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For the analysis of two-way contingency tables with ordered categories, Yamamoto, Tahata, 

Suzuki, and Tomizawa (2011) considered a measure to represent the degree of departure 

from marginal point-symmetry. The maximum value of the measure cannot distinguish two 

kinds of marginal complete asymmetry with respect to the midpoint. A measure is proposed 

which can distinguish two kinds of marginal asymmetry with respect to the midpoint. It 

also gives large-sample confidence interval for the proposed measure. 

 

Keywords: Asymmetry, marginal proportional point-symmetry, marginal point-

symmetry, measure, model, ordered category 

 

Introduction 

Consider an R × R square contingency table with the same row and column 

classifications. Let pij denote the probability that an observation will fall in the ith 

row and jth column of the table (i = 1,…, R; j = 1,…, R). The symmetry model, 

which was given by Bowker (1948), is defined by 

 

 ( )ij jip p i j=  . 

 

This model indicates that the probability that an observation will fall in row 

category i and column category j is equal to the probability that the observation 

falls in row category j and column category i. Namely, this describes a structure of 

symmetry of the cell probabilities {pij} with respect to the main diagonal of the 

table. For the symmetry model see also Bishop, Fienberg, and Holland (1975, p. 
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282), Caussinus (1965), McCullagh (1978), Goodman (1979), Agresti (2002, p. 

424), Tomizawa and Tahata (2007), and Tahata and Tomizawa (2014). 

The marginal homogeneity (or marginal symmetry) model is defined by 

 

 ( )1, ,i ip p i R = =  , 

 

where 

 

 
1 1

,
R R

i it i si

t s

p p p p 

= =

= =  ; 

 

see, e.g., Stuart (1955), Bhapkar (1966), Bishop et al. (1975, p. 282), Tomizawa 

and Tahata (2007), and Tahata and Tomizawa (2014). The marginal homogeneity 

model indicates that the row marginal distribution is identical to the column 

marginal distribution. 

Wall and Lienert (1976) considered the point-symmetry model, defined by  

 

 ( )1 , 1ij i j
p p i R j R = =   =   , 

 

where the symbol * denotes i* = R + 1 − i. 

Consider an R × C rectangular contingency table with ordered categories. Let 

pij denote the probability that an observation will fall in the ith row and jth column 

of the table (i = 1,…, R; j = 1,…, C). Tomizawa (1985) extended the point-

symmetry model for an R × C contingency table as follows: 

 

 ( )1, , ; 1, ,ij i j
p p i R j C = =  =   

 

where i* = R + 1 − i and j** = C + 1 − j. This model indicates that the probability 

that an observation will fall in row category i and column category j is equal to the 

probability that the observation falls in row category i* and column category j**. 

Namely, this describes a structure of point-symmetry of cell probabilities with 

respect to the center cell or center point in the table. Also see Tomizawa and Tahata 

(2007) and Tahata and Tomizawa (2014). Tomizawa (1985) also considered the 

marginal point-symmetry model, defined by 

 

 ( )1, ,i i
p p i R 
= =   
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and 

 

 ( )1, ,j j
p p j C 

= =  . 

 

This model indicates that the row marginal distribution is point-symmetric with 

respect to the midpoint and the column marginal distribution is also point-

symmetric with respect to the midpoint. Let [ ] denote the Gauss symbol (i.e., for 

real number x, [x] denotes the maximum integer which is not larger than x). For 

example, when R = 4, [R/2] = 2, and when R = 5, [R/2] = 2. The marginal point-

symmetry model is also expressed as essentially 

 

 1, ,
2

i i

R
p p i 

  
= =   

  
 

 

and 

 

 1, ,
2

j j

C
p p j 

  
= =   

  
. 

 

When the model does not hold, there is also interested in measuring the degree 

of departure from the model. For the measures to represent the degree of departure 

from the symmetry, the point-symmetry and the marginal homogeneity models, see, 

e.g., Tomizawa (1994, 1995), Tomizawa, Seo, and Yamamoto (1998), Tomizawa, 

Miyamoto, and Hatanaka (2001), and Tomizawa, Yamamoto, and Tahata (2007). 

