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CHAPTER 1: INTRODUCTION 

In this dissertation a novel method for separating reverse osmosis (RO) membrane 

leaves in spiral wound elements is developed and evaluated. This method utilizes 3-

dimensional (3D) printing with the aim of optimizing feed channels to minimize fouling 

potential of the membrane while maximizing permeate flux. Standard diamond shaped feed 

channel spacers commonly used in spiral wound membrane elements are not ideal as they 

are susceptible to plugging and fouling, both of which reduce membrane flux and 

operational life. Additionally, flow reversal with traditional feed channel spacers is not 

feasible due to the high pressure drop and mechanical entrapment of foulants. When foulant 

build up begins to decrease permeate flux membranes are typically cleaned using strong 

chemicals, some of which are hazardous and caustic.  This cleaning step is part of routine 

maintenance and is initiated prior to when the extent of fouling becomes essentially 

irreversible. To address these limitations, this research focuses on printing microstructures 

in an optimized geometry and pattern directly onto the RO membrane surface to reduce 

fouling.  Optimized microstructures were then evaluated to determine if flow reversal could 

successfully remove foulant buildup.  By keeping the membrane surface and feed channel 

free of scale, the ultimate aim of this research is to evaluate if it is possible to eliminate or 

reduce the need for cleaning chemicals. 

In Chapter two, the current state of science of membrane spacer design is 

discussed. This chapter begins with an overview of physical-chemical processes important 

to understand membrane filtration and fouling. Current practice for identifying fouling and 

typical maintenance techniques implemented by membrane operators to manage fouling 
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are then described. Finally, the chapter ends with a discussion of the ways researchers have 

attempted to reduce membrane fouling, such as by modifying the surface of membranes 

and alternatives to mesh feed spacers that are ubiquitous throughout the industry.    

Chapter three describes the design process employed to optimize the pattern and 

geometry of micromixer elements printed directly to membrane surfaces. This work was 

guided by the hypothesis that optimized microstructure design and patterning can 

maximize the area of enhanced channel feed velocities (0.2 – 0.3 m/s) and minimize 

velocities associated with fouling (<0.1 m/s, >0.3 m/s). This process utilizes computational 

hydrodynamic modeling in COMSOL Multiphysics 3.0 (COMSOL Inc., Burlington, MA) 

to evaluate fluid flow dynamics in membrane channels.  A modified BioBots 3D printer 

(BioBots Inc., Philadelphia, PA) was used to print patterns directly on the membrane. The 

use of 3D printers to modify membrane surfaces has been proposed by a few (Ho, 2008; 

Altman, 2010). These past studies utilized multi-step processes that were not automated 

and utilized equipment that deposited continuous patterns on the membrane that then had 

to be oven cured, making them difficult to scale up to modern industrial production. 

Additionally, the processes presented thus far have not allowed for the deposition of 

individual features that could be tailored to specific system requirements (e.g. to adjust for 

specific water conditions). Based on hydrodynamic models, an enhanced design and 

pattern of chevron micromixers were identified. Printed membranes were then subjected 

to laboratory experiments to confirm fluid flow profiles predicted from the theoretical 

models.   
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Chapter four details laboratory experiments conducted to compare the scaling of 

membranes with standard mesh feed spacers to the scaling of modified membranes with 

enhanced 3D printed micromixer patterning.  The hypothesis that the optimal design and 

pattern of the micromixer identified through computational modeling, based on 

hydrodynamics, will minimize scaling relative to a standard feed spacer was evaluated.  

Membrane properties were characterized for pure water flux and salt rejection before 

fouling. Then a high ionic strength feed solution containing elevated concentrations of 

calcium sulfate was used to evaluate chemical fouling. Permeate flux was monitored over 

time. Microscopy was used to evaluate scale. Overall, membranes with 3D printed 

micromixers were found to maintain water flux longer than traditional membranes paired 

with mesh feed spacers.    

Chapter five explores the use of reverse flow cleaning with modified membranes 

containing 3D printed micromixers to enhance scale removal. Accordingly, the following 

hypothesis was evaluated: during flow reversal, printed micromixers will create 

hydrodynamic conditions that enhance scale removal. Computational fluid dynamic 

modelling was used to evaluate flow velocities in RO feed channels during reverse flow 

cleaning. Theoretical results where again confirmed with laboratory experiments. Fluid 

flow paths observed were consistent with those predicted by computational models and 

enhanced scale removal was observed under reverse flow conditions.  

This dissertation provides a proof-of-concept design optimization for the next 

generation of membrane spacers. The concept of moving away from a material insert as 

the means for separating membrane leaves in a spiral wound element opens up numerous 
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design possibilities that can be leveraged to enhance membrane transport properties and 

reduce fouling.  The ability of printed 3D micromixers to be tailored so that the feed 

channel is optimized for site-specific feed water quality and the ability to vary the design 

of micromixers in the pressure vessels are two advances that are likely to improve 

membrane performance and reduce RO operational costs. 
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CHAPTER 2: BACKGROUND 

2.0 Membrane filtration 

 With the majority, 97%, of the accessible water to the world being from the ocean, 

desalination will be required to meet a growing water demand created by industry, 

population growth, and the ever-changing environment.  Prior to the 1990s distillation 

dominated the conversion of salt water to pure water.  The development of reverse osmosis 

(RO) and its technology advancements throughout the decades have reduced its total 

operational footprint such as a lower membrane costs, reduced pretreatment costs, and low 

energy cost, 10% of the of thermal distillation making RO the current industry solution 

(Cohen et al. 2017). 

 While membrane filtration has been applied as early as 1920 in a laboratory in 

Germany where a microfiltration membrane was used to filter bacteria.  Membranes for 

industrial application such as desalination weren’t developed until around 1960 with the 

achievement of asymmetric membranes. Previously membranes were symmetric with the 

permeation rate being limited by the thickness of the membrane.  With the development of 

a porous support layer that had an integrated thin dense top layer much higher flux could 

be achieved with thinner membranes.  This is based on the fact that the flux is inversely 

proportional to the thickness of the barrier layer (Mulder 1991).  For most membrane 

operations the permeation rate through the membrane is proportional to the driving 

pressure.  Outside of the applied pressure, the membrane itself influences flux and 

determines selectivity.  Based on this, size exclusion and molecular weight cutoff 

membranes can be classified into low pressure membranes and high pressure membranes.   
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 Microfiltration (MF) and ultrafiltration (UF) are considered low pressure 

membrane filtration due to the typical maximum operating pressure of 40 psi required for 

water to pass through the membrane.  While nanofiltration (NF) and RO need up to 1200 

psi to produce water depending on the osmotic potential of the feed solution.  The low 

pressure membrane processes work primarily through size exclusion not diffusion as RO 

and NF.  The suspended particles are removed based on their size compared to the nominal 

or absolute pore size rating of the membrane.  Pore size however is a relative term since 

most of the true membrane morphology is not a repeating pattern of identical cylindrical 

channels that reject particles above a specific pore size.  Due to the process in which 

membranes are made they have a range of pore sizes that manufacturers attempt to classify 

to a “micron rating” (i.e. a measure of the membrane pore size in micrometers) for 

standardization purposes relating to use and sales.  Membrane manufacturers typically 

provide the average pore size defined as nominal or the absolute (maximum) pore size.   

MF membranes typically have pore classifications from 0.1 to 0.2 µm UF membranes 

cover a pore size range of 0.01 to 0.05 µm  (EPA, 2005).  

 While all the membrane separation processes described above require pressure to 

drive the process.  RO allows water molecules to cross the semipermeable membrane 

through a combined concentration gradient leaving the dissolved contaminants behind.  

Osmosis is the process where water passes through a “semipermeable” membrane.  The 

water transport is facilitated by the concentration gradient due to a dilute solution on one 

side of the membrane and a concentrated solution on the other side.  Water naturally wants 

to flow from the lower concentration to the higher concentration side to reach an 
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equilibrium.  Applying pressure that exceeds the osmotic potential of the concentrated 

solution on the concentrate side forces water through the membrane to the lower 

concentrated solution reversing the process of osmosis; hence the name RO which was 

developed to purify water with dissolved contaminants specifically salt such as sea water 

(Wijmans and Baker 1995).  RO membranes are primarily configured in the spiral wound 

element (SWE) configuration using a mesh spacer to separate the membrane leaves.  The 

concentration at the liquid-membrane interface and the limitations of the current feed 

spacer technology play an integral role in the fouling of membranes and the drive for 

extensive pretreatment.     

2.1 Membrane transport 

 There are many models to describe membrane transport including classics such as 

the solution-diffusion, pore flow and Nernst–Planck solution-diffusion model.  The most 

commonly accepted model to describe solute and solvent transport through dense non-

porous RO membranes is the solution diffusion. Originally developed by Londsdale et al. 

(1965), the base assumption was that both solute and solvent dissolve into the surface layer 

of the membrane from the feed water side and then proceed to diffuse through it 

independently to the product water side.  As can be seen by Figure 2.1 the difference in 

pressure which produces a chemical gradient across the membrane in the solution diffusion 

model is depicted as equal across the whole membrane. Each one facilitating its own 

throughput based on its own individual chemical potential gradient.  With permeants 

having varying rates of membrane diffusivity and diffusion out of the bulk into the 

membrane itself a separation occurs between the permeants (Wijmans and Baker 1995;  
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Figure 2.1 Solution-diffusion model – (adapted from Wijmans and Baker 1995) 

Wang et al. 2014).   

Membrane performance is primarily characterized by flux and rejection.  The 

volumetric water flux (Jw) is derived from Henry’s law and Fick’s first law of diffusion,   

𝐽𝐽𝑤𝑤 = 𝐴𝐴(∆𝑃𝑃 − ∆𝜋𝜋) = 𝐾𝐾𝑤𝑤𝐷𝐷𝑤𝑤𝑚𝑚

∆𝑥𝑥
𝑉𝑉𝑤𝑤
𝑅𝑅𝑔𝑔𝑇𝑇

(∆𝑃𝑃 − ∆𝜋𝜋)                                                           Equation 1 

Where A is the water permeability, Δp is the pressure differential and Δπ is the osmotic 

pressure difference across the membrane, Dwm is the water diffusion coefficient of the 

membrane, Kw is the water-membrane partition coefficient, Δx is the membrane thickness, 

and Vw is the molar volume of water.  The solute transport (Js) ignores Henry’s law and is 

derived from Fick’s law based on the driving force being due to the concentration 

differences, 

 J𝑠𝑠 = 𝐽𝐽𝑤𝑤𝐶𝐶𝑝𝑝 = B(C𝑚𝑚 − C𝑝𝑝) = 𝐾𝐾𝑠𝑠𝐷𝐷𝑠𝑠𝑚𝑚

∆𝑥𝑥
(C𝑚𝑚 − C𝑝𝑝)                                                            Equation 2 
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The observed Rejection can be calculated from the concentration in the product and the 

concentration in the feed as can be seen in equation 3 (Wang et al. 2014). 

 𝑅𝑅0 = 1 − 𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓

                                                                                                           Equation 3 

2.2 Module configuration  

 Low-pressure membranes are typically configured as hollow-fiber modules. The 

majority of these modules are created by taking a bundle of fibers lengthwise and potting 

the membrane ends into a housing that allows direct or cross-flow filtration.  The filtration 

either works by passing water from the outside of the fiber through the fiber wall and into 

the lumen or from the lumen to the outside.   Operating outside in reduces the potential for 

blocking the fibers with particulate matter which varies based on the inner diameter of the 

fiber.  Whether direct or tangential filtration, modules are typically backwashed after 

reaching a specific pressure or flux loss to remove cake formation on the influent side of 

the membrane and to prevent irreversible fouling from occurring.  Certain studies cite the 

particle fouling layer as a mechanism for enhanced microbial removal and aided rejection.  

Yet the secondary layer created is highly variable based on the source water being treated 

and not easy to reproduce (EPA 2005).         

 The SWE configuration is the module design choice for RO and NF.  This format 

allows for the most active membrane area in the smallest footprint with 400 ft2 for an 8 

inch by 40 inch standard RO element.  Other module designs that have been used like the 

plate and frame only have half the packing density (Yang et al. 2013).  While the 

transmembrane pressure (TMP) drives the water across the membrane surface overcoming 

the osmotic potential of the solution there is also a feed channel pressure associated with 
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SWEs which is the pressure between the inlet feed and the concentrate outlet (Araujo et al. 

2012).  This configuration utilizes a spacer to separate the membrane leaves and create a 

channel for feed water to flow.  Typical feed spacers consist of a diamond mesh pattern 

that is woven or extruded and range from 0.33 mm (13 mils) to 2 mm (80 mils) in thickness 

with a density of 6 to 32 strands per inch. The most common mesh feed spacer used is 

0.8636 mm (34 mils).  This has been the norm since the inception of this technology 

providing the benefit of increased mass transfer due to promoting turbulence versus 

laminar flow.  Flux increases have been reported to be three to five times for spacer-filled 

channels when compared with empty channels (Schwinge et al. 2004).     

2.3 Feed spacer technology  

Feed spacers for commercial spiral wound RO elements, Figure 2.2 are more 

complex than a simple classification of a mesh material with a diamond shape.  At first 

Figure 2.2 Image of a 0.508 mm (20 mil) mesh feed spacer on top of a RO membrane 

under normal typical operating conditions in a transparent acrylic cross flow cell 

(Sterlitech; Kent, Washington). 
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glance one would think it seems pretty simple, water transverses the mesh channel in the 

path of least resistance and diffuses through the membrane where the spacer does not block 

flow.  With the geometrical characterization and directional orientation of flow 

identified from previous researchers (Bucs 2013) insight is gained into the potential 

benefits and pitfalls created by feed spacer selection.  First off, not all of the mesh contacts 

the membrane.  The mesh is created by either extruding or laying single strands equal 

distance apart from each other and overlaying with the same type of strands perpendicular 

creating a square.  The intersection points of theses strands called nodes are where the feed 

spacer contacts the membrane surface. The square feed spacer is turned, inserted between 

two membrane leaves, and rolled into the SWE configuration; feed flows into the diamond 

geometry at a predetermined contact angle.  Another key feature of the current mesh feed 

spacers are that most of the filaments do not carry a uniform diameter throughout, there are 

thinner diameter segments between the nodes. Where the mesh spacer physically rests on 

the membrane surface low flow zones (dead zones) are created in the feed channel. This is 

due to laminar flow through the SWE with a typical Reynolds number <300 calculated 

based on the hydraulic diameter of a square feed channel impinged by the feed spacer 

geometry (Bucs et al. 2015). These dead zones create opportunity for fouling to setup and 

proliferate throughout the membrane surface and feed channel. (Suwarno et al. 2012; 

Picioreanu et al. 2009; Koutsou et al. 2007; Vrouwenvelder et al. 2006; Vrouwenvelder et 

al. 2009; Radu et al. 2010) 

Extensive modeling using computational fluid dynamics software has been done to 

gain a better understanding of the impact of feed spacers and the potential for feed spacer 
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improvements.  The primary focus of these efforts were to determine how to improve the 

hydrodynamics of the feed channel for increased flux or reduced fouling or both.  

Researchers have modeled modifications such as filament shape, angle of attack and node 

shape to determine if optimizing these parameters would enhance membrane transport 

and/or reduced fouling.  A rectangular spacer, a cylindrical spacer, and a triangular spacer 

were modeled to determine potential enhancement in the fluid flow of the feed channel 

with the triangular configuration providing the best mass transport and lowest pressure 

drop (Ahmad et al. 2006).  This was followed up by Ngene (2010) who modeled an offset 

circle, star shape, tear drop, and a kite shape as potential node replacement geometries to 

facilitate improved fluid dynamics and reduced fouling at the points where the feed spacer 

contacts the membrane surface.  The star and circular geometry showed formation of re-

circulation zones downstream of the structure.  The kite and tear shape structures provided 

a continuous streamline with fluid reconnecting at the back of the geometry.  All designs 

were created using stereolithography on a glass plate channel and showed particulate 

deposition and biofouling in experiments with no specific reduced fouling.   

Another aspect of feed spacer design is the ability to support the separation of the 

membrane leaves when rolled into a SWE configuration.  Strand count density (e.g. count 

per inch/cm), angle of intersection and thickness of the spacer are all factors that influence 

the structure and performance of SWE.  As SWE are wound tighter the channel thickness 

decreases and there is a need for more support, a higher strand count density is typically 

required.  Additionally, the packing density impacts the number of contact points per unit 

area between the mesh feed spacer and membrane, which create more points of flow 
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disruption at the membrane surface. If eddies and low flow regions form around these 

points of contact, it is expected that this will impact the likelihood of scale formation. 

