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Calibration of Measurements 

Edward Kroc 
University of British Columbia 
Vancouver, BC 

Bruno D. Zumbo 
University of British Columbia 
Vancouver, BC 

 
 
Traditional notions of measurement error typically rely on a strong mean-zero 
assumption on the expectation of the errors conditional on an unobservable “true score” 
(classical measurement error) or on the data themselves (Berkson measurement error). 
Weakly calibrated measurements for an unobservable true quantity are defined based on a 
weaker mean-zero assumption, giving rise to a measurement model of differential error. 
Applications show it retains many attractive features of estimation and inference when 
performing a naive data analysis (i.e. when performing an analysis on the error-prone 
measurements themselves), and other interesting properties not present in the classical or 
Berkson cases. Applied researchers concerned with measurement error should consider 
weakly calibrated errors and rely on the stronger formulations only when both a stronger 
model's assumptions are justifiable and would result in appreciable inferential gains. 
 
Keywords: Measurement error, Berkson error, differential error, misclassification 
 

Introduction 

The classical framework for modeling the (additive) measurement error 
associated with some random variable of interest X is as follows: 
 
  , E | 0X W X    ,  (1) 

 
where W is the quantity that is actually observed, and ε has a mean-zero 
distribution (often normal) conditional on the true value X. In a psychometrics 
context, one considers X to be a platonic true score, which means it is the actual 
quantity of interest, latent or otherwise, while W is simply a fallible measurement 
of this quantity. This defines a true score in terms of validity (Klein & Cleary, 
1967; Lord & Novick, 1968). 
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Note that (1) imposes no restrictions on the structure or values of the 
random variables under consideration beyond the conditional expectation 
condition. In general, no distinction is required between continuous and 
categorical random variables; nor should equation (1) be interpreted as defining a 
true score X as a function of a measurement W. Something similar is often implied 
in the psychometrics literature, where (1) is usually rewritten as W = X + ε and the 
measurement W is interpreted to be a function of the underlying (latent) variable 
X of interest. This is traditional, but not at all implied by the literal mathematics of 
these equations. No distinctions are made between the equations X = W + ε and 
W = X + ε; all that matters are the conditions imposed on the error structure via 
some conditional expectation restriction, as in (1).	

Model (1) is the measurement error model associated with the classic 
statistical theory (Berkson, 1950; Cochran, 1968). It is related to the measurement 
error models of the classical test theory (Novick, 1966) and the classical 
econometrics literature (Hausman, 2001), where the conditional mean-zero 
assumption is replaced by a formally stronger requirement. In the former setting, 
the error is defined in terms of reliability of the measurement, while in the latter 
setting, the true score is independent of an associated mean-zero error ε. See Kroc 
& Zumbo (2019) for a detailed and more formal discussion the relationships 
between these (and other) measurement error models. 

Model (1) is often used within a regression framework, where the intent is to 
infer a relationship between the explanatory variables X = (1, X1,…, Xn)T and a 
response variable Y, for example: 
 
 TY  β X   (2) 

 
where β is a vector of coefficients and δ ~ N(0, σ2). 

When a set of random variables X is subject to measurement error as in (1), 
the standard coefficient estimates β̂  are biased, often with inflated standard errors, 

leading to considerable inflation of type I error rates (Shear & Zumbo, 2013). In 
the univariate setting, classical measurement error always biases the estimate β1 
towards the null (Berkson, 1950). 

In contrast to model (1), consider measurement error of the Berkson type, 
defined by 
 
  , E | 0X W W      (3) 
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where the mean-zero assumption on the errors is now conditional on the observed 
value, W. Alternatively, this model is sometimes specified under the formally 
stronger condition that the observed value (observed score) W is independent of 
an associated mean-zero error ε. 

The concept of measurement error is intrinsic to many applied disciplines, 
as it is often impractical or impossible to directly measure the true process or 
quantity of interest. Although the measurement error model in (1) has enjoyed a 
wide range of applications (for some archetypal examples see Hausman, 2001; 
Lord & Novick, 1968; Cochran, 1972; Heid, Kuchenhoff, Miles, Kreienbrock, & 
Wichmann, 2004), it is often inappropriate, especially within an observational 
research setting. Relying on models with such incorrect assumptions can lead to 
erroneous or completely meaningless inferences. The aim of this study is to 
explore these issues, indicate some instances where they apply, and suggest some 
ways the theory may be extended to treat measurement error in these more 
general cases. 

A weakening of the classical mean-zero assumption in (1) defines what is 
described herein as a weakly calibrated measurement, which is a differential 
measurement in the sense its resultant errors may correlate with the true (or 
observed) quantity of interest. By definition, these measurements are more 
common than the traditional, or strongly calibrated, ones. This will be reflected in 
practice as well, as our weakened definition is easier to justify, especially within a 
data collection framework that is observational and uncontrolled. Moreover, this 
type of measurement error opens up the possibility to use theoretical or previous 
information about how such measurements are likely to interact with their errors 
to produce more reasonable, and perhaps better, inferences, in terms of mitigating 
bias and/or reducing variability. 

Our generalized definitions introduce a level of dependence on the sample 
with which one aims to make inferences about parameters of the underlying target 
population. It will be explained why such a framework is necessary for coherent 
discussion of measurement in many practical settings where the structure of the 
measurement is affected by the sample one chooses – or is compelled – to study. 

Inevitably, many measurements taken within an observational framework 
will satisfy neither the strong nor weak notions of calibration proposed herein. 
There is the necessity to use such data to generate estimates, inferences, and 
models, and therefore it is appropriate to discuss some of the issues practitioners 
should keep in mind. Crucially, as with Rubin and others (e.g. Rosenbaum & 
Rubin, 1984), it is recommended care be given to decide which measurements are 
likely to be calibrated or not for their respective target quantities of interest, and 
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then incorporate a routine leg of sensitivity analysis into their broader analyses to 
test the susceptibility of their research conclusions to varying degrees of 
(unknown) measurement error. 

