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Equating makes it possible to compare performances on different forms of a test. Three 

different equating methods (baseline selection, subgroup, and subscore equating) using 

common-item item response theory equating were examined for their impact on detection 

of treatment effects in multilevel models. 

 

Keywords: Common-item IRT equating, subgroup equating, subscore equating, 

generalized partial credit model, mixture Rasch model, MCMC estimation 

 

Introduction 

Equating of tests is needed to compare results from different forms of a test. The 

impact of type of equating on detection of treatment effects is an important issue 

but has not been widely studied. In this study, we investigated the impact of three 

types of equating designs on detection of treatment effects: 1) baseline on the old 

form vs. baseline on the new form; 2) subgroup equating; and 3) subscore equating. 

Equating assumes group invariance and equity. The equity property assumes that it 

is a matter of indifference to each examinee which form of a test is administered 

(Kolen & Brennan, 2004; Lord, 1980). In an experiment, this would mean the same 

score should be obtained whether the base scale is from pre-test or post-test data. If 

selection of the base scale results in different scores, then invariance would be 

violated. When group invariance is violated, subgroup equating may provide a 

useful alternative (Cid & Spitalny, 2013; Dawber, Oh, & Wise, 2013). Subscore 

equating, a third method, arises mainly from the increasing demand for finer 
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grained information (Puhan & Liang, 2011; Sinharay & Haberman, 2011). These 

methods were compared with respect to their impact on detection of a treatment 

effect. 

Theoretical Framework 

Common-Item IRT Equating with Different Equating Designs: Different 

Baseline, by Subgroup, and by Subscores 

Common-item item response theory (IRT) equating often is used when more than 

one form per test date cannot be administered because of test security or other 

practical concerns. In this design, two parallel forms have a set of items in common, 

and different groups of examinees are administered the two forms (Kolen & 

Brennan, 2004). One of the simplest ways is to implement the design is to fix the 

item parameters for common items for both forms. When equating two or more 

forms, however, a baseline needs to be specified before equating. The assumption 

in selecting a baseline is that the choice of baseline does not affect the subsequent 

equating. 

When the populations consist of several subgroups and each subgroup is 

homogeneous with respect to some characteristics such as ethnicity, gender, or item 

response patterns, common-item equating also can be performed based on these 

subgroups. For subgroup equating designs, the item and ability parameters for the 

common items need to be on the same scale between subgroups. When the items 

are scored by subscores or subsections based on content or blueprints categories, a 

common-item equating design can be used based on subscores (Puhan & Liang, 

2011; Sinhary & Haberman, 2011). 

IRT Models for Common-Item Equating 

There are many designs used for collecting data for equating (Kolen & Brennan, 

2004). A common-item nonequivalent group design was applied in this study. In 

this design, there are two nonequivalent groups. These were from the first and 

second year of a larger host study. All 33 items on the assessment developed for 

the host study were used as common items. Three different IRT models were used 

for common-item IRT equating methods. First, the Rasch model (Rasch, 1960) was 

applied to compare the effect of different baselines. Second, subgroup equating was 

done using latent classes estimated by a mixture Rasch model. Third, subscore 

equating was done using item parameters estimated from a generalized partial credit 

model. All three IRT models used the item centering method with the sum of item 
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difficulty parameter estimates equals to zero to solve the identification problem. 

This made it possible to put all ability and item difficulty parameters on the same 

scale. 

The Rasch Model 

The one-parameter logistic model (1PLM) has two parameters to model the 

relationship between abilities and responses, item difficulty (b) and item 

discrimination (a). The 1PLM assumes that the discrimination parameters across 

items are equal (i.e., ai = a* for all i). The Rasch model (RM) is a special case of 

the 1PLM with all discrimination parameters fixed equal to one (Rasch, 1960). The 

probability that examinee j correctly answers item i (i.e., the probability that yij = 1) 

is assumed to have the following form: 
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where a* are the same for all i under a 1PLM, and a* equals one for all i under the 

RM. The item centering constraint (Σbi = 0) was used to solve the identification 

problem. Equation (1) is equivalently written 
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The Mixture Rasch Model 

