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Abstract            

Properties of several working magnetic coupled rotors have been measured and their 

performance compared to theoretical models.  Axial magnetic couplers allow rotors to work 

within harsh environments, without the need for seals, proper alignment, or overload protection 

on a motor.  The influence of geometrical parameters, such as distance from the center of the 

rotors, polarity arrangement, and the number of dipole pairs were experimentally tested.  These 

results can be used to improve rotor designs, to increase strength and efficiency.   
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1. Introduction          

1.1 Background, Applications & Advantages 

Permanent magnets have many applications in society ranging from small fridge magnets to 

smartphones.  Through understanding the physics behind them thoroughly, new technologies 

involving magnets are being developed to improve existing ones.  It has only been in recent 

years that rare-earth permanent magnets have been discovered, such as Samarium Cobalt, and 

Neodymium Iron Boron[12].  Such findings have led companies and scientist to perform 

extensive research to understand better the potential applications these magnets have to improve 

the efficiencies of products and other applications in electromagnetic devices [8][14][13][19]. 

One question addressed in this research regards the operation of magnetic couples or 

couplings.  In a magnetic couple, two magnets coupled together, such as shown in figure 1.1, 

span a gap. This allows them to transmit torque without mechanical contact with one another.  
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Figure 1.1. An example of a magnetic couple from TEA Machine Components Inc, Magnetic 

Coupling.  https://www.teausa.net/Latest-News/Post/631/Magnetic-Couplings. Accessed 6 May 

2019 [11]. 

 

 

 

Torque can be transmitted across a separation wall, from a primary driver to a follower, 

making it ideal for some applications such as a sealless fluid pump. Naval propulsion gives 

another example; in this case torque is transmitted between the motors and propellers (shown in 

figure 1.2).  In the chemical industry, such drivers can prevent leakage of fluid and fugitive 

emissions that may be expensive, or harmful to health of the environment.  This couple is also 

beneficial for isolated systems, such as a vacuum or high-pressure vessel. 

 This magnetic couple replaces the axle, that would have been otherwise used to transfer 

power from the motor to the load side.  Using figure 1.2 as an example, the motor is still able to 

transfer the rotational power to rotate the propeller, even though there is a rear wall to the boat 
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hull in between the two.  It can do so by using the magnetic couple, instead of an axle. The 

magnetic field can bypass the wall of the boat hull and continue its attraction between the two 

magnets. 

 

 

Figure 1.2.  An example of a magnetic couple in a nautical setting. Image obtained from  

K&J Magnetics Coupling Inc, Magnetic Coupling boat. [10] 

https://www.kjmagnetics.com/blog.asp?p=magnetic-coupling. Accessed 6 May 2019 

 

 

Typically, one component that fails first, when having a system with an axle is the O-ring 

that would create the seal to prevent water from leaking. The O-rings typically become brittle 

and bust which initiates the leak. By having a magnetic couple and eliminating the axle that 
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would initially go through the wall, one would also eliminate the possibility of the type of 

mechanical failure.   

Furthermore, since a magnetic couple is modular, if a piece were to break, the piece would be 

more accessible to fix since one would only have to work with a part of the system instead of the 

whole.  For example, if the propeller was to become damaged, or if the motor was to burn out, 

the user would be able to replace that half.  As a result, it will also lower routine maintenance 

costs.  

 When constructing the couple, the two sides so not have to be precisely aligned with one 

another (however, it would be ideal) [3][7].  The magnetic couple may not be parallel with one 

another and have a slight degree off angle, or the magnetic couple may not align perfectly in 

front of one another, and it will still achieve power transfer. 

 Moreover, the couple has torque limitation in critical applications when facing a maximum 

transmissible torque (pull-out torque).  For instance, avoiding mechanical failure by giving 

intrinsic overload prevention which allow the magnetic couple to increase the lifetime and 

efficiency of the system.  Having the motor not directly attached to the propeller reduces noise, 

vibrations, and mechanical friction losses.  There is also an advantage in the system in which a 

propeller or rotor on the load side could become stuck.  This creates stress on the axle, that 

would be leading to a broken axle or overloaded motor.  Since there is no contact, the couple will 

create slip, if one end jams.  Slip is where one side will stop rotating while the other one 

continues.  It as well eliminates the need for a more powerful motor that would initially be used 

to compensate the start-up torque [2][13] [16][19].  
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1.2 Types of Couplings 

When studying various types of non-contact mechanical couplings to transfer torque, one 

may study one of the following: axial, coaxial and, eddy current couplings.  Axial and coaxial 

couplings are both synchronous while the eddy-current is an induction type coupler.  Both have 

radial and flux configuration. 

1.2.1 Synchronous couplings  

In synchronous couplers, shown in figures 1.1 and 1.2, both the drive and the load side of the 

couple rotate together.  The poles are paired together and will rotate in sync.   Figure 1.3 displays 

a 2-D model of the magnetic couple and uses arrows to illustrate the magnetic field between the 

magnets.  The north facing magnets are red, while the south facing magnets are blue.  The 

rotation or movement of one rotor is shown with a green arrow.  The black arrows represent the 

magnetic field between the initial attraction of two magnets.  The white arrows show the 

magnetic attraction between the two magnets after the slip.  In figure 1.3a, the two rotors of the 

magnetic couple are directly in front of one another with both rotors’ static.  Figure 1.3b shows 

the bottom or drive side rotor moving to the right.  The black arrows show the magnetic field still 

attracted to one another but slightly angled.  Figure 1.3c shows the second rotor moved far 

enough to the right, that it is at a distance causes the magnets to align in front of the top rotor and 

has the magnets with the same facing polarity facing one another.  The black arrows show the 

magnetic attraction of the first pair, while the white arrows show the magnetic attraction to the 

next magnet.  This slipping creates a new magnetic pair.  Figure 1.3c also shows the moment 

before the slip occurs.  This moment is where the pull-out torque (maximum torque) is measured.   