Motivating Examples 

Before making formal definitions and examining the mathematical consequences, 
let us consider several motivating examples to justify why such definitions are 
required. These examples will show why the traditional models of measurement 
error displayed in (1) and (3) are insufficient for many applied problems. Such 
examples will also suggest the proposed definition for a weakly calibrated 
measurement, the main focus of this paper. 

Surveys and Opinion Polling 

Suppose one wishes to conduct a survey of the public approval of the federal 
government of Canada. This latent variable X may be studied by way of an 
observable quantity W which is the answer to a survey question: “How much do 
you approve of the actions of the current Parliament since its formation in 2015?” 
(For the purposes of this example, assume X can be described by a unidimensional 
real-valued random variable. A more complex but realistic formulation may 
consider X to have many dimensions, corresponding to the different dimensions of 
public approval that could be subsequently captured by a well-designed, multi-
item survey.) Notice the aim is to measure the approval of a government's actions, 
not approval of the political party that happens to be in power. Unfortunately, 
these two factors are invariably confounded. 

Suppose the survey question is answered by a reasonably representative 
random sample of voting-age Canadians, with ignorable nonresponse, and 
sampled individuals must record responses on a typical 5-point Likert scale (1-5), 
with 1 denoting strong disapproval and 5 denoting strong approval. It may be 
supposed that the equation X = W + ε captures the relationship between the latent 
random variable X of interest, and the measurement W. However, neither the 
classical nor the Berkson conditional mean-zero error assumptions are justifiable 
in this setting. 

First, consider the classical case: what is known about the conditional 
distribution of ε given X? Specifically, could the assumption E(ε | X) = 0 be 
plausible? Such a condition ignores known psychology about how people respond 
to opinion polls. For example, it is well documented that supporters of a political 
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party in power are more likely to ignore negative actions or broken promises of 
that government, while staunch political opponents are more likely to fixate on 
and amplify every negative action to buttress their own confirmation biases (e.g. 
Niemi, Weisberg, & Kimball, 2001; Green, Palmquist, & Schickler, 2004). 
Within the context of the current example, this means, for example, if X-1({4, 5}) 
identifies true supporters of the current government's actions, it would be 
expected to find E(ε | X ∈ {4, 5}) < 0, as individuals with antagonistic political 
allegiances to the governing party are less likely to rate their actions highly even 
if they would approve of such actions in a politically neutral context. Similarly, it 
would be expected to find E(ε | X ∈ {1, 2}) > 0, as individuals who consider 
themselves politically aligned with the federal party are more likely to ignore 
actions they dislike due to political loyalty. Clearly, such a measurement fails to 
meet the criteria of the classical error model (1). For similar reasons, neither is 
such a measurement of Berskon-type. 

However, if X is studied by drawing a reasonably representative sample of 
voters that is balanced across party affiliations, then it may be reasonable to 
suppose that these two miscalibrations essentially cancel out; i.e., 
E(ε | X ∈ {1, 2}) + E(ε | X ∈ {4, 5}) = 0. If it is assumed that E(ε | X ∈ {3}) = 0, 
one can still get an unskewed picture of the average true response E(X) by 
studying the unadjusted measurements W. This is what is referred to herein as a 
measurement weakly calibrated (on the balanced sample of voters), defined 
formally in the next section. 

Misclassification 

It will be formally shown below that no binary measurement W of a binary true 
score X can ever satisfy the requirements of either (1) or (3). This immediately 
implies that any theory regarding these two measurement error models is 
insufficient for discussing problems of binary misclassification. Intuitively 
however, it can still be reasonable to expect the condition that the measurement, 
or misclassification, error when measuring binary X by binary W should be 
balanced, on average. More simply, if the chance that one misclassifies X = 0 by 
W = 1 is the same as the chance of misclassifying X = 1 by W = 0, one can still 
accurately study the average true response by working only with the naive 
measurements W. 
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Ecological Research 

A large branch of ecological research is concerned with tracking species 
abundance and migratory patterns across sometimes vast geographical ranges. 
The eBird program managed by the Cornell Lab of Ornithology and the National 
Audubon Society uses a combination of professional and citizen crowd-sourced 
data to monitor these processes across North America at all times of year. Two 
such species are the Glaucous-winged Gull (Larus glaucescens) and the Western 
Gull (L. occidentalis), large, highly-visible coastal omnivores whose joint range 
spans the entirety of the North American Pacific seaboard. In our notation, one 
may consider an individual bird’s true species identity (classification) as the 
random variable of interest X, and each individual classifier's species diagnostic 
as a separate measurement Wi. Note, for example, three professional 
ornithologists and two citizen-scientists would each generate a measurement Wi, 
five in total. Some Wi and Wj, i  j, may be recorded for the same bird, while 
others do not overlap at all. Nevertheless, all certainly measure the categorical 
quantity of interest, X. 

Apart from the obvious misclassification concerns that arise with multiple 
observers of varying identification skills contributing to a single dataset, the 
particular species in question provide a whole host of other complicating 
measurement factors. The two species look similar, and the main diagnostic tool 
used by observers in the field (especially among relatively inexperienced 
observers) is a difference in primary wingtip color, with those of the Glaucous-
winged Gull usually being varying shades of grey and those of the Western Gull 
usually a solid black. However, Glaucous-winged and Western Gulls frequently 
hybridize in Oregon and Washington where their ranges overlap, with the 
resulting offspring dispersing mostly northward into Washington and southern 
British Columbia (Bell, 1996, 1997). Such hybrids can develop any shade of 
wingtip color in adulthood, from light grey to solid black. The Glaucous-winged 
Gull also exhibits natural clinal variation in the darkness of these wingtips, from 
light grey at the northern edge of the species range in Alaska, to near-black at the 
southern extent (Bell, 1997). These complications can make reliable 
measurements incredibly challenging. 