For the measure from the marginal point-symmetry model, Yamamoto, Tahata, 

Suzuki, and Tomizawa (2011) proposed the power-divergence type measure ψ(λ); 

see Appendix 1. However, when the measure ψ(λ) equals 1, it is not possible to 

distinguish two kinds of row (column) complete asymmetry with respect to the 

midpoint, where row complete asymmetry means (i) pi∙ = 0 (then pi*∙ > 0) for 

i = 1,…, [R/2], or (ii) pi*∙ = 0 (then pi∙ > 0) for i = 1,…, [R/2], and column complete 

asymmetry means (i) p∙j = 0 (then p∙j** > 0) for j = 1,…, [C/2], or (ii) p∙j** = 0 (then 

p∙j > 0) for j = 1,…, [C/2]. Because these two kinds of row (column) complete 

asymmetry indicate the opposite different maximum departures from marginal 

point-symmetry with respect to the midpoint, the interest is in proposing a measure 

which can take the different values for them. 

The purpose of present study is to propose a measure which can distinguish 

two kinds of the marginal complete asymmetry with respect to the midpoint for 



IKI & TOMIZAWA 

5 

rectangular contingency tables with ordered categories. The measure lies between 

−1 and 1 although the measure ψ(λ) lies between 0 and 1, and it may be useful for 

comparing the degree of departure from marginal point-symmetry in several tables. 

Measure  

Consider the R × C contingency table. Let 

 

 

( )
 

( )
 2 2

1 2

1 1

1 1

, ,

, 1, , ,
2

R C

i ji j
i j

i i
i i

p p p p

pp R
q q i

 

 

 





  
= =

 
 

= + = +

  
= = =   

  

 
 

 

and 

 

 
2 2

, , 1, ,
2

j j

j j

pp C
q q j

 





 

 

  
= = =   

  
. 

 

Assuming {pi∙ + pi*∙ ≠ 0} and {p∙j + p∙j** ≠ 0}, a measure is proposed to represent 

the degree of departure from marginal point-symmetry, defined by 

 

 1 1 2 2
MPS

1 2

   


 

+
=

+
, 

 

where 

 

 

( ) ( )

 

( )

( ) ( )

 

2

1 1
1

1

1 2 2

2

2 2
1

4 π
,

π 4

cos ,

4 π
,

π 4

R

i ii
i

i

i

i i

C

j jj
j

q q

q

q q

q q

 



 







 
=

− 

 

 
=

 
= + − 

 

 
 =
 +
 

 
= + − 
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( )

1

2 2 2
cos .

j

j

j j

q

q q




−

 

 
 =
 +
 

  

 

The submeasure φ1 represents the degree of departure from point-symmetry 

of row marginal distribution and the submeasure φ2 represents the degree of 

departure from point-symmetry of column marginal distribution. The measure φMPS, 

being the weighted sum of the submeasures φ1 and φ2, represents the degree of 

departure from marginal point-symmetry. 

The ranges of {θ1(i)} and {θ2(j)} are 0 ≤ θ1(i) ≤ π/2 and 0 ≤ θ2(j) ≤ π/2. The 

submeasures φ1 and φ2 lie between −1 and 1. Therefore, the measure φMPS lies 

between −1 and 1. The submeasure φ1 has characteristics that (i) φ1 = 1 if and only 

if pi∙ = 0 (then pi*∙ > 0) for i = 1,…, [R/2], say, row upper complete asymmetry with 

respect to the midpoint, and (ii) φ1 = −1 if and only if pi*∙ = 0 (then pi∙ > 0) for 

i = 1,…, [R/2], say, row lower complete asymmetry with respect to the midpoint. 

Similarly, the submeasure φ2 has characteristics that (i) φ2 = 1 if and only if p∙j = 0 

(then p∙j** > 0) for j = 1,…, [C/2], say, column upper complete asymmetry with 

respect to the midpoint, and (ii) φ2 = −1 if and only if p∙j** = 0 (then p∙j > 0) for 

j = 1,…, [C/2], say, column lower complete asymmetry with respect to the midpoint. 

The measure φMPS has characteristics that (i) φMPS = 1 if and only if φ1 = φ2 = 1, and 

(ii) φMPS = −1 if and only if φ1 = φ2 = −1. 