Figure 1.3d shows the moment after the slip occurs.  The magnets are then attracted to the next 

magnets, and the new magnetic pair is created.   
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This illustration demonstrates the workings of the magnetic couple on a two-dimensional 

plane.  The illustration simulates the movement of one rotor (bottom) and the magnetic fields’ 

reaction imposed onto the other rotor, or load side rotor.  In this case, the load side rotor has a 

larger load than the pull-out torque, thus creating slip and not a rotation on the load rotor. 
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Figure 1.3. 2-D model of the axial magnetic coupling. (a) shows the couple directly in front of one 

another.  (b) shows the bottom rotor moving to the right. (c) shows the bottom rotor continue moving to 

the right but not directly in front of the next magnet, at the moment right before the actual slip occurs. (d) 

shows the arrangement of the magnets after slip occurs. 
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1.2.1a   Axial  

An axial couple is shown in figure 1.4a consisting of two opposing identical discs or rotors, 

equipped with rare earth permanent magnets.  The magnets are magnetized in an axial direction. 

When applying torque to the load side of the disc, the two discs shift by an angle, known as the 

load angle.  With this design, the angular shift between the two discs depends on the initial 

torque applied.  One drawback of this design is the significant value of attractive force between 

the two discs.   

 

 1.2.1b   Coaxial 

 Coaxial couplers have one member rotate inside the tube, which is the second member.  

This type of couple is used to produce a larger torque.  The transmitted torque is independent of 

speed and dependent only on the relative angle of displacement of the coupler halves [13]. This 

couple is shown in figure 1.4(b).   
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Figure 1.4. This shows the two types of synchronous magnetic couples (a) being a Radial flux 

magnetic couple and (b) being an Axial flux magnetic couple used from Dolisy reference [2]. 

 

 

 

 

1.2.2 Induction coupling 

The induction couplers work from the slip created between the couple.  When disc one rotates 

faster than the other, a current is induced to the second disc. The induction imposed onto the 

second disc then creates a rotation drive leading to the second disc rotating. This coupling 

consists of two discs shown in figure 1.5.  One of the discs is composed of rare earth magnets, 

similar to synchronous couplings; however, the other disc is equipped with a conducting plate, 

such as copper.  The workings of the couple are induced when the conducting plate creates slip 
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and interacts with the magnetic field.  This generates a coupling force on the permanent magnets, 

hence the transmission of torque. [2][4][8][19]   

 

 

 

 

Figure 1.5.  Cross section of the studied axial-flux permanent magnet eddy-current coupling 

adapted from Frontchastagner reference [4].  
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 1.3   Motivation  

The goal of the research was to measure and find a relationship between the pull-out 

torque and the air gap distance between the coupler that arises when permanent magnetic couples 

are approaching each other.  The influence on the coupling characteristics such as the permanent 

magnet’s geometry, the number of dipole pairs, and polarity arrangements were compared to 

investigate the air gap size on the magnitude of pull-out torque.  The results are compared to the 

analytical expressions that model the magnetic fields. [2][5] 
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2. Theory           

 To better understand experimental results on the magnetic couple, prior research based on 

computational models and analytical calculations were examined.  This discussion generally 

follows the approach by B. Dolisy, S. Mezani, T. Lubin, and J. Lévêque, (see reference 2), using 

analytical expressions to model the axial flux magnetic couple.  

Analytical models can provide closed-form solutions giving focus on the results and 

insight they yield.  These are useful tools for first evaluations of magnetic couplings performance 

and the first step of design optimization.  The proposed model is a design for magnetic couplers 

with an axial magnetic flux coupling.  The analytical models of magnetic couplings were 

developed by solving the partial differential equations that come from Maxwell’s equations, but 

the approach of ref. [2] was adapted to the geometry of this project.  The analytical method 

computes the torque for magnetic couplings and is based on boundary value problems with 

Fourier analysis.  This method consists of solving Maxwell’s equations in the different regions 

(magnets and air gap) by separation of variables method.  The magnetic field distribution is 

obtained in each region by using boundary and interface conditions and using a magnetic scalar 

potential formulation. Then using the mathematical analogy between the electrostatic and the 

magnetostatics fields, the magnetic force acting on the magnets placed on the opposite side is 

obtained by using the equal electrostatic Lorentz force.  The torque is then found by using 

Maxwell’s stress tensor. The torque expression is used to study the influence of geometrical 

parameters (number of pole pairs and air-gap length).  The analytical model created is compared 

with the experimental results to explore the accuracy of each. [2][6][7][8] 
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In the axial flux couplings design, the two discs(rotors) are created to be identical and 

facing one another and have an array of rare earth permanent magnets that are alternately 

magnetized along the θ-direction.  For our base model used within the derivation of the 

analytical model, the magnetic couple uses the same number of pole pairs. (p=6 in Figure 2.1).   

Figure 2.1 shows the arrangement that was used for the analytical model.  It also shows 

variables:  r, rmc, Dx, and Dy, with values explained in table 2.1.  A synchronous magnetic couple 

transmits torque across a drive system. This is typically done by having a drive side (presumably 

connected to a motor) and a load side move in sync with one another through a magnetic couple 

that replaces an axle that otherwise would have connected the two sides together.  By doing this, 

the magnetic couple would need to have a magnetic flux density that is greater than the pull-out 

torque.  The pull-out torque is the maximum torque the system would allow before it creates slip 

and an abrupt drop in speed.  The analytical model is used in comparison with the experimental 

model to create an empirical equation that can lead to model future drive power in magnetic 

couples.   
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Figure 2.1. The geometry of the axial-type magnetic coupling that has six dipole pairs (p=6)  
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Table 2.1. Values and descriptions for the dimensions of the magnetic couple components.  

