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CHAPTER 1: INTRODUCTION

1.1 Introduction to systems biology

In systems biology an organism is viewed as an integrated and interacting network

of genes, proteins and biochemical reactions. These interactions give rise to new properties

called emergent. These are properties that no single component possesses, such as motility.

It is expected that studying biological processes at the systems level will bring a better

understanding of the organism. The discovery of RNA interference, a process through which

specialized molecules are used to prevent the activity of a gene, gave new possibilities to

explore the function of genes. Before the 1990s, it was unthinkable to interrogate genomes

and manipulate cells [3]. However, now we can not only interrogate the entire genome, but

edit it [125, 18, 31, 14] and even synthesize new life forms [57].

To better understand systems biology we need to distinguish between two different

methodological approaches usually associated with it. One is the holistic approach, where

the focus is on the behavior of whole system and the other is the reductionist approach, where

the focus is on the behavior of the most relevant lower-level components of the system. We

share the view of Paul Nurse who considers scientific methodologies and questions to be

reductionist, but he advocates for a more elaborate understanding of biological systems that

takes into consideration that components interact and these interactions are constrained by

overall functions acting at higher levels [120].

Another original perspective on systems biology is presented by Uri Alon. He un-

derlines the importance of network motifs, simple and repetitive structures encountered in

biological networks. In the quest for simplicity, a divide and conquer approach is the only

way to uncover the principles behind the structure and behavior of a system [4]. The differ-

ence to other reductionist approaches is on the relevant low-level components which in this

case are not genes, but network motifs.
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1.2 Problem statement and background

Supported by intense research on specific diseases such as cancer, biological exper-

iments are being performed at a higher rate than ever before, with increasing efficiency.

However, at the end of a laboratory experiment there is no conclusion, but lots of data to

analyze. Currently, data processing is mostly done with computers and specialized software.

Truthfully, this is the most efficient approach if we consider the amount of information to

process. In the case of bioinformatics, one popular data analysis method is pathway analysis,

that takes as input high-throughput data comparing two phenotypes and a list of biological

pathways with the goal of raking them based on the degree to which each they are impacted

by the phenotype. This analysis technique, although sophisticated, does not consider the

evolution of the phenomena in time and it does not readily allow the integration of different

types of data.

1.2.1 Overview of systems biology approaches

An important step in developing novel therapeutics is the investigation of the effects

of biochemical products on living beings and the environment. Traditional approaches for

understanding the mechanisms underlying such effects were focused on single points of action,

e.g. genes, and considered the observed effect as emerging from the properties of individual

parts. These approaches disregarded any type of relationship among the points of action.

However, living systems are complex and dynamic, and their reaction to external stimuli, such

as the contact with toxic compounds, may be hard to predict by only looking at individual

biological entities. A new paradigm emerged in the last 15 years, represented by approaches

that consider the fact that genes, (or, in general, components of a biological systems) do not

work independently from each other, but they are part of one or more subsystems carrying

out specific tasks in the organism. These approaches leverage two types of information: the

data coming from modern high-throughput technologies, suitable for identifying patterns in

the change of thousands of genes, proteins or metabolites across multiple samples, and the
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Figure 1.1: A graphical overview of analysis approaches for snapshot or time-course data
in the context of biological systems. At the top level we display various elements of a
system to be analyzed: i) the time, which is a parameter of the system’s dynamics, ii) the
components, which are the parts set, and iii) the sensor reads, which are composed of one
or several snapshots of the components quantitative characteristics. The edges are links
between inputs and analysis methods. For example, in the enrichment analysis we need a
list of genes (parts set) and expression data for those genes (sensors reads).

availability of information regarding interactions among biological entities. In other words,

these new approaches, which belong to the field of systems biology, focus on capturing system-

level events happening in an organism, by exploiting high-throughput data and knowledge

of the interactions.

Systems biology provides a conceptual basis for integrating the multitude of com-

ponents and interactions underlying cellular processes. A summary of systems biology ap-

proaches can be seen in Fig. 1.1. Traditional approaches are focused mainly on individual

components or pathways, network analysis of high-throughput data offers the opportunity

to incorporate biological complexity by incorporating the connections between various com-

ponents. New applications in drug discovery span a broad spectrum including modeling

disease-altered networks, identification of drug-target interactions, and screening of chemi-
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cal libraries [9]. Network and systems biology offer a novel way of approaching drug discovery

by developing models that consider the global physiological environment of protein targets,

and the effects of modifying them, without losing the key molecular details.

1.2.2 Change detection approaches for preventive therapies

In most, if not all, non-trauma health-care cases, pathological conditions are defined

by phenotypic or clinical changes. For example, cancer is usually diagnosed after the patient

experiences symptoms caused by significant transformations in their physiology. However,

the progression from a healthy state to one of disease is gradual, happening over a period of

time. This is particularly true in the case of conditions such as cancer or neurodegenerative

disorders, for which the onset of the underlying pathology is believed to begin much earlier

than the clinical, detectable onset [133, 80]. What if one could identify a departure from the

healthy state well before a tumor is present, when changes can perhaps still be reversed?

What if one could identify qualitative changes in the states of a biological system without

even knowing what the states are? In this thesis, we propose a technique that aims at

identifying such qualitative changes without a priori knowledge about the nature of the

changes.

The goal is to develop an approach that can detect qualitative changes in the system,

where a qualitative change is defined as a change that involves observable macroscopic phe-

notypical or clinical changes. We should emphasize that no known approach is available to

tackle this type of problems. There are no clearly defined states or classes available a priori,

so no supervised machine learning approaches can be used. We would like to be able to

detect changes as they happen if possible, without massive amounts of partially redundant

data collected beforehand, so no unsupervised methods could be used to extract common

features and build clusters. Here we are looking at a system without having a reference set of

genes, so no enrichment approach will be useful. Finally, there is no predefined phenotype,

and therefore no gene set analysis methods can be employed either. What we would like to
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achieve here is a method capable of: (1) monitoring the activity of a system by taking peri-

odic measurements and (2) detecting when a specific system undergoes a qualitative change

without prior knowledge about it.

In practical terms, the data to be analyzed is a time series of gene expression or

any other sequential measurements of systemic states such as the one described in disease

progression. Time-series data have been used in many ways, e.g. to infer information

regarding regulatory mechanisms, the rate of change for a gene, the order in which genes are

(de)activated, and the causal effects of gene expression changes [12]. Another common goal

for the analysis of time-series data is to identify disease biomarkers presenting as a single

gene or a network of genes [93].

Another challenge is to identify disease mechanisms for complex diseases when dif-

ferent types of data are involved in disease initiation and progression. For instance some

complex diseases might have a genomic mechanisms, but also a metabolic component. There-

fore high-throughput data analyses aimed at gaining insight into disease mechanisms should

be developed for the various of types of biological data. That is not a trivial task as different

types of biological data come from different technologies, quantify distinct biological features,

and are often stored in different databases using various structures for the data. A specific

case of such analysis is pathway analysis, where a disproportionate number of methods have

been developed for gene expression data as opposed to metabolite data [111, 118]. Part of the

challenge comes from the technology limitation. High-throughput gene expression data (tens

of thousands, very often all genes out of approximately 25,000) has been readily available

for more than two decades [169] as opposed to high-throughput metabolic data (hundreds

to thousands of metabolites out of approximately 200,000) [134, 186, 20] that only recently

reached real throughput [124]. In addition to the scarcity of the data, the versatile structure

of the metabolic pathways further restricts the development of metabolic pathway analyses.

As a consequence, most of the metabolic pathway analyses available use a metabolite set

approach where the metabolites are considered to work independent of one another disre-
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garding important information provided by the bio-chemical reactions [99]. There are only

very few methods for metabolic pathway analysis that make use of more of the information

a pathway contains [111, 118].

1.2.3 Our contributions

In this section, we present the summary of our contributions and the outline of this

dissertation. These contributions include three major research projects, starting with a

survey, a novel method for the analysis of time-course data in the context of biological

systems, and a novel analysis integrating two different type of data with the goal of gaining

insights into the mechanisms of an aggressive type of breast cancer.

• A survey on topology-based pathway analysis approaches. The goal of path-

way analysis approaches is to identify pathways that are significantly impacted when

comparing two phenotypes. Many current methods are based on algorithms that con-

sider pathways as simple gene lists, dramatically under-utilizing the knowledge that

such pathways are meant to capture. During the past years, a plethora of methods

claiming to incorporate various aspects of the pathway topology have been proposed.

