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MODELING THE DISAPPEARANCE OF THE NEANDERTHALS

USING CONCEPTS OF POPULATION DYNAMICS AND ECOLOGY

MICHAEL F. ROBERTS AND STEPHEN E. BRICHER

Abstract. Current hypotheses regarding the disappearance of Neanderthals

(NEA) in Europe fall into two main categories: climate change, and competi-

tion. Here we review current research and existing mathematical models that
deal with this question, and we propose an approach that incorporates and

permits the investigation of the current hypotheses. We have developed a set
of differential equations that model population dynamics of anatomically mod-

ern humans (AMH) and NEA, their ecological relations to prey species, and

their mutual interactions. The model allows investigators to explore each of
the two main categories or combinations of both, as well as various forms of

competition and/or interference within the context of competition.

The model is designed to include a wide variety of hypotheses and associ-
ated archaeological evidence, not focused on a particular hypothesis regarding

NEA extinction. It therefore provides investigators with a model to impartially

examine various hypotheses (individually or in combination) regarding climatic
effects, differential resource use, differences in birth/death rates and carrying

capacities, competition, interference, disease, interbreeding, and cultural dis-

tinctions that might have led to the extinction of NEA. Moreover, the model
accommodates the design of scenarios concerning—for example—population

growth, hunting, competitive interactions, cultural differences, and climatic
influences to investigate which concepts best explain the rapid disappearance

of NEA.

In addition, our model is a modification of the classical Lotka-Volterra
model for a wide range of any two populations competing for a common re-

source. Specifically, our model explicitly includes the resource as an additional

variable, a dependence of important population parameters on resource, as well
as accommodates treating one of the populations as invasive.

1. Introduction

Neanderthals (NEA) originated approximately 400, 000 years ago and lived in
Europe and western Eurasia through at least two cycles of glacial and interglacial
conditions (Stringer et al., 2003). Neanderthal geographical distribution, as well as
mitochondrial DNA comparisons with anatomically modern humans (AMH), sug-
gest that the two lineages share a common ancestor between 270, 000 and 440, 000
years ago (Green et al., 2010). In palaeoanthropology, species are differentiated by
morphology (Mayr, 1965; Fox, 1986) rather than by potential for interbreeding. It
is thus difficult to know on the basis of appearance alone whether NEA and AMH
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Figure 1. Temperature (compared to today) over the last 150, 000
years, based on 18O and 16O ratios from Antarctic ice cores. Most of the
record is the last glacial period, but the previous interglacial is shown as
well. Relative cool periods (OIS-2 and OIS-4) flank the warmer OIS-3,
which lasted from 60, 000 to 27, 000 years ago. AMH arrived in Europe
at A (about 44, 000 years ago). The NEA disappeared from Europe at
B (39, 000 years ago), before cool climates returned at the end of OIS-3.
Temperature data from Petit et al., 1999.

were the same species. Anatomical studies have led NEA and AMH to be described
as either close sister species (Delson and Harvati, 2006) or as subspecies (Smith et
al., 2005; Trinkaus, 2007), and genetic evidence suggests several periods in the past
that AMH and NEA may have interbred to a certain extent (Kuhlwilm et al., 2016;
Prüfer et al., 2014). In any case, the two hominids appear to have had similar
ecological requirements and a large degree of overlap in resource use, including
predation on large herbivores such as reindeer—Rangifer tarandus (Grayson and
Delpech, 2008; Richards and Trinkaus, 2009).

NEA were the only hominids living in Europe until about 44, 000 years ago
(Verna et al., 2012), when AMH arrived. NEA appeared to be well adapted to a
range of climatic zones, and may have inhabited both woodland and tundra steppe
regions (Gaudzinski-Windheuser and Roebroecks, 2011). Recent research (Banks
et al., 2008; Higham et al., 2014) indicates the last NEA sites date to no later than
39, 000 years ago. NEA disappearance from their extensive range thus occurred
within 5, 000 years of the arrival of AMH in the regions occupied by NEA.

The time period of primary concern in this paper is the relatively warm inter-
stadial called Stage 3 (OIS-3, or Oxygen Isotope Stage 3; Figure 1) between 60, 000
and 27, 000 years ago (van Meerbeeck et al., 2009). Stage 3 was preceded by the
cold OIS-4 and followed by the even colder OIS-2—also called the Late Glacial
Maximum, or LGM (24, 000 to 19, 000 years ago, van Meerbeeck et al., 2009).
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Studies relating to NEA disappearance are of two types: archaeological and
mathematical. As a rule, the archaeological studies focus on evidence from sites
providing skeletal remains and tool technologies while mathematical studies use
approaches based on ecological population models. Whatever the type of study,
explanations for NEA disappearance fall into two major groups. The first focuses
on climatic influences that might have directly influenced survival or have led to
loss of food resources (Finlayson, 2004). The second deemphasizes the importance
of climate and focuses on interactions between NEA and AMH that might have
led to the replacement of NEA (Banks et al., 2008; Gilpin et al., 2016; Mellars,
2004; Zubrow, 1989 and 2000), which includes interbreeding followed by absorption
(Smith et al., 2005).

For the most part, those studies based on mathematical models have been the-
oretical, with minimal use of archaeological data; in turn, mathematical modelers
have generally not accounted for specific archaeological findings. Archaeologists
have not always embraced—or even mentioned—mathematical modeling studies.
An exception is Stringer et al. (2003), who described the implications of most of
the NEA extinction mathematical models then available. Our intention is to en-
hance communication between these two sets of researchers by illustrating ways in
which integration of an appropriate mathematical model with archaeological data
can help test the various hypotheses regarding the fate of the NEA.

We will first briefly review the archaeological studies, focusing on the claims of
proponents of climatic versus those of competition hypotheses. We will next ex-
amine various mathematical modeling approaches that have been used, and finally
we will propose a model of our own that uses concepts of population dynamics and
ecology.

Our model is inclusive of a wide variety of hypotheses and therefore should allow
testing of any hypothesis (individually or in combination) for the mechanism of
NEA extinction. We do not focus on whether climate, competitive interactions, or
any other ecological or cultural feature caused NEA extinction. Instead, the paper
is intended to provide an accessible and inclusive platform by which investigators
might test their own hypotheses regarding the population dynamics of NEA and
AMH, as well as to identify the relevant parameters that need estimating based on
archaeological evidence. Moreover, the model is designed to accommodate numer-
ous parameters, whose values correspond to archaeological data that reflect—for
example—the population ecology, competitive interactions, interference, disease,
interbreeding, or cultural differences between the two populations.

In addition, while we frame our model in terms of the two populations NEA
and AMH, it is a modification of the classical Lotka-Volterra model for any two
populations competing for a common resource. Specifically, our model explicitly
includes the common resource as an additional variable, a dependence of population
parameters on resource, as well as accommodates treating one of the populations
as invasive.

2. Current Hypotheses for NEA Extinction

In this section, we discuss the current hypotheses regarding when NEA became
extinct, as well as why they became extinct. The hypotheses for NEA extinction fall
into two main categories: climatic adaptability of NEA or competition. We identify
several topics of current discussion that influence how one approaches modeling the
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population dynamics of NEA and AMH: specifically, the discussions over (1) the
dates of latest NEA remains, (2) the level to which NEA were cold-adapted, (3) the
degree of overlap in resource use, and (4) the various types of interference between
NEA and AMH.

2.1. Dates of Latest NEA Remains. Much of the current discussion is affected
by the accuracy with which the timing of NEA disappearance is known. NEA
sites in Iberia were originally reported to have later dates for the last NEA occu-
pation levels than did sites farther north. Hypotheses (e.g., Finlayson, 2004) that
climatic change affects NEA disappearance depend on these late dates (approxi-
mately 24, 000 years ago) for NEA sites in Iberia. By then, the LGM had arrived
in northern Europe and if NEA were forest-adapted, they would need to move
south. In addition, such movement would reduce the probability of competition
with AMH.

However, Wood et al. (2013) reevaluated the late 14C dates from 11 sites in
Iberia, concluding that dates from nine of these sites were based on inappropriate
carbon samples and are not trustworthy. Materials from the two datable sites gave
dates more than 10, 000 years older than earlier estimates. Together these data
suggest that there is no reliable evidence that NEA were present in southern Iberia
more recently than 42, 000 years ago. This conclusion is consistent with another
new study (Higham et al., 2014) that indicates that nowhere in Europe are there
reliably dated NEA sites younger than 39, 000 years ago.

Any model that attempts to propose a cause for NEA extinction must accom-
modate the archaeological evidence indicating that NEA in Europe were gone by
approximately 5, 000 years after AMH arrived. In this paper we provide four simu-
lations of our model that achieve this result as required (see Section 5.3). Another
value of the simulations is that each is based on a different hypothesis for NEA
extinction, illustrating the inclusive nature and flexibility of our model. This ap-
proach of beginning with an inclusive model that does not focus on one specific
hypothesis allows investigators to broadly adapt mathematical (theoretical) mod-
els with archaeological discoveries (perhaps including discoveries yet to occur) and
data with impartiality.

2.2. Climatic Adaptability of NEA. The NEA disappeared before the end of
OIS-3 (B in Figure 1). They flourished during both cooler and warmer climates prior
to the arrival of AMH, who arrived about 44, 000 years ago (A in Figure 1). Even
so, it is a matter of discussion whether NEA’s disappearance is better explained by
climatic change or by competition with AMH.

NEA adaptations to the climatic conditions of Pleistocene Europe have been
studied for decades (Beals et al., 1984; Trinkaus, 1981). NEA were present in
central and western Europe at a time of greater cold than today, and proportions
of limb bones (Aiello and Wheeler, 2003; Trinkaus, 1981) and brain volume (Beals
et al., 1984) are consistent with their being at least as cold-adapted as modern
humans who now inhabit the most northern latitudes.