The mixture Rasch model (MRM; Rost, 1990) assumes that an examinee 

population is composed of a fixed number of discrete latent classes of examinees 

(Cohen, Wollack, Bolt, & Mroch, 2002). Each class has unique ability and item 

parameters. All examinees who belong to a given latent class are assumed to be 

homogeneous on the factor(s) that caused the latent class to form but share the same 

item parameter information across the latent class. The MRM in equation (3) 

associates a class membership parameter, g, with each examinee. This determines 
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the relative difficulty of the items for that examinee. Additionally, g also determines 

the latent ability parameter, θj. This, in turn, determines the number of correct 

answers on the test. The probability of a correct response in the MRM is written as 
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where g is an index for the latent class, g = 1,…, G; j = 1,…, N examinees, θj is the 

latent ability of an examinee j, πg is the proportion of examinees for each class, and 

big is the Rasch difficulty parameter of item i for class g. The indeterminacy 

constraint for item centering Σbig = 0 for class g was used. 

The Generalized Partial Credit Model 

The generalized partial credit mode (GPCM; Muraki, 1997) is an extension of 

Masters’ partial credit model (PCM; Masters & Wright, 1997) in which the 

assumption of uniform discrimination for all items is relaxed: 
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where Zih(θj) is the logit and ΣPih(θj) = 1, ai is a slope parameter for item i and fixed 

to one in this study, bih is an item-category parameter for item i and hth category, 

bi is an item-location parameter for item i, dh is a category parameter for the hth 

category of item i, and mi is the number of response categories. To eliminate 

indeterminacy, bi1 was arbitrarily fixed to zero. The category parameters also have 

the following identification constraint: 
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Detection of Treatment Effects in the Multilevel Model 

A multilevel analysis using proc mixed SAS procedure with the maximum 

likelihood estimation method was performed to detect treatment effects for each of 

the equating methods after obtaining ability parameters (θs) using three IRT models. 

Post-test ability parameters (θs) estimated under each of the three equating methods 

were used as dependent variables. Student level manifest variables included gender, 

ethnicity, and language used for reading (i.e., English, Spanish, or both). Teacher 

level variables included level of project participation and years of teaching 

experience. 

After comparing the six possible nested models using the likelihood ratio test, 

the model below was determined to be the best-fit: 
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In equations (7) and (8), θij, the ability parameter for student i indicates to 

teacher j. The variables in Level 1 were used as student-level covariates; gender 

was coded as 0 for female and 1 for male and Hispanic was coded as 0 for non-

Hispanic and 1 for Hispanic. ReadE and ReadS are dummy coded variables. When 

a student read only in English, ReadE was coded as 1 and ReadS was coded as 0. 

When a student read only in Spanish, ReadE was coded as 0 and 1 for ReadS. When 

a student read in both English and Spanish, ReadE and ReadS were both coded 0 

as the reference category. For the second level, the control school was coded as 0 

and the treatment schools were coded as 1. Teaching was coded as the total number 

of years spent teaching. Teaching was centered at the median value of 10. 



CHOI ET AL 

7 

Engagement was coded as the number of times the teacher participated in the 

activities of the larger host study. Engagement was centered at the median value of 

6. 

Methodology 

Data 

Data were from the host study entitled “Language-rich Inquiry Science for English 

Language Learners” (LISELL). The host study was designed to improve pedagogy 

for teaching middle grade science (Buxton et al., 2013). There were six constructed 

response questions measuring four subscores: scientific inquiry, everyday language, 

academic language, and science content. The first two items measured use of 

variables, the next two items measured understanding of hypothesis, observation, 

and evidence, and the last two items measured cause and effect relationships. The 

test for the host study had two forms, one for the pretest and a second for the posttest 

to prevent memory effects from intruding on the data. In this study, we used only 

posttest data for two years and one form was selected for analysis. All six 

constructed response questions consist of thirty-three subquestions. Each 

subquestion was scored by partial credit scores. For RM and MRM, all thirty-three 

subquestions were dichotomously recoded: all partial credits were recoded as 

correct responses. 

Exploratory and (when needed) confirmatory factor analyses were applied to 

evaluate the validity of the assessment of the dichotomously recoded written 

responses. Unweighted least squares extraction and direct oblimin rotation methods 

were used for both first- and second-year posttests. Six factors were extracted for 

both datasets: Factor 1 consisted primarily of Questions 1 & 2, Factor 2 consisted 

of Question 3, Factor 3 consisted of Question 4, Factor 4 consisted of Question 5, 

Factor 5 consisted of Question 6, and Factor 6 consisted of use of everyday 

language. The conclusion from this result was that the assessment was valid for 

testing understanding of science inquiry processes. 