The submeasure φ1 = 0 indicates the average of {θ1(i) − (π/4)}, i = 1,…, [R/2], 

equals zero. When φ1 = 0, this structure is referred to as the row average point-

symmetry. Similarly, when φ2 = 0, this structure is referred to as the column 

average point-symmetry. If the marginal point-symmetry model holds then the row 

(column) average point-symmetry holds; but the converse does not. Using the 

submeasure φ1 (φ2), it can be deteremined whether the row (column) average point-

symmetry departs toward the row (column) upper complete asymmetry with respect 

to the midpoint or toward the row (column) lower complete asymmetry with respect 

to the midpoint. When φMPS = 0, this structure will be referred to as the marginal 

average point-symmetry. We note that if the marginal point-symmetry model holds 

then the marginal average point-symmetry holds; but the converse does not. 

However, it is difficult to consider the exact interpretation of the marginal average 

point-symmetry. If the submeasures φ1 and φ2 equal 0 then φMPS equals 0, but the 

converse does not hold. 

For example, consider the artificial probabilities in Table 1. For Table 1a, 

since there are the structures of row upper complete asymmetry with respect to the 

midpoint (i.e., φ1 = 1) and column upper complete asymmetry with respect to the 
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midpoint (i.e., φ2 = 1), we see that the measure φMPS = 1. Also, for Table 1b, 

because there are the structures of row lower complete asymmetry (i.e., φ1 = −1) 

and column lower complete asymmetry (i.e., φ2 = −1), we see that the measure 

φMPS = −1. For Table 1c, because there are the structures of row lower complete 

asymmetry (i.e., φ1 = −1) and column upper complete asymmetry (i.e., φ2 = 1), we 

see that the measure φMPS = 0. 

Relationship between Measure and Model 

Consider the relationship between the measure φMPS and a model. Define the model 

by 

 

 1 1, ,
2

i i

R
p p i 

  
=  =   

  
 

 
 
Table 1. Artificial probabilities 
 

(a) Y  

X (1) (2) (3) (4) Total 

(1) 0.0 0.0 0.0 0.0 0.0 

(2) 0.0 0.0 0.0 0.0 0.0 

(3) 0.0 0.0 0.3 0.2 0.5 

(4) 0.0 0.0 0.2 0.3 0.5 

Total 0.0 0.0 0.5 0.5 1.0 

      

(b) Y  

X (1) (2) (3) (4) Total 

(1) 0.3 0.2 0.0 0.0 0.5 

(2) 0.2 0.3 0.0 0.0 0.5 

(3) 0.0 0.0 0.0 0.0 0.0 

(4) 0.0 0.0 0.0 0.0 0.0 

Total 0.5 0.5 0.0 0.0 1.0 

      

(c) Y  

X (1) (2) (3) (4) Total 

(1) 0.0 0.0 0.3 0.2 0.5 

(2) 0.0 0.0 0.2 0.3 0.5 

(3) 0.0 0.0 0.0 0.0 0.0 

(4) 0.0 0.0 0.0 0.0 0.0 

Total 0.0 0.0 0.5 0.5 1.0 
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and 

 

 2 1, , ,
2

j j

C
p p j 

  
=  =   

  
 

 

where Δ1 and Δ2 are unspecified. This structure is referred to as the marginal 

proportional point-symmetry model. A special case of this model obtained by 

setting Δ1 = Δ2 = 1 is the marginal point-symmetry model. If there is a structure of 

the marginal proportional point-symmetry model in the table, then the submeasures 

φ1 and φ2 can be simply (as a function of parameters Δ1 and Δ2, respectively) 

expressed as 

 

 1 1
1

2

1

4
cos 1

π 1
 −

 
 = −
  + 

 

 

and 

 

 1 2
2

2

2

4
cos 1

π 1
 −

 
 = −
  + 

. 

 

Under the marginal proportional point-symmetry model, φ1 = φ2 = 0 if and only if 

the marginal point-symmetry model holds, i.e., Δ1 = Δ2 = 1. As the value of Δ1 (Δ2) 

approaches zero, the submeasure φ1 (φ2) approaches 1, and as the value of Δ1 (Δ2) 

approaches infinity, the submeasure φ1 (φ2) approaches −1. Denote φ1 and φ2 by 

φ1(Δ1) and φ2(Δ2), respectively. Let 

 

 
1 1

1
2

1

cos
1

 −
 
 =
  + 

. 