Unfortunately, the amount of contact points and gap distance does not correlate directly to 

channel stability. Therefore, membrane manufacturer’s simply supply enough mechanical 

support to ensure the spacer region does not collapse when the SWE is constructed. One 

notable exception to the standard mesh feed spacer design that was commercialized was 

the use of corrugated feed spacers in the 1980’s (Riley and Milstead 1992). One corrugated 

design with 8 mm intervals was develop for large channel flow by Kurita waste industries 

of Japan and successfully applied in 40 plants. Another, corrugation design with the ridges 

running parallel to the direction of flow was developed by Osmonics; however, this design 

was found to collapse during element rolling and was not used.  Overall, there are 

opportunities to enhance performance of SWE by optimizing feed spacer design based on 

water quality, but it is important to recognize that this optimization must also consider the 

structural support these elements provide to the SWE. 

2.4 Fouling  

 Fouling is defined in the Dow Filmtec RO technical manual as the accumulation of 

foreign materials from feed water on the active membrane surface and/or on the feed spacer 

to the point of causing operational problems (Solutions 2010).  Fouling can mean scaling, 

colloidal fouling, biological fouling or organic fouling.  Colloidal fouling is when 

particulates or colloidal matter gets trapped within the membrane feed channel or deposits 

onto the membrane surface or both.  Biological fouling is the growth of a biofilm by a 

diverse microbial community that utilizes extracellular polymeric substances (EPS) to 
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obstruct removal by flow and cleaners.  Organic fouling are compounds such as humic or 

fulvic substances that adhere to the membrane surface. Scaling is the precipitation and 

deposition of sparingly soluble salts such as calcium sulfate (Solutions 2010, EPA 2005).   

 Current mitigation of fouling is best achieved by removing the foulants up front 

before they become a problem.  Filmtec provides information on pretreatment options 

Table 2.1, depending on what type of foulant or foulants are present.  No good predictive 

model exists to assess fouling potential and determine exactly what type of pretreatment 

will work for an RO plant based solely on feed water quality.  Even determining chemicals  

Table 2.1 Summary of pretreatment options (adapted from Solutions 2010). 

 

and dosages to reduce scaling are not straightforward.  Pilot plant studies are setup onsite 

to operate on the source water with the proposed treatment processes identified to ensure 

all fouling mechanisms have been identified and addressed.  Sometimes even multiple 

pretreatment trains are built and tested to ensure that not only the best treatment process is 

selected but also the best value is chosen before the actual plant is built (Barger, 1989).  

The industry standard for evaluating the water quality before it enters the RO 

treatment process falls on the silt density index (SDI).  This field test for RO feed water 

Pretreatment
Inorganic 

Scale
Silt Density 
Index (SDI) Bacteria Oxidizers

Organic 
Matter

Chemical addition (acid, antiscalant, etc.)

Ion Exchange 
Change of operational parameters
Coagulation-flocculation
Microfiltration-ultrafiltration
Chlorination
Dechlorination
Granular activated carbon
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quality was developed by E.I. DuPont de Nemours and Company.  The test filters water at 

a constant pressure, 30 psi through a 0.45 µm filter.  The amount of time required to collect 

the first 500 mls of filtrate is noted along with the time it takes to collect another 500 ml of 

filtrate after 15 minutes.  These two numbers are used to obtain a plugging factor which is 

divided by the time of the test to obtain a dimensionless SDI value.  Most membrane 

manufactures require a feed water to be maintained at an SDI ≤ 5 with a recommendation 

of an SDI < 3 to minimize fouling.  While a reduced SDI value might inhibit fouling, the 

0.45 µm filter used works on the size exclusion principle and only rejects particulates above 

0.45 µm.  The test does not provide a basis for evaluating dissolved organic matter 

however, which passes through without impacting the SDI and is known to promote fouling 

such as biofilm development (Walker, 1986).  A smaller filter or an additional filtration 

step of the filtrate water might be provide a better measure of fouling for the SDI test.  

Membrane plants and manufacturers are still exploring improved analytical tools to assess 

fouling potential until something is identified SDI will continue to be called out in 

membrane manufacturers specification sheets.  

 Researchers have tried to solve the problems associated with fouling in numerous 

ways such as surface modification of the membrane or new membrane chemistry.  

Modifying the current thin film composite polyamide RO membrane surface to be resistant 

to oxidants without impact to its high rejection and flux would be ideal.  This would allow 

membranes to be cleaned with better and cheaper chemicals like chlorine adding another 

tool to fight foulants such as biofouling. No new membrane chemistry's or surface 

improvements have been developed to date that achieve the same high rejection and flux 
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while provide fouling reduction.  A surface modification has been created for RO 

membranes to be cleaned with stronger oxidizers but the coating wears down and additional 

chemicals have to be applied to recreate the sacrificial surface coating. 

 The Army's research program has focused on improvements to the RO membrane 

and element through the reduction in and removal of fouling materials from the surface of 

the RO membrane.  The specific projects were: 1) Development of chlorine-resistant and 

non-fouling RO membranes 2) Development of improved coagulating agents for water 

treatment 3) Development of innovative thin-film composite membranes 4) Evaluation of 

standard RO element feed spacer configuration 5) Development of new RO element feed 

spacer configuration 6) Development of a new membrane module configuration 7) 

identification of commercial biocides for RO element storage 8) Evaluation and selection 

of biocides for ROWPU storage 9) Development of a membrane separation technique using 

Donnan exclusion (Downing et al. 1994).  Industry has followed over the last 24 years to 

touch on similar research effort and studies without any major changes being incorporated 

to utilizing RO membranes for desalination.  However, manufacturing of RO membranes 

in the SWE configuration has been optimized and streamlined reducing the cost 

substantially almost making RO elements a consumable item at least for the military. 

 Miller, et al. used polydopamine- and polydopamine-g-poly(ethylene glycol) 

(PEG)to modify the membrane surface.  The modified membranes were tested for fouling 

using the one hour static adhesion test which showed significant decrease in bio-fouling. 

However, during longer-term biofouling studies in a membrane fouling simulator, the PEG 

surface modifications did not show reduced biofouling.  The results of this work 
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demonstrate that polydopamine and polydopamine-g-poly(ethylene glycol) coatings do not 

effectively control biofouling. The result is most likely due to the complex interactions 

within a natural water source which ultimately reach an equilibrium favoring the source 

water and dominating the surface properties/conditions of the membrane (Miller et al. 

2012).  This study also showed the importance of developing the right screening technique 

to validate biofouling has been prevented or controlled.  

 Modified feed spacer designs such as the novel spacer design created by Liu et al. 

using stereolithography to make a repeating micromixer that moves fluid in the bottom and 

top layer of the feed channel to the middle where both layers are than replaced by fluid 

from the middle breaking down concentration effects.  Experiments showed that when 

using the same power input, the new spacer increased the mass transfer coefficient by 20%.  

Unfortunately, to reproduce this design would cost more than the increase in mass transfer 

warrants (Liu et al. 2013). 

 Shear induced techniques such as vibrating, ultrasonic, ultrasonic cavitation of 

bubbles, among other methods have been explored (Yang et al. 2013).  Some have found 

niche markets in membrane treatment primarily specific high solids waste streams. Thus 

far share mechanical technology have not been successfully employed for desalination 

(Feng et al. 2006).  

 Printing directly on the RO membrane surface was tried as early as 1998 using a 

3D Systems ThermoJet process.  While printing a feed spacer on the membrane and testing 

in a cross-flow cell was found feasible the technology at the time was not advanced enough 

to create a durable printed layer that would survive winding the membrane into a RO 
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module to even test the performance in a SWE configuration.  This technology was also 

not capable of directly imprinting individual microstructures onto the membrane surface.  

In fact the thermal inkjet printers modified to perform this task had temperatures ranging 

between 200-300 ℃ which typical damaged the membrane compromising the rejection.  

This flaw steered the technology towards piezoelectric actuated inkjet printing, acoustic, 

and electrostatic all generating low heat.   

Sandia National labs utilized a process they developed called robocasting to apply 

a continuous chevron geometry as a micromixer on the membrane surface for inducing 

three-dimensional flow (Ho et al. 2008 and Altman et al. 2010).  While their experiments 

were inconclusive when comparing their modified membrane to a membrane using a 

regular feed spacer the error was found to be the laboratory biofouling experiments. Their 

conclusion stated that a series of more controlled experiments with replicates needed to be 

conducted (Ho et al. 2008 and Altman et al. 2010).  The selection of the chevron pattern as 

a micromixer was not thought to be an issue in their experiments. A modified BioBots 3D 

printer which has a high resolution will be used to directly print individual micromixers on 

the membrane surface. The light source for curing was modified from 405 nm to 365 nm 

so a compatible ink, UV15TK from Master bond can be used. A base chevron design will 

be utilized as the micromixer minimally reducing the active membrane area impacted, 

previous researchers modeling work, and the potential for enhanced flow in one direction 

and cleaning in the reverse.   
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CHAPTER 3: DIRECT PRINT MICROMIXERS FOR ENHANCED 
FLUID FLOW 
 

3.1 Introduction 

 Reverse osmosis (RO) membranes are typically utilized in the spiral wound element 

(SWE) design.  Winding membrane sheets, or leafs, maximizes the amount of active 

membrane area in a small footprint.  This configuration utilizes a spacer to separate the 

membrane leaves and create a channel for feed water to flow.  The most common feed 

spacers utilized are non-woven, extruded netting in a diamond shaped mesh ranging from 

0.33 mm to 2 mm thickness with a density of 6 to 32 strands per inch. The most common 

thickness used for mesh spacers in the United States is 34/1000 of an inch, commonly 

referred to as 34 mils (0.8636 mm).  The use of non-woven extruded netting has been the 

norm since the inception of SWE membrane modules. The spacer material keeps the 

membrane leaves separated and provides an additive benefit of increasing mass transfer by 

promoting unsteady state flow while in a laminar flow regime, Reynolds number < 300.  

Water flux is reported to be three to five times greater for spacer-filled channels compared 

with empty channels (Schwinge et al. 2004).  While beneficial for increased flux, mesh 

spacers increase the pressure drop and create low-velocity zones where fouling can occur.     

 Typical diamond lattice spacers have been extensively modeled using 

computational fluid dynamics to provide a better understanding of mesh spacer 

hydrodynamics (Bucs et al. 2014; Bucs et al. 2015; Kodym et al. 2011; Picioreanu et al. 

2009; Fimbres-Weihs and Wiley 2010).  The thickness of the feed spacer dictates the 

channel height and therefore the cross-flow velocity. A spacer filled channel has more 
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complex flow paths than a simple open channel.  Thinner feed spacers, with a denser mesh, 

allow for the element to be rolled tighter, increasing the active membrane area in a SWE 

(per given diameter).  The filament diameter, the mesh length, the angle between the 

filaments all play a key role in determining water flux and pressure loss (Schwinge et al. 

2004). Guillen and Hoek (2009) modeled different shaped filaments such as a circle, 

square, ellipse and even a tear drop to elucidate the potential benefits of these different 

geometries on maximizing mass transfer while minimizing the amount of pressure loss.  

Based on their modeling simulations different feed channel geometries had little impact on 

mass transfer.  Non-circular filament shapes showed reduced pressure loss identifying a 

potential area for spacer improvement. While improvements can be made to existing mesh 

feed spacers by changing the shape of the filament or adding an additional filament, thus 

far, performance benefits have not overcome the cost of changing current manufacturing 

practice. Commercial feed spacers cost less than $1.00 per square meter of membrane to 

manufacture (Sreedhar et al. 20018).  However, research continues to be conducted to try 

to find a solution to overcome the inherent problems associated with feed spacers and find 

a novel solution that minimizes pressure drop, shear stress, and concentration polarization 

while increasing mass transfer (Amokrane et al. 2015).  

 The inherent flaw with mesh spacers are that the filaments create constrictions in 

the flow path.  Not only are there no unimpeded flow paths, closed recirculation zones 

(eddies) are present and contribute to flow constrictions (Koutsou et al. 2007). These 

eddy’s are created at the filament contact points and have a negative impact on 

concentration polarization (Amokrane et al. 2015). Unsteady flow with local recirculation 
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zones have been identified at higher flow velocities (> 0.3 m/s) (Bucs et al. 2015).  

Common inlet velocities of 0.06 – 0.17 m/s are found to produce laminar flow with mixing 

increasing as the inlet velocity increases (Gimmelshtein et al. 2005). Enhanced velocities 

are considered beneficial as the turbulence disrupts the boundary layer and deposition on 

the membrane surface, enhancing flux and reducing scale buildup.  Eddies have the 

opposite effect and allow deposition/fouling to occur.  This establishes that a balance needs 

to be achieved where an enhanced zone is created from a factor improvement over the inlet 

feed velocity but below a feed velocity of 0.3 m/s to ensure non-recirculating zones are not 

created.    

 Even with material insert limitations Liu et al. (2013) used stereolithography to 

make a static mixing spacer design that redirects the flow at the membrane surface into a 

chimney creating enhanced flow in the middle of the channel.  While these mixers provided 

a higher mass transfer coefficient there was additional pressure drop and cost associated 

with fabricating this elaborate design (Liu et al. 2013).  Xie et al. (2014) modeled and 

fabricated an optimized sinusoidal spacer channel that showed increased permeate flux. 

Yet, this also created a high pressure drop and minimal active membrane area per spacer 

design.  Both efforts highlighting the balance that needs to be obtained between increased 

mass transport and pressure drop.   

 The only way to create a feed channel that has fluid paths that are primarily 

unhindered is to integrate features directly on the membrane that can act as pillars to 

separate the membrane leaves while at the same time minimizing pressure drop and 

enhancing flux or reducing fouling.  Sandia National Laboratories created a novel process 
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called robocasting which enabled them to deposit a repeating chevron line on the 

membrane surface with a UV curable epoxy (Masterbond UVTK15) in 2008.  Once the 

epoxy was deposited the membrane coupon was placed into a UV curing oven using an 8 

W, 254 nm wavelength UV source.  FTIR analysis of the membrane was conducted to 

verify no significant changes occurred during application or curing of the epoxy.  Issues 

with repeatable biofilm formation during swatch testing were deemed inconclusive (Ho et 

al. 2008).  Sandia continued this work in 2010 but had again had inconclusive results from 

the metrics being used to measure biofouling (Altman et al. 2010).         

 Ngene et al. (2010) used computational fluid dynamic (CFD) modeling to evaluate 

five different individual geometries representing nodes at the intersection points of a mesh 

spacer.  These geometries varied in shape from a star pattern to a circle.  CFD modeling 

results showed channel flow with low velocity profiles between the individual structures.  

These shapes were created on a glass plate using phase separation micro-molding, requiring 

a further development step to evaluate the effectiveness of this approach using membranes.  

Despite this limitation, experiments showed particulate fouling setup at the front of the 

shapes and biofouling setup with a tail at the end of each structure. The different types of 

attachment are a well observed phenomenon that biofouling sets up at feed spacer 

intersections, low flow zones (Ngene, 2010).  

 Most research efforts to date have focused on creating as much chaotic mixing, 

turbulence and disruption of the boundary layer to obtain a high mass transfer rate and,  

reduce scaling and fouling while maintaining a minimal pressure drop primarily using a 

uniform material such as a mesh spacer.  The objective of this work was to use computation 
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fluid dynamics modeling to enhance an individual microstructure for printing directly on 

the membrane surface in a pattern that enhances the inlet velocity and maximizes the 

amount of membrane area exposed to open channel flow at a constant velocity between 0.2 

m/s and 0.3 m/s to provide enhanced hydrodynamic conditions.  With this focus, one 

hypothesis was evaluated: 1) Optimized microstructure design and patterning will 

maximize the area of enhanced velocity (0.2 – 0.3 m/s) and minimize velocities associated 

with fouling (<0.1 m/s, >0.3 m/s).   

3.2 Material and Methods 

3.2.1 Model development and parameters 

 COMSOL Multiphysics 5.0 (COMSOL Inc., Burlington, MA) was used to model 

the fluid flow channel with different microstructure geometries and patterning in 2D to 

enhance the fluid flow regime in the channel. Velocities, specific ranges of interest were 

defined based on creating zones that reduce fouling and provide an enhancement from the 

inlet feed velocity of 0.104 m/s.  The inlet feed velocity was selected based on defined 

modeling inputs from other researchers and that it fell within the middle of the typical inlet 

velocity used by industry (Ngene et al. 2010).  The velocity ranges in the channel were 

broken into four categories 1) 0.0-0.1 m/s, no/low flow zone 2) 0.1-0.2 m/s, unimproved 

zone 3) 0.2 -0.3 m/s, enhanced zone and 4) greater than 0.3 m/s, non-recirculating zone. 

 The no/low flow zone from 0.0-0.1 m/s was based on the focus of the micromixer 

providing an improved fluid flow in the channel.  Velocities developed after the inlet feed 

velocity that are in this range support that the spacer created feed channel is actually 

hindering the flow and reducing the mixing and fouling disruption.  Especially, when the 
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velocity decreases to zero or close to which has been shown repeatedly in literature as 

where fouling starts and named appropriately as “dead zones” establishing these upper and 

lower limits for this range. 

