employ the swiveling mechanism during 

transcription of mRNA and rRNA (Brill et al., 1987). While the yeast topoisomerase II 

enzyme (Top2) is essential, the Top1 enzyme is not. This is surprising since both enzymes 

are involved in and important for replication and transcription. Trf4 was first identified in a 

1995 study, which attempted to identify genes whose products had overlapping functions 

with Top1, or were dependent upon it (Sadoff et al., 1995). The following year, the same 

group identified the TRF5 gene and characterized the similarity of Trf4 and Trf5 (Castaño et 

al., 1996).  

The first assays performed after the identification of Trf4 revealed that trf4 and top1 

mutant strains exhibited similar phenotypes, but the same phenotypes were not seen when 

comparing trf4 and top2 mutant strains. Furthermore, trf4 mutants exhibited unaltered Top2 

activity (Sadoff et al., 1995). These data indicated that Trf4 could be important for a function 

of Top1 that is distinct from the characterized Top1-Top2 swivel mechanism. Trf5 was 

included in further studies, as its expression rescued the synthetic lethality of a trf4D, top1D 

strain. Double trf4, top1 mutants had previously indicated a genetic interaction with mitotic 

checkpoint protein Mad1 and both trf4 and trf5 mutant strains were found to be 

hypersensitive to thiabendazole, an anti-microtubule drug. Therefore, it was hypothesized 
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that Trf4/5 and Top1’s common function may be important during a late step of chromatin 

assembly (Sadoff et al., 1995; Castaño et al., 1996).  

Several years later, the Trf4/5 proteins were functionally characterized as poly(A) 

polymerases. While results of the earliest studies indicated that these proteins had DNA 

polymerase activity, Trf4/5 are only able to polyadenylate RNA (Wang et al., 2000; Haracska 

et al., 2005; Vaňáčová et al., 2005). Moreover, they only target RNA that is aberrantly folded 

(Vaňáčová et al., 2005). Poly(A) polymerases catalyze reactions between ATP and RNA 

that culminate in an ADP byproduct and the addition of an extra adenosine to the transcript’s 

3’ end. Sequence alignments of Trf4/5 revealed that these proteins have the same domains 

as other known nuclear poly(A) polymerases. Specifically, these similar features include the 

central domain, a strand loop motif, and a conserved N-terminal catalytic region (Figure 1.3 

A). However, one key difference between Trf4/5 and other nuclear poly(A) polymerases is 

the lack of an RNA-binding domain in the Trf4/5 protein sequence (Vaňáčová et al., 2005). 

Trf4/5 function also differs from that of canonical poly(A) polymerases because 

substrates of the TRAMP complex are given a short 3’ end poly(A) tail. While long poly(A) 

tails added to eukaryotic transcripts by canonical poly(A) polymerases act to protect against 

premature degradation and promote nuclear export, these short destabilizing tails are 

functionally homologous to those added by poly(A) polymerase I in E. coli (O’Hara et al., 

1995). The average tail length of yeast transcripts is twenty-seven nucleotides, but these 

short tails added by Trf4/5 within the TRAMP complex are only an average length of four 

nucleotides (Wlotzka et al., 2011; Subtelny et al., 2014). This polyadenylation-linked 

degradation was likely retained in the nucleus after the evolution of the nuclear membrane. 

It is possible that these short tails act as a site of initial attachment for a ribonuclease since it 

is difficult for these enzymes to begin degrading at RNA secondary structures (Cheng and 

Deutscher, 2005). 
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In addition to the well-defined poly(A) polymerase activity of Trf4/5, these proteins 

may have a TRAMP complex-independent role in DNA damage repair. Synthetic-lethal 

interactions have been reported between Trf4/5 and several proteins involved in DNA repair 

(Houseley and Tollervey, 2011). Moreover, in vitro assays have indicated that Trf4 may have 

DNA repair activity. Specifically, its C-terminus contains a lyase domain, which could allow 

for contact with damaged DNA and aid in abasic residue excision (Gellon et al., 2008). The 

reported base excision repair activity of Trf4 and Trf5 was not identical, which could be a 

basis for incomplete functional redundancy between these proteins.  

However, distinctive substrate targeting provides a more striking explanation for a 

lack of complete functional redundancy between Tr4/5. Microarray analysis revealed very 

little overlap between Trf4 and Trf5 substrates (San Paolo et al., 2009). Specifically, this 

study compared gene expression in wild-type cells with that of trf4D or trf5D strains. 

However, the reason behind this substrate disparity is unclear, since both proteins are able 

to polyadenylate species belonging to every class of RNA that is known to be targeted by 

the TRAMP complex. A likely explanation is that the Air1/2 subunits of the TRAMP complex 

determine the substrate preference of Trf4/5, since Air1/2 have the ability to directly bind 

RNA. 

Air1 and Air2 are RNA-Binding Proteins 

As in the case of Trf4/5, Air1 and Air2 (arginine methyltransferase-interacting RING 

finger) are paralogs that resulted from the yeast whole-genome duplication (Kellis et al., 

2004; Byrne and Wolfe, 2005). Their sequences are 45% identical to each other (Inoue et 

al., 2000). While the loss of both proteins does not result in lethality, an air1D, air2D double 

mutant exhibits a severe slow-growth phenotype. This growth defect can be rescued by 

complementation with either protein (Inuoe et al., 2000).  

When initially identified, the Air1/2 proteins were not linked to RNA degradation. 

Instead, they were first implicated in the methylation of Npl3 by Hmt1 (Inuoe et al., 2000). 
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Npl3 is important for mRNA export from the yeast nucleus, as well as pre-mRNA splicing 

(Kadowaki et al., 1994; Kress et al., 2008). Npl3 can be methylated by the arginine 

methyltransferase Hmt1, which alters how it interacts with substrates (Siebel and Guthrie, 

1996). Specifically, these regions of Npl3 are arginine-glycine-rich (RGG) domains. A screen 

for proteins that could interact with both Npl3 and Hmt1 revealed both Air1 and Air2 (Inoue 

et al., 2000).  

Air1/2 each contain five zinc knuckle domains that bind exposed guanosine residues 

on RNA (D’Souza and Summers, 2005; Hamill et al., 2010) (Figure 1.3 A). NMR titration 

experiments have revealed that the second, third, and fourth zinc knuckles (ZnK2-4) bind to 

RNA (Figure 1.3 B, pink and purple stars). Moreover, the fourth linker region and the fifth 

zinc knuckle (ZnK5) interact with the central domain of Trf4, and likely Trf5 as well (Holub et 

al., 2012). Trf4 interacts with both Air1/2 proteins, yet Trf5 has only been shown to interact 

with Air1, resulting in three possible compositions of the TRAMP complex (Wyers et al., 

2005; Houseley and Tollervey, 2006) (Figure 1.3 B). One explanation for this is that other 

than the conservation of ZnK5 and a short IWRxYxL motif within the fourth linker region, the 

sequence of the hypothesized Tr4/5-interaction region varies greatly between the Air1/2 

proteins (Hamill et al., 2010). The presence of Air1/2 stimulates the poly(A) polymerase 

activity of Trf4/5, which is understandable because Trf4/5 are not believed to have direct 

RNA-binding capabilities (Wyers et al., 2005; Fasken et al., 2011). Therefore, within the 

TRAMP complex, the presence of the Air1/2 subunit is likely required for establishing 

contact between a substrate and the Trf4/5 subunit.  

Air1 and Air2 can each bind various classes of RNA and consequently, have an 

important role in determining substrate specificity of both the TRAMP complex and the RNA 

exosome. Yet Air1/2 have only partial functional redundancy, as they each target distinct 

snoRNA and mRNA transcripts. In comparison to Air1, RNA-Seq analysis indicated that Air2 

preferentially targets precursor snoRNA species and mRNA transcripts that are important for 
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metabolic or iron-response pathways (Schmidt et al., 2012). However, elucidating the 

substrate preferences of each Air1/2 protein is not straightforward, since Air1 is still able to 

target snoRNA and mRNA species.   

The N- and C-termini of Air1/2 may be important for TRAMP complex formation. 

Upon identification of the TRAMP complex, conflicting experimental results could not clarify 

if a direct interaction between Mtr4 and Air1/2 exists (LaCava et al., 2005). However, later 

analyses indicated the presence of an Mtr4-Air2 interaction. Removal of the first twenty-five 

residues of the Air2 N-terminus completely abolishes interaction with Mtr4 and deletion of 

the entire C-terminus severely weakens it (Holub et al., 2012). The importance of the termini 

for this interaction with Mtr4 is unexpected since these regions are poorly conserved, 

especially in comparison to the zinc knuckle sequences. Multiple structural and binding 

analyses have indicated that Air1/2 can interact with Mtr4 at multiple sites (Falk et al., 2014; 

Losh, King et al., 2015; Losh and van Hoof, 2015; Falk et al., 2017b). 

Mtr4 is an RNA Helicase 

 As previously mentioned, Mtr4 (mRNA transport) is an essential, ATP-dependent 

RNA helicase. Therefore, in the presence of ATP, this enzyme can unwind RNA secondary 

structures into a linear form that is more conducive for degradation. This linearization is 

especially ideal for loading a substrate into the narrow channel of the RNA exosome. Mtr4 

was first identified in two studies focused on characterizing yeast mutants that exhibited 

nuclear accumulation of polyadenylated RNA (Kadowaki et al., 1994; Liang et al., 1996). As 

mentioned earlier in this chapter, Mtr4 is involved in targeting several different classes of 

RNA for RNA exosome-mediated processing or degradation, either as an independent 

cofactor or as a member of a cofactor complex.  

 Mtr4 is a member of the DExH/D family of ATP-dependent helicases, also known as 

DEAD-box helicases (Weir et al., 2010). The core of Mtr4 is comprised of two RecA 

domains, which are typical regions of ATP hydrolysis and nucleotide binding (Figure 1.3 A). 
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Specifically, RNA helicases separate self-annealed transcripts by using energy from ATP 

hydrolysis to disrupt hydrogen bonds that have formed between nucleotides. The helicase 

activity of Mtr4 is provided by a DExH motif located within the C-terminal catalytic domain 

(Figure 1.3 A). To be unwound, an RNA substrate passes through a channel formed by the 

core domains of Mtr4. There is a site on the bottom face of the Mtr4 core, opposite from its 

characteristic arch domain, which is the most likely region for unwound RNA to exit from. 

Interestingly, the sequence of this bottom face is highly conserved and is about the same 

diameter as the RNA exosome cap (Jackson et al., 2010). Mtr4 co-purifies with the RNA 

exosome and has recently been shown to specifically contact the RNA exosome cap 

subunit, Rrp4 (Chen et al., 2001; Schuller et al., 2018) (Figure 1.2). This region of Mtr4 may 

be a site of direct interaction with the RNA exosome, however this interaction may be 

dependent upon other proteins. As previously stated, the N-terminus of Mtr4 interacts with 

the N-termini of heterodimerized Rrp6-Rrp47, which brings it into proximity with the RNA 

exosome for efficient substrate delivery (Schuch et al., 2014; Schuller et al., 2018). This 

process appears to be enhanced by Mpp6 (Falk et al., 2017a; Schuller et al., 2018). 

Mtr4 also has a pronounced structural arch that enhances in vivo processing activity 

by the RNA exosome but is not important for RNA exosome-mediated degradation (Jackson 

et al., 2010) (Figure 1.3 B). At one end of the arch there is a Kyrpides-Ouzounis-Woese 

(KOW) motif, a sequence of twenty-seven residues that has been conserved in transcription 

factors and ribosomal proteins from all three domains of life (Kyrpides et al., 1996). 

Specifically, the KOW motif of the Mtr4 arch interacts with RNA substrates in vitro (Weir et 

al., 2010). The arch is likely important for the TRAMP complex-independent activities of 

Mtr4, such as binding to ribosomal biogenesis proteins and involvement in the maturation of 

5.8S rRNA, as previously mentioned. In fact, deletion of this characteristic structure 

indicates that, while it has RNA-binding capabilities, the arch does not have a role in 

TRAMP complex-dependent function (Jackson et al., 2010; Weir et al., 2010).  
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 Within the TRAMP complex, Mtr4 preferentially interacts with polyadenylated 

transcripts (Bernstein et al., 2008). Interestingly, Mtr4 seems to regulate the length of the 

poly(A) tail that is added by Trf4/5 to four or five adenosines (Jia et al., 2012). This is 

consistent with the results of previous assays, which determined that the substrate binding 

site of the Mtr4 helical core is five residues (Bernstein et al., 2010; Weir et al., 2010). 

Furthermore, its helicase activity seems to be enhanced by Trf4-Air2 activity, although Trf4-

Air2 activity is not enhanced by Mtr4 (Jia et al., 2012).  

Conservation of the TRAMP Complex and Its Subunits 

Orthologs of TRAMP complex subunits are present in humans and have been shown 

to interact, indicating that this complex is conserved from fungi to mammals (Lubas et al., 

2011). The TRAMP complex homolog of Schizosaccharomyces pombe, another common 

fungal laboratory model, is akin to the S. cerevisiae complex in activity, substrate targeting, 

and subunit composition (Win et al., 2006; Bühler et al., 2007; Keller et al., 2010). While the 

yeast TRAMP complex is found throughout the entire nuclear region, the human TRAMP 

complex is specifically found in the nucleolus and is mainly important for targeting rRNA 

(Lubas et al., 2011). Interestingly, infection of human cells by RNA viruses can induce 

nuclear export of human Air1/2 and Mtr4 orthologs. Once in the cytoplasm, these TRAMP 

complex subunits can target viral RNA for degradation by the RNA exosome (Molleston et 

al., 2016). Human Trf4/5 orthologs can also localize to the cytoplasm, indicating that the 

human TRAMP complex may continue to function outside of the nucleus in times of severe 

cellular stress. 

While yeast Trf4/5 are the most characterized non-canonical poly(A) polymerases in 

terms of substrate-specificity, the Trf4 homolog of Drosophila melanogaster is known to at 

least target snRNAs (Nakamura et al., 2008). Although their nuclear polyadenylation activity 

is maintained, Trf4/5 orthologs can also localize to the cytoplasm in D. melanogaster, 

Caenorhabditis elegans, and mammals (Millonigg et al., 2014; Harnisch et al., 2016; Shin et 
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al., 2017). PAPD5, and possibly also PAPD7, is a mammalian ortholog of Trf4. While the 

specific function of PAPD7 has not been elucidated, PAPD5 polyadenylates precursor and 

mature forms of mRNA, rRNA, and snoRNA (Shcherbik et al., 2010; Berndt et al., 2012; 

Sudo et al., 2016; Shin et al., 2017). Unlike yeast Trf4/5, PAPD5 can directly bind RNA but it 

may still require other cofactors to correctly identify targets for polyadenylation (Rammelt et 

al., 2011). 

The human protein ZCCHC7, which also contains the IWYRxY motif that is present 

within yeast Air1/2, has been designated as a human ortholog of Air1. Importantly, it 

interacts with human Trf4 ortholog PAPD5, despite the RNA-binding activity of PAPD5, 

which indicates that formation of the TRAMP complex may be conserved (Lubas et al., 

2011). A subsequent study revealed that ZCCHC7 localizes to the nucleoli of HeLa cells 

where it can directly interact with PAPD5, as well as with the possible additional human Trf4 

ortholog, PAPD7 (Fasken et al., 2011).  

As in yeast, the human MTR4 protein associates with human Rrp6 and Rrp47 

orthologs, PM/Scl-100 and C1D, and is essential for 5.8S rRNA processing (Schilders et al., 

2007). This role in 5.8S rRNA processing is also conserved in the protist, Trypanosoma 

brucei, as is its association with a Trf4/5 ortholog (Cristodero and Clayton, 2007). As 

previously stated, homologs of all TRAMP complex subunits interact in humans. In addition 

to its inclusion within the nucleolar human TRAMP complex, MTR4 can also be a subunit of 

the nuclear exosome-targeting (NEXT) complex (Lubas et al., 2011) (Figure 1.2). The NEXT 

complex also contains ZCCHC8 and RBM7, which are scaffolding and RNA-binding 

subunits, respectively. This cofactor of the human nuclear RNA exosome is found in the 

nucleoplasm and is important for the degradation of several subsets of ncRNA, including 

PROMPTS and snoRNA species that are derived from pre-mRNA introns (Lubas et al., 

2011; Hrossova et al., 2015). Recently, human MTR4 was also identified as a subunit of a 

novel nuclear RNA exosome cofactor, the poly(A) tail exosome targeting (PAXT) connection 
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(Figure 1.2). The composition of this cofactor is similar to the NEXT complex because in 

addition to MTR4, it is also comprised of putative scaffolding and RNA-binding proteins. 

However, its RNA-binding subunit, PABPN1, preferentially targets poly(A) tails. 

Consequentially, targets of the PAXT connection are more polyadenylated and therefore, 

generally longer than NEXT complex substrates (Meola et al., 2016).  

Mtr4 homologs have also been identified as components of various complexes in 

other fungal species (Figure 1.2). As previously mentioned, the Mtr4 ortholog of S. pombe 

assembles within the TRAMP complex. However, this species also contains an Mtr4 

homolog, Mtl1, which is an arched RNA helicase and a component of the MTREC complex 

(Lee et al., 2013). Like the TRAMP complex, the MTREC complex is a nuclear cofactor of 

the RNA exosome. Yet in S. pombe, the MTREC complex plays a more crucial role in the 

degradation of CUTs and meiotic mRNA than the TRAMP complex does (Zhou et al., 2015). 

Interestingly, two copies of the Neurospora crassa Mtr4 ortholog are present within the FFC 

complex, which is an important component of this fungal organism’s circadian clock. The N. 

crassa Mtr4 ortholog, FRH, has a role in RNA biogenesis. However, its ATPase activity is 

also critical for the hyperphosphorylation of the other FFC complex subunit, FRQ, which is 

an important clock protein (Lauinger et al., 2014). 

Diseases Linked to Dysfunctional Cofactors of the RNA Exosome 

Since the RNA exosome is dependent upon various cofactors, it is currently unclear 

if some diseases are specifically caused by a dysfunctional RNA exosome, dysfunctional 

cofactor(s), or both. Moreover, the essentiality of the RNA exosome and some of its 

cofactors indicates that detrimental mutations have not yet been identified because they 

cause lethality before birth.  

In humans, various mutations in two SKI complex subunits cause trichohepatoenteric 

(THE) syndrome. This disease is characterized by severe gastrointestinal symptoms, hair 

abnormalities, and general failure to thrive (Hartley et al., 2010; Fabre et al., 2012). A 
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missense mutation in RBM7, which encodes an RNA-binding component of the human 

NEXT complex, is associated with spinal motor neuropathy (Giunta et al., 2016) (Table 1.1).  

While humans express homologs of TRAMP complex subunits, they have not yet 

been implicated in any disorders. However, inducing TRAMP complex mutations in yeast 

can result in slow growth phenotypes and increased RNA accumulation. Therefore, it is 

reasonable to assume that mutating TRAMP complex subunits is deleterious in humans to 

some extent. In fact, the locus containing the human Trf4 homolog is often amplified in many 

types of tumors (Walowsky et al., 1999). 

SIGNIFICANCE 

Investigating the Impact of RNA Processing and Degradation on Cellular Physiology 

The entire lifespan of an RNA transcript must be tightly regulated, whether it encodes 

a protein or is a ncRNA that carries out other important cellular processes. The essentiality 

of the RNA exosome and some of its cofactors, as well as its ubiquitous cellular location, 

highlights the overall importance of maintaining proper function of the 3’-5’ RNA processing 

and degradation pathway. This is reinforced by the variety of symptoms that are caused by 

mutations of both the RNA exosome and its cofactors. My work has included the 

development of yeast models to study human RNA exosome mutations that have been 

linked with disease phenotypes. Determining how these mutations specifically affect the 

structure and/or activity of the RNA exosome is crucial for developing future disease 

treatments.  

Elucidating Interactions Within and Between the RNA Exosome and TRAMP Complex 

Although the RNA exosome was discovered nearly two decades ago, the 

mechanisms by which it identifies and differentiates its substrates for processing or 

degradation remain unknown. Moreover, the specific interaction sites between the RNA 

exosome and many of its cofactors, including the TRAMP complex, have not yet been fully 

described. Upon its discovery within the last decade, the majority of research on the TRAMP 
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complex has focused on identifying its substrates. A novel aspect of my project is 

characterizing how its subunits assemble into a functional complex. Defining and 

determining the importance of TRAMP complex subunit interactions is essential for 

eventually gaining a complete understanding of this complex and moreover, its relationship 

with the RNA exosome.
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MATERIALS 

Plasmids 

Unless otherwise noted, all plasmids listed in Table 2.1 contain an endogenous 

promoter and a 3’ flanking region to maintain native expression levels. All plasmids contain 

a selectable maker that complements auxotrophy or provides antibiotic resistance to yeast 

transformants. Additionally, all plasmids have an ampR gene, which provides ampicillin 

resistance to bacterial transformants. 
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Table 2.1 Plasmids used in this study 
 

Name Insert Marker Reference 
pAG32 empty vector HYGB (Goldstein and McCusker, 

1999) 
pGAL-HO GAL promoter, HO URA3 N. Kim lab 
pRS413 empty vector HIS3 (Sikorski and Hieter, 1989) 
pRS415 empty vector LEU2 (Sikorski and Hieter, 1989) 
pRS416 empty vector URA3 (Sikorski and Hieter, 1989) 
p411GAL1 empty vector MET15 K. Morano lab 
Yep52/-
26CBP1 

CBP1 LEU2 (Mayer and Dieckmann, 1989) 

pAV188 his3-nonstop reporter LEU2 (van Hoof et al., 2002) 
pAV476 TAP tag LEU2 A. van Hoof lab 
pAV854 trf5Δ98-117-TAP LEU2 This study 
pAV885 TRF5-TAP LEU2 This study 
pAV928 RRP40-2xMyc LEU2 This study 
pAV929 rrp40-G8A-2xMyc LEU2 This study 
pAV930 rrp40-W195A-2xMyc LEU2 This study 
pAV935 rrp40-S87A-2xMyc LEU2 This study 
pAV936 rrp40-S87A/V95P-2xMyc LEU2 This study 
pAV937 rrp40-W195R-2xMyc LEU2 This study 
pAV991 RRP4-2xMyc LEU2 This study 
pAV1059 TRF4-TAP LEU2 This study 
pAV1063 AIR2 HIS3 This study 
pAV1073 trf4Δ115-134-TAP LEU2 This study 
pAV1105 TRF5 promoter, TAP tag LEU2 This study 
pAV1106 trf5ΔNΔC-TAP LEU2 This study 
pAV1107 trf4Δ115-134-TAP URA3 This study 
pAV1119 trf4-DADA-TAP LEU2 This study 
pAV1121 trf4-DADA-Δ115-134-TAP LEU2 This study 
pAV1132 trf5-DADA-TAP LEU2 This study 
pAV1134 trf5-DADA-Δ98-117-TAP LEU2 This study 
pAV1170 trf5ΔN LEU2 This study 
pAV1172 trf5ΔC-TAP LEU2 This study 
pAV1176 TRF4 promoter, TAP tag LEU2 This study 
pAV1182 rrp4-G58V-2xMyc LEU2 This study 
pAV1183 rrp4-G226D-2xMyc LEU2 This study 
pAV1185 trf4ΔNΔC-TAP LEU2 This study 
pAV1188 trf4ΔN  LEU2 This study 
pAV1210 trf4ΔC-TAP LEU2 This study 
pAV1256 TRF4-TAP URA3 This study 
pAV1262 trf4ΔNΔC-TAP URA3 This study 
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Yeast Strains  

All S. cerevisiae strains designated in Table 2.2 as BY4741 or BY4742 are originally 

derived from these two commonly used strains, which were designed to be more conducive 

for plasmid selection (Brachmann et al., 1998). All strains listed in Table 2.2 are haploid. 