 

Noting φ1(Δ1) = 4θ1/π − 1, 
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( )

1 1
1

1

1

1

2

1

1

1 1

1

1 4
cos 1

π 1
1

4 1
cos 1

π 1

4 π
1

π 2







−

−

 
 
 
 
 

 
 

   = −     +   

 
 = −
 +  

= − −

= − 

 

 

Thus, |φ1(Δ1)| equals |φ1(1/Δ1)|. Similarly, |φ2(Δ2)| equals |φ2(1/Δ2)|. For 

comparisons between several tables, if it can be estimated that there is a structure 

of the marginal proportional point-symmetry model in each table, then the measure 

φMPS would be adequate for representing and comparing the degree of departure 

from the marginal point-symmetry model. 

Approximate Confidence Interval for Measures 

Let nij denote the observed frequency in the ith row and jth column of the table 

(i = 1,…, R; j = 1,…, C). Assuming that a multinomial distribution applies to the 

R × C table, consider an approximate standard error and large-sample confidence 

interval for the measure φMPS and the submeasures φ1 and φ2 using the delta method, 

descriptions of which are given by, for example, Bishop et al. (1975, Sec. 14.6). 

The sample version of φMPS, MPŜ , is given by φMPS with {pij} replaced by {p̂ij}, 

where p̂ij = nij/n and n = ΣΣnij. Using the delta method, ( )MPS MPS
ˆn  −  has 

asymptotically (as n → ∞) a normal distribution with mean zero and variance 

 

  

2

2 MPS
MPS

1 1

R C

ij

i j ij

p
p


 

= =

 
=    
 , 

 

 
( )

( ) ( )MPS 1 2 1 2
1 2 1 2 1 2 2 12

1 2

1

ij ij ij ij ijp p p p p

    
       

 

         
= + + + − −           +      
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1

2

1
1 1, , , 1, , ; 1, , ,

2 2

0 otherwise

1
1 1, , ; 1, , , 1, , ,

2 2

0 otherwise

ij

ij

R R
i R j C

p

C C
i R j C

p





 +   
=  +  =      =    

 


 +   
=  =  +      =    

 


 

 

 

( )
 

( )
 

1 1

22 22 2
1 1

11 1 1
22 22 2

1 1

14
cos 1, , ,

π

14
cos 1, , ,

π

0 otherwise

ii ii R

i ii i

ii ii R

ij i ii i

p p pp
i

p pp p

p p pp
i R

p p pp p



 

 

 

 




 




 − 

  

 −  +

  

    + +    − − =  
   ++   

    + +   = + − = +  
   ++   



 

 

 

( )

( )

1 2

22 22 2
2 2

12 2 1
22 22 2

2 2

14
cos 1, , ,

π

14
cos 1, , ,

π

0 otherwise

jj jj C

j jj j

jj jj C

ij j jj j

p p pp
j

p pp p

p p pp
j C

p p pp p



 

 

 

 




 




 −

  

 − +

  

    + +   − − =        ++   

    + +  = + − = +       ++   












 

 

Let  2

MPŜ   denote σ2[φMPS] with {pij} replaced by {p̂ij}. Then  MPS
ˆ n   is 

an estimated approximate standard error of MPŜ , and 

 

  MPS 2 MPS
ˆ ˆz n    

 

is an approximate 100(1 − α)% confidence interval for φMPS, where zα/2 is the 

percentage point from the standard normal distribution corresponding to a two-tail 

probability of α. 

Similarly, for k = 1, 2, ( )ˆ
k kn  −  has asymptotically (as as n → ∞) a 

normal distribution with mean zero and variance 
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2

2 k
k

1 1

R C

ij

i j ij

p
p


 

= =

 
=    
 , 

 

and 

 

  2
ˆ ˆ

k kz n    

 

is an approximate 100(1 − α)% confidence interval for φk. 