These topology-based methods, sometimes referred to as “third generation”, have the

potential to better model the phenomena described by pathways. Although there are

a large variety of approaches used for this purpose, no review was available to offer

guidance for potential users and developers. The review we published in 2013 covers

22 such topology-based pathway analysis methods published in the last 15 years [111],

and a follow-up was published in 2018 [118]. This work compares the methods based

on input, output and mathematical models, and also identifies and discusses challenges

faced by researches when developing a new topology-based pathway analysis method.

• A qualitative change detection analysis. In this thesis, a paradigm shift is pro-

posed from treating disease to preserving the healthy state. A novel analysis method

(QCD) was developed to detect intervals when a biological system undergoes qualita-
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tive changes such as the transition from healthy to disease using time-course data and

a network representing the biological system.

• A metabolic pathway impact analysis analysis using the stoichiometry of

the reaction. This thesis proposes a novel analysis method aimed at identifying

the metabolic pathways significantly changed between two phenotypes. The input is

metabolite data from two different phenotypes and a list of metabolic pathways rep-

resented as sets of bio-chemical reactions. The analysis uses the change in metabolite

concentrations between the two phenotypes and the stoichiometry of the bio-chemical

reaction to evaluate the change between phenotypes at the reaction level. Then, the

change at the reaction level is propagated from one reaction to another to evaluate the

impact of the change between phenotypes at the pathway level. The result is a ranked

list of the metabolic pathways given as the input.

1.3 Outline

The rest of this dissertation is organized as follows. In chapter 2, we present the

survey of topology-based pathway analysis methods. In chapter 3, we present the novel

analysis method aimed to detect qualitative changes in biological systems. In chapter 4, we

present the novel analysis method for metabolic pathway analysis. Finally, in chapter 5, we

draw some conclusions and outline future work.
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CHAPTER 2: A SURVEY OF PATHWAY ANALYSIS APPROACHES

2.1 Introduction to pathway analysis

The goal of pathway analysis approaches is to identify pathways that are significantly

impacted when comparing two phenotypes. Many current methods consider pathways as

simple gene lists, dramatically under-utilizing the knowledge that such pathways are meant

to capture. During the past years, a plethora of methods claiming to incorporate various

aspects of the pathway topology have been proposed. Topology-based methods have the

potential to better model the phenomena described by pathways. There is now a large variety

of approaches used for this purpose, and a review is useful to offer guidance for potential users

and developers. This chapter covers 22 such topology-based pathway analysis methods [111]

and identifies an additional 12 methods developed in the past five years [118]. The methods

are compared based on: type of pathways analyzed (e.g. signaling or metabolic), input

(subset of genes, all genes, fold changes, gene p-values, etc.), mathematical models, pathway

scoring approaches, output (one or more pathway scores, p-values, etc.) and implementation

(web-based, standalone, etc.). This work identifies and discusses challenges, arising both

in methodology and in pathway representation, including inconsistent terminology, different

data formats, lack of meaningful benchmarks, and the lack of tissue and condition specificity.

The goal of the pathway analysis is to identify the signaling and metabolic pathways

that are significantly perturbed in a given phenotype. There are several approaches that aim

at accomplishing this goal in different ways. These approaches can be divided in two major

categories: i) gene set enrichment analyses and ii) and topology-based analysis of pathways.

Gene sets consists of a list of genes while pathways incorporate the interactions be-

tween genes. The gene set has lost all the structure and the additional information captured

by the original pathway. The comparison in Fig. 2.1 shows an example of how much of the

important knowledge existent in pathway database is ignored when pathways are treated as

simple gene sets.
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Figure 2.1: Gene sets versus pathways. Panel A shows a small part of the insulin signaling
pathway from KEGG. Pathways contain important information regarding gene product (pro-
tein) localization, gene, protein or metabolite interactions and the type of these interactions
(activation, repression, etc.), the direction of the signal propagation, to name a few. Panel
B shows as a gene set the same small part of the insulin signaling pathway from KEGG.
There are no interactions in the gene set. Also, any other structural information provided
by the pathway is not present in a gene set. Considerable and important information from
pathway databases is ignored when pathways are simplified and used as gene sets.

2.2 Input

This chapter focuses on pathway analysis methods that try to exploit some of the

information contained in the pathway topology in order to identify the pathways that are

significantly impacted in a condition under study. It describes 22 and categorizes an ad-

ditional 12 topology-based pathway analysis methods designed to analyze either signaling

pathways (see Fig. 2.2, top), or metabolic pathways (Fig. 2.2, bottom). In order to address

this problem, any pathway analysis method will need: i) a collection of pathways capturing
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Figure 2.2: TOP : A timeline showing when various signaling pathway analysis tools (total
28) became available. Some of the methods can work with other pathway types, as well.
Some of the methods use additional interaction information which can be from an in-house
or public gene/protein interaction knowledge base. The commercial tools, iPathwayGuide
and MetaCore are not included in this figure. BOTTOM : A timeline showing when various
metabolic pathway analysis tools (total 4) became available.

our current knowledge about the interactions of genes, proteins, metabolites, or compounds

in an organism (usually from a pathway database), and ii) experimental data in the form

of measurements of gene expression, protein abundance, metabolite concentration, or copy

numbers. The pathway data is accumulated, updated, and refined by amassing knowledge

from scientific literature describing individual interactions or high-throughput experiment

results. The experiment data is usually provided by measurements comparing two or more

phenotypes such as treated vs. untreated, disease vs. healthy, or treated with drug A vs.

drug B.
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2.2.1 Experiment data for perturbation analysis

Typically, pathway analysis methods take as input data from high-throughput exper-

iments, such as microarrays, next-generation sequencing, or proteomics. The input format is

either a list of gene IDs or a list of such gene IDs associated with measured changes. These

changes could be measured with different technologies and therefore can serve as proxies for

different biochemical entities. For instance, one could use gene expression changes measured

with microarrays, or protein levels measured with a proteomic approach, etc. Transcription

data is often used to approximate the proteome, since high-throughput protein abundance

data is not readily available.

Pathway analysis methods can use as input the list of all genes considered in the

experiment together with their expression values. They can also take as input a subset of

genes considered to be differentially expressed (DE) based on a predefined cut-off. The cut-

off is typically applied on fold-change, statistical significance, or both. A selection based

on both criteria can be performed easily if the data is displayed as a volcano plot, i.e. in a

coordinate system that has fold changes on the x axis and the negative log of the p-value on

the y axis. In such a plot, genes that have large absolute fold changes as well as significant

p-values will appear in the top part of the plot, towards the sides. These methods use the list

of DE genes and their corresponding fold-change values as input. Other methods use only

the list of DE genes, without corresponding expression values, because their scoring methods

are based only on the relative positions of the genes in the graph. Methods which use cut-

offs are sensitive to the chosen threshold value, because a small change in the cut-off may

drastically change the number of selected genes [112]. As a consequence, some genes with

moderate differential expression may be lost, even though they might be important players in

the impacted pathways [17]. Furthermore, the genes included in the set of DE genes can vary

dramatically if the selection methods are changed. Hence, the results of pathway analyses

based on DE genes may be vastly different depending on both the selection method as well

as the threshold value [122]. On the other hand, methods which do not use a threshold
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are more sensitive to the noise coming from the (very many) genes that do not change

much between the two phenotypes, genes that are normally eliminated by the DE selection

process. An approach used to address this issue while still using all gene measurements uses

the individual p-values of each gene as weights [165].

The impact of time-sensitive changes on the underlying genetic networks is often

associated with the observed outcome [74]. Gene expression time series capture a high

level of detail and provides knowledge of the evolution of the processes under study, while

static data is not able to capture such subtle events in a detailed enough way. Time series

gene expression data is used by network discovery methods, which focus on deciphering

new regulatory relations between biological components [123]. Gene expression time course

data is usually analyzed using clustering algorithms [11, 7, 173, 91]. The analysis of time

series expression data could be used for therapeutics development in: deciding the duration of

adjuvant chemotherapy [19], selecting the drug dose [177] or designing co-treatment strategies

for complex diseases [154].

2.2.2 Pathway databases

An important component needed for identifying mechanisms of actions for biochemical

components are biological pathways. These pathways are collections of molecular compo-

nents and their interactions that represent the current existing knowledge about biological

processes happening in various organisms. Many databases that describe the interactions

between biological components have been developed and made available in the past 15 years.

Curated pathway databases that are publicly available are KEGG [121], NCI-PID [139],

BioCarta [21], WikiPathways [128], PANTHER [107], and Reactome [84]. These curated

knowledge bases are more reliable than protein interaction networks but do not include all

known genes and their interactions. As an example, KEGG includes only about 5,000 hu-

man genes in signaling pathways. Protein-protein interaction data for human and some
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model organisms is available from public databases among which are MIPS [106], DIP [180],

BIND [10], HPRD [127], IntAct [69], and BioGRID [151].