Because this issue can be important in the question of NEA extinction, we devel-
oped a graphical method to determine the relative importance of climatic influences
and competitive interactions between NEA and AMH. We attempted this by com-
bining estimations of NEA numbers in Europe, based on the model of Finlayson
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(2004), between 70, 000 and 38, 000 years ago with the oxygen isotope-derived tem-
perature estimates for the same time period (see Figure 2).

Any analysis of this sort is hampered by the difficulty of assigning dates to late
NEA sites; we used the simulation of Finlayson (2004) because in his model for NEA
in Iberia, NEA disappeared about 38, 000 years ago (see Figure 2A). If Finlayson’s
estimates for NEA population changes are realistic, then combining his model with
the oxygen isotope record (Petit et al., 1999) (see Figure 2B) suggests that NEA
had a wide temperature tolerance and that their abundance did not decrease in
times of relative cold. However, following the arrival of AMH, numbers of NEA
declined rapidly despite moderate temperatures and they disappeared well before
the LGM in Europe.

These data (Finlayson, 2004) are not the only NEA population numbers that
can be used to study NEA temperature relationships, and we suggest that other
researchers may want to make additional correlations between climate and the
NEA–AMH overlap. We present them only to propose that it is possible to use
graphical approaches to separate the question of NEA climatic tolerance from the
possible effects of competition/interference between NEA and AMH.

2.3. Competition and Interference. Competition is often (e.g. Hardin, 1960)
described as an “exclusion” process, in which only one of two closely related pop-
ulations can survive in a region. The principle is usually taken to refer to separate
species, but Hardin was not so restrictive: he merely required that the principle
govern two “non-interbreeding populations” occupying “the same niche” in “the
same geographic territory.” If one of the two populations has a higher population
growth rate, that population will replace the other. Our proposed model can incor-
porate all these ideas: first, it does not require that NEA and AMH are different
species, only that the level of interbreeding is low; second, it is consistent with
archaeological data showing that the two populations occupied the same geograph-
ical area during OIS-3; third, it is consistent with archaeological data showing that
sufficient overlap in resource use was present; fourth, the birth and death rates of
NEA and AMH can be set by investigators. The model can thus accommodate the
various situations, including scenarios involving several components of interference
and/or competition (see Sections 2.3.1 and 2.3.2). The model is not constructed to
focus on a particular hypothesis regarding NEA extinction; rather, the model is de-
signed to be inclusive of a wide variety of hypotheses and associated archaeological
evidence and data. The inclusiveness of the model provides investigators with an
accessible resource to examine various hypotheses (individually or in combination)
with impartiality.

2.3.1. Competition Between NEA and AMH. Opinions differ as to the degree of
dietary similarities between NEA and AMH. Grayson and Delpech (2008) analyzed
remains from a site in France containing both late NEA and early AMH remains;
they suggested that the diets of the two groups had extensive overlap. Drucker and
Bocherens (2004) and Richards and Trinkaus (2009) came to a similar conclusion
using nitrogen and carbon stable isotope signatures from NEA and AMH bone
collagen. All of these studies suggest that both NEA and AMH were among the
top carnivores during the last glacial episode. Both groups hunted and ate large
herbivores, and the primary difference between them was a greater reliance on fish
among the AMH (Richards and Trinkaus, 2009).



6 ROBERTS and BRICHER

	  
	  
	  
	  
	  
	  

	  
	  

Ë Ë
Ë
Ë

Ë

Ë
Ë Ë
Ë Ë
Ë Ë
Ë

Ë

Û
Û
Û
Û
Û

Û

ËË
Ë
Ë

Ë

Ë
Ë Ë

Ë Ë
ËËË

Û
Û

Û
Û

Û

Thousand years before present

(Panel A)

80 70 60 50 40 30 20

N
E
A

(t
h
ou

sa
n
d
s)

in
Ib
er
ia

0

20

40

60

80

Temperature (◦C) compared to present

(Panel B)

−8 −7 −6 −5 −4

N
E
A

(t
h
ou

sa
n
d
s)

in
Ib
er
ia

0

20

40

60

80

Before AMH arrival

After AMH arrival

Figure 2. Neanderthal populations in Iberia in relation to time and
temperature. In both panels, closed symbols represent NEA populations
before arrival of AMH in Europe at about 44, 000 years ago, while open
symbols represent NEA populations after arrival. Panel A: Numbers of
NEA in Iberia taken from Figure 7.16 in Finlayson (2004). Panel B:
Plot of NEA populations in Iberia versus temperature as obtained from
the oxygen isotope values (Petit et al., 1999) shown in Figure 1.

In contrast, Finlayson et al. (2000) and Stewart (2004), argue that prey species
found in NEA sites are more likely to be characteristic of forest habitat as compared
to species found in AMH sites, thus suggesting a geographic separation and a more
limited competition between the two.

2.3.2. Interference Between NEA and AMH. Another interaction between human
populations that can lead to competition, is termed interference: one group may



DISAPPEARANCE OF NEA 7

interfere with another—resulting in a competitive advantage for one group by lim-
iting access to resources or living sites, or via interactions that affect birth rate,
death rate, carrying capacity, hunting efficiency, etc. Here we briefly mention the
current way of describing interference between the two populations. Our model is
designed to be inclusive of all potential types of interference and any associated
archaeological discoveries, providing investigators with a model to examine various
hypotheses (individually or in combination) with impartiality (see Section 5).

Difference in culture levels. A difference in culture levels or learning ability could
lead to a competitive advantage for one of the populations. Indeed, Aiello and
Wheeler (2003) suggest that NEA were physiologically slightly better cold-adapted
than AMH; any advantage that AMH might have had in cold weather probably
resulted from cultural adaptations. Cultural differences might also involve more
efficient tools, more climate-appropriate clothing (Collard, et al., 2016), or division
of labor within the AMH population (Horan et al., 2005), as well as better economic
organization such as wider trading alliances (Gilpin et al., 2016; Horan et al., 2005).

Physiological differences. A physiological difference between the two populations
could lead to a competitive advantage for one of the populations. Some examples
of physiological differences might include: higher birth rates and/or lower death
rates for any level of resource, efficiency of resource use and predation, disease
resistance, and wider climatic tolerances.

Epidemics. One population could pass a disease to the other. The host population
might not be significantly affected because it might already have developed a toler-
ance to the disease, but the population encountering the new disease might suffer
significantly (Houldcroft and Underdown, 2016).

Conflict . Warring populations could result in one population dominating the land-
scape. This might occur if conflict directly reduces numbers or reduces access to
resources.

Interbreeding . Genetic evidence suggests that NEA and AMH did interbreed to a
limited extent (Green et al., 2010; Kuhlwilm et al., 2016; Prüfer et al., 2014; Smith
et al., 2005). The effects of interbreeding on the relative population dynamics of
NEA and AMH could be investigated by assuming that any hybrid offspring live
with one of the populations (for example, the mother’s group) and do not form a
separate population.

3. Mathematical Modeling of Population Dynamics

Much progress has been made in field studies of the dynamics of animal and hu-
man populations (Hutchinson, 1978), and researchers recognize that mathematics
is helpful to bridge the gap between experimental observations of individual popu-
lations and an understanding of the large-scale features of interacting populations
in space and time (Murray, 2003). The goal of such modeling is not to account
for all processes; rather, it is to understand the major interactions and to develop
ways of predicting interactions that may occur under other environmental condi-
tions. Moreover, a model that is flexible (not simply replicating a specific scenario
or dataset) allows an investigator to compare the relative importance of various
effects (environmental, ecological) on the population dynamics within an accessible
platform.
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Archaeological and mathematical hypotheses often are thought to be different
ways of studying populations; however, both are equivalent models of reality in
the sense that the conclusions derived from each depend on interpretation of data.
In the case of archaeological models, lithic or fossil data may be limiting; in the
case of mathematical models, knowledge of population parameters may be limiting.
Both methods should come to the same conclusions if they include comparable and
relevant data. Thus, if models are designed around a tractable biological problem
and use sound ecological principles, the results should permit predictions that are
scientifically interesting and quantifiable (Murray, 2003). In Section 5 we propose
such a model, as well as provide four simulations (see Section 5.3) that illustrate
the usefulness of incorporating mathematical models with archaeological evidence.

Population models often employ measures of growth rate, carrying capacity,
competitive interactions, and climate interactions. They can be simple or complex,
but if generality, inclusiveness, and applicability are the goals, then they should
be formulated in such a way as to apply to a wide range of populations (like the
classical logistic equation and Lotka-Volterra model), to yield mathematical results
that are relevant and consistent with archaeological discoveries, as well as to provide
a setting to test various realistic hypotheses. For example, there are valid reasons
to incorporate the following into a mathematical model of population dynamics:

• Birth and death rates are controlled by different biological factors; we pro-
pose it is important to model them separately rather than combining them
into a single expression called “growth rate.” For example, birth rate in-
creases with resource and death rate decreases with resource, and the func-
tions relating these dependencies are different (see Section 5.2, and Figures 3
and 4).
• The carrying capacity (an upper limiting population) of a population is typ-

ically treated as a constant (Hutchinson, 1978; Murray, 2003). We allow for
the possibility that carrying capacity varies with resource (see Section 5.2
and Figure 5).
• Hunting success can be estimated by using ecological equations of resource

use (functional response models) that estimate predator hunting efficiency.
Three distinct models have been developed, each representing a different
level of hunting efficiency (Murray, 2003). We are using the most general
type of functional response in our model (see Equation 3 and Figure 6).
• Interactions between human populations are of two types: direct interfer-

ence of one group on another, and competition for resources (Hutchinson,
1978; Murray, 2003). The two are independent of each other and we have
modeled them separately. Interference is modeled with a term that is pro-
portional to the products of the two population sizes (Kot, 2001). (We
model interference by the expressions of the form kxy in Equations 1 and 2.)
Competition for Resource is modeled by expressions that reduce Resource
numbers as NEA and AMH populations rise. (We model competitive in-
teraction by the final two expressions in Equation 3.)
• The increase in population of AMH in western Europe after 44, 000 years

ago came from two separate factors: continued immigration from eastern
Europe, and births to the AMH already resident in western Europe. Models
can use both inputs to predict population growth. (We model immigration
by the final term in Equation 2.)
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An effective mathematical model provides a theoretical framework for realistic sim-
ulations of population dynamics that are inclusive of current hypotheses, adaptable
to new hypotheses or discoveries, as well as offering archaeologists a framework for
which population parameters need to be estimated; thus, providing guidance on
which attributes to focus on when gathering and evaluating data based on archae-
ological evidence.