Example 

Consider the data in Table 2 taken from Agresti (2002, p. 462). They are the results 

of a randomized double-blind clinical trial comparing an active hypnotic drug with 

a placebo in patients with insomnia. The outcome variable is patient’s reported time 

to fall asleep, measured using 4 categories (< 20 minutes, 20-30 minutes, 30-60 

minutes, and > 60 minutes). 

From Table 3a, for the data in Table 2a, the estimated value of the submeasure 

φ1 is 0.545 (> 0), and the confidence interval for φ1 does not include zero. These 

would indicate patient's reported time before treatment in the Active treatment 

group is estimated to be 54.5 percent of the maximum departure toward the row 

upper complete asymmetry with respect to the midpoint. 
 
 
Table 2. Insomniac patient’s reported time (in minutes) to fall asleep after going to bed, 
from from Agresti (2002, p. 462) 
 

(a) Follow-up  
Initial < 20 20-30 30-60 > 60 Total 

< 20 7 4 1 0 12 

20-30 11 5 2 2 20 

30-60 13 23 3 1 40 

> 60 9 17 13 8 47 

Total 40 49 19 11 119 

      
(b) Follow-up  

Initial < 20 20-30 30-60 > 60 Total 

< 20 7 4 2 1 14 

20-30 14 5 1 0 20 

30-60 6 9 18 2 35 

> 60 4 11 14 22 51 

Total 31 29 35 25 120 
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Table 3. The estimated measures, their estimated approximate standard errors, and 
approximate 95% confidence intervals for measures, applied to (a) Table 2a and (b) 
Table 2b 
 

(a) Measure Estimated measure Standard error Confidence interval 

 φ1 0.545 0.087 (0.375, 0.714) 

 φ2 −0.584 0.082 (−0.745, −0.424) 

 φMPS −0.020 0.063 (−0.143, 0.103) 

 

( )0

1
ψ  0.176 0.060 (0.058, 0.294) 

 

( )
ψ

0

2
 0.189 0.063 (0.662, 0.312) 

 
( )0

ψ  0.182 0.038 (0.107, 0.258) 

     

(b) Measure Estimated measure Standard error Confidence interval 

 φ1 0.512 0.089 (0.337, 0.688) 
 φ2 0.000 0.115 (−0.226, 0.226) 
 φMPS 0.256 0.088 (0.083, 0.429) 

 ( )0

1
ψ  0.159 0.058 (0.047, 0.272) 

 ( )
ψ

0

2
 0.007 0.013 (−0.019, 0.033) 

 ( )0
ψ  0.083 0.028 (0.029, 0.138) 

 
 

Also, from Table 3a, the estimated value of the submeasure φ2 is −0.584 (< 0), 

and the confidence interval for φ2 does not include zero. These would indicate 

patients’ reported time after treatment in the Active treatment group is estimated to 

be 58.4% of the maximum departure toward the column lower complete asymmetry 

with respect to the midpoint. Because the absolute values of submeasures φ1 and φ2 

are almost the same, the measure φMPS is estimated to be close to zero, and the 

confidence interval for φMPS includes zero. However, the estimated values of 
( )0

1  

and 
( )0

2  are 0.176 and 0.189, respectively. Because these values are almost the 

same, the estimated value of the measure ψ(0) is also close to 
( )0

1  and 
( )0

2 . 

From Table 3b, for the data in Table 2b the estimated value of the submeasure 

φ1 is 0.512 (> 0), and the confidence interval for φ1 does not include zero. These 

indicates patients’ reported time before treatment in the Placebo treatment group is 

estimated to be 51.2% of the maximum departure toward the row upper complete 

asymmetry with respect to the midpoint. From Table 3b, the estimated value of the 

submeasure φ2 is 0.000, and the confidence interval for φ2 includes zero. These 

indicates there is a structure of the column average point-symmetry for patient’s 

reported time after treatment in the Placebo treatment group. The estimated values 
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of the measures 
( )0

1 , 
( )0

2 , and ψ(0) show a similar trend with the estimated values 

of the measures φ1, φ2, and φMPS, respectively. 