Considering the wealth of information in these databases the information is still

scattered due to the little consensus among them in terms of both the data structures

used to store the data as well as the visual representation of the pathway information

(see Fig. 2.3). For instance, in a KEGG signaling pathway nodes represent gene prod-

ucts and edges represent regulatory signals such as activation, inhibition, phosphorylation,

etc. (see http://www.genome.jp/kegg/document/help_pathway.html for details). In a

KEGG metabolic pathway the nodes represent biochemical compounds and edges represent

chemical reactions. These chemical reactions are catalyzed by enzymes which are proteins

encoded by genes. Hence, in a metabolic pathway genes are associated with edges. In

Figure 2.3: Comparison of representative graph models for molecular interactions as used by
different pathway databases. Panel (a) presents the KEGG signaling pathway, where nodes
represent genes/gene products and edges represent regulatory signals. Panel (b) presents
the KEGG metabolic pathway, where nodes represent biochemical compounds and edges
represent chemical reactions catalyzed by enzymes encoded by genes. Panel (c) presents
the NCI-PID signaling pathway, where nodes fall in two categories: component nodes rep-
resenting biomolecular components, or process nodes representing biochemical reactions or
biological processes. Edges connect two biomolecular components through a biochemical
reaction or a biological process. Panel (d) presents the protein-protein interactions, where
nodes represent proteins and the interactions among them represent physical binding. Panel
(e) presents the Biological Pathway Exchange (BioPAX), where nodes are physical entities
and edges are conversions.
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a REACTOME pathway, any two components linked by reaction nodes, where a compo-

nent represents biochemical reactants such as metabolites and enzymes. In an NCI-PID

signaling pathway nodes fall in two categories: component nodes representing biomolecu-

lar components, or process nodes representing biochemical reactions or biological processes.

Edges connect two biomolecular components through a biochemical reaction or a biolog-

ical process. Process nodes can have 3 states: positive regulation, negative regulation, or

“involved in.” (see http://pid.nci.nih.gov/userguide/network_maps.shtml for details).

In a protein-protein interaction network nodes represent proteins and the interactions among

them represent physical binding. These interactions can be inferred from two-hybrid assays

and they may be either undirected (top), or directed from the bait protein to the prey pro-

tein (bottom). In the Biological Pathway Exchange (BioPAX) nodes are physical entities

and edges are conversions. BioPAX format entities can represent complexes, DNA, proteins,

RNA, small molecules, DNA regions or RNA regions. Conversions can represent biochemical

reactions, complex assembly or degradation, transport or transport with biochemical reac-

tion. This model provides a standard for pathway information to be available in machine

readable format, thus easy to use for pathway analysis and to exchange between databases

(see http://www.biopax.org/release/biopax-level3-documentation.pdf for details).

Various research groups have tried different strategies to address the challenge of

modeling complex biomolecular phenomena. These efforts have lead to variation among

knowledge bases, complicating the task of developing pathway analysis methods. There is

currently no accepted standard for constructing pathways, and as pathway paradigms evolve

to better represent the biology, pathway analysis methods evolve in parallel. Depending on

the database, there may be differences in: information sources, experiment interpretation,

models of molecular interactions, or boundaries of the pathways. Therefore, it is possible that

pathways with the same designation and aiming to describe the same phenomena may have

different topologies in different databases. As an example, one could compare the insulin

signaling pathways of KEGG and BioCarta. BioCarta includes fewer nodes and emphasizes
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the effect of insulin on transcription, while KEGG includes transcription regulation as well as

apoptosis and other biological processes. Also, BioCarta includes the C-JUN transcription

factor, which is missing from the KEGG representation.

Differences in graph models for molecular interactions are particularly apparent when

comparing the signaling pathways in KEGG and NCI-PID. While KEGG represents the

interaction information using the directed edges themselves, NCI-PID introduces “process

nodes” to model interactions (see Fig. 2.3). Most pathway analysis methods are designed to

use only one pathway graph model, which limits the user’s possibilities. Developers are faced

with the challenge of modifying methods to accept novel pathway databases or modifying

the actual pathway graphs to conform to the method.

Pathway databases not only differ in the way that interactions are modeled, but

their data are provided in different formats as well [29]. Common formats are Pathway

Interaction Database eXtensible Markup Language (PID XML), KEGG Markup Language

(KGML), Biological Pathway Exchange (BioPAX) Level 2 and Level 3, System Biology

Markup Language (SBML), and the Biological Connection Markup Language (BCML)

[16]. The NCI provides a unified assembly of BioCarta and Reactome, as well as their in-

house “NCI-Nature curated pathways”, in NCI-PID format [139]. In order to unify pathway

databases, pathway information should be provided in a common format. XML is a flexible

text format with increasing use for data exchange across different systems. However, XML

is very low-level and lacks standard constructs to accurately describe biological phenomena.

PID XML is both human- and machine-readable, and allows a platform-independent means

of exchanging PID data. The BioPAX project is an effort to unify the format and exchange of

pathway data, and has incorporated independent sources such as NCI, BioCarta, Reactome,

and WikiPathways, UCSC, NIH, and others [22].
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2.3 Analysis

For topology-based pathway analysis methods, the mathematical model describes

how the graph and the experiment data are processed to compute a score for each pathway.

The score quantifies the significance of changes in a (sub)pathway between the two pheno-

types. This score may be a statistical significance or other non-statistical method-specific

metric. The diversity of current topological based pathway analysis methods reflects the

variety of mathematical models available for graphs. The output is typically a list of ranked

(sub)pathways.

The input of a pathway analysis method is processed using mathematical modeling

and statistical approaches that together define a scoring method. The goal of the scoring

method is to compute a score for each pathway based on the graph model, resulting in a

ranked list of pathways or sub-pathways. There are a variety of approaches to quantify the

changes in a pathway. Some of the analysis methods use a hierarchically aggregated scoring

algorithm, where on the first level, a score is calculated and assigned to each node or pair

of nodes (component and/or interaction). On the second level, these scores are aggregated

to compute the score of the pathway. On the last level, the statistical significance of the

pathway score is assessed using univariate hypothesis testing. Another approach assigns a

random variable to each node and a multivariate probability distribution is calculated for

each pathway. The output score can be calculated in two ways. One way is to use multivariate

hypothesis testing to assess the statistical significance of changes in the pathway distribution

between the two phenotypes. The other way is to estimate the distribution parameters based

on the Bayesian network model and use this distribution to compute a probabilistic score to

measure the changes. See Fig. 2.4 for scoring algorithms categories that include: aggregated

scoring, weighted gene set scoring and multivariate scoring.
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Figure 2.4: Comparison of the mathematical models of 34 pathway analysis methods. “Aggre-
gate scoring” and “Weighted gene set” panels show methods that perform node-level scoring
followed by pathway-level scoring performed either as an aggregation of the node scores
or as a weighted gene set analysis, using the node scores as weights. The methods are
divided according to their node-level scoring methods: graph measure techniques, similarity
measurement techniques, probabilistic models, or using normalized node values based on
node value and/or pathway structure. The “Multivariate scoring” methods use multivari-
ate scoring models without node-level scoring. They use node values to directly compute
a pathway score using Bayesian networks or applying multivariate hypothesis tests. The 22
methods displayed in blue were surveyed in the 2013 paper [111]. The methods displayed in
black are the additional 12 methods surveyed in 2018 [118].

2.3.1 Graph models

Two major graph models are used to represent biological networks and pathways. The

first model allows only one type of node, the biological component (i.e. a gene or protein),

with the edges representing molecular interactions occurring between the nodes. In contrast,

the second graph model places both components and interactions in nodes, requiring at

least one type of node for each, and requiring each edge to connect a component with an
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interaction node. Herein, we will refer to the first graph model category as “single-type”

and to the second as “multi-type”. Multi-type graph models are more complex than single-

type, but they capture more pathway characteristics. For example single-type models are

limited when trying to describe “all” and “any” relations between multiple components that

are involved in the same interaction. Bipartite graphs are a particular case of multi-type

graph models.

In most databases, pathways use the single-type graph model and the signaling and

metabolic pathways from databases such KEGG and BioCarta are good examples. In signal-

ing pathways, nodes are genes and edges describe various molecular interactions, which in-

clude activation/transcription/positive regulation, repression/blockage/negative regulation,

(de)phosphorylation, binding/association. Metabolic pathways can be represented as either

chemical networks or protein networks. In the chemical network representation, nodes are

metabolites and edges are enzymes and/or substrates that catalyze the chemical reactions. In

the protein network, the representation is reversed; nodes are enzymes and edges are metabo-

lites. Among the surveyed methods which work with metabolic pathways only MetPA uses

biochemical networks from KEGG. ScorePAGE and TAPPA use protein networks. Never-

theless, the most popular representation of metabolic pathways in public databases is the

chemical network. In KEGG and BioCarta, the majority of edges in both metabolic and sig-

naling pathways are directed, but binding between compounds is represented by undirected

edges.