To our knowledge, our proposed model (see Section 5) is the first published
model that explicitly addresses the above characteristics.

4. Hypotheses and Previous Mathematical Models

Previous models have been constructed to demonstrate the operation of either
the climatic hypothesis (Finlayson, 2004; Finlayson et al., 2000) or the competition
hypothesis (Faria, 2000; Flores, 1998; Sørensen, 2011; Zubrow, 1989 and 2000;
Gilpin et al., 2016). It appears that none of these models are designed to allow
the alternative hypothesis (either climatic or competition) to be tested within its
own structure. Further, not all authors present equations that can be evaluated
by others; of those with a recognizable mathematical format, some are based on
solutions to difference equations and others are based on solutions to differential
equations. We will describe the models within the context of the hypothesis (either
climatic or competition) they are investigating.

4.1. Climate/Geography. The climatic/geographical model of NEA extinction
hypothesizes that NEA were primarily woodland dwellers rather than plains dwellers,
and pursued a varied meat/vegetable diet. They evolved in Eurasia during a period
of relative warmth and forest dominance; their survival in the northern latitudes
was therefore limited to areas in which local climates could maintain open forest
habitats and the herbivore species that inhabit them (Finlayson et al., 2000).

Finlayson (2004; Finlayson et al., 2000) has developed a density-dependent pop-
ulation dynamic model taking climate and geography into account. It breaks Iberia
up into 273 squares of size 50 × 50 km; each square has a geographic description,
and is assigned one of several climatic conditions depending on time during the
glacial period. The model allows movement of NEA or AMH populations from one
square to an adjacent one according to geographic and climatic conditions in that
square. Neanderthals are modeled as a warm-adapted woodland group; AMH are
modeled as a cold-adapted plains group.

Finlayson proposes two features that are testable experimentally; first, that NEA
were not cold-adapted, but were hunters of the temperate woodlands who were
forced to move southward to follow game during cold episodes. He hypothesizes
that moderate climates in OIS-3 allowed NEA to move north; then as the LGM
of OIS-2 caused the return of colder temperatures, the deciduous woodland zone
of Iberia moved to North Africa. Unlike the forests, the NEA could not cross
the Mediterranean Sea, and their forage disappeared from Europe, reducing their
ability to maintain populations.

Second, Finlayson proposes that at this time, AMH were not present in Iberia;
hence, the demise of the NEA cannot be associated with competitive interactions.
Thus, he does not include the competition hypothesis in his model.

4.2. Competition/Absorption. Flores (1998) was the first to use a modified
logistic equation in the form of a system of nonlinear ordinary differential equations
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(ODEs). Specifically, he considers a competitive model where NEA and AMH have
a common birth rate and demonstrates that a slightly higher death rate for the
NEA is sufficient to explain the extinction of NEA in 5, 000–10, 000 years after the
arrival of AMH.

Faria (2000) considers a system of three nonlinear ODEs to describe how re-
sources, NEA and AMH interact. He examines four hypotheses for NEA extinction—
competition, genocide, disease, and interbreeding—and concludes that none of them
is sufficient to explain NEA extinction. Faria claims that coexistence is possible
under his model, but it is not clear whether the relationship between the various
parameters that allow coexistence is based on archaeological data, or if the relation-
ship is merely a consequence of the structure within the three ODEs. In addition, it
is not clear whether one can use Faria’s model to predict a range of likely scenarios
for population change in the NEA and AMH.

Zubrow (1989) models possible scenarios for the interaction between NEA and
AMH. The model includes four major groups of parameters: initial population
sizes, initial growth rates, competition or replacement rates, and the probability
that the two populations come into contact. Interactions are modeled with the
NEA always being disadvantaged by contact with AMH. He does not reveal the
equations used in the model, but his description implies that they are a system of
difference equations. Zubrow ran over 300 trials of the model using ranges of values
for the parameters and concluded that there is a small set of values that allows the
two species to coexist for a reasonable number of generations. In general, predicted
NEA extinction almost always occurs between 2, 500 and 7, 500 years after contact
of the two populations. He also concluded that NEA extinction occurred because of
small population size in a competitive situation rather than from a lack of adaptive
characteristics.

Zubrow (2000) developed a second interactive demographic model for NEA and
AMH populations; parameters include age structure, relative fertility, and popu-
lation mortality rates. Like his earlier model, this one likely consists of difference
equations. After multiple trials, he concludes that direct interactions with AMH
and a slightly higher mortality of NEA (about 2% higher than that of AMH) predict
extinction of NEA between 1, 000 and 7, 500 years after contact with AMH.

Sørensen (2011) has developed a demographic model in the form of a first-order
difference equation, with time step equal to one year, to express the population
change of NEA in terms of birth and death rates. He considers several death rate
components, including food shortage and climate change. He concludes that both
food shortage and climate change are insufficient to explain the extinction of NEA
and conjectures that a probable cause was an infectious disease transmitted by the
incoming AMH.

Gilpin et al. (2016) have developed a competition model using nonlinear ODEs
based on the Lotka-Volterra model that incorporates an index of culture level (e.g.,
toolkit size, toolkit sophistication, clothing, economic organization, etc.) of a pop-
ulation as a variable interacting with its population size. In particular, each popu-
lation’s carrying capacity is assumed to be an increasing step function of its culture
level. The authors investigate the theoretical conditions under which a difference
in culture level might result in the competitive exclusion of a relatively large local
NEA population by an initially smaller AMH population (ignoring constant immi-
gration by AMH). The authors propose that NEA extinction is more likely to occur
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when population growth occurs on a shorter time scale than cultural change, or if
AMH have much greater learning ability than NEA, or when the competition coef-
ficients of their model depend on differences in culture levels of the species—with
AMH having a competitive advantage over NEA.

Most of the above competition models predict NEA extinction within the cur-
rently accepted time frame. However, because each model appears to focus on a
particular non-climatic hypothesis for NEA extinction, it is not clear how generally
applicable the models are to investigating alternative hypotheses other than each
one’s focus.

5. Model for Population Dynamics of NEA and AMH

The previous discussion suggests that investigators disagree concerning the ques-
tion of NEA resource use, their physiological adaptation to and tolerance for dif-
ferent climates of the late Pleistocene, and interactions with AMH. However, we
suspect that a model can be constructed to allow tests of all quantifiable hypothe-
ses. In the spirit of stimulating research in this area, we propose a mathematical
approach that does not focus on a particular hypothesis, but allows several hy-
potheses (with each classified as either a climatic or competition hypothesis) to be
examined and the roles of each to be tested.

Population models can never completely describe the dynamics of the popu-
lations they are modeling. Two important reasons are these: first, any model
attempts to describe biological or cultural processes with mathematical expressions
that are only approximations of reality; second, the numbers of parameters included
in the model are likely to be fewer than the number that are optimal to describe a
complex system (Burnham and Anderson, 2002).

With respect to modeling human population dynamics, we chose to include fea-
tures that cover the primary processes involved, and are able to be quantified in
straightforward terms.

Our model is based on the logistic equation of Verhulst with modifications by
Lotka and Volterra, allowing terms for competition to be added (Hutchinson, 1978;
Murray, 2003). Even so, we view competition in a slightly larger sense than classical
models do (similar to the references in Section 4.2), and our model allows investiga-
tors to model the effects of differential resource use as an example of competition.
We have also included terms to incorporate cultural advantages that might apply
to one of the populations, as well as terms modeling the effects of environmental
temperature and Resource on important population parameters. Because of this
structure, our model does not focus on a particular hypothesis regarding NEA ex-
tinction. Instead, it is designed to be inclusive of a wide variety of hypotheses
and associated archaeological evidence, therefore providing ways to examine var-
ious hypotheses (individually or in combination) with impartiality. In addition,
our model is flexible—not simply replicating a specific scenario or dataset, which
allow investigators (mathematical modelers and archaeologists) to compare the rel-
ative importance of various effects (environmental, ecological) on the population
dynamics within an accessible platform. This model is, to our knowledge, the first
published model to accommodate predictions of the contributions of population
ecology, climate, competitive interactions, interference, disease, interbreeding, and
cultural differences between these two populations.
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5.1. Mathematical Basis for the Model. We adopt the Convention of Conti-
nuity, (Hutchinson, 1978) the idea that although real populations consist of discrete
individuals, their dynamics can be modeled as if they are continuously varying as
long as one is “dealing with a sufficiently large population of organisms not having
definite breeding, or dying, seasons, in which reproduction occurs at random among
all members of the appropriate age class, and death occurs according to some sta-
tistically defined pattern not varying with time.” This convention allows for the
use of differential equations and their solution by calculus (Hutchinson, 1978). The
alternative to adopting this convention is to use discrete difference equations, as
did Sørensen (2011) and Zubrow (1989 and 2000).

As in the references mentioned in Section 4.2, we adopt the position that com-
petition can occur between two closely related populations (whether they are the
same species or not) living in the same region and using a common resource (Hardin,
1960).