Two kinds of reliability analysis were used: inter-rater reliability using 

Cohen’s Kappa and Cronbach’s alpha for evaluating internal consistency. A 

random 10% sample of the tests was selected and re-scored. Inter-rater agreement 

(Hayes & Hatch, 1999) for this analysis indicated good consistency, .65 for the first 

year of the host study and .70 for the second year. Cronbach’s alphas for all items 

for first and second years were both .91. Thus, the posttest for both years showed 

good reliabilities. 
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Table 1. Five equating designs 
 

Design 
IRT 

Model 
Baseline 

(Year) 
Equating 

method 
Number 
of items 

Number of 
anchors 

Number of 
latent classes 

Item 
type 

1 RM 1st CI 33 33 1 Dicho 

2 RM 2nd CI 33 33 1 Dicho 

3 MRM 2nd CI 33 33 4 Dicho 

4 GPCM 2nd CI 6 6 1 SbyI 

5 GPCM 2nd CI 6 6 1 SbyC 
 

Note: CI = common-item IRT equating, Dicho = dichotomously recoded item, SbyI = subscore by item, 
SbyC = subscore by category 

Participants 

During the 2011-2012 and 2012-2013 school years, five middle schools from three 

school districts in a Southeastern state were recruited for the LISELL study, i.e., 

the larger host study. Nineteen teachers participated for the first year and 21 

teachers participated for the second year across grades 6 to 8. The science teachers 

all were invited to participate, and those who volunteered became participants in 

this host study. The frequency of participation in the host study was counted. 

Teaching experience ranged from 3 years to 30 years. There were 1,635 students in 

the five participating schools: 730 students participated in the first year and 905 

students participated in the second year. None of the students took the posttests for 

both the first and second years. 

One school was selected as a control school. That school did not receive any 

LISELL teacher professional development. The other four schools were assigned 

to the treatment condition. There were 172 students in the control school and 1,435 

students in the treatment school. 

Results 

Equating Designs 

Three types of common-item equating analyses were used with each of the IRT 

models. The five equating designs are shown in Table 1. The RM design was used 

to compare the effects depending on selection of the baseline. There were two 

baselines considered: the posttest scale for the first year and the posttest scale for 

the second year. The MRM was used to compare subgroup equating with one group 

equating. The GPCM was used to compare two different subscore equating 

methods: subscore by item and subscore by category. 
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Bayesian IRT Estimation 

Estimation of model parameters was done using Markov chain Monte Carlo 

(MCMC) estimation as implemented in the computer software WinBUGS (Lunn, 

Thomas, Best, & Spiegelhalter, 2000). Heidelberger and Welch’s convergence 

diagnostics (1983) were used to determine the number of iterations as implemented 

in the coda package using R (Plummer, Best, Cowles, Vines, & Sarkar, 2012). In 

addition, the ratio of the standard deviation of the estimated parameter and the MC 

error was also used to help determine whether the MCMC chain had converged. As 

a rule of thumb, the MC error should not be more than 5 percent of the standard 

deviation of the estimated parameter. The Heidelberger and Welch convergence 

diagnostic was used to decide the burn-in and post-burn-in iterations for item 

difficulty parameters for each IRT model. For the RM, a burn-in of 3,000 iterations 

was found to be sufficient for convergence for all parameters; 6,000 post-burn-in 

iterations were used to obtain the posterior distributions. A burn-in of 3,000 

iterations and 5,000 post-burn-in iterations were used for the MRM. For the GPCM, 

a burn-in of 1,000 iterations and 3,000 post-burn-in iterations were used. 

Estimation of Equating Designs 1 & 2 (Baseline Selection) 

For equating Design 1, i.e., with the first year as the baseline, first, the RM was 

applied to compare equating methods using two different baselines. Item difficulty 

parameters and ability parameters were estimated first from the first-year dataset. 

Then, item difficulties estimated from the first year were fixed and used to estimate 

ability parameters for the second-year dataset. For equating Design 2, i.e., the 

second year as the baseline, item difficulty parameters and ability parameters from 

the second-year posttest data were estimated. Then item difficulties estimated from 

second year were fixed and applied to estimate ability parameters for the first year 

(See Table 2). 