Protein-protein interaction (PPI) networks, constructed from interaction databases,

use a single-type graph model. The nodes represent proteins and the edges depict their

association/binding. Sometimes the edges are undirected, while some other times, the edges

are directed to describe which protein was used as the bait and which one acted as the pray.

Reactome and NCI-PID are databases that use a bipartite graph model to represent

pathways. Genes, metabolites, or molecular complexes are represented as component nodes,

while interaction nodes define the chemical reactions or molecular processes that occur be-
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tween the input and output component nodes. The edges, which connect a component node

to an interaction node, specify the component’s type of contribution to the reaction. These

can be positive or negative regulation, among others.

The majority of analysis methods surveyed in this chapter use a single-type graph

model. Some apply the analysis on a directed or un-directed single-type network built

using the input pathway, while others transform the pathways into graphs with specific

characteristics. An example of the later is TopologyGSA, which transforms the directed

input pathway into an undirected decomposable graph, that has the advantage of being easily

broken down into separate modules [90]. In this method, decomposable graphs are used to

find “important” submodules - those which drive the changes across the whole pathway. For

each pathway, TopologyGSA creates an undirected moral graph from the underlying directed

acyclic graph (DAG) by connecting the parents of each child and removing the edge direction.

The moral graph of a DAG is the undirected graph created by adding an (undirected) edge

between all parents of the same node (sometimes called marrying), and then replacing all

directed edges by undirected edges. The name stems from the fact that, in a moral graph,

two nodes that have a common child are required to be married by sharing an edge. In

TopologyGSA, the pathway moral graph is used to test the hypothesis that the underlying

network is changed significantly between the two phenotypes. If the the research hypothesis

is rejected, a decomposable/triangulated graph is generated from the moral graph by adding

new edges. This graph is broken into the maximal possible submodules and the hypothesis

is re-tested on each of them.

BPA is another method that implements pathway graph pre-processing. This method

uses Bayesian networks to represent biological pathways. In Bayesian networks, random

variables are assigned to each node of a DAG network and the edges represent the conditional

dependencies between nodes. Before assigning the random variables, the pathway graph is

checked for cycles. If the graph is not a DAG, Spirtes’ method [150] is used to remove the

cycles while the (in)dependency rules in the initial pathway graph are preserved.
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Another example is BAPA-IGGFD, which is a method that simplifies pathway graphs

by removing any edge representing interactions other than activation and inhibition. In addi-

tion, the pathways are pruned keeping only elements from three categories: signal receptors

(including ligands) are at the beginning, transcription factors are usually at the end, and

their direct regulators are in the middle. This pre-processing is motivated by noise reduction

in the final scoring of genes that have a less important functional role in the pathway or be-

long to multiple pathways where they play different roles. BAPA-IGGFD [188] includes only

an intuitive high-level description of this process is presented, without a detailed algorithm.

CePa uses a different method to modify the input pathways before the analysis.

The NCI knowledge base is used as a source of NCI-Nature, BioCarta, Reactome, and

KEGG pathways, which are provided in PID or short NCI-PID format. The pathway data is

organized in the form of multi-type graphs, which are used to generate directed single-type

graphs, where each node can represent one or multiple genes. A node in the generated graph

is considered to be DE if any of its gene components is DE. Unfortunately, the details of

how the original pathways are parsed to generate the new networks are not provided by the

authors of CePa.

PathOlogist and PARADIGM are the two surveyed methods that use multi-type

graph models. PathOlogist uses a bipartite graph model with component and interaction

nodes. PARADIGM, conceptually motivated by the central dogma of molecular biology,

takes a pathway graph as input and converts it into a more detailed graph, where each com-

ponent node is replaced by several more specific nodes: biological entity nodes, interaction

nodes, and nodes containing observed experiment data. The observed experiment nodes

could in principle contain gene expression and copy number information. Biological entity

nodes are DNA, mRNA, protein, and active protein. The interaction nodes are transcription,

translation, or protein activation, among others. Biological entity and interaction node val-

ues are derived from these data and specify the probability of the node being active. These

are the hidden states of the model.
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2.3.2 Hierarchically aggregated scoring algorithms

These analysis approaches are detailed in Fig. 2.5. In this figure, the analysis is di-

vided into three levels: node-level scoring, pathway-level scoring and significance assessment.

All methods compute node level scores. One or both remaining levels may be skipped by

certain approaches. PARADIGM is the only one that provides as direct output the node

scores, rather than the pathway scores. These scores can be input into a gene set or pathway

analysis algorithm, or a simple averaging function can be used to score the pathways and

rank them, as in [164]. The rest of the methods go on to the second level where the scores of

the pathways are calculated. Some methods stop at the second level, outputting the whole

list of ranked pathways without evaluating their statistical significance, which is done by the

remaining methods on the next level.

In the following few paragraphs we categorize and describe the surveyed methods

based on their node level scoring model. Most of the surveyed analysis methods incorporate

pathway topology information in the node scores. There are methods such as TAPPA and

ACST that incorporate this information in the pathway scores. In TAPPA, the score of each

node is the square root of the normalized log gene expressions (node value). ACST calculates

the node level score using a sign statistic. The sign reflects the direction of the gene expression

change between the phenotypes under study. This statistic can be a represented by a t-value

or the log fold change of the gene expression. The statistic is standardized using a local

mean and standard deviation.

The rest of the analysis algorithms use a variety of approaches to incorporate topology

in the node level scores. We categorize them into methods that use graph measures (cen-

trality), similarity measures, and probabilistic graphical models. TBScore is an exception

that can not fall into either of these groups. TBScore weights the pathway DE genes based

on their log fold change and the number of distinct DE genes directly downstream of them,

using a depth-first search algorithm.
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Figure 2.5: Diagram of pathway analysis scoring approaches for hierarchically aggregated
scoring algorithms. The box with the dashed border indicates that the user can choose these
options, but are not offered by the method implementation.
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MetaCore, iPathwayGuide, Pathway-Express, SPIA, TopoGSA, CePa, EnrichNet,

MetPA, THINK-BACK-DS, and GANPA use centrality measures or a variation of these

measures to score nodes in a given pathway. Centrality measures describe the importance of

a node relative to all other nodes in a network. There are several centrality measures that

can be applied to networks of genes and their interactions and these are degree centrality,

closeness, betweenness, and eigenvector centrality. Degree centrality accounts for the number

of directed edges that enter and leave each node. Closeness sums the shortest distance from

each node to all other nodes in the network. Node betweenness adds a layer of complexity

to closeness; it measures the importance of a node according to the number of shortest

paths that pass through it. Eigenvector centrality uses the network adjacency matrix of a

graph to determine a dominant eigenvector; each element of this vector is a score for the

corresponding node. Thus, each score is influenced by the scores of neighboring nodes. In

the case of directed graphs, a node that has many downstream genes has more influence and

receives a higher score.

In MetaCore, a measure similar to node betweenness is used to score genes. There

is no peer-reviewed paper publicly available describing the details of the MetaCore pathway

analysis method. We used the study by Dezso et al. [34] to uncover some of these details. In

the method by Dezo et al., the DE gene list is overlapped with a global genome scale network

containing all the interactions in the MetaCore knowledge base. A network, which is called

condition specific shortest-path network (CSSPN), is built based on this overlap. In addition

to DE genes, all genes which are on shortest paths that connect them in the global network

are included in the CSSPN. For each pair of genes (g
i

, g
j

), where g
i

is in the CSSPN and g
j

is

in the set of DE genes, two parameters N
ij

and K
ij

are computed. N
ij

is the number of times

g
i

is part of the shortest-paths in the global network between g
j

and every other gene in the

CSSPN. K
ij

is the number of times g
i

is part of the shortest-paths in the global network

between g
j

and every other gene in the set of DE genes. It is assumed that the probability to

observe these numbers just by chance, given the two sets of genes, the global network which
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is of size N and the DE genes which is of size K, follows a hypergeometric distribution.