Recall that the Lotka-Volterra model is the classical model for any two popula-
tions that compete for the same resource. It is a system of two nonlinear ODEs
with variables for the two populations, but no variable for the common resource
that the two populations compete over (Hutchinson, 1978; Murray 2003). The level
of resource (amount of food) could influence the values of parameters in the Lotka-
Volterra model, yet the parameters are treated as constants. For example, more
resource (food) may lead to an increase in a population’s growth rate and carry-
ing capacity, while less resource (food) may result in a decrease of a population’s
growth rate and carrying capacity.

Our model is a modification of the Lotka-Volterra model. Indeed, it is a system
of three nonlinear ODEs, with variables for the two populations, as well as a third
variable corresponding to the common resource—making the common resource an
explicit component of the model (unlike in the Lotka-Volterra model). In addition,
we also include an immigration term, which allows an investigator the option to
treat one of the populations as invasive relative to an already established native
population. We point out that if we assume the resource is constant (like in the
Lotka-Volterra model) and that both populations are native—setting the immigra-
tion term to zero (like in the Lotka-Volterra model), then our model reduces to the
classical Lotka-Volterra model, which should be the case for any such modification.
To our knowledge, our model is the first modification of the Lotka-Volterra model
in this manner. We note that other modifications have focused on increasing the
number of competing populations to more than two, while continuing to treat the
common resource as a constant (Murray, 2003).

5.2. The Model Equations. We now frame our model in terms of the two pop-
ulations NEA and AMH, and a common resource for which they compete. We
reiterate that our model is general (much like the Lotka-Volterra model) in the
sense that it could apply to a wide range of any two populations competing for a
common resource.

We have developed a system of nonlinear ODEs (see Equations 1–3) that predict
numbers over time of three different populations: NEA (variable x in Equations
1–3), AMH (variable y in Equations 1–3) and a common Resource (variable R in
Equations 1–3), such as reindeer. The three populations have their own birth/death
rates and carrying capacities, which can be related to climatic conditions if desired;
for example, r1(t), d1(t), and M1(t) in Equation 1 link these items for NEA to
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temperature changes that occurred in OIS-3 (see the below paragraph discussing
climatic influence). The equations also link the growth of the two human popu-
lations both to Resource numbers and to possible interactions between them (see
Section 2).

Our model assumes that R is used by both AMH and NEA, a situation consistent
with archaeological evidence (Grayson and Delpech, 2008; Richards and Trinkaus,
2009).

We discuss the key features of our model below. The equations in our model are
solved numerically using the software program Mathematica (Wolfram, 2012). The
specific details of analyzing the model are presented in a Mathematica Notebook,
which is available online as Supplemental Data. This supplement also includes
the Mathematica code for the various simulations we include in this paper (see
Section 5.3).

Our model consists of the following ODEs:

dx

dt
=

(
r1(t)R2

a21 +R2
− v1 + d1(t)R

v1 +R

)
x

(
1 − x

M1(t)R
c1+R

)
− k1x y(1)

dy

dt
=

(
r2(t)R2

a22 +R2
− v2 + d2(t)R

v2 +R

)
y

(
1 − y

M2(t)R
c2+R

)
− k2x y + i u

(
1 − y

M2(t)R
c2+R

)
(2)

dR

dt
= α(t)R

(
1 − R

M3(t)

)
− k3R

2

b21 +R2
x− k4R

2

b22 +R2
y(3)

where the variables x, y and R correspond to the three populations NEA, AMH and
Resource, respectively. The model is purposely designed to be inclusive of a wide
variety of hypotheses and associated archaeological evidence; therefore, providing
investigators with an accessible model to examine various hypotheses (individu-
ally or in combination) with impartiality. Moreover, the model’s flexibility (not
simply replicating a specific scenario or dataset) provides an investigator an acces-
sible platform to compare the relative importance of various effects (environmental,
ecological) on the population dynamics of NEA and AMH.

The following are key features of our model, which we frame in terms of the two
populations NEA and AMH. However, like the classical Lotka-Volterra model, our
model could be applied to a wide range of any two populations competing for a
common resource. To our knowledge, our model is the first published model that
includes the following attributes.

Resource dependence. The level of resource (amount of food) could influence the
values of the population parameters in the classical Lotka-Volterra model, yet they
are treated as constants. For example, more resource (food) may lead to an increase
in a population’s growth rate and carrying capacity, while less resource (food) may
result in a decrease of a population’s growth rate and carrying capacity. Our
model is a modification of the Lotka-Volterra model in the sense that we do not
treat the Resource as a constant; rather, we treat the common resource as its own
population that varies with time (see Equation 3). Thus, we are able to include
a Resource dependence on the two competing population’s birth/death rates and
carrying capacity.

Regarding modeling NEA and AMH population dynamics, we note that the ar-
chaeological evidence (Lorenzen et al., 2011) suggests that a significant reduction
of resource did not occur during the time period under consideration. Thus, with



14 ROBERTS and BRICHER

respect to modeling the two populations NEA and AMH, an investigator may rea-
sonably choose the option to assume that R is a constant in Equations 1–3. We
reiterate that, in the classical Lotka-Volterra model, an investigator does not have
the option of treating the common resource as a variable, and thus is working with
a more limited system.

We have chosen to provide a model (a modification of the Lotka-Volterra model)
that includes Resource as another variable that varies with time so that our model
applies to a wide range of any two populations competing for a common resource—
including NEA and AMH, where resource scarcity may (or may not) explicitly
occur. The resource scarcity could be due to predation on the resource by the two
competing populations and/or by other reasons (e.g., environmental, physiological)
related to the resource’s growth rate or carrying capacity.

Parameters. When developing a mathematical model, it is important to be mindful
of the number of parameters. Decreasing the number of parameters introduces
a bias, while increasing the number introduces more variance. See Section 1.4,
Inference and the Principle of Parsimony in Burnham and Anderson (2003) for a
discussion (within a statistical framework) related to issues regarding an optimal
number of parameters in a model.

The model is designed to accommodate numerous parameters, whose values cor-
respond to archaeological evidence and data that reflect—for example—the pop-
ulation ecology, competitive interactions, interference, disease, interbreeding, or
cultural differences between the two populations.

The three populations NEA, AMH and Resource (x, y and R, respectively)
depend on several parameters in Equations 1–3, which can be organized into three
groups. The parameters:

α(t), r1(t), r2(t), d1(t), d2(t), M1(t), M2(t), and M3(t)

each may accommodate a temperature dependence (or not). The parameters:

a1, a2, b1, b2, c1, c2, v1, v2, k1, k2, k3, k4 and i

do not contain a temperature dependence. In addition, the initial population sizes
of NEA, AMH and Resource may also be treated as parameters in the model.

The large number of parameters is a reflection of our model’s generality, inclu-
siveness, and adaptability. Indeed, our model applies to a wide range of populations
competing for a common resource (like the Lotka-Volterra model). Our model has
the ability to accommodate any of the current hypotheses for NEA extinction, as
well as adapt to archaeological evidence and data that reflect—for example—the
population ecology, competitive interactions, interference, disease, interbreeding,
or cultural differences between the two populations NEA and AMH. In addition to
the previous broad discussion of the archaeological merit (see Section 3), please see
Section 5, and in particular Section 5.3, for some specific illustrations (via the four
simulations) of our model’s merit.

Recognizing that a reader may be overwhelmed by the number of parameters
(in our model or in any model), we offer some broad suggestions/strategies on how
to frame them. First, it may be possible to organize the parameters into natural
groupings. For example, as we discuss below, the parameters associated with NEA
and AMH may be organized into seven groupings, which seems less daunting than
considering each parameter individually: birth rate, death rate, carrying capacity,
climatic influence, competition, interference, and the immigration of AMH. Second,
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an investigator might restrict the number of parameters by considering a null hy-
pothesis; for example, corresponding parameters for NEA and AMH are assumed
to have the same value unless there exists archaeological evidence to the contrary.
Thus, for example, an investigator might assume the birth rate and carrying capac-
ity parameters are equal (r1(t) = r2(t), a1 = a2, M1(t) = M2(t), c1 = c2), reducing
the parameters under consideration by four. Third, an investigator may perform a
sensitivity analysis (see Section 5.6) to gain insights into which parameters are the
most influential with regard to the population dynamics of NEA and AMH, and
focus on running simulations with respect to those parameters.

Birth and death rates. NEA (Equation 1) and AMH (Equation 2) populations are
each modeled by modified logistic ODEs in which the

growth rate = birth rate− death rate.

Our model allows the birth/death rates to vary with Resource, which is a modifi-
cation of the classical Lotka-Volterra model, where birth/death rates are assumed
to be constants.

Birth rate is modeled as an increasing function of Resource availability. Births
are less frequent at low Resource, but approach the population’s maximal birth rate
as food availability increases. Indeed, any expression for birth rate should satisfy
the biologically based (boundary) conditions:

• As R increases (more food available), the birth rate will increase.
• Birth rate = 0 when R = 0 (no food).
• As R → ∞ (unlimited food), the birth rate remains bounded and ap-

proaches its maximum value.

The expressions
r1(t)R2

a21 +R2
and

r2(t)R2

a22 +R2

satisfy the conditions; moreover, the expressions are the birth rates for NEA and
AMH, respectively in Equations 1 and 2. In each expression, the parameter r(t) is
the maximal birth rate and a denotes the value of R for which the birth rate is half
maximal.

We note that these are not the only expressions that satisfy the desired condi-
tions. We have chosen to model birth rates with this type of functional response
curve, which is often referred to as a Type III curve (Murray, 2003), because of its
structure at low values for R. Specifically, a population may have difficulty finding
and/or killing prey (resource) when prey numbers are low. This difficulty would
inhibit a population’s ability to “convert” the resource to its birth rate, and the
birth rate would experience a corresponding “response lag.” Of all the standard
functional response curves, the Type III curve is the one that best models this
feature (Murray, 2003). See Figure 3 for the graph of a birth rate.