Moreover, there are large subpopulations of both species that are migratory. 
In the winter months, the Salish Sea region of British Columbia and Washington 
is home to light wingtipped Alaskan Glaucous-winged Gulls, dark wingtipped 
Californian Western Gulls, as well as the resident (nonmigratory) hybrids and 
clinal variants present in the region year-round. As a result, species counts in the 
Salish Sea during the winter months are particularly subject to measurement error. 
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Such errors are clearly incredibly complex and could not reasonably hope to 
satisfy the stringent conditions imposed by the classical or Berkson models. 
However, due to the seasonally changing composition of the study population, it 
may be argued that the misclassification errors essentially cancel out over time; 
i.e., measurements are weakly calibrated (over time). In fact, a sampling scheme 
can be specifically designed to take advantage of this phenomenon, thereby 
inducing weak calibration into our pool of measurements. Identification and 
tracking of many other North American species pose similar measurement 
challenges. 

Calibration of Measurements 

Recall the archetypal (additive) measurement error model: 
 
 X W   ,  (4) 
 
where X is the quantity intended to observe (the so-called true value or true score), 
W is the surrogate for X that is actually observed, and ε is the additive discrepancy 
between the two. The observable W is a measurement for X, and X is measured 
with error ε by W. 

It should be noted that this definition of true score does not align with 
classical test theory (Lord & Novick, 1968), where a true score is defined as the 
expectation of the observed scores over (infinitely many) independent and 
identical repetitions of the measurement process. Instead, as noted above, it is a 
platonic true score or construct (Klein & Cleary, 1967; Lord & Novick, 1968; 
Borsboom & Mellenbergh, 2002). Such a definition does not force any a priori 
structure on a true score, nor does it rely on a frequentist interpretation of 
equation (4). 

Calibrated Measurements 

Implicit in the specification of (4) is the existence of an underlying measurable 
space (Ω, ) on which the true score X and the observable proxy W (and thus the 
error ε) are marginally defined. Naturally, one interprets Ω as the population on 
which such random variables are definable, which either coincides with or 
contains the population on which one ultimately aims to study via estimation of 
population parameters (e.g. the population mean) and corresponding inferences. 

For a subset   , one can state the following definitions: 
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 Measurement W in (4) is strongly calibrated to X on   if  E ,| 0X  . 

 Measurement W in (4) is Berkson calibrated to X on   if  E ,| 0W  . 

 Measurement W in (4) is weakly calibrated to X on   if  E | 0  . 

 
Usually,   is the sample used to study the population properties of the true 

score X. When the discussion does not depend on the choice of conditioning set 
 , or when the choice is obvious, the notation will be suppressed, writing simply 
E(ε) rather than  E |  . 

The notation introduced in the above conditional expectation conditions 
requires some clarification. It is meant to be a generalized shorthand of the 
E(U | V) notation for random variables U, V, where the conditional expectation is 
understood to be taken over the σ-algebra generated by the random variables V; i.e. 
 
     E | E |U V U V , 

 
where σ(V) = {V−1(G): G ∈ } is a sub-σ-algebra of , and  denotes the image 
σ-algebra of V : (Ω, ) → (Γ, ). Usually, Γ denotes d or d and  denotes the 
Borel sets on d or the power set on d, respectively. 

With this in mind, one defines 
 

      1E | , E | :U V U V G G     .  

 
Notice   1 :V G G    is still a sub-σ-algebra of . When   , the 

definition of a strongly calibrated measurement recovers the classical 
measurement error model in (1), and the definition of a Berkson calibrated 
measurement recovers the Berkson measurement error model in (3). These are 
models of nondifferential measurement error, whereas the notion of weak 
calibration allows for the possibility of differential error. Clearly, any strongly or 
Berkson calibrated measurement is also weakly calibrated on the same sample. 

Calibrated measurements are common in the physical sciences, where the 
notion of calibration has a very physical antecedent. Indeed, the notion of 
calibrating a measurement as one would calibrate an experimental design has 
appeared in the literature since at least the work of Wald (1940). The assumptions 
of strong or Berkson calibration are often quite reasonable given some 
measurement apparatus of a well-defined, observable physical phenomenon, 
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especially when a treatment is manipulated experimentally. Both ideas have been 
used to great effect in many fields. One notable example from environmental 
epidemiology comes from the work of Heid et al. (2004) where, among other 
measurements, the concentration of a particular gas within a single residence was 
measured (strong calibration), and then a single concentration level was assigned 
as a common value of exposure to all occupants of the single residence (Berkson 
calibration). 

The choice of the term “calibration” is deliberate to also distinguish the idea 
from that of unbiasedness. Superficially, a calibrated measurement could be called 
an unbiased measurement, because its defining property is that the (conditional) 
expected value of the measurement equals the expectation of the random variable 
of interest. However, the notion of bias is only sensible within the context of 
estimators. Estimators are statistics formed from a given sample (actual or 
theoretical), and unbiased estimators equal their targets of estimation in 
expectation. But measurements in our framework do not attempt to estimate 
anything; indeed, it is the measurements that precisely comprise the sample of 
study itself. The notion of calibration does not rely on the combination of 
measurements into a sample statistic, and so does not concern estimation. 
Consequently, the idea of bias is simply not applicable. 