Parameter Description  Unit Value 

𝑙𝑚𝑦 Length of the magnet in 

the y-direction  
mm 25.4 

𝑙𝑚𝑥 Length of the magnet in 

the x-direction 
mm 25.4 

𝐷𝑥 Length of the Domain 

along x 

mm 46.5 

𝐷𝑦 Length of the Domain 

along x 

mm 50.8 

r Radius of the disc mm 69.8 

𝑟𝑚𝑐 Radius to the center of 

the magnet 

mm 44.4 

𝛩 Arclength degree degrees 60° 

𝜈 Thickness of air gap mm Variable  

𝛼 Magnet to pole 

opening ratio 

- .55 

𝑝 Number of pole pairs - Variable (but 

determined before 

each experiment, 

this case uses 6) 

𝐵𝑟 Residual induction of 

permanent magnets 

T 1.32 

 

   

2.1  Magnetic force from the Electrostatic-Magnetostatics analogy   

In Maxwell’s formulation, electrostatics have parallel interactions while magnetism operates 

ninety degrees apart.  This is because electromagnetism interacts perpendicularly to each other.  

However, in a system, such as this couple, in which only magnetism exists, it is possible to 
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define magnetism in a parallel fashion.  This approach makes solving forces a matter of solving 

boundary conditions and similar to a number of common approaches found in electrostatics.   

The expression will be derived using the analogy between the electrostatic and the 

magnetostatics fields, to find our pull-out torque value. To begin this, one would need to 

consider being in free space. Being in free space allows an electrostatic uniform surface charge 

density 𝜎𝑆 (C/m2) to be subjected to an electric field �⃗� . The Lorentz force (N) exerted on 𝜎𝑆 is   

 

 
𝐹 𝑆 = 𝜎𝑆 ∬�⃗� ⅆ𝑆

𝑆

 
(1) 

 

where S is the surface which carries 𝜎𝑆.   

From the magnetostatics perspective, one may consider using an equivalent magnetic 

surface charge 𝜎𝑚(A/m).  For modelling purposes, the magnetic charge (𝜎𝑚) is introduced to 

replace some magnetic field sources.  Using the analogy stated previously between the 

magnetostatics and the electrostatic force, given by (1), the magnetic force (N) is then obtained 

by  

 𝐹𝑆
⃗⃗  ⃗ = 𝜎𝑚 ∬�⃗� ⅆ𝑆

𝑆

 

 

(2) 

  Here, S is the surface which carries 𝜎𝑚.  

The force expressions (1) and (2) show that the electrostatic-magnetostatics analogy 

connects the electric field �⃗�  to the �⃗�  field (called flux density).  
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Relating this to the magnetic coupler, one needs to compute the force through the magnet’s 

magnetic surface charge on one disc and the magnetic field created by the magnets of the second 

disc. Expression (2) uses Lorentz force in free space provides the correct values of the force 

along the x and y directions for the coupler. However, magnets give a force in the z-direction, so 

(2) will not give the true value of the force, and the Maxwell stress tensor incorporated.  

 

2.2  Magnetic field due to the magnets of one rotor   

The magnetic field is assumed null in the housing for two reasons: there are no added 

components that give off a large enough magnetic field, and for simplicity. The boundary 

condition on housing is  

  

 �⃗� × �⃗⃗� = 0 

 

(3) 

where �⃗�  is the outward direction normal to the considered surface and �⃗⃗�  is the magnetic 

field strength. Rare-earth permanent magnets have a relative permeability close to that of air (µ𝑟 

= 1).  It is then more convenient to use a magnetic scalar potential (𝛷) formulation (�⃗⃗� = − ∇ 𝛷) to 

solve the magnetostatic problem.  The flux density �⃗�  is given by  
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Air region: �⃗� = −𝜇0𝛻𝛷 

 

(4) 

Magnets region:                    �⃗� = −𝜇0(𝛻𝛷 + �⃗⃗� ) 

 

(5) 

where �⃗⃗�   is the magnetization of the magnet.  

Dx is found at the magnets center and uses the arc length that equally spaces the magnets 

apart from one another.  This allows for the problem to be solved in a Cartesian coordinates 

system.  Figure 2.2 shows the main dimensions of the linearized coupler in a 3-dimensional 

space.  The dimensions of the magnet are 𝑙𝑚𝑥(the length of the magnet in the x direction),  

𝑙𝑚𝑦(the length of the magnet in the y direction) and h (thickness of the magnet along the z-

direction).  Dx (Domain in the x-direction) is found by calculating the arclength around each 

individual magnet, by using the radius to the magnets center and theta, equaling the 360° divided 

by the number of dipole pairs(p).   Since the model assumes an alternating polarity relationship, 

only one pole is considered with anti-periodic boundary conditions along both the x and y axis 

[2].  Dy (Domains of the magnet in the y-direction) is fictitious but needed to get a solution [2].  

By setting Dy>>𝑙𝑚𝑦, gives a realistic solution and for best results Dy = 2𝑙𝑚𝑦.  The airgap 

between the two rotors is noted as ν.  
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Figure 2.2. 3-D image of the dimensions of one magnet pole after linearization adapted from 

Dolisy from reference [2] fig.3. 