Before equating, the mean of ability parameters for first year was .00 and .33 

for second year. After equating using Design 1, the mean ability for the first year 

was .00 and .21 for the second year. When Design 2 was applied, the mean ability 

for first year was .11; for the second year, it was .33. Thus, there were differences 

in ability between Design 1 and Design 2. 
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Table 2. Item difficulty parameters for IRT anchor equating based on two baselines 
 

Item No. Description Baseline (1st year) Baseline (2nd year) Difference 

1 InquiryQ1 0.15 0.15 0.00 

2 EVLanguageQ1 −1.69 −1.77 0.09 

3 ACLanguageQ1 0.42 0.35 0.07 

4 ContentQ1 0.82 1.24 −0.42 

5 InquiryQ2_1 0.76 0.65 0.12 

6 InquiryQ2_2 1.10 1.27 −0.16 

7 InquiryQ2_3 0.77 0.67 0.10 

8 EVLanguageQ2 −2.83 −2.87 0.04 

9 ACLanguageQ2 0.59 0.39 0.20 

10 ContentQ2 −0.16 −0.03 −0.13 

11 InquiryQ3_1 −1.50 −1.60 0.10 

12 InquiryQ3_2 1.11 1.07 0.03 

13 EVLanguageQ3 −3.53 −3.21 −0.32 

14 ACLanguageQ3 −0.05 −0.17 0.12 

15 ContentQ3 0.92 0.80 0.13 

16 InquiryQ4_1 −0.28 −0.43 0.15 

17 InquiryQ4_2 1.44 1.33 0.11 

18 InquiryQ4_3 1.99 1.91 0.08 

19 EVLanguageQ4 −2.53 −2.11 −0.42 

20 ACLanguageQ4 0.46 0.30 0.16 

21 ContentQ4 0.79 0.91 −0.12 

22 InquiryQ5_1 1.12 0.92 0.20 

23 InquiryQ5_2 1.06 0.78 0.28 

24 EVLanguageQ5 −2.21 −1.59 −0.62 

25 ACLanguageQ5 1.25 0.77 0.49 

26 ContentQ5 0.95 0.62 0.33 

27 InquiryQ6_1 0.10 0.06 0.04 

28 InquiryQ6_2 0.81 0.63 0.18 

29 InquiryQ6_3 0.22 0.24 −0.03 

30 InquiryQ6_4 0.64 0.80 −0.16 

31 EVLanguageQ6 −2.69 −2.21 −0.49 

32 ACLanguageQ6 −0.01 0.14 −0.16 

33 ContentQ6 0.00 0.01 0.00 

 
 
Table 3. Model selection indices to find the number of latent classes 
 

Number of 
latent classes 

AIC  BIC 

1st year 2nd year  1st year 2nd year 

1 22620 28260  22770 28420 

2 20840 25810  21150 26140 

3 19720 24840  20200 25340 

4 19250 23740  19890 24410 

5 24240 30010   25040 30840 
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Table 4. Item difficulty parameters of four latent classes using subgroup IRT equating 
 