In addition, when the data in Tables 2a and 2b are compared using the 

estimated submeasure φ1, the degree of departure toward the row upper complete 

asymmetry with respect to the midpoint is almost same for the data in Tables 2a 

and 2b. However, when comparing using the estimated submeasure φ2, for patients’ 

reported time after treatment, the degree of departure toward the column lower 

complete asymmetry with respect to the midpoint is greater in the Active treatment 

than in the Placebo treatment. Therefore, patients’ reported time after treatment in 

the Active treatment would tend to be shorter than that in the Placebo treatment. 

These interpretation cannot be obtained by using the measures 
( )0

1 , 
( )0

2 , and ψ(0). 

Conclusion 

The measure φMPS and submeasures φ1 and φ2 can distinguish two kinds of complete 

asymmetry with respect to the midpoint although the measure ψ(λ) in Yamamoto et 

al. (2011) cannot distinguish them. Because the measure φMPS lies between −1 and 

1 (although the measure ψ(λ) lies between 0 and 1) without the dimension and the 

sample size, φMPS is useful for comparing the degrees of departure from marginal 

average point-symmetry in several tables. When the marginal proportional point-

symmetry model holds, the measure φMPS are represented by two parameters: Δ1 

and Δ2. |φMPS| increases as the value of Δ1 (Δ2) approaches zero or infinity from 1. 

Therefore, φMPS would be adequate for representing the degrees of departure from 

the marginal point-symmetry model distinguishing two kinds of marginal 

asymmetry with respect to the midpoint. 
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Appendix 1 1 

For an R × C contingency table with ordered categories, the measure of departure 2 
from the marginal point-symmetry model considered by Yamamoto et al. (2011) is 3 
given as follows: assuming that {pi∙ + pi*∙ ≠ 0} and {p∙j + p∙j** ≠ 0}, for λ > −1, 4 
 5 
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 15 
and the value at λ = 0 is taken to be the limit as λ → 0. Note that (i) 0 ≤ ψ(λ) ≤ 1, 16 
(ii) ψ(λ) = 0 if and only if the marginal point-symmetry model holds, and (iii) ψ(λ) = 1 17 

if and only if pi∙ = 0 (then pi*∙ > 0) or pi*∙ = 0 (then pi∙ > 0) for i = 1,…, [R/2] and 18 
p∙j = 0 (then p∙j** > 0) or p∙j** = 0 (then p∙j > 0) for j = 1,…, [C/2]. 19 

The sample version of ψ(λ), 
( )ˆ 

 , is given by ψ(λ) with {pij} replaced by {p̂ij}. 20 

Yamamoto et al. (2011) also gave that 
( ) ( )( )ˆn
 

 −  has asymptotically (as 21 

n → ∞) a normal distribution with mean zero and variance 22 



IKI & TOMIZAWA 

17 

 1 

 
( )

( )
( ) ( )( )

2
2

2
1 11 2

1 R C

ij ij ij

i j

w d p
  

  
  = =

  = −
  +

 , 2 

 3 
where σ2[ψ(0)] = limλ→0 σ
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and, for λ > −1, λ ≠ 0, 12 
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Appendix 2 1 

The code is available in R. The data matrix formed by observed frequencies should 2 
be an r × c matrix named m. The function mod.MPS gives a result of a 3 × 4 matrix, 3 
including estimated measure, standard error, and 95% Confidence interval for three 4 
kinds of measures. 5 
 6 

file <- "table" 7 
m <- read.table(paste(file,".txt",sep="")) 8 

N <- sum(m) 9 
r <- nrow(m) 10 
c <- ncol(m) 11 
p <- m/N 12 
 13 
mod.MPS <- function(){ 14 
 15 
rend <- ifelse((r%%2)==0,r/2,(r-1)/2) 16 
cend <- ifelse((c%%2)==0,c/2,(c-1)/2) 17 
p1 <- apply(p,1,sum) 18 
p2 <- apply(p,2,sum) 19 

delta1 <- sum(p1[1:rend]) + sum(p1[(r-rend+1):r]) 20 
delta2 <- sum(p2[1:cend]) + sum(p2[(c-cend+1):c]) 21 
q1 <- p1/delta1 22 
q2 <- p2/delta2 23 

 24 
phi1 <- 0 25 

phi2 <- 0 26 
for(i in 1:rend){ 27 
phi1 <- phi1 + (q1[i]+q1[r-i+1])*(acos(p1[i]/sqrt(p1[i]^2+p1[r-28 
i+1]^2))-pi/4)*4/pi 29 