There are other factors besides R that influence a population’s birth rate; for
example, environmental conditions, spatial constraints, physiology, hunting strate-
gies, and culture level. These components can be incorporated via the values of the
parameters r(t) and a.

Death rate depends inversely on Resource, unlike birth rate, and so it is appro-
priate to model it separately from birth rate. The death rate for either human
population is high at zero Resource and approaches a minimal positive value at
large Resource. The death rate is defined as 100% if there is no Resource. Indeed,



16 ROBERTS and BRICHER

	  
Resource

r(t)

B
ir
th

ra
te

a

Figure 3. Relation between population birth rates (either NEA or
AMH) and the Resource on which it depends (e.g., reindeer). Birth
rate is low at low Resource and increases to its maximum only at high
Resource availability. The value a on the horizontal axis is the value of
Resource at which birth rate is half maximal. Here a represents either
a1 or a2 in Equations 1 and 2. The maximal birth rate r(t) can be
either a constant or a function of environmental temperature. Here r(t)
represents either r1(t) or r2(t) in Equations 1 and 2.

any expression for death rate should satisfy the biologically based (boundary) con-
ditions:

• As R increases (more food available), the death rate will decrease.
• Death rate = 1 (100%; that is, everyone dies) when R = 0 (no food).
• As R → ∞ (unlimited food), the death rate remains positive and ap-

proaches its minimum value.

The expressions

v1 + d1(t)R

v1 +R
and

v2 + d2(t)R

v2 +R

satisfy the conditions; moreover, the expressions are the death rates for NEA and
AMH, respectively in Equations 1 and 2. In each expression, the parameter d(t) is
the minimal death rate and v denotes the value of R at which the death rate is half
maximal. We note that these are not the only expressions that satisfy the desired
conditions, but are the simplest such smooth curves that do. See Figure 4 for the
graph of the death rates.

Similar to a population’s birth rate, there are other factors (see above) besides R
that influence a population’s death rate, and these other factors can be incorporated
via values of the parameters d(t) and v.

NEA likely had higher death rates at any value of Resource than did AMH
(Pettitt, 2000); differences in death rate for NEA and AMH are modeled by the
differences in v1 and v2, as well as d1(t) and d2(t).

Carrying capacity . Similar to the birth/death rates, our model allows the carrying
capacity to also vary with Resource; thereby modifying the classical Lotka-Volterra
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Figure 4. Relation between population death rate and the Resource on
which it depends. Death rate is maximal at zero Resource, and declines
to a minimum value as Resource becomes more abundant. The minimal
death rates can be either a constant or a function of environmental
temperature; d1(t) and d2(t) are the minimal death rates for NEA and
AMH, respectively in Equations 1 and 2. The parameters v1 and v2
are the value of Resource at which death rate is half maximal. In this
example, both d1(t) and v1 are greater than d2(t) and v2, so NEA have
higher death rates at any value of Resource than do AMH.

model, where the birth/death rates and carrying capacity are assumed to be con-
stant.

Similar to the birth/death rates, the carrying capacity (the theoretical maximum
population) for NEA and AMH is a complex function that also depends on Resource.
One option for a modeler is to assume that the carrying capacity is constant (as
in the classical Lotka-Volterra model); we have taken a more general approach by
allowing it to vary with Resource. The carrying capacity is defined as zero if there
is no Resource. Indeed, any expression for the carrying capacity should satisfy the
ecologically based (boundary) conditions:

• As R increases (more food available), the population’s carrying capacity
will increase.
• Carrying capacity = 0 when R = 0 (no food).
• As R → ∞ (unlimited food), the carrying capacity remains bounded and

approaches its maximum value.

The expressions

M1(t)R

c1 +R
and

M2(t)R

c2 +R

satisfy the conditions; moreover the expressions are the carrying capacities for NEA
and AMH, respectively in Equations 1 and 2. In each expression, the parameter
M(t) is the maximal carrying capacity and c denotes the value of R at which the
carrying capacity is half maximal. See Figure 5 for the graph of a carrying capacity.

We note that these are not the only expressions that satisfy the desired condi-
tions. We have chosen to model the carrying capacity with this type of functional
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Figure 5. Relation between carrying capacity (either AMH or NEA)
and the Resource on which it depends. The maximal carrying capacity
M(t) can be either a constant or a function of environmental tempera-
ture. Here M(t) represents either M1(t) or M2(t) in Equations 1 and 2.
The parameter c is the value of R at which carrying capacity is half
maximal. Here c represents either c1 or c2 in Equations 1 and 2.

response curve, which is often referred to as a Type II curve, instead of using a
Type III curve as done with the birth rate because we conjecture that the carrying
capacity will not necessarily experience a “response lag” at low resource like birth
rate (Murray, 2003).

Similar to a population’s birth/death rates, there are other factors (see above)
besides R that influence a population’s carrying capacity, and these other factors
can be incorporated via values of the parameters M(t) and c.

We mention that there is a basis for modeling carrying capacity separately from
the birth/death rates. Indeed, a situation could arise where a population has a
sufficiently large supply of Resource (food) and a large carrying capacity, but small
growth rate.

As an illustrative example, consider the polar bear. There could be plenty of
seals (food) and a large carrying capacity (large potential maximum population),
but the polar bears’ ability to kill seals might be diminished by environmental
influences (e.g., lack of sea ice), thus affecting the polar bears’ birth/death rates—
causing the growth rate to be essentially zero or negative; resulting in polar bear
numbers stagnating below the carrying capacity or going to extinction even though
there are plenty of seals.

We are unaware of any archaeological data or biological evidence that supports
a similar situation for NEA or AMH to the polar bear, but if such evidence is
discovered or hypothesized, our model will be able to accommodate it, allowing
an investigator to examine such a hypothesis; again illustrating the benefit of our
inclusive and impartially constructed model.

Climatic influence. The model also can accommodate temperature dependent birth
and death rates, as well as carrying capacities, for NEA and AMH and R if desired.
Specifically, the maximal birth rates r1(t) and r2(t), minimal death rates d1(t) and
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d2(t), and maximal carrying capacities M1(t) and M2(t) of the NEA and AMH, as
well as the growth rate of the Resource α(t) and carrying capacity M3(t), may be
programmed to vary with temperature. (See the Mathematica Notebook available
online, where we use a linear fit relationship between the temperature and time
values given in Figure 1, from A to B in OIS-3. An investigator could alter the
Mathematica Notebook to use a nonlinear fit relationship if desired.)

Competition via resource. The Resource R is modeled by Equation 3. In the absence
of NEA and AMH, the Resource satisfies a modified logistic ODE with its own
growth rate α(t) and carrying capacity M3(t). The modification is the introduction
of the competition terms in Equation 3.

NEA and AMH compete for the common Resource, with each population’s pre-
dation on the Resource reducing the Resource numbers. Any expression for the
predation terms should satisfy the ecologically based (boundary) conditions:

• Hunting success (predation on Resource) is an increasing function with
respect to R. Moreover, a hunter tends to find prey less efficiently when
R is low (a response lag), then approaches a maximal success rate as R
increases (when a population has as much R as needed, increasing R does
not increase the hunting success in an unbounded linear manner).
• Hunting success = 0 (no predation) when R = 0 (no prey).
• As R → ∞ (unlimited prey), the hunting success remains bounded and

approaches its maximum value.

The expressions

k3R
2

b21 +R2
and

k4R
2

b22 +R2

satisfy the conditions; moreover, the expressions correspond to the competition
terms described above for NEA and AMH, respectively in Equation 3. In each
expression, the parameter k is the maximal rate of predation and b denotes the
value of R at which the predation rate is half maximal (see Figure 6 for graphs).

We note that these are not the only expressions that satisfy the desired condi-
tions. We have chosen to model the predation rates with this type of functional
response curve, which is often referred to as a Type III curve, because it best
represents the above conditions—especially the “response lag” at low values of R
compared to the other standard functional response curves (Murray, 2003).

NEA and AMH likely had different hunting strategies and successes—perhaps
because of differences in culture level, learning ability or physiology—and these can
be made part of the model by an investigator via values of the parameters k and
b. In addition to variables and parameters affecting hunting efficiency, the model
permits hunting activities of the NEA and AMH to reduce the availability of the
Resource. The archaeological evidence (Lorenzen et al., 2011) indicates, however,
that a reduction in reindeer populations (Resource) did not occur during the time
period under consideration. Thus, the coefficients k3 and k4 in our simulations (see
Section 5.3 and the Mathematica Notebook available online) are chosen to have
very small positive values.

To incorporate cultural differences between NEA and AMH in the analysis, an
investigator could consider the situation where AMH had a competitive advantage
because of culture level or learning ability. This could be included in the model by
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Figure 6. Relation between Resource and the rate of capture by preda-
tors (NEA and AMH). In this functional response curve, the parameter
k is the maximal capture rate, and b is the value of R at which the rate
of capture is half its theoretical maximum. The parameter k is either
k3 or k4, and b is either b1 or b2 in Equation 3.

assuming b2 < b1 (AMH are more efficient at killing the Resource) and/or k4 > k3
(AMH have a higher maximal kill rate of the Resource).

We again mention that our model is general in the sense that it could apply to a
wide range (expanding on the range encompassed by the Lokta-Volterra model) of
any two populations competing for a common resource. Indeed, unlike the Lotka-
Volterra model (because it assumes the common resource is constant), our model
can accommodate a situation where predation by one (or both) of the populations
on the common resource significantly affects the resource population over time, as
well as the situation where predation by both populations does not significantly
affect the common resource—as the case for NEA and AMH.