Based on this distribution, K p-values are computed for each gene in the CSSPN and the

minimum of these p-values is selected as the gene score. Using a predefined threshold on

the false discovery rate (FDR) correction of the node scores, a subset of the CSSPN genes

is selected. Further processing, at the pathway level, is applied to this list of selected genes.

iPathwayGuide, Pathway-Express, and SPIA use a perturbation factor, which takes

into consideration the magnitude of all gene expression changes, the type of each gene,

the direction and type of all gene interactions, as well as the efficiency with which the

perturbation of each gene propagates to the downstream genes. The impact analysis models

the flow of the signals in the pathways. In essence, the impact factor falls into the eigenvector

centrality category of node scoring approaches. Although all three methods use the same

impact analysis approach, there are slight differences between them. iPathwayGuide scores

the pathways based on the impact factor as briefly described above In SPIA, the amount of

differential expression is subtracted from the perturbation score of each node to focus on the

amount of perturbation accumulated at any given node in order to separate the influence of

experiment data and topology. iPathwayGuide is also able to exploit the p-values associated

with each gene, as well as identify coherent perturbation cascades that represent putative

mechanisms that explain all measured changes. All three methods combine the perturbation

evidence with a classical enrichment (e.g. hypergeometric), or functional class scoring (e.g.

GSEA) to calculate a global p-value. This corresponds to the joint probability of a pathway

having the measured amount of perturbation, as well as the observed number of DE genes

just by chance. TBscore has an interestingly similar approach in capturing the pathway

perturbation, with the difference that DE genes with more connected downstream DE genes

are considered more significant.

TopoGSA extracts a network from databases of protein interactions given a list of

genes/proteins of interest. All four types of centrality measures and a fifth measure, called

a “clustering coefficient” [172] are used to score the nodes in this network. Then, each
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predefined pathway from a selected dataset is also scored using the same five measures,

independently of the extracted network. Comparing the summarized node scores for each

pathway with node scores from the extracted network allows the pathways to be ranked.

In CePa, node weights are computed using five centrality-based measures, and there is

an extra case where all the node weights are assumed to be equal. The five measures are: in-

degree, out-degree, betweenness, in-reach (length of longest shortest path that starts from the

node), and out-reach (length of longest shortest path that ends at the node). CePa offers two

options to assess the significance of pathways. One is based on the hypergeometric analysis

using only node weights. The second is based on enrichment analysis and in addition to node

weights, node scores are needed. Node scores are computed using a t-statistic. Pathway

graphs in CePa can contain nodes representing one or multiple genes. In the case of single-

gene nodes, the score is calculated based on the expression value of the corresponding gene.

In the case of multi-gene nodes, the node score is the largest principal component of the

expression values of the genes in the node.

EnrichNet uses a score similar to centrality closeness measures. This method calcu-

lates two distance vectors. The first vector contains distances between a list of input genes

and a predefined pathway/gene set. The second vector contains the distance between the

same input gene list and a background global set containing all pathways. A node score is

computed as the distance between the node and all DE genes using a random walk with

restart algorithm [185] through a genome scale molecular interaction network. The interac-

tion network is represented by its weighted adjacency matrix, where weights are interaction

strengths provided by the input knowledge base.

MetPA allows the user to select either the node betweenness or the out-node degree

centrality measure for the node score. GANPA [46] uses the node degree measure as a weight

or score for the gene. THINK-Back-DS uses a measure similar to closeness called density

score to emphasize the DE genes which are in tight clusters.
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ScorePAGE and PWEA use similarity measures in their node level scoring. Simi-

larity measures estimate the coexpression, behavioral similarity, or co-regulation of pairs of

components. Their values can be correlation coefficients, covariances, or dot products of the

gene expression profile across time or sample. In these methods, the pathways with clusters

of highly correlated genes are considered more significant. At the node level, a score is as-

signed to each pair of nodes in the network which is the ratio of one similarity measure over

the shortest path distance between these nodes. Thus, the topology information is captured

in the node score by incorporating the shortest path distance of the pair. In ScorePAGE,

the correlation coefficient, covariance, or dot product is calculated for all gene pairs across

their samples. PWEA uses the correlation coefficient to score node pairs. In this method, a

score, called “Topological Influence Factor”, or TIF, is assigned to each gene by exponentially

averaging the score of all pairs that include the gene. As a consequence, a node involved in

tight clusters of highly correlated genes has a higher score.

PARADIGM and PathOlogist incorporate the topology in the node level scoring using

a probabilistic graphical model. In this model, nodes are random variables, and edges define

the conditional dependency of the nodes they link. PARADIGM takes observed experiment

data and calculates scores for all component nodes, in both observed and hidden states,

from the detailed network created by the method based on the input pathway. For each

node score, a positive or negative value denotes how likely it is for the node to be active

or inactive, respectively. The scores are calculated to maximize the occurrence probability

of the observed values. A p-value is associated with each score of each sample such that

each node can be tagged as significantly active, significantly inactive, or not-significant. For

each network, a matrix of p-values is output, in which columns are samples, and rows are

component nodes.

PathOlogist is also based on a probabilistic graphical model. This method estimates

the parameters of one or two distributions related to the up and/or down regulation of each

gene using its expression values across all samples. These distributions are used to assign
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a probability score to each gene in each sample, denoting how likely it is for the gene to

be highly expressed. The method assigns two different scores to interaction nodes: (i) the

“activity score”, which is the probability that the parents of an interaction node (which

are component nodes) are highly expressed, and (ii) the “consistency score”, which is the

probability that the interaction node is active and its children are expressed or inactive with

unexpressed children.

In the following few paragraphs we describe how node scores are used to compute

pathway scores. Many of the surveyed methods aggregate node level statistics to pathway

level statistics using linear functions such as averaging or summation. The methods that use

linear aggregation in this level of the analysis are: TopoGSA, MetaCore, MetPA, ScorePAGE,

TBScore, ACST, PathOlogist, iPathwayGuide, Pathway-Express, and SPIA. The rest of the

methods either use a nonlinear function to aggregate the node scores to pathway scores, like

TAPPA, PARADIGM, and EnrichNet, or apply a gene set analysis method on the node

scores, like GANPA, CePa, THINK-Back-DS, and PWEA.

In MetaCore, important genes are selected in the gene level scoring based on the list

of DE genes and the network topology. At the pathway level, this method assumes that

the number of selected genes that fall on a pathway is the pathway score and follows the

hypergeometric distribution.

In TAPPA, the pathway score for each sample is a weighted sum of the product of all

node pair scores in the pathway. The weight coefficient is 0 when there is no edge between a

pair. For any connected node pair the weight is a sign function, which represents joint up-

or down-regulation of the pair.

In ACST, pathway scores are calculated based on the position of node (gene) clusters

for which the interaction types match the up- or down-regulation of genes. This uses the

same concept of coherent signals used by iPathwayGuide. An edge (interaction) between 2

components in a pathway is called consistent if either (i) the pair has an inhibition interaction,

and the directions of differential expression of the components is opposite, or (ii) the pair
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has an activation interaction, and the direction of differential expression of the components

is the same. All other interaction types are ignored. Maximal consistent graphs are defined

as maximal sub-networks of the pathway in which all interactions are consistent. The score

of each maximal consistent sub-graph is the summation of all node scores. The pathway

score is the sum of the scores of all its maximal consistent sub-graphs. Node scores are t-

statistics normalized by the distance from the sub-graph to the leaves of the pathway graph.

The authors argue that the consistent sub-graphs close to the leaves of the pathway have

a greater impact on the score of pathway rather than the clusters from the beginning of

the pathway. This is somewhat different from the approach that iPathwayGuide, Pathway-

Express, and SPIA follow. Although in these methods there is no explicit weighting based

on the up- or down-stream position of a gene in a pathway, just because the perturbation

of one gene is propagated following the signals described by the pathway, the perturbation

of a gene somewhat near the entry point in a pathway will have more impact than the

same amount of perturbation for a gene somewhere downstream on the pathway. Only time

and additional testing will tell which of the two approaches manage to capture better the

biological phenomena.

In EnrichNet, pathway scores measure the difference of the node score distribution

for a pathway and a background network/gene set which consists of all pathways. At the

node level, the distance of all DE genes to the pathway is measured and summarized as a

distance distribution. The method assumes that the most relevant pathway is the one with

the greatest difference between the pathway node score distribution and the background score

distribution. The difference between the distributions is measured by the weighted averaging

of the difference between the two discretized and normalized distributions. The averaging

method down-weights the higher distances and emphasizes the lower distance nodes.

Methods such as iPathwayGuide, Pathway-Express, SPIA, and MetPA use two types

of analysis to score the pathways. For each pathway, these methods calculate both a topology

based score and a p-value from a gene set enrichment analysis measure, such as Fisher’s exact



29

test, hypergeometric, or GlobalAncova. iPathwayGuide, Pathway-Express, and SPIA use the

joint probability of observing the pathway perturbation, as well as the gene enrichment on a

given pathway [40]. This model effectively combines the topology-based pathway score with

the one based on enrichment to provide a single global pathway score. MetPA [183] also looks

at both enrichment and topology, but does not assess the significance of the topology-based

pathway scores and does not combine the two scores, and thus lacks a unique significance

ranking. The most impacted pathways in MetPA are those with higher scores in both

measures. It is not clear how to treat a trade-off between the two types of significance.