Item No. Description Class 1 Class 2 Class 3 Class 4 

1 InquiryQ1 0.89 −0.29 −0.49 0.18 

2 EVLanguageQ1 −0.35 −2.13 −2.86 −1.47 

3 ACLanguageQ1 1.17 −0.05 −0.39 0.39 

4 ContentQ1 2.67 1.31 −0.34 1.11 

5 InquiryQ2_1 1.05 0.65 0.23 0.63 

6 InquiryQ2_2 2.12 1.26 0.33 1.15 

7 InquiryQ2_3 1.16 0.50 0.06 0.83 

8 EVLanguageQ2 −2.70 −2.78 −3.37 −2.93 

9 ACLanguageQ2 0.94 0.46 −0.38 0.51 

10 ContentQ2 0.82 −0.27 −0.88 0.05 

11 InquiryQ3_1 −0.38 −1.49 −2.67 −1.36 

12 InquiryQ3_2 2.26 0.99 −0.18 0.97 

13 EVLanguageQ3 −2.68 −3.18 −3.69 −3.27 

14 ACLanguageQ3 1.07 −0.51 −1.20 −0.24 

15 ContentQ3 2.05 0.74 −0.43 0.63 

16 InquiryQ4_1 0.14 −0.52 −1.09 −0.37 

17 InquiryQ4_2 1.85 1.79 0.53 1.30 

18 InquiryQ4_3 2.54 2.29 1.19 1.67 

19 EVLanguageQ4 −1.62 −2.34 −2.81 −1.81 

20 ACLanguageQ4 1.00 −0.11 −0.36 0.39 

21 ContentQ4 1.42 1.24 0.37 0.72 

22 InquiryQ5_1 −0.52 −1.25 3.09 4.26 

23 InquiryQ5_2 −1.22 −1.54 2.95 3.74 

24 EVLanguageQ5 −3.17 −3.40 −1.96 −0.99 

25 ACLanguageQ5 0.29 −0.61 1.25 1.90 

26 ContentQ5 −2.61 −2.47 3.16 3.32 

27 InquiryQ6_1 −1.17 1.87 1.26 −1.65 

28 InquiryQ6_2 −0.30 3.36 2.43 −0.46 

29 InquiryQ6_3 −0.97 2.32 2.23 −1.52 

30 InquiryQ6_4 0.00 3.69 2.81 −0.18 

31 EVLanguageQ6 −3.14 −2.52 −2.23 −4.07 

32 ACLanguageQ6 0.07 1.10 0.44 −0.83 

33 ContentQ6 −2.72 1.89 2.99 −2.60 
 

Note: EV = Everyday, AC = Academic 

Estimation of Equating Design 3 (Subgroups using Latent Classes) 

An exploratory MRM analysis was done using the MCMC algorithm as 

implemented the computer code WinBUGS. The exploratory analysis was done to 

determine the number of latent groups in the data. Solutions for one to five latent 

classes were fit. The number of latent classes was determined using the Akaike’s 

information criterion (AIC) and Bayesian information criterion (BIC) as suggested 

by Li, Cohen, Kim, and Cho (2009). The smaller AIC and BIC values represent 
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better model fit. BIC and AIC values in Table 3 indicated that a model with four 

latent classes was the best fit to both first- and second-year datasets. 

The ability parameters from the four-group MRM were then used to obtain 

ability parameter estimates for Equating Design 3. First, difficulty parameters were 

estimated from the second-year data. These were then fixed and used to estimate 

the ability parameters for the first-year data. Table 4 shows the difficulty parameters 

for each of the four latent classes. Examinees were classified using the modes of 

posterior densities for group membership into one of the four latent groups detected 

in the exploratory analysis. Class 1 was the highest ability group, Classes 2 and 4 

were average ability groups, and Class 3 was the lowest ability group. The sample 

sizes of the lowest group (Class 3), N = 84 and 315, were the largest for both years, 

respectively. 

Results in Figure 1 clearly show that the item difficulty parameters differed 

across the four latent classes. Questions 5 and 6 were much easier for Class 1 (the 

highest ability group) than for Class 3 (the lowest ability group). This suggests that 

members of Class 1 had greater knowledge about cause and effect than did 

members of Class 3. Although members in Classes 2 and 4 had similar average 

abilities (see Table 5), the item difficulties were differentially difficult for 

Questions 5 and 6 in these two classes. There was, however, no meaningful 

difference in difficulty parameters between Classes 2 and 4 for Questions 1 to 4, 

but members of Class 2 did perform better than the members of Class 4 on Question 

5. 

In contrast, Class 4 had lower difficulty parameters than Class 2 for Question 

6 indicating that Question 6 was easier for members of Class 4. Both Questions 5 

and 6 assessed knowledge about the relationship between cause and effect. The two 

questions differed in that Question 5 used everyday language (e.g., using words like 

if and then) in the question whereas Question 6 used academic language (e.g., using 

words like cause and effect). Therefore, although the mean ability in Classes 2 and 

4 were similar, there appears to be a difference in understanding and use of 

everyday language and academic language with respect to the cause and effect. 

The proportions of group membership and mean ability estimates between 

first and second year were similar to each other using Design 3 (subgroup common-

item IRT equating). There do not appear to be differences in ability for the four 

latent groups in the first and second year. 