Yeast extract-peptone dextrose (YPD) rich medium was used when growing yeast in 

liquid culture or on plates. Yeast extract-peptone was also supplemented with galactose for 

growing strains expressing genes under the control of a GAL promoter. Synthetic complete 

(SC) media lacking specific amino acids was used for selective growth. 
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Table 2.2 Yeast strains used in this study 
 

Name Genotype Reference 
BY4741 MATa, his3D1, leu2D0, met15D, ura3D0 (Bachmann et al., 1998) 
BY4742 MATa, his3D1, leu2D0, lys2D0, ura3D0 (Bachmann et al., 1998) 
DTY8 MATa, LEU2, URA3, his1- K. Morano lab 
DTY9 MATa, LEU2, URA3, his1- K. Morano lab 
SV260 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF4, URA3] (Holub et al., 2012) 
yAV284 BY4741, ski7D::NEO DharmaconTM 
yAV1103 BY4742, rrp4D::NEO [RRP4, URA3] A. van Hoof lab 
yAV1135 BY4742, rrp44D::NEO [rrp44-endo-, LEU2] A. van Hoof lab 
yAV1144 BY4741, rrp6D::NEO A. van Hoof lab 
yAV1284 BY4741, rrp44D::natMX4 [rrp44-exo-, LEU2] A. van Hoof lab 
yAV1335 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF5-TAP, 

LEU2] 
This study 

yAV1336 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf5D98-117-
TAP, LEU2] 

This study 

yAV1368 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] 

This study 

yAV1369 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [rrp40-W195A-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1370 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [rrp40-G8A-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1371 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [RRP40-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1396 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [rrp40-S87A-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1397 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [rrp40-S87A/V95P-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1398 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [rrp40-W195R-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1587 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [rrp40-W195F-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1588 MATa, his3D1, leu2D0, ura3D0, MET15, rrp40D::NEO 
[RRP40, URA3] [rrp40-D152A-2xMyc, LEU2] 

This study, plated on 5-
FOA before use 

yAV1686 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF4-TAP, 
LEU2] 

This study 

yAV1688 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf4D115-134-
TAP, LEU2] 

This study 

yAV1803 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf4D115-134-
TAP, URA3] [trf5D98-117-TAP, LEU2] 

This study 

yAV1824 BY4741, [trf5ΔN ΔC-TAP, LEU2] This study 
yAV1826 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf5ΔNΔC-

TAP, LEU2] 
This study 

yAV1877 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF4, URA3] 
[trf4-DADA-TAP, LEU2] 

This study 

yAV1878 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF4, URA3] 
[trf4-DADA-D115-134-TAP, LEU2] 

This study 

yAV1879 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF, URA3] 
[trf5-DADA-TAP, LEU2] 

This study 
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yAV1880 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF4, URA3] 
[trf5-DADA-D98-117-TAP, LEU2] 

This study 

yAV1970 BY4741, [trf5ΔN, LEU2] This study 
yAV1972 BY4741, [trf5ΔC-TAP, LEU2] This study 
yAV1974 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf5ΔN, LEU2] This study 
yAV1976 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf5ΔC-TAP, 

LEU2] 
This study 

yAV2014 BY4741 [RRP4-2xMyc, LEU2] This study 
yAV2015 BY4741 [rrp4-G58V-2xMyc, LEU2] This study 
yAV2016 BY4741 [rrp4-G226D-2xMyc, LEU2] This study 
yAV2017 BY4742, rrp4D::NEO [RRP4-2xMyc, LEU2] This study 
yAV2020 BY4741 [trf4ΔNΔC-TAP, LEU2] This study 
yAV2022 BY4741 [trf4ΔN, LEU2] This study 
yAV2024 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf4ΔN, LEU2] This study 
yAV2036 BY4741 [trf4ΔC-TAP, LEU2] This study 
yAV2038 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf4ΔC-TAP, 

LEU2] 
This study 

yAV2040 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf4ΔNΔC-
TAP, LEU2] 

This study 

yAV2074 BY4741, trf4D::natMX4, trf5D::kanMX6, 
air2D::hphMX4 [TRF4, URA3] 

This study 

yAV2077 BY4741, trf4D::natMX4, trf5D::kanMX6, 
air2D::hphMX4 [TRF5-TAP, LEU2] 

This study 

yAV2079 BY4741, trf4D::natMX4, trf5D::kanMX6, 
air2D::hphMX4 [trf5D98-117-TAP, LEU2] 

This study 

yAV2081 BY4742, rrp4D::NEO [RRP4, URA3] [rrp4-G58V-
2xMyc, LEU2] 

This study 

yAV2082 BY4742, rrp4D::NEO [RRP4, URA3] [rrp4-G226D-
2xMyc, LEU2] 

This study 

yAV2118 BY4741, trf4D::natMX4, trf5D::kanMX6, 
air2D::hphMX4 [TRF4, URA3] [AIR2, HIS3] 

This study 

yAV2119 BY4741, trf4D::natMX4, trf5D::kanMX6, 
air2D::hphMX4 [TRF4, URA3] [TRF4-TAP, LEU2] 

This study, plated on 5-
FOA before use 

yAV2178 BY4741, air1D::NEO DharmaconTM 

yAV2180 BY4742, RRP40 (Gillespie et al., 2017) 
yAV2182 BY4742, rrp40-G8A (Gillespie et al., 2017) 
yAV2183 BY4742, rrp40-G148C (Gillespie et al., 2017) 
yAV2184 BY4742, rrp40-W195R (Gillespie et al., 2017) 
yAV2222 BY4741, trf4D::natMX4, trf5D::kanMX6, 

air2D::hphMX4 [TRF4, URA3] [TRF5-TAP, LEU2] 
[AIR2, HIS3] 

This study 

yAV2242 BY4742, air1D::NEO DharmaconTM 

yAV2288 BY4741, trf4D::natMX4, trf5D::kanMX6 [TRF4-TAP, 
URA3] [TRF5-TAP, LEU2] 

This study 

yAV2289 BY4741, trf4D::natMX4, trf5D::kanMX6 [trf4ΔNΔC-
TAP, URA3] [trf5ΔNΔC-TAP, LEU2] 

This study 
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Oligonucleotides 

Oligonucleotides designed for this work and listed in Table 2.3 were ordered from 

Sigma-AldrichÒ. Lyophilized oligonucleotides were resuspended in autoclaved deionized 

water at a 50µM stock concentration. 

  



  40 

Table 2.3 Oligonucleotides used in this study 
 

Name Target 5’-3’ Sequence 
Cloning Oligonucleotides 
oAV557 TAP tag CGCAAGCTTTGCCGGTAGAGGTGTGGTCAATAAGAGCG

AC 
oAV868 TRF5 F GCGGCGGCGGCCGCGCCATCATGGGTGCTGCTGCCTT

TG 
oAV869 TRF5 R GCGGCGCTGCAGCAAGAGCCTGGCCTTTAGAGAGCC 
oAV870 trf5D98-117 F GCGGCGACTAGTTCTTTTGCTAGATTCTGCCCTTTGTTC 
oAV871 trf5D98-117 R GCGGCGACTAGTGAACAAATAAAGGAAGATGATGATG 
oAV1327 TRF4 prom F TATTATGCGGCCGCTCACCTTTATCCCAAATTAG 
oAV1328 trf4D115-134 R GCGGCGACTAGTCTCATCCCCGTGCACTGCTA 
oAV1329 trf4D115-134 F GCGGCGACTAGTGCCGAACAGGAAGAGGAGAG 
oAV1330 TRF4 R GCGGCGCTGCAGCAAGGGTATAAGGATTATATCC 
oAV1377 TRF5 prom F TATTATGCGGCCGCCCCACAAAGTACTACATCTATGGTC

T 
oAV1378 TRF5 prom R GCGGCGACTAGTCCAATAAACTCCGCCCTCGTTTG 
oAV1379 trf5DNDC F GCGGCGACTAGTGTCGTCATGGAGTATCCTTGGATAAG

AAATCATTGTCATTCG 
oAV1380 trf5DNDC R GCGGCGCTGCAGGTTCGTCGTTGAAATCTCTCTTTTG 
oAV1409 trf4-DADA F GCCTGGTTCCGCTATTGCTTGCGTGG 
oAV1410 trf4-DADA R GCTCGTTACCACGCAAGCAATAGCGGAAC 
oAV1411 trf5-DADA F GCCGGGTTCTGCCATTGCCTGTGTCG 
oAV1412 trf5-DADA R CGACACAGGCAATGGCAGAACCCGG 
oAV1482 trf5DN R GCGGCGCTGCAGGTTAAAGAGCCTGGCCTTTAGAGAG 
oAV1483 trf5DC F GCGGCGACTAGTGTCGTCATGACAAGGCTCAAAGCAAA

ATATTCA 
oAV1504 TRF4 prom R GCGGCGACTAGTCAAGTATAGTTCCCTTGCTTATTC 
oAV1505 trf4DNDC F GCGGCGACTAGTTGAAATATGGATTATCCATGGATTTTA

AATCATGATCACTCC 
oAV1506 trf4DNDC R GCGGCGCTGCAGGATCCTTGAAATCTCTTGCCTTTCCAC

GATATTTG 
oAV1507 trf4DN R GCGGCGCTGCAGGTTAAAGGGTATAAGGATTATATCC 
oAV1508 trf4DC F GCGGCGACTAGTTGAAATATGGGGGCAAAGAGTGTAAC

AGCC 
oAV1513 rrp4-G58V F CTCAAATTGTGACGCCAGTTGAGCTGGTCACTGATG 
oAV1514 rrp4-G58V R CATCAGTGACCAGCTCAACTGGCGTCACAATTTGAG 
oAV1515 rrp4-G226D F GGCAACATAACCGTAGTTCTCGATGTCAATGGTTACATA

TGG 
oAV1516 rrp4-G226D R CCATATGTAACCATTGACATCGAGAACTACGGTTATGTT

GCC 
oAV1544 air2D::hphMX4 F GAATTAAACCTTACCTGTACAACGATAGCAGCTTACATCA

CTTCCTCGCAGTCAGCTTGCCTTGTCCCCGCCG 
oAV1555 air2D::hphMX4 R GAAAATATAATGTAACCAAGAACAGCTTGTTAAAGGGCT

TCCTATTTAAAGGATGAATTCGAGCTCGTTTTC 
oAV1572 air1D::MET15 F CATTCTCACATGAGGAATACAAAGGAAGCGGACCACGG

AGCTAAGATATTGCCATCCTCATGAAAACTGTG 
oAV1573 air1D::MET15 R GTTTGCTGCAATGAGAATGGAAAAAAAATTAAAAAAACTC

ACATATAATCCTTGTGAGAGAAAGTAGG 
oAV1627 air1D::hphMX4 F CATTCTCACATGAGGAATACAAAGGAAGCGGACCACGG

AGCTAAGATATTAGCTTGCCTTGTCCCCGCCG 
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oAV1628 air1D::hphMX4 R GTTTGCTGCAATGAGAATGGAAAAAAAATTAAAAAAACTC
ACATATAATCGATGAATTCGAGCTCGTTTTC 

oAV1657 RRP40 alleles GCATTGGGAAAAGCCATATACG 
oAV1658 RRP40 alleles GAAAAACAGGCCAACTTTGCAAGTGGG 
Northern Oligonucleotides 
oAV224  SRP GTCTAGCCGCGAGGAAGG 
oAV777  5.8S rRNA TTTCGCTGCGTTCTTCATC 
oAV849  snR33 AGGAACCGACTCAAACCGG 
oAV908  pre-snR33 AAGTTTTGCAAATCGATTGTCC 
oAV910 snR128 TCCTACCGTGGAAACTGCG 
oAV911 pre-snR128 GATACTACAGTATACGATCACTC 
oAV1608  CBP1 CTCGGTCCTGTACCGAACGAGACGAGG 
qRT-PCR Oligonucleotides 
ACT1qtFor 
Morano lab 

ACT1 F 
 

TTTGGGTTTGGAATCTGCCGGTATTGAC 

ACT1qtRev 
Morano lab 

ACT1 R 
 

CTTTCGGCAATACCTGGGAACATGG 

oAV1225 NBL001c F AACTACCTAAGAAAAGCATC 
oAV1226 NBL001c R TCGATTTCAATTTCGACTGC 
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METHODS 

Plasmid Cloning 

The majority of plasmid cloning was performed by first designing primers to a specific 

region of interest, performing a polymerase chain reaction (PCR), and isolating purified 

product. Purified product was obtained by performing a plasmid cleanup or extracting from 

an agarose gel with a ZymocleanTM Gel DNA Recovery Kit by Zymo Research. Digested 

plasmids and products were ligated at ratios of 1:3 or 1:5. The QuikChangeâ Lightning Site-

Directed Mutagenesis Kit by Agilent Technologies was used to induce point mutations in 

existing plasmids. After performing bacterial transformations, as described below, newly 

cloned plasmids were isolated with a Wizardâ Plus SV Minipreps DNA Purification System 

and sequenced. 

Bacterial Transformation 

Ligated product was added to chilled, chemically competent E. coli. Previously 

created plasmid stock or water was added to chemically competent E. coli as positive or 

negative controls for transformation, respectively. Reactions were placed on ice and then 

briefly incubated at 42°C. Cells were returned to ice for twenty minutes before plating onto 

rich medium containing 100 mg/mL ampicillin. Plates were incubated at 37°C for no longer 

than twenty-four hours.  

Yeast Transformation 

For high efficiency reactions, yeast strains were transformed as previously described 

(Gietz and Schiestl, 1995). However, the majority of transformations were performed by first 

resuspending a small amount of yeast into a tube containing 500µL PLATE (40% 

polyethylene glycol, 0.1M LiAc, 10mM Tris HCl, pH 7.5, 1mM EDTA). Boiled single-stranded 

carrier DNA and 1µg experimental DNA were added to the reaction, which was incubated 
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overnight at room temperature. Cells were then pelleted, resuspended in autoclaved 

deionized water, and plated onto selective medium.  

When attempting to knockout AIR1, the Candida albicans transformation 

electroporation protocol from the laboratory of Michael Lorenz at UTHealth was modified for 

yeast transformation. Cell pellets were resuspended in 10mL of 1X TE/LiOAc solution and 

incubated for one hour at 30°C. 250µL 1M dithiothreitol (DTT) was added and the incubation 

was continued for an addition thirty minutes. Cells were pelleted and washed with 

autoclaved deionized water. Next, cells were pelleted, washed, and resuspended in 5mL 1M 

sorbitol. Cells and 1µg experimental DNA were pipetted into a cuvette and electroporated at 

1800 volts in an Eppendorf Electroporatorâ 2510. 50µL 1M sorbitol was added to the 

electroporated cells before pelleting and resuspending in liquid rich medium. After a 

recovery incubation for four hours at 30°C, cells were pelleted, resuspended in autoclaved 

deionized water, and plated onto selective medium. 

Yeast DNA Isolation 

Genomic yeast DNA was isolated with the Zymo Research YeaStarTM Genomic DNA 

kit. Plasmids expressed in yeast were isolated with the Zymo Research ZymoprepTM Yeast 

Plasmid Miniprep II kit. 

Yeast Homologous Recombination 

 To delete AIR2, long oligonucleotides were designed with homology to both the 

hphMX4 cassette and regions just up- and downstream of the target coding site. The 

hphMX4 cassette contains the hph open reading frame (ORF) from Klebsiella pneumoniae, 

which provides resistance to hygromycin B. Its constitutive expression is ensured by a yeast 

TEF1 promoter and terminator within the cassette. PCR was used to amplify the hphMX4 

cassette that included flanking regions homologous to the sites bordering AIR2. The PCR 

products were used to transform trf4D, trf5D cells complemented with plasmids allowing for 
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Trf4, Trf5, or trf5D98-117 protein expression. Transformation reactions were plated onto 

medium containing hygromycin B at a final concentration of 300µg/L. Genomic DNA was 

extracted from transformants that grew in the presence of hygromycin B. PCR analysis of 

these DNA samples confirmed the presence of the hphMX4 cassette and the loss of AIR2.  

This homologous recombination assay was similarly used when attempting to delete 

AIR1 in trf4D, trf5D, air2D strains complemented with plasmids allowing for the expression of 

various Trf4/5 proteins. Performing homologous recombination of AIR1 with hphMX4 did not 

result in growth on media containing hygromycin B. Due to the variety of genetic markers 

already used in the experimental strain set, MET15 was selected as an alternative option for 

swapping out AIR1, as these strains were all genetically met15D. Therefore, successful 

homologous recombination would have allowed for growth on medium lacking methionine 

and cysteine. Additionally, I transformed these strains with an [AIR2, HIS3] plasmid to 

control for any synthetic lethality that might arise from deleting AIR1 in this background, 

although air1D, air2D cells have been previously reported as viable (Inoue et al., 2000). No 

transformants that were able to grow on medium lacking methionine and cysteine were 

obtained. The yeast transformation was repeated with a high efficiency protocol, which still 

did not result in growth on this medium. In addition to trf4D, trf5D, air2D strains, wild-type and 

trf4D, trf5D strains were also transformed in case air2D was somehow preventing an AIR1 

knockout. This did not result in growth on medium lacking methionine and cysteine, nor did 

attempting to transform cells via electroporation. Redesigning the oligonucleotides for the 

initial PCR still did not result in viable transformants. It remains unclear as to why AIR1 

cannot be switched out for the hphMX4 cassette or MET15.
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Yeast Plasmid Shuffle Assay 

 The genotypic background of strains used in this assay was leu2D, ura3D. The allele 

of interest was inserted into a plasmid with a LEU2 gene marker. This plasmid was used to 

transform cells already expressing the essential gene on a plasmid with a URA3 gene 

marker. Transformants were selected on solid medium lacking leucine and uracil, before 

replica plating onto medium containing 5.74 mM 5-fluoroorotic acid (5-FOA). URA3 cells 

express an enzyme that converts 5-FOA to a toxic metabolite, 5-fluorouracil (5-FU), which 

results in lethality. Growth on 5-FOA reveals that the allele of interest on the LEU2 plasmid 

can complement the essentiality of the original gene. 

Yeast Mating 

When mating, two strains were struck perpendicularly in an “x” formation onto rich 

medium. After one or two days of growth at 30°C, cells were collected from the middle of the 

“x”. The presence of diploids was assessed by streaking these cells onto selective medium. 

The resulting colonies, which presumably contained diploids generated from mating events, 

were struck onto medium containing potassium acetate, which induces sporulation. Plates 

were incubated for about five days at 30°C. Sporulated yeast were resuspended in 100µL 

autoclaved deionized water and exposed to 10µL glusulase, an enzyme that breaks down 

the ascus, for several hours. Ascus digestion was terminated by pelleting and resuspending 

the yeast in autoclaved deionized water. The cell suspension was aspirated out and the 

tubes were washed four times with autoclaved deionized water. 1mL of 0.02% Triton X-100 

solution was added in order to collect the hydrophobic spores attached to the walls of the 

tubes. Tubes were sonicated in order to disperse the spores throughout the solution before 

plating onto rich and selective media. 

The mating type of a strain was determined by crossing it with known mating type 

tester strains, DTY8 and DTY9, which are MATa or MATa, respectively (Table 2.2). Most 



  46 

strains created in this study are HIS1, his3D1 but the mating type tester strains are his1-, 

HIS3. Successful mating results in growth on media lacking histidine. Therefore, if the 

mating resulted in growth, the mating type of a newly created strain was determined to be 

the opposite type of the tester strain. 

When attempting to delete AIR1, a MATa air1D, met15D strain from the 

DharmaconTM Yeast Knockout Collection was mated with a MATa strain containing wild-type 

AIR1 and MET15 alleles. This did not yield air1D, MET15 cells that could be mated with the 

MATa trf4D, trf5D, air2D strains generated via homologous recombination, as all progeny 

were determined to be MATa. 

To change the mating type of a strain, cells were transformed with pAV1222, which 

encodes HO, the yeast mating type switching enzyme, under the control of a galactose-

inducible promoter (Table 2.1). Transformants were grown at 30°C in liquid rich medium 

containing galactose. Liquid cultures were then plated onto solid rich medium containing 

dextrose. Lack of available galactose turns off the expression of the HO enzyme but in order 

to ensure its inactivity, the plasmid shuffle assay was performed to remove pAV1222. The 

mating types of colonies were determined by crossing with DTY8 and DTY9, as described 

above. When attempting to delete AIR1, this technique was used on a MATa air1D, met15D 

strain, which resulted in MATa cells that could be mated with MATa trf4D, trf5D, air2D 

background strains. However, transforming the air1D, met15D cells with a MET15 marker 

plasmid did not result in growth on medium lacking methionine and cysteine. The medium 

recipe was determined to be correct, as other laboratory strains known to contain a wild-type 

MET15 allele grew on it as expected. No published studies could provide information into 

why linking air1D with MET15 may not be possible.  

Finally, a MATa air1D, MET15 strain was ordered from the DharmaconTM Yeast 

Knockout Collection and crossed with the MATa trf4D, trf5D, air2D strains generated via 
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homologous recombination. Interestingly, this did not result in any progeny that had retained 

resistance to hygromycin B. Therefore, none of the progeny were air2D. As previously 

mentioned, a double deletion of AIR1 and AIR2 is not known to be synthetic lethal. 

Therefore, it is not immediately evident as to why both of these genes could not be 

successfully knocked out in concert with deletions of TRF4 and TRF5, although it is possible 

that combined loss of Air1/2 and Trf4/5 protein expression is synthetic lethal. 

Yeast Growth Assays 

Serial dilution assays were used to determine growth phenotypes of strains and to 

test for genetic complementation. Strains were grown overnight at 30°C in liquid medium. 

Cells were then sub-cultured and concentrations were normalized to OD600 = 0.6. Cultures 

were then serially diluted by a factor of five in a 96-well plate and spotted onto solid rich or 

selective medium. Yeast peptone dextrose (YPD) rich medium was used as a positive 

control for growth. Selective medium, containing antibiotics or lacking certain amino acids, 

was used according to the selectable markers expressed by a tested set of strains. When 

assessing if PCH1b-associated mutations affect mitochondrial activity, glycerol was added 

to medium at a final concentration of 3%. When testing for the effect of drug stress on 

TRAMP complex formation, 5-FU was added at concentrations of 50µM, 100µM, or 200µM. 

Plates were incubated at 30°C, the optimal yeast growth temperature, as well as at room 

temperature or 37°C to differentiate growth phenotypes at a variety of temperatures. Growth 

assays that included newly created, untested strains were also incubated at 15°C to assess 

for cold sensitivity. Plates were incubated at 42°C when measuring the effect of heat stress 

on various strains. Plates were imaged with a ProteinSimple AlphaImagerâ Mini after one to 

seven days of growth, depending on the specific assay. 

Liquid growth assays were used to similarly test growth phenotypes of strains but 

provided a more sensitive measurement. After growing strains overnight at 30°C in selective 
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liquid medium, cell concentrations were normalized and subsequently diluted to OD600 = 

0.01 in the same type of medium. Each strain was tested in triplicate. The serial dilutions 

were performed in a 24-well plate, which was sealed with a breathable film. Growth at 30°C 

or 37°C was monitored and recorded for up to twenty-four hours at OD600 in a BioTek 

SynergyTM Mx microplate reader with Gen5 v2.04 software. The average growth of the 

technical triplicates was calculated and graphed with Microsoftâ Excel. 

Yeast his3-nonstop Reporter Assay 

This assay was performed as previously described in cells with a his3D background 

(Schaeffer et al., 2008). For this assay, strains were first transformed with pAV188, a his3-

nonstop reporter plasmid (Table 2.1; van Hoof et al., 2002). Transformants were serially 

diluted, spotted onto minimal medium lacking histidine, and incubated at 30°C or 37°C. Cells 

without RNA degradation deficiencies can efficiently clear his3-nonstop transcripts, which 

does not allow for growth on medium lacking histidine. Cells with RNA degradation 

deficiencies cannot clear these transcripts, resulting in histidine biosynthesis and growth on 

this medium. Plates were imaged after one, two, and three days of growth with a 

ProteinSimple AlphaImagerâ Mini. 

Yeast Protein Isolation 

Cells were grown in liquid media, pelleted, and frozen at -80°C. Frozen cell pellets 

were washed in 500µL of TP (20mM Tris HCl, pH 7.9, 0.5M EDTA, 10% glycerol, 50mM 

NaCl, 2µg/µL 500x protease inhibitor stock) and centrifuged at 12,000 rpm for one minute. 

The pelleted was resuspended in 200µL TP and 100µL of glass beads were added. 

Samples were vortexed for one minute, followed by incubation on ice for one minute. After 

repeating this vortexing and ice incubation four times to ensure cell lysis, samples were 

centrifuged at 7,000 rpm for seven minutes at 4°C.  
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Sample concentration was determined by performing Bradford assays. Cell extracts 

were diluted in autoclaved deionized water and loaded in duplicate into a 96-well plate. 

Standard wells were loaded with 0, 5, 10, 15 or 20µL of 100µg/mL BSA. After adding 150µL 

Bradford reagent to all wells, plates were read on a BioTek SynergyTM Mx microplate reader 

with Gen5 v2.04 software. 

The supernatant was transferred to a new tube and 6X protein loading buffer (0.35 

mM Tris HCl, pH 6.8, 36% glycerol, 10% SDS, 5% b-mercaptoethanol, 0.012% bromophenol 

blue) was added for SDS-PAGE gel electrophoresis. The amount of 6X protein loading 

buffer added was calculated by dividing the volume of the supernatant in the tube by six. 

Western Blotting 

Protein samples in 6X protein loading buffer were incubated at 65°C to denature 

them before loading into an 8% SDS-PAGE gel. After electrophoresis, proteins resolved on 

the gel were transferred to a nitrocellulose membrane. Staining with Coomassie Brilliant 

Blue R-250 dye from Thermo Fisher Scientific or SWIFTTM dye from G-Biosciences was 

performed on gels or membranes, respectively. A 10mL 5% solution of non-fat milk in TBST 

(1X TBS, 0.1% Tween 20) was used for both membrane blocking and antibody dilution. For 

detection of TAP-tagged proteins, membranes were blotted overnight at 4°C with primary 

polyclonal antibody, a-Protein A (1:100,000 working concentration), and for an hour at room 

temperature with secondary antibody, Goat a-Rabbit IgG-HRP (1:5,000 working 

concentration). For detection of the Pgk1 loading control, membranes were blotted overnight 

at 4°C with primary monoclonal antibody, a-Pgk1 (1:10,000 working concentration), and for 

an hour at room temperature with secondary antibody, Goat a-Mouse IgG-HRP (1:5,000 

working concentration). After each antibody exposure, membranes were washed three times 

for five minutes in 10mL TBST. Membranes were incubated in a GE AmershamTM ECLTM 
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Prime Western Blotting Detection Reagent kit and imaged on a GE ImageQuantTM LAS 4000 

Mini. 