 

  

Domain I (0 ≤ 𝑧 ≤ h) is composed of the region of the magnet along the z-axis. The 

magnetization vector is noted �⃗⃗� = 𝑀𝑧(𝑥,𝑦) 𝑒 𝑧.  The boundary conditions require that magnetism 

reaches zero at the top and bottom of the magnet. The solution is thus obtained by expanding the 

magnetization into a double Fourier series along x and y-directions as shown in figure 2.5.   
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𝑀𝑧(𝑥, 𝑦) = ∑ ∑ 𝑀𝑛,𝑚 𝑐𝑜𝑠(𝑤𝑛𝑥) 𝑐𝑜𝑠(𝑤𝑚𝑦)

∞

𝑚=1

∞

𝑛=1

 

with 𝑀𝑛,𝑚 =
16𝐵𝑟

𝑢0𝑛𝑚𝜋2
sin(𝑤𝑛𝑙𝑚𝑥) sin(𝑤𝑛𝑙𝑚𝑦) 

𝑤𝑛 =
𝑛𝜋

𝐷𝑥
; 𝜔𝑚 =

𝑚𝜋

𝐷𝑦
 

 

 

(6) 

 

where n, m are odd integers, and Br is the residual flux density of the permanent magnets 

measured in Tesla. The magnetization given by (6) is divergence free ∇⋅ �⃗⃗�  = 0.  

Domain II (ℎ ≤ 𝑧 ≤ ℎ𝑡) corresponds to the actual air-gap and the second magnet (whose 

magnetization is turned off).  The magnetic scalar potential is noted 𝛷𝐼 in domain I and 𝛷𝐼𝐼 in 

domain II are shown in the following expression (7) respectively.  𝛷𝐼 and 𝛷𝐼𝐼 are the solution of 

Laplace equation[2]  

 𝛻2𝛷𝐼 = 𝛻 ⋅ �⃗⃗� = 0 

∇2𝛷𝐼𝐼 = 0 

 

(7) 

Figure 2.3 shows the x,z plane of one magnet, and shows each domain and the 

magnetization.  This figure also shows the dimensions along the z-axis, where the entire region 

(domain I and II) consists of both magnets and the air gap between, noted as ht, where ht= 2h+v. 

 Figure 2.4 shows the magnetization as a function of x and y.  It also gives a better 

comparison of each of the domains.   
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Figure 2.3 Domains and equations in the plane (x,z) adapted from reference [2] fig 4. 

 

 

Figure 2.4 shows the magnetization Mz as a function of x and y (domain I)  
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By considering the anti-periodic boundary conditions along with the x and y coordinates, 

the use of the method of separation of variables provides the following form solutions for 𝛷𝐼 and 

𝛷𝐼𝐼  

  

 

𝛷𝐼(𝑥, 𝑦, 𝑧) = ∑ ∑(𝐴𝐼𝑒
𝑘𝑧 + 𝐵𝐼𝑒

−𝑘𝑧)

∞

𝑚=1

∞

𝑛=1

× 𝑐𝑜𝑠(𝜔𝑛𝑥) 𝑐𝑜𝑠(𝜔𝑚𝑦) 

𝛷𝐼𝐼(𝑥, 𝑦, 𝑧) = ∑ ∑(𝐴𝐼𝐼𝑒
𝑘𝑧 + 𝐵𝐼𝐼ⅇ

−𝑘𝑧)

∞

𝑚=1

∞

𝑛=1

× cos(𝜔𝑛𝑥) cos(𝜔𝑚𝑦) 

With 𝑘 = √𝑤𝑛
2 + 𝑤𝑚

2  

 

 

(8) 

 

The coefficients AI, BI, AII and BII are obtained using the interface and boundary 

conditions[2].  The boundary condition in domains I and II are set at z=0 and z=ht, respectively. 

These conditions state that the tangential magnetic field components Hx and Hy are zero. This 

leads to  

  

 𝐴𝐼 + 𝐵𝐼 = 0 

𝐴𝐼𝐼𝑒
𝑘ℎ𝑡 + 𝐵𝐼𝐼𝑒

𝑘ℎ𝑡 = 0 

(9) 
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Interface conditions between domains I and II are set at z=h. Domain I and II have the 

same magnetic permeability (µr=1), so the normal flux density (Br) and the tangential magnetic 

fields (Hx and Hy) of the domain I and II will be equal at z=h. The two following expressions 

arise  

  

 𝐴𝐼𝑒
𝑘ℎ + 𝐵𝐼𝑒

−𝑘ℎ − 𝐴𝐼𝐼𝑒
𝑘ℎ − 𝐵𝐼𝐼𝑒

−𝑘ℎ = 0 

𝐴𝐼𝑒
𝑘ℎ − 𝐵𝐼𝑒

−𝑘ℎ − 𝐴𝐼𝐼𝑒
𝑘ℎ − 𝐵𝐼𝐼𝑒

−𝑘ℎ =
𝑀𝑛,𝑚

𝑘
 

(10) 

 

The coefficients AI, BI, AII, and BII are calculated by solving an algebraic system of linear 

equations from (9) and (10) given by,  

 
𝐴𝐼 = −𝐵𝐼 =

𝑀𝑛,𝑚
(𝑒2𝑘ℎ − 𝑒2𝑘ℎ𝑡)

2𝑘𝑒𝑘ℎ(𝑒2𝑘ℎ𝑡 − 1)
 

𝐴𝐼𝐼 = −
𝑀𝑛,𝑚 𝑠𝑖𝑛ℎ(ℎ𝑘) 𝑒−𝑘ℎ𝑡)

2𝑘 sinh(ℎ𝑡𝑘)
 

𝐵𝐼𝐼 =
𝑀𝑛,𝑚 𝑠𝑖𝑛ℎ(ℎ𝑘) 𝑒𝑘ℎ𝑡)

2𝑘 sinh(ℎ𝑡𝑘)
 

 

 

(11) 

  

2.3  Equivalent surface charge density of the second PM rotor 

   The surface charge density of a magnet with uniform magnetization is given by   

 𝜎𝑚 = �⃗⃗�  ⋅ �⃗�  (12) 
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Where �⃗⃗� = 𝑀𝑒 𝑧 = 𝐵𝑟/𝜇0𝑒 𝑧 is the magnetization vector while  �⃗�  represents the outward 

normal to the respective surface. This dot product is to be performed on all the external surfaces 

of the magnet volume.  