} 30 

for(j in 1:cend){ 31 
phi2 <- phi2 + (q2[j]+q2[c-j+1])*(acos(p2[j]/sqrt(p2[j]^2+p2[c-32 
j+1]^2))-pi/4)*4/pi 33 

} 34 
phi.MPS <- (delta1*phi1+delta2*phi2)/(delta1+delta2) 35 

 36 
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phi1p <- matrix(c(0),r,c) 1 
phi2p <- matrix(c(0),r,c) 2 
for(k in 1:rend){ 3 
for(l in 1:c){ 4 
phi1p[k,l] <- 4*(acos(p1[k]/sqrt(p1[k]^2+p1[r-k+1]^2)) - 5 
(p1[k]+p1[r-k+1])*p1[r-k+1]/(p1[k]^2+p1[r-k+1]^2))/(pi*delta1) - 6 
(phi1+1)/delta1 7 
phi1p[r-k+1,l] <- 4*(acos(p1[k]/sqrt(p1[k]^2+p1[r-k+1]^2)) + 8 
(p1[k]+p1[r-k+1])*p1[k]/(p1[k]^2+p1[r-k+1]^2))/(pi*delta1) - 9 

(phi1+1)/delta1 10 
} 11 

} 12 
for(k in 1:r){ 13 
for(l in 1:cend){ 14 
phi2p[k,l] <- 4*(acos(p2[l]/sqrt(p2[l]^2+p2[c-l+1]^2)) - 15 
(p2[l]+p2[c-l+1])*p2[c-l+1]/(p2[l]^2+p2[c-l+1]^2))/(pi*delta2) - 16 
(phi2+1)/delta2 17 
phi2p[k,c-l+1] <- 4*(acos(p2[l]/sqrt(p2[l]^2+p2[c-l+1]^2)) + 18 
(p2[l]+p2[c-l+1])*p2[l]/(p2[l]^2+p2[c-l+1]^2))/(pi*delta2) - 19 
(phi2+1)/delta2 20 

} 21 
} 22 
delta1p <- matrix(c(0),r,c) 23 
delta2p <- matrix(c(0),r,c) 24 
for(k in 1:rend){ 25 
for(l in 1:c){ 26 
delta1p[k,l] <- 1 27 
delta1p[r-k+1,l] <- 1 28 

} 29 
} 30 
for(k in 1:r){ 31 
for(l in 1:cend){ 32 

delta2p[k,l] <- 1 33 
delta2p[k,c-l+1] <- 1 34 

} 35 
} 36 

 37 
sigma1 <- sum(p*phi1p^2) - sum(p*phi1p)^2 38 



MEASURE OF MARGINAL AVERAGE POINT-SYMMETRY 

20 

min1 <- phi1 - 1.96*sqrt(sigma1/N) 1 
max1 <- phi1 + 1.96*sqrt(sigma1/N) 2 
phi1set <- c(phi1,sqrt(sigma1/N),min1,max1) 3 

 4 
sigma2 <- sum(p*phi2p^2) - sum(p*phi2p)^2 5 
min2 <- phi2 - 1.96*sqrt(sigma2/N) 6 
max2 <- phi2 + 1.96*sqrt(sigma2/N) 7 
phi2set <- c(phi2,sqrt(sigma2/N),min2,max2) 8 

 9 

phiMPSp <- ((delta1+delta2)*(delta1*phi1p+delta2*phi2p) + (phi1-10 
phi2)*(delta2*delta1p-delta1*delta2p))/(delta1+delta2)^2 11 
sigmaMPS <- sum(p*phiMPSp^2) - sum(p*phiMPSp)^2 12 
minMPS <- phi.MPS - 1.96*sqrt(sigmaMPS/N) 13 
maxMPS <- phi.MPS + 1.96*sqrt(sigmaMPS/N) 14 
phiMPSset <- c(phi.MPS,sqrt(sigmaMPS/N),minMPS,maxMPS) 15 

 16 
return(rbind(phi1set,phi2set,phiMPSset)) 17 

 18 
} 19 
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