Yeast RNA Isolation 

Cells were grown in liquid media, pelleted, and frozen at -80°C. Total RNA was 

collected similarly to a previously described phenol-chloroform method (Caponigro et al., 

1993). Prior to use, phenol and phenol-chloroform solutions were equilibrated with LET 

(100mM LiCl, 20mM EDTA, 25mM Tris, pH 8.0). Yeast cell walls were disrupted by 

vortexing in phenol with 100µL glass beads. Multiple wash and centrifugation steps were 

performed to isolate the RNA-containing aqueous phase, which was then frozen at -80°C in 

1mL 100% ethanol and 40µL 3M NaAc. The precipitated RNA was then pelleted by 

centrifugation at 15,000 rpm for thirty minutes. After vacuum drying the RNA pellet, it was 

resuspended in 200µL diethylpyrocarbonate (DEPC)-treated water and quantified with a GE 

NanoVueTM Plus Spectrophotometer. 

Isolation with hot phenol was performed to obtain RNA for RNA-Seq, similarly to a 

previously described protocol (He et al., 2008). Frozen cell pellets were resuspended in 

500µL RNA buffer A (1.67% NaOAc, 0.5M EDTA, deionized water) before adding 500µL of 

a phenol/RNA buffer A solution, which was heated to 65°C. Samples were incubated at 

65°C for a total of four minutes, with a ten second vortex step each minute. Samples were 

then centrifuged at 15,000 rpm for four minutes. The aqueous layer was collected and fresh 

500µL phenol/RNA buffer A solution was added. Incubating, vortexing, and centrifuging was 

repeated. The re-isolated aqueous layer was added to a new tube and vortexed with 500µL 

of a phenol-chloroform solution, equilibrated with TE (1M Tris, pH 8.0, 0.5M EDTA, 

deionized water). After centrifugation for four minutes at 15,000 rpm, the aqueous layer was 

pipetted into a new tube, mixed with 1mL 100% ethanol, and incubated at -80°C. The 

precipitated RNA was pelleted and washed in 1mL 70% ethanol before resuspension in 
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100µL DEPC-treated water. Samples were incubated at 65°C, vortexed, and incubated on 

dry ice a total of six times before quantification on a GE NanoVueTM Plus Spectrophotomer. 

Northern Blotting 

After RNA isolation, samples were run on a denaturing gel. This gel was either 

formaldehyde agarose or urea polyacrylamide, depending on the length of transcripts that 

would be probed. After being run on an agarose or polyacrylamide gel, RNA was transferred 

to either a nitrocellulose or a nylon membrane, respectively, and crosslinked with a 

Stratagene UV Stratalinkerâ 1800. Oligonucleotides designed to probe the specific 

transcripts of interest were 5’ labelled with ATP-g-32P, using T4 polynucleotide kinase. 

Crosslinked membranes were hybridized with the radioactively-labelled nucleotides and 

exposed to phosphor screens. Phosphorimaging of the screens was done with an 

Amersham STORM PhosphoImagerTM or a GE TyphoonTM FLA 7000. 

qRT-PCR 

After treating samples with DNase using the Ambionâ TURBO DNA-freeTM kit, 

quantitative reverse transcriptase-PCR (qRT-PCR) was carried out with the SYBRâ Green 

RNA-to-CtTM 1-Step kit from Applied Biosystems, using oligonucleotides designed for 

specific transcripts (Table 2.3). Oligonucleotides specific for CUTs were designed as 

previously described (Wyers et al., 2005). qRT-PCR reactions were performed with an 

Applied Biosystemsâ 7500 Real Time PCR System. Transcripts were normalized to an 

ACT1 control, measured with oligonucleotides from the laboratory of Kevin Morano at 

UTHealth (Table 2.3). Microsoftâ Excel was used to calculate and graph values. 

Transcriptome Sequencing 

After isolating RNA with the hot phenol method, sample quality was assessed via 

formaldehyde agarose gel electrophoresis. Transcriptome sequencing (RNA-Seq) was 

performed on an Illumina HiSeq2500TM by LC Sciences in Houston, Texas, USA. Poly(A)+ 
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RNA was isolated from duplicate cultures of trf4D, trf5D double deletion strains 

complemented with either TRF5 or trf5D98-117 plasmids. This poly(A)+ RNA was then 

converted to a sequencing library. Each library was sequenced and yielded between ten and 

fourteen million reads of fifty nucleotides. The Bowtie open-source software package was 

used to map these reads to the annotated yeast genes (ftp://ftp.ensembl.org/pub/release-

77/fasta/saccharomyces_cerevisiae/dna/). Genes that were significantly up- or down-

regulated in strains expressing mutant variants of Trf4/5 proteins were identified using the 

previously described edgeR open-source software package (Robinson et al., 2010). 

Similar analysis was performed with duplicate cultures of trf4D, trf5D double deletion 

strains complemented with plasmids allowing for the expression of either wild-type or mutant 

variants of both Trf4/5 proteins. These mutant variants are lacking either the necessary site 

for interaction with Mtr4 (trf4D115-134, trf5D98-117) or both N- and C-termini (trf4DNDC, 

trf5DNDC). RNA-Seq was performed at the Nex-Gen Core at the University of Texas Medical 

Branch at Galveston. The poly(A)+ RNA was converted to sequencing libraries, each yielding 

between twenty-six million to thirty-eight million paired-end reads of seventy-five 

nucleotides. The TopHat open-source software package was used to map these reads to 

the yeast genome (ccb.jhu.edu/software/tophat/index.shtml). The Cufflinks open-source 

software package was used to determine differential gene expression (cole-trapnell-

lab.github.io/cufflinks/). Hits were further classified by analysis with open-access tools 

provided by the Gene Ontology (GO) Consortium (geneontology.org). Data values were 

plotted with Microsoftâ Excel. 

Multiple Sequence Alignment 

 Sequences were obtained from the Fungal Orthogroups Repository 

(broadinstitute.org/regev/orthogroups/). Alignment of these sequences was generated with 

the publicly accessible EMBL-EBI Clustal Omega program (ebi.ac.uk/Tools/msa/clustalo/). 
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The desired file format was obtained by inputting the sequence alignment into the publicly 

accessible SIB BoxShade server (ch.embnet.org/software/BOX_form.html).  
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INTRODUCTION 

Pontocerebellar hypoplasia (PCH) is a group of autosomal recessive disorders 

caused by mutations in one of several genes (Table 3.1). Amino acid substitutions in 

EXOSC3, the gene encoding the human ortholog of the yeast RNA exosome cap subunit 

Rrp40, have been linked with PCH subtype 1b (PCH1b) (Wan et al., 2012) (Figure 3.1, 

cyan). Similarly, PCH1c is caused by mutations in EXOSC8, which encodes the human 

ortholog of the yeast RNA exosome core ring subunit, Rrp43 (Boczonadi et al., 2014) 

(Figure 3.1, pink). However, most PCH subtypes are caused by mutations in genes 

encoding tRNA splicing endonuclease subunits that function in tRNA processing, a 

selenocysteinyl tRNA charging enzyme, or a mitochondrial arginyl-tRNA synthetase 

(Edvardson et al., 2007; Budde et al., 2008; Agamy et al., 2010; Namavar et al., 2011; 

Hanada et al., 2013; Schaffer et al., 2014; Breuss et al. 2016) (Table 3.1, green rows). 

Most recently, PCH7 was linked to mutations in an exonuclease that is important for snRNA 

maturation (Lardelli et al., 2017).  

Yet, a few PCH subtypes are associated with genes that have no obvious role in 

RNA processing (Table 3.1, orange rows). These mutations are found in genes encoding 

vaccinia-related kinase, chromatin modifying protein 1A, and adenosine monophosphate 

deaminase 2 (Renbaum et al., 2009; Mochida et al., 2012; Akizu et al., 2013). Additionally, 

PCH subtypes have been linked with mutations in genes encoding components of 

endosome or synaptic vesicle transport machinery (Feinstein et al., 2014; Ahmed et al., 

2015). While the link between these genes and PCH is not immediately evident, the 

downstream effects of the essential catalytic activity of the RNA exosome are undoubtedly 

important for most, if not all, aspects of cellular physiology. Understanding how these 

unrelated genetic mutations cause PCH disorders with common traits requires the study of 

the functional defects that lead to disease. 
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Table 3.1 Subtypes of pontocerebellar hypoplasia (PCH) 

PCH 
Subtype 

Associated 
Gene 

Function of Encoded Protein Reference 

1a VRK1 Serine/threonine-protein kinase (Renbaum et al., 2009) 
1b EXOSC3 Cap subunit of RNA exosome (Wan et al., 2012) 
1c EXOSC8 Core subunit of RNA exosome (Boczonadi et al., 2014) 
2a TSEN54 Subunit of tRNA splicing endonuclease (Budde et al., 2008) 
2b TSEN2 Subunit of tRNA splicing endonuclease (Budde et al., 2008) 
2c TSEN34 Subunit of tRNA splicing endonuclease (Budde et al., 2008) 
2d SEPSECS Selenocysteinyl-tRNA charging  (Agamy et al., 2010) 
2e VPS53 Endosome transport (Feinstein et al., 2014) 
2f TSEN15 Subunit of tRNA splicing endonuclease (Breuss et al., 2016) 
3 PCLO Synaptic vesicle cycling (Ahmed et al., 2015) 
4 TSEN54 Subunit of tRNA splicing endonuclease (Budde et al., 2008) 
5 TSEN54 Subunit of tRNA splicing endonuclease (Namavar et al., 2011) 
6 RARS2 Mitochondrial arginyl-tRNA synthesis (Edvardson et al., 2007) 
7 TOE1 snRNA maturation (Lardelli et al., 2017) 
8 CHMP1A Chromatin modification (Mochida et al., 2012) 
9 AMPD2 Adenosine monophosphate deamination (Akizu et al., 2013) 
10 CLP1 Pre-tRNA processing (Hanada et al., 2013)  

(Schaffer et al., 2014) 
 

Table 3.1 Subtypes of pontocerebellar hypoplasia (PCH). While this rare autosomal 

recessive disorder is characterized by atrophy of the pons and cerebellum, it is further 

divided into subtypes based on additional phenotypes and/or associated genes. While 

many PCH subtypes are associated with genes that are clearly important for RNA 

processing (green rows), the genetic basis of other subtypes does not appear to be 

directly linked with this mechanism (orange rows).  
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Figure 3.1 Human and yeast nomenclature of RNA exosome subunits. The structure of 

the RNA exosome is conserved throughout eukaryotes. Yeast subunits (previously 

introduced in Figure 1.1) directly correlate to human orthologs, whose names are 

provided in bold. 
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Pontocerebellar Hypoplasia Subtype 1b (PCH1b) and EXOSC3 

While severe atrophy of the pons and cerebellum is the common feature of all PCH 

subtypes, Individuals affected with PCH1b also exhibit Purkinje cell abnormalities and spinal 

motor neuron degeneration (Wan et al., 2012). Other PCH1b phenotypes include severe 

muscular atrophy, microcephaly, and retardation in both growth and mental development 

(Rudnik-Schöneborn et al., 2013). Most patients do not live past childhood, even with 

symptomatic treatment. Elucidating the molecular mechanisms that underlie PCH1b is 

critical for developing new therapies. 

The essential protein, EXOSC3/Rrp40 is one of the three cap subunits of the RNA 

exosome. It has an N-terminal domain, central S1 domain, and C-terminal KH domain 

(Oddone et al., 2007). The latter two domains are putative sites of RNA binding. Moreover, 

the structure of these two domains forms a pocket, which has recently been identified as a 

binding site for Mpp6, a nuclear cofactor of the RNA exosome that delivers substrates for 

degradation (Milligan et al., 2008; Falk et al., 2017a). In addition to binding RNA or 

cofactors, the cap subunits also each interact with two subunits of the RNA exosome core 

ring. Specifically, EXOSC3/Rrp40 binds to core subunits EXOSC5/Rrp46 and 

EXOSC9/Rrp45 (Figure 3.1, cyan, orange, green) (Liu et al., 2006). 

It is currently unclear how the mutations in EXOSC3 contribute to PCH1b, but it is 

unlikely that they cause a complete inactivation of the RNA exosome since this complex is 

both conserved and essential (Mitchell et al., 1997). EXOSC3 amino acid substitutions may 

cause PCH1b by several potential mechanisms. First, these mutations may affect a subset 

of RNA exosome functions. For example, only the mRNA degradation activity of the RNA 

exosome is inhibited in yeast cells that express mutant variants of Csl4, another subunit of 

the cap (van Hoof et al., 2000b). It is also possible that PCH1b-associated changes in the 

EXOSC3 subunit could affect the ability of the RNA exosome to degrade normal, premature, 

or aberrant forms of tRNA. Second, the incorporation of a mutant EXOSC3 subunit into the 



  59 

RNA exosome could reduce total activity of the complex. Third, the mutations could impair 

RNA exosome-independent functions of the EXOSC3 protein if such functions exist. 

However, this seems less likely than the possibilities listed above since mutations in another 

RNA exosome subunit gene, EXOSC8, result in PCH phenotypes as well (Boczanadi et al., 

2014). 

PCH1b-Associated EXOSC3 Mutations 

Analysis of exons from multiple PCH1b individuals within a single family identified 

EXOSC3 as the causative gene. This was confirmed by expanding the analysis to include 

patients from twelve more families (Wan et al., 2012). As with other autosomal-recessive 

diseases, PCH1b occurs at a higher frequency in consanguineous families. Patients 

homozygous for the EXOSC3-G31A allele exhibit severe disease, while a homozygous 

EXOSC3-D132A allele results in a less severe phenotypes (Table 3.2). However, 

heterozygosity of EXOSC3-D132A with likely null alleles results in increased severity (Wan 

et al., 2012; Biancheri et al., 2013; Rudnik-Schöneborn et al., 2013; Schwabova et al., 2013; 

Eggens et al., 2014) (Table 3.2). EXOSC3-G31A has not been found in combination with 

obvious null alleles, but it has been found in compound heterozygosity with an EXOSC3-

W238R mutant allele (Wan et al., 2012; Rudnik-Schöneborn et al., 2013) (Table 3.2). Loss 

of EXOSC3 has been modeled in zebrafish by knockdown with antisense morpholinos, 

which revealed brain abnormalities and decreased motility similar to human phenotypes 

(Wan et al., 2012). Yet, the functional consequences of these specific point mutations in 

EXOSC3 have not been analyzed in detail. Two additional mutations in EXOSC3 have been 

identified but the associated phenotypes are less severe than those described in previous 

studies. These patients were only reported to exhibit mild pontocerebellar atrophy, if any 

(Zanni et al., 2013; Halevy et al., 2014). 
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Table 3.2 Major EXOSC3 mutations in PCH1b patients 

Substitution PCH1b Patient Genotype Disease Severity Patient Lifespan 
G31A G31A                       Homozygous Severe 4-17 months 

D132A D132A                     Homozygous 
D132A/null              Heterozygous 

Less severe 
Severe 

3-20 years 
4-27 months 

W238R W238R/G31A         Heterozygous Severe 7-8 months 
 
Table 3.2 Major EXOSC3 mutations in PCH1b patients. Previously reported genotypes, 

disease severity, and lifespan are presented to provide context for the functional 

consequences of the different amino acid substitutions (Wan et al., 2012; Biancheri et al., 

2013; Rudnik-Schöneborn et al., 2013; Schwabova et al., 2013; Eggens et al., 2014).  
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RESULTS 

Yeast Can Be Employed as a Model System to Study PCH1b-Associated Mutations  

To begin to address the molecular defects that underlie PCH1b, I collaborated with 

the laboratory of Dr. Anita Corbett at Emory University to create and analyze amino acid 

substitutions in yeast RRP40 that correspond to the EXOSC3 substitutions of PCH1b 

patients. We generated a protein sequence alignment of human EXOSC3, yeast Rrp40, and 

other eukaryotic orthologs. Human RNA exosome cap subunit EXOSC2 and yeast ortholog 

Rrp4 were also included in the alignment due to their functional similarity to EXOSC3/Rrp40. 

Archaea only have an EXOSC2/Rrp4 ortholog, which was also included in our alignment 

(Buttner et al., 2005; Lorentzen et al., 2007) (Figure 3.2 A).  

The human EXOSC3 residues that are substituted in PCH1b are among the most 

conserved residues of this protein. Only ten residues of human EXOSC3 have remained 

perfectly conserved and two of them, G31 and W238, are PCH1b-associated. Residue D132 

is also conserved in most orthologs, but it has been replaced by a serine in yeast Rrp40 and 

most other ascomycete orthologs (Figure 3.2 A).  

We aimed to assess the functional consequences of these PCH1b-associated 

substitutions. Human EXOSC3 protein does not substitute for the essential function of 

Rrp40 protein in yeast (Brouwer et al., 2001). Therefore, we first created mutations in the 

yeast RRP40 gene that result in the expression of the following variants: rrp40-G8A 

(corresponding to EXOSC3-G31A), rrp40-S87A (corresponding to EXOSC3-D132A), and 

rrp40-W195R (corresponding to EXOSC3-W238R). In both humans and yeast, these 

PCH1b-associated residues are found in all three domains of EXOSC3/Rrp40 (Figure 3.2 

B).  
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Figure 3.2 Protein sequence alignment of EXOSC3 orthologs. (A) This alignment was 

generated from the protein sequences of human EXOSC3, yeast Rrp40, EXOSC3/Rrp40 

orthologs from other multi- and unicellular eukaryotes, human EXOSC2, yeast Rrp4, and 

archael Rrp4. There is significant sequence conservation around sites corresponding to 

those of PCH1b-associated mutations, as evidenced by the presence of identical residues 

(red) and similar residues (blue). Selected regions of the alignment reveal that the amino 

acids substituted in human EXOSC3 in PCH1b patients are conserved in yeast Rrp40 

(highlighted in cyan). Amino acids substituted in human EXOSC2 in patients with a novel 

syndrome, SHRF, are conserved in yeast Rrp4 (highlighted in yellow). (B) Both EXOSC3 

and Rrp40 contain three domains: an N-terminal domain, a central putative RNA-binding 

S1 domain, and a C-terminal putative RNA-binding KH domain. The position and flanking 

sequence of the major PCH1-associated amino acid substitutions in human EXOSC3 and 

the corresponding substitutions generated in yeast Rrp40 are indicated in red. 
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To create a yeast model, LEU2 plasmids encoding for Myc-tagged wild-type Rrp40 

protein or each mutant variant under the control of the endogenous RRP40 promoter were 

generated and transformed into rrp40D cells that already contain [RRP40, URA3] plasmids. 

The plasmid shuffle was performed to select against the [RRP40, URA3] plasmids, resulting 

in the specific expression of LEU2 plasmid constructs in the rrp40D background. This 

ensured that the sole copy of RRP40 in the yeast model was either wild-type or one of the 

rrp40 mutant alleles that correspond to PCH1b-associated mutations in EXOSC3. 

PCH1b-Associated Mutations Likely Have Structural Consequences 

To assess the potential interactions of the residues mutated in PCH1b patients, we 

examined previously published RNA exosome structures from both humans and yeast (Liu 

et al., 2006; Makino et al., 2013; Wasmuth et al., 2014). These structures are publicly 

available through the Research Collaboratory for Structural Bioinformatics Protein Data 

Bank (rcsb.org/pdb/home/home.do). Based on these structures, the positions of the PCH1b-

associated conserved residues (black, bold) in EXOSC3/Rrp40 (blue) are shown within the 

context of the RNA exosome (Figure 3.3). Strikingly, the residues are all in positions that 

could be important for interactions with other RNA exosome subunits, although they are not 

clustered together in primary sequence and they are located in different domains (Figure 

3.2 B; Wan et al., 2012). Specifically, Rrp40 residue G8 is packed against residues S129, 

M130, and V168 of Rrp46, a subunit of the RNA exosome core (Figure 3.3). Substituting 

any bulkier side chain at Rrp40 G8, such as the PCH1b-associated substitution to alanine, 

could interfere with the interaction of these two RNA exosome subunits. Similar positioning 

indicates that this may also occur in the case of EXOSC3 residue G31. Rrp40 residue S87 

forms a hydrogen bond with Rrp40 Q89, which could be disrupted by the PCH1b-associated 

substitution to alanine (Figure 3.3). This hydrogen bond formation is also seen in the 

corresponding residues of the human RNA exosome structure. A disruption of this hydrogen 

bond could impair the folding of a loop located within the S1 domain of EXOSC3/Rrp40.  
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Unlike Rrp40 residues G8 and S87, Rrp40 W195 is not located at an RNA exosome 

subunit interface, but it could still be important for maintaining interactions between subunits. 

This residue is located in a pocket surrounded by a loop containing Rrp40 D152, which is 

positioned to make a salt bridge with residue K13 of Rrp45, a subunit of the RNA exosome 

core (Figure 3.3). These residues are similarly positioned in the human RNA exosome 

structure. The PCH1b-associated substitution to arginine at W195 could therefore alter the 

position of D152, subsequently weakening the interaction with Rrp45. In addition to possibly 

affecting the ability of Rrp40 to interact with other RNA exosome subunits, the location of 

PCH1b-associated substitutions could also affect RNA binding or interactions with RNA 

exosome cofactors. 

  



  65 

 
Figure 3.3 PCH1b-associated substitutions occur at EXOSC3 residues located near RNA 

exosome subunit interfaces. Structural models of the human RNA exosome (left) 

[PDB#2NN6 (Liu et al., 2006)] and yeast RNA exosome (right) [PDB#4IFD (Makino et al., 

2013)] are depicted. The nine-subunit human RNA exosome structure highlights the 

EXOSC3 (blue), EXOSC5 (yellow), and EXOSC9 (orange) subunits. The yeast RNA 

exosome structure highlights the orthologous Rrp40 (blue), Rrp46 (yellow), and Rrp45 

(orange) subunits. Zoomed-in views of three subunit interface regions show the locations 

of PCH1b-associated residues G31, D132, and W238 (bold). Additional zoomed-in views 

show the evolutionarily conserved Rrp40 residues G8, S87, and W195 (bold). EXOSC3 

G31/Rrp40 G8 is located in a hydrophobic pocket at an interface with EXOSC5/Rrp46. 

EXOSC3 D132/Rrp40 S87 and the backbone of G134/Q89 are positioned to form a 

hydrogen bond that may organize the loop between strands b3 and b4, which is at the 

interface with both EXOSC5/Rrp46 and EXOSC9/Rrp45. EXOSC3 W238/Rrp40 W195 sits 

in a large pocket and could be important for positioning the loop that forms an interface 

with EXOSC9/Rrp45. 
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Expressing Some PCH1b-Associated Variants in Yeast Results in Growth Deficiency  

In yeast, all of the RNA exosome subunits are encoded by essential genes (Allmang 

et al., 1999a). To first test the functional consequences of PCH1b-associated substitutions, I 

assessed whether the rrp40 mutant genes could complement the lethality of a yeast rrp40D 

mutant. For these studies, I examined rrp40-G8A, rrp40-S87A, and rrp40-W195R mutant 

strains. Since the substitution of tryptophan 195 to arginine in rrp40-W195R cells is a 

dramatic change, my collaborators and I decided to also change tryptophan 195 to alanine 

(rrp40-W195A). This removes the large hydrophobic residue without simultaneously 

introducing a positive charge. In addition, we created a very conservative change of 

tryptophan 195 to phenylalanine (rrp40-W195F), which retains the large hydrophobic 

residue. 

I grew rrp40D cells expressing each substitution variant as the sole copy of the 

essential RRP40 gene. These cells were serially diluted and spotted on plates, which were 

incubated at various temperatures. In this solid medium assay, rrp40-W195R and rrp40-

W195A mutant cells gave rise to smaller colonies, indicative of a modest growth defect that 

is most noticeable at 37°C (Figure 3.4 A). To provide a more quantitative comparison of 

growth rates, I also performed growth assays in liquid cultures at 37°C. This analysis 

revealed that rrp40-W195A and rrp40-W195R cells grow at a slower rate than wild-type 

RRP40 cells. Their doubling times increased by 13% and 20%, respectively, compared to 

RRP40 cells (Figure 3.4 B, C). The other variants, rrp40-G8A and rrp40-S87A, grew in a 

manner indistinguishable from wild-type RRP40 cells (Figure 3.4 B). The rrp40-W195F 

mutant also grew similarly to wild-type RRP40 cells (Figure 3.4 C). At 30°C, the rrp40-

W195R and rrp40-W195A mutant cells also reproducibly grew more slowly than the other 

mutants, although the difference was less pronounced than at 37°C (data not shown).  
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Figure 3.4 Yeast expressing rrp40-W195R or rrp40-W195A as the sole copy of Rrp40 

exhibit impaired growth at 37°C. (A) The growth of rrp40D cells containing only wild-type 

RRP40 or mutant rrp40 plasmid was analyzed by performing serial dilutions, spotting onto 

selective solid medium, and incubation at the indicated temperatures. (B) The same 

strains were grown in triplicate in liquid selective medium at 37°C. Optical density was 

calculated every fifteen minutes. (C) Additional liquid growth assays were performed at 

37°C, comparing the doubling times of cells expressing one of the three W195 variants to 

those expressing wild-type Rrp40 protein. 
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I took advantage of the fact that RNA exosome mutants are sensitive to the 

antimetabolite 5-fluorouracil (5-FU), an inhibitor of thymidine synthesis that impairs both 

DNA and RNA metabolism (Fang et al., 2004; Lum et al., 2004). To further assess the 

function of rrp40-W195R and rrp40-W195A proteins, I serially diluted and spotted the mutant 

strains on solid medium containing 25µM 5-FU. The plates were then incubated at several 

temperatures. The rrp40-W195R and rrp40-W195A strains exhibit reduced growth on 5-FU 

plates at 37°C, relative to wild-type RRP40 cells (Figure 3.5). In contrast, the rrp40-W195F 

mutant shows growth similar to wild-type cells. These results demonstrate that no single 

amino acid substitution in Rrp40, which corresponds to a PCH1b-associated substitution in 

EXOSC3, causes a complete loss of Rrp40 protein function. Thus, at least some threshold 

level of EXOSC3 function is likely required for viability and development in humans. The 

results of Figure 3.4 and Figure 3.5 also show that substitutions removing the large 

hydrophobic W195 residue modestly impair cell growth. 
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Figure 3.5 Yeast expressing rrp40-W195R or rrp40-W195A as the sole copy of Rrp40 

exhibit impaired growth in the presence of 5-fluorouracil (5-FU). The growth of rrp40D 

cells containing only wild-type RRP40 or mutant rrp40 plasmid was analyzed by 

performing serial dilutions, spotting onto solid medium containing 25µM 5-FU, and 

incubation at the indicated temperatures. 
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In addition to these five mutations, we generated rrp40D strains containing plasmids 

that encode either rrp40-S87A/V95P or rrp40-D152A mutant protein. A proline substitution 

at EXOSC3 residue A139 has been found in conjunction with the EXOSC3-D132A allele in a 

heterozygous PCH1b patient (Wan et al., 2012). This residue is well-conserved and 

corresponds to valine, a similar hydrophobic amino acid, at position 95 in yeast Rrp40 

(Figure 3.2 A). I included the rrp40-S87A/V95P strain in the liquid growth assays and found 

that this mutant grew similarly to wild-type RRP40 cells (Figure 3.4 B). 