Figure 2.5 shows a rectangular permanent magnet with a uniform magnetization in the z-

direction. The magnet is represented by two surface charge densities:  𝜎+ and 𝜎− (from expression 

(12)).  The surface charge density 𝜎+ = 𝑀 is located at 𝑧 = ℎ𝑡  and the surface charge density 𝜎− = 

−𝑀 at 𝑧 = ℎ + 𝑒.  

 

 

 

Figure 2.5 Equivalent surface charge density for a rectangular permanent magnet used from 

Dolisy reference [2] fig 6. 
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2.4  Torque expression  

The force is computed using expression (2) where integration is performed on the surfaces 

carrying 𝜎+ and 𝜎−.  However, according to the boundary condition from expression (3), the 

components 𝐵𝑥 and 𝐵𝑦 of the flux density are null on the charged surface 𝜎+ (at 𝑧 = ℎ𝑡), so the 

forces that contribute to torque (Fx and Fy) are also negligable. Hence, the integration is only 

performed on the charged surface 𝜎− (at 𝑧 = ℎ +𝑒).   

The axis of rotation (the shaft axis) is parallel to the 0 in the z-axis. This axis has constant 

coordinates noted (x0,y0) in the reference frame. The z-component of the torque is then obtained 

by  

 

𝑇 = ∫ ∫ [(𝑥 − 𝑥0)𝑓𝑦 − (𝑦 − 𝑦0)𝑓𝑥]ⅆ𝑥ⅆ𝑦

𝑙𝑚𝑦

−𝑙𝑚𝑦

𝑙𝑚𝑥+𝑋𝑖

−𝑙𝑚𝑥+𝑋𝑖

 

(13) 

  

The variable 𝑋𝑖 in the limits of integration in equation (13) corresponds to the angular lag 

(load angle) 𝜑 between the two rotors of the coupling. 𝑋𝑖 and 𝜑 are related by 𝜑 = 𝑋𝑖/r𝑚c where  

r𝑚c  is the radius to the magnets center.  Notice that the maximum (pull-out) torque is obtained 

for a position 𝑋𝑖 = 𝐷𝑥.   In (13), 𝑓x and 𝑓y represent the force densities in (N/m²) obtained by 

replacing the flux density expression (4) in the force expression (2).   
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𝑓𝑥 = −𝜇0𝜎−

𝜕𝛷𝐼𝐼(𝑥, 𝑦, 𝑧)

𝜕𝑥
|
𝑧=ℎ+𝑒

 

𝑓𝑦 = −𝜇0𝜎−

𝜕𝛷𝐼𝐼(𝑥, 𝑦, 𝑧)

𝜕𝑦
|
𝑧=ℎ+𝑒

 

 

(14) 

 

The force density 𝑓𝑦, being symmetrical along the y-direction, corresponds to the torque 

obtained by integration between along 𝑙𝑚𝑦 and disappears. Hence, for 2ρ poles, and y0= -rmc the 

torque expression (14) becomes   

 

𝑇 = ∫ ∫ (𝑦 + 𝑅𝑚𝑐)

𝑙𝑚𝑦

−𝑙𝑚𝑦

𝑙𝑚𝑥+𝑋𝑖

−𝑙𝑚𝑥+𝑋𝑖

𝜕𝛷𝐼𝐼

𝜕𝑥
|
𝑧=ℎ+𝑒

ⅆ𝑥ⅆ𝑦 

(15) 

  

Finally, from (8) and (11) an analytical expression for the torque is obtained after 

integration of (15)  

 

𝑇 =   ∑∑
128 𝑝 𝐵𝑟 𝑅𝑚𝑒𝑎𝑛

𝜋2𝜇0 𝑛 𝑚 𝑘 𝑤𝑚
𝑠𝑖𝑛2 (𝛼 𝑛 

𝜋

2
) 𝑠𝑖𝑛2 (𝜔𝑛 𝑙𝑚𝑦

)
𝑠𝑖𝑛ℎ2(𝑘 ℎ)

𝑠𝑖𝑛ℎ(𝑘 ℎ𝑡)
𝑠𝑖𝑛(𝑛 𝑝 𝜑)

𝑣

𝑚=1

𝑁

𝑛=1

 

 

(16) 

Where n and m are the number of harmonic terms used for the torque calculation.  
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Within this entire expression, the most important relation for this experiment is 
1

𝑠𝑖𝑛ℎ(𝑘 ℎ𝑡)
.  Since 

my measurements vary the air gap distance, ν, is within the parameter of 𝑠𝑖𝑛ℎ(𝑘 ℎ𝑡), where  ℎ𝑡 =

2ℎ + 𝜈, this parameter will be examined further.  The hyperbole sine  

 
𝑠𝑖𝑛ℎ(𝑘 ℎ𝑡) =

𝑒𝑘(2ℎ+𝜈) − 𝑒−𝑘(2ℎ+𝜈)

2
≈

𝑒𝑘(2ℎ+𝜈)

2
 

 

(17) 

Considering this hyperbolic sine is in the denominator this provides  

 𝑇 ∝ ∑𝑒−𝐾(2ℎ+𝑣)  