Cross tabulation analyses of manifest groups (e.g., school type. race, gender, 

language usage for reading, teaching year and teacher’s engagement, etc.) and 

latent class were done did not indicate differences on these variables across latent 

classes. An example is given in Table 6. 
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Figure 1. Item difficulty comparison for four latent classes 
 

 
 
Table 5. Equated mean of ability parameters and latent group proportions using 
subgroup equating 
 

 1st year  2nd year  Total 

Latent class Mean n %  Mean n %  n % 

1 1.67 183 25.1  1.78 277 30.6  460 28.1 

2 0.50 69 9.5  0.57 110 12.2  179 10.9 

3 −1.44 284 38.9  −1.47 315 34.8  599 36.6 

4 0.40 194 26.6  0.31 203 22.4  397 24.3 

Total   730 100.0     905 100.0   1635 100.0 

 
 
Table 6. Latent classes make-up by control and treatment school (equating design 3) 
 

 Class 1 Class 2 Class 3 Class 4 Total 

Control school 59 (34.5%) 19 (11.1%) 37 (21.6%) 56 (32.7%) 171 (100.0%) 

Treatment school 375 (27.2%) 154 (11.2%) 525 (38.0%) 327 (23.7%) 1381 (100.0%) 

Total 434 (28.0%) 173 (11.1%) 562 (36.2%) 383 (24.7%) 1552 (100.0%) 
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Estimation of Equating Designs 4 and 5 (Subscores from Six 

Questions and Subscores from the Six Item Categories) 

Subscore equating has recently been suggested as having potential remedial and 

instructional benefits (Puhan & Liang, 2011; Sinhary & Haberman, 2011). The 

assessment used in this study had two different subscores: six questions (Questions 

1 to 6) and six categories: 3 categories of scientific inquiry, one category of 

everyday language, one category of academic language, and one category of 

science content. The second year was used as the baseline for Designs 4 and 5. 

The parameters of the six subscores were estimated using the GPCM. Tables 

7 and 8 present the item location (b) and category (τ) parameters for the GPCM for 

subscores estimated by item and for subscores estimated by category. IRT 

common-item equating was used for equating both subscores. 
 
 
Table 7. Item location (b) and category (τ) parameters for six subscores by question 
 

Item parameter Q1 Q2 Q3 Q4 Q5 Q6 

b 0.62 0.50 0.13 0.71 0.62 0.48 

τ0 0.00 0.00 0.00 0.00 0.00 0.00 

τ1 0.47 1.60 0.96 0.81 0.88 0.99 

τ2 0.28 0.06 0.75 0.73 −1.17 −0.56 

τ3 0.39 −0.07 −0.04 0.13 −0.78 −0.48 

τ4 −1.14 −0.23 −1.87 −0.64 0.87 −0.01 

τ5  −0.67 0.20 −0.12 0.20 0.15 

τ6  −0.69  −0.91  −0.45 

τ7      0.36 

 
 
Table 8. Item location (b) and category (τ) parameters for six subscores by category 
 

Item 
parameter 

Inquiry  Language   
Qs 1 & 2 Qs 3 & 4 Qs 5 & 6  Everyday Academic  Content 

b 0.11 −0.03 −0.02  −1.91 −0.21  0.14 

τ0 0.00 0.00 0.00  0.00 0.00  0.00 

τ1 0.84 1.87 −0.25  −0.06 1.14  1.49 

τ2 0.24 0.76 0.93  0.88 0.79  0.97 

τ3 −0.17 0.11 −0.64  −0.13 0.30  0.67 

τ4 −0.90 −0.92 0.87  0.24 −0.46  −0.16 

τ5  −1.82 −1.14  −0.64 −0.58  −1.18 

τ6   0.22  −0.28 −1.19  −1.80 
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Table 9. Descriptive analysis for Level 1 and 2 variables in the multilevel modeling 
 

  Control school  Treatment school 

 Variable n % Mean SD  n % Mean SD 
 Teaching 169  16.88 11.54  1347  13.25 8.11 
 Engagement 169  0.21 0.41  1347  7.89 5.92 

           

Estimates θ1 169  0.62 1.01  1347  0.13 1.18 
 θ2 169  0.72 0.99  1347  0.24 1.15 
 θ3 169  0.77 1.33  1347  0.10 1.54 
 θ4 169  0.88 0.56  1347  0.61 0.66 
 θ5 169  0.08 0.80  1347  −0.31 0.91 

           

Gender Female 84 49.7    670 49.7   

 Male 85 50.3    677 50.3   

           

Race Non-Hispanic 92 54.4    732 54.3   

 Hispanic 77 45.6    615 45.7   

           

Reading English 137 81.1    1012 75.1   

 Spanish 2 1.2    31 2.3   

 Both 30 17.8    304 22.6   

Multilevel Modeling to Detect Treatment Effects 

Descriptive Analysis. There were 668 students and 19 teachers for year 1 and 848 

students and 21 teachers for year 2 following listwise deletion. Teachers assigned 

to the treatment schools had eight times more engagement with the LISELL project 

than teachers from the control school. Teachers from the control school had 3.5 

years more of teaching experience on average than teachers from the treatment 

schools. 