While a mutation at EXOSC3 residue D196 has not been associated with PCH1b, we 

generated an alanine substitution at the corresponding D152 residue of Rrp40. As 

previously described, analysis of RNA exosome structures revealed that EXOSC3 W238 

and Rrp40 W195 may have an important role in maintaining the interaction between 

EXOSC3/Rrp40 and EXOSC9/Rrp45 (Figure 3.3). It is possible that the presence of this 

bulky tryptophan residue is critical for positioning a nearby negatively charged aspartic acid 

in a conformation that allows for interaction with a positively charged residue on 

EXOSC9/Rrp45. Although we created strains lacking the tryptophan residue, we additionally 

replaced this aspartic acid to further analyze the importance of maintaining interaction 

between these RNA exosome subunits. I performed liquid growth assays to determine the 

effect of this mutation on cell growth. The growth of rrp40-D152A cells was significantly 

impaired in comparison to cells expressing wild-type Rrp40 or a mutant variant that retains a 

bulky hydrophobic residue at position 195 (Figure 3.6). This finding suggests that this 

aspartic acid residue is important for the Rrp40-Rrp45 interaction, which contributes to the 

structural integrity of the RNA exosome. Moreover, it further supports the hypothesis that 

this interaction is dependent upon the presence of a nearby bulky hydrophobic residue.  
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Figure 3.6 Yeast expressing rrp40-D152A as the sole copy of Rrp40 exhibit impaired 

growth at 37°C. The growth of rrp40D cells containing only wild-type RRP40 or mutant 

rrp40 plasmid in liquid selective medium was measured and compared. These strains 

were grown in triplicate and incubated at 37°C for the duration of the assay. Optical 

density was calculated every fifteen minutes. 

 

 



  72 

PCH1b-Associated Mutations Could Affect Multiple Cellular Functions   

It is unsurprising that one point mutation in a single RNA exosome subunit could 

cause such severe phenotypes since this complex is conserved, essential, and located in 

both the nucleus and the cytoplasm. Moreover, known PCH1b phenotypes are varied and 

irreversibly affect many types of tissues within a single patient. Therefore, possible effects of 

PCH1b-associated mutations on RNA exosome activity in the nucleus and cytoplasm, as 

well as subsequent effects on mitochondrial function, were assessed with the yeast model.   

Assessing the Nuclear Activity of the Mutant RNA Exosome  

To assess whether the slow growth observed for the rrp40-W195R mutant correlates 

with a change in RNA exosome function, my collaborators examined the steady-state level 

of several well-defined nuclear RNA exosome targets via quantitative RT-PCR. These 

selected transcripts were ITS2 rRNA, U4 snRNA, and the NEL025C CUT. NEL025C and U4 

RNA levels were modestly, but statistically significantly, increased in rrp40-W195R mutants 

at 37°C in comparison to a strain expressing wild-type Rrp40 protein. This is consistent with 

the changes in cellular growth revealed by my solid and liquid serial dilution assays. The 

level of ITS2 transcripts was not significantly different in the mutant when compared to wild-

type, suggesting that not all targets are equally affected by this PCH1b-associated mutation. 

Moreover, there was no significant difference in any of the RNA levels when comparing 

rrp40-G8A cells to wild-type RRP40 cells (Falk, Losh et al., 2017). This provides further 

evidence that RNA exosome function, specifically within the nucleus, is compromised in 

rrp40-W195R mutants.  

Assessing the Cytoplasmic Activity of the Mutant RNA Exosome  

I next assessed if expression of these rrp40 mutant proteins affects the cytoplasmic 

functions of the RNA exosome. The rationale behind this was multifaceted. First, the 

cytoplasmic activity of the RNA exosome is not essential, as opposed to its nuclear functions 

(Jacobs Anderson and Parker, 1998). Second, mutations in a different subunit of the RNA 
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exosome cap (EXOSC1/Csl4) specifically inactivate its cytoplasmic function, but not its 

essential nuclear function (van Hoof et al., 2000b). Finally, a clinical study of PCH proposed 

the hypothesis that PCH1b and PCH1c may result from a defect in cytoplasmic mRNA 

degradation by the RNA exosome (Boczonadi et al., 2014). 

To examine cytoplasmic function of the RNA exosome in rrp40 mutants, I employed 

a his3-nonstop reporter assay. This assay exploits the observation that the yeast 

cytoplasmic RNA exosome is required for the degradation of mRNA transcripts that lack 

stop codons (van Hoof et al., 2002). In cells with functional cytoplasmic RNA exosomes, the 

his3-nonstop reporter, which encodes the His3 protein and lacks stop codons, is degraded. 

Therefore, histidine is not biosynthesized in these cells so they cannot grow on media 

lacking this amino acid. In cells with defective cytoplasmic RNA exosomes, the his3-nonstop 

mRNA reporter is stabilized, biosynthesis of histidine proceeds, and the cells can grow on 

media lacking histidine. The rrp40D cells, expressing PCH1b-associated variants as the sole 

copy of Rrp40, were transformed with the his3-nonstop reporter plasmid. They were then 

serially diluted and spotted onto solid medium lacking histidine (His-) and control medium 

containing histidine (His+).  

As a control for impaired cytoplasmic function, I also serially diluted and spotted a 

ski7D strain containing the his3-reporter, as Ski7 is a required cofactor of the cytoplasmic 

RNA exosome (van Hoof et al., 2002). As expected, the ski7D control strain grew on His- 

medium (Figure 3.7). In contrast, none of the experimental rrp40 mutants grew on His- 

medium, indicating that cytoplasmic RNA exosome-mediated nonstop mRNA decay 

proceeds normally in cells expressing these rrp40 variants (Figure 3.7). These results 

suggest that amino acid substitutions linked to PCH1b do not block the function of the 

cytoplasmic RNA exosome, at least in yeast. 
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Figure 3.7 PCH1b-associated rrp40 mutations do not impact cytoplasmic function of the 

RNA exosome. Yeast cells expressing rrp40 variants as the sole copy of Rrp40 do not 

rescue a his3-nonstop reporter, which is rapidly degraded by the cytoplasmic RNA 

exosome, to restore growth on medium lacking histidine. As a control, deletion of SKI7, 

which encodes a key cofactor of the cytoplasmic RNA exosome, rescues the his3-nonstop 

reporter and thus confers growth on medium lacking histidine. The growth of rrp40D cells 

containing only wild-type RRP40 or mutant rrp40 plasmid was analyzed by performing 

serial dilutions, spotting onto solid medium containing histidine (His+) or lacking histidine 

(His-), and incubation at 37°C. The rrp40-W195F and rrp40-D152A strains were assayed 

identically to the other strains, but on a different day. Their ability to grow on medium 

lacking histidine was also compared to ski7D cells. 
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Assessing the Mitochondrial Activity in Cells Expressing PCH1b-Associated Mutations 

A recently published case study described mitochondrial dysfunction in a patient with 

the PCH1b-associated allele, EXOSC3-D132A. Studies of the patient’s muscular fibroblasts 

revealed that a significant amount of the mutant EXOSC3-D132A protein was accumulated 

in the cytoplasm. Copies of mitochondrial DNA (mtDNA) within the patient’s muscle tissue 

were reduced to about a third of wild-type levels, yet no mutations in the mtDNA or 

mitochondrial genes were detected. RNA-Seq revealed that mRNA transcribed from genes 

encoding mitochondrial subunits was significantly increased in muscle tissue as well 

(Schottmann et al., 2017). This transcript accumulation may be explained by RNA exosome 

dysfunction caused by the patient’s EXOSC3-D132A mutation. Interestingly, the authors did 

not detect the same abnormalities in dermal fibroblasts (Schottmann et al., 2017). This 

indicates that there may be a tissue-specific effect of the EXOSC3-D132A mutation, 

although it is unclear if this effect is direct or indirect. 

To test if mitochondrial activity is impaired in the yeast model, I serially diluted and 

spotted strains expressing wild-type or mutant variants of Rrp40 onto solid medium 

containing glycerol instead of glucose as the carbon source. This glycerol-containing 

medium induces respiration in yeast, so lack of growth indicates that this mitochondrial 

process is negatively impacted. None of the strains, including cells expressing rrp40-S87A 

protein, which corresponds to EXOSC3-D132A, exhibited growth deficiencies on this 

medium at either 30°C or 37°C (Figure 3.8). This suggests that these mutations do not lead 

to mitochondrial impairment in yeast. 
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Figure 3.8 PCH1b-associated rrp40 mutations do not impact mitochondrial respiration. 

The growth of rrp40D cells containing only wild-type RRP40 or mutant rrp40 plasmid was 

analyzed by performing serial dilutions, spotting onto solid rich yeast medium containing 

glycerol as the sole carbon source, and incubation at the indicated temperatures. 
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Expression and Stability of EXOSC3/rrp40 Mutants Indicate Proteasomal Degradation  

 My collaborators performed several experiments to test whether PCH1-associated 

mutations impact protein levels and stability. Western blotting revealed that at 37°C, rrp40-

G8A and rrp40-S87A expression was within twofold of wild-type Rrp40, while rrp40-W195R 

expression was reduced by about threefold (Fasken, Losh et al., 2017). Expression of rrp40-

W195A and rrp40-W195F variants were also reduced in comparison to wild-type Rrp40, but 

not as significantly. Therefore, my collaborators compared only the stability of the rrp40-

W195R variant to that of wild-type Rrp40 via western blotting after cycloheximide treatment. 

Exponential decay curves revealed that at 30°C the rrp40-W195R variant is unstable with a 

half-life of ~116 minutes, in comparison to the Rrp40 half-life of ~222 minutes (Fasken, Losh 

et al., 2017).  

A potential explanation for the reduced stability of this variant could be that it does 

not assemble efficiently into the RNA exosome and therefore, is targeted for degradation by 

the proteasome. If this impaired assembly model was supported by subsequent assays, we 

hypothesized that the wild-type Rrp40 would outcompete a mutant variant for in vivo 

assembly into the RNA exosome. Whereas the previous western blotting assays were 

performed with rrp40D strains, which each expressed a Myc-tagged wild-type or mutant 

variant of Rrp40, my collaborators expressed Myc-tagged wild-type or mutant variants in a 

strain already expressing TAP-tagged wild-type Rrp40 to address this hypothesis. 

Quantitation of protein levels revealed that only the mutants with W195 substitutions were 

expressed at significantly lower levels than wild-type Rrp40 (Fasken, Losh et al., 2017). 

Moreover, the levels of the W195 variants were even more reduced than when they had 

been expressed in rrp40D cells. My collaborators performed a similar cycloheximide 

treatment assay to test the stability of the rrp40-W195R variant when co-expressed with 

wild-type Rrp40. Exponential decay curves showed that the half-life of the mutant dropped 

to only ~6 minutes (Fasken, Losh et al., 2017). These results suggest that these W195 
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variants, especially rrp40-W195R, cannot compete efficiently with wild-type Rrp40 for 

assembly into the RNA exosome. 

To assess if this rapid degradation of rrp40-W195R is mediated by the proteasome, 

my collaborators compared the stability of this mutant in either a wild-type background or in 

a strain with a dysfunctional proteasome. Exponential decay curves revealed that rrp40-

W195R was stable over the course of thirty-five minutes in cells with impaired proteasome 

function. However, this protein was very unstable in wild-type cells, with a short half-life of 

~5 minutes (Fasken, Losh et al., 2017). These results indicate that the rrp40-W195R variant 

is degraded by the proteasome and suggest that cells can selectively discriminate and 

target this variant for degradation when wild-type Rrp40 is available.  

My collaborators next performed native-PAGE gel analysis to determine if this 

reduction in rrp40-W195R stability truly indicates reduced assembly into the RNA exosome. 

This assay compared levels of mutant or wild-type Rrp40 in cells with either normal or 

abnormal proteasome function. A high amount of wild-type Rrp40 in both strain backgrounds 

migrated as a single complex of ~600 kDa. Moreover, the amounts of rrp40-G8A and rrp40-

S87A that migrated as a ~600 kDa complex were similar to wild-type Rrp40 in both strain 

backgrounds. However, only a low amount of rrp40-W195R migrated as a single complex of 

~600 kDa in both strain backgrounds (Fasken, Losh et al., 2017). Importantly, the native-

PAGE lysates were analyzed by denaturing SDS-PAGE, which showed that the level of 

rrp40-W195R increased in the proteasome mutant background when compared to wild-type 

cells (Fasken, Losh et al., 2017). Therefore, the reduced amount of migrated rrp40-W195R 

on the native gel was not simply due to low protein levels. These results suggest that the 

rrp40-W195R variant associates less efficiently with the RNA exosome than wild-type Rrp40 

or even other PCH1b-associated variants. 

To determine whether the results obtained using our yeast model extend to EXOSC3 

in mammalian cells, my collaborators generated mutations in mouse EXOSC3 that 
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correspond to PCH1b-associated substitutions and those analyzed in our yeast model. They 

assessed only two of the variants in mice, EXOSC3-G31A and EXOSC3-W237R, which 

correspond to EXOSC3-G31A/rrp40-G8A and EXOSC3-W238R/rrp40-W195R, respectively. 

Plasmids allowing for the expression of Myc-tagged wild-type or variant proteins were 

transfected into a mouse N2a neuronal cell line, which already expresses endogenous 

EXOSC3 protein (Klebe and Ruddle, 1969). Western blotting revealed that EXOSC3-G31A 

variant was reduced twofold relative to wild-type mouse EXOSC3, whereas EXOSC3-

W237R showed a fourfold reduction (Fasken, Losh et al., 2017). These results suggest that 

the mouse EXOSC3-W237R variant is unstable in the presence of wild-type EXOSC3, 

similar to the results from rrp40-W195R analysis in our yeast model. Therefore, mammalian 

cells may have conserved our proposed mechanism of discrimination between wild-type and 

variant EXOSC3 subunits during RNA exosome assembly. 

PCH1b-Associated Mutations Do Not Affect the Degradation of CBP1 mRNA 

As previously stated, PCH is a genetically heterogeneous group of diseases. 

Mutations in genes encoding various enzymes involved in tRNA processing have been 

linked to PCH type 2, 4, 5, 6, and 10, although these mutations do not always result in tRNA 

defects (Edvardson et al., 2007; Budde et al., 2008; Agamy et al., 2010; Namavar et al., 

2011; Hanada et al., 2013; Schaffer et al., 2014) (Table 3.1). Specifically, PCH4 and PCH5, 

as well as PCH2 subtypes a, b, c, and f, are caused by mutations in the tRNA splicing 

endonuclease (TSEN) complex. This is a conserved four-subunit enzyme that promotes 

intron removal from precursor tRNA and mutations in each subunit have been linked to PCH 

disease (Budde et al., 2008; Battini et al., 2014; Breuss et al., 2016). Interestingly, PCH2 

subtypes present similar, if not identical, symptoms to PCH1b and PCH1c, despite being 

caused by mutations in the TSEN complex instead of in the RNA exosome. However, like 

the RNA exosome, the TSEN complex is also an RNase. 
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While the main function of the TSEN complex is tRNA intron removal, it has an 

additional function, at least in yeast. The complex, known as the Sen complex in yeast, cuts 

CBP1 mRNA. Cbp1 protein is required for the mitochondrial production of cytochrome b, an 

important component of the electron transport chain. The cleaved CBP1 transcript is then 

degraded by the cytoplasmic RNA exosome (Tsuboi et al., 2015). Products of Sen complex 

cleavage are not typically degraded via cooperative activity of the RNA exosome (Wu and 

Hopper, 2014). Therefore, this finding indicates a possible link between the similar 

pathology of PCH1 and PCH2. Perhaps transcripts important for neural and brain 

development are cleaved and degraded by a cooperative Sen complex-RNA exosome 

pathway (Figure 3.9). Consequently, PCH-associated mutations in either complex may 

disrupt this process, resulting in similar phenotypes.    

A visiting summer undergraduate student, Keta Patel, assisted me with transforming 

several yeast strains with a plasmid encoding CBP1. Two alternative transcripts, differing at 

the 3’ end, arise from this gene in response to metabolic signals (Mayer and Dieckmann, 

1989). Transforming yeast with this plasmid allows for the overexpression of both CBP1 

transcripts. The strains used for this transformation included cells endogenously expressing 

PCH1-associated rrp40-G8A, rrp40-G148C, or rrp40-W195R mutant variants, gifted to us by 

the laboratory of Guillaume Chanfreau at the University of California, Los Angeles (Gillespie 

et al., 2017). We also transformed a wild-type strain, as well as a ski7D strain that is 

defective in CBP1 mRNA degradation. After isolating RNA from these transformants, I 

performed northern blotting to assess if the CBP1 mRNA that is cleaved by the Sen complex 

accumulates due to PCH1-associated mutations. Expression of the mutant variants does not 

result in the accumulation of Sen complex-cleaved mRNA (Figure 3.10). This indicates that 

PCH1b-associated mutations do not disrupt the ability of the RNA exosome to clear the 

products of Sen complex cleavage. 
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Figure 3.9 Model for cooperation between the tRNA splicing endonuclease complex and 

the RNA exosome. The tRNA splicing endonuclease (TSEN) complex, or Sen complex in 

yeast, (scissors) cleaves CBP1 transcripts. While most products of TSEN complex 

cleavage are degraded by the 5’-3’ RNA degradation pathway, CBP1 mRNA is a 

substrate of the RNA exosome. If these two complexes partner together to clear cleaved 

CBP1 mRNA, as well as other transcripts, this may provide a molecular basis for the 

phenotypic similarity exhibited between patients with TSEN complex or RNA exosome 

mutations. 
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Figure 3.10 PCH1b-associated mutations do not interfere with the degradation of cleaved 

CBP1 mRNA. Probes specific for the indicated species were used for northern blotting. 

The ribonucleoprotein, signal recognition particle (SRP), was included as a loading 

control. Both normal and non-stop transcripts were present in wild-type cells and in cells 

endogenously expressing PCH1b-associated variants of Rrp40. ski7D cells were included 

as a negative control for cytoplasmic RNA exosome function. All strains, except for ski7D, 

were able to degrade cleaved CBP1 mRNA.  
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Human Mutations in Other RNA Exosome Subunits Can Be Similarly Modeled in Yeast  

Substitutions in a second RNA exosome cap subunit, EXOSC2, which corresponds 

to yeast Rrp4, have been linked to a novel syndrome (Figure 3.1, red). This syndrome is 

characterized by decreased stature, hearing loss, retinitis pigmentosa, distinctive facial 

appearance, premature aging, intellectual disability, and hyperthyroidism (Di Donato et al., 

2016). It has recently been named SHRF, an acronym derived from the first four phenotypes 

listed. These symptoms have little overlap with PCH1b or any of the other PCH subtypes, 

which is surprising due to the conserved structural and functional similarity of EXOSC2/Rrp4 

and EXOSC3/Rrp40. As stated previously in this chapter, my collaborators and I included 

EXOSC2 and Rrp4 in our protein sequence alignment of EXOSC3, Rrp40, and other 

eukaryotic orthologs when beginning this study. We found that the EXOSC2-G30V mutation, 

which is associated with SHRF, is located in the analogous position to the PCH1b-

associated EXOSC3-G31A mutation (Figure 3.2 A, yellow highlight).  This glycine residue 

is conserved between EXOSC2 and EXOSC3 paralogs, as well as within both yeast and 

human sequences, which suggests that it may be functionally important. For example, 

structural studies indicate that this mutation could negatively affect the ability of EXOSC2 

protein to interact with residues of EXOSC4, a subunit of the RNA exosome core ring 

(Figure 3.1, blue) (Di Donato et al., 2016). The EXOSC2-G198D mutation is also 

associated with SHRF and could affect EXOSC2 protein structure or function due to the 

location of this substitution within the KH domain, which is a region of RNA-binding (Di 

Donato et al., 2016). While some patients are homozygous for the EXOSC2-G30V allele, 

EXOSC2-G198D has currently only been reported with EXOSC2-G30V in heterozygotes (Di 

Donato et al., 2016). 

A visiting summer undergraduate student, Jillian Vaught, assisted me with modeling 

these two mutations in yeast. We performed site-directed mutagenesis to generate rrp40-

G58V and rrp40-G226D alleles, which are analogous to human EXOSC2-G30V and 
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EXOSC2-G198D alleles, respectively. These newly created plasmids were used to 

transform rrp4D cells holding [RRP4, URA3] plasmids, as RRP4 is essential for viability. 

Plasmids encoding either mutant allele contained a LEU2 marker, which allowed for 

selection against [RRP4, URA3] plasmids when the cells were plated on media containing 5-

FOA. This plasmid shuffle assay resulted in the sole expression of mutant rrp4 protein. As a 

control for growth, I also transformed rrp4D cells with a [RRP4, LEU2] plasmid. Growth of 

serial dilutions revealed that expression of rrp4-G58V as the sole copy of the essential 

RRP4 protein is lethal, whereas rrp4-G226D expression does not significantly impair cell 

growth (Figure 3.11 A). Western blot analysis performed by my collaborators revealed that 

both mutant variants are expressed in the rrp4D background (data not shown). These results 

indicate that, while both mutant proteins are expressed, only the rrp4-G226D variant is 

functional. I additionally performed a his3-nonstop reporter assay, as previously described, 

to test if the rrp4-G226D allele affected cytoplasmic RNA exosome activity. Cells expressing 

this mutant did not grow on media lacking histidine, indicating that the rrp4-G226D mutation 

does not affect the cytoplasmic function of this complex (Figure 3.11 B). 
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Figure 3.11 Expression of rrp4-G58V as the sole copy of Rrp4 in yeast is lethal but rrp4-

G266D is not. (A) The growth of wild-type or rrp4D cells containing wild-type RRP4 or 

mutant rrp4 plasmid was analyzed by performing serial dilutions, spotting onto selective 

solid medium, and incubation at 30°C. To select against the [RRP4, URA3] plasmid, the 

plasmid shuffle assay was performed by plating serial dilutions onto medium containing 

5.74 mM 5-fluoroorotic acid (5-FOA). In an rrp4D background, sole expression of rrp-

G58V protein is synthetic lethal, while sole expression of rrp-G226D protein only slightly 

impacts growth. (B) Yeast cells expressing rrp4-G226D, in either a wild-type or rrp4D 

background, do not rescue a his3-nonstop reporter, which is rapidly degraded by the 

cytoplasmic RNA exosome, to restore growth on medium lacking histidine. As a control, 

deletion of SKI7, which encodes a key cofactor of the cytoplasmic RNA exosome, rescues 

the his3-nonstop reporter and thus confers growth on medium lacking histidine. The 

growth of rrp4-G226D cells was analyzed by performing serial dilutions, spotting onto 

solid medium containing histidine (His+) or lacking histidine (His-), and incubation at 37°C. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

The results of this study provide insight into the functional impact of amino acid 

substitutions linked to PCH1b. Although a number of PCH1b-associated substitutions alter 

evolutionarily conserved residues present in the EXOSC3/Rrp40 protein, most of these 

mutations do not appear to alter RNA exosome function to a detectable degree in the yeast 

assays employed by myself and collaborators. This was not highly surprising, given the 

essentiality of the RNA exosome and its activities (Mitchell et al., 1997; Allmang et al., 

1999b; Allmang et al., 2000; van Dijk et al., 2007; Chlebowski et al., 2010). This finding also 

indicated that these PCH1b-associated mutations do not cause complete loss of the 

EXOSC3/Rrp40 protein. However, the W195R substitution in Rrp40, corresponding to 

W238R in EXOSC3, causes a reproducible reduction in yeast cell growth, RNA exosome 

function, and Rrp40 protein levels. These results provide insight into the possible 

mechanisms of RNA exosome dysfunction and also suggest that the relative severity of 

such mutations can be assessed using yeast. 