(18) 
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3. Experimental Methods      

For the construction of the axial magnetic couple, many components were used to solve a 

variety of design problems that occurred.  Initially, there was a need for the magnets to be 

secured onto each disc, and for those discs to move freely from one another.  First, a disc 

housing was created for the magnets to be placed in.  This housing is shown in figure 3.1. An 

aluminum disc was used to connect the disc to the axle through a ceramic ball bearing.  This 

allowed the disc to become a rotor and move freely.  An acrylic disc was created to restrict the 

movement of the magnets in the x and y-direction. Between the acrylic and aluminum backing, a 

disc of a steel sheet metal was placed.  The sheet metal completed the magnetic circuit of the 

magnets as well as prevented the magnets from moving in the z-direction.  An acrylic disc was 

placed over the magnets to secure everything together.  
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Figure 3.1.  Transverse view of the created magnetic coupler showing the axles, aluminum 

backing, steel sheet metal, magnets, acrylic holder, and the front piece 

 

 

3.1 Design  

The design of the face-to-face magnetic couple consisted of many layers.  The initial 

design for the first experiment was to create a 5.5” housing to best fit six of the 1”x 1” x 0.5” 

(LxWxH) magnets.   

The first piece was a 0.55” thick clear acrylic sheet that was cut to 5.5”, as shown in 

figure 2.2c.  This design was chosen to have each magnet equally spaced around the acrylic 
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wheel, and provide 0.25” space from the magnets and the edge.  The 0.25” thickness was chosen 

because this gave the structure durability in case the acrylic was ever dropped. Each acrylic was 

milled to the exact dimensions of the magnets.  

 The next piece created was the steel metal sheet, figure 3.2(b).  This sheet was used to 

complete the magnetic circuit.  The metal sheet also provided stability to the housing and 

prevented the magnets from moving in the z-direction as previously stated.  

 The next piece created was the aluminum backing, figure 3.2(a).  To ensure that there 

would not be any added magnetic field to our housing unit, aluminum (3/16” thick) was used.  

The aluminum backing was also used to screw all the magnets and layered housing materials 

together, leaving everything compact and together.  

 The final piece created for the housing was the acetate plastic cover, figure 3.2(d).  This 

cover can be optional in the experiment.  If the magnets used in future experiments have a screw 

hole in them, then they can be screwed onto the aluminum backing.  An acetate cover was used 

to create a sleek finish and enclose the magnets inside. The 1/8” thickness of acetate was selected 

to allow the use of a beveled screw to secure all the pieces together.   



31 
 

  

Figure 3.2. Picture of mechanical components for the housing unit.  The components are a) 

aluminum housing back, b) sheet metal, c) acrylic magnet holder, d) front piece. 
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3.2 Arrangements 

This section will describe all the design variations built and used for testing. In the end, 

there were five pairs of housing units created for the experiment shown in figure 3.3.  Each 

arrangement was explicitly created for each test.   

 

  

Figure 3.3. A picture of all the different housing units created for this experiment, the labels will 

be explained in a further section 
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3.2.1 Polarity Arrangements 

 The first experiments were to test whether an alternating arrangement rather than the 

same polarity arrangement would be best. In figure 3.4, two examples of an anterior view display 

how the magnets would be arranged in the housing unit.  The blue color represents the South 

polarity in the front, while the red displays the North polarity in the front. This arrangement was 

tested with a 5.5” diameter disc that held four 2-inch rectangular magnets, six 1-inch squares, 

and eight 0.5” square magnets.  These discs are labeled e, f, and g respectively in figure 3.3.  

 

 

Figure 3.4. Anterior view of a magnetic couple arrangement with (a) alternating polarity and (b) 

homogenous arrangement.  In both (a) and (b) the blue represents south facing magnets while the 

red squares represent north facing magnets. 
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3.2.2 Magnetic Strength 

 The first test conducted was to test how varying strengths of magnets would affect the 

torque.  This test was constructed with four magnets on a 5.5” disc.  The discs used are shown in 

figure 3.3(e)(g).   

  Table 3.1. Specifications for each magnet in this setup 

Housing type from 

figure 2.2 

Magnets used Grade  Pulling force 

(g) Rectangle 2”x1”x0.5” N50 87lbs 

(g) Square 1”x1”x0.5” N55 55lbs 

(g) Round 1”d x 0.5” ND 60 49lbs 

(e)  Square 0.5”x0.5”0.5” N52 34lbs 

 

3.2.3 Number of Magnets 

 The one-inch magnets were used to test how the number of magnets would affect the 

torque.  Figure 3.3g shows the disc that was used for the test of four magnets.  Figure 3.3f shows 

the disc that housed the 6 magnets.  Moreover, another housing unit was created that held eight 

1-inch sized magnets.   

3.2.5 Varying radial distances 

 In this experiment, the radial distance to the magnet’s center was varied.  To do this, the 

discs were scaled down.  The ratio was maintained between the radius to the magnet's center and 

the radius to the load.  Figure 3.5 illustrates an example of the radial arm to the center of the 

magnet and the radial arm to the load.  In this experiment they are proportionally the same 
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through varying test.  Figure 3.3g and figure 3.3h displays the used discs.  The 2” rectangle 

magnets were used in comparison to the 1” square magnets.   

 

  

 

Figure 3.5. Front view of the housing unit without the cover, showing the radial arm to the center 

of the magnet and the radial arm to the load. 
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3.3 Tests 

To test all the arrangements of magnets, axles are created to hold the discs and ensure 

they are parallel and level to one another.  The axles are machined out of aluminum to eliminate 

any added magnetic field. The axles are screwed onto the discs and have two ceramic ball 

bearings to allow a free range of rotational movement.  The ball bearings are surrounded with an 

aluminum tube that was used to secure the axle onto a stable surface. (Refer back to figure 3.1 

for a transverse view of the magnetic couple). 