 While the unimproved zone from 0.1-0.2 m/s provides flow through the channel 

and does not create a fouling zone.  At the same time it does not provide an improvement 

factor over the original inlet feed velocity or enhance the hydrodynamics of the feed 

channel thus contributing to mas transfer and reduced fouling.  Showing a factor 

improvement will be critical when attempting to replace typical low cost mesh feed 

spacers.  As previously stated typical inlet feed velocities can range up to 1.7 m/s and have 

been modeled to show laminar flow with no improved mixing.   

Anything greater than 0.3 m/s has the potential to create eddies and is classified in 

the non-recirculating zone. Recirculation eddies have also been noted to contribute to flow 

constriction and localized wall shear stress maxima (Koutsou et al. 2007).  These zones 

have the potential even with surrounding higher velocity regions to entrain foulants and 

become a fouling issue.   

In summary, with inlet velocities for SWEs between 0.06 – 0.17 m/s (Gimmelshtein 

et al. 2005) a 0.104 m/s inlet feed velocity was chosen for modeling.  Research has shown 

flow zones with eddy formations created at filament contact points (Amokrane et al. 2015).  

Fouling correlated with dead zones of low flow and mixing (Ho et al. 2008) 0 to 0.1 m/s 

established as a no/low flow zone (or dead zone).  Mass transfer was shown to be enhanced 

by the increased transverse flow velocity (Schwinge et al. 2004) so 0.1 – 0.2 m/s was 

defined as an unimproved zone.  Flow velocities > 0.3 m/s produced unsteady flow with 
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eddy’s identified (Bucs et al. 2015) > 0.3 m/s is non-recirculating zone also with the 

potential to foul.  The goal of this work was to create enhanced flow conditions (0.2 – 0.3 

m/s) while minimizing potential fouling flow conditions. 

3.2.2 Geometry Enhancement 

The chevron geometry and pattern as seen in Figure 3.1 will be utilized as the base 

micromixer design established from previous researchers modeling work, minimally 

reducing the active membrane area impacted by printing, and the potential for enhanced 

flow in one direction and cleaning in the reverse.   Additional background and explanation 

was provided in the chapter 2. The variables chosen were comparable to typical parameters 

associated with feed spacer design such as the flow attack angle, distance between spacer 

filaments, filament diameter and filament length.  The typical gap distance for mesh spacers 

varies from 2.4 mm to 2.8 mm with membrane contact points varying from 0.28 mm to 

0.98 mm for mesh feed spacers as described by Bucs et al. (2013).  While the enhanced 

base design that was selected for evaluation has a distance of approximately 4 mm and 

contact points of 3 mm.  If the 1.2 mm difference from a typical gap width of 2.8 mm for 

mesh spacers is found to impact structural integrity of a spiral wound element a post or 

other feature enhancement to minimize this gap will be evaluated.   
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Figure 3.1 The base micromixer design was A = 90 degree chevron, offset pattern, Lc = 3 

mm chevron lengths, width of chevron (W) = 0.01 mm, Lg = 5.75 mm gap. 

Different models with varying chevron angle, pattern, distance between features, 

and length were created for analysis.  The channel was modeled with a maximum of 

seventeen chevrons when using the offset pattern and minimum of nine chevrons when 

using the continuous pattern to ensure the fluid flow profile being examined was a true 

representation of the impact of a repeating pattern or geometry variation and not impacted 

by the boundary conditions of the side walls.  The area examined for interpolation of the 

velocity profile included the centered chevron slicing through the surrounding area to 

establish a unit area of quantification that does not show any repeating flow.  This was to 

ensure the velocity profile could be compared for the different geometries.   

3.2.3 Simulation conditions 

 The Navier-Stokes and continuity equations assuming Newtonian incompressible 

fluid was used for the flow,   

𝜌𝜌𝜌𝜌 ∗ 𝛻𝛻𝛻𝛻 + 𝛻𝛻𝛻𝛻 = η𝛻𝛻2𝑢𝑢             Equation 1 

𝛻𝛻𝛻𝛻 = 0                                                       Equation 2 

(Lg)  

) 

(A) (Lc)  
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(ρ is density (kg/m3), u is the velocity vector (m/s), η the viscosity (Ns/m) and p is pressure 

(Pa)). 

 The boundary conditions that were applied were the left channel wall as the inlet 

with the inlet flow velocity and pressure were defined.  The right channel wall was the exit 

with the outlet pressure set to the inlet pressure.  The remaining structure walls are all set 

to no slip wall boundaries. 

3.2.4 Image analysis software 

 For each variable that was modeled a velocity profile was generated.  Each image 

was edited using a graphic art program to crop the image down to the representative unit 

area of quantification for imaging and inputted into ImageJ (Rasband 2018). The image 

was then converted to an 8 bit image followed by manually adjusting the threshold color 

to ensure when it was converted to a binary image it captured all of the velocity coverage 

shown in the color image.  The pixels present along with the percent coverage of the 

velocity profile covering the representative feed channel for each zone was identified along 

with a base pattern to allow subtraction of the background chevrons.  The full velocity 

range was also imaged an analyzed and used as a comparison to ensure not velocity ranges 

were missed.     

3.2.5 Materials 

 Commercial flat sheet RO membranes (Dow Filmtec SW30XLE; Midland, MI) 

were used in this study.  The flux range specified by the manufacturer was 23-29/800 

(gallons per square foot of membrane per day)/psi with a NaCl rejection of 99.5%.  All 

membranes were stored as packaged from shipping until ready for use.  A UV curable 
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epoxy (Masterbond UV15TK; Hackensack, NJ) was used for printing features on 

membrane.  Solutions were prepared using de-ionized water and sodium chloride (Reagent 

Plus NaCl >99.0%) purchased from Sigma Aldrich (St. Louis, MO). Fluorescent dragon 

green 1.9 µm in diameter styrene beads were purchased from Bangs Laboratories (Fishers, 

IN) and refrigerated until ready for use. 

3.2.6 Printer  

 A 3D printer from BioBots, BioBots 1 (Philadelphia, PA) was modified by the 

manufacturer per requested specifications to print a stabilized micromixer directly on the 

surface of a membrane without needing any additional processing steps.  This included an 

enhanced print head with one, UV 365 nm LED light and a larger print platform to be able 

to print the active membrane area utilized by the cell. 

 3.2.7 Printing of micromixers on membrane 

 An enhanced chevron and pattern based on the CFD modeling was selected to be 

the micromixer design to be printed on the thin film composite polyamide reverse osmosis 

membrane.  A Solidworks (Dassault Systèmes, Vélizy-Villacoublay, France) drawing was 

generated fitting within the pattern in the dimensions of the Sterlitech crossflow cell feed 

channel.  The STL file was uploaded to the BioBots print platform where it was prepared 

for the printer using slicing software.  The UV curable epoxy, UV15TK was poured into 

the syringe to the 5 ml mark.  A needle was screwed onto the syringe and inserted into the 

metal cylinder for printing.  The pressure was set at 30 psi based on previous reports, 

manufacturer recommendations, and experimental results to the viscosity of the epoxy to 

make sure the epoxy came out at the correct flow for optimal deposition and curing on the 
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membrane.  The epoxy and static curing process were previously verified through FTIR 

analysis to not cause any significant chemical changes in the membrane. (Altman et al. 

2010) 

3.2.8 Low pressure transparent membrane cross flow cell system  

 The test apparatus used was a low pressure acrylic cross flow cell with an effective 

membrane surface area of 140 cm2 purchased from Sterlitech.  The cell channel depth was 

0.8636 mm (34 mil) so acrylic shims were used to achieve the 0.508 mm (20 mil) feed 

channel height of the printed feed spacer and low foulant feed spacer. The volume of the 

polypropylene feed tank was 16 liters.  A high pressure pump with a variable frequency 

drive (Hydra-Cell model F20K52GSNEM, Wanner Engineering, Minneapolis, MN) was 

used to pump the feed solution at 0.5 liter per minute to the crossflow cell and to set a 

constant feed flow velocity.  A backpressure reducing valve (Model BPH05-02T, Straval, 

Elmwood Park, NJ) to allow for constant stabilized pressure from start to finish of each run 

was utilized.  An injection syringe was plumbed at the inlet of the high pressure pump to 

inject the fluorescent beads.     

3.2.9 Membrane Performance Testing Membrane characterization 

 Membranes were stored in a glass beaker fully submerged in deionized water for 

one hour prior to being inserted into the crossflow cell.  Two acrylic shims were placed in 

the feed channel to reduce the thickness of the feed channel to 0.508 mm for all 

experiments.  Membrane experiments were conducted in a small plate-and-frame 

rectangular crossflow laboratory acrylic test cell.  Flowrate to the cell was controlled by a 

variable frequency drive set to maintain a feed flow of 0.5 LPM.  Pressure was adjusted to 
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20.7 bar for the entirety of the test.  Membranes were run for 24 hours with distilled water 

at 20.7 bar to ensure compaction and stabilization.  Once the flux was determined to be 

constant fluorescent dragon green 1.9 µm in diameter styrene beads were injected into a 

recirculating loop for the crossflow cell.  The cell was placed under a Nikon SMZ-18 stereo 

florescence microscope (Nikon Melville, NY) to take time lapse pictures and video to 

determine fluid flow velocity profile using the fluorescent beads to verify fluid flow 

modeling profile.   

3.3. Results   

3.3.1 Pressure profile 

The primary concern with varying different feed channel characteristics or 

implementing a new feed channel design is that it will induce pressure drop that is too high 

to be of practical use.  This was shown to be a problem in the static mixing spacer design 

by Liu et al. (2013) and other 3D mixer designs by researchers.  CFD modeling of chevron 

micromixers developed for this study did not show significant pressure drop across the unit 

area of quantification.  Figure 3.2 provides an example of the pressure drop observed for 

the optimal design which is described in more detail later.    
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Figure 3.2 Pressure profile for 90 degree chevrons with an offset base design pattern 

that included a 3 mm chevron length and 5.75 mm gap length. An inlet velocity of 

0.104 m/s and a specified outlet pressure of 20.7 bar. 

3.3.2 Image analysis of velocity profiles 

 The main focus of the COMSOL modeling was the velocity profile generated based 

on inputted parameters.  While this was informative, to determine the percent coverage in 

the defined feed channel for each velocity region of interest a comparable unit area of 

quantification was selected.  As shown in Figure 3.3 the velocity profile for the 90 degree 

angle exhibits low velocity regions (dark blue) around the outer edge of the model due to 

no slip boundary conditions.  While these regions will occur in the SWEs they are very 

small and not the representative section that details the influence of the variables selected.  

The unit area of quantification outlined with the dotted line in Figure 3.3A, B captures the 
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non-repeating segment of velocity around the centered most chevron with equal segments 

boxed off around it.  This is representative of a unit area of quantification influenced by 

the specific variable in front, behind, and on the sides in the fully developed model.  The 

extraction of the unit area of quantification shown in Figure 3.3B followed by the 

transformation in to the binary image Figure 3.3C allows the percent coverage to be 

calculated for comparison purposes using the ImageJ software. 

 

Figure 3.3 Full velocity profile from 0 to 0.3 m/s for the 90 degree angle.  To quantify 

flow regimes, A) an area of quantification was identified from a larger modeling area to 

ensure boundary conditions did not impact velocity profiles, B) the unit area of 

quantification was extracted, and C) the image of the unit area of quantification was 

transformed into a binary image for analysis to determine the amount of area with a given 

flow condition. 
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To quantify the percent coverage for each range the velocity minimum and 

maximum were set in COMSOL to show only the color profile for the specific velocity 

ranges of interest.  From this image (jpeg) a unit area of quantification was identified 

(Figure 3.3A) and an image was cut out for further analysis (Figure 3.3B). Each area of 

quantification was then converted to a binary image (Figure 3.3C) and analyzed in 

ImageJ to calculate the percent membrane area covered by a given velocity range.  The 

percent area that was calculated for the 0 m/s image (the chevron lines) was then 

subtracted from all the other percent areas images as background to determine the actual 

coverage for each velocity range. The quantification of flow velocities for the 90-degree 

chevron offset pattern are presented in Table 3.1. The percent coverage was calculated 

for each range as shown in Table 3.1 and the summation provide in 3.2C, the percent 

area covered by individual flow regimes. The sum of all the flow regimes (0-0.1 m/s, 

0.1-0.2 m/s, 0.2-0.3 m/s, and >0.3 m/s) for all geometries and patterns tested were then 

compared to the percent coverage for the image with all the velocities ranges present (0 

– 0.5 m/s). Results of this error analysis are presented in Table 3.2. Column A, the 

percent area due to the chevron represents the amount of space that the chevrons 

themselves take up in the unit area of quantification. This background was subtracted 

from one-hundred percent to show the percent available space for fluid flow, where the 

velocity profile will develop. COMSOL was used to generate a full velocity profile that 

was analyzed with ImageJ to determine the percent area covered by 0.0 to 0.5 m/s, 

column B.  Adding the percent area due to the chevron (column A) to the area covered 

by flow (column B) equals 100%. The percent error was calculated by subtracting 
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column C from column B then dividing by column B and multiplying by one-hundred.  

This small error is associated with splitting the velocity profiles and conversion to the 

binary image. This allowed a full comparison regardless of the amount of coverage 

generated by the change in geometry or pattern. The error associated with the image 

analysis was less than 4% in all cases.  
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Table 3.1 Breakdown showing how the percent area was calculated for the 90 

degree angle. 

Range COMSOL image ImageJ  % Area Pixel  

 

 
No flow 

  

1.6 232 

0-0.1 m/s 

  

23.5 – 1.6 = 

21.9 

9455 – 232 

= 

9223 

0.1–0.2 m/s 

  

32.8 – 1.6 = 

31.2 

13394 – 

232 = 

13162 

0.2 – 0.3 m/s 

  

40.8 – 1.6 = 

39.2 

16491 – 

232 = 

16259 

All 

velocities 

  

95.4 – 1.6 = 

93.7 

38332 – 

232 = 

38100 

Chevron 

only 

  

 

 

 

 

 

6.3 2159 
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Table 3.2 Breakdown to show how the percent coverage for the ten models were 

calculated.  The optimal design is highlighted in green. 

 
  

3.3.3 Effect of micromixer design on velocity profiles 

 A design of experiments analysis was conducted to down select to the improved 

dimensioned individual chevron and pattern to create the feed channel with the greatest 

enhanced zone, 0.2 m/s to 0.3 m/s.  The optimal condition was identified as the highest 

percent active membrane area covered by the enhanced zone.  The maximum velocity color 

range was set to 0.3 m/s to allow for a direct comparison of velocities gradients by color.  

Three different angles: 60, 90, and 120 were evaluated using the same base chevron design 

shown and described in Figure 3.1.   

 Figure 3.4, shows the repeating chevron pattern with the different angles modeled 

along with the impact of the boundary effects from the side walls.  To be able to compare 

each variable modeled and have a representative quantified percent coverage, a dashed 

frame of the centered chevron with boundaries to half of the surrounding chevrons was 

established as stated in section 3.2.2.   
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Figure 3.4 Full velocity profile from 0 to 0.3 m/s showing influence of angle: A) 

60 degree angle B) 90 degree angle C) 120 degree angle on the amount of open 

channel flow and velocity regions with the base design pattern: offset, 3 mm 

chevron length, and 5.75 mm gap inlet velocity of 0.104 m/s. 

 

Figure 3.5 Percent feed channel coverage for the enhanced zone, 0.2 to 0.3 m/s velocity 

profile for different angles modeled: A) 60 degree angle – 25.6% B) 90 degree angle – 
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39.2% C) 120 degree angle – 25.4%.  The 90 degree geometry showed maximum 

coverage of enhanced flow conditions. 