Notably, PCH1b patients that are compound heterozygous for the W238R and G31A 

EXOSC3 mutations have severe disease phenotypes and have not been reported to live 

beyond one year (Wan et al., 2012). Moreover, no PCH1b patient genotypes that are 

homozygous for the EXOSC3-W238R allele have been reported. Given the impact of the 

W195R substitution on Rrp40 protein function, homozygosity for the EXOSC3-W238R allele 

could severely impair the RNA exosome to an extent that is incompatible for life. In addition 

to the EXOSC3 mutations that we have modeled in yeast, dozens of other nonsynonymous 

mutations in this gene have been identified via genome sequencing 

(http://www.ncbi.nlm.nih.gov/SNP/). Therefore, yeast models could be useful for the analysis 

of the functional impact of EXOSC3 substitutions and could provide important information for 

both the diagnosis of PCH1b patients and genetic counseling of heterozygous carriers.  
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PCH1b-Associated Mutations Reside at Possible Interaction Sites with other Proteins 

A comparison of published EXOSC3 and Rrp40 structures revealed that the residues 

that are mutated in PCH1b patients are positioned at interfaces with other subunits of the 

RNA exosome. Moreover, PCH1b-associated substitutions appear to weaken, if not 

completely disrupt, the existing interactions between EXOSC3/Rrp40 and nearby proteins. 

In addition to interfering with subunit binding within the RNA exosome, PCH1b-associated 

mutations could also negatively affect interactions between EXOSC3/Rrp40 and cofactors of 

the RNA exosome. In fact, a recent structural study determined that Mpp6 specifically 

interacts with Rrp40 when attaching to the RNA exosome in yeast (Wasmuth et al., 2017). 

This conserved cofactor, known as MPP6 in humans, delivers transcripts to the nuclear RNA 

exosome that need to be degraded (Schilders et al., 2005; Milligan et al., 2008). 

Interestingly, expression of the EXOSC3-W238R protein appears to be unfavorable for 

interaction with MPP6. Specifically, RNA exosomes containing this mutant subunit do not 

co-immunoprecipitate efficiently with MPP6 (Falk et al., 2017a). This indicates that the 

expression of EXOSC3-W238R protein negatively affects interaction with MPP6 or the 

integrity of the RNA exosome. As mentioned, the RNA exosome has many nuclear and 

cytoplasmic cofactors. However, it is not known if all of them specifically bind to 

EXOSC3/Rrp40. Additional immunoprecipitation assays could be performed to determine 

which other RNA exosome cofactors, if any, bind to wild-type EXOSC3/Rrp40 in comparison 

to PCH1b-associated EXOSC3/rrp40 mutants.  

A recent study found that recessive mutations in EXOSC9 result in PCH-like 

phenotypes (Donkervoort et al., 2017). EXOSC9, or Rrp45 in yeast, is one of the two core 

subunits of the RNA exosome that interacts with the EXOSC3/Rrp40 cap subunit. As 

previously discussed, my collaborators and I hypothesize that the EXOSC3-W238R/rrp40-

W195R mutation weakens the interaction between EXOSC3/Rrp40 and EXOSC9/Rrp45 

(Figure 3.3, Figure 3.6). Fibroblast analysis of a patient expressing mutant EXOSC9-L14P 
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protein revealed reduced levels of wild-type EXOSC3 and EXOSC8 protein (Donkervoort et 

al., 2017). This indicates that mutations in just one subunit of the RNA exosome can lead to 

a general decrease in the stability of the complex. Similar analysis could be performed with 

fibroblasts obtained from PCH1b patients in order to determine if the expression of mutant 

EXOSC3 protein results in a reduction in the expression of other RNA exosome subunits 

and therefore, a possible reduction in the total number of complete RNA exosome 

complexes.  

The PCH1b-Associated rrp40-W195R Mutation Affects Protein Stability and Function  

In comparison to other PCH1b-associated substitutions examined in this study, 

significant alteration of protein stability was only detected for the rrp40-W195R and rrp40-

W195A variants, which both lack the native bulky hydrophobic tryptophan residue at position 

195. Moreover, the rrp40-W195F variant that my collaborators and I have generated 

maintains a bulky hydrophobic residue and did not show defects in growth or stability. This 

indicates that a bulky hydrophobic residue at position 195 of Rrp40 is important for protein 

stability and function.  

Assessing the impact of the rrp40-W195R mutant on the nuclear function of the RNA 

exosome has revealed that this mutation results in elevated levels of known RNA exosome 

target transcripts. Shortly after our work was published, an additional study showed that 

expression of rrp40-W195R results in a significant impairment of pre-rRNA and pre-tRNA 

processing (Gillespie et al., 2017). My initial assessment of the possible effects of PCH1b-

associated mutations on cytoplasmic RNA exosome activity did not reveal any significant 

phenotypes. However, I only evaluated the degradation of a single non-stop transcript. As 

previously stated, the structure of the RNA exosome is identical in both the nucleus and the 

cytoplasm. Therefore, it is unclear if PCH1b-associated mutations could affect the stability or 

function of this complex in one, but not both, of these cellular compartments. However, as 

mentioned in the previous section, EXOSC3-W238R negatively impacts interaction with the 
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nuclear RNA exosome cofactor, MPP6. This indicates that perhaps this PCH1b-associated 

mutation does selectively affect nuclear functions of the RNA exosome machinery. It is also 

possible that PCH1b-associated mutations severely affect the processing activity of the RNA 

exosome, but only moderately affect its ability to degrade.  

The RNA Exosome May Have a Mechanism to Discriminate Mutant Subunits 

The results obtained from analyses of the rrp40-W195R and rrp40-W195A mutant 

proteins yielded a surprising finding that could help further the understanding of RNA 

exosome assembly and quality control (Figure 3.12). In an rrp40D background, protein 

expression and stability of these variants are decreased in comparison to wild-type Rrp40 

protein. However, their expression and stability are further decreased in a strain background 

that already expresses wild-type Rrp40. Additionally, rrp40-W195R does not associate as 

efficiently with the RNA exosome as wild-type Rrp40 (Figure 3.12 A, B). This finding 

suggests a model where cells assemble functional RNA exosomes by distinguishing 

between wild-type Rrp40 and its mutant forms (Figure 3.12 C). 

Several possible mechanisms for RNA exosome assembly could explain how cellular 

machinery determines preference for wild-type Rrp40. Although RNA exosome assembly 

factors have not yet been identified, there could be chaperones which help ensure the 

optimal formation of this ten-subunit complex. In this scenario, the rate of variant subunit 

assembly into the RNA exosome may be decreased relative to the that of wild-type subunits. 

An alternative possibility is that assembly of RNA exosome subunits could be reversible at a 

significant rate (Figure 3.12 C). Defects in interactions with other RNA exosome subunits, 

which appear to be caused by PCH1b-associated mutations, could increase the rate of 

Rrp40 disassembly from the complex. Therefore, in the presence of wild-type Rrp40, a 

variant subunit could be replaced and subsequently degraded by the proteasome.  

Although very little is known about RNA exosome stability and quality control, a study 

of two T. brucei RNA exosome subunits showed that overexpressing tagged versions led to 
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proteasome-dependent turnover of the endogenously expressed subunits (Estévez et al., 

2003). Based on this work and a previous study, which showed that neither subunit was 

detected independently of glycerol density gradient fractions containing the RNA exosome, it 

was proposed that these RNA exosome subunits are subject to rapid degradation when not 

incorporated into the complex (Estévez et al., 2001; Estévez et al., 2003). Another finding 

that supports our model of RNA exosome subunit stoichiometry-dependent turnover comes 

from a recent study that reported two EXOSC8 mutations in PCH1c patients, EXOSC8-A2V 

and EXOSC8-S272T. EXOSC8 knockdown or mutations that reduced steady-state protein 

levels lead to a simultaneous decrease in EXOSC3 protein levels (Boczonadi et al., 2014). 

Consistent with these observations on the T. brucei and human RNA exosomes, our results 

in both yeast and mammalian cells suggest that a conserved mechanism exists to ensure 

formation and/or maintenance of optimal RNA exosome complexes. Further studies will be 

required to confirm and understand how the RNA exosome can apparently discriminate 

between wild-type and mutant subunits. 
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Figure 3.12 Model for RNA exosome assembly and function. (A) When cells express 

wild-type Rrp40 (WT 40, green circle) as the only copy of Rrp40, the RNA exosome 

(yellow Pac-Man) assembles properly to produce a fully functional complex. (B) When 

cells express variant rrp40-W195R (Mut 40, orange square) as the only copy of Rrp40, 

the RNA exosome shows impaired function, as evidenced by a modest decrease in cell 
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growth, altered substrate levels, and subunit instability. (C) When cells express both wild-

type Rrp40 and the rrp40-W195R variant, the mutant is highly unstable and degraded in a 

proteasome-dependent manner. As indicated by the black arrows depicting RNA 

exosome assembly and disassembly, the rrp-W195R protein may be assembled into the 

RNA exosome less efficiently than the wild-type protein. Alternatively, the RNA exosome 

containing the mutant subunit could be disassembled more rapidly than complexes 

containing wild-type Rrp40. Several possible routes for the degradation of the mutant 

subunit exist (grey dashed arrows): (1) The mutant subunit could be directly degraded 

without ever becoming incorporated into the RNA exosome, (2) the mutant subunit could 

be targeted for degradation after the RNA exosome has been disassembled, or (3) the 

entire RNA exosome containing the mutant subunit could be targeted for degradation. 

Further studies will be required to distinguish between these possible mechanisms for 

rapid, proteasome-mediated turnover of the rrp40-W195R variant. 
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Various PCH Subtypes May Have a Molecular Link to One Another 

The laboratory of Dr. Anita Hopper at Ohio State University has modeled a PCH2-

associated mutation, TSEN2-Y309C, in yeast. Yeast expressing the equivalent mutation, 

sen2-F230C, do not exhibit significant growth deficiency in comparison to wild-type cells 

(Dhungel, 2012). As previously mentioned, PCH2 patients do not always exhibit tRNA 

defects (Budde et al., 2008). It is possible that PCH2 mutations tweak activity of the TSEN 

complex such that it can still cleave tRNA, but cannot recognize mRNA, including CBP1 

transcripts. This faulty recognition hypothesis is further supported by the fact that tRNA folds 

into a cloverleaf structure, but CBP1 mRNA does not, indicating that even a wild-type TSEN 

complex detects its targets differently. 

My northern blotting analysis revealed that PCH1b-associated mutations do not 

affect the degradation of cleaved CBP1 transcripts. However, a yeast strain co-expressing 

sen2-F230C and PCH1b-associated rrp40 mutants could be generated to test if the PCH2-

associated mutation interferes with CBP1 mRNA cleavage and if the impacts of such an 

effect could be relieved by RNA exosomes containing PCH1b-associated mutations. 

Northern blotting for cleaved CBP1 transcripts, as previously described, would be repeated 

with RNA isolated from these cells.  

Mutations in RNA Exosome Subunits Result in Different Tissue-Specific Defects 

 A key question is: how do defects in the critically important and ubiquitously 

expressed RNA exosome result in a variety of tissue-specific phenotypes? This is 

particularly intriguing because studies on human fibroblasts and zebrafish embryos have 

revealed that mutations in the RNA exosome cap gene, EXOSC3, affect mostly spinal 

neurons and Purkinje cells but mutations in the RNA exosome core genes, EXOSC8 and 

EXOSC9, also affect oligodendroglia and motor neurons (Wan et al., 2012; Boczonadi et al., 

2014; Donkervoort et al., 2017). Mutations in a different RNA exosome cap gene, EXOSC2, 

cause SHRF, which is not similar to PCH disease despite the functional and structural 
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similarity of EXOSC2 and EXOSC3 subunits (Di Donato et al., 2016). It is possible that 

PCH-associated mutations in EXOSC3 or EXOSC8, as well as disease-related mutations in 

EXOSC2, trigger subtle functional changes that impact specific subsets of RNA exosome 

targets. These RNA subsets could be different for the two PCH subtypes and SHRF. For 

PCH1b, altered RNA exosome substrate targeting could be initially identified by RNA-Seq, 

using RNA isolated from our yeast strains expressing disease-associated rrp40 mutant 

protein. However, subsequent RNA-Seq assessment of altered substrate targeting by the 

RNA exosome would need to be performed with RNA isolated from neuronal cells 

expressing PCH1b-associated EXOSC3 variants. 

The Yeast Model Can Be Used to Assess Mutations in Other RNA Exosome Subunits  

Two human disease-linked EXOSC2 mutations were modeled in yeast, similarly to 

the PCH1b-associated EXOSC3 mutations. The synthetic lethality of the rrp4-G58V allele 

was surprising, since homozygous expression of the orthologous human allele, EXOSC2-

G30V, is not lethal. This highlights the fact that while yeast modeling can provide valuable 

initial insight into uncharacterized molecular mechanisms, modeling analysis must be 

expanded to diploid metazoan cells to provide an accurate reflection of human gene 

expression. However, due to the severity of symptoms resulting from EXOSC2-G30V gene 

expression and the conservation of this residue, its lethality in the yeast model is not totally 

unexpected. My collaborators have recently substituted the Rrp4 G58 residue for an alanine, 

resulting in a viable strain. While this is a less drastic mutation, the creation of this rrp4-

G58A strain will allow for protein expression and stability assays, as well as assessment of 

the various RNA exosome functions that may be affected by a point mutation at this residue.   

Human disease-linked mutations in other RNA exosome subunits could also be 

similarly modeled in yeast. As stated above, EXOSC9 mutations also cause PCH-like 

symptoms (Donkervoort et al., 2017). Therefore, the effects of these mutations could be 

initially tested via the assays described in this study in order to gain initial insight into their 
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molecular implications. In conclusion, the work presented here provides a rapid screening 

approach that exploits yeast to provide insight into characteristics of the RNA exosome that 

could be impacted by mutations associated with PCH1b and other similar disorders.



  96 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CHAPTER 4 

Identifying the Importance of Maintaining TRAMP Complex Assembly 
 
 
 
 
 
 

This chapter is based upon Losh JS*, King AK*, Bakelar J, Taylor L, Loomis J, 

Rosenzweig JA, Johnson SJ, van Hoof A. Interaction between the RNA-dependent 

ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short 

peptides and important for snoRNA processing. Nucleic Acids Research. 2015; 43(3): 

1848-58 (*these authors contributed equally to this work).  This is an Open Access article 

distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, 

and reproduction in any medium, provided the original work is properly cited.  

This chapter also contains material from Losh JS, van Hoof A. Gateway arch to the 

RNA exosome. Cell. 2015; 162: 940-1. License number 4196040308742 has been obtained 

from Elsevier Inc. If a license is for use in a thesis/dissertation, it may be submitted to the 

institution in print or electronic form (elsevier.com/solutions/sciencedirect/support/rights-and-

permissions). 
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INTRODUCTION 

The heterotrimeric Trf4/5 Air1/2 Mtr4 polyadenylation (TRAMP) complex was first 

characterized in S. cerevisiae as a cofactor of the RNA exosome (LaCava et al., 2005). The 

TRAMP complex is thought to aid the RNA exosome in the degradation of many types of 

protein-coding and non-coding transcripts. Trf4/5 are noncanonical poly(A) polymerases, 

Air1/2 are zinc knuckle RNA binding proteins, and Mtr4 is an RNA helicase. While this 

eukaryotic complex is conserved, the duplicated TRF4/TRF5 and AIR1/AIR2 genes arose 

during a whole-genome duplication in an ancestor of S. cerevisiae (Kellis et al., 2004; Byrne 

and Wolfe, 2005). Therefore, most other eukaryotic genomes contain only one ortholog of 

each. It has previously been shown that the human homologs of each subunit interact, 

suggesting that TRAMP complex formation is conserved between fungi and animals (Lubas 

et al., 2011). 

In yeast, Mtr4 is encoded by an essential gene but the other TRAMP complex 

subunits are not individually essential (de la Cruz et al., 1998; Giaever et al., 2002). 

However, a trf4D, trf5D strain is inviable and an air1D, air2D strain is extremely slow growing 

(Castaño et al., 1996; Inoue et al., 2000). These growth phenotypes suggest that all three 

subunits of the TRAMP complex perform critical functions. Yet, the importance of their 

assembly into this complex is not currently understood, especially since both TRAMP 

complex-dependent and –independent activities have been attributed to each subunit (de la 

Cruz et al., 1998; Inoue et al., 2000; Vaňáčová et al., 2005; Houseley and Tollervey, 2006; 

Bernstein et al., 2008; Gellon et al., 2008; San Paolo et al., 2009; Jackson et al., 2010; Weir 

et al., 2010; Fasken et al., 2011; Jia et al., 2011; Holub et al., 2012). 

Studying the TRAMP complex-dependent activities of each subunit, as well as the 

known interaction sites between the subunits, have allowed me to develop an initial model of 

the TRAMP complex conformation and function (Figure 4.1). First, the second, third, and 

fourth zinc knuckles of the Air1/2 subunit bind an RNA that needs to be degraded by the 
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RNA exosome. This subunit must hold the RNA in place, as Trf4/5 do not possess RNA-

binding capabilities. The Trf4/5 subunit then begins to add a poly(A) tail to the 3’ end of the 

substrate. This growing poly(A) tail is fed into the substrate binding site of the Mtr4 helical 

core. Mtr4 then unwinds the polyadenylated RNA into a linear structure that is more 

conducive for being loaded into the central channel of the RNA exosome, where it can be 

degraded in the 3’ to 5’ direction. 
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Figure 4.1 Model for TRAMP complex conformation and function. (1) The Air1/2 subunit 

(purple) has previously been shown to bind to the central domain of the Trf4/5 subunit 

(Holub et al., 2012) (blue). The work presented in this chapter has identified a region of 

the unstructured Trf4/5 N-terminus that interacts directly with Mtr4 (green). (2) Several 

zinc knuckles (stars) of Air1/2 are able to bind an RNA. This substrate is likely positioned 

so that it comes into contact with the catalytic domain of Trf4/5. (3) The Trf4/5 subunit 

adds a short poly(A) tail to the substrate. Due to direct interaction between Trf4/5 and 

Mtr4, as well as the predilection that Mtr4 has for poly(A) sequences, the newly 

polyadenylated substrate is then able to be inserted into the Mtr4 helical domain. (4) Mtr4 

unwinds the substrate into a more linear formation so that it can be more easily threaded 

into the central channel of the RNA exosome, where it will be degraded. 
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Adding nucleotides to the 3’ end of an RNA to facilitate the removal of nucleotides in 

the 3’ to 5’ direction is somewhat counterintuitive. However, several roles of TRAMP 

complex-mediated polyadenylation in the RNA exosome-dependent degradation pathway 

have been proposed. First, the catalytic subunit of the RNA exosome, Rrp44, is accessed 

through a narrow central channel formed by the subunits of the RNA exosome cap and core 

ring (Bonneau et al., 2009; Malet et al., 2010). Therefore, RNA exosome-dependent 

degradation is thought to require a long unstructured region, which may be provided by 

TRAMP complex-mediated polyadenylation. Under this hypothesis, the unstructured poly(A) 

tail would have to be a long enough to traverse the channel. Specifically, this would be 

about thirty nucleotides in length. Long 3’ tails have been detected in RNA exosome 

mutants and the TRAMP complex can synthesize long poly(A) tails in vitro (LaCava et al., 

2005; Vaňáčová et al., 2005; Allmang et al., 1999b; van Hoof et al., 2000a). However, a 

typical 3’ tail synthesized by the TRAMP complex is an average length of four nucleotides 

and, thus, not long enough to completely pass through the central channel of the RNA 

exosome (Wlotzka et al., 2011; Jia et al., 2011). An indication that long unstructured 3’ tails 

are not required for RNA exosome-mediated degradation comes from the observation that 

the RNA exosome appears to be fully capable of degrading cytoplasmic substrates 

independently of a poly(A) polymerase. This includes substrates that contain very stable 

secondary structures like G-quadruplexes (van Hoof et al., 2002; Meaux and van Hoof, 

2006).  

An alternative hypothesis is that tails synthesized by Trf4/5 may be more important 

for targeting substrates to Mtr4, rather than for insertion into RNA exosome. Interestingly, 

Mtr4 preferentially interacts with polyadenylated RNA (Bernstein et al., 2010; Jia et al., 

2012; Taylor et al., 2014). Under both of these hypotheses, an RNA would initially interact 

with the poly(A) polymerase subunit of the TRAMP complex before being handed off to the 

RNA exosome.  



  101 

However, a third possibility is that polyadenylation by Trf4/5 occurs in response to a 

block or stall during normal RNA processing by the RNA exosome. Physical interaction 

between the RNA exosome, Mtr4, and Trf4/5 may facilitate the polyadenylation of a product 

destined for degradation. This polyadenylation may enhance subsequent re-engagement of 

the RNA exosome and Mtr4 machinery. TRAMP complex-dependent tails are added at 

multiple positions, including within the region corresponding to the mature RNA, consistent 

with the idea that the TRAMP complex can act on partially degraded RNA (Schneider et al., 

2012). Yet while these various hypotheses address the role of the poly(A) tail, they do not 

readily explain why a helicase (Mtr4) and a poly(A) polymerase (Trf4/5) assemble into a 

complex. 

Previously Known Subunit Interaction Sites Within the TRAMP Complex 

 The first TRAMP complex subunit interaction to be identified was that of the central 

domain of Trf4 with the fifth zinc knuckle of Air1/2, as well as with the linker region between 

the fourth and fifth zinc knuckles (Holub et al., 2012). Due to sequence conservation, the 

central domain of Trf5 is highly similar to Trf4. Therefore, Trf5 likely interacts with Air1 in the 

same manner. Yet while Trf4 interacts with both Air1/2, only a Trf5-Air1 interaction has been 

exhibited (Wyers et al., 2005; Houseley and Tollervey, 2006). This results in three possible 

conformations of the TRAMP complex: Trf4-Air1-Mtr4, Trf4-Air2-Mtr4, and Trf5-Air1-Mtr4 

(Figure 1.3 B). Human orthologs of Trf4/5 and Air1/2 interact in vitro, but the specific binding 

sites have not been assessed (Sudo et al., 2016). However, the interactions are likely 

similar to those identified in yeast due to domain conservation.   

 The termini of Air2 were first shown to be important for maintaining an interaction 

with Mtr4 in vitro (Holub et al., 2012). My collaborators in the laboratory of Dr. Sean Johnson 

at Utah State University tested the binding of the first twenty-nine residues of the Air2 N-

terminus to Mtr4 via fluorescence anisotropy. In addition to wild-type Mtr4, they also 

included Mtr4 variants lacking either the N-terminus or its characteristic arch since those two 
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regions are known to be important for interactions with other proteins or substrates. The N-

terminus of Air2 bound all three Mtr4 variants with similar affinity (Kd ~6.9 µM with Mtr4WT, Kd 

~6.6 µM with Mtr4D74, Kd ~7.3 µM with Mtr4archless) (Losh, King et al., 2015). Subsequent 

structural analysis has further indicated that the N-terminus of Air1/2 can directly contact 

Mtr4 (Falk et al., 2014). Human orthologs of Mtr4 and Air1/2 were recently shown to bind in 

vitro, although this study did not tease apart the specific sites of interaction (Sudo et al., 

2016). 

Initial Identification of the Mtr4-Trf4/5 Interaction Site 

 The TRAMP complex was initially identified in a yeast two-hybrid screen for proteins 

that are able to interact with Mtr4 (LaCava et al., 2005). All of the Trf5 clones identified in 

this screen included residues 53-199, which suggested that this part of the protein contains 

a binding site for Mtr4. Although this region of Trf5 is largely disordered, multiple sequence 

alignment revealed that Trf5 residues 98-117 are significantly conserved. Moreover, this 

analysis identified analogous Trf4 residues 115-134 (Losh, King et al., 2015) (Figure 4.2). 

Since small, conserved motifs in largely disordered regions are often protein-protein 

interaction sites, my collaborators and I hypothesized that this may be the major, if not the 

only, site of interaction with Mtr4. The initial identification of this conserved putative Mtr4-

Trf4/5 interaction site was particularly intriguing, as these are the two enzymatic subunits of 

the TRAMP complex. 

 My laboratory colleague, Dr. Alejandra Klauer King, began a deeper analysis of this 

site by starting with the initially identified region of Trf5 residues 53-199 and generating 

further truncations. She performed multiple truncations from both ends of this region and 

tested for a maintained interaction with Mtr4 via yeast two-hybrid analysis. Her results were 

consistent with our hypothesis that Trf5 residues 98-117 are a major site of Mtr4 interaction 

(Losh, King et al., 2015).  
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Figure 4.2 Protein sequence alignment of fungal Trf4/5 orthologs. This alignment was 

generated from the Trf4/5 protein sequences of twenty-five ascomycete species. While 

the genomes of some species, including S. cerevisiae, contain two paralogs of this 

protein, others contain only one form. There is significant sequence conservation of the 

putative site of Mtr4 interaction, as evidenced by the presence of identical residues (red) 

and similar residues (blue). This short region of about 20 residues is located with the N-

terminus. This is the only N-terminal region that is significantly conserved. The work 

presented in this chapter describes the identification and characterization of the S. 

cerevisiae Trf4/5 sites that are necessary for direct interaction with Mtr4 (bold). 