 To test the magnetic coupler, the load side is secured onto a steel table with a vise clamp.  

The idea behind securing it to the table was the need for an object that it is heavy enough not to 

allow itself to be pulled by the attraction of the magnets.  The load (in grams) is added to the 

load side.  This setup is shown in figure 3.6.  The drive side of the couple had its axle attached to 

the bed of an upright milling machine that is secured to the ground.  This allows for the drive 

side to be secure, but also provides the control of the bed of the mill and manipulate is manually 

to maneuver the drive side into place using the three-axis gear system on the mill machine.  This 

creates a convenience when aligning the couple parallel to one another.   

To find this maximum torque (pull-out torque), weights are hung from the load side of 

the magnetic couple. The drive side is rotates manually to see if the weights will lift or if the 

drive will slip.  This experimentally measures the maximum torque of the magnetic couple.  The 

experiment is repeated for varying distances.  To do so, the drive side of the magnetic couple is 

manipulated to find the maximum air gap between the two magnetic couples at which the drive 

did not slip.  At a given distance, the drive side would be rotated.  If the load side would be 

unable to rotate with the drive side and slip occurs, then the distance of the air gap would 
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decrease, and the test will be repeated.  If the load side was able to easily rotate with the drive 

side, then the distance of the air gap would be increased.  This procedure would continue until 

the maximum distance between the plate that did not allow slip to occur was found (refer back to 

figure 1.3c for a 2-D diagram of this moment). The milling machine’s digital readout system 

provided the distance between the two magnetic plates.  The milling machine provides a 

resolution of <0.005” ~0.2mm.  
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Figure 3.6. Image of data collection for torque for each magnetic arrangement with weight added 

to the right disc and the left disc is rotated until the couple slips.   
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4. Results and Analysis       

   To understand the nature of magnetic couples, several tests were performed with 

comparison to one another.  The tests conducted were testing the polarity arrangements of the 

magnets, the strength of the magnets, the number of magnets and the radial distance that the 

magnets were placed.  Through all the experiments, we measured the maximum weight (in 

grams) the load rotor was able to hold.  From this, we were able to find our maximum pull out 

torque.  Through the various arrangements we tested, we then were able to compare different 

ways the magnets affect the maximum torque.  

4.1 Polarity arrangements 

 The first experiments were to test whether an alternating arrangement rather than the 

same polarity arrangement would be best (figure 3.4).  Since our theory assumes the magnets are 

arranged in an alternating arrangement, we wanted to verify that this was better than the same 

polarity arrangement. In each graph, the blue line represents an alternating relationship while the 

orange line represents the same polarity relationship, and in graphs d-f the y-axis is on a 

logarithmic scale. Graphs (a), (b), and (c) are the raw data comparison of airgap vs the pull out 

torque, and are the same graphs (d), (e), and (f) respectively.  Figure 4.1a shows the relationship 

between distance and the pull-out torque on a magnetic couple that held four 2”x1”x.5” rectangle 

magnets.  The graph 4.1b shows the relationship between distance and pull-out torque for six 

1”x1”x0.5” square magnets.  The graph 4.1c shows the relationship between the distance and 

pull-out torque for eight 0.5” (0.5”x0.5”x0.5”)  cubed magnets.  In each, quantitatively a 

maximum torque for alternating polarity is higher than the same polarity.   
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Figure 4.1. Experimental results for an alternating magnetic polarity arrangement (blue circles) 

vs. the same polarity relationship (orange triangles).  Graphs (a), (b), and (c), are the same test as 

graphs (d), (e), and (f) respectively but graphs (d-f) have the y-axis on a logarithmic scale. (a) 

comparison of the 2” rectangle magnets (b) data collected from the 1” sq magnets (c) data 

collected from the 0.5” cubed magnets. 

  



41 
 

 

 

These results clearly show that an alternating polarity arrangement will provide more 

strength than the same polarity relationship, we then only used that arrangement for future 

relationships.  As well, it was consistently noticed that the results are fit well by an exponentially 

decaying function,  

 𝑇 ∝ ∑𝑒−𝐾(2ℎ+𝑣) (19) 

This will be further explored in later sections. 

4.2 Strength of Magnets 

 Next, we wanted to see how the relationship was affected by the strength of magnetic 

pairs.  We used the 5.5” diameter disc and only used four magnetic pairs at a time.  In figure 4.3, 

the blue (circles) line shows the 2”x1” x0.5” rectangle magnets.  The orange (triangles) line 

shows the 1sq in x 0.5” square magnet.  The grey (squares) line shows the 1” diameter disc 

magnet.   
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Figure 4.2. Maximum torque vs. separation for different types of magnets mounted in the 

couplers.  

 

In this experiment, the variable Br was initially thought to be varied due to the differences 

in pulling forces.  After further investigation, of the magnets purchased, it was found that all the 

magnets have the same Br.  

 

  Table 4.1. Specifications for each magnet used in this test 

Magnets used Grade  Pulling force Br (T) 

Rectangle 2”x1”x0.5” N50 87lbs 1.32 

Square 1”x1”x0.5” N55 55lbs 1.32 

Round 1”d x 0.5” ND 60 49lbs 1.32 
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Yet when given the same Br, the graphs did not come out the same.  This is due to the 

geometries not being the same.  The larger the magnets, the more surface area, and volume it 

takes up in the disc.  This is further explored next. 