This distinction becomes clearer in comparing this view of measurement 
with the one from Lord and Novick (1968). Specifically, in Chapter 8.4 of their 
text, they define unbiasedness of their measurements in terms of the notion of 
parallel tests. This gels with the traditional usage of the unbiasedness terminology, 
because the existence of even hypothetical parallel tests generates a population 
space from which all observed measurements can be considered sampled. In 
contrast, the current notion of measurement relies on no such theoretical space of 
parallel measurements on which true scores for individuals are fixed. Our defining 
of expectations for our various notions of calibration are taken over a single 
sample, generated via   , and for a single measurement. Consequently, the 
usual frequentist interpretation of expectation should not be applied in this setting; 
the expectations in our definitions of calibration are meant only to indicate a 
typical value (an integral) of a random variable. 

Because of this distinction, a set of measurements in this framework is not 
useful for studying properties of individual sample points (e.g. individual 
respondents). If the target of study is a property of an individual, then multiple 
measurements are required to apply our notions of calibration. In this case, the 
sample   would comprise a singleton; thus, calibration (of any type) for a 
particular measurement can only hold if the measurement is error-free on the 
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sample. However, it is easy to see how our definitions can be extended to 
encompass a notion of calibration over multiple measurements for an individual. 
In fact, this is a special case of a generalized definition of calibration to a 
composite set of measurements (see below). Then, one simply requires the sample 
  of interest to contain only a single individual. 

Extending the notion of calibration from a single measurement to a 
composite set of measurements is straightforward. As an example, if X represents 
a student's mathematics ability, a typical construct from the social science 
literature, and the aim is to measure this quantity by administering a 10-question 
examination, then a standard measurement for X could be the unweighted sum of 
the scores of the 10 exam questions. More generally, one may consider the model 
 

      1 2
1 1

m
mX a W a W a W     , 

 
where X is some latent variable to be measured by the (weighted) composite score 
given by the linear combination of the observable W(k)s. The associated error, ε, 
may then be treated as a single error of the composite score as a whole (as 
written), or as a composite of errors itself, ε = ε(1) +…+ ε(m), whichever is more 
appropriate for the problem at hand. In any case, one may then speak about 
whethe or not the composite score is calibrated to the latent variable X; i.e. if 

    1E | ,  , , 0mW W   , (strong calibration), or if only  E | 0   (weak 

calibration). 

Miscalibrated Measurements 

When (4) holds for some quantity of interest X and an observable proxy W, but 
 E | 0  , the measurement is miscalibrated for X on  . Miscalibrated 

measurements are common in observational studies, especially in the social 
sciences when trying to measure properties based on human perception, opinion, 
or interpretation. For example, people are likely to under or over-report feelings 
of self-worth or depression based on various social stigmas (real or perceived), 
regardless of how controlled a research setup may be. 

Indeed, it is not sufficient to simply define the variables X and W to 
characterize the type of resulting measurement error. For example, people often 
over-report their annual income when applying for credit, while others (possibly 
the same people) are likely to underreport this same figure when filing a tax return. 
In both cases, the true value of interest is the respondent’s actual annual income, 



CALIBRATION OF MEASURES 

12 

and the measurement observed is the self-reported response to a superficially 
identical enquiry: What is your annual income? In both scenarios, measurements 
are likely to be miscalibrated, but the direction of this miscalibration, as given by 
the sign of E(ε), changes depending on the context in which the measurement is 
taken. 

Social pressures may induce people to underreport their age, over-report 
their activity level, exaggerate their like or dislike for a political party or position 
given their preconceived alliances, etc. These measurements are miscalibrated. 
Although they are often treated analytically as true scores observed without error, 
such analyses are inherently distorted. More sophisticated analyses that 
incorporate an idea of measurement error tend to always include the assumption 
of strong calibration, something that is simply untenable in most social science 
contexts, particularly in surveys and opinion polling. The ubiquitous presence of 
miscalibrated measurements in the social sciences makes drawing accurate 
inferences inherently more difficult, and sometimes impossible. 

In some lucky cases, it may be possible to combine miscalibrated 
measurements in such a way as to produce a composite measurement that is 
plausibly close to calibrated. Consider an ecological example investigating the 
fecundity of a population of Mallards (Anas platyrhynchos). Fecundity is a latent 
variable that captures the reproductive success of a breeding population. One may 
define the measure of fecundity of a Mallard pair to be the simple sum of the 
hen's maximal clutch size (CS) and the number of young successfully fledged 
(FL). These counts both typically range between 0 and 12 (Drilling, Rodger, & 
McKinney, 2002), with FL  CS. 

It is often difficult to exactly observe CS and FL. Clutches can usually only 
be observed by disturbing the incubating hen, and eggs may fall out of the nest or 
be stolen by predators while observation takes place (Götmark, 1992). Moreover, 
as eggs are not laid simultaneously (Hill, 1984), there is no correct time to count 
the clutch that would guarantee the observation of maximum clutch size. 
Consequently, it may be necessary to use a proxy for CS: the number of eggs 
hatched; i.e., the initial brood size, denoted by CSobs. Necessarily, CSobs  CS. 
Brood size is easy to observe and non-disruptive, making it an attractive 
measurement for CS. Similarly, it is often difficult to observe young birds all the 
way until they have properly fledged. Commonly, young are observed until a 
certain age, after which all surviving young are declared fledged. Mallards 
typically fledge between 50-60 days of age (Drilling et al., 2002), but most 
mortality events occur within the first two weeks of life. Therefore, it may be 
possible to only observe them until day 14, FLobs. Necessarily, FLobs  FL. 
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The two measurements are miscalibrated by definition, that is: 
 
 obs obs,CS FLCS CS FL FL     ,  

 
where E(εCS)  0 and E(εFL)  0. However, it may in fact be feasible to suppose 
the composite measure for fecundity is approximately weakly calibrated: 
 
 obs obsFec CS FL CS FL      ,  

 
where E(δ)  0. This calibration relies on the assumption that the magnitude of 
CS and FL errors are likely to somewhat balance each other out, something the 
observation process suggests may be reasonable. 