Specifically, these are Trf5 residues 98-117 and Trf4 residues 115-134. 
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 Dr. King also found that residues 98-117 interact with both wild-type Mtr4 and an 

Mtr4 variant missing the characteristic arch domain. To ensure the presence of a direct 

interaction, Dr. Sean Johnson’s lab performed fluorescence anisotropy with the Trf5 20-mer 

region and Mtr4 variants, as previously described in this chapter for the assessment of the 

Mtr4-Air1/2 interaction. The Trf5 20-mer bound to all three Mtr4 variants with similar affinity 

(Kd ~10.7 µM with Mtr4WT, Kd ~11.3 µM with Mtr4D74, Kd ~6.0 µM with Mtr4archless). 

Interestingly, both the yeast two-hybrid and fluorescence anisotropy assays indicated that 

the interaction affinity between the Trf5 20-mer and Mtr4 increases upon the deletion of the 

Mtr4 arch. Although not confirmed, it is possible that removal of the arch results in a 

conformational change of the Mtr4 core so that it is better positioned for this interaction. The 

results of these assays support the conclusion that this 20-mer region of Trf5 binds to the 

Mtr4 core (Losh, King et al., 2015).  

 To determine if Trf5 residues 98-117 are required or simply sufficient for interaction 

with Mtr4, Dr. King assessed the binding of a Trf5 variant lacking residues 98-117 (trf5D98-

117) with Mtr4, via yeast two-hybrid. This construct failed to interact with Mtr4. For a more 

definitive analysis, Dr. King generated TAP-tagged versions of full-length Trf5 and trf5D98-

117 and expressed them in yeast from their endogenous promoters. The TAP-tagged 

proteins were purified and tested for co-purification with endogenous Mtr4 by western 

blotting, using antibodies raised against Mtr4. Endogenous Mtr4 was readily detectable in 

the purification of full-length Trf5, but not in the purification of trf5D98-117 (Losh, King et al., 

2015). From these results, we conclude that residues 98-117 are important for interaction 

with Mtr4 and moreover, preventing this interaction impairs formation of the TRAMP 

complex in vivo. 

 Dr. King then tested if trf5D98-117 protein could function as the sole source of Trf4/5. 

Surprisingly, the trf5D98-117 allele fully complemented the lethality of a trf4D, trf5D strain 
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when performing a plasmid shuffle assay (Losh, King et al., 2015). An additional member of 

my laboratory, Minseon Kim, created a strain expressing the trf4D115-134 allele and found 

that it can also complement trf4D, trf5D synthetic lethality. We had previously determined this 

region to be the corresponding site of interaction with Mtr4 on Trf4 (Losh, King et al., 2015) 

(Figure 4.2). To maintain control over experimental designs, all the generated alleles that 

are discussed in the following sections of this chapter are expressed in a trf4D, trf5D 

background, unless otherwise stated. 

Based on these initial results, we concluded that maintaining a stable association 

with Mtr4 is not needed for the essential function of Trf4/5 or for cellular viability. However, 

these assays are not able to reveal effects on TRAMP complex function that may be caused 

by disrupting the direct interaction between its two catalytic subunits. Moreover, these 

results do not reveal if abolishing the Mtr4-Trf4/5 interaction completely disrupts the 

formation and/or activity of the TRAMP complex or if there are other protein-protein 

interactions that help it maintain at least some compositional integrity. Therefore, I have 

aimed to characterize the functional importance of interactions between TRAMP complex 

subunits in order to further elucidate the functions and possible essentiality of the TRAMP 

complex itself. 

RESULTS 

Disrupting the Mtr4-Trf4/5 Interaction Results in the Accumulation of RNA Exosome 

Substrates 

Upon generating the trf4D, trf5D [trf5D98-117] strain, which has a disrupted Mtr4-Trf5 

interaction, I first tested whether impairing TRAMP complex formation affects specific 

TRAMP complex functions. As their name implies, cryptic unstable transcripts (CUTs) are 

not readily detectible in wild-type cells, but they accumulate in mutants with impaired 

TRAMP complex or RNA exosome activity (Wyers et al., 2005). These complexes are 

believed to be responsible for the polyadenylation and subsequent degradation of CUTs, 
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respectively. I measured the accumulation of a specific CUT, NBL001c, via qRT-PCR since 

these RNA species are often difficult to detect with northern blotting. I used sequence-

specific primers during the reverse transcription step that would allow for the detection of 

defects in either polyadenylation or subsequent degradation. As expected, CUT levels 

increased when eliminating the exoribonuclease activity of the catalytic subunit of the RNA 

exosome, Rrp44, or the additional nuclear 3’-5’ ribonuclease, Rrp6 (rrp44-exo- and rrp6D 

strains, respectively). In contrast, a strain lacking the endoribonuclease activity of Rrp44 

(rrp44-endo-) did not exhibit increased CUT accumulation (Figure 4.3). Similarly, I detected 

CUT accumulation in a trf4D, trf5D strain complemented with a plasmid that allows for the 

expression of full-length Trf5. This strain is lacking Trf4, which has been previously shown to 

be important for preventing CUT accumulation (Wyers et al., 2005; Houseley et al., 2007; 

Fasken et al., 2011). Notably, the CUT steady-state levels in the trf4D, trf5D strain 

complemented with the trf5D98-117 plasmid were similar to those measured in the trf4D, 

trf5D strain complemented with the TRF5 plasmid (Figure 4.3). Therefore, impairing the 

Mtr4-Trf5 interaction may not affect the steady-state level of this transcript.  
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Figure 4.3 Disrupting stable TRAMP complex formation does not affect the degradation of 

a cryptic unstable transcript. After isolating RNA from these yeast strains, qRT-PCR 

analysis was used to determine the level of cryptic unstable transcripts (CUTs) in 

biological replicates. The level of CUTs detected in each strain is plotted relative to the 

level detected in a wild-type strain, after normalizing to a control ACT1 transcript by the 

DDCt method. RNA samples isolated from rrp6D and rrp44-exo- strains were included as 

positive controls for CUT accumulation. RNA isolated from the rrp44-endo- strain was 

included as a negative control for CUT accumulation. While both trf4D, trf5D strains lack 

Trf4 expression, cells expressing trf5D98-117 additionally lack the Mtr4-Trf5 interaction. 

However, the CUT levels are similar between the TRF5 and trf5D98-117 strains.  
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Mutations in subunits of the TRAMP complex or the RNA exosome have also been 

shown to result in 3’ extended, polyadenylated snoRNA species. Thus, I next examined the 

effect of trf5D98-117 protein expression on the accumulation of the two main classes of 

snoRNA molecules. Specifically, I measured the accumulation of snR128 and snR33, which 

are representatives of C/D box snoRNA and H/ACA box snoRNA, respectively. These 

species are detected as smears, instead of discrete products, which is indicative of their 

polyadenylation. Northern blotting allows for the visualization of these variously sized 

polyadenylated products, whereas qRT-PCR does not.  

As previously reported, 3’ extended species accumulate in rrp44-exo- and rrp6D 

strains, which both lack 3’-5’ exoribonuclease activity (Allmang et al., 1999b; van Hoof et al., 

2000a; Schneider et al., 2009; Klauer and van Hoof, 2013). I did not detect significant 

accumulation of these snoRNA species in an rrp44-endo- strain, which lacks Rrp44 

endoribonuclease activity (Figure 4.4 A). Polyadenylated snoRNA has also been reported in 

trf4 mutants (Grzechnik and Kufel, 2008). Consistent with this, I detected accumulation of 

these species in a trf4D, trf5D strain complemented with a wild-type TRF5 plasmid. However, 

the level of accumulation was lower than that of the rrp44-exo- and rrp6D strains. 

Importantly, the trf4D, trf5D strain complemented with the trf5D98-117 plasmid reproducibly 

accumulated more 3’ extended snoRNA than the trf4D, trf5D strain complemented with the 

wild-type TRF5 plasmid. As similarly described for RNA exosome mutants, the steady-state 

level of mature snoRNA was not significantly increased in the trf5D98-117 strain when 

compared to the other strains (Allmang et al., 1999b; van Hoof et al., 2000a) (Figure 4.4 A). 

This was expected, as mature snoRNA is not a substrate for RNA exosome-mediated 

processing. Moreover, it may not accumulate in significant levels if the pathway for RNA 

exosome-mediated degradation is inhibited. Thus, impairing the Mtr4-Trf5 interaction 
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specifically interferes with the normal processing or degradation of the 3’ extended forms of 

these snoRNA species. 

I additionally performed northern blotting analysis with trf4D, trf5D strains 

complemented with a wild-type TRF4 plasmid or a trf4D115-134 plasmid to assess if there is 

also an effect on RNA degradation when disrupting the Mtr4-Trf4 interaction (Figure 4.4 B). 

Similar to trf5D98-117 cells, trf4D115-134 cells significantly accumulate polyadenylated 

snoRNA. Although previously tested, I additionally included RNA from TRF5 or trf5D98-117 

strains. Both Trf5 strains accumulated more extended snoRNA than both Trf4 strains. 

However, this increased accumulation of 3’ extended snoRNA in the TRF5 and trf5D98-117 

strains may be partially due to the deletion of TRF4, which has been reported as the more 

highly expressed paralog in a wild-type yeast background (Ghaemmaghami et al., 2003; 

Kulak et al., 2014). It is also possible that TRAMP complexes containing Trf5 are more likely 

to target the specific snoRNA species that I probed for. However, a previous study of Trf4/5 

substrate specificity indicated that while both proteins can polyadenylate 3’ extended 

snoRNA for RNA exosome-mediated degradation, Trf4 is more likely to target these species 

(San Paolo et al., 2009).  

I additionally included a trf4D, trf5D strain complemented with both TRF4 and TRF5 

plasmids as a control for plasmid expression. As expected, the presence of both wild-type 

Trf4/5 in this strain lessened the severity of 3’ extended snoRNA accumulation. Finally, I 

included a trf4D, trf5D strain complemented with both trf4D115-134 and trf5D98-117 

plasmids. This strain and its phenotypes will be discussed later in this chapter. 
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Figure 4.4 Disrupting stable TRAMP complex formation results in increased levels of 3’ 

extended snoRNA species. Probes specific for the 3’ extended and mature forms of 

snoRNA were used for northern blotting. 3’ extended snoRNA is detected as a smear, 

which indicates its polyadenylation. These snoRNA species are representatives of the two 

main classes of snoRNA, C/D box (snR128) and H/ACA box (snR33). The 

ribonucleoprotein, signal recognition particle (SRP), was included as a loading control. (A) 

RNA isolated from rrp6D and rrp44-exo- cells was included as a positive control for 

polyadenylated snoRNA accumulation, while RNA isolated from rrp44-endo- cells was 

included as a negative control. While both trf4D, trf5D strains lack Trf4 protein expression, 

cells expressing trf5D98-117 additionally lack the Mtr4-Trf5 interaction. Increased levels of 

3’ extended snoRNA in the trf5D98-117 strain indicate that the Mtr4-Trf5 interaction is 

important for the clearance of these species. Steady-state levels of mature snoRNA are 
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not significantly different between strains. (B) Whereas retaining wild-type Trf4 expression 

in a trf4D, trf5D strain does not result in the accumulation of polyadenylated snoRNA, 

disrupting the Mtr4-Trf4 interaction does, as is similarly seen when disrupting the Mtr4-

Trf5 interaction. Moreover, expressing both variants of Trf4/5 that are unable to interact 

with Mtr4 results in similar levels of accumulation. A trf4D, trf5D strain complemented with 

both wild-type TRF4 and TRF5 plasmids was included as a control for expression. 
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The Mtr4-Trf4/5 Interaction is Specifically Important for snoRNA Biogenesis 

I analyzed RNA from trf4D, trf5D cells complemented with either TRF5 or trf5D98-117 

plasmids for a more global analysis of the implications resulting from a disrupted Mtr4-Trf4/5 

interaction. Transcriptome sequencing of poly(A)+ RNA was performed on duplicate RNA 

samples from each strain. This analysis revealed that the set of most significantly affected 

genes (false discovery rate (FDR) = 0.01) included seventy-one that were more abundant in 

the trf5D98-117 mutant and only five that were less abundant. The set of overexpressed 

genes was predominated by known TRAMP complex substrates, including forty-three 

snoRNA genes (Table 4.1). Specifically, this set was comprised of genes encoding for thirty-

two C/D box snoRNA species, eighteen H/ACA box snoRNA species, seven rRNA species, 

five other ncRNA species, five transposons, two mRNA transcripts, one dubious ORF, and 

one other snoRNA. This additional snoRNA, which has a role in pre-rRNA cleavage during 

5.8S rRNA processing, is not categorized as a C/D box or H/ACA box species (Chu et al., 

1994).  
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Table 4.1 Genes identified by RNA-Seq as overexpressed in cells lacking the 
Mtr4-Tr5 interaction 

Gene Fold-change 
(log2) P-Value FDR Comments 

RDN58 4.3 4.5E-126 1.6E-122 rRNA 
YLR154W-E 4.1 6.7E-107 1.4E-103 overlaps with rRNA 

SCR1 4.6 8.6E-056 1.3E-52 RNA component of SRP 
snR128 2.3 2.7E-043 3.3E-40 C/D box snoRNA 
RDN5 2.5 1.0E-040 9.2E-38 rRNA 

YLR154W-F 3.0 8.6E-037 6.5E-34 overlaps with rRNA 
snR67 5.1 6.1E-028 4.1E-25 C/D box snoRNA 
RDN25 2.0 9.7E-028 5.4E-25 rRNA 
snR40 4.2 7.9E-025 4.0E-22 C/D box snoRNA 
snR6 5.1 8.1E-024 3.8E-21 U6 snRNA 

snR76 3.9 4.6E-020 2.0E-17 C/D box snoRNA 
RDN18 1.9 1.6E-019 6.3E-17 rRNA 
snR87 2.9 1.2E-016 4.1E-14 C/D box snoRNA 
snR66 2.4 6.5E-016 2.1E-13 C/D box snoRNA 
snR18 4.1 6.6E-016 2.1E-13 C/D box snoRNA 
snR24 4.6 1.6E-012 4.9E-10 C/D box snoRNA 
snR34 1.5 8.7E-012 2.4E-09 H/ACA box snoRNA 
snR60 1.7 8.9E-012 2.4E-09 C/D box snoRNA 
EFM3 1.5 9.5E-012 2.4E-09 just 3' of H/ACA box snR3 snoRNA 
snR71 2.6 9.6E-012 2.4E-09 C/D box snoRNA 

snR17b 3.0 1.6E-011 3.9E-09 U3 snoRNA 
YGR161C-D 1.2 5.9E-011 1.4E-08 TY1 transposon 

snR3 1.5 2.7E-010 6.1E-08 H/ACA box snoRNA 
snR37 1.2 4.3E-010 9.2E-08 H/ACA box snoRNA 
snR77 1.4 1.2E-009 2.4E-07 C/D box snoRNA 
snR57 3.1 2.3E-009 4.7E-07 C/D box snoRNA 
snR56 1.1 6.3E-009 1.2E-06 C/D box snoRNA 
snR68 3.0 6.4E-009 1.2E-06 C/D box snoRNA 
snR52 3.6 7.1E-009 1.3E-06 C/D box snoRNA 

YJL047C-A 1.6 9.5E-009 1.7E-06 overlaps with C/D box snR60 snoRNA 
snR73 4.2 1.1E-008 2.0E-06 C/D box snoRNA 
snR64 1.4 1.4E-008 2.3E-06 C/D box snoRNA 
snR61 2.5 1.8E-008 2.9E-06 C/D box snoRNA 
snR47 1.8 4.9E-008 7.6E-06 C/D box snoRNA 
snR45 1.7 5.6E-008 8.5E-06 C/D box snoRNA 
snR10 0.9 6.3E-008 9.2E-06 H/ACA box snoRNA 
RPR1 4.1 1.1E-007 1.5E-05 RNA component of RNase P 
snR85 3.3 1.2E-007 1.7E-05 H/ACA box snoRNA 
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YOL157C 2.0 1.3E-007 1.8E-05 encodes isomaltase enzyme 
NME1 3.7 3.5E-007 4.7E-05 RNA component of RNase MRP 
snR13 1.3 4.1E-007 5.3E-05 C/D box snoRNA 
snR46 1.1 5.6E-007 7.2E-05 H/ACA box snoRNA 
snR82 1.3 6.0E-007 7.5E-05 H/ACA box snoRNA 
snR48 4.5 8.4E-007 1.0E-04 C/D box snoRNA 
snR32 0.9 1.9E-006 2.2E-04 H/ACA box snoRNA 
snR74 4.5 2.3E-006 2.7E-04 C/D box snoRNA 
snR35 1.2 2.8E-006 3.2E-04 H/ACA box snoRNA 

YOR040W 1.5 3.6E-006 4.1E-04 just 3’ of H/ACA box snR9 snoRNA 
snR9 1.1 6.4E-006 7.0E-04 H/ACA box snoRNA 
LIN1 0.8 1.1E-005 1.2E-03 just 3' of C/D box snR71 snoRNA 

RDN37 1.9 1.4E-005 1.5E-03 rRNA 
snR51 1.4 1.6E-005 1.7E-03 C/D box snoRNA 

YOR343W-A 3.1 1.8E-005 1.8E-03 TY2 transposon 
PRP31 1.4 1.8E-005 1.8E-03 U4/U6-U5 snRNP complex component 
snR54 3.1 2.5E-005 2.4E-03 C/D box snoRNA 
snR78 3.9 2.5E-005 2.4E-03 C/D box snoRNA 
BDF2 0.8 2.8E-005 2.6E-03 involved in transcription initiation 
snR42 1.0 2.8E-005 2.6E-03 H/ACA box snoRNA 
snR80 1.3 2.9E-005 2.7E-03 H/ACA box snoRNA 
MMS2 1.2 3.0E-005 2.7E-03 just 3' of H/ACA box snR10 snoRNA  
POP6 1.1 3.0E-005 2.7E-03 just 3' of H/ACA box snR46 snoRNA 
snR4 0.8 4.5E-005 3.9E-03 C/D box snoRNA 

snR19 2.8 4.6E-005 4.0E-03 U1 snRNA 
YIL082W-A 8.5 5.7E-005 4.8E-03 TY3 transposon 

snR69 3.1 5.8E-005 4.8E-03 C/D box snoRNA 
snR8 1.2 1.0E-004 0.008 H/ACA box snoRNA 

YPL222C-A 6.3 1.1E-004 0.008 dubious ORF 
YGR161C-C 8.2 1.1E-004 0.008 TY1 transposon 
YDR316W-A 8.2 1.1E-004 0.008 TY1 transposon 

snR58 2.5 1.1E-004 0.008 C/D box snoRNA 
ODC2 0.8 1.2E-004 0.009 just 3' of H/ACA box snR35 snoRNA  
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Table 4.1 Genes identified by RNA-Seq as overexpressed in cells lacking the Mtr4-Tr5 

interaction. RNA was isolated from biological replicates of trf4D, trf5D cells complemented 

with either TRF5 or trf5D98-117 plasmids. Samples were enriched for poly(A)+ RNA, 

which was then converted into a sequencing library. Mapping reads to the yeast genome 

revealed seventy-one genes that are overexpressed in the trf5D98-117 strain, in 

comparison to TRF5 cells. This set is predominated by snoRNA genes. 
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Mature snoRNA species are processed from primary transcripts in a variety of ways. 

The seventy-one RNA-Seq hits listed in Table 4.1 include examples of monocistronically 

encoded snoRNA transcripts that are either only 3’ processed (snR8; Figure 4.5 A) or are 

additionally processed at their 5’ end by the nuclear Rat1 exoribonuclease and Rnt1 

endoribonuclease (snR87; Figure 4.5 B). As opposed to the RNA exosome-dependent 

pathway of 3’-5’ RNA degradation, these two ribonucleases are part of the 5’-3’ RNA 

degradation pathway. A snoRNA that is processed from a spliced intron is also included in 

the RNA-Seq hits (snR18; Figure 4.5 C). For this, and other intron-encoded snoRNA 

species, there was a clear increase in reads that mapped to the snoRNA and the part of the 

intron found at its 3’ end. There was no effect on the flanking protein-coding exons. 

Similarly, other mRNA genes (RPL11A; Figure 4.5 E) were not affected. Finally, the RNA-

Seq hits contain an example of seven snoRNA transcripts that are transcribed as one 

polycistronic precursor (snR72-78; Figure 4.5 D). For each of these transcripts, there is a 

clear increase in the read density for both the snoRNA and the region just 3’ of it. Strikingly, 

among the other genes that were detected as overexpressed, there are seven genes that 

are located just 3’ to one of the overexpressed snoRNA genes (Table 4.1). The inclusion of 

these genes in the RNA-Seq hits is likely due to the presence of 3’ extended polyadenylated 

snoRNA. All of these changes were clearly reproducible in the duplicate transcriptome 

sequencing samples (Figure 4.5 F). Thus, no particular type of snoRNA appears to be 

overrepresented among the RNA-Seq hits. Therefore, disrupting the Mtr4-Trf5 interaction 

appears to have a general negative effect on snoRNA biogenesis. 
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Figure 4.5 Disrupting stable TRAMP complex formation results in a variety of snoRNA 

processing defects. The set of genes that are overexpressed in cells lacking the Mtr4-Trf5 

interaction include examples of snoRNA species that are processed in different ways from 

primary transcripts. A comparison of differential expression between both strains is 

provided for (A) snR8, a monocistronically encoded H/ACA box snoRNA that is not 5’ 

processed, (B) snR87, a monocistronically encoded C/D box snoRNA that is 5’ processed 
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by Rnt1 and Rat1, (C) snR18, a C/D box snoRNA that is processed from the intron spliced 

out of the EFB1 pre-mRNA, and (D) snR72-78, a cluster of polycistronically encoded C/D 

box snoRNA species that are separated from each other by Rnt1 and then further 5’ and 

3’ processed. Peaks covering the first fifty base pairs of snR87, snR18, and snR72-78 are 

due to their 5’ monophosphate ends becoming ligated to linkers due to library preparation, 

combined with a fifty-nucleotide sequencing read length. (E) RPL11A, a representative 

mRNA, is not affected by a disruption of the Mtr4-Trf5 interaction. (F) This analysis is 

highly reproducible from duplicate cultures of TRF5 and trf5D98-117 strains. The region 

showing snR18 snoRNA and EFB1 mRNA is provided as an example of this 

reproducibility. 
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Although twenty-three other snoRNA genes were not in the list of hits at 0.01 FDR, 

most of these were significantly up-regulated at reduced stringency (P-values 0.004 to 0.05; 

data not shown). Moreover, this group also was not enriched for a particular kind of 

snoRNA. This set included snR33 (P < 0.004), which I had arbitrarily chosen to analyze via 

northern blotting (Figure 4.4).  

The RNA-Seq hits included other ncRNA loci that have previously been shown to be 

substrates of the TRAMP complex and/or the RNA exosome. These include rRNA, U1 

snRNA, and U6 snRNA, as well as the RNA subunits of the signal recognition particle, 

RNase P and RNase MRP (Allmang et al., 1999b; van Hoof et al., 2000a; San Paolo et al., 

2009; Wlotzka et al., 2011). Additionally, the RNA-Seq hits include RNA transcribed by RNA 

polymerase I, II, and III. Overall, RNA analysis of trf5D98-117 cells indicates that many 

polyadenylated TRAMP complex substrates accumulate if the Mtr4-Trf5 interaction is 

disrupted. Therefore, these poly(A)+ transcriptome sequencing data confirmed and extended 

my northern blotting analysis.  

The Mtr4-Trf4/5 Interaction is Not Required for Viability 

Published assays for this project included trf4D, trf5D strains complemented with a 

wild-type TRF5 plasmid or a trf5D98-117 plasmid, but do not include strains complemented 

with plasmids allowing for the expression of wild-type or mutant forms of Trf4 (Losh, King et 

al., 2015; Figure 4.4 A). Since wild-type cells express both Trf4 and Trf5, and therefore 

multiple compositions of the TRAMP complex, I created a trf4D, trf5D strain that contains 

both trf4D115-134 and trf5D98-117 plasmids. Therefore, this strain expresses all 

components of the TRAMP complex, but the Mtr4-Trf4/5 interaction is disrupted.  