This created a velocity profile distribution based on percent coverage as can be seen 

in Figure 3.6. The 60 degree and the 120 degree angle had the lowest coverage for the 0.2 

to 0.3 m/s velocity range, 25.6% and 25.4%.  The 90 degree angle had the highest coverage 

for the enhanced range at 39.2%.  All three velocity profiles created an enhanced zone of 

continuous fluid flow in the channels not near the chevrons themselves.  The area around 

the chevrons experienced the lowest velocity range, 0 to 0.1 m/s with membrane coverage 

of 21.9% for the 90 degree chevron and 19.2% and 26.0% coverage respectively for the 60 

degree and 120 degree variant.  This low flow and zero velocity distribution developed 

primarily behind each micromixer for all three models.  The 0.1 to 0.2 m/s range for all 

three angles were also similar for all three models and no velocities zones developed over 

0.3 m/s.  Based on the 90 degree angle having the highest enhanced velocity and the lowest 

no/low flow coverage this geometry feature was selected to carry through to compare 

against the next variable modeled. 
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Figure 3.6 The different velocity zones compared for each angle modeled using the base 

design base pattern: offset, 3 mm chevron length, and 5.75 mm gap.  The 90 degree 

geometry provides the optimal conditions across all flow velocity ranges with 39.2 in the 

enhanced region. (Note: areas presented do not include 6.3% due to chevron and 1.5% 

image processing error)   

 To determine if there was a benefit of an offset pattern versus a continuous 

repeating pattern.  The same angles: 60 degree, 90 degree, and 120 degree using the same 

base chevron geometry of 3 mm length, 0.1 mm width, and 5.75 mm gap were evaluated 

using a continuous pattern.  This variable change impact on the enhanced velocity profile 

can be seen in Figure 3.7, a reduced velocity in the enhanced zone for the 90 degree and 

60 degree down to 24.0% and 15.3% with an approximate 5% increase for the 120 degree 

angle to 29.6% coverage. This velocity region also shifted to primarily above and below 

the 
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Figure 3.7 The percent feed channel coverage for the enhanced zone, 0.2 to 0.3 m/s 

velocity profile for the continuous pattern: A) 60 degree angle – 15.3% B) 90 degree angle 

– 24.0%%  C) 120 degree angle – 29.6%.  The continuous pattern decreases the area of 

enhanced flow conditions compared to the offset pattern. 

chevrons as can be seen in Figure 3.8.  Examining all the velocity zones in Figure 3.8, a 

significant increase in membrane coverage for the 0 to 0.1 m/s range for all three angles 

modeled was observed with the 60 degree angle increasing to 31.9%, the 90 degree angle 

increasing to 37.7%, and the 120 degree angle increasing to 38.9%.  As can be seen 

  

Figure 3.8. Full velocity profile from 0 to 0.3 m/s showing influence of continuous pattern 

for different angles: A) 60 degree angle B) 90 degree angle C) 120 degree angle on the 
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amount of open channel flow and velocity regions with the base design pattern: offset, 3 

mm chevron length, and 5.75 mm gap inlet velocity of 0.104 m/s.  The continuous pattern 

created channeling that increases percent coverage in the low velocity zone for all angles 

modeled. 

in Figure 3.8, the velocity profile for this range extended in front and behind each chevron.   

 

Figure 3.9 The different velocity zones compared for each angle modeled in a 

continuous pattern using the base design base pattern: offset, 3 mm chevron length, and 

5.75 mm gap.  The 90 degree offset geometry provided the optimal conditions across all 

flow velocities with 39.2 percent coverage in the enhanced region. (Note: areas presented 

do not include 6.3% due to chevron and 1.5% image processing error)         
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 Based on the modeling of the angle and patterning the next variation evaluated was 

the distance between the chevrons (the gap length) from the base model: 3 mm in length, 

0.1 mm thickness, a 90 degree angle in an offset pattern with a gap of 5.75 mm.  The 

additional two distances were 0.75 mm and 10.75 mm to determine if there was any benefit 

to increasing or reducing flow restriction for creating a higher percent enhanced zone and 

low fouling zones.  The variations in the feed channel velocity profiles for these three gap 

distances can visual be compared in Figure 3.10.  The 0.75 mm gap developed a 9.1%  

 

Figure 3.10 Full velocity profile from 0 to 0.3 m/s showing influence of different gap 

lengths: A) 0.75 mm B) 5.75 mm C) 10.75 mm on the amount of open channel flow and 

velocity regions with the base design pattern: offset, 3 mm chevron length, and 5.75 mm 

gap inlet velocity of 0.104 m/s.  The micromixer gap length impacted the amount of 

channeling and high velocity spiking between micromixers.  
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velocity profile in the 0.3 m/s region, non-recirculating zone, Figure 3.12 not previously 

seen in this study.   The 0.75 mm gap model also showed an increase in the 0 to 0.1 m/s 

range to 33.4%, both fouling zones and a similar profile in the 0.1 to 0.2 m/s range 31.0%  

 

Figure 3.11 The percent feed channel coverage for the enhanced zone, 0.2 to 0.3 m/s 

velocity profile for different gap lengths: A) 0.75 mm – 9.5% B) 5.75 mm – 39.2% C) 

10.75 mm –25.2%. The 5.75mm gap length provides the highest flow coverage in the 

enhanced zone. 

coverage and only 9.5% coverage in the enhanced zone, 0.2 to 0.3 m/s range, Figure 3.12.  

The model with the increased gap size of 10.75 had similar membrane coverage in the 0 to 

0.1 m/s range, 21.1% coverage and 47.7% coverage of the 0.1 to 0.2 range.  For this model 

there was no velocity profile generated in the greater than 0.3 m/s range and the enhanced 

zone membrane coverage was reduced to 25.2%.   
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Figure 3.12. The different velocity zones compared for each gap length modeled using 

the base design pattern: offset, 3 mm chevron length, and 5.75 mm gap.  The 90 degree 

offset geometry provided the optimal conditions across all flow velocities with 39.2 in 

the enhanced region. (Note: areas presented do not include 6.3% due to chevron and 

1.5% image processing error)   

To determine if there was any benefit to an increased length the chevron length was 

varied from the base, 3 mm to 4 mm and 5 mm all using the same characteristics of a 

0.1mm thickness, 90 degree angle in an offset pattern with a 5.75mm gap.  The velocity 

profile variations caused by altering this dimension can be seen in Figure 3.10.  Both  
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Figure 3.13 Full velocity profile from 0 to 0.3 m/s showing influence of different 

chevron lengths: A)3 mm B)4 mm C )5 mm on the amount of open channel flow and 

velocity regions with the base design pattern: offset, 3 mm chevron length, and 5.75 mm 

gap inlet velocity of 0.104 m/s. As the chevron length increases, the velocity profile 

through the channel increases. 

changes showed a shift in the velocity profile in the greater than 0.3 m/s range from zero 

coverage for the 3 mm to 4.0% coverage for the 4 mm and 23.6% coverage for the 5 mm.  

The enhanced zone was similar for the 4 mm variation with 35.7% coverage while the 5 

mm length dropped to 24.3% coverage, Figure 3.14. Both the 4 mm and 5 mm models  
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Figure 3.14 The percent feed channel coverage for the enhanced zone, 0.2 to 0.3 m/s 

velocity profile for different chevron lengths: A) 3 mm – 39.2% B) 4 mm – 35.7% C) 5 

mm – 24.3%. The 5.75mm gap length provides the highest flow coverage in the enhanced 

zone. 

reduced coverage in the 0 to 0.1 m/s range to 24.2% and 25.8%, Figure 3.15.  While an 

increase in coverage in the unimproved zone to 27.6% for the 4 mm and 18.2% for the 5 

mm models. 
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Figure 3.15 The different velocity zones compared for each chevron length modeled 

using the base design pattern: offset, 3 mm chevron length, and 5.75 mm gap.  The 90 

degree offset geometry provided the optimal conditions across all flow velocities with 

39.2 in the enhanced region. (Note: Areas presented do not include 6.3% due to chevron 

and 1.5% image processing error.)   

3.3.2 Fluid flow profile 

 A modified membrane was placed into a transparent acrylic crossflow cell for fluid 

flow visualization.  The membrane swatch was run 24 hours for compaction and 

equilibration under experimental condition parameters previously defined.  After 24 hours, 

fluorescence beads were introduced for fluid flow imaging which showed the beads 
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the micromixers then veering off and flowing down the side of the chevron, Figure 3.16.  

The video and imaging of the backside of the chevron showed an unhindered flow path 

with beads flowing from  

 

Figure 3.16 Forward flow profile front of chevron – 2 µm florescent beads with 90 degree 

angle, offset pattern, 5.75 mm gap and inlet velocity of 0.104 m/s supporting modeled 

fluid flow profile (video of the flow at the tip of chevron micromixer observed with the 

aid of fluorescence beads is available at https://doi.org/10.6084/m9.figshare.7312313.v1). 

around the sides of the chevron into the backside of the chevron and then out the back as 

depicted in Figure 3.17.  These images integrated with the flow modeling validate the fluid 

flow. 
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Figure 3.17 Forward flow profile back of chevron – 2 µm florescent beads with 90 degree 

angle, offset pattern, 5.75 mm gap inlet velocity of 0.104 m/s supporting modeled fluid 
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flow profile (video of flow profile observed with the aid of fluorescence beads is available 

at https://doi.org/10.6084/m9.figshare.7309148.v1). 

3.4. Discussion   

 Different chevron features were modified and modeled to determine which chevron 

geometry and pattern created a feed channel with the greatest coverage in the enhanced 

zone, 0.2 m/s to 0.3 m/s and the lowest coverage in the 0 to 0.1 m/s range, low flow and 

dead zone.  As described in section 3.3.1 the base model was a chevron geometry of 3 mm 

length, 0.1 mm width, 5.75 mm gap, 90 degree angle and an offset pattern.   

 The first variations modeled were all three angles: 60, 90, and 120.  The no/low 

flow zones developed slightly in front of each chevron with the majority directly behind 

each feature.  The higher percent area covered by the low flow zone correlated to more 

potential for fouling to initiate and develop on the membrane and feed channel.  The low 

flow zone setting up around the chevron indicated that the feature itself had the potential 

to be a point of fouling.  The enhanced velocity region was pronounced in the open 

channels around the chevrons, Figure 3.4.  The velocity profile, Figure 3.5, showed the 90 

degree angle providing the best continuous feed channel coverage in the enhanced zone of 

39.2% while the 60 and 120 degree angle had less than 30% coverage.  The 90 degree angle 

also generated minimal comparable membrane surface coverage for the low flow zone, 

21.9%.   

 Using the same parameters described above except for changing the patterning from 

offset to continuous showed extreme channeling of the velocity profile for all angles as can 

be seen in Figure 3.8.   All three models showed greater than 30% coverage in the no/low 
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flow velocity zones (0 to 0.1 m/s) behind each chevron extending to the front of the 

following chevron.  The percent coverage of the velocity profile in the enhanced zone, 

Figure 3.7, did not improve for any angle by changing from the offset to the continuous 

pattern clearly showing no benefit of a continuous pattern for maximizing unhindered open 

channel flow at velocities in the enhanced zone and minimal in the no/low flow zone based 

on these modeling parameters.  Both minimizing the percent coverage defined by the 

fouling zone velocities and maximizing the enhanced velocity zone percent coverage were 

achieved by the 90 degree angle offset previously described, when compared between the 

six models.  Based on this modeling data the 90 degree offset model with the base design 

parameters established previously was selected for continuation into the next modeling 

variation.   

 Evaluating two additional gap distances showed that a constriction of 0.75 mm 

created a high velocity area between the chevrons with 9.1% coverage compared to the 

5.75 mm and 10.75 mm which produced zero coverage in this zone.  The small gap area 

also generated the highest coverage in the no/low flow zone behind and in front of the 

feature at 33.4% clearly showing this was not an optimal design enhancement.  Moving 

this gap in the other direction, the 10.75 mm width had the opposite effect with no zones 

going over 0.25 m/s and channeling occurring as if in a continuous pattern.  The majority 

of the coverage was in the unimproved zone showing that a large gap eliminates previous 

benefits with similar design characteristics.  Neither increasing nor decreasing the width 

between the chevrons provided and improvement in coverage of the enhanced zone from 

the original width.  In fact, the 5.75 mm width originally modeled had 1.5 more coverage 
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in coverage compared to the 10.75 mm gap, and a 5.5 more coverage than the 0.75 mm gap 

for the enhanced zone, Figure 3.11.  While having a distance to far between the features 

minimized the offset pattern enhancement for the dimensions modeled generating a 

velocity profile more like the continuous pattern with channeling of the enhanced velocity 

in the gap between the chevrons with an unimproved zone behind each feature and to the 

next.  Based on the percent velocity coverage of 39.2% the 3 mm in length, 0.1 mm 

thickness, 90 degree angle in an offset pattern with a gap of 5.75 mm still provided the 

most enhancement and least fouling potential as an integrated feed channel based on the 

modeling parameters selected. 

Modifying the chevron length to 5 mm showed an increase in the membrane area 

covered in the non-recirculating zone, greater than 0.3 m/s of almost 24%; the enhanced 

zone, the primary focus was approximately 24%.  The increase of the chevron size to 4 mm 

and 5 mm resulted in the no/low flow region immediately behind the chevrons increasing 

slightly compared to the 3 mm, 24.2% and 25.8% respectively.  The 4 mm chevron length 

provided similar coverage in the velocity range from 0.2 to 0.3 m/s.  However, the total 

fouling zone (0 to 0.1 m/s and >0.3 m/s) was 1.5 times that observed when using a 3 mm 

chevron length.  Based on zero coverage for the increased velocity profile greater than 0.3 

m/s and minimal no/low flow behind for the 3 mm chevron the final design variation 

supported the selection of a chevron 3 mm in length, with a 90 degree angle, with a 5.75 

mm gap and in an offset pattern. 
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Table 3.3 The percent coverage in the defined feed channel for each velocity region of 

interest as a comparable unit area of quantification for the ten models evaluated.  The 

optimal design is highlighted in green having the highest enhanced zone and minimal 

fouling zones. 

 

3.5 Conclusion 

 CFD modeling was used to evaluate different microstructures dimensions and 

patterning to determine the shape and pattern of chevron micromixers that created the 

optimal hydrodynamic conditions to reduce fouling and enhance flow in a SWE feed 

channel.  The model results support the hypothesis that optimized microstructure design 

and patterning can maximize the area of enhanced channel feed velocities (0.2 – 0.3 m/s) 

and minimize velocities associated with fouling (<0.1 m/s, >0.3 m/s). The optimized 

chevron geometry was a 90 degree angle with an offset pattern, a 3 mm chevron length, 

and a 5.75 mm gap. The optimal micromixer design and pattern were printed directly on 

the RO membrane as a proof of concept demonstration that individual features could be 

printed on a membrane surface by a 3-D printer.  The flow profile observed during 
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laboratory trials were consistent with CDF model predictions and confirmed the individual 

micromixers provided an unhindered flow path.   

 

54



CHAPTER 4: DIRECT PRINTING OF MICROMIXERS ON 
REVERSE OSMOSIS MEMBRANE SURFACES REDUCE 
CHEMICAL FOULING 
 
4.1 Introduction 

The use of reverse osmosis (RO) membranes for desalination has tripled since 2000 

with 16,000 plants operational worldwide.  RO currently makes up 65% of the technology 

market for desalination with the closet follower, multi-stage flash at 21%.  The emergence 

of RO as the leading choice is due to requiring only ten percent of the energy of distillation 

(note this is still seen as energy intensive), modularity of the treatment trains allowing scale 

up, and the support chain associated with using the RO process for desalination (Cohen et 

al. 2017).  While RO is primarily utilized for desalination it is also effective at rejecting a 

wide array of potential pollutants (e.g., metal, bacteria, pesticides) making it a viable 

treatment process for water reuse from sources such as wastewater effluent and processed 

waters. Overtime, the buildup of materials on the active membrane surface and/or on the 

feed spacer (i.e. fouling) causes reduced operational performance. There are multiple types 

of fouling that occur simultaneously depending on the physical-chemical conditions 

present within the RO unit. The type of fouling can be broadly classified as: (1) scale 

fouling - due to the chemical precipitation of solutes due to the high concentration gradient 

at or near the membrane surface; (Thompson et al. 2017) (2) colloidal fouling - due to the 

entrapment of particulate or colloidal matter, such as iron flocs or silt; (3) biofouling - the 

growth of a biofilm on the membrane surface or feed spacers present between the 

membranes; and (4) organic fouling - the adsorption of specific organic compounds such 

as humic substances and oil on to the membrane surface. (Ho et al. 1992; Solutions 2010) 
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Researchers have tried to solve the problems associated with fouling in numerous 

ways such as surface modification of the membrane, new feed spacer designs, and printing 

directly on the membrane surface with limited success (Suwarno et al. 2012; Picioreanu et 

al. 2009; Koutsou et al. 2007; Vrouwenvelder et al. 2006; Vrouwenvelder et al. 2009; Radu 

et al. 2010). Hydrodynamics within the feed channel are critical to controlling fouling 

initiation and growth (Guillen and Hoek 2009).  In Chapter 3 computational fluid dynamic 

(CFD) modeling was employed to enhance hydrodynamic conditions in membrane feed 

channels using microstructures. Printed membranes were then used to verify CFD model 

results.  Based on Chapter 3 results, the area where fouling was likely to occur, based on 

hydrodynamics, was minimized by optimizing the shape and pattern of the printed 

microstructures.  In this chapter, the chemical fouling of the enhanced 3D printed 

micromixer design and pattern is explored.  

Scale fouling at the membrane surface is major limiting factor in the service life of 

RO membranes (Karabelas et al. 2014). Scale formation occurs as salts build up at the 

membrane surface causing concentrations to exceed the limits of mineral saturation 

(Thompson et al. 2017).  Sparingly soluble salts such as calcium carbonate, barium sulfate, 

calcium sulfate, strontium sulfate and calcium fluoride are often the first to precipitate out 

of solution (Solutions 2010). The concentrations of salts at the liquid-membrane interface 

is known as concentration polarization (CP) and is known to induce the scale formation 

and deposition onto the membrane surface and in the feed channel (Gallab et al. 2017).  

This reduces the flux that can be achieved without irreversible scaling out the membrane 
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or adding an antiscalant prior to RO when mineral salts are present which has other 

limitations.  