Notice the error need not balance on common values of CS and FL, as 
would be required for strong calibration. Although it is theoretically possible, it is 
more difficult to justify in practice. Moreover, such a strong assumption does not 
necessarily add strength to any resultant inferences one may wish to make on the 
sample population. As will be discussed, weakly calibrated measurements can be 
just as precise as strongly calibrated measurements. In fact, they can be more 
precise than perfect measurements; i.e. those measured without error. 

The biggest challenge of dealing with miscalibrated measurements is there 
is often no way of directly quantifying the degree of miscalibration. The structure 
of the measurements themselves must be relied on to make reasonable 
assumptions about the degree of miscalibration, as in the fecundity example, or 
sometimes information from past studies may be used to decide how the errors are 
likely to be probabilistically distributed. Providing a clear definition of the true 
value of interest and the measurement observed can provide clues about the 
distributional structure of the error: e.g. is it always of the same sign, or is there 
some subpopulation likely to produce less calibrated measurements than the rest 
of the population? Even with this type of information though, it is unlikely to 
have a clear picture of the distribution or of the measurement error to completely 
adjust for it in subsequent inferences. In practice therefore, it will often be vital to 
perform some type of sensitivity analysis on the measurement assumptions, for 
example by varying the degree of miscalibration and examining how this affects 
inferences based on these quantities. 
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Uncalibrated Measurements 

There certainly exist situations where (4) is a reasonable model, yet the error term 
may not even be integrable. In certain situations where the intent is to model 
extremely volatile processes, the value of a certain stock on a financial market 
perhaps, the most reasonable error distribution may be extremely heavy-tailed and 
so nonintegrable. The corresponding measurements would be classified as 
uncalibrated within our current framework, although that is not to say the 
analytical issues are intractable in this alternative setting. A proper treatment 
would require finer assumptions on the structure of the probability measures 
themselves, rather than merely some kind of moment condition on the errors. 
Although these issues are not taken up in the current paper, it is important to note 
that there exists a need to clarify the meaning of measurement in this more 
delicate setting. 

Estimation and Inference with Calibrated Measurements 

Whenever a sample   is used to perform estimation of or inference on some 
population parameter, the assumption is usually made the sample is representative 
of the actual population phenomena one aims to study. More formally, if θX 
represents the (population) target of estimation and φ denotes its estimator on a 
sample X1,…, XN, where  # N , one typically assumes that  
 
       1 1 1E φ , , | : E φ , ,N N N XX X X X        Κ Κ    (5) 

 
where	  1, , N   , and the expectation is taken over some σ-algebra  such 

that       . In simpler language, this is simply the statement that φ is an 

unbiased estimator of θX on all samples   such that     . Good sampling 
methodology, such as simple random sampling, can often ensure such a condition 
holds, in which case   is φ-representative for θX on . From a frequentist 
perspective, one often requires the stronger condition that  = , although this is 
not strictly necessary to make sensible inferences, and indeed, sometimes it can be 
more plausible to assume the existence of a strictly smaller  ⊆  in practice. 

Unbiasedness of the Naive Sample Mean Estimator 

By far, the most common estimand of interest in scientific research is the typical 
response of an observable. Although many formulations of what is typical exist, 
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some more appropriate than others depending on both the scientific question 
under investigation and the actual distribution of the quantity being measured, 
probably the most common instantiation for continuous quantities is given by the 
population mean. 

If W is weakly calibrated to X on some  ⊆ , and if E(X) < ∞, then W̅ is an 
unbiased estimator of the population mean μX on : 
 

 

 

 

   

 

1

1

Bias E

1
E E | 

1
E E | E |

E 0

: X

N

i X
i

N

i i X
i

X

W

W
N

W

W

N

X





 







   
 

  
 
 

   
 

  









 













 

  (6) 

 
Note (6) holds whether W is strongly, Berkson, or weakly calibrated to X on . 

Variability of the Naive Sample Mean Estimator 

Any strongly calibrated measurement necessarily has an associated error that is 
uncorrelated to X, the quantity of interest studied via the measurement W. This is 
not true of weakly calibrated measurements. Indeed, if one calculates 
 
    Cov , E E | ,X W X         (7) 

 
which is necessarily zero only if  E | 0   is assumed. 

The consequences of (7) are manifest for quantifying the uncertainty 
involved in any estimation procedure that uses the measurement W. Regarding the 
naive (observable) sample mean estimator W̅, one sees that if W is a measurement 
for X, then 

 

        2 2
1 1

1 1 2
Var Var Var Cov ,  

N N

i i i
i i

W X X
N N N

 
 

       .  (8) 

 
It is assumed Xi does not correlate with Xj and that εi does not correlate with εj, for 
all i  j. This will be the case if the measurements Wi are considered to be drawn 
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as an independent sample. Moreover, if identical distributions is assumed, then (8) 
simplifies to 
 

        1
Var Var Var 2 Cov ,W X X

N
          .  (9) 

 
The naive estimator W̅ is consistent for μX if, as before, W is weakly calibrated to 
X on , and if E(X) < ∞. This follows from an application of Markov's inequality. 
Asymptotic normality also follows if it is assumed either of the regularizing 
conditions of Lyapunov's or Lindeberg's central limit theorems, and then apply 
the chosen theorem (Durrett, 2010). In most practical settings, these are mild 
conditions which amount to assuming little more than finitude of the second 
moments of X and ε. 

Although it is tempting to intuit that equations (8) or (9) imply that W̅ is a 
noisier estimator of the population mean than the true sample mean X̅, due to the 
presence of measurement error, this conclusion is not necessarily true. In fact, an 
estimator derived from observables measured with error may be less noisy than an 
estimator derived from true scores. For this to occur, such an estimator would 
have to take advantage of the extra correlation in the errors with the true 
(unobserved) values of Xi to more precisely estimate the population parameter of 
interest, in this case μX. More precisely, this will occur if and only if the last two 
terms in (8) or (9) sum to a negative value. 