 

4.3 Number of Magnets 

 To understand how the number of magnets would affect the relationships the same 

magnets were used.  Figure 4.2 graphs display, how the number of magnets may affect the pull-

out torque.  Figure 4.2(a) displays the 1”x1”x0.5” square magnets on a 5.5” diameter disc.  The 

darker the line gets, the more magnetic pairs that arrangement had in the housing.  There is an 

added picture of the arrangements on the graph.  The pictures of the arrangements on the discs 

from the top down have respectively related the lines on the graph.  The blue lines go from 4 

magnetic pairs to 6 magnetic pairs and then to 8 magnetic pairs.  On graph (b), this shows the 

0.5” cubed magnet.  The dark blue line represents eight magnetic pairs while the light blue line 

represents four magnetic pairs.  This graph has the same concept as above.   
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Figure 4.3. Graph (a) shows a varying number of 1” magnets (b) shows a varying number of 0.5” 

magnets.  Both graphs are on a logarithmic y-axis. 

 

We had noticed that the greater the number magnetic pairs there were, the stronger the 

pull-out torque was.  Again, the best-fit equation, for these data follows Eq. 19.  After looking at 

the graph 4.3a, we then began to look at the ‘b’ variable.   
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Table 4.2. experimental data for graph 4.3a.   

8 magnets 6 magnets 4 magnets 

 b = .856 b = .749 b = .656 

  

To prove that the experimental results were conclusive with the analytical models, the 

ratio between the ‘b’ values of the experimental model are then compared to the ratios of the ‘k’ 

values of the analytical models.   This is because experimentally, the coefficient of x is -b, while 

the coefficient of x(ν) of our analytical model is -k(2h+x). This goes with the assumption of x=1, 

then 𝑏 ≈ 𝑘. The value k consists of the domains, Dx and Dy.  The domain Dx is affected by the 

number of magnets, because the number of magnets will affect the equidistant arclength found at 

the radius to magnets center.  The number of magnets is divided by 360° to get the theta between 

all the magnets.   

The ratios of ‘b’ were found to compare to the ratios of ‘k.’  Both ‘b’ and ‘k’ are the 

coefficient to the airgap distance. If the experimental model compares with the theoretical model 

the ratios would be similar since the values would be increasing proportionally. Here, the three 

ratios that were looked at experimentally were:  b8/b4=1.3, b6/b4=1.14, and b8/b6=1.14.  

Next, the analytical model was used to find the various values of k.  Table 4.3 displays 

the values that were received for each variable.  First, the Dx was found by finding the 

corresponding arc length of each set of arrangement (figure 2.1). Dy was to remain constant for 

any arrangement with the same rmc. From there, equation (6) was used to find wn and wm.  Then 

equation (8) was used to find κ.  
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Table 4.3 Theoretical data for varying the number of dipole pairs and the k parameter 

 8 magnets 6 magnets 4 magnets 

Dx(cm) 3.49 4.65 6.98 

Wn .899 .675 .449 

Dy(cm) 5.08 5.08 5.08 

Wm  .618 .618 .618 

κ 1.09 .915 .764 

 

 Once k was found, then the ratios between k were found:  κ8/κ4=1.43, κ6/ κ4=1.19, and κ8/ 

κ6=1.19.  This was promising and showed the experimental model compared to the analytical 

model.   

4.4 Varying radial distances 

 To show this experiment, each test had four magnets.  We then decreased the sizes of the 

housing to decrease the radial distance of the magnet from the center. Each test consisted of the 

1”x1” x.5” square magnets.  In figure 4.4, the graph shows the blue (circle) line being the 5.5” 

diameter housing; the orange (triangle) line shows 4” diameter housing.   
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Figure 4.4. Pull out torque vs. air gap distance on different size magnetic couplers with the y-axis 

on a log scale. 

 

  In hindsight, it would have been beneficial to have the diameter of the housing the same, 

and only have the magnets move closer to the radius.  From analyzing section 4.2, we learned 

that the geometry of the magnets has a strong influence on the torque.  Unfortunately, the 

magnets in this experiment were downsized proportionality to the size of the frame.  Because 

two varibles were changed simultaneously, this is potentially why the slopes of these lines are 

similar.   Since everything was proportionally downsized, this includes the radius to the magnets 

center, overall frame radius and radius to the load, the exponent coefficient for each line should 

be similar and have the ratios between the two tests equal to one.  The ratio between these 

experiments equal to .97.  
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Conclusion           

After completing all the experiments, the experimental model of equation (19) can relate 

to that of the proposed theory in equation (18).  After reviewing the analytical model, the 

parameters that might affect the graph of airgap vs. torque’s shape were further explored, 

particularly k.  The experiment found that the more dipole pairs, the stronger the couple would 

be.  This also includes using as much of the housing as possible.   

 Some possible errors in the experiment may have contributed to the magnetic couple not 

being precisely parallel with one another.  Any slight degree off would lower the efficiency, but 

not by much[7].  Another possible error would be attributed to having the motor side of the 

coupler being manually rotated, instead of having it on a motor and computationally monitoring 

the effects on the torque.  This potentially would indicate that the tests might have given a lower 

value than what is ideally possible.  However, when working with the magnetic couple, one 

would want to be well within the range of the maximum torque for whatever the installment may 

consist of.  

 For future work, to better the previous experiments, one would want to isolate as many 

variables as possible. For example, when testing strength, one would want to find magnets with 

the same geometry but different Br.  Another example is one might use slots on the housing to 

adjust the magnets at various distances from the center.  Different directions would be to explore 

other parameters of the final equation and find how it might relate to the simplified version. 

Other areas to test a magnetic coupler also include the efficiency of the magnetic coupler at 

various degrees off center.  To include, one can test the efficiency of the magnetic coupler at 

various distances off center while keeping the couple parallel to one another.    
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