Calcium sulfate is commonly used to evaluate scaling as the chemical reactions are 

well defined (not sensitive to pH variation, straight forward kinetics, etc.) (Shmulevsky et 

al. 2017; Bystrianský et al. 2016; and Karabelas et al. 2014). Crystallization of calcium 

sulfate in membrane processes has been extensively studied and is known to occur in either 

the bulk (homogeneous) or surface (heterogeneous) or both as can be seen in Figure 4.1 

below. Bulk crystallization is due to “random collisions of the ions in motion” in the 

concentrate stream building upon each other until a cluster of ions form and precipitation 

occurs.  Surface initiated crystallization may be caused by the roughness of the membrane 

surface with both occurring in the CP boundary layer. As a result, the deposition of crystal 

formation in the bulk phase causes flux decline due to a cake layer formation while the 

dihedral growth of crystals on the membrane itself cause flux decline due to surface 

blockage (Lee and Chung-Hak  2000). 
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Figure 4.1. Depiction of the two different type of scaling phenomenon that can occur 

with calcium sulfate initiated by boundary layer effects.  Heterogeneous nucleation and 

surface initiated scale (Yoram Cohen, personal communication, November 4, 2018, 

Surface initiated Dihedral crystallization image) or bulk precipitation brought on by 

homogeneous nucleation followed by deposition on the feed spacer and membrane 

surface.  

The objective of research presented in this chapter was to evaluate the scaling 

potential of the 3D printed micromixers, compared to standard feed spacers used 

throughout the industry, and determine if the enhanced hydrodynamics translate into 

maintaining longer periods of adequate flux.  With this aim, the following hypothesis was 

evaluated: the optimal design and pattern of the micromixer identified through 

computational modeling, based on hydrodynamics, will minimize scaling relative to a 

standard feed spacer.  To evaluate scaling, precipitation of calcium sulfate was selected as 
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the fouling mechanism to compare spacer modifications that were surface enhanced versus 

standard operating conditions due to the repeatability of creating the scaling water.   

4.2. Materials and Methods 

4.2.1 Printing of micromixers on membrane  

A BioBots model 1 (Philadelphia, PA) 3D printer was modified in-house at the 

United States Army Tank Automotive Research, Development and Engineering Center 

(TARDEC) in Warren, MI to print stabilized micromixers directly on the surface of a 

membrane without additional processing steps.  This included an enhanced print head with 

four, ultraviolet light emitting diodes (UV LED) with a separate power source to control 

intensity. A larger print platform was also utilized to print to the entire active membrane 

area utilized by the cell. 

 4.2.2 Printing of micromixers on membrane 

Enhanced micromixers based on previous CFD modeling (Chapter 3) were printed 

on the thin film composite polyamide reverse osmosis membranes.  Solidworks (Dassault 

Systèmes, Vélizy-Villacoublay, France) was used to translate the enhanced design pattern 

to the feed channel dimensions of the Sterlitech (Kent, WA) laboratory crossflow cell 

utilized in the scaling experiments.  The STL file was uploaded to the BioBots print 

platform where it was prepared for the printer using a slicing software, Repetier host (Hot-

World GmbH & Co. KG, U.S.).  The UV curable epoxy, UV15TK (Masterbond, 

Hackensack NJ) was poured into the syringe to the 5 ml mark capped with a 30 gauge 

needle and inserted into the printer for printing.  Through a trial and error process, a 

pressure setting of 30 psi was found to provide the optimal deposition on the membrane 
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surface.  The epoxy and static curing process were previously verified through FTIR 

analysis to not cause any significant chemical changes in the membrane (Altman et al. 

2010) 

4.2.3 High pressure membrane cross flow cell system  

A modified high pressure cross flow membrane system purchased from Sterlitech 

was used to conduct experiments, see Figure 4.2. The system contained one RO cell for 

running a flat sheet membrane with an effective membrane surface area of 140 cm2. The 

cell channel depth was 0.8636 mm (34 mil) so stainless-steel shims were used to achieve 

the 0.508 mm (20 mil) feed channel height of the printed feed spacer and low foulant mesh 

feed spacer. The volume of the stainless steel feed tank was 16 liters with an integrated 

chiller (Model 6506 Polyscience Warrington, PA) to maintain a constant temperature of 

25°C during each experiment.  A high-pressure pump with a variable frequency drive 

(Hydra-Cell model F20K52GSNEM, Wanner Engineering, Minneapolis, MN) was used to 

pump the feed solution at 0.5 liter per minute to the crossflow cell and to set a constant 

feed flow velocity.   
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Figure 4.2 Experimental RO membrane test system. System utilizes modified Sepa®CF 

membrane cell outfitted with 2 conductivity sensor, 2 pressure sensors, and 1 flow meter. 

The fine tune valve for adjusting pressure from 400-1000 psi was replaced with a 

backpressure reducing valve (Model BPH05-02T, Straval, Elmwood Park, NJ) to provide 

constant pressure from start to finish of each run.  A remote conductivity sensor was 

integrated into the flow cell to allow real-time measurement of product water conductivity.  

A product water collection system was setup on the benchtop scale (EL6001 Mettler 

Toledo; Columbus, OH) to allow real-time measurement of the permeate flow.  The bulk 

feed water composition was maintained by an automated system that periodically emptied 

the product water back into the feed tank based on the volume reaching approximately 1 

Liter.  The system configuration allowed experiments to be run continuously (i.e. 24 hrs. 

per day) with uninterrupted data logging of key parameters through a human interface to 
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an automatic data acquisition. Parameters logged included: inlet feed pressure and reject 

feed pressure, feed and permeate conductivity, and permeate mass collected per unit of 

time. 

4.2.4 Membrane Performance and Characterization 

Commercial flat sheet RO membranes, SW30XLE manufactured by Dow Filmtec 

(Dow Chemical Co., Midland, MI) were used in this study.  Manufacture specified flux 

range was 23/800 to 29/800 (GFD)/psi with a NaCl rejection of 99.5%.  Membranes were 

stored in a glass beaker fully submerged in deionized water for one hour prior to being 

inserted into the crossflow cell. Solutions were prepared using de-ionized water and sodium 

chloride (Reagent Plus NaCl >99.0%) purchased from Sigma Aldrich (St. Louis, MO). 

Membrane experiments were conducted in the Sterlitech stainless steel crossflow 

laboratory test cell, with an active membrane area of 140 cm2.  Two metal shims were 

placed in the feed channel to reduce the thickness of the feed channel to 0.508 mm for all 

experiments. Flowrate to the cell was controlled by a variable frequency drive set to 

maintain an inlet feed velocity of 0.104 m/s.   

Experiments began by running distilled water at 20.7 bar through the membranes 

for 24 hours to ensure compaction and stabilization.  Once the flux was determined to be 

constant, 1L of 0.4 M NaCl solution was added to the reservoir while the system was 

running; resulting in a 16L, 0.034 M NaCl feed solution.  Periodically during the 

experiment, the pressure regulator was adjusted slightly to maintain a feed pressure of 20.7 

bar ± 0.2 bar.  The system was run for 24 hours and considered stable and ready for scaling 

experiments once the product water flux and salt rejection stabilized and were within 3% 

62



of the membrane manufactures specifications. Conductivity measurements were used to 

quantify salt concentrations. Salt rejection was considered stable when the calculated 

rejection was within 3% of membrane specifications based on inline conductivity 

measurements (see Appendix A for additional information).  Additional measurements of 

the conductivity of the bulk feed solution and product water were made using a handheld 

conductivity meter before scaling tests were initiated for calibration verification.   

4.2.5 Calcium Sulfate Scaling Experiment  

After 48 hours of membrane operations as described above if the membrane was 

determined to be within 3% of the membrane manufacturer specifications for flux and 

rejection the scaling study was started.  If the membrane was outside of the 3% the 

experiment was stopped and started over again with a new membrane.  Solutions were 

prepared using de-ionized water, ACS grade calcium chloride (CaCl2·2H2O) from 

LabChem and ACS grade sodium sulfate (Na2SO4) from Sigma Aldrich (St. Louis, MO). 

While the system was running, two liters of the feed solution were drained from the 

reservoir into a 2 Liter beaker this volume was replaced by a 1 liter 0.407 M CaCl2 added 

to the 14 liter feed solution followed by addition of 1 liter of 0.408 M NaSO4 to the 15 liter 

solution, resulting in a 16 liter 0.0304 M NaSO4 and 0.0304 M CaCl2 feed solution at the 

onset of the scaling experiment.  This protocol ensured the same scaling solution would be 

used each time.  Scaling experiment were carried out for 24-48 hours and were conducted 

in triplicate to account for experimental variation.  After 24-48 hours of scaling the pressure 

was slowly reduced until it reached zero and the flow stopped by reducing power to the 

feed pump.   
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Following scaling, membranes were removed and analyzed using a Bruker AXS S4 

Pioneer sequential X-ray fluorescence spectrometer (XRF). It is capable of qualitative and 

quantitative chemical analysis of materials.  Followed by SEM analysis to determine what 

type of crystallization occurred. 

4.2.6 Cleaning System 

Once the scaling experiment was complete the feed tank was completely drained.  

The reservoir was cleaned with tap water until precipitate was no longer visible on the 

inside of the tank and cooling coils.  The tank was then rinsed with distilled water (DI) 

until water from the system drain had a conductivity equal to that of DI water (1.65 µs/cm 

at 23.3 ℃).  The cell was released from pressure and removed from the cell holder.  The 

membrane was removed from the cell along with shims, feed spacer for the unmodified 

membrane and permeate spacer where appropriate and rinsed first with tap water then DI 

water.  A waste membrane with imperfections was then loaded into the cell to perform the 

additional cleanings and flushing. Once clean, the feed tank was filled with DI water.  The 

reject hose was disconnected and placed into a separate collection container and run at 0.5 

LPM for five minutes.  Chlorine and vinegar were added at dilute concentrations, 60 ml 

each to the feed tank and recirculated for four hours then drained.  The feed tank was 

flushed again with DI water and the system was drained with all parts exposed to air to dry. 

4.2.7 Optical Assessment of Scale Formation  

To visually assess the formation of scale over time, fouling experiments were also 

carried out in a low pressure acrylic cross flow cell supplied by Sterlitech (Kent, WA). The 

acrylic cell had an effective membrane surface area of 140 cm2.   The cell channel depth 

64



was 0.8636 mm so acrylic shims were used to achieve the 0.508 mm feed channel height 

of the printed feed spacer and low foulant feed spacer. The same experimental setup (i.e. 

polypropylene feed tank (16 Liters), pump (Hydra-Cell model F20K52GSNEM, Wanner 

Engineering, Minneapolis, MN) backpressure reducing valve (customized product ¼ inch 

BPH05-02T)) described previously were also used for optical experiments. For the optical 

experiments a constant inlet feed velocity of 0.104 m/s was maintained.  A digital color 

camera DS-Fi3 5.9 megapixel (Nikon Melville, NY) was utilized to take photos every one 

minute so that scale development could be visually characterized.     

4.3. Results  

4.3.1 Channel crossflow velocity 

Standard feed channel dimensions without a printed spacer or feed spacer were used 

to calculate the fluid flow characteristics, consistent with laminar flow conditions typical 

of spiral wound elements.  With a cell width of 165 mm and a channel height of 0.508 mm 

(20 mil) result in a calculated the inlet flow velocity of 0.104 m/s.  The calculated velocity 

is for an un-impinged feed channel. Typical flow rates of a lead element range from 0.07 

to 0.6 m/s (Gimmelshtein et al. 2005). However, in the actual spiral wound element 

configuration with two membrane leaves separated by a mesh feed spacer the velocity 

created in the channel does not exceed 0.4 m/s (Koutsou et al. 2007).  The inlet velocity 

used in this work, 0.104 m/s, within this typical range and was used to allow for comparison 

to other work (Bucs et al. 2014). A velocity of 0.104 m/s was also used for the CFD 

modeling presented in Chapter 3. Using this velocity and the cell parameters described 

above the Reynolds (Re) number was calculated to be 102 which is laminar flow based on 
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the transition from laminar to turbulent flow occurring at a Re 2000 (Mulder 1991).  Based 

on the flowrate used the printed micromixer pattern would provide 43% percent coverage 

in unimpeded channel flow in the enhanced zone 0.2 to 0.3 m/s. 

4.3.2 Membrane characterization  

To ensure that the process of curing the individual micromixers onto the membrane 

surface did not impact the membrane, a control sample was run. The control sample was 

handled like the printed membranes but without curable epoxy applied to the membrane 

surface.  Importantly, the control membrane was exposed to the same intensity and duration 

of UV light as the printed membranes.  Following UV exposure, the control membrane 

soaked for one hour in DI water and placed in the RO cell to determine flux and salt 

rejection. After 24 hours of running with DI water followed by 24 hours of 0.034 M NaCl 

feed solution the flux and salt rejection of the control membrane was found to be within 

3% of the membrane manufacturer’s specifications.  

Printed micromixers, individual chevrons, were characterized using a profilometer.  

A total of 81 micromixers were printed in the 140 cm2 of active membrane area utilized by 

the high-pressure crossflow cell.  The design created in Solidworks were printed 

micromixers 0.1 mm thick and 0.508 mm high; theoretically reducing the active membrane 

surface area by 1 cm2.  The 3D printer was not able to print a 0.1 mm width micromixer, 

instead the line thickness averaged 3 mm reducing the active membrane area to 88.2 cm2.  

The calculation utilized was the same equation used by Sandia (Altman et al. 2010) to 

calculate their active membrane area after robocasting. 
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Based on the calculated active membrane area, a significantly improvement in pure 

water flux was observed relative to non-printed membranes, Figure 4.3.  While an 

improved flux would be beneficial it is unlikely based on the modification that was made.  

The pure water flux is not impacted by concentration polarization so it is more likely that 

the active membrane is higher than the calculated area used to determine flux.   

 

Figure 4.3 Normalized permeance and salt rejection for modified and unmodified 

membranes: A) the active membrane area for the modified was 88 cm2 based on 

measuring the physical micromixer dimensions B) the average active membrane area 

was calculated to be 120 cm2 using the average pure water flux for the unmodified 

membranes based on no concentration polarization effects and salt rejection being within 

3% showing no membrane damage.   

The pure water flux (Jw) was measured and used to calculate the pure water 

permeability (A) where delta P is the pressure differential across the membrane and the 

osmotic pressure differential is zero for pure water (see Appendix A for additional 
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information).  A 0.034 M NaCl solution was then introduced as the feed solution and the 

permeate flow was measured along with the product water conductivity.  Once stabilized, 

the product water conductivity measurements were used to determine the observed salt 

rejection. Both intrinsic membrane transport properties were within 3% of the membrane 

manufacturers specifications.  The values calculated for the modified membranes 

compared to unmodified membranes indicating the printing process did not damage the 

membranes and ensuring that the membrane samples were operating with at the same 

metrics at the start of the scaling experiments.    

4.3.3 Scaling experiment 

Calcium sulfate scaling experiments were conducted in triplicate for surface 

modified membranes with individual micromixers and unmodified membranes using a 

standard feed spacer.  The initial flux of 14.5 LMH was established at the beginning of 

each test and the pressure was held constant through the remainder of the experiment to 

allow for a direct comparison of flux response over time. Each membrane test began by 

passing DI water through the flow cell at a rate of 0.104 m/s for 24 hour to ensure 

membrane compaction and a constant permeate flux. With the pressure and permeate flow 

rates stabilized, a 0.4 M NaCl solution was passed through the RO filter for 24 hours to 

validate the integrity of the membrane was not compromised, and then the calcium sulfate 

solution (0.0304 M CaCl and 0.0304 M NaSO4) solution was introduced to induce scale.  

As observed in Figure 4.4, a stable flux was observed for the 5.5 hours prior to 

introducing the scaling solution.  Both the modified and unmodified membranes behaved 

similarly after introduction of the scaling solution for the first 10 hours with the first 5 
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hours equilibrating to the increased ionic strength of the feed solution. This was followed 

by a sharp, linear decline in flux for 3 hours. This decline was observed for both printed 

and non-printed membranes. Then the flux leveled off and was stabile for the next 2 hours.  

It was at this point that the flux for the mesh feed spacer rapidly declined over the next 12 

hours to 78% of its original value while the printed feed spacer only dropped by 24%.   
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Figure 4.4 The normalized specific flux of the modified and unmodified membranes 

over the course of scaling experiments. After stable filtration of a 0.340 M NaCl solution 

was established, the 0.0304 M CaCl and 0.0304 M NaSO4 scaling solutions were 

introduced at time point A. The ionic strength in the flow cell reached steady state at 

time point B. Calcium sulfate scaling initiated and equilibrated at time point C and was 

followed by cake fouling of the unmodified membrane at time point D. Average 

permeance (n=3) is reported with standard deviation. 