Such a situation is impossible for strongly calibrated measurements by 
definition. Indeed, since  E | 0   is assumed, it follows that Cov (X, ε) = 0. 

Consequently, the last term in (8) drops out and the classical result (Berkson, 
1950) is recovered such that 
 
    Var VarW X  .  (10) 

 
Similarly, one may derive the inverse inequality for Berkson calibrated 
measurements, because  E | 0   implies Cov (X, ε) = Var (ε). 

For weakly calibrated measurements, an inequality like (10) cannot be 
concluded so directly. If the covariance of the error with the unobserved true 
value is small relative to the variance of the error itself for each item i = 1,…, N, 
then (10) holds. This will be the case when one does not expect the measurement 
errors to correlate in any meaningful way with the true quantity X being measured 
by proxies Wi, but this property is not an inherent feature of the definition. 
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Traditionally, this extra property is often implicitly assumed when working with 
imperfect measurements, and indeed it is sometimes a reasonable assumption. 
However, there are scenarios when this assumption fails. In such a setting, 
measurement error afflicted estimator is actually more precise than the 
corresponding unobserved estimator built from the actual true scores themselves. 
This can lead to either unexpected inferential gains or deceiving levels of 
precision when miscalibration is present. 

Consider an example wherein of a survey of N people about their sex lives. 
One of the questions asked is, “During a typical week, how many times do you 
have sex?” Such a question comes equipped with a multitude of social and 
cultural baggage, which will influence the candor (and perhaps the genuine recall) 
of some respondents. For this particular type of question, one might expect to see 
a regressing effect, where respondents will be more likely to report answers close 
to what the perceived average, or norm, is already. This means that respondents 
with true scores at both extremes of the response spectrum are likely to mitigate 
their responses to appear more normal (this effect can be present even in 
anonymous surveys; see Fisher, 1993). In the case of the question about frequency 
of sex, respondents who typically do not have sex at all may be more likely to 
respond that they do, while respondents who typically have a lot of sex may be 
more likely to underreport their frequency. 
 
 

 
 
Figure 1. When Cov(X, ε) > 0, the measurements Wi are forced to lie more tightly around 
the population mean, (X), on average 
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These reporting biases reflect distinct cultural pressures that point to a 
common expected norm of social behavior (in this case, some sex, but not too 
much, is what the respondent may perceive to be socially expected). In order for 
this survey question to actually be a (weakly) calibrated measurement for the true 
response among the target population, the total magnitude of underreported scores 
must approximately equal the total magnitude of overreported scores. One way to 
ensure this would be to demand the sampled population contain an equal number 
of people who underreport as who over-report, and the magnitude of these under 
and over-reports cancel each other out. In such a case, the measurement error 
afflicted estimator W̅ of μX will have smaller variance than the true score estimator 
X̅, as Cov(X, ε) > 0. In this case, the measurement errors actually pull the reported 
responses toward the population average (see Figure 1). 

What is more likely to occur in the above scenario is for the sample to 
contain an equally mixed collection of individuals who feel compelled to under or 
over-report the frequency of their sexual activity, but there is no good reason to 
believe that the magnitudes of these measurement errors will approximately 
balance out; i.e., it cannot be assumed W is calibrated to X. Consequently, the 
estimator W̅ for μX will contain some amount of bias and simultaneously appear 
overly precise, as the structure of the measurement errors are likely to display the 
discussed composite mitigating effect. Interpreting such estimates becomes 
doubly challenging in such a context, as the measurement errors work against us 
twice as hard. The necessity of simulating the inferential effects of different 
degrees of miscalibration is the clearest way out of this interpretive dead-end. 

Returning to the fecundity example, suppose the aim is to estimate the mean 
fecundity of the population. The intent is to calculate the mean value of CS + FL, 
the error-free score. Because this is not possible, however, one may end up 
calculating the mean value of CSobs + FLobs, an (approximately) unbiased 
estimator of the population mean by the assumption of (approximate) weak 
calibration. Now, if the further assumption holds that the two measurement errors 
are sufficiently positively correlated with our response of interest, i.e., if 
 
    Cov , Cov , 0CS FLFec Fec   ,  (11) 

 
then, by equation (8), the unbiased estimate of average fecundity derived from 
CSobs + FLobs is actually more precise than if the alternative unbiased estimate of 
average fecundity derived from the unobserved was used, but true, CS + FL. 

Unfortunately, assumption (11) is untestable, although the individual 
research problem may offer support for such an assumption. For the current 
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example, assumption (11) would imply the measurement errors are typically 
bigger (not in magnitude, but in the well-ordered sense) for Mallard pairs with 
higher fecundity. This assumption happens to be true for at least the second term 
of our covariance condition, that is Cov(εFL, Fec) ≫ 0. Because εFL  0, the 
greater the number of observed fledglings, the closer the error is to 0. 

Unfortunately, this argument works equally well in the opposite direction 
for the other term in (11). There is a guaranteed negative correlation between 
CSobs and εCS. Thus, depending on the magnitude of this covariance, (11) may fail. 
Furthermore, the errors εCS and εFL happen to be somewhat correlated: if the first 
is very large, then the second is necessarily very small, further complicating the 
residual variance analysis. 

Bias reduction of miscalibrated measurements can be accomplished by 
creating composite measurements. As in the above example, both CS and FL are 
reasonable measurements of fecundity on their own, although they are both 
fundamentally miscalibrated. Nevertheless, combining these two measurements 
reduces the bias due to their individual miscalibrations, resulting in a more 
accurate measurement, without necessarily producing any loss of precision (by 
weak calibration). 