Interference. NEA and AMH also may interact, either directly or indirectly, in ways
that influence populations sizes. An optional interference term proportional to the
population sizes of each group and consistent with the Lotka-Volterra system of
equations (Hutchinson, 1978) is included. For example, the expression k1xy in
Equation 1 models the effect of interactions (interference between NEA and AMH)
on NEA. If the proportionality constant k1 is set to zero, no interference occurs
and Equation 1 reduces to the structure of the logistic equation. This is similar for
the expression k2xy in Equation 2.

To incorporate cultural differences between NEA and AMH in the analysis, an
investigator could consider the situation where AMH had a competitive advantage
because of culture level or learning ability. This could be included in the model by
assuming k2 < k1. This corresponds to the situation Gilpin et al. (2016) considered,
in which their competition coefficients corresponding to our k1 and k2 are functions
of the population’s culture level.

Interbreeding . Interbreeding also could be investigated by treating it as a type of
interference. For example, assuming that any hybrid offspring live in the mother’s
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group and do not form a separate population, appropriate alterations to k1 and k2
could accommodate an investigator’s views as to the specific effects of hybridization.

Immigration of AMH . Archaeological data suggest a consistent immigration of
AMH into Europe beginning about 44, 000 years ago (Verna et al., 2012). We
include an additive term i u(q) to account for population growth by immigration of
AMH, as well as by births in place. Indeed, Equation 2 contains the expression

i u

(
1− y

M2(t)R
c2+R

)
for immigration of AMH. The yearly immigration, denoted by i, is of course un-
known, but a value for i can be set by the investigator (see the Mathematica Note-
book available online). The function u(q) denotes the unit step function: u(q) = 0
for q < 0, and u(q) = 1 for q ≥ 0, where

q = 1− y
M2(t)R
c2+R

.

The function u(q) is inserted to maintain AMH population at or below its carrying
capacity despite their annual immigration.

Similarly, Currat and Excoffier (2004) include an additive constant immigration
term (corresponding to i in our model) as part of their model of the range expansion
of AMH, and of their competition and potential admixture with NEA. The authors
conclude that AMH did not admix with NEA.

While we have framed the immigration term with respect to treating AMH as an
invasive population relative to NEA—an established (native) population, we reit-
erate that our model applies to a wide range of any two populations competing for
a common resource with the option of treating one of the populations as invasive.
Indeed, the population corresponding to y in Equations 1–3 is the invasive popula-
tion, while the population x in Equations 1–3 corresponds to an already established
native population. If both populations are native (similar to the situation in the
classical Lotka-Volterra model), then an investigator could simply use i = 0 in our
model.

Summary of the model . In summary, our model is inclusive in the sense that it al-
lows any investigator to consider various mechanisms as possible scenarios for NEA
extinction, including climate, competitive advantage (such as culture level, learning
ability, or physiology) interbreeding, epidemics, inter-species conflict, and statistical
variation. We reiterate that the model is not constructed to focus on a particular
hypothesis regarding NEA extinction. Instead, the model is designed to be inclusive
of a wide variety of hypotheses and associated archaeological evidence; therefore,
providing investigators with a model to examine various hypotheses (individually or
in combination) with impartiality. The model is designed to be flexible (not simply
replicating a specific scenario or dataset), which allows investigators (mathematical
modelers and archaeologists) to compare the relative importance of various effects
(environmental, ecological) on the population dynamics of NEA and AMH within
an accessible platform. Moreover, the model is designed to accommodate numer-
ous parameters, whose values correspond to archaeological data that reflect—for
example—the population ecology, competitive interactions, interference, disease,
interbreeding, or cultural differences between the two populations.
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We reiterate that, while we have framed our model in terms of the two popu-
lations NEA and AMH, the model is general in the sense that it could apply to a
wide range of any two populations competing for a common resource. Moreover,
our model is a modification of the classical Lotka-Volterra model by including the
common resource as another variable, a dependence of important population pa-
rameters on resource, as well as by including an immigration term—allowing an
investigator to treat one of the populations as invasive.

To our knowledge, our model is the first published model to have the attributes
discussed above.

5.3. Model Simulations Predicting NEA Extinction. Any model that at-
tempts to propose a cause for NEA extinction must accommodate the archaeolog-
ical evidence indicating that NEA in Europe were gone by approximately 5, 000
years after AMH arrived. We have chosen four simulations as illustrations of the
model; in all, the NEA go extinct 5, 000 years after the arrival of AMH in Europe
(i.e., 39, 000 years ago) as required.

The four simulations demonstrate two important features of the model: first,
that the model is inclusive in the sense that it allows a number of different scenarios
to be tested; second, that different mechanisms (i.e., choosing different values for
particular parameters) can produce the known result (NEA extinction in 5, 000
years after AMH arrival).

Our baseline case, which we do not include as one of our simulations, assumes
a slightly higher minimum death rate for NEA than AMH (NEA’s growth rate
remains positive) consistent with archaeological evidence (Pettitt, 2000), as well
as no interference (k1 = k2 = 0). As expected in this situation, NEA, AMH and
Resource populations all approach their carrying capacity (see the Supplemental
Mathematica Notebook for complete details).

In each of the four simulations, the NEA and AMH have identical population
dynamics parameters (baseline case) except for the tested parameter:

• Cooling climate between 44, 000 years ago and 39, 000 years ago reduces
NEA birth rate and carrying capacity; cooling also increases NEA minimal
death rate.
• NEA minimal death rate is higher than that of AMH (d1 > d2) (see Fig-

ure 4).
• NEA death rate remains higher than AMH death rate at any value of R

(v1 > v2) (see Figure 4).
• Interference between AMH and NEA is more detrimental to NEA (k1 > k2).

We did not design the model to propose any particular hypothesis as the cause for
NEA disappearance, although we do share some insights that we hope are helpful
to archaeologists and mathematical modelers. Specifically, the four simulations are
not necessarily meant to demonstrate conclusively that temperature, death rate
or interference could be held responsible for the cause of NEA extinction—though
one or more of these factors may have played a role; instead, the simulations are
presented to illustrate the wide applicability of the model, as well as illustrate how
an investigator may compare the relative importance of effects (environmental,
ecological) on the population dynamics of NEA and AMH within an accessible
platform.
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Results for these simulations are given in Figures 7–10. In each, time starts at
44, 000 years ago and ends at 39, 000 years ago; original NEA population is set
at 20, 000 and AMH is set at zero. AMH populations are not graphed, but in all
cases they rise rapidly and stabilize at the carrying capacity for AMH (50, 000). In
each case, Resource remains stable at its carrying capacity (200, 000 reindeer), in
agreement with paleontological data suggesting that the human presence in Europe
did not lead to a decline in reindeer populations between 42, 000 and 30, 000 years
ago (Lorenzen et al., 2011). Only NEA population sizes are affected by the choices
in parameters for these simulations. We set the NEA population at 20, 000, a value
that is arbitrary but is nonetheless in the same range as Finlayson (2004) includes
in his model. This value is also consistent with the NEA population estimates of
Prüfer et al. (2014) for this time period.

For the sake of brevity, we choose to include only four simulations; these nonethe-
less illustrate a key point regarding mathematical modeling: a known outcome (i.e.,
NEA extinction in 5, 000 years) can be achieved by various mechanisms. We could
have chosen to include many more simulations, but this would have merely provided
more examples of the key point.

The four simulations correspond to quite different scenarios as explanations for
NEA extinction, illustrating the flexibility and inclusivity of the model. This ap-
proach of beginning with a general and inclusive model that does not focus on one
specific hypothesis allows investigators to broadly adapt mathematical (theoretical)
models with archaeological evidence and data with impartiality.

We suggest that archaeologists might be able to assist mathematical modelers
by providing an archaeological framework for a theoretical mathematical model;
specifically, by identifying key features of populations and cultures that must be
included in a useful mathematical model, as well as by obtaining values of some of
the parameters through field work, thus decreasing the number of possible scenarios.
Some examples of parameter values that might be provided by field work include
climatic influence over growth rate and carrying capacity of reindeer, maximal birth
rates and minimal death rates of NEA and AMH, and maximal kill rates of reindeer
by NEA and AMH.

We now describe the four simulations (Figures 7–10) that provide illustrations of
the two main hypotheses (climate change and competition) for NEA disappearance,
including various forms of competition and/or interference within the context of
competition (see Section 5.4).

Effect of temperature on NEA growth rate. In this simulation, NEA and AMH
birth rates begin at the same value (4% per year). Ambient temperature in Europe
declined slightly over the period under study (see Figure 1), and we allowed NEA
birth rate to decline with this temperature decrease, from 4% to 3%, and NEA
carrying capacity to decrease as well. The NEA minimal death rate also was allowed
to increase with this temperature decrease. The result is that “growth rate =
birth rate− death rate” becomes negative after 4, 000 years and the modeled NEA
population decreases to extinction over the next 1, 000 years (see Figure 7).

Based on both the archaeological evidence (See Section 2.2 and Figure 2), as
well as our simulation (see the Supplemental Mathematica Notebook for complete
details), we conjecture that climatic adaptability of NEA was unlikely to be the
singular cause for NEA extinction. According to our runs of this simulation, an
approximate 20% detrimental influence of temperature on NEA’s birth/death rates
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Figure 7. Modeled NEA population dynamics if NEA birth rate and
carrying capacity both decrease, and minimal death rate increases with
the slight cooling of temperatures that occurred over the period 44, 000
to 39, 000 years ago.

and carrying capacity are necessary for NEA extinction, which is not in agreement
with the archaeological data indicating NEA were cold-adapted and quite capable
of surviving the time period under consideration (See Section 2.2 and Figure 2).
Thus, we see no evidence (either archaeological or theoretical) that climate played
a singular significant role in the disappearance of NEA.