4.3.4 Surface characterization.  

 Samples were taken from the different swatches after the scaling experiments.   X-

Ray analysis confirmed that the elemental composition of the scaling layer was in fact 

calcium sulfate, Table 4.1 with peaks at calcium and sulfur, see Figure 4.5.  Samples were 

also examined using SEM analysis to look at the scale crystallization.  No surface initiated 

scaling was present on any of the swatches sampled all scaling was needle morphology  

Table 4.1 Elemental concentration of calcium and sulfur from XRF verifying calcium 

sulfate scale was the only foulant present. 
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Figure 4.5 After the scaling experiment the scaled unmodified membrane was removed 

and a sample was analyzed by a Bruker AXS S4 Pioneer sequential X-ray fluorescence 

spectrometer (XRF) which the peaks at verified the scale present was calcium sulfate. 

bulk precipitation-initiated scale. As can be seen in Figure 4.7, the mesh feed spacer itself 

became points for nucleation and accumulation of scale to create a denser cake layer that 

caused the significant decline in flux. While the printed feed spacer, Figure 4.6 showed 

points of bulk scale attaching itself to the membrane but not a dense cake layer or 

deposition on the micromixer itself. 
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Figure 4.6 Optical and SEM imaging of micromixers printed directly on the membrane 

surface before and after scaling experiments showing minimal scale deposition on the 

membrane and micromixers. 
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Figure 4.7 Optical imaging of membrane surface and mesh feed 20 mil mesh feed spacer 

after scaling experiments showing heavy membrane scaling on spacer and membrane. 

While the scaling layer was so dense on the membranes that used the mesh spacer Figure 

4.8, shows a pocket into the layer development itself.  There are no two stemmed crystal 

structures that would be indicative of surface initiated scaling.   
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Figure 4.8 SEM imaging of unmodified membrane surface utilizing a 20 mil mesh feed 

spacer after scaling experiments showing bulk scaling with no surface initiated scale. 

4.3.5 Scaling formation 

Utilizing an acrylic transparent cell an RO membrane with the standard 0.508 mm 

mesh feed spacer utilized in previous experiments was exposed to the same operating 

conditions as the flux decline experiments previously described.  Figure 4.9 B. shows that 

the scale first starts to setup on the membrane surface appearing to be a shiny crystal lattice 

forming.  This is followed by a change in deposition and growth onto the feed spacer, 
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Figure 4.9 C. which is similar to the SEM picture seen in Figure 4.7.  The last picture 

Figure 4.9 D, shows a heavily scaled feed spacer at the end of the experiment. 

 

Figure 4.9 Mesh feed spacer scaling in transparent crossflow cell with extensive 

nucleation, growth and deposition on spacer. 

 Using the same setup a modified membrane was run under the same scaling 

conditions.  Figure 4.10 B. shows initial scale formation starting to occur around the 

micromixers themselves.  This was followed by continued deposition around the 

micromixers and deposition occurring in small amounts in the channel, too.  The last 

picture Figure 4.10 D. shows more scale deposition has occurred but not in significant 

amounts as seen with the unmodified membrane utilizing the 0.508 mm mesh feed spacer.      
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Figure 4.10 The modified membrane with scaling in transparent crossflow cell showing 

minimal nucleation, growth and deposition.   

4.4.0 Discussion  

Successful printing required a balance between the viscosity of the epoxy, the 

pressure applied to the syringe to get the right deposition, the speed of the print head, the 

intensity of the UV LEDS for curing, and the needle bore hole that the epoxy was dispensed 

from to ensure a successful print.  Even with these optimized, continuous monitoring of 

the print process had to be done in real time to ensure the epoxy did not cure to the needle 

and cause blockage.  During the period that the print head was in the air tweezers had to be 
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used occasionally to remove any buildup of epoxy that was starting to set too ensure 

uniform printing occurred.     

Since the pure water flux is based on DI water with no concentration polarization 

effects the fluxes should be close for the modified and unmodified membranes if there was 

no damage to the membranes.  Based on the modified membrane samples having an 

average salt rejection within .05% of the unmodified membranes, and both within 3% of 

the membrane manufacturers specifications it was determined no membrane damage was 

present.  The printing process itself should not cause an increase in flux while maintaining 

the same salt rejection characteristics.  This means the flux calculated based on subtracting 

the physical dimensions of the chevrons observed described in section 4.3.2 was inflated. 

The effective active membrane area was recalculated using the average pure water flux 

from the unmodified membranes (see appendix A).  This showed that the active membrane 

area was actually 120 cm2 for the modified membranes instead of 88 cm2.  The fluxes using 

this active membrane area were seen in Figure 3.  This shed insight into the permeability 

of the epoxy material or the depth of the cross linking and impact on the diffusive layer of 

the membrane when put through the 3D printing process.  In fact 32 cm2 of the chevron 

area that shows as physically impacting the active membrane area actually allows diffusion 

through.  This means that the printing process itself can be optimized to ensure the 

micromixers are bonded to the surface while minimizing the impact on the active 

membrane area.     

During the scaling experiments there were two clear differences in scale 

development.  The first, both the modified and unmodified membranes with the mesh 
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spacer showed similar flux decline when the scaling solution was introduced and flux was 

reduced based on the increase in ionic strength while operating at constant pressure.  After 

approximately 5 hours of equilibration a sharp decline in flux for both sets of membranes 

was observed due to the solubility limit of the calcium sulfate being exceeded at the 

boundary layer and the onset of bulk precipitation of scale starting to occur and deposit on 

the membrane surface.  This was followed by a 2 hour period of equilibrium, stabilized 

flux where the hydrodynamics of the feed channel prevented additional deposition of scale 

on the surface and flux decline for both the modified and unmodified membrane.  So in 

totality of the scaling test both membranes behaved closely in relationship to their flux 

decline for the first ten hours.  At this point the second development of scale occurs 

primarily for the unmodified membrane with the mesh feed spacer.   

The flux drops consistently over the next 12 hours, a total of 78% due to the bulk 

scaling setting up on the mesh spacer and depositing in a cake like fashion from the 

filaments outward into the open space until the mesh spacer is completely filled.  The 

modified membrane at this point drops minimal; a total of 24% in flux due to the improved 

hydrodynamic open channel flow created by the individual micromixers that minimized 

the scale deposition and impact on flux.  This showed that individual micromixers printed 

directly onto a membrane surface will maintain flux longer compared to a standard feed 

spacer when exposed to a high scaling solution.     

Neither the printed and industry standard feed spacer experienced surface initiated 

crystallization as can be seen by Figures 4.6 to 4.8, all scale was bulk crystallization which 

initiated at the boundary layer interface where the calcium sulfate became supersaturated 
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and deposited on the membrane and feed spacer.  The ability of the printed micromixers to 

minimize scale deposition on the membrane surface and the feed channel over the mesh 

spacer during the scaling experiments was pronounced and supported by the optical images 

and SEM analysis of the membranes shown in Figures 4.6 to 4.8.   

The development of scale formation by the modified and unmodified membranes 

was further explained by the scaling experiments conducted with the transparent cell under 

the same experimental conditions.  Both membrane variations showed similar surface scale 

setup followed by minimal scale formation over the length of the experiment for the 

modified membrane.  The unmodified membrane however after the initial surface scale 

deposition had extensive scale formation on the mesh feed spacer itself as can be seen in 

Figure 4.9 C.  This picture also shows the open area between the scaled filaments that allow 

visualization down to the membrane surface itself showing similar scale deposition as seen 

in Figure 4.9 B.  Supporting that after the initial surface deposition minimal surface 

accumulation occurs and instead the focus of the scale deposition is the mesh feed spacer 

itself.  This latticed framework of scaling becomes so pronounced that sections of the feed 

channel and membrane become blocked with scale.  The heavy cake formation caused by 

the mesh feed spacer lead to the rapid flux decline seen by the unmodified membrane but 

not the printed due to the open channel flow with the enhanced velocity profile. 

4.5.0 Conclusion 

 Laboratory experiments were used to evaluate whether an enhanced design and 

pattern of individual micromixers printed directly onto the membrane surface in place of a 

feed spacer were able to maintain flux longer when treating a scaling water compared to a 
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standard mesh feed spacer.  The results are consistent with the original hypothesis tested.  

The enhanced design and pattern of the micromixer minimized scaling in the feed channel 

relative to a standard mesh feed spacer.  This was supported by the SEM images and the 

scaling experiments conducted in the transparent cell that showed extensive cake formation 

of scale on the unmodified membrane and feed spacer compared to the minimal deposition 

on the modified membrane.  The enhanced design and pattern of the membrane with the 

printed micromixer was also able to maintain flux longer when treating water with a high 

scaling potential relative to an unmodified membrane operating with a standard mesh feed 

spacer.  In fact the flux for the membrane with the mesh feed spacer dropped by 78% 

compared to the membrane with the printed micromixers which only dropped by 24%.  
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CHAPTER 5: REVERSE FLOW FEATURE OF MICROMIXER FOR ENHANCE 
CLEANING 
 
5.1 INTRODUCTION  

 Reverse osmosis (RO) membrane fouling has been the Achilles heel to membrane 

operations since their inception whether it is treating seawater, brackish water, fresh water, 

process water or wastewater.  To maintain flux and prevent fouling extensive and varied 

pretreatment approaches have been implemented.  All different types and configurations 

of membranes and pretreatment processes in front of RO membranes such as 

microfiltration or ultrafiltration or even both have been employed.  Regardless of these 

focused efforts to minimize fouling and the precursors that lead to fouling, eventually some 

type of fouling still occurs (Mulder 1991). Fouling is defined in the EPA’s membrane 

filtration guidance manual as the gradual accumulation of contaminants on a membrane 

surface or within a porous membrane structure that inhibits the passage of water, thus 

decreasing productivity (EPA 2005).  With fouling essentially inevitable, treatment 

operators keep daily logs of parameters used to monitor membrane operations providing 

insight into what type of fouling is occurring and how to tackle it.  The typical design of a 

spiral-wound element (SWE) does not incorporate the ability to reverse flow the feed water 

as a cleaning method or even reverse operations.  In fact there is a brine seal on the feed 

side of the element that in normal operations forces all water through the feed side of the 

element.  For these systems, membrane fouling is controlled primarily with chemical 

cleaning, as well as by recovery and crossflow velocity which is set based on feed water 

quality into the RO train. 
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  The recorded operator data is compared to membrane manufacturers recommend 

cleaning parameters such as when normalized permeate flow drops by 10% or normalized 

salt content of the product water increases by 10% or the differential pressure increases by 

15% from the established baseline (Solutions 2010)  Obviously, this only gives a slight 

insight into what type of fouling is occurring and further water quality analysis is needed 

and possible even a membrane autopsy, Figure 5.1 might need to be performed to 

determine exactly what type of fouling is present and what needs to be done to control its 

impact on water production and membrane life. 

 

Figure 5.1 Fouled spiral wound reverse osmosis element (TARDEC 1998). 

 Membrane manufacturers identify different cleaning protocols depending on the 

foulant of concern.  Dow Filmtec breaks their cleaning strategy into four categories 

utilizing the following chemicals to clean the identified foulant from the membrane 

element.  Inorganic Salts using a .2% HCl or 2% citric acid solution, metal oxides using a 
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0.5%H2PO4 or 1% Na2S2O4 solution, inorganic colloid using a 0.1 % NaOH and pH 12 and 

a silica or biofilm using a 0.1% NaOH and pH 12 at 30 degrees (Solutions 2010).  While 

other membrane manufacturer breaks foulants into varied categories of foulants.  Such as 

calcium compounds, sulphate compounds, Fe, metal oxides recommending cleaning with 

a low pH such as citric acid and silts, colloids, gelatinous polysaccharides substances and 

insoluble substances to be removed using a high pH NaOH and organic acids, oils, proteins, 

waxes, celluosics, and paraffims using a detergent.  Not only is it important to identify the 

correct foulant and cleaner it is important to make sure that cleaning is carried out in the 

right order when multiple foulants are present.  Exposing fouled membranes to the wrong 

cleaner in the wrong order can cause irreversible fouling (Paul 1990; Ho and Kamalesh 

2012; Solution 2010) 

 Once the correct cleaners are identified a typical cleaning regime might be to 

operate at 50% of feed flow to allow for breakup of fouling then operate at 100% of feed 

flow, both for 10 to 15 min with filter in place to ensure foulants are not reintroduced.  

Then circulate at 150% of the feed flow but not to exceed the feed pressure and pressure 

drop specified by the membrane manufacturer.  Followed by a 1 hour soak and then 

recirculate cleaning solution for 15-60 min at high flow (Hydranautics 2016). This 

obviously represents a significant downtime, labor requirement, and chemical cost not to 

mention most membranes fail to return back to baseline flux and slowly degrade until they 

have to be replaced. 

 To combat fouling most research and development efforts to date have focused on 

pretreatment of the feed water, modifying the surface properties of the membrane, new 
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membranes and novel cleaning solutions.  As stated in Chapter 2, other efforts such as 

surface modification of the membrane, new feed spacer designs, and printing directly on 

the membrane surface were tried with limited success (Suwarno et al. 2012; Picioreanu et 

al. 2009; Koutsou et al. 2007; Vrouwenvelder et al. 2006; Vrouwenvelder et al. 2009; and 

Radu et al. 2010).  While some researchers have delved into spacer modification as 

described in the preceding Chapter all of these efforts have been to minimize the onset off 

fouling versus designing the feed spacer geometry to be impactful in a reverse flow 

cleaning regime.  With this focus, one hypothesis was evaluated: 1) during flow reversal, 

printed micromixers will create hydrodynamic conditions that enhance scale removal. 

5.2. Material and Methods 

5.2.1 Model Description 

 COMSOL Multiphysics 5.0 (COMSOL Inc., Burlington, MA) was used to model 

the feed of channel of a RO SWE utilizing the enhanced microstructure geometry and 

patterning developed and tested in the previous two chapters with different reverse flow 

rates typical of forward flow cleaning.  While the previous design was tailored to enhancing 

the forward fluid flow regime in the channel between 0.2 m/s and 0.3m/s, the enhanced 

zone with an inlet flow velocity of 0.104 m/s.  The same features with the flow in the 

opposite direction were evaluated to determine the benefit of removing fouling from the 

membrane surface and feed channel.  This was based on modeling different flowrates that 

are currently recommended by membrane manufactures when cleaning with chemicals in 

forward flow.   Flow velocities were based on 0.25 LPM, 0.5 LPM (the normal flowrate 

that the experiments were run at) and 0.75 LPM. 
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5.2.2 Geometry Optimization 

 The channel was modeled with thirteen micromixers using the offset pattern to 

ensure the fluid flow profile being examined was a true representation of the impact of a 

repeating pattern and not impacted by the boundary conditions of the side walls.  The area 

examined for interpolation of the velocity profile included the centered micromixer slicing 

through the surrounding fluid flow path to capture a section of non-repeating flow.  This 

was to ensure the velocity profile could be compared for the different flowrates by percent 

coverage of an individual micromixer unit area.   

5.2.3 Simulation conditions 

 As with the previous base model, the Navier-Stokes and continuity equations 

assuming Newtonian incompressible fluid were used for the flow modeling.  The boundary 

conditions applied were the right channel wall was the inlet with the inlet flow velocity 

defined for a cleaning/backflush regime.  The left channel wall was the exit with the outlet 

pressure set to the inlet pressure.  The remaining structure walls were all set to no slip wall 

boundaries. 

5.2.4 Materials 

 Commercial flat sheet RO membranes, SW30XLE manufactured by Dow Filmtec 

(Dow Chemical Co., Midland, MI) and procured through Sterlitech (Kent, WA) were used 

in this study.  UV curable epoxy, UV15TK (Masterbond, Hackensack, NJ) was used for 

printing features on the membrane.  Solutions were prepared using de-ionized water, ACS 

grade sodium chloride (NaCl) and sodium sulfate (Na2SO4) purchased from Sigma Aldrich 

(St. Louis, MO) and ACS grade calcium chloride (CaCl2·2H2O) from LabChem. 
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Fluorescent dragon green 1.9 µm diameter styrene beads were purchased from Bangs 

Laboratories (Fishers, IN) and refrigerated until ready for use. 

5.2.5 Printer  

 A modified 3D printer BioBots 1 (BioBots, Philadelphia, PA) was used to print 

stabilized micromixers directly on the surface of a membrane without needing any 

additional processing steps.  This included an integrated UV 365 nm LED light for curing 

while printing and a larger print platform to be able to print on the entire active membrane 

area utilized by the cell, 140 cm2 without moving the membrane swatch.  The down 

selected enhanced micromixer and pattern based on the computational fluid dynamic 

(CFD) modeling was printed directly on the surface of the thin film composite polyamide 

RO membrane.   

5.2.6 Low pressure transparent membrane cross flow cell system  

 The same test apparatus described in Chapter 3.2.8 was used to conduct image flow 

analysis using florescent micro beads, showing the fluid flow profile around the 

microstructure.  Once the flux was determined to be constant fluorescent dragon green 1.9 

µm diameter styrene beads were injected using a syringe pump that was plumbed at the 

inlet of the high pressure pump.  The transparent cell was under a Nikon SMZ-18 stereo 

microscope (Nikon Melville, NY) and used to take pictures and video of the fluid flow 

profile around the chevron.   