Regression with Calibrated and Miscalibrated Measurements 

Consider the setting of an idealized simple linear regression, where i.i.d. 
measurements are drawn from a target population and model the effect of some 
observable predictor X of interest on a response Y, without measurement error, 
using the following model: 
 
 0Y X u      (12) 

 
If it is not possible to perfectly measure X, then one is forced to consider the 
following model, where W is the measurement for X related via the typical 
additive setup: 
 
  0 0Y W u X u                 . (13) 

 
The intent is to perform the naive regression using the measurements W, and then 
relate the output back to the model of actual interest in (12). It is the effect of X on 
Y that is of interest, not the effect of the proxy W on Y. Under the standard linear 
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regression assumptions, the output of the naive analysis can be summarized in 
Table 1. 

When the measurement W is only weakly calibrated to X, then β' is either 
attenuated towards the null, or exaggerated away from it, depending on the 
average structure of the measurement errors as illustrated in Figure 1. When W is 
miscalibrated for X, then the effect of measurement error on the simple regression 
coefficient also depends on the magnitude of the first moments of X and ε (this is 
because E(ε)  0 under miscalibration, and so E(X)  E(W)). In general, both 
weakly calibrated and miscalibrated measurements are not guaranteed to produce 
attenuating effect estimates, as the correlations between the measurements and 
their errors can be negative, a common situation in practice as has already been 
seen. This once again reflects the ability of weakly calibrated measurements to 
leverage the information contained in the interaction between those measurements 
and their errors to yield possible inferential gains. 

When W is strongly calibrated to X, there are two sources of inflation as β' is 
attenuated towards the null. When W is Berkson calibrated to X, then the only 
source of inflation comes from the variability in the measurement errors, ε, 
themselves. When only weak calibration is assumed, then the residual variance is 
not necessarily inflated, the interaction between the measurements and their errors 
becomes important. Once again, estimators derived from weakly calibrated 
measurements can be more precise than those derived from true scores. However, 
in the context of simple linear regression, the corresponding naive estimator is 
likely to be affected by non-negligible bias. 
 
 
Table 1. Summary of how the naive regression in (13) relates to the measurement error 
free model (12); see Buzas, Tosteson, and Stefanski (2003) for derivations 
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The Misclassification Problem 

Nothing about our notions of calibration require continuity of either the true or 
observed scores. Nevertheless, it is often convenient to treat the discrete setting 
somewhat distinctly, the so-called misclassification problem. This is perhaps 
especially useful when the quantity of interest is nominal in nature, as in medicine 
when measuring a person's gender or whether or not one smokes. 

Consider the basic problem of the misclassification of a binary random 
variable. Under model (4), if X, W ∈ {0, 1}, then the error ε follows a multinomial 
distribution on {−1, 0, 1}. It is easy to see that such a (nontrivial) measurement W 
for X cannot be strongly calibrated. Indeed, if one lets p−1, p0, p1 define the 
probability mass function of ε, where p−1 + p0 + p1 = 1, then one may calculate 
 
   0 1 1E | , 0 0 1W p p p       , 

 
and similarly, 
 
   1E | , 1W p   , 

 
for any sample   . Therefore, the only way W can be strongly calibrated to X 
is if p1 = p−1 = 0; i.e. if W is in fact a perfect measurement, free of error. The same 
argument also shows that any (nontrivial) measurement W for X cannot be 
Berkson calibrated. 

Thus, the notion of strong calibration (the classical measurement error 
model) is not useful for the basic misclassification problem. Weak calibration is 
quite appropriate however, because any measurement error given by a balanced 
multinomial distribution (i.e. one where p–i = pi for all i) automatically 
corresponds to a weakly calibrated measurement. 

Within the context of the classical test theory, this failure was already 
known to Lord and Novick (1968); see Chapter 2.9 of their text. To our 
knowledge, it has not yet been noted that the more general classical measurement 
error model (strong calibration) is also useless here. However, as our notion of 
true score coincides with the platonic one introduced by Sutcliffe (1965) in his 
analysis of the binary classification problem, and as our the definition of weak 
calibration represents a considerable weakening of the classical assumptions, it 
should not be too surprising the same difficulties are not encountered. 

When X and W are binary variables, the naive sample mean W̅ is the sample 
proportion of successes, W = 1, to failures, W = 0. If the error εi is given by the 
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same balanced multinomial distribution for all i (necessarily a weakly calibrated 
measurement), then equation (9) implies (10) because 
 
        1 12 Cov , 2 Pr 1, 1 2 Pr 1 VarX X p p              .  

 
Unlike the continuous case, the only time a binary measurement W of a binary 
true score X can produce an estimator of the sample proportion with smaller 
variance than that generated by the true score is if p−1 = 0 and 
p1 < 2∙Pr(X = 1, ε = 1). This implies two things: first, the measurement W must be 
miscalibrated for X; and second, the measurement W enjoys 100% specificity, in 
the sense that if X = 0 then W = 0. 

A simple calculation shows that Cov(X, ε) = Pr(X = 1)p1 if W is a calibrated 
measurement for X, and that Cov(X, ε) = Pr(X = 1)p−1 otherwise. In both cases, 
Cov(X, ε)  0; this result paired with the content of Table 1 proves that a binary 
observable subject to measurement error, either calibrated or miscalibrated, will 
always attenuate the linear main effect β' of the classical one-way ANOVA model 
(13) towards the null, in stark contrast to the continuous setting. 