In addition, this simulation indicates that our model can be used as a platform
to continue to explore the climatic adaptability hypothesis for NEA extinction. It
also demonstrates that the model could be used to investigate climatic influences
for any two populations competing for a common resource.

Effect of higher minimal death rates in NEA. In this simulation, the minimal death
rate for NEA is set at a higher level than for AMH (4.1% compared to 3%, d1 > d2
in Figure 4). The NEA population size decreases regularly until extinction (see
Figure 8).

As pointed out above in our baseline case, a higher minimum death rate for NEA
does not necessarily lead to NEA extinction. However, if the minimal death rate for
NEA is sufficiently higher than AMH, then NEA could go extinct in 5, 000 years as
this simulation demonstrates. Our runs of this simulation suggest that the minimal
death rate for NEA needs to be approximately 25% higher than AMH’s minimal
death rate (see the Supplemental Mathematica Notebook for complete details).
We conjecture that this is too high according to the archaeological evidence, which
suggests only a slightly higher death rate for NEA (Pettitt, 2000), to be the sole
viable explanation for NEA extinction.

This simulation indicates that our model can be used as a platform to continue
to explore the corresponding hypothesis for NEA extinction. It also demonstrates
that the model could be used to investigate the effect of different minimal death
rates for any two populations competing for a common resource.



DISAPPEARANCE OF NEA 25

	  

Years (thousands)
(0, 0) 1 2 3 4 5

N
E
A

(t
h
ou

sa
n
d
s)

10

20

30

40

50

Figure 8. Modeled NEA population dynamics if NEA minimal death
rate is set at 4.1% per year (compared with 3% per year for AMH).

Effect of higher NEA death rate at any Resource level . In this simulation, the NEA
death rate remains higher than that of AMH for any value of Resource availability
(v1 > v2 in Figure 4). NEA groups thus spend more time in initial hunting forays
before they bag a reindeer, and the result is lower hunting success and extinction
of NEA in 5, 000 years (see Figure 9).

Our runs of this simulation suggest that an approximate 6% advantage for AMH
relative to this parameter is sufficient for NEA extinction in 5, 000 years (see the
Supplemental Mathematica Notebook for complete details), which is intriguing to
consider. Indeed, we wonder whether there is archaeological evidence to suggest
such an advantage—perhaps due to hunting strategies related to a cultural advan-
tage. It is our hope that this observation may provide some guidance for archaeo-
logical findings and further exploration.

This simulation indicates that our model can be used as a platform to continue
to explore the corresponding hypothesis for NEA extinction. It also demonstrates
that the model could be used to investigate associated differences in death rates for
any two populations competing for a common resource.

Effect of AMH interference on NEA. In this simulation, the populations AMH and
NEA are allowed to interfere with each other. We consider the situation where the
effect of interference is more detrimental to NEA. Thus, k1 > k2 in Equations 1–2
(see Figure 10). See Section 5.4 for a discussion of various forms of interference
that might influence the values for k1 and k2.

Our runs of this simulation suggest that a competitive advantage for AMH rel-
ative to this parameter on the order of 1.6 (k1 ≈ 1.6k2) is sufficient for NEA
extinction in 5, 000 years (see the Supplemental Mathematica Notebook for com-
plete details), which is intriguing to consider. Indeed, we wonder whether there is
archaeological evidence to suggest such an advantage—perhaps due to some subset
of the modes of interference previously mentioned (see Section 2.3.2) and discussed
in detail in Section 5.4. It is our hope that this observation may provide some
guidance for archaeological findings and further exploration.
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Figure 9. Modeled NEA population dynamics if NEA death rate is
higher than that of AMH (d1(t) > d2(t) and v1 > v2 in Figure 4).
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Figure 10. Modeled NEA population dynamics if interference is more
detrimental to NEA (k1 > k2).

This simulation indicates that our model can be used as a platform to continue
to explore the corresponding hypothesis for NEA extinction. It also demonstrates
that the model could be used to investigate differences in interference for any two
populations competing for a common resource.

Summary of simulations. As demonstrated with our four simulations, the model
is not constructed to focus on a particular hypothesis regarding NEA extinction.
Instead, the model is designed to be inclusive of a wide variety of hypotheses and as-
sociated archaeological evidence; therefore, providing investigators with a platform
to examine various hypotheses (individually or in combination) with impartiality.

The four simulations were chosen for this publication because they all produced
the accepted NEA extinction pattern: disappearance by 5, 000 years after the arrival
of AMH in Europe. Moreover, each of the simulations corresponds to either the
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climatic (Figure 7) or the competition (Figures 8–10) hypotheses. That the known
outcome can be achieved by four quite different mechanisms (spanning the climatic
and competition hypotheses) suggests that one cannot be confident in any particular
hypothesis simply because it is fit by a simulation.

Criteria for parameter values that give a competitive advantage to AMH are
described in Section 5.4. We recognize that our arbitrarily chosen initial number
of NEA (20, 000) influenced the parameter values that led to extinction in 5, 000
years; but the values are not themselves important in the sense that given any
reasonable initial population, one can choose values for the other parameters to
obtain extinction of NEA in 5, 000 years.

The four simulations illustrate that mathematical models and archaeological evi-
dence can each contribute to an understanding of the population dynamics between
NEA and AMH (see Section 3 for a broad discussion). We reiterate that we are not
trying to demonstrate what caused NEA extinction; we are attempting instead to
illustrate the usefulness to archaeologists and mathematical modelers of a clearly
stated model. Our work suggests that if a model is sufficiently flexible and in-
clusive, it can be useful for the process of setting up hypotheses and trying likely
scenarios, as well as identifying relevant parameters that are the most influential
on the population dynamics. This provides archaeologists with some guidance as
to which parameters are most important to estimate using archaeological evidence
as suggested in the four simulations.

We point out that while we presented the four simulations individually, they are
not necessarily mutually exclusive. If desired, an investigator could of course con-
sider combinations of various scenarios; for example, considering a small detrimental
influence of climate on NEA’s parameters and a small competitive advantage for
AMH due to interference (k1 > k2), where each scenario by itself is not sufficient for
NEA extinction, but taken together yield NEA extinction in 5, 000 years. Because
of the inclusive nature of our model, such combined hypotheses (there are too many
to enumerate) are possible to explore—and exploration is encouraged.

It is our hope that our impartially constructed model will be an accessible re-
source for investigators who wish to examine any of the various hypotheses for NEA
disappearance, as well as assist archaeologists with identifying relevant parameters
that need estimating; thus, we propose this model as a way to contribute to an
understanding of why NEA became extinct.

5.4. Modeling Various Forms of Interference. Interference between NEA and
AMH may occur in various forms, any of which could result in a competitive ad-
vantage for one of the populations. For example, a competitive advantage could
be due to a difference in culture level or learning ability, a physiological difference,
interbreeding, epidemics, or conflict. Here we discuss how an investigator can ex-
amine various scenarios using our model. The simulations presented in Section 5.3
provide illustrations corresponding to each of the forms of interference.

Culture level or learning ability . An investigator could examine the situation where
one of the two human populations is culturally more advanced than the other
(e.g., Gilpin et al., 2016; Horan et al., 2005), thus giving that one a competitive
advantage with regard to resource usage and efficiency, or interference. Indeed, such
a situation could be investigated using our model by examining simulations where,
for example, AMH can be given a competitive advantage over NEA by setting some
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(or all) of the following parameters in Equations 1–3 so that:

r2(t) > r1(t) (higher maximal birth rate for AMH)

d2(t) < d1(t) (lower minimal death rate for AMH)

M2(t) > M1(t) (higher maximal carrying capacity for AMH)

a2 < a1 (AMH more efficient at resource usage in birth rate)

v2 < v1 (AMH more efficient at resource usage in death rate)

c2 < c1 (AMH more efficient at approaching its carrying capacity)

k4 > k3 (AMH have a higher maximal kill rate of Resource)

b2 < b1 (AMH more efficient at killing the Resource)

k2 < k1 (Interference is more detrimental to NEA)

Some possible scenarios that illustrate how cultural differences may affect NEA
population size are shown in Figures 8–10.

Physiological differences. An investigator could examine the situation where, for ex-
ample, AMH has a physiological competitive advantage over NEA. Such a situation
might be caused by a higher maximal birth rate, lower minimal death rate, more
efficient resource usage, disease resistance, or another feature that may be modeled
(similar to those mentioned due to culture level or learning ability) in ways that
produce the results seen in Figures 8–10.

Interbreeding . We have chosen not to explicitly include interbreeding in our model
with the creation of a third (hybrid) population. However, we propose that any
hybrid offspring is most likely to live with its mother—increasing the mother’s
population. This scenario could be investigated using the interference term in our
model; for example, decreasing k2 in Equation 2 for an AMH mother. This situation
is illustrated in the simulation shown in Figure 10 provided k2 < k1. An investigator
could examine a non-equal effect of interbreeding by assuming different values for
the interference coefficients k1 and k2. For example, to investigate interference only
in the form of interbreeding that overwhelmingly favors AMH, assume k2 < 0 and
k1 ≈ 0.

Epidemics. An investigator could examine the situation where, for example, AMH
passes a disease to NEA (Houldcroft and Underdown, 2016) by modeling such a
transfer through the interference terms (k1 > k2) in Equations 1–2. This situation
is illustrated in the simulation shown in Figure 10.

An investigator could examine the situation where a population experiences a
disease not necessarily being passed from another population. For example, we
conjecture that a disease might affect the birth rate, death rate and ability to hunt.
The effect could be modeled by adjusting the values of a population’s parameters.
For example, assuming NEA experiences a disease, an investigator could adjust
r1(t), d1(t), M1(t), a1, v1, b1, c1 and k3 accordingly. This situation is illustrated in
the simulation shown in Figure 8.