5.2.7 Optical Assessment of Scale Formation  

To visually assess the formation of reverse flow cleaning, a fouling experiment was 

carried out in a low pressure transparent acrylic cross flow cell (Sterlitech, Kent, WA). The 
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acrylic cell had an effective membrane surface area of 140 cm2.   The cell channel depth 

was 0.8636 mm (34 mil) so acrylic shims were used to achieve the 0.508 mm (20 mil) feed 

channel height of the printed feed spacer and low foulant feed spacer. The same 

experimental setup (i.e. polypropylene feed tank (16 Liters), pump (Hydra-Cell model 

F20K52GSNEM, Wanner Engineering, Minneapolis, MN) backpressure reducing valve 

(Model BPH05-02T, Straval, Elmwood Park, NJ) described previously were also used for 

the optical experiments.  A digital color camera DS-Fi3 5.9 megapixel (Nikon Melville, 

NY) was utilized to take photos and time lapse imaging every 10 seconds to show scale 

removal in real time and be visually documented.     

5.3. Results  

5.3.1 Velocity profile  

 The enhanced geometry of the micromixer and pattern developed in Chapter three 

and successfully tested in Chapter four under laboratory conditions to demonstrate a 

reduced scaling in the feed channel relative to a standard feed spacer was utilized.   The 

enhancement provided the most coverage in the 0.2 m/s to 0.3 m/s range for forward flow, 

based on an inlet velocity, 0.104 m/s; further modeling was conducted in the reverse flow 

as a cleaning mechanism for scaling.  Since a normal cleaning strategy utilizes lower and 

higher flowrates to remove foulants, three reverse inlet velocities were chosen to model.  

One at 0.104 m/s the velocity utilized during normal operations in forward flow.  Along 

with 0.52 m/s which is half the normal flow velocity and then 0.156 m/s which is 1.5 times 

the normal flow velocity.  The reverse flow modeled at the same inlet velocity and flow 

conditions developed the same open channel continuous velocity profile; figure 2 B., as 
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seen in the forward flow velocity profile.  Reducing the inlet velocity by half created the 

same continuous channeled velocity profile but with a reduced velocity profile primarily 

in the light blue range, 0.5 to 1.5 m/s range as can be seen in figure 5.2 A.  With the inlet 

velocity increased to 0.156 m/s the velocity profile maintained continuous open channel 

flow in the dark red zone, velocities greater than 0.25 m/s.     

 

Figure 5.2. Full velocity profile from 0 to 0.3 m/s showing influence of different reverse 

flow velocities: A) 0.052 m/s B) 0.104 m/s C) 0.156 m/s on the amount of open channel 

flow and velocity regions with the optimal design pattern: 90 degree, offset, 3mm 

chevron length, and 5.75 mm gap. 

5.3.2 Fluid flow profile 

 The fluid flow profile coverage for the enhanced geometry and pattern were very 

similar in forward flow and reverse flow as can be seen in figure 5.3 A. and B.  The velocity 

range was changed to have a lower limit of 0.001 m/s to eliminate some random directional 

arrows.  This <0.001 m/s velocity zone was then replaced with the red arrows showing the 

corrected flow direction based on carrying the flow vectors modeled into the chevron.  Both 
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flow directions provided similar velocity flow vectors except they were in the opposite 

direction.  The major difference was the flow behind the micromixers themselves; the fluid 

flow profile for the reverse flow drove into the middle of the backside of the chevron and 

then swept outward and around to the front.  The flow profile in the forward direction drove 

into the tip of the chevron splitting the flow around the chevron and then curving around 

into the backside of the chevron where the two flow streams meet and flow back into the 

feed channel.     

 

Figure 5.3. Full fluid flow profile for a feed velocity of 0.104 m/s A) forward flow B) 

reverse flow both with an offset pattern, 3mm chevron length, and 5.75 mm gap, and 90 

degrees. 

5.3.3 Fluorescence Imaging 

 A modified membrane with the enhanced micromixer and pattern were placed into 

an acrylic transparent crossflow cell for fluid flow visualization.  A membrane swatch was 

run for 24 hours to ensure compaction and equilibration at the proper flowrate to achieve 

the inlet velocity, 0.104 m/s.  Once the flowrate was established fluorescence beads were 

introduced and videos and pictures were taken, figure 5.4 A. and B. that showed the 
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forward flow CFD modeling matched the bead flow under actual operating conditions. 

Specifically, the flow portion at the bottom of the chevron flowing in and back out at the 

center point behind the micromixer.  The picture also verified through the fluid flow 

imaging an unhindered flow path while the mesh spacer modeled extensively by other 

researchers () shows a fluid flow profile traversing up and down the feed channel due to 

the filaments obstructing the flow and contact points with the membrane.  Previous 

researchers modeled flow depictions were verified using the transparent flow through cell 

and fluorescent beads video available at https://doi.org/10.6084/m9.figshare.7312337.v1 

with beads sometimes catching and adhering to the filament. 

Figure 5.4 Full fluid flow profile for feed velocity of 0.104 m/s A) forward flow with 

offset pattern, 3mm chevron length, 5.75 mm gap and 90 degree B) video of fluorescence 

imaging bead flow profile (available at https://doi.org/10.6084/m9.figshare.7309148.v1) 

Figure 5.5 A. and B. show that the reverse flow model developed was supported by the 

optical imaging of the bead flow in reverse in the feed channel.  The bead flow goes into 
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the back of the chevron and the splits and flows around coming back into one flow path at 

the chevron tip.   

 

Figure 5.5 Full fluid flow profile for feed velocity of 0.104 m/s A) reverse flow with 

offset  pattern, 3mm chevron length, 5.75 mm gap and 90 degree B) video of 

fluorescence imaging bead flow profile (available at 

https://doi.org/10.6084/m9.figshare.7309220.v1 ) 

The reverse flow was shown with florescent bead streaking depicted with the red arrows 

in Figure 5.6. 
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Figure 5.6 Fluorescence imaging bead flow profile for A) top and B) bottom of chevron 

with a feed velocity of 0.104 m/s.  Reverse flow with an offset pattern, 3mm chevron 

length, 5.75 mm gap and an angle of 90 degrees.   

5.3.4 Scale formation and removal 

A transparent crossflow cell with a modified RO membrane was run using the same 

scaling experiments previously described in Chapter 4.  At the end of the experiment the 

scaling solution was removed and replaced with DI water, Figure 5.7 A. The picture 

depiction shows that the majority of the scale over a five minute period was washed away 

from the membrane surface reaching a point where there was minimal scale present and 

the revers flush was no longer removing what was left.  Some scale appears lodged in the 

backside of the chevron in the last picture, Figure 5.7 D.  The reverse clean was followed  
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Figure 5.7 Reverse flow effectively removed scale A) membrane scale after 24 hour 

scaling experiment (video available at https://doi.org/10.6084/m9.figshare.7309208.v1) 

( B) reverse flow remove the majority of the scale C) minimal scale left for removal D) 

reverse flow cleaning after five minutes the majority of the scale was removed (video 

available at https://doi.org/10.6084/m9.figshare.7309211.v1). 

by the flow being changed back to normal operations which removed the remainder of 

scale as can be seen in Figure 5.8 B. through the open channel flow hydrodynamics 

established by the individual micromixers. 
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Figure 5.8 Return to normal forward flow effectively removing remaining scale A) 

membrane scale after five minutes of reverse flow B) minimal scale left after forward 

flow for 30 seconds. 

5.3.5 Water quality of reverse clean 

After the scaling experiments were conducted water samples were taken at the onset of the 

reverse flow cleaning.  After five minutes of cleaning another sample was taken again and 

the system was shut down and piping was switched back to forward flow.  The system was 

started again and another sample was captured.  The samples were analyzed for sodium, 

chloride, calcium and sulfate.  As can be seen in Figure 5.9, three different runs with the 

samples averaged versus the unmodified membranes operated with a mesh feed spacer 

showed no discernable difference in water quality of reject samples.  At the end of the 

reverse flush and after the return to normal flow modified and unmodified water samples 
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also showed no significance between the reveres flush and the forward flush.  However, at 

the end of the experiments there was significantly more scale present on the unmodified 

membranes and mesh feed spacer versus the modified membranes.  The SEM images in 

Chapter 4 showing the top view and side profile of the difference in scale support previous 

researchers statements that the structure of the mesh feed spacer that causes fouling to 

occur creates issues in dislodging and removing the entrapped foulants when cleaning 

(Riley and Milstead 1992). This further demonstrated the enhanced hydrodynamics created 

by the individual micromixers and open channels of the modified membranes to remove 

fouling during reverse flow compared to the regular membrane operated with a mesh feed 

spacer.   
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Figure 5.9. Average water quality data for 3 modified and 3 unmodified membranes 

during reverse flow cleaning after membranes were scaled.  At start of reverse flush 

water sample, time zero, showed no difference for calcium sulfate removal.  Samples 

after 5 minutes of reverse flow and followed by return to normal operations also showed 

no significant difference.   

5.4. Discussion 

5.4.1 Velocity profile  

 At the reduced flowrate there was a continuous unimpeded velocity profile in the 

channels adjacent to the micromixers in reverse flow that should allow for the gentle 

breakup and reduction of any fouling buildup.  This flow followed by increasing to the 

normal flowrate showed the same optimal velocity range develop as the velocity profile in 

the forward flow at his inlet velocity.  Running in reverse flow at this velocity should 

continue to move disrupted foulants from the feed channel.  Following these two flowrates 

with an increase to 150% of the normal operating flow drives the feed channel velocity up 

by over a factor of 2 pushing the open channel closer to the micromixers reducing the 

low/no flow zones.   While exceeding a velocity of 0.3 m/s has been shown to create non-

recirculating zones prone to fouling during normal membrane operations and not beneficial 

during extended operations.  The modeling shows a continuous uninterrupted flow channel 

which at high temporary velocities would create a localized scouring effect to aid in 

removing foulants.  This reverse cleaning regime has the ability to either replace a chemical 

cleaning cycle or be used to augment if needed.           

5.4.2 Fluid flow profile  
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 The importance of these fluid flow paths lies in the fact that the micromixers 

themselves were identified through the modeling to be in no/low flow zones which means 

potential for foulants to build up around them.  Being able to change the flow path to the 

opposite direction allows the disruption or dislodging of foulants or potential foulants 

before they take hold and cause irreversible fouling.  For example it has been shown that 

biofouling builds up with streamers behind the structures and particulate buildup is in front 

of the structure (Ngene 2010).  With these two types of fouling a directional change with a 

higher flowrate should aid in dislodging the foulant and sending them into the open flow 

channel and out the reject side of the spiral wound feed channel out to waste. 

5.4.3 Scale formation and removal  

Visual scale formation was evaluated using an acrylic transparent crossflow cell for 

both a modified and unmodified membrane with a 20 mil mesh feed spacer.  The time lapse 

imagery showed scale deposition start on the membrane surface, then the feed spacer with 

continued cake growth building out from the feed spacer.  The field of view showed 

visualization of the center of the spacer down to the membrane surface elucidating that 

while the onset was the solubility being exceeded at the boundary layer the primary 

nucleation and deposition of the cake scaling formation was on the mesh feed spacer.  The 

modified membrane showed some scale deposition around the micromixers and in the feed 

channel but was minimal compared to the scaling of the mesh spacer on the unmodified 

membrane.  Reverse flushing of the modified membrane showed removal of the majority 

of scale at the first pulse but reached a point where there was no gain from continued 
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flushing.  The return back to normal flow removed some residual foulant at onset of flow 

and then was in equilibrium with whatever foulants were left.   

5.5 Conclusion 

 CFD modeling was used to evaluate different reverse flow velocities impact 

on an enhanced microstructure geometry and pattern.  The focus was to determine the 

impact on the hydrodynamic conditions representative of a SWE feed channel.  Reversing 

the feed velocity showed it was possible to minimize the area of no/low flow velocity in a 

reverse flow clean.  Laboratory experiments in a transparent crossflow cell using 

fluorescence imaging of 1.9 µm beads supported the modeling based on the fluid flow 

visualization showing the same as the modeling.  The same setup was used to show scale 

formation with the printed membrane and the unmodified membrane with the mesh feed 

spacer.  The optimized individual micromixer design and patterning created unhindered 

feed channels that when operated in the reverse flow with an enhanced velocity flushed the 

foulants away.  The results were consistent with the hypothesis 1) during flow reversal, 

printed micromixers will create hydrodynamic conditions that enhance scale removal. 
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CHAPTER 6: SIGNIFICANCE & CONCLUSIONS 

This dissertation focused on developing a novel method for separating reverse 

osmosis (RO) membrane leaves in spiral wound elements (SWEs) by printing micromixers 

directly onto the membrane surface. COMSOL Multiphysics 3.0 was used to design the 

enhanced microstructure and pattern for improved feed channel hydrodynamics. A 

modified BioBots 3-D printer was used to deposit and cure the epoxy, UV15TK to the 

membrane surface in the modeled microstructure and pattern. The modified membranes 

intrinsic properties, scaling impact, and cleaning potential were investigated and compared 

to the unmodified membranes using a diamond mesh feed spacer.   

A hydrodynamic model of a RO feed channel without a feed spacer was developed 

using computational fluid dynamics.  Using an inlet flow velocity of 0.104 m/s different 

chevron micromixer designs were evaluated with the objective to maximize the velocity 

coverage in the feed channel from 0.2 m/s to 0.3 m/s.  This velocity region has been shown 

to create optimal hydrodynamic conditions in the feed channel for reduced fouling.  The 

modeling was used to minimize the membrane area influenced by channel velocities of 

<0.1 m/s and >0.3 m/s.  These velocity regions have been observed to create localized 

recirculating zones that cause foulant deposition and accumulation (Amokrane et al. 2015; 

Bucs et al. 2015; Koutsou et al. 2007).  The channel was modeled with 9 to 17 micromixers 

to ensure the fluid flow profile accurately depicted the impact of the specific micromixer 

geometry and pattern being evaluated and was not influenced by the boundary conditions 

selected for the side walls.  The area of quantification was centered on the middle chevron 

and included the surrounding areas (Figure 3.3), ensuring a representative unit area for 
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velocity profiles were compared for different design configurations.  This approach made 

it possible to quantify feed channel velocity profiles due to changes in micromixer 

geometry. The approach taken was an advancement over previous research which was 

limited by a small number of structures analyzed and artifacts from boundary conditions. 

Based on this study, a 90-degree chevron with 3 mm length sides distributed in an offset 

pattern with a gap length of 5.75 mm was found to be optimal.  This design provided the 

largest amount of enhanced velocity coverage (39.2% of area) with unhindered flow paths 

and a minimal combined fouling region (21.9% of area).   

A desktop 3-D printer was modified to print the enhanced micromixer design 

directly onto the surface of a thin-film composite polyamide RO membrane.  Based on 

available literature surveyed this is the first report of a desktop 3-D printer being used to 

print functional, individual micromixers directly to a membrane surface without damaging 

it.  Ho et al. (2008) and Altman et al. (2010) reported a manual two-step process that created 

a repeating continuous pattern with no ability to make isolated structures on the membrane 

surface.  This significant achievement demonstrates a wide-array of micromixers can be 

modeled, printed and evaluated under realistic condition of membrane operations. This is 

a major advancement over previous research which had only theoretically demonstrated 

potential flow conditions or used stereolithography on glass plates to evaluate individual 

microstructures.  

Laboratory experiments utilizing fluorescent styrene beads were used to validate 

fluid flow profiles generated from the theoretical models.  The modified membranes were 

operated in a transparent crossflow cell using the same flow conditions modeled using 
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CFD.  Flow paths illuminated by fluorescent beads showed continuous channel flow and 

flow around the chevrons with no recirculating zones.  The fluorescent imaging of the feed 

channel flow provided confirmation of the feed flow pattern predicted by the CFD models.  

This is the first-time laboratory trials using fluorescent beads have confirmed CFD model 

predictions of complex 3-D printed membrane structures. 

Modified membranes were characterized for pure water flux and salt rejection in 

accordance with the membrane manufactures specifications.  The average salt rejection and 

flux for printed membranes were statistically indistinguishable (±3% standard deviation) 

from unmodified membranes, within the range specified by manufacturers.  Based on the 

rejection and the flux the membrane swatches were not damaged by the printing process.   

Once the membrane flux and salt rejection were verified to be within the correct 

ranges scaling experiments were initiated by adding calcium chloride and sodium sulfate 

solutions to make a 0.03 M scaling feed solution.  The flux dropped similarly for both the 

printed membranes and unmodified membranes operating with the standard feed spacers.  

Four hours after introducing the scaling solution, the flux declined again for both the 

modified and unmodified membranes indicating the onset of bulk scale formation. This 

scale was found to be calcium sulfate precipitate forming in the boundary layer and 

depositing on the membrane surface.  Once bulk scale formed there was a significant 

difference in scale buildup and flux decline as the runs continued between the membranes.  