There was no difference between the control and treatment schools on student 

background information such as gender, race, and language used for reading. Five 

different ability parameters were estimated from the five different equating designs. 

For the control school, mean ability parameters (ranging from M(θ1) = 0.62 to 

M(θ4) = 0.88) appeared to be similar except for the mean ability (M(θ5) = 0.08) 

from Design 5 (see Table 9). 

For treatment schools, the three mean ability parameters (ranging from 

M(θ3) = 0.10 to M(θ2) = 0.24) estimated using Designs 1 to 3 appeared to be similar. 

The mean ability parameter for Design 4 M(θ4) = 0.61 for the treatment schools 

using subscore equating by question was higher and the mean ability parameter 

M(θ5) = −0.31 for treatment schools using subscore equating by category had the 

lowest values. Overall, the control school had higher mean ability than the 
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treatment schools for on all five designs. Three equating designs, Designs 1 to 3, 

using two different baselines with the RM and using four subgroups detected with 

the MRM produced similar mean ability parameter estimates. The mean ability 

parameter from subscore equating by category was lowest and that from subscore 

equating by item was highest among all five ability parameter estimates (see Table 

9). 

 

Treatment Effect Interpretation from the Multilevel Models. Five ability 

parameters were applied to the multilevel model as a dependent variable. Ability 

estimates were obtained from each of the five equating designs. Ability means for 

the RM were estimated using common-item equating for Designs 1 and 2. The 

mean ability estimate for Design 3 (θ3) was estimated using subgroup based on 

latent classes. Designs 4 and 5 using the GPCM provided mean ability estimates 

(θ4 and θ5) for the multilevel model described in equations (7) and (8). The ICC 

values for five equating designs were .12-.13. It tells us that about 12-13% of the 

variability in outcome difference occurs between Level 2 units. 

Results in Table 10 compare fixed and random effects on the same multilevel 

models for the five equating designs. The school (γ02) and engagement (γ03) 

variables, which measure the treatment effect, were not significant for any of the 

equating designs. The interaction between engagement and Hispanic (γ22) was 

significant at the .05 level for Designs 1, 2, 3, and 5, although the coefficient values 

were very small (ranging from .01 to .03). The intercepts (γ00) from Designs 1 to 4 

looked similar but that for Design 5 was smaller. 

The coefficients in the second and third columns of Table 10 suggest there 

was no difference under the two different baseline selections. When Designs 2 and 

3 were used, coefficients related to reading in Spanish (γ40 and γ41) were not 

significantly different. There were differences on the random effect. This may 

indicate that ability parameters estimated from Design 3 were less well explained 

by the proposed model than ability estimates from Design 2. As noted above, 

manifest variables were not related to characteristics of the four latent classes (see 

Table 6 and Figure 1). The fixed effects from Designs 4 and 5 were similar but the 

random effect of Design 5 was larger than that of Design 4. This suggests that 

ability parameters estimated from Design 5 were less well explained by the 

proposed model than ability estimates from Design 4. 
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Table 10. Treatment effect comparisons on the inquiry science assessment using five equating designs 
 

  

Design 1 
(Baseline: 1st year) 

Design 2 
(Baseline: 2nd year) 

Design 3 
(Subgroup) 

Design 4 
(Subscore: Item) 

Design 5 
(Subscore: Category) 

Effect Variables B (SE) p B (SE) p B (SE) p B (SE) p B (SE) p 

 Intercept (γ00) 0.65 −0.40 0.12 0.75 −0.40 0.07 0.75 −0.53 0.17 0.84 −0.22 0.00* 0.03 −0.30 0.93 
                 