Any good measurement W for X should be both accurate and precise on 
average. The mean square of the measurement error ε is the most classical way to 
quantify this balance. This quantity captures a calibration-variance tradeoff in 
direct analogy with the bias-variance tradeoff of the mean-squared error of a 
typical point estimator. It is clear that 
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where Calib(ε) = E(X − W) is the natural measure of how calibrated the 
measurement W is for X. Using this metric, the simple trinomial error generated 
by measuring a binary response X by a binary measurement W yields a mean-
squared error of E(ε2) = p−1 + p1. From this, one sees that there are many 
miscalibrated measurements W that are “good” proxies for X, while there are also 
many calibrated measurements W that are “poor” proxies for X. For example, 
under a uniform trinomial error distribution, E(ε2) is maximized, even though the 
corresponding measurement is calibrated for X. Such a measurement, although 
perfectly calibrated, is hardly useful from an analytical perspective. 
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The mean-squared error is by no means the only quantifier one may want to 
consider when assessing the “goodness” of a particular measurement. An 
alternative metric is discussed in the Appendix that has some interesting 
theoretical structure. 

Final Remarks 

The quality of models depends on how well the data, and the observational or 
experimental process or object of study, respect the mathematical assumptions 
required of those models. Although classical measurement error theory relies 
heavily on assumptions of strong or Berkson calibration, the restrictions imposed 
by these assumptions are often not respected in practice, especially in the 
environmental, ecological, and social sciences. By relying on the use of weakly 
calibrated measurements only, one may continue to use the inferential tools of 
classical statistics while simultaneously better approximating the real-world 
processes one attempts to study. 

Outside of a tightly controlled, laboratory setting, weak calibration is, by 
and large, a more scientifically accurate representation of an errors-in-
measurement phenomenon. Weak calibration does not restrict any fibers of the 
error measures to be constant, unlike the strong or Berkson calibrated models. 
Consequently, the errors themselves can be imbued with some of the structure of 
the process attempted to be measured. This information can sometimes be 
exploited analytically for inferential gains, either by relying on theoretical 
knowledge of the observational process or on a validation sample of 
measurements. Moreover, weak calibration allows us to simultaneously treat the 
theories of continuous errors in measurement and discrete misclassification 
models. 

The mathematical assumptions made as analysts are often restrictions 
imposed on the phenomenon of study, not it’s a priori properties. The covariance 
conditions imposed by an assumption of weak calibration are much weaker than 
what is commonly assumed, and can often produce inferential results that are just 
as good as, or perhaps better than, those yielded by strong calibration. Unless the 
restrictions placed on a phenomenon by an assumption of strong or Berkson 
calibration are likely to hold (see Heid et al., 2004 for a good practical discussion), 
it is recommended treating errors in measurement as only weakly calibrated, if 
indeed they can be reasonably assumed calibrated at all. 

As Tukey once advised, “Far better an approximate answer to the right 
question, which is often vague, than an exact answer to the wrong question, which 
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can always be made precise” (Tukey, 1962, pp. 13-14). There is little point in 
analyzing a phenomenon if one is unwilling to use assumptions and apply models 
that are likely to reasonably reflect the structure of the object of study. With 
regards to the errors in measurement problem, weaker assumptions are far less 
likely to produce erroneous answers. 
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Appendix 

It is sometimes possible to reparameterize a multinomial random variable as a 
sum of independent Bernoulli random variables. In the classic situation 
considered in section Uncalibrated Measurements, the measurement error ε is a 
trinomial categorical random variable (the simplest type of nontrivial 
multinomial), with measure specified by Pr(ε = –1) = a and Pr(ε = 1) = b, for 
some 0  a, b  1. One may reparameterize this random variable as the 
difference of two independent, though not necessarily identically distributed 

random variables, Yi ~ Ber(pi), i = 1, 2 if and only if 0  a  1,  2

0 1b a   . 

This region of reparameterization is illustrated in Figure 2 below. 
 
 

 
 
Figure 2. The trinomial categorical random error ε is parameterized by the values 
a, b ∈ [0, 1], where a + b  1, the region outlined by the right triangle defined by the 
coordinate axes and the red line in the figure. The region between the coordinate axes 

and the blue curve,  b = a
2

1 , illustrates where a trinomial categorical random 
variable can be reparameterized as a difference of independent Bernoulli random 
variables, ε = Y1 – Y2. Given a pair (a, b) in this closed region, one may define 
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bp p , with Yi ~ Ber(pi) 
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In some sense different from what was seen in the The Misclassification 
Problem section, this reparameterization region captures those error distributions 
that correspond to measurements W that are “good enough” for X. Calibrated 
measurements produce error distributions that fall on the diagonal a = b, yet a 
useful measurement should produce an error that is not too high in variance as 
well, forcing all “good” measurements to lie reasonably close to the coordinate 
axes in Figure 2. In this imprecise sense, the region of parameterization in Figure 
2 seems to capture those measures that attain a reasonable balance between 
minimal miscalibration and variance. 

Recall that the mean-squared error of our categorical trinomial error was 
given by E(ε2) = a + b. The level curves of this surface are lines parallel to 
1 = a + b, the red line of domain in Figure 2. Clearly then, this measure of 
calibration-variance tradeoff does not match up with that captured by the region 
of reparameterization in Figure 2. 

It is currently unclear to us how this reparameterization of errors provides 
precise insight into the quality of a proposed measurement, even though the 
reparameterization seems to be capturing something in this vein. It should be 
noted that this region of reparameterization can be extended to a general 
multinomial error, though predicated upon considerably more algebraic effort. 
Furthermore, it should be noted that this reparameterization phenomenon appears 
to partition the family of multinomial distributions into two distinct classes: one 
where reparameterization by sums of independent Bernoulli random variables is 
possible, and one where this is not possible. The implications of this observation 
are still unknown to us. These facts are recorded here in the hope that other 
practitioners may be interested in elucidating them further. 


	Journal of Modern Applied Statistical Methods
	4-16-2019

	Calibration of Measurements
	Edward Kroc
	Bruno D. Zumbo
	Recommended Citation

	Calibration of Measurements
	Cover Page Footnote


	Calibration of Measurements