Conflict . An investigator could examine the situation where AMH and NEA are
warring populations through the interference terms in Equations 1–2. Assuming,
for example, that AMH had a competitive advantage due to superior weaponry,
tactics, etc., then one could take k1 > k2 in the simulations. This situation is
illustrated in the simulation shown in Figure 10.
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5.5. Other Hypotheses for NEA Extinction. As previously mentioned, our
model can accommodate both the climatic and competition hypotheses. In addi-
tion, our model is flexible enough to simulate many different situations in population
dynamics; indeed, it invites investigators to develop new hypotheses. For example,
our model can be used to explore the effects of random or contingent accidents on
a small initial population size, as well as to investigate effects of spatial distribu-
tions of AMH, NEA and Resource populations. Other recent hypotheses for the
replacement of NEA are AMH immigration and random species drift ( Kolodny
and Feldman, 2017).

NEA extinction as a statistical accident . An investigator could examine the situa-
tion where NEA extinction is a result of statistical variation because of small initial
population size. By using the supplementary Mathematica Notebook, this can be
explored by considering a small initial NEA population that results in the NEA
population quickly approaching zero, and examining the stability of this situation
numerically with respect to small variations in the parameters. We chose not to
include this scenario as one of our simulations because NEA extinction as a statis-
tical accident is unlikely to be the case since the initial NEA population size was
large and stable prior to the arrival of AMH (Prüfer et al., 2014).

Incorporating spatial effects. The replacement process of NEA by AMH can be
self-perpetuating. That is, an AMH population that has replaced a localized NEA
population will be in position to invade the nearby region still occupied by NEA.
This could be simulated by applying our model to a particular region, yielding
population sizes for NEA, AMH and Resource at a particular value of time to be
decided upon, and using these population sizes as the initial population sizes for
the next region (e.g., Sørensen, 2011; Zubrow, 1989 and 2000). Similar to some
previous models ( e.g., Faria, 2000; Flores, 1998; Gilpin et al., 2016), we chose not
to explicitly include this process as one of our simulations.

Immigration and drift . Kolodny and Feldman (2017) developed a model that sug-
gests a recurring immigration of AMH was sufficient to result in the replacement of
NEA even if neither population had a selective advantage over the other. Similar
to previous models (see Section 4), we chose not to incorporate a random drift pro-
cess into our model—although we include an immigration term (see Section 5.2),
which allows an investigator to consider the effect of different rates of recurring
immigration of AMH with regard to the replacement of NEA.

5.6. Numerical Analysis. Given a set of values for the parameters, a solution
to our model is numerically constructed using a Runge-Kutta fourth-order method
with a variable time step that adapts itself to the rate of convergence of the nu-
merical solution. Please see the Supplemental Mathematica Notebook for our code,
and Mathematica’s Documentation Center (Wolfram Research, 2012) for a detailed
description of the numerical method associated with the command NDSolve that
we employ in our code.

Because of the complexity of our model, we do not include a classical mathe-
matical analysis (Murray, 2003) of Equations 1–3. We have nonetheless performed
some numerical analysis regarding solutions to Equations 1–3. Specifically, a sen-
sitivity analysis was performed for the four simulations (see Section 5.3) included
in this paper. We observe that each of the four simulations is qualitatively stable
(the solution’s behavior remains) with respect to small perturbations of the chosen
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values for the parameters that produce a specific simulation. The specific values
corresponding to the small perturbations are difficult to quantify because of the
complexity of our model. An investigator interested in exploring the specific values
may use the supplementary Mathematica Notebook, which provides an accessible
platform.

As another example of sensitivity analysis and the qualitative stability of solu-
tions, we have observed that coexistence of NEA and AMH is theoretically possible
via the previously discussed baseline case, where we observe that each popula-
tion approaches its carrying capacity. We numerically observe that this behavior
(coexistence of NEA and AMH) continues to remain for sufficiently small perturba-
tions of the chosen values for the interference coefficients (k1 and k2) and resource
competition coefficients (k3 and k4). This result indicates that coexistence is a
qualitatively stable phenomenon, and thus theoretically observable as a scenario.
In other words, certain parameter values allow for the persistence of both NEA and
AMH. The Supplemental Mathematica Notebook provides an accessible platform
for an investigator interested in exploring coexistence and the specific values of the
parameters that yield this behavior.

In addition, performing a sensitivity analysis can provide an investigator with
broad insights with regard to identifying which parameters are the most influential
in qualitatively affecting the population dynamics of NEA and AMH. For exam-
ple, our simulations suggest that the interference coefficients k1 and k2 are more
influential than the resource usage parameters a1, a2, c1, and c2. Such insights
provide guidance as to which parameters are more important to estimate using
archaeological evidence.

6. Summary and Conclusions

Our model allows investigators to explore each of the two main categories (cli-
matic adaptability of NEA or competition) regarding the disappearance of NEA.
We do not singularly focus on identifying whether climate, competitive interactions,
or any other ecological or cultural feature caused NEA extinction, and our model
is designed to be inclusive of a wide variety of hypotheses and associated archae-
ological evidence. The inclusiveness of the model provides investigators with an
accessible framework to examine with impartiality various hypotheses (individually
or in combination) regarding climatic effects, differential resource use, differences in
birth/death rates and carrying capacities, competition, interference, disease, inter-
breeding, and cultural distinctions that might have led to the extinction of NEA.
Thus, we propose our model as a contribution to the understanding as to why NEA
became extinct.

As an illustration of the inclusive nature and flexibility of our model, we provide
four simulations of our model that achieve NEA extinction in 5, 000 years after the
arrival of AMH, consistent with the archaeological evidence. Each of the simulations
is based on a different hypothesis for NEA extinction, illustrating that one cannot
assign causality to a particular hypothesis simply because it produces a known
outcome.

In addition, the simulations illustrate two key features of our model for ex-
amining hypotheses for NEA extinction. First, the simulations demonstrate how
investigators may use our model to formulate conjectures viewed within the context
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of existing archaeological evidence; second, the simulations demonstrate how our
model may provide guidance for future archaeological studies.

Regarding the first key feature, some conclusions might be formulated. Specifi-
cally, based on runs of our simulations and the archaeological evidence, we conjec-
ture it is likely that neither climate adaptability nor a higher minimal death rate
for NEA were each solely responsible for NEA extinction (see Section 5.3).

Regarding the second key feature, we observe that (1) small advantages for AMH
relative to resource usage, and (2) interference being slightly more detrimental to
NEA could each be solely responsible for NEA extinction. As far as we are aware,
no archaeological evidence addresses either hypothesis (1) or (2). While runs of
our simulations suggest that either of the two hypotheses is a theoretically reason-
able explanation for NEA extinction, without contextual archaeological evidence
it is difficult to decide whether either actually caused NEA extinction. We hope
these observations provide some guidance for further archaeological exploration (see
Section 5.3).

We reiterate that although we have framed our model in terms of the two popula-
tions NEA and AMH, the model is general in the sense that it could apply to a wide
range of any two populations competing for a common resource. Specifically, our
model provides investigators—both mathematical modelers and archaeologists—
with an accessible platform for examining hypotheses for the extinction of many
types of populations, as well as for examining the likelihood of future extinction of a
population that completes with another population for a common resource. More-
over, our model is a modification of the classical Lotka-Volterra model by including
the common resource as another variable, a dependence of important population
parameters on resource, as well as by including an immigration term—allowing an
investigator to treat one of the populations as invasive.

In summary, we propose a mathematical model that can be used by any inves-
tigator wanting to explore the basis for NEA extinction 39, 000 years ago. It is
flexible and inclusive enough to examine a large number of possible hypotheses for
the disappearance of NEA—not focusing on one specific hypothesis. We propose
our model in the spirit of applying archaeological findings to mathematical mod-
eling, and conversely applying the concepts of population dynamics and ecology
to archaeological investigations. We suggest that it will give anthropologists an
ecological basis for hypothesis testing and estimating values of relevant parameters
within a mathematical model (e.g., deciding what features of human population
dynamics to search for while excavating). In addition, if modelers such as popu-
lation ecologists have access to human population information (i.e., specific birth
rates, death rates, or hunting efficiencies), they might be able to run simulations
that more accurately reflect real populations. We propose this modeling approach
in the hopes that it may be useful in many types of population dynamics investi-
gations, including that of NEA disappearance.

7. Supplemental Material

This includes a Mathematica Notebook, which contains the code for the numer-
ical methods used to run simulations of the model. The code allows the user to
choose values for all the parameters built into the model (see Equations 1–3). This
notebook is available on request from the authors, and we are happy to provide
assistance to any reader interested in using the code.
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Santos, B., Higham, T.F.G. (2013). Radiocarbon dating casts doubt on the late chronology
of the middle to upper Paleolithic transition in southern Iberia. Proc. Nat. Acad. Sci. USA

110, 2781–2786.

[Zubrow(1989)] Zubrow, E. (1989). The demographic modeling of Neanderthal extinction. Ch. 13
in Mellars, P. and C. Stringer, eds. The Human Revolution. Princeton, Princeton University

Press.
[Zubrow(2000)] Zubrow, E. (2000). An interactive growth model applied to the expansion of Upper

Paleolithic populations. Ch. 6 in R. Foley, ed. The Origins of Human Behaviour. London,

Routledge.

(Michael F. Roberts) Department of Biology, Linfield College, 900 SE Baker St.,
Unit 468, McMinnville, OR 97128 USA

E-mail address: mrobert@linfield.edu

(Stephen E. Bricher) Department of Mathematics, Linfield College, 900 SE Baker St.,
Unit 468, McMinnville, OR 97128 USA

E-mail address: sbricher@linfield.edu


	Modeling the Disappearance of the Neanderthals Using Concepts of Population Dynamics and Ecology
	DigitalCommons@Linfield Citation

	tmp.1541035636.pdf.ykW4w