Fixed Teaching (γ01) 0.01 −0.01 0.53 0.01 −0.01 0.55 0.01 −0.01 0.53 0.00 −0.01 0.43 0.01 −0.01 0.51 

 School (γ02) −0.27 −0.42 0.52 −0.27 −0.42 0.51 −0.31 −0.55 0.57 −0.08 −0.23 0.71 −0.14 −0.32 0.67 

 Engagement (γ03) 0.00 −0.01 0.94 0.00 −0.01 0.81 −0.01 −0.02 0.43 −0.01 −0.01 0.27 −0.01 −0.01 0.35 

 Gender (γ10) −0.11 −0.06 0.04* −0.11 −0.05 0.04* −0.11 −0.07 0.15 −0.07 −0.03 0.02* −0.09 −0.04 0.04* 

 Hispanic (γ20) −0.06 −0.19 0.76 −0.05 −0.18 0.78 −0.07 −0.25 0.79 −0.04 −0.10 0.67 −0.05 −0.15 0.73 

 Hispanic*School (γ21) −0.30 −0.21 0.15 −0.30 −0.20 0.14 −0.42 −0.27 0.13 −0.14 −0.12 0.21 −0.22 −0.16 0.17 

 Hispanic*Engagement (γ22) 0.02 −0.01 0.03* 0.02 −0.01 0.03* 0.03 −0.01 0.03* 0.01 −0.01 0.06 0.02 −0.01 0.03* 

 ReadE (γ30) 0.12 −0.24 0.61 0.13 −0.23 0.58 0.10 −0.31 0.76 0.08 −0.13 0.53 0.11 −0.18 0.54 

 ReadE*School (γ31) −0.15 −0.25 0.56 −0.15 −0.24 0.53 −0.13 −0.33 0.68 −0.09 −0.14 0.50 −0.13 −0.19 0.52 

 ReadS (γ40) −1.40 −0.78 0.07 −1.34 −0.76 0.08 −1.84 −1.02 0.07 −1.00 −0.44 0.02* −1.04 −0.60 0.09 

 ReadS*School (γ41) 0.51 −0.81 0.53 0.48 −0.79 0.54 0.76 −1.06 0.47 0.41 −0.45 0.36 0.39 −0.62 0.54 
                 

Random UN(1,1) ( τ
2

00
) 0.17 −0.06  0.17 −0.06  0.29 −0.09  0.05 −0.02  0.09 −0.03  

 Residual (σ2) 1.14 −0.04   1.08 −0.04   1.96 −0.07   0.35 −0.01   0.68 −0.03   
 

Note: * < .05, Teaching and Engagement variables were centered to their median values 
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Discussion 

Three different equating methods (baseline selection, subgroup, and subscore) were 

examined for their impact on the detection of treatment effects in an empirical 

dataset. Common-item IRT equating was used with all three equating methods. 

Results indicated that selection of a baseline did not affect the equated abilities. In 

addition, subgroup equating using the latent classes extracted by the MRM 

provided similar equated mean ability parameters using one group equating. 

However, the use of the different subscores produced different equated ability 

scores. 

Equated ability parameters were similar for Designs 1 to 3: baseline 

comparison (year 1 vs. year 2) and one group equating using RM vs. latent 

subgroups detected using the MRM, respectively. Subscore equating by item 

tended to overestimate ability parameters. On the other hand, subscore equating by 

category tended to underestimate ability parameters (see Table 9). There was no 

significant impact of equating on detection of treatment effects. The coefficients to 

measure effects for school and engagement variables were close to zero. 

Posttest data were used for estimating the item and ability parameters. This 

was primarily because knowledge of science inquiry practices was lower on the 

pretest. On the pretest, students had already had the instructional intervention in the 

treatment condition. These item difficulty parameter estimates were then used for 

estimating ability under each of the design conditions. The GPCM was used to 

estimate the item and ability parameters as a way of estimating these parameters 

given the testlet structure of the test. It would be interesting to see whether including 

a testlet model would provide different estimates than were obtained with the 

GPCM. 

For subgroup equating, the manifest variables were used to measure the 

treatment effect did not appear to explain the characteristics of the four latent 

classes. These manifest variables are common in school-based instructional 

intervention research. It would be interesting to examine whether manifest 

variables about students and teachers that were more closely related to the 

instructional intervention might be related to latent class membership and, possibly, 

to the equating effect. 
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