The unmodified membranes with the standard 0.508 mm mesh feed spacer had an average 

flux decline of 78% while the modified membranes had an average flux decline of 24% 

over the next fourteen hours.  The results are consistent with the hypothesis that the optimal 
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design and pattern of the micromixer identified through computational modeling, based on 

hydrodynamics, will minimize scaling relative to a standard feed spacer. 

After 24 hours of scaling, reverse flow cleaning was initiated with distilled water 

at the same flowrate used to run the membranes under normal operating conditions.  The 

first liter of flush water was captured.  This was followed by another collection of reverse 

flush water after five minutes and another sample after operations were returned to normal 

flow.  The samples were analyzed for sodium, chloride, calcium and sulfate.  The water 

quality results showed no significant differences between the modified membranes and the 

unmodified membranes utilizing the mesh spacer.  However, all unmodified membranes 

with mesh feed spacers showed significantly more scale present then the modified 

membranes at the end of the experiments.  The SEM analysis (Figure 4.8) support this 

observation.  All scale was identified as bulk precipitation, with no surface initiated 

dihedral scale present.  Since there was significantly more scale on the unmodified 

membrane and spacer that could be removed these results suggest hindered flow paths in 

the mesh feed spacer likely reduced the removal of scale foulant.  While the modified 

membranes showed minimal scale present after the experiments indicating that the reverse 

flush worked.   

CFD modelling was extended to evaluate the impact of reverse flow cleaning at 

different feed velocities based on forward flush cleaning protocols.  An inlet clean velocity 

of 0.052 m/s, 0.104 m/s and 0.156 m/s were modeled. The different inlet velocities showed 

similar velocity profiles in reverse with decreased and increased velocity regimes.  Starting 

with a reverse flow of 0.104 m/s to potentially scour any foulant buildup that might not be 
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fully adhered to the membrane surface or feed spacer followed by increasing to 0.156 m/s 

should flush all foulants from the membrane feed channel.   

Visual scale formation was evaluated using an acrylic transparent crossflow cell for 

both a modified and unmodified membrane with a feed spacer.  The time-lapse imagery 

showed scale deposition originating on the membrane surface, then forming on the feed 

spacer with continued cake growth building out from the feed spacer over time.  

Visualization of the center of the spacer down to the membrane surface indicated that while 

scale formation initiates at the boundary layer due to solubility limitations, the majority of 

the cake scaling formation occurred at the mesh feed spacer with the spacer providing 

points for nucleation and growth.  The modified membrane showed some scale initiation 

around the micromixers and in the feed channel.  This was minimal compared to the scaling 

of the mesh spacer on the unmodified membrane.  Reverse flushing of the modified 

membrane showed the majority of scale was removed during the first pulse of reverse flow. 

After the initial flow reversal, the system reached a point where minimal scale removal was 

observed (i.e. there was no benefit from continued flushing after 5 minutes). Return to 

normal flow conditions (i.e. forward flow) showed some residual foulant flush from the 

feed channel during the first one minute only.  This suggests pulsing the cleaning solution 

in the reverse flow direction for a briefly (<5 min) followed by a pulse in normal operations 

may enhance cleaning of the modified membrane. The results of chemical analyses of flush 

water (Figure 5.9) are also consistent with this interpretation.  

This dissertation demonstrated a proof-of-concept design optimization for the next 

generation of membrane spacers. The concept of moving away from a material insert as 
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the separation method for the membrane leaves in a SWE to utilizing micromixers printed 

directly on the membrane is an important advancement.  This important advancement 

includes the (1) implementation of enhanced chevron micromixers that significantly reduce 

membrane fouling and (2) the ability to clean using a reverse flush process before 

irreversible fouling occurs.  A development method to print a wide-variety of micromixers 

directly on the membrane surface in numerous patterns has the potential to create a new 

class of SWEs.  These elements can be optimized to reduce fouling for specific feed water 

quality conditions. This integrated approach to optimizing feed channels through the use 

of customizable micromixers provides a major advance in membrane technology that has 

the potential to reduce the need for pretreatment and maintenance of RO membranes.  This 

is likely to translate into capital and operating cost reductions, ultimately decreasing the 

cost of providing clean drinking water.  
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APPENDIX A

Active Membrane Area 

Note: 1st run is distilled water run through system so osmotic pressure equals zero also run 24 hours at 

20.7 bar to compact and stabilize membrane. (product(p), membrane(m), bulk(b) 

Flux is Liter/(meter squared * hour) (LMH) or gallons/(feet squared *day) (GFD) 

Note: 2nd run is 2000 mg/L NaCl solution run through system so osmotic pressure of bulk and product 

can be determined, flux with boundary layer effects can be measure and concentration at the membrane 

wall can be calculated to determine salt water transport coefficient. 

106



Reynolds number 
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------------------
Reading data base.
------------------

DATABASE
SOLUTION_MASTER_SPECIES
SOLUTION_SPECIES
SOLUTION_SPECIES
PHASES
PHASES
SURFACE_MASTER_SPECIES
SURFACE_SPECIES
END

------------------------------------
Reading input data for simulation 1.
------------------------------------

SOLUTION 1
    temp 25
    pH 7
    pe 4
    redox     pe
    units     mmol/kgw
    density   1
    water    1 # kg
REACTION 1 Initial Salt Solution
    NaCl 0.0342
    1 moles in 1 steps
SAVE solution 2
END

-------------------------------------------
Beginning of initial solution calculations.
-------------------------------------------

Initial solution 1.

-----------------------------Solution composition------------------------------

Elements Molality Moles

Pure water     

----------------------------Description of solution----------------------------

pH  =   7.000    
pe  =   4.000    

Activity of water  =   1.000
Ionic strength (mol/kgw)  =   1.004e-07

Mass of water (kg)  =   1.000e+00
Total alkalinity (eq/kg)  =   6.935e-10

Total carbon (mol/kg)  =   0.000e+00
Total CO2 (mol/kg)  =   0.000e+00
Temperature (°C)  =  25.00

Electrical balance (eq)  =  -6.935e-10
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =  -0.35

Iterations  =   0
Total H  = 1.110137e+02
Total O  = 5.550683e+01

APPENDIX B
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----------------------------Distribution of species----------------------------

Log       Log Log    mole V
   Species Molality    Activity  Molality  Activity     Gamma   cm³/mol

   OH- 1.007e-07   1.007e-07    -6.997 -6.997 -0.000     (0)  
   H+ 1.001e-07   1.000e-07    -7.000 -7.000 -0.000 0.00
   H2O 5.551e+01   1.000e+00     1.744 0.000 0.000     18.07
H(0) 1.416e-25
   H2 7.079e-26   7.079e-26   -25.150 -25.150 0.000     (0)  
O(0) 0.000e+00
   O2 0.000e+00   0.000e+00   -41.995 -41.995     0.000     (0)  

------------------------------Saturation indices-------------------------------

  Phase               SI** log IAP   log K(298 K,   1 atm)

  O2(g)           -39.09     44.00   83.09  O2

**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm.
  For ideal gases, phi = 1.

-----------------------------------------
Beginning of batch-reaction calculations.
-----------------------------------------

Reaction step 1.

Using solution 1.
Using reaction 1. Initial Salt Solution

Reaction 1. Initial Salt Solution

  1.000e+00 moles of the following reaction have been added:

Relative
Reactant moles

NaCl 0.03420

Relative
Element moles
Cl 0.03420
Na 0.03420

-----------------------------Solution composition------------------------------

Elements Molality Moles

Cl 3.420e-02   3.420e-02
Na 3.420e-02   3.420e-02

----------------------------Description of solution----------------------------

pH  =   6.998 Charge balance
pe  =  -1.079 Adjusted to redox equilibrium

Activity of water  =   0.999
Ionic strength (mol/kgw)  =   3.420e-02

Mass of water (kg)  =   1.000e+00
Total alkalinity (eq/kg)  =   6.935e-10

Total carbon (mol/kg)  =   0.000e+00
Total CO2 (mol/kg)  =   0.000e+00
Temperature (°C)  =  25.00

Electrical balance (eq)  =  -6.935e-10
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =  -0.00

Iterations  =   8
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Total H  = 1.110137e+02
Total O  = 5.550683e+01

----------------------------Distribution of species----------------------------

Log       Log Log    mole V
   Species Molality    Activity  Molality  Activity     Gamma   cm³/mol

   OH- 1.198e-07   1.002e-07    -6.921 -6.999 -0.078     (0)  
   H+ 1.191e-07   1.004e-07    -6.924 -6.998 -0.074 0.00
   H2O 5.551e+01   9.988e-01     1.744 -0.001 0.000     18.07
Cl 3.420e-02
   Cl- 3.420e-02   2.882e-02    -1.466 -1.540 -0.074     (0)  
H(0) 2.035e-15
   H2 1.017e-15   1.025e-15   -14.993 -14.989 0.003     (0)  
Na 3.420e-02
   Na+ 3.420e-02   2.882e-02    -1.466 -1.540 -0.074     (0)  
O(0) 0.000e+00
   O2 0.000e+00   0.000e+00   -62.321 -62.318 0.003     (0)  

------------------------------Saturation indices-------------------------------

  Phase SI** log IAP   log K(298 K,   1 atm)

  Halite -4.68 -3.08    1.60  NaCl
  O2(g) -59.41 23.68   83.09  O2

**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm.
  For ideal gases, phi = 1.

------------------
End of simulation.
------------------

------------------------------------
Reading input data for simulation 2.
------------------------------------

USE solution 2
REACTION 2 Scaling Soluiton
    CaCl2 0.0304
    Na2SO4 0.0304
    1 moles in 1 steps
End

-----------------------------------------
Beginning of batch-reaction calculations.
-----------------------------------------

Reaction step 1.

Using solution 2. Solution after simulation 1.
Using reaction 2. Scaling Soluiton

Reaction 2. Scaling Soluiton

  1.000e+00 moles of the following reaction have been added:

Relative
Reactant moles

CaCl2 0.03040
Na2SO4 0.03040

Relative
Element moles
Ca 0.03040
Cl 0.06080
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Na 0.06080
O 0.12160
S 0.03040

-----------------------------Solution composition------------------------------

Elements Molality Moles

Ca 3.040e-02   3.040e-02
Cl 9.500e-02   9.500e-02
Na 9.500e-02   9.500e-02
S 3.040e-02   3.040e-02

----------------------------Description of solution----------------------------

pH  =   7.064 Charge balance
pe  =  -1.579 Adjusted to redox equilibrium

Activity of water  =   0.996
Ionic strength (mol/kgw)  =   1.741e-01

Mass of water (kg)  =   1.000e+00
Total alkalinity (eq/kg)  =   6.935e-10

Total carbon (mol/kg)  =   0.000e+00
Total CO2 (mol/kg)  =   0.000e+00
Temperature (°C)  =  25.00

Electrical balance (eq)  =  -6.841e-10
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =  -0.00

Iterations  =   8
Total H  = 1.110137e+02
Total O  = 5.562843e+01

----------------------------Distribution of species----------------------------

Log       Log Log    mole V
   Species Molality    Activity  Molality  Activity     Gamma   cm³/mol

   OH- 1.618e-07   1.162e-07    -6.791 -6.935 -0.144     (0)  
   H+ 1.147e-07   8.629e-08    -6.940 -7.064 -0.124 0.00
   H2O 5.551e+01   9.959e-01     1.744 -0.002 0.000     18.07
Ca 3.040e-02
   Ca+2 2.123e-02   6.807e-03    -1.673 -2.167 -0.494     (0)  
   CaSO4 9.165e-03   9.165e-03    -2.038 -2.038 0.000     (0)  
   CaOH+ 2.065e-08   1.578e-08    -7.685 -7.802 -0.117     (0)  
Cl 9.500e-02
   Cl- 9.500e-02   7.148e-02    -1.022 -1.146 -0.124     (0)  
H(0) 1.458e-14
   H2 7.289e-15   7.587e-15   -14.137 -14.120 0.017     (0)  
Na 9.500e-02
   Na+ 9.210e-02   6.930e-02    -1.036 -1.159 -0.124     (0)  
   NaSO4- 2.899e-03   2.187e-03    -2.538 -2.660 -0.122     (0)  
O(0) 0.000e+00
   O2 0.000e+00   0.000e+00   -64.076 -64.059 0.017     (0)  
S(-2) 8.059e-20
   HS- 5.074e-20   3.108e-20   -19.295 -19.508 -0.213     (0)  
   H2S 2.809e-20   2.809e-20   -19.552 -19.552 0.000     (0)  
   S5-2 1.103e-21   1.554e-22   -20.957 -21.809 -0.851     (0)  
   S6-2 3.364e-22   4.737e-23   -21.473 -22.324 -0.851     (0)  
   S4-2 2.799e-22   3.942e-23   -21.553 -22.404 -0.851     (0)  
   S3-2 4.377e-23   6.163e-24   -22.359 -23.210 -0.851     (0)  
   S2-2 4.218e-24   5.939e-25   -23.375 -24.226 -0.851     (0)  

S-2 5.776e-30   1.805e-30   -29.238 -29.743 -0.505     (0)  
S(6) 3.040e-02
   SO4-2 1.834e-02   5.878e-03    -1.737 -2.231 -0.494     (0)  
   CaSO4 9.165e-03   9.165e-03    -2.038 -2.038 0.000     (0)  
   NaSO4- 2.899e-03   2.187e-03    -2.538 -2.660 -0.122     (0)  
   HSO4- 6.711e-08   4.957e-08    -7.173 -7.305 -0.132     (0)  

------------------------------Saturation indices-------------------------------
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  Phase SI** log IAP   log K(298 K,   1 atm)

  Anhydrite -0.04 -4.40 -4.36  CaSO4
  Gypsum 0.21 -4.40 -4.61  CaSO4:2H2O
  H2S(g) -18.56 -26.57 -8.01  H2S
  Halite -3.91 -2.31    1.60  NaCl
  Lime -20.74 11.96   32.70  CaO
  Mirabilite -3.45 -4.57 -1.11  Na2SO4:10H2O
  O2(g) -61.15 21.94   83.09  O2
  Portlandite     -10.85 11.96   22.80  Ca(OH)2
  Sulfur -13.46 -15.60 -2.14  S
  Thenardite -4.87 -4.55    0.32  Na2SO4

**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm.
  For ideal gases, phi = 1.

------------------
End of simulation.
------------------
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ABSTRACT 
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Advisor: Dr. Shawn McElmurry 

Major: Civil Engineering 

Degree: Doctor of Philosophy 

Structural elements, typically mesh spacers, are required between membrane leaves 

in spiral wound elements to ensure flow through reverse osmosis (RO) modules. The 

standard diamond-shaped mesh spacer results in non-ideal hydrodynamics that can lead to 

fouling, which ultimately reduces the flux of water through the membrane and the 

operational life of the unit. Additionally, traditional mesh feed spacers do not allow for 

reverse flow cleaning due to obstructed flow paths and, once fouled, the entrapment of 

scale. To address this shortcoming, a novel method for separating RO membrane leaves in 

spiral wound elements is developed and evaluated.  

Three-dimensional (3-D) printing was utilized to manufacture micromixers directly 

on membrane swatches.  To enhance performance, a two-dimensional computational fluid 

dynamic model was used to select the optimal geometry and pattern of 3-D printed 

micromixers.  The optimal geometry selected created unhindered flow between 0.2 m/s 

and 0.3m/s, using an inlet flow velocity of 0.104 m/s, across 40% of the membrane surface.   
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Laboratory experiments were conducted to evaluate the performance of 

micromixers and compared to unmodified membranes with a standard 20 mil (0.508 mm) 

mesh feed spacer. Pure water flux and salt rejection were found to be similar to standard 

membranes, indicating the 3-D printing process did not damage intrinsic membrane 

properties. Calcium sulfate scaling experiments were conducted. Scale initially began to 

form within 2 hours of treatment resulting in a flux decline of approximately 10% for both 

modified and unmodified membranes. Over 14 hours, an average flux decrease of 24% was 

observed for modified membranes compared to an average flux decrease of 78% for the 

unmodified membranes. This demonstrated the improved resistance to fouling created by 

the open channel design with optimal flow conditions.  

Based on the open-channel flow paths created using 3-D printed micromixers, 

improved scale removal by reverse flow cleaning procedures was evaluated.  The modified 

membranes showed 5-10% more removal for calcium sulfate compared to the unmodified 

membrane utilizing a 20 mil (0.508 mm) mesh feed spacer.  Following cleaning, all three 

unmodified membranes and feed spacers had significant remaining scale, while all three 

modified membranes showed minimal scale.   

Micromixers printed directly to the membrane surface offers the ability to optimize 

feed channel hydrodynamics, reduce scale formation, minimize flux decline, and allow for 

reverse flow cleaning of fouled membranes, representing a significant advancement in 

membrane technology. 
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