The pathway scoring techniques described so far in this section incorporate in-house

analysis methods. A different direction is to design scoring techniques that incorporate

existing gene set analysis methods, such as GSEA [153], GSA [43], or LRPath [138]. Pathway-

level scores can be calculated using node scores which represent the topology characteristic of

the pathway as weight adjustments to a gene set analysis method. PWEA, GANPA, THINK-

Back-DS, and CePa use this approach and we refer to them as weighted gene set analysis

methods. GSEA calculates the correlation coefficient of phenotype with gene expression

(CC), GSA and LRPath use the t-test statistic in the computation of the node score. To

compute the pathway score, PWEA adjusts the CC exponent of 0 or 1 in GSEA to CCTIF+1,

where TIF is the node weight described above. The node weights calculated by GANPA,

THINK-Back-DS, and CePa are used to adjust CC or the t-statistic by multiplication,

node weight ⇥ CC or node weight ⇥ t � statistic. In CePa there is another option to use

a hypergeometric analysis to calculate pathway scores. In this method, the node weights of

DE nodes are summed up to the pathway level.

Some methods such as iPathwayGuide, Pathway-Express, SPIA, and ROntoTools

offer the flexibility to integrate in the analysis any type of enrichment technique. Thus, the

p-values provided by techniques such as GSEA, GSA, or PADOG [155] can be used instead

of the p-values provided by simpler models such as hypergeometric.
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In the following few paragraphs we describe how the pathway significance assessment

is performed for the surveyed methods Pathway scores are intended to provide information

regarding the amount of change incurred by the pathway between two phenotypes. However,

the amount of change is not meaningful by itself since any amount of change can take place

with a non-zero probability (i.e. the amount of change is only the effect size). An assessment

of the significance of the measured changes is thus required, and should be done by analysis

methods in the pathway significance assessment level.

Methods such as TopoGSA, MetPA, and EnrichNet, will output scores without any

significance assessment, leaving it up to the user to interpret the results. This is problematic

because the user does not have any instrument to help distinguish between changes due

to noise or random causes, and meaningful changes, unlikely to occur just by chance and

therefore, possibly related to the phenotype. The rest of the analysis methods perform a

hypothesis testing for each pathway. The null hypothesis is that the value of the observed

statistic is due to random noise or chance alone. The research hypothesis is that the observed

values are substantial enough that they are potentially related to the phenotype. A p-value

for calculated score is then computed and a user-defined threshold on the p-value is used to

decide whether the the null hypothesis can be rejected or not for each pathway. Finally, a

correction for multiple comparisons should be performed.

Typically, pathway analysis methods compute one score per pathway. However, meth-

ods such as PathOlogist and TAPPA compute the pathway score considering each sample

separately. Therefore, for each pathway there is a population of scores that can be analyzed.

This population combined with different sample features can provide various feature-specific

analyses. There are two cases to be considered based on the qualitative or quantitative

nature of the sample feature values. In the first case the sample feature is qualitative with

binary values. For example, when samples are tagged corresponding to the two phenotypes,

the significance assessment is done by testing whether the score distributions are the same in

the two groups using two-sample rank-sum tests, such as the Mann-Whitney U test. If the
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number of samples is high enough, the score distributions can be assumed to be normal. The

null hypothesis here is that the two normal distributions have equal means and variances,

the research hypothesis is that they are different. In the second case the sample feature is

quantitative with continuous values. Two ways to identify significant pathways are imple-

mented in this case. One way is to partition pathway scores into a known number of clusters,

for example two, using k-means clustering. Cumulative distributions are calculated for each

of the two classes. A logrank test [98], which is a non-parametric statistical test, can be

performed to evaluate if the behavior of the variable is same in the two groups. Significant

pathways are those that can be used to divide samples into groups with different character-

istics. Another way to identify significant pathways in the case of continuous sample feature

values is to find pathways whose scores are linearly correlated with the values of the feature.

The null hypothesis in this case is that the correlation is zero, and a t-test is used.

For methods that calculate one score per pathway, the distribution of this score under

the null hypothesis can be constructed and compared to the observed. However, there are

often too few samples to calculate this distribution, so it is assumed that the distribution

is known. For example, in MetaCore and many other techniques, when the pathway score

is the number of DE nodes that fall on the pathway, the distribution is assumed to be

hypergeometric. However, the hypergeometric distribution assumes that the variables (genes

in this case) are independent, which is incorrect, as witnessed by the fact that the pathway

graph structure itself is designed to reflect the specific ways in which the genes influence

each other. Another approach to identify the distribution is to use statistical techniques

such as the bootstrap method [42]. Bootstrapping can be done either at the sample level,

by permuting the sample labels, or at gene set level, by permuting the the values assigned

to the genes in the set.

To create the score distribution under the null hypothesis, iPathwayGuide, Pathway-

Express, and SPIA methods use bootstrapping at the gene set level. For these methods,

samples are drawn from the distribution of all DE genes and assigned to a gene set which
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is different from the DE gene set but with equal number. The pathway score is computed

assuming the new gene set as a decoy DE gene set. This procedure is repeated for a number

of iterations. The scores resulting from these iterations estimate the distribution, which is

then used to compute a p-value, and a pathway score is obtained by combining the gene set

enrichment evidence with the topology-based p-value and applying Fisher’s exact test. The

final score is the FDR-adjusted p-value.

TBScore, the hypergeometric extension of CePa, and ACST calculate p-values using

bootstrapping at the sample level by permuting the labels of the samples of the two pheno-

types. In TBScore and CePa, an iterative procedure is then used to estimate the pathway

score distribution under the null hypothesis. Correction for multiple comparison, again FDR,

is used to compute the final pathway p-values. In ACST, after p-values are computed, a

statistical technique called “resampling-based point estimator” is used to estimate the FDRs

associated with the predefined threshold.

Weighted gene set methods surveyed in this chapter, PWEA, GANPA, the enrich-

ment analysis extension implemented by CePa, and THINK-Back-DS, focus on providing

a biologically meaningful topology-based adjustment to existing gene set analysis methods.

Therefore the statistical assessment of pathway significance is provided by the already de-

veloped methods among which the most popular is GSEA (see Fig. 2.5).

2.3.3 Multivariate scoring algorithms

Multivariate scoring analysis methods mostly use multivariate probability distribu-

tions to score pathways and can be grouped into two categories. Methods in the first cate-

gory use multivariate hypothesis testing, while methods in the second category are based on

Bayesian network (see Fig. 2.6).

NetGSA, TopologyGSA, and DEGraph are methods based on multivariate hypoth-

esis testing. These analysis methods assume the vectors of gene expression values in each

(sub)pathway are random vectors with multivariate normal distributions. The network topol-
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ogy information is stored in the covariance matrix of the corresponding distribution. For

a network, if the two distributions of the gene expression vectors corresponding to the two

phenotypes are significantly different, the network is assumed to be significantly impacted

when comparing the two phenotypes. The significance assessment is done by a multivari-

ate hypothesis test. The definition of the null hypothesis for the statistical tests and the

techniques to calculate the parameters of the distributions are the main differences between

these three analysis methods.

In NetGSA, it is assumed that the expression level of the genes (nodes in the network)

obtained from experiments are correlated because of the interactions between them. In other

words, the edges (interactions) of a graph (pathway) imply correlations. In order to compute

the distribution parameters, the method defines a set of latent variables, which are the

Figure 2.6: Diagram of pathway analysis scoring approaches for multivariate scoring algo-
rithms.
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uncorrelated gene expressions. The input correlated gene expression vector can be written

in the form of the product of the vector of latent variables and the influence matrix. This

matrix consists of the weights assigned to each edge measuring the strength of the interaction

between two genes. The influence matrix and other parameters for the two phenotypes are

computed based on linear mixed model theory [104]. The proposed hypothesis test, in this

method, is to check whether a linear combination of the mean of the latent variables, called

contrast vector, for the two cases are equal. The proposed contrast vector is computed based

on the influence matrix and it is proved that the result includes the effects of all nodes inside

a chosen network and excludes any outside effects, such as the correlation.

In TopologyGSA, the directed graph is converted into a moral undirected graph, de-

tailed in section 2.3.1. The covariance matrices for each of the two phenotypes are estimated

using the Iterative Proportional Scaling (IPS) algorithm [90] on the sample covariance for

all pairs of genes. The two matrices are defined such that their inverses have zero elements

corresponding to the missing edges. A set of two hypothesis tests are applied to compute

the statistical significance of the impact on a given graph. The first test checks whether

the concentration matrices, i.e., the inverses of the covariance matrices, in the two cases

are equal. If this hypothesis is rejected, the graph is broken into the maximal possible sub-

modules, and the hypothesis is retested on each. Based on the equality of concentration

matrices, different statistical techniques are used in the second hypothesis test. The second

test checks the significance of the influence of the graphs based on the equality of the means

of the distributions.