When generating this strain, plasmids allowing for expression of trf4D115-134 or 

trf5D98-117 mutant protein also encoded selectable URA3 or LEU2 markers, respectively. I 

first tested the growth of this strain via serial dilutions on solid medium lacking both uracil 
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and leucine. Wild-type cells, as well as strains expressing only one of the Trf4/5 proteins, 

were used as controls. These strains were transformed with empty vector URA3 or LEU2 

plasmids, as needed. This assay revealed that the strain expressing both trf4D115-134 and 

trf5D98-117 proteins grew similarly to a strain expressing just trf4D115-134, but better than a 

strain expressing only trf5D98-117 (Figure 4.6). The latter result could be due to the fact 

that the trf4D115-134, trf5D98-117 strain expresses both proteins and even though they are 

mutant variants, this improves growth in comparison to cells expressing only trf5D98-117 

protein. As previously mentioned, Trf4 and Trf5 appear to have different preferences for 

specific targets, so expression of both proteins likely promotes the efficient targeting of all 

TRAMP complex substrates (San Paolo et al., 2009). Moreover, Trf5 is believed to be 

expressed at a lower level than Trf4 in wild-type yeast (Ghaemmaghami et al., 2003; Kulak 

et al., 2014). Therefore, the growth deficiency of trf4D, trf5D cells expressing only the 

trf5D98-117 protein may be more related to the loss of Trf4 protein expression than to the 

loss of interaction with Mtr4. This possibility was previously introduced in the context of 

Figure 4.4. 
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Figure 4.6 Disrupting stable TRAMP complex formation does not significantly impair yeast 

cell growth. The growth of trf4D, trf5D cells expressing only wild-type or mutant forms of 

one Trf4/5 protein was analyzed by performing serial dilutions, spotting onto solid 

complete yeast medium lacking uracil and leucine, and incubation at the indicated 

temperatures. A trf4D, trf5D strain complemented with plasmids that allow for the 

expression of both mutant forms of Trf4/5 that cannot interact with Mtr4 was included as a 

more complete representation of what results when the interaction between these TRAMP 

complex subunits is disrupted. A wild-type strain complemented with empty vectors for 

growth on this selective medium (EV) was included as a positive control for growth. 
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I performed western blotting to ensure that the Trf4/5 variants were expressed. When 

generating the [trf4D115-134, URA3] and [trf5D98-117, LEU2] plasmids, I included the 

endogenous TRF4 or TRF5 gene promoter, respectively. Additionally, I added TAP tags to 

these Trf4/5 mutants. In addition to wild-type cells, I included trf4D, trf5D strains expressing 

one or both wild-type or mutant variants of Trf4/5. Western blotting confirmed the expression 

of all TAP-tagged Trf4/5 constructs (Figure 4.7). Wild-type and mutant Trf5 bands were 

slightly higher than those of Trf4 constructs, which was expected due to the known lengths 

of the proteins. Levels of Trf5-TAP protein decreased significantly when both wild-type 

Trf4/5 constructs were expressed, supporting the earlier findings that Trf4 is more highly 

expressed (Ghaemmaghami et al., 2003; Kulak et al., 2014). Interestingly, expression levels 

of Trf4 and Trf5 were similar in trf4D, trf5D strains expressing only one of the proteins. This 

indicates that Trf5 is more highly expressed in trf4D, trf5D backgrounds in order to 

compensate for the loss of Trf4.  
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Figure 4.7 Trf4/5 protein variants that have lost the ability to interact with Mtr4 are 

expressed at wild-type levels. Lysates were obtained from trf4Δ, trf5Δ cells 

complemented with plasmids allowing for expression of TAP-tagged wild-type or mutant 

variants of one or both Trf4/5 proteins. Immunoblotting with a-Protein A antibody allowed 

for detection of these proteins. Two bands are clearly detected from the lysates of strains 

able to express both proteins. Bands migrated as expected based upon the known 

lengths of Trf4 and Trf5, which are 584 and 642 amino acids, respectively. Moreover, the 

mutant bands migrated slightly faster, which was expected since they are lacking the 

twenty residues required for interaction with Mtr4. a-Pgk1 antibody allowed for detection 

of the loading control, 3-phosphoglycerate kinase. 
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Additionally, I included RNA isolated from the trf4D, trf5D strain complemented with 

both trf4D115-134 and trf5D98-117 plasmids in my northern blotting analysis. In comparison 

to strains expressing only one of these variants, the expression of both proteins in this strain 

results in a more complete model for assessing the RNA accumulation that results from 

disrupting the Mtr4-Trf4/5 interaction. This strain accumulated just as much or more 

extended snoRNA than the strains expressing only one of the Trf4/5 mutants (Figure 4.4 B). 

Collectively, these northern blotting assays indicate that impairing the Mtr4-Trf4/5 interaction 

interferes with normal processing or degradation of 3’ extended snoRNA transcripts, but not 

mature snoRNA.  

Furthermore, I analyzed RNA from this trf4D115-134, trf5D98-117 strain for a more 

global analysis of the consequences that result from TRAMP complex instability. Duplicate 

RNA samples from this mutant strain and from trf4D, trf5D cells expressing both wild-type 

Trf4 and Trf5 were assessed via transcriptome sequencing. Preliminary bioinformatics 

analysis revealed that snRNA and snoRNA loci are abundantly present within the set of 

genes that are significantly affected upon disruption of the Mtr4-Trf4/5 interaction (Figure 

4.8). Specifically, the abundance of all snRNA species and all but four snoRNA species was 

increased over twofold in the mutant strain when compared to the strain expressing wild-

type Trf4/5. Gene Ontology analysis confirmed that the set of genes that were upregulated 

over twofold was strongly enriched for snoRNA genes but did not reveal additional enriched 

categories. As expected, many genes in this trf4D115-134, trf5D98-117 set were also 

upregulated in the previously described RNA-Seq analysis of trf5D98-117 cells, even though 

the sequencing and bioinformatics analysis was performed slightly differently. These 

findings support the conclusion that disrupting the Mtr4-Trf4/5 interaction has a widespread 

effect on snoRNA biogenesis that is deleterious but not lethal. 
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Figure 4.8 Disrupting stable TRAMP complex formation results in the overexpression of 

many snoRNA genes. RNA was isolated from biological replicates of trf4D, trf5D cells 

complemented with both trf4D115-134 and trf5D98-117 plasmids or with both TRF4 and 

TRF5 plasmids. Samples were enriched for poly(A)+ RNA, which was then converted into 

a sequencing library. Mapping reads to the yeast genome identified genes that are 

overexpressed in the trf4D115-134, trf5D98-117 strain. Hits were determined to be 

significant (green) or not (grey) based on a false discovery rate (FDR) of 0.05. A log2 (fold-

change) of infinity or negative infinity is plotted on the x-axis as either 10 or -10. Of the 

seventy-eight snoRNA and snRNA genes (red) in this data set, the majority are 

significantly overexpressed by at least fourfold. This data set also contains two tRNA 

genes, although their upregulation is not statistically significant (overlapping blue points 

on far right). All other two hundred fifty tRNA gene points are clustered at the origin 

(overlapping blue points at center). 



  126 

Maintaining the Mtr4-Trf4/5 Interaction is Not Increasingly Important During Stress 

The Mtr4-Trf4/5 interaction is likely conserved between metazoans and fungi, 

suggesting that it is more significant than currently appreciated. It is possible that 

maintaining this interaction is more important for growth and survival during exposure to 

certain stressors than under optimal conditions. Increased heat sensitivity has been 

described upon the repression of any RNA exosome subunit, so it is possible that a similar 

phenotype would result from mutations in RNA exosome cofactors (Allmang et al., 1999b; 

Allmang et al., 2000; van Hoof et al., 2000a). I first assessed the effect of heat as a cellular 

stress by spotting serial dilutions of trf4D, trf5D cells expressing one or both mutants that 

cannot interact with Mtr4 onto complete medium. I included trf4D, trf5D strains expressing 

wild-type Trf4/5, as well as wild-type cells, as positive controls for maintenance of the Mtr4-

Trf4/5 interaction. I additionally included rrp44-exo- and rrp6D strains, which lack 3’-5’ 

exonuclease activity, as positive controls for disruptions within the 3’-5’ RNA degradation 

pathway and heat sensitivity. Incubation at 37°C did not affect the differences in growth that 

are already exhibited by these yeast strains at their optimal growth temperature of 30°C. 

Even after seven days, there was no growth of any strains at 42°C, which is known to 

induce heat shock in yeast (Figure 4.9). These results indicate that maintaining the Mtr4-

Trf4/5 interaction is not increasingly important during heat stress. 
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Figure 4.9 Maintaining the Mtr4-Trf4/5 interaction is not increasingly important during heat 

stress. While 30°C is the optimal growth temperature for yeast, 37°C and 42°C are 

considered stressful for growth, with the latter temperature high enough to induce heat 

shock. The growth of trf4D, trf5D cells expressing only wild-type or mutant forms of one 

Trf4/5 protein was analyzed by performing serial dilutions, spotting onto solid rich medium 

and incubation at the indicated temperatures. A trf4D, trf5D strain complemented with both 

trf4D115-134 and trf5D98-117 plasmids was included as a more complete representation 

of what results when the Mtr4-Trf4/5 interaction is disrupted. A wild-type strain was 

included as a positive control for growth, while rrp44-exo- and rrp6Δ strains were included 

as negative controls for growth. No growth of any strains was detected after incubating at 

42°C for one week. 
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I next tested for effects that various concentrations of 5-fluorouracil (5-FU) may have 

on strains with a disrupted Mtr4-Trf4/5 interaction. Yeast strains with mutations in the RNA 

exosome or certain RNA exosome cofactors are known to be hypersensitive to 5-FU and 

other DNA damaging agents (Walowsky et al., 1999; Fang et al., 2004; Lum et al., 2004). 5-

FU is a commonly used chemotherapeutic agent. When 5-FU is converted into multiple 

metabolites, it inhibits thymidylate synthase, resulting in decreased thymidine production 

during DNA replication. However, one metabolite of this drug can be incorporated into RNA, 

disrupting post-transcriptional modifications and transcript functions (Longley et al., 2003). I 

spotted the strains that were included in the heat shock assay onto complete media 

supplemented with 5-FU at concentrations of 50µM, 100µM, or 200µM. The trf4D115-134 

and trf5D98-117 strains did not exhibit hypersensitivity to 5-FU at 30°C, even after several 

days of growth (Figure 4.10 A). This finding indicates that loss of the Mtr4-Trf4/5 interaction 

does not cause increased susceptibly to 5-FU.  

Interestingly, I saw a significant growth improvement in trf4D115-134 cells when I 

repeated this experiment at 37°C. At this temperature, these cells grew better than wild-

type, which was most noticeable after one day of growth (Figure 4.10 B). Based upon this 

result, I hypothesize that the Trf4 in this strain may be playing a significantly enhanced 

TRAMP complex-independent role in DNA damage repair, as described in earlier studies 

(Gellon et al., 2008).  
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Figure 4.10 Maintaining the Mtr4-Trf4/5 interaction is not increasingly important during 

exposure to 5-fluorouracil. (A) The growth of trf4D, trf5D cells expressing only wild-type or 

mutant forms of one Trf4/5 protein was analyzed by performing serial dilutions and 

spotting onto solid rich media containing 50μM, 100μM, or 200μM 5-fluorouracil (5-FU), or 

lacking 5-FU completely. Plates were incubated at 30°C. A trf4D, trf5D strain 

complemented with both trf4D115-134 and trf5D98-117 plasmids was included as a more 

complete representation of what results when the Mtr4-Trf4/5 interaction is disrupted. 

rrp44-exo- and rrp6Δ strains were included as positive controls for growth impairment 

during exposure to 5-FU. (B) This experimental set-up was repeated at 37°C to determine 

if maintaining the Mtr4-Trf4/5 interaction becomes increasingly important during combined 

drug and heat stress. 
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The Catalytic Core of Trf4/5 is Sufficient for Viability  

In addition to the small N-terminal region that is required for Mtr4 interaction, the 

Trf4/5 C-termini contain several other short conserved regions, which may facilitate 

interaction with other proteins or form partially redundant sites for interaction with Mtr4. In 

fact, C-terminal residues of Trf4 interact with another nuclear cofactor of the RNA exosome, 

the NNS complex (Tudek et al., 2014). This site of interaction with the NNS complex is not 

conserved in Trf5 and may be important for the functional diversification of Trf4 and Trf5.  

To investigate the importance of these small conserved motifs within the large 

intrinsically disordered Trf4/5 termini, I created strains expressing only the catalytic core of 

either Tr4 or Trf5. Preliminary growth assays revealed that removing the termini results in 

significant growth deficiency. This phenotype was more severe than the growth deficiencies 

that result from deleting the N-terminal Trf4/5 sites that are necessary for interaction with 

Mtr4 (Figure 4.11 A). Yet, it is not clear if this phenotype is due to a negative effect on the 

TRAMP complex-dependent or –independent activities of Trf4/5. Western blot analysis 

showed that the terminally truncated Trf4/5 mutants are expressed at similar levels to wild-

type Trf4/5, ruling out decreased expression as the cause of the growth deficiency (Figure 

4.12). Despite the growth deficiencies, these assays revealed that the Trf4/5 termini are not 

essential and that the Trf4/5 catalytic core is sufficient for viability. 

Additionally, I generated single terminal truncations to assess if the growth deficiency 

was dependent upon a specific terminus. Growth assays revealed that deleting the N-

terminus, but not the C-terminus, causes a growth deficiency in Trf5. Yet while single 

terminal truncations of Trf4 were not significantly deleterious, loss of both regions resulted in 

growth deficiency (Figure 4.11 B). This phenotypic difference may indicate that the termini 

are important for TRAMP complex-independent functions, which are thought to be different 

for Trf4 and Trf5 due to their incomplete functional redundancy.  
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Figure 4.11 The N- and C-termini of Trf4/5 are not required for viability. The growth of 

trf4Δ, trf5Δ cells expressing only wild-type or mutant forms of one Trf4/5 protein was 

analyzed by performing serial dilutions, spotting onto solid selective medium lacking 

leucine, and incubation at the indicated temperatures. (A) The growth of trf4Δ, trf5Δ 

strains complemented with plasmids allowing for the expression of wild-type or mutant 

forms of Trf4/5 that cannot interact with Mtr4 was compared to those complemented with 

plasmids encoding Trf4/5 variants that lack both termini. Strains expressing Trf4 variants 

were assayed separately from those expressing Trf5 variants. While the trf4ΔNΔC strain 



  132 

was assayed on the same plate as the TRF4 and trf4Δ115-134 strains, rows have been 

rearranged for this figure. (B) In order to determine which terminal truncations were 

responsible for growth impairment, this experimental set-up was repeated with strains 

complemented with plasmids that allow for the expression of Trf4/5 variants that lack just 

one terminus. Strains expressing Trf4 variants were assayed separately from those 

expressing Trf5 variants. 
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Figure 4.12 Trf4/5 protein variants that lack the N- and C-termini are expressed at wild-

type levels. Lysates were obtained from trf4Δ, trf5Δ cells complemented with plasmids 

allowing for expression of TAP-tagged wild-type or mutant variants of one or both Trf4/5 

proteins. Immunoblotting with a-Protein A antibody allowed for detection of these proteins. 

Bands migrated as expected based upon the known lengths of wild-type Trf4/5, which are 

584 and 642 amino acids, respectively. Moreover, the mutant bands migrated significantly 

faster. This was expected since they are lacking the N- and C-termini, which each range 

from 95 to 160 amino acids in length. a-Pgk1 antibody allowed for detection of the loading 

control, 3-phosphoglycerate kinase. 

 



  134 

For a more complete assessment of the effect of these terminal truncations, I 

generated a trf4D, trf5D strain expressing both trf4DNDC and trf5DNDC proteins. 

Transcriptome sequencing was performed on duplicate RNA samples isolated from these 

mutants, as well as from trf4D, trf5D cells expressing both wild-type Trf4 and Trf5 proteins. 

Preliminary analysis revealed that snRNA and snoRNA loci are abundantly present within 

the set of genes that are significantly affected by truncations of the Trf4/5 termini (Figure 

4.13). Many genes in this set were also upregulated in the previously described RNA-Seq 

analyses of trf4D, trf5D cells expressing trf4D115-134 and trf5D98-117 proteins. Since the 

large terminal truncations result in the deletion of Trf4 residues 115-134 and Trf5 residues 

98-117, it was expected that the genes affected by a disrupted Mtr4-Trf4/5 interaction would 

also be affected by a loss of the Trf4/5 termini. An additional similarity to these previous 

analyses is that no specific type of snoRNA appears to be affected more than others.  

It is possible that the similar results of this sequencing indicate that TRAMP complex 

activity is also negatively impacted upon removal of the Trf4/5 termini. However, the TRAMP 

complex-independent activities of these proteins cannot be ruled out. Regardless, these 

findings indicate that loss of the Trf4/5 termini has a widespread deleterious effect on 

snoRNA biogenesis. Additional bioinformatics analysis will need to be performed in order to 

identify RNA species that are affected by the loss of the Trf4/5 termini but not by a disrupted 

Mtr4-Trf4/5 interaction. This analysis should attempt to identify any CUTs and SUTs among 

the hits, as these species were not detected in the primary gene analysis due to their 

derivation from inter- and intragenic regions.  
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Figure 4.13 Loss of both Trf4/5 N- and C-termini results in the overexpression of many 

snoRNA genes. RNA was isolated from biological replicates of trf4D, trf5D cells 

complemented with both trf4DNDC and trf5DNDC plasmids or with both TRF4 and TRF5 

plasmids. The results of this transcriptome sequencing were analyzed and plotted as 

described in Figure 4.8. 
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Trf4/5 Catalytic Activity is Required for Viability  

Another possible explanation for the incomplete functional redundancy of Trf4/5 is 

that the catalytic activity of one of these poly(A) polymerases may be more important than 

that of the other. Two conserved aspartic acid residues are required for Trf4 and Trf5 to 

carry out polyadenylation of an RNA substrate. Specifically, these are Trf4 residues 236 and 

238 and Trf5 residues 233 and 235. Catalytically inactive Trf4/5 proteins can be generated 

by substituting alanine residues at these positions, resulting in the “DADA” nickname given 

to these mutants (Wang et al., 2000). The ability of Trf4 and Trf5 to polyadenylate 

substrates is not dependent upon each other, as both proteins exhibit catalytic activity when 

the other has been deleted (Houseley and Tollervey, 2006). It has been previously 

determined that expression of a catalytic inactive trf4-DADA mutant cannot complement the 

synthetic lethality of a trf4D, trf5D strain background (Wang et al., 2000). However, the 

importance of maintaining Trf5 polyadenylation activity in trf4D, trf5D cells has not been 

previously published. 

A visiting summer undergraduate student, Alex Morano, assisted me with modeling 

the inactivation of Trf4/5 polyadenylation. Overlap PCR was performed to change the two 

conserved aspartic acid residues of Trf4/5 to alanine residues. These products were cloned 

into plasmids with a LEU2 marker. The plasmids were each used to transform trf4D, trf5D 

strains that already express wild-type Trf4 or Trf5 from a URA3 plasmid. Transformed cells 

were grown on media lacking both leucine and uracil to ensure the expression of both wild-

type and catalytically inactive mutant proteins. These strains were then serially diluted and 

spotted onto medium lacking leucine and uracil. They exhibited no significant growth 

deficiencies in comparison to wild-type controls or strains lacking the Mtr4-Trf4/5 interaction 

(Figure 4.14). A plasmid shuffle assay was additionally performed, by spotting these serial 

dilutions onto 5-FOA medium in order to abolish the expression of the wild-type Trf4 or Trf5 

from the URA3 plasmid (Figure 4.14). As expected, based on previous studies, the sole 
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expression of the trf4-DADA mutant is not enough to rescue trf4D, trf5D synthetic lethality. 

This assay also reveals that cells expressing only trf5-DADA protein are inviable. Therefore, 

at minimum, cellular viability requires the catalytic activity of either Trf4 or Trf5 protein. 
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Figure 4.14 The catalytic activity of Trf4/5 is required for viability. The growth of trf4D, 

trf5D cells expressing only wild-type or mutant forms of one Trf4/5 protein was analyzed 

by performing serial dilutions, spotting onto solid selective medium lacking uracil and 

leucine, and incubation at 30°C. The plasmid shuffle assay was performed by additionally 

spotting these strains onto 5-FOA medium. The Trf4/5 variants expressed from LEU2 and 

URA3 marker plasmids are provided in red and blue, respectively. Marker plasmids that 

do not allow for expression of a Trf4/5 variant are designated as empty vectors (EV). 

While the strains expressing catalytically inactive trf4-DADA or trf5-DADA protein were 

assayed on the same plate as the other strains, rows have been rearranged for this figure. 

After loss of wild-type Trf4/5 protein expression, due to plating on 5-FOA medium, the 

expression of catalytically inactive trf4-DADA or trf5-DADA protein is not sufficient for 

cellular viability.  
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An Air1-Trf4 or Air1-Trf5 Interaction is Sufficient for the Essential Function of Trf4/5 

Three studies, including our published work, support the hypothesis of additional 

direct subunit interactions that contribute to TRAMP complex integrity. Through different 

techniques, each study suggests that an N-terminal region of Air1/2 directly interacts with 

Mtr4 (Holub et al., 2012; Falk et al., 2014; Losh, King et al., 2015). However, some results 

indicate that the Air1/2 N-terminus binds the Mtr4 core, while other data indicates that this 

interaction takes place with the Mtr4 arch.  

The Mtr4 arch has been shown to directly interact with Nop53 and Utp18, two 

essential proteins involved in pre-rRNA processing. Specifically, this interaction occurs 

between the Mtr4 arch and an arch interaction motif (AIM), found in the N-termini of these 

proteins (Thoms et al., 2015). The conserved AIM sequence is comprised of four 

hydrophobic residues, followed by an aspartate. I decided to examine if Air1/2 also possess 

an N-terminal AIM that may allow for interaction with Mtr4. I performed a multiple sequence 

alignment, which revealed the presence of this motif in the N-termini of both proteins (data 

not shown; Losh and van Hoof, 2015). Specifically, these AIMs are Air1 residues 15-19 and 

Air2 residues 7-11. As previously stated, the Mtr4 arch is not required for TRAMP complex-

dependent activities. Therefore, I hypothesize that an Air1/2 AIM interaction with the Mtr4 

arch may occur in a context that is independent of the TRAMP complex. Yet in terms of its 

TRAMP complex-dependent functions, I hypothesize that the Air1/2 subunit holds Mtr4 and 

Trf4/5 together, even when the Mtr4-Trf4/5 interaction has been disrupted (Figure 4.15).  
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Figure 4.15 Model of TRAMP complex assembly in the presence or absence of the Mtr4-

Trf4/5 interaction. Removing twenty residues within the N-terminus of Trf4/5 (top blue 

hook), abolishes direct interaction with Mtr4 (green). However, the Air1/2 subunit (purple), 

which is able to bind both Trf4/5 and Mtr4, may maintain TRAMP complex assembly 

regardless of the Mtr4-Trf4/5 interaction. Moreover, Air1/2 may hold the other two 

subunits together in close enough proximity so that the TRAMP complex retains a certain 

level of functionality even if the direct Mtr4-Trf4/5 interaction is lost. 
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If my hypothesis is correct, then the TRAMP complex is still assembled in strains that 

express trf4D115-134 and trf5D98-117 proteins. While a trf4D, trf5D double deletion is 

synthetic lethal, a double deletion of air1D, air2D is viable, although it does result in a 

significant accumulation of polyadenylated transcripts (Inoue et al., 2000). Therefore, I 

aimed to delete both AIR1 and AIR2 in strains that already lack the Mtr4-Trf4/5 interaction. 

This would theoretically ensure that the TRAMP complex cannot assemble. Importantly, 

preventing the formation of the TRAMP complex would indicate how important the 

maintenance of the Mtr4-Trf4/5 interaction is for cellular viability.  

I chose to knockout AIR2 first, since the Air2 protein has been better characterized 

than Air1. Moreover, Air2 has not been shown to assemble into the TRAMP complex with 

Trf5 so I also chose to target AIR2 first because I hypothesized that less severe phenotypes 

would arise from its deletion. Specifically, I did not want possible growth deficiencies arising 

from an air1D to then mask the effects of a subsequent air2D. For this gene deletion, I 

swapped AIR2 with the hphMX4 cassette via homologous recombination. This cassette 

includes the Klebsiella pneumoniae hph ORF which encodes a phosphotransferase that 

provides resistance to hygromycin B, a drug known to inhibit fungal protein synthesis.  

After confirming that AIR2 was replaced with the hphMX4 cassette, I performed a 

growth assay to determine if the loss of AIR2 was deleterious in strains only expressing Trf4 

or Trf5 protein, but not both. Serial dilutions were spotted onto rich medium and incubated at 

30°C. The only strains able to grow on medium containing hygromycin B were those lacking 

AIR2, which confirmed successful deletion of this gene. Importantly, introducing air2D in 

concert with trf4D and trf5D results in the presence of only one possible composition of the 

TRAMP complex in these strains. As previously shown, cells expressing trf5D98-117 protein 

had the most impaired growth when compared to strains expressing wild-type Trf4 or Trf5. 

While an additional deletion of AIR2 appeared to slightly reduce growth, cells expressing 
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trf5D98-117 protein were most impaired (Figure 4.16). However, based on my model, I 

hypothesize that the TRAMP complex is maintained in these cells due to the presence of 

Air1. 
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Figure 4.16 An additional deletion of AIR2 in Trf4/5 mutant strains results in growth 

impairment but not loss of viability. The growth of trf4D, trf5D cells expressing only wild-

type or mutant forms of one Trf4/5 protein was analyzed by performing serial dilutions, 

spotting onto solid rich medium with or without hygromycin B, and incubation at 30°C. An 

additional deletion of AIR2, which results in resistance to hygromycin B, allows for growth 

on medium containing this antibiotic. This confirmation of Air2 protein loss indicates that 

these strains each contain only one type of TRAMP complex composition (depicted to the 

right of arrows). Specifically, TRAMP complexes within these strains contain Mtr4 (green) 

and Air1 (purple). They additionally contain either wild-type Trf4 (dark blue), wild-type Trf5 

(light blue), or a form of Trf5 that is unable to directly interact with Mtr4 (light blue, missing 

top hook).  
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I next attempted to similarly delete AIR1 via homologous recombination or by genetic 

crosses. Although air1D and air2D are not reported to be synthetic lethal deletions, I 

included an AIR2 plasmid in some of these experiments as a control. Despite extensive 

efforts, I was unable to generate trf4D, trf5D, air1D, air2D strains that were complemented 

with plasmids allowing for expression of various Trf4/5 and Air1/2 proteins. Troubleshooting 

indicated that the failure to obtain the desired strains could not be explained by synthetic 

lethality and various technical reasons were also eliminated. Therefore, it is not immediately 

evident as to why I could not generate trf4D, trf5D, air1D, air2D strain backgrounds. 

