Complexity and Fly Swarms

BY TROY TAYLOR FACULTY ADVISOR: DR. JOELLE MURRAY LINFIELD COLLEGE

What is Complexity?

Whole system made up from individual, interrelated parts

- Individual parts have simple interactions with one another
- System exhibits emergent properties (often unexpected)

There is no absolute definition of complex systems

Starling Flock

Why is it Important?

Many complex systems:

Forest fires, earthquakes, stock market, quantum to cosmological systems, and biological systems (fish schools, bird flocks, plant root-growth, <u>fly swarms</u>).

Understanding the nature of complexity

Help us to understand all complex systems

https://bluethumb.com.au/david-clare/Artwork/fish-school-7

Computational Models

Drawback

• Could miss out on key component of system

Power of a computational model

- Control variables
- Set parameters
- Make adjustments
- Gather data/plot

Example of Part of our Code

```
for i = 1:size(moves,1) % Determine each potential move
potential moves(i,:,fly,sec,iteration) = current position + moves(i,:);
%Boundary Conditions
if abs(potential moves(i,1,fly,sec,iteration)) > Wall
    potential moves(i,:,fly,sec,iteration) = NaN;
else
    potential moves(i,:,fly,sec,iteration) = potential moves(i,:,fly,sec,iteration);
end
if abs(potential moves(i,2,fly,sec,iteration)) > Wall
    potential moves(i,:,fly,sec,iteration) = NaN;
else
    potential moves(i,:,fly,sec,iteration) = potential moves(i,:,fly,sec,iteration);
end
if abs(potential moves(i,3,fly,sec,iteration)) > Wall
    potential moves(i,:,fly,sec,iteration) = NaN;
else
    potential moves(i,:,fly,sec,iteration) = potential moves(i,:,fly,sec,iteration);
end
```

Fly Swarms and Our Goals

Fly (midge) swarms exhibit complex behavior

More simple system

Want to distinguish when flies are and aren't **swarming**

Looking for critical state to emergent property

Phase transition?

Our Various Models

- Base (random walkers[Shown on right])
- Local Center of Mass
- Center of Mass Velocity
- Local Velocity Averaging
- Any Combination
- Also can include Gravity

Model Flowchart

https://mathematica.stackexchange.com/questions/19165/how-to-generate-a-3-d-simple-cubic-lattice-of-length-4-in-each-dimension

3D Visual (Base vs Local CM/Velocity)

3D Visual (Base vs Local CM/Velocity)

Experimental Results to Compare

 Douglas H. Kelley and Nicholas T. Ouellette studied actual fly systems and found polarization of ~0.25, where polarization is defined:

$$\Phi = \left| \frac{1}{N} \sum_{i} \frac{\vec{v_i}}{v_i} \right|$$

Their results were as follows:

Our Polarization Measurements

Emergent dynamics of laboratory insect swarms -- Douglas H. Kelley & Nicholas T. Ouellette

Swarm Radius

Douglas H. Kelley and Nicholas T. Ouellette also found the following relationship:

 $< r > \propto N^{1/3}$

Results on Power Law

Future Goals and Directions

Compare with other experimental and computational groups' data

Continue to modify and improve our computational model

Define "swarming" more definitively

Acknowledgments

M.J. Murdock Charitable Trust

Linfield College Collaborative Research Grant

Linfield Physics Department

Professor Joelle Murray

Questions?