DEGraph finds significant (sub)pathways by using a modified multivariate Hotelling’s

T2-test hypothesis. The modification incorporates the topology of the network. The differ-

ence, referred to as shift, between the mean vectors of gene expression distributions corre-

sponding to the two phenotypes is smoothed. A shift vector is defined to be smooth if the

shift values of every two connected nodes are similar. The process of smoothing is done by

removing the high frequency shift values according to the topology of the network. This is
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achieved by filtering the shift by preserving only the first few components of the graph-Fourier

basis of the shift vector. The graph-Fourier in DEGraph is applied by spectral analysis of

the graph Laplacian [30], which resembles the Fourier decomposition of a function. The

smoothed shift vector is used in the Hotelling’s T2-test to assess the statistical significance

of a network. DEGraph also provides an algorithm that allows the exhaustive testing of all

the sub-networks of the original network using a branch and bound algorithm.

BPA and BAPA-IGGFD are two methods based on Bayesian networks. In a Bayesian

network, which is a special case of probabilistic graphical models, a random variable is as-

signed to each node of a directed acyclic (DAG) graph. The edges in the graph represent the

conditional probabilities between nodes, so that the children are independent from each other

and the rest of the graph when conditioned on the parents. In BPA, the value of the Bayesian

random variable assigned to each node captures the state of a gene (DE or not). In contrast,

in BAPA-IGGFD each random variable assigned to an edge is the probability that up or

down regulation of the genes at both ends of an interaction are concordant with the type

of interaction which can be activation or inhibition. In both BPA and BAPA-IGGFD, each

random variable is assumed to follow a binomial distribution whose probability of success

follows a beta distribution. However, these two methods use different approaches in rep-

resenting the multivariate distribution of the corresponding random vector. BPA assumes

that the random vector has a multinomial distribution, which is the generalization of the

binomial distribution. In this case, the vector of the success probability follows the Dirich-

let distribution, which is the multivariate extension of the beta distribution. Conversely,

BAPA-IGGFD assumes the random variables are independent, therefore the multivariate

distributions are calculated by multiplying the distributions of the random variables in the

vector. It is worth mentioning that the assumption of independence in BAPA-IGGFD is

contradicted by evidence, specifically in the case of edges that share nodes.

In BPA a discretized fold change profile is calculated for each gene. This represents

the list of fold changes between every ordered pair of gene expression samples. The pair
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elements come from each of the groups corresponding to the two phenotypes. These fold

changes are discretized such that genes with values higher than 2 or lower than 0.5 are

considered differentially expressed and the others are considered to have negligible changes.

This profile is used as the observed data for the Bayesian network model. In BPA, given

a set of parameters (success probabilities), the likelihood of observing a specific profile on

the Bayesian network is assumed to have a multinomial distribution. Using the Bayes rule,

the probability of observing the given profile without any assumption on the parameters is

calculated. The parameters of the distributions are learned from the input data [113]. The

network topology is incorporated in the distribution parameters and computation method

by assuming that knowing the values of the parents’ random variables, the children random

variables are independent of the rest of the graph. A hypothesis testing is performed using

the null hypothesis that the probability of seeing the observed data is the result of chance.

Specifically, a set of observed data is generated in the bootstrapping analysis and its proba-

bility is compared with the the original observed data. The null distribution is approximated

through randomization via bootstrapping. This randomization targets the structure of the

Baeysian network (i.e. the relation between its nodes), which is more relevant than a simple

bootstrapping in this case. Sampling with replacement is used when generating random

data. An upper-tailed test is performed, with the p-value estimated by the percentage of

random scores higher than the observed one. The process of generating the randomized

samples is done by bootstrapping. A new fold change profile is generated by sampling with

replacement from the original fold change profile.

In BAPA-IGGFD, based on the value of the fold change, discretized values of 0 or

1, corresponding to up- or down-regulation, are assigned to each node of the Bayesian net-

work. For each predefined pathway, a vector of probabilities is computed as follows: 1) ✓̄
i

for any parent-less gene g
i

is the probability of g
i

being up-regulated, 2) ✓
i|j for any gene

g
i

which has an activator parent g
j

is the probability that both genes are coherent in being

up-regulated or down-regulated, and 3) �
i|j for any gene g

i

which has an inhibitor parent
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g
j

is the probability that the state of up or down regulation of the genes are opposite. The

vector can be summarized as ✓ = ({✓̄
i

|8g
i

is parent-less}, {✓
i|j|8gi has an activator parent},

{�
i|j|8gj has an inhibitor parent}) which is called the parameter vector of the pathway. Each

of these parameters are assumed to be independent from each other and follow the beta

distribution both prior observing the microarray data and after its observation. The multi-

variate joint distributions of the parameter vector prior and posterior of the data observation

are compared using symmetric Kullback-Leibler (SKL) divergence [89]. The pathways for

which the prior and posterior distributions are dis-similar are assumed to be impacted more

significantly between the two phenotypes. Because of the independence assumption, the

distribution of the parameter vector is calculated by multiplying the beta distribution of

each of the parameters. The variables of the distributions are calculated using PrimeDB

database, or in other words, using the number of journal citations for an interaction type.

We refer to beta(↵, �) as the beta distribution with parameters ↵ and �. For the prior dis-

tribution, it is assumed that ✓̄
i

⇠ beta(1, 1), ✓
i|j ⇠ beta(a

i|j, bi|j), and �
i|j ⇠ beta(b

i|j, ai|j),

where a
i|j and b

i|j are the number of journals citing the activation or inhibition between g
i

and g
j

, respectively. For the posterior distribution, it is assumed that ✓̄
i

⇠ beta(n̄
i

, n� n̄
i

),

✓
i|j ⇠ beta(a

i|j + n
i|j, bi|j + n� n

i|j), and �
i|j ⇠ beta(b

i|j + n
i|j, ai|j + n� n

i|j), where n is the

total number of microarray experiments, n
i

is the number of experiments in which g
i

is up-

regulated, and n
i|j is the number of experiments in which the pairs g

i

and g
j

are concordant

in up or down regulation. An extension to this method is proposed in which the variables of

beta distributions are not calculated by the input as fixed numbers but are assumed to follow

exponential distributions. In this case, the parameters of the exponential distributions are

estimated from PrimeDB and the input data. It is claimed that this additional probability

layer will lead to more robust results. For genes that have more than one parent the majority

rule is used to calculate the distribution. The output of this method is the list of pathways

scored by the SKL divergence. The lower the score is the more impacted the pathway is

assumed to be.
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2.4 Output

Although the goal of the pathway analysis should be a ranked list of pathways as a

unified output, not all tools reviewed in this chapter provide this. Some methods, such as

MetPA provide a list of pathways with 2 p-values for each pathway, leaving the user to face

the task of deciding which p-value to trust or how to deal with trade-offs between the two

values. Among the methods that rank predefined pathways from public knowledge bases,

some methods, such as TopologyGSA, DEgraph, NetGSA, and ACST, find “important” sub-

pathways and rank the mixed list of pathways and sub-pathways. In PARADIGM, for each

detailed network created by the method based on the input pathway, a matrix of p-values is

provided as the output. In this matrix, columns are samples and rows are component nodes

of the network. Each element of this matrix indicates how likely it is for the node to be in

any of the three states comparing the two phenotypes: 1) significantly active, 2) significantly

inactive, or 3) have an insignificant change. These scores can be used as substitutes for log

fold changes and, as proposed in [164], can be input into a non-topology-based gene set

analysis algorithm to rank the pathways. Other options to use these scores are either to

apply a simple averaging or counting function on the scores of the significant genes to score

the pathway, or they can be used to cluster the genes into groups with similar behavior.

These clusters of genes can be used to further analyze different features assigned to samples

to find group-specific features.

iPathwayGuide offers capability to identify so called “coherent chains of perturbation

propagation”, which are to be interpreted as putative mechanisms that are compatible with

(and therefore could explain) all measured changes throughout the entire biological system

investigated [2]. Even though unique among all other tools and potentially very useful,

this capability is completely independent from the pathway ranking provided based on the

perturbation and enrichment types of evidence. Therefore, it is possible for pathways that

are significant not to contain such coherent signaling cascades, and conversely, pathways that

may contain such cascades may not be significant.
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In many input data sets, the samples are labeled based on different parameters.