Regardless, these experiments indicate that although yeast cells normally contain multiple 

TRAMP complex compositions, a single composition containing an Air1 subunit and either a 

Trf4 or a Trf5 subunit is sufficient for viability. 

CONCLUSIONS AND FUTURE DIRECTIONS 

Based on new results and those previously published with our collaborators, I 

conclude that the TRAMP complex is composed of two well-folded catalytic cores that are 

brought together by short protein motifs. The majority of Mtr4 is structured and forms an 

RNA-dependent helicase core, while the catalytic core for polyadenylation is assembled 

from structured domains of the Trf4/5 and Air1/2 subunit (Hamill et al., 2010; Jackson et al., 

2010; Weir et al., 2010). In addition to these well-folded domains, each TRAMP complex 

subunit appears to have intrinsically disordered regions that function to mediate protein-

protein interactions, either with the other two TRAMP complex subunits or with proteins that 

are not assembled in this complex. Interactions with other proteins may occur in the context 

of TRAMP complex-dependent or -independent activities. 

In terms of TRAMP complex-dependent protein interactions, this project and 

previous work has identified the presence of small regions in the N-termini of Trf4/5 and 

Air1/2 that directly interact with Mtr4 (LaCava et al., 2005; Falk et al., 2014; Losh, King et al., 

2015). A deletion of either one of these regions impairs TRAMP complex formation, at least 
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to a level where Mtr4 is no longer immunoprecipitated with the Trf4/5 or Air1/2 subunit 

(Holub et al., 2012; Falk et al., 2014; Losh, King et al., 2015). While each region establishes 

a relatively low affinity interaction, they combine for a high affinity in vitro interaction 

between the cores (Falk et al., 2014). I hypothesize that deleting one of the interaction sites 

eliminates the in vivo formation of a stable TRAMP complex since no TRAMP complex 

formation has been detected under such conditions (Holub et al., 2012; Falk et al., 2014; 

Losh, King et al., 2015). However, the possibility that a less stable or transient formation is 

mediated through the other TRAMP subunit interaction regions cannot be excluded.  

The Site and Function of the Newly Characterized Mtr4-Trf4/5 Interaction May Be 

Conserved  

 Initial sequence analysis identified Tr4 residues 115-134 and Trf5 residues 98-117 to 

be conserved in orthologs from other ascomycetes. Although conservation in eukaryotes 

outside of this phylum was not readily detectible, it is notable that performing a multiple 

sequence alignment of Trf4/5 orthologs from vertebrates also identifies a small conserved 

region in an otherwise poorly conserved N-terminus. The sequence in vertebrates 

(EQxDFi/lP) is similar to the conserved sequence in ascomycetes (d/nNxDFIxf/l). Moreover, 

human orthologs of Mtr4 and Trf4 interact in vitro (Sudo et al., 2016). Therefore, it is likely 

that this Mtr4-Trf4/5 interaction site is retained in animals, even though standard analysis 

tools fail to detect sequence conservation.   

 Both northern blotting and RNA-Seq analysis indicate that disrupting the Mtr4-Trf4/5 

interaction leads to a defect in snoRNA processing and some other functions of the TRAMP 

complex. Most, if not all, snoRNA transcripts accumulate as 3’ extended species in the 

poly(A)+ fraction. This suggests that these transcripts can still be polyadenylated by Trf4/5, 

but then fail to be degraded by the RNA exosome. The simplest interpretation is that stable 

TRAMP complex assembly is required for a substrate to be efficiently handed off from the 

Trf4/5 subunit to Mtr4 before it is subsequently delivered to the RNA exosome. However, 
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alternative explanations should be considered. For example, Mtr4 and Trf4/5 can affect each 

other’s in vitro activity (Jia et al., 2011; Jia et al., 2012). Therefore, disrupting the Mtr4-Trf4/5 

interaction may have effects beyond substrate handoff. One possibility is that abolishing this 

interaction would have a negative effect on the helicase activity of Mtr4. In this proposed 

scenario, even efficient handoff of substrates would not result in their eventual degradation 

by the RNA exosome because they would not be completely unwound.  

While my collaborators and I have disrupted the Mtr4-Trf4/5 interaction via N-

terminal deletions in TRF4 and TRF5, mutations could be introduced into MTR4 that would 

similarly disrupt this interaction. Assessing the helicase activity of mutant Mtr4 protein may 

help determine if it is negatively impacted when it is unable to interact with the Trf4/5 

subunit. Specifically, its ability to unwind TRAMP complex substrates should be tested since 

Mtr4 also exhibits TRAMP complex-independent helicase activity. To additionally ensure 

that the TRAMP complex-dependent activity of this mutant Mtr4 is specifically assessed, the 

arch could also be removed, as this domain is known to only be required for its TRAMP 

complex-independent functions (Jackson et al., 2010; Weir et al., 2010). 

The TRAMP Complex is Probably Unable to Significantly Relieve Widespread Cellular 

Stress 

 The significant growth improvement of the trf4D115-134 strain on 5-FU medium at 

37°C when compared to wild-type cells may be due to an enhancement of DNA damage 

repair. This Trf4 function is known to be important for survival during exposure to methyl 

methanesulfonate or hydrogen peroxide, which are alkylating or oxidizing agents, 

respectively (Gellon et al., 2008). This may be a TRAMP complex-independent function of 

Trf4 since earlier work indicates that Trf5 has not retained the same activity (Edwards et al., 

2003). Interestingly, this provides a possible explanation as to why a similar growth 

improvement was not exhibited by the trf5D98-117 strain in my assay. Regardless, my 

results did not indicate that maintenance of the Mtr4-Trf4/5 interaction is highly important for 
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survival during heat stress or exposure to 5-FU metabolites. This assay could be repeated 

with different stressors, such 4-nitroquinolone, which causes DNA damage similar to UV 

treatment. However, it is important to consider that heat and drug stress affects a wide 

variety of cellular mechanisms, both directly and indirectly. Theoretically, the TRAMP 

complex would only be able to reduce the negative impacts of stress to a certain extent, 

especially as it is only present in the nucleus. Therefore, retaining or abolishing the Mtr4-

Tr4/5 interaction may not make a significant difference in cellular survival during harsh 

growth conditions. However, optimal TRAMP complex formation is certainly important for 

alleviating the negative effects of RNA accumulation. 

The Catalytic Core of the TRAMP Complex is Necessary and Sufficient for Trf4/5 

Function 

 This work has shown that removing the termini of Trf4/5 does not affect protein 

expression or cellular viability, although removing each terminus results in varying levels of 

growth deficiency. Further assessment of this intriguing difference between the importance 

of Trf4/5 termini may provide more insight into the specific TRAMP complex-dependent and 

–independent roles of each protein. The termini may have varying structural importance or 

contain protein interaction sites that differ between Trf4 and Trf5. As explained in Chapter 1, 

Trf4/5 were first associated with topoisomerase activity. The studies that identified Trf4/5 

found that 92 amino acids near the N-terminus of Trf4 are 21% identical and 43% similar to 

an N-terminal region of Top1. Moreover, 92 amino acids in the Trf5 C-terminus have 33% 

identity and 58% similarity to this N-terminal Top1 region (Sadoff et al., 1995; Castaño et al., 

1996). Interestingly, this region of Top1 is not necessary for its catalytic activity, which may 

also be the case in Trf4/5 (Bjornsti and Wang, 1987).  

It is unlikely that removal of the termini abolishes the catalytic activity of Trf4/5, since 

my results with cells expressing trf4-DADA and trf5-DADA proteins have indicated that this 

activity is indispensable. However, the termini could influence the conformation of Trf4/5, 
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which may indirectly affect polyadenylation activity if a substrate cannot be positioned 

correctly for this modification to be made. Assessment of polyadenylation activity, as 

previously described, could be performed on trf4-DADA and trf5-DADA mutant proteins and 

compared to that of wild-type Trf4/5 (Vaňáčová et al., 2005).  

While my collaborators and I have shown that part of the Trf4/5 N-terminus is 

required for interaction with Mtr4, neither the rest of the N-terminus nor the entire C-terminus 

have been shown to be involved in interactions with Mtr4 or Air1/2. However, the Trf4/5 

termini may be important sites for interactions with other proteins in a context that is 

independent of the TRAMP complex. This could be elucidated by performing a binding 

assay that would compare wild-type Trf4/5 with variants lacking one or both termini. 

Moreover, RNA-Seq analysis indicates that loss of the termini leads to a defect in snoRNA 

biogenesis, but it not clear if this reflects a disruption in TRAMP complex activity. While 

further characterization studies on the termini could help explain why both Trf4/5 have been 

retained in yeast, I have shown that the termini are not essential for viability.  

Additionally, this work has revealed that trf5-DADA protein expression cannot rescue 

trf4D, trf5D synthetic lethality, as has been previously shown for the expression of trf4-DADA 

(Wang et al., 2000). Previous assays have also shown that expression of the trf4-DADA 

variant promotes the degradation of most of the transcripts that accumulate in a trf4D 

background, although wild-type Trf5 protein was still expressed in both of these strains 

(Wyers et al., 2005; San Paolo et al., 2009). This suggests that trf4-DADA, and likely trf5-

DADA, continues to promote RNA exosome activity even when it is unable to add poly(A) 

tails to its targets. One possible explanation is that these catalytically inactive proteins may 

retain the ability to interact with Mtr4. I hypothesize that these DADA mutants could still be 

incorporated within the TRAMP complex and therefore, positioned correctly to deliver a 

substrate into the helicase domain of Mtr4. In this scenario, Mtr4 may still unwind the non-
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polyadenylated substrate despite its known preference for poly(A) tails (Bernstein et al., 

2008).  

While expression of both trf4D115-134 and trf5D98-117 proteins is not synthetic 

lethal, expression of both trf4-DADA and trf5-DADA proteins is. Therefore, it is not possible 

to express variants of Trf4/5 that can neither interact with Mtr4 nor polyadenylate substrates. 

However, binding assays would reveal if trf4-DADA and trf5-DADA proteins can still interact 

with Mtr4, and additionally with Air1/2. Northern blotting could be performed to measure the 

accumulation of snoRNA substrates in cells expressing trf4-DADA or trf5-DADA proteins. 

This accumulation should be compared to that of wild-type cells, as well as strains lacking 

the Mtr4-Trf4/5 interaction. If expression of a catalytically defective Trf4/5 subunit results in 

similar or lower levels of accumulated substrates, it is likely that the TRAMP complexes in 

these cells are still able to efficiently prepare RNA for degradation by the RNA exosome.  

Retaining Components of a Single TRAMP Complex Composition is Sufficient for 

Viability 

While my multiple sequence alignment revealed an N-terminal AIM in Air1/2, the 

dynamics and stoichiometry of its interaction with the Mtr4 arch remain to be identified. 

However, it is possible that when Mtr4 is assembled into the TRAMP complex, the Air1/2 

subunit binds the Mtr4 arch in order to block the access of other cofactors, such as Nop53 

or Utp18. This would theoretically ensure that Mtr4 is only carrying out TRAMP complex-

dependent activities when it is assembled within this complex. Interestingly, a recent 

structural study revealed that the Air2 and Nop53 AIMs interact with the Mtr4 arch in nearly 

identical conformations (Falk et al., 2017b). 

As previously stated, it is unclear as to why deleting AIR1 was not successful, 

despite employing a variety of methods. However, the air1D strain from the DharmaconTM 

Yeast Knockout Collection could be used as the starting point for generating cells that only 

express Mtr4 and one Trf4/5 subunit. Swapping out AIR2 for the hphMX4 cassette in this 
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air1D strain could be performed as previously. This homologous recombination method 

could also be employed for the deletion of TRF4 and TRF5, although cells would need to be 

previously transformed with a plasmid encoding either Trf4 or Trf5 protein to prevent 

synthetic lethality. Alternatively, a newly created air1D, air2D strain could be mated with one 

of the various trf4D, trf5D background strains used in this study.  

While I was not able to delete both AIR1 and AIR2 in concert with a loss of Trf4/5, I 

have shown that expressing subunits for only one TRAMP complex composition, as 

opposed to all three identified compositions, results in decreased growth. This growth 

deficiency was most markedly exhibited in a strain expressing only Mtr4, Air1, and trf5D98-

117 subunits. Due to the disrupted Mtr4-Trf5 interaction, the Air1 subunit in these cells either 

holds the TRAMP complex together or these cells do not in fact contain assembled TRAMP 

complexes. In summary, while the essentiality of the TRAMP complex is still unknown, it is 

undoubtedly important for promoting the efficiency of RNA quality control. 
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RNA Exosome Dysfunction Leads to Widespread Negative Cellular Effects 

In summary, my collaborators and I have developed S. cerevisiae as a eukaryotic 

model system for performing introductory and straightforward analysis of PCH1b-associated 

mutations. This work has revealed that mutations linked to this disease are unlikely to result 

in a total loss of RNA exosome function, but they do significantly affect its stability and 

expression levels. Assessment of the yeast rrp40-W195R protein indicates that human 

EXOSC3-W238R ortholog is the most deleterious of the known PCH1b-associated 

mutations, due to its instability and negative impact on RNA exosome activity (Fasken, Losh 

et al., 2017). 

Optimal Assembly of the RNA Exosome is Promoted by Discriminating Mutant Subunits 

 Excitingly, this work has indicated that there is a mechanism for ensuring preferential 

incorporation of wild-type subunits into the RNA exosome. The PCH1b-associated 

mutations that my collaborators and I have modeled result in the expression of proteins that 

contain only a single point mutation. We have shown that these single mutations do not 

prevent subunits from assembling into the RNA exosome nor do they completely abolish 

RNA exosome function. However, these mutated subunits do not assemble as efficiently 

into the complex and they are increasingly unstable in the presence of their wild-type 

counterparts. This instability is likely due to the fact that RNA exosome subunits are rapidly 

degraded whenever they are not included within the complex. However, it is unclear how 

mutant subunits are excluded in favor of wild-type subunits. Further studies are needed to 

determine if this mechanism for preferential assembly is carried out by currently unidentified 

RNA exosome assembly factors or if mutant subunits simply detach from the complex at a 

higher rate than wild-type subunits.  

Regardless of the mechanistic basis, this novel indication that the RNA exosome is 

assembled as properly as possible is understandable. Clearly, optimizing this essential 

complex results in increased levels of functional, processed RNA substrates and decreased 
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levels of harmful RNA accumulation. This would lead to more efficient nuclear and 

cytoplasmic processes within an individual cell. However, it would also provide a more 

widespread benefit in multicellular organisms since the RNA exosome is conserved within 

the cells of all eukaryotes, as well as within most types of tissues, that have been currently 

assessed. 

Yeast is a Useful Model for Studying PCH1b-Associated Mutations 

 Yeast has long been employed as a model eukaryotic organism since it is genetically 

similar to human cells, but easier to manipulate. Previously published work on PCH1b 

consists mainly of clinical studies, which identified the mutations linked with this disease 

(Wan et al., 2012; Biancheri et al., 2013; Rudnik-Schöneborn et al., 2013; Schwabova et al., 

2013; Zanni et al., 2013; Eggens et al., 2014; Halevy et al., 2014). However, these studies 

have provided little insight into the molecular effects of PCH1b-associated mutations. Our 

yeast model system has revealed that these mutations likely affect interactions with other 

proteins and overall stability of the RNA exosome. A similar system and set of assays would 

likely be beneficial for the molecular characterization of other human disorders linked to 

mutations within the RNA exosome or its cofactors. While yeast is useful for initial 

characterization of PCH1b-associated mutations, multicellular models will be required for 

future studies, especially for determining the cause behind the tissue-specificity of patient 

phenotypes.  

The Molecular Basis for Tissue-Specific Phenotypes of PCH1b Needs to be Elucidated 

 My collaborators and I have shown that EXOSC3/rrp40 mutations associated with 

PCH1b disrupt the efficiency of the RNA exosome. The essentiality and ubiquitous nature of 

this complex, both in terms of cellular location and prevalence within many types of cells, 

provides some explanation as to why these subunit mutations might result in such serious 

phenotypes. Yet this does not necessarily explain why these symptoms are so tissue-

specific. The levels of RNA exosome expression within all types of mammalian cells are not 
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known. However, RNA exosome subunit expression is comparable in cerebellar Purkinje 

cells, cerebellar cortex neurons, and hippocampal neurons, which indicates a similar 

prevalence of the RNA exosome between different regions of the brain (Uhlén et al., 2015).  

One explanation behind this phenotypic tissue-specificity of PCH1b-associated 

mutations is that changing these EXOSC3/Rrp40 residues affects both the expression levels 

and stability of the subunit, as well as the overall RNA exosome complex. Therefore, the 

characteristic brain and neural phenotypes of PCH1b, as well as other types of PCH, could 

be directly associated with a reduction in RNA exosome prevalence and efficiency within 

these tissues. However, the RNA exosome is present and significantly expressed within 

most, if not all, mammalian tissues (Uhlén et al., 2015). Therefore, PCH1b-associated 

mutations would theoretically affect RNA exosome levels throughout the body. Why would a 

general reduction in RNA exosome levels specifically affect brain structure more than that of 

skin or bones?  

While further studies are needed, I can propose several hypotheses for this question. 

First, it is possible that maintaining RNA exosome activity is most important in tissues with 

high rates of ATP usage and/or transcription in order to rapidly process premature 

transcripts and clear unnecessary transcripts. This would correlate with the significant brain, 

nervous system, and muscular defects of PCH1b patients, as neurons and myocytes utilize 

more ATP than many other types of cells (Rolfe and Brown, 1997). Moreover, while neurons 

are present throughout the body, they are most prevalent within brain tissue. Robust and 

tightly controlled transcription is critical for neuronal integrity (Greer and Greenberg, 2008). 

Second, it is possible that maintaining RNA exosome activity is most important in the 

tissues that arise early in embryogenesis. The nervous system begins to form well before 

other organ systems (Spemann and Mangold, 1924). Interestingly, the development of the 

nervous system is proceeded by a period of increased RNA transcription from embryonic 

genes, whereas only maternal RNA is used for the earliest stages of development 
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(Bachvarova et al., 1966). This would result in the expression of PCH1b-associated 

EXOSC3 variants and therefore, faulty RNA exosome complexes, during brain and spinal 

cord formation, perhaps resulting in the significant brain abnormalities that characterize this 

disease.  

Finally, it is possible that RNA exosome subunits interact with currently unknown, 

tissue-specific cofactors within certain cells. PCH1b-associated mutations may disrupt 

interactions with such cofactors, resulting in phenotypes that are most strongly associated 

with those tissues. Moreover, RNA exosome cofactors may undergo tissue-specific 

modifications that could further affect interactions with PCH1b-associated EXOSC3 mutants. 

For example, the nuclear RNA exosome cofactor, MPP6, co-immunoprecipitates with wild-

type EXOSC3 but not with EXOSC3-W238R (Falk et al., 2017a). Interestingly, MPP6 is 

known to be phosphorylated (Matsumoto-Taniura et al., 1996). Perhaps this protein 

modification could influence the tissue-specific phenotypes that are associated with PCH1b 

if MPP6 is unable to interact with this mutant RNA exosome subunit. Further studies, 

including the use of multicellular models, will need to be performed in order to provide more 

insight into the tissue-specific consequences that result from the expression of mutant RNA 

exosome subunits. 

TRAMP Complex Subunit Interactions are Important for Maintaining Its Function 

In addition to my work on the RNA exosome, I have characterized a short region of 

Trf4/5 that is important for TRAMP complex assembly. This area of twenty nucleotides is 

essentially the only conserved sequence in the N-terminus of these TRAMP complex 

subunits and is required for their interaction with Mtr4. The deletion of this N-terminal 20-mer 

impairs complete assembly of the TRAMP complex and has a specific effect on the 

accumulation of 3’ extended snoRNA (Losh, King et al., 2015). I have also shown that the 

termini of Trf4/5 are not required for viability, although they appear to be functionally 

important. 
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The Direct Mtr4-Trf4/5 Interaction is Important but Not Essential 

 Cells expressing variants of Trf4/5 that lack the N-terminal Mtr4-interaction site 

remain viable, with only slight growth deficiencies. However, loss of this interaction 

negatively impacts snoRNA biogenesis. My results confirm that a TRAMP complex lacking 

the Mtr4-Trf4/5 interaction is not able to efficiently prepare precursor snoRNA substrates for 

the RNA exosome. Moreover, I have shown that no specific class of snoRNA is more 

affected by loss of this interaction than others. While other types of RNA accumulated as a 

result of a lack of interaction between Mtr4 and Trf4/5, snoRNA species were the most 

affected. It is currently unclear why snoRNA species are more affected than other known 

substrates of the TRAMP complex, although it is possible that this is simply due to their 

significant abundance in the nucleus.   

Loss of interaction between the two catalytic subunits of this complex is not lethal 

and might seem to be an indication that the TRAMP complex is not essential. However, 

TRAMP complex assembly may be preserved by the Air1/2 subunit, which interacts with 

both Mtr4 and Trf4/5 (Wyers et al., 2005; Houseley and Tollervey, 2006; Holub et al., 2012; 

Falk et al., 2014; Losh, King et al., 2015). Specifically, Air1/2 may hold the other two 

subunits in close enough proximity that Mtr4 can still receive a polyadenylated substrate 

from Trf4/5 and prepare it for degradation by the RNA exosome. While I was not able to 

jointly delete AIR1 and AIR2 in a trf4D, trf5D background, I have shown that expression of 

just one possible TRAMP complex composition negatively affects cellular growth.  

The TRAMP Complex May Not Be Essential for Life 

 This work has indicated that maintaining the Mtr4-Trf4/5 interaction is not essential 

for viability. Moreover, a double deletion of AIR1 and AIR2 is not synthetic lethal (Inuoe et 

al., 2000). As previously stated, these two findings could easily support the hypothesis that 

the TRAMP complex is not essential. However, it is possible that disrupting the Mtr4-Trf4/5 

interaction in an air1D, air2D background is synthetic lethal (Figure 5.1). This would indicate 
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that only the interaction between the two catalytic subunits of the TRAMP complex is 

required for cellular viability. Therefore, Air1/2 may have been conserved as beneficial, but 

unnecessary, components of the TRAMP complex. One caveat to this hypothesis is that 

Air1/2 are believed to bring substrates to Trf4/5, which cannot bind RNA on their own 

(Wyers et al., 2005; Fasken et al., 2011). Interestingly, the mammalian ortholog of Trf4, 

PAPD5, can bind RNA directly but it may require the aid of other proteins to recognize its 

targets (Rammelt et al., 2011). Furthermore, Mtr4 can bind RNA but this function is thought 

to be dispensable for TRAMP complex activity (Jackson et al., 2010; Weir et al., 2010). 

However, the intricacies of the interactions between TRAMP subunits, substrates, and other 

players of the RNA exosome pathway remain largely uncharacterized. 
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Figure 5.1 Model of TRAMP complex activity when specific subunit interactions are lost. 

While TRAMP complex activity is obviously maintained in the presence of all subunits and 

subunit interactions (top left), it may also be maintained as long as Mtr4 still directly 

interacts with Trf4/5 (bottom left) or Air1/2 is present to hold Mtr4 and Trf4/5 together if 

they can no longer directly interact (top right). However, if no Air1/2 subunit is present to 

hold the two catalytic subunits together when the Mtr4-Trf4/5 interaction has been lost, the 

TRAMP complex would no longer exist as a functional cofactor of the RNA exosome 

(bottom right). Further studies are needed to determine if this final scenario is synthetic 

lethal in cells. If not, this would indicate that TRAMP complex activity is not required for 

life. 
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My discovery of the N-terminal Air1/2 AIM, which allows for interaction with Mtr4, 

provides the possibility that Air1/2 can promote the TRAMP complex-dependent functions of 

Mtr4. Specifically, interaction between Mtr4 and the Air1/2 AIM may prevent additional 

interactions with Mtr4 cofactors that are involved in TRAMP complex-independent pathways. 

However, this is evidently not an essential activity due to the viability of air1D, air2D cells. 

 In addition to the two possible polymerase subunits and two possible RNA-binding 

subunits that have been conserved in yeast after the ancestral whole-genome duplication, 

characterizing the TRAMP complex is further convoluted by the fact that all of the subunits 

have TRAMP complex-independent functions. However, my work has clearly shown that 

maintaining complete TRAMP complex formation is beneficial for the RNA exosome-

dependent pathway of 3’ to 5’ RNA processing and degradation. Specifically, efficient 

snoRNA biogenesis is dependent upon the interaction of Mtr4 and Trf4/5 within the TRAMP 

complex. 

CONCLUDING REMARKS 

 The work presented in this dissertation has advanced our understanding of the 

assembly of the nuclear RNA exosome machinery. These findings have helped elucidate 

the molecular basis of the severe human disease, PCH1b, and identified specific subunit 

interaction sites within the TRAMP complex that are important for snoRNA biogenesis and 

the degradation of RNA substrates by the RNA exosome. The formation of these complexes 

has likely been conserved throughout eukaryotes, allowing for the use of S. cerevisiae as a 

model system for both genetic and biochemical studies. Further characterization of PCH1b-

associated mutations, using both yeast and other model systems, will hopefully help further 

elucidate the basis of this serious neurodegenerative disorder. Additionally, continued 

characterization of the TRAMP complex will provide more mechanistic insight into its 

function and the reasons behind the conservation of its subunits throughout eukaryotic 

evolution, as well as after the yeast whole-genome duplication.
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