The parameters can have qualitative discrete values such as, tumor and normal tissue, or

quantitative continuous values such as, survival time of the cell or drug concentration used

to treat the tissue. For analysis methods that provide a pathway score for each sample,

such as TAPPA and PathOlogist, the pathway activities can be interpreted based on the

sample labels. NetGSA [149] offers more labeling options in addition to phenotype-based

binary labels. The method provides simultaneous tests of multiple hypotheses based on

these labels or temporal pathway score correlation to assess the significance of pathways.

The rest of the pathway analysis methods compare the pathways using a single qualitative

binary label corresponding to the two phenotypes. Methods such as TopoGSA, MetPA, and

the hypergeometric extension of CePa calculate one score for each pair of input samples

comparing the two phenotypes, while others provide one score for the whole input data set.

Some of the methods provide a graphical display of their results. This is primarily

done for the analysis methods which have the ability to provide more than one score for

each pathway. For example, analysis methods like TopoGSA have an additional option to

compare the properties of the input dataset to predefined datasets corresponding to known

functional processes from public databases in a comparative plot. As a result, a summary of

network topological properties is displayed for all gene/protein sets in 2D and 3D plots. This

functionality allows the user to visually identify an input similar to the original one, based on

the plots or on a tabular ranking using a numerical score to quantify the similarity across all

topological properties. Similarly, methods such as iPathwayGuide, Pathway-Express, SPIA,

and MetPA which provide two scores (topology based and gene set enrichment) can use a

2D plot to illustrate the distribution of both scores for the analyzed pathways.

2.5 Implementation

The mathematical model for each analysis approach is independent of its implementa-

tion as a software package. Although the main strength of an approach lies in its algorithm,
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its implementation can have an important role in reaching the full potential of that approach,

as well as in gaining acceptance among the users. Practicality, user-friendliness, output for-

mat, and type of interface are all to be considered. Depending on the desired availability

and intended audience, a software package may be implemented as standalone or web-based.

Web-based tools run the analyses on a remote server providing computational power

and a graphical interface. On the user side, experiment datasets are uploaded, and on the

server side, the tool performs the analysis. The results are displayed by the browser in the

format provided by the tool. The output of most pathway analysis methods is a ranked list

of pathways or sub-pathways. iPathwayGuide, MetPA, THINK-Back-DS and, EnrichNet

are among the methods that have web-based implementations. The major advantage of

web-based tools is that they are user-friendly and do not require a local installation.

Standalone tools need to be installed on local machines which often requires admin-

istrative skills. Advantages include instant availability that does not require internet access.

Most standalone tools depend on full or partial copies of public pathway databases, stored

locally, and need to be updated periodically. Methods like ScorePAGE, SPIA, TAPPA,

PathOlogist, NetGSA, TopologyGSA, PWEA, ACST, BPA, and GANPA are in this cate-

gory. Moreover, there are some methods available both as web-based and standalone, in-

cluding Pathway-Express, MetaCore, TopoGSA, CePa, and PARADIGM. For PARADIGM,

the web-based implementation is only available as part of TCGA while the standalone is

available only as C++ source code that needs to be compiled and deployed locally. Another

major advantage of standalone tools are the security and privacy of the experiment data.

The programming language and style used for implementation plays an important

role in the acceptance of a method. Software tools that are neatly implemented, packaged,

and available online are more appealing compared to those that do not have ready-to-use

implementations. Many of the methods surveyed in this chapter are implemented in the R

programming language and are available as software packages either from bioconductor.org,

cran.r-project.org, or the author’s website. Their popularity among biologists and bioinfor-
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maticians is due to the fact that many bioinformatics dedicated packages are available in R.

Pathway-Express (as part of ROntoTools), SPIA, TopoGSA, TopologyGSA, GANPA, DE-

Graph, NetGSA, ACST, CePa, and ScorePAGE are among those methods. iPathwayGuide,

Pathway-Express, TAPPA, and THINK-Back-DS have an implementation in Java, which

provides a GUI with self explanatory functionality for users with less software development

experience. This allows users to customize the graphical display of the results, using function-

Mathematical model and implementation for 34 topology-based pathway analysis methods
Method name Graph model Scoring method Web/App License Language Tool ref.
ScorePAGE Single-type, undirected Hierarchical, similarity App N/A R on demand
MetaCore* Single-type, directed Hierarchical, graph measures Web, App Thomson Reuters Java [132]
Pathway-Express Single-type, directed Hierarchical, graph measures Web, App free** Java, R [39]
TAPPA Single-type, undirected Hierarchical, NNV App N/A Java N/A
PathOlogist Multi-type, directed Hierarchical, probability App CC-BY MATLAB [63]
iPathwayGuide* Single-type, directed Hierarchical, graph measures Web AdvaitaBio Java [1]
SPIA Single-type, directed Hierarchical, graph measures App GPL (>= 2) R [157]
NetGSA Single-type, directed Mutivariate, hypothesis test App GPL-2 R [147]
PWEA Single-type, undirected Hierarchical, similarity App free** C++ [71]
TopoGSA Single-type, undirected Hierarchical, graph measures Web free** PHP, R [61]
PARADIGM Multi-type, directed Hierarchical, probability Web, App free** (App)

UCSC-CGB (web)
C [163],

[162]
TopologyGSA Single-type, moral, undirected Mutivariate, hypothesis test App AGPL-3 R [102]
DEGraph Single-type, undirected Mutivariate, hypothesis test App GPL-3 R [82]
MetPA Single-type, directed Hierarchical, graph measures Web free** PHP, R [181]
BPA Single-type, DAG Mutivariate, Bayesian network App free** MATLAB [78]
GANPA Single-type, undirected Hierarchical, graph measures App GPL-2 R [47]
BAPA-IGGFD Single-type, DAG Mutivariate, Bayesian network App N/A R N/A
CePa Single-type, directed Hierarchical, graph measures Web, App GPL (>= 2) R [65], [64]
THINK-Back-DS Single-type, directed Hierarchical, graph measures Web, App free** Java [50],[49]
TBScore Single-type, directed Hierarchical, normalized

node value (NNV)
N/A N/A N/A N/A

ACST Single-type, directed Hierarchical, NNV App CC-BY R [109]
EnrichNet Single-type, undirected Hierarchical, graph measures Web free** PHP [58]
GGEA Single-type, directed Aggregate fuzzy similarity App Artistic-2.0 R [55]
ROntoTools Single-type, directed Hierarchically aggregated App CC-BY R [165]
clipper Single-type, directed Multivariate analysis App AGPL-3 R [100]
DEAP Single-type, directed Hierarchically aggregated App GNU LGPL Python [67]
DRAGEN Single-type, directed Linear regression App N/A C++ [97]
ToPASeq*** Single-type, directed Hierarchical and multivariate App AGPL-3 R [75]
pDis Single-type, directed Hierarchically aggregated App free** R [8]
SPATIAL Single-type, directed Hierarchically aggregated N/A N/A N/A [23]
BLMA**** Single-type, directed Hierarchically aggregated App GPL (�2) R [117, 119]
microGraphite Single-type, directed Multivariate analysis App AGPL-3 R [25]
mirIntegrator Single-type, directed Hierarchically aggregated App GPL�3 R [35, 116]
MetaboAnalyst Single-type, directed Hierarchically aggregated Web GPL (�2) R [184, 182]

Table 2.1: Comparison of topology-based pathway analysis methods using criteria related to the math-
ematical model and implementation. The last 12 methods were surveyed in another study [118]. Graph

model indicates whether the graph which is remodeled to be suitable for the scoring method is single-type
or multi-type and whether it is directed or undirected. DAG stands for directed acyclic graph. Scoring

method encloses the mathematical model used in the analysis to score nodes and graphs. Web/App in-
dicates the existence of a web-based (Web) or standalone (App) implementation of the method. License

represents the license under which the software is available. GPL - GNU General Public License, AGPL -
GNU Affero General Public License, CC-BY - Creative Commons license. Language represents the pro-
gramming language used for the implementation. Tool ref. points to the paper or url associated with the
given tool.
* commercial methods; ** free for academic and non-commercial use; UCSC-CGB – the University of
California Santa Cruz Cancer Genome Browser; N/A No publicly available implementation
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alities such as zoom or rotation. CePa has a web-based implementation in Perl in addition to

its R stand-alone package. The MATLAB programming language is used for implementation

of methods like PathOlogist, BPA, and NetGSA in order to calculate more complex equa-

tions. Other programming languages like C and C++ are also used to implement pathway

analysis methods such as PARADIGM and PWEA, which theoretically provide better speed

and allow for efficient coding. A summary of the mathematical models and implementa-

tion details for the surveyed methods is presented in Table 2.1, where in addition to the 22

surveyed methods from [111] we add 12 extra methods surveyed in another study [118].

2.6 A summary of this chapter

Pathway analysis is a core strategy of many basic research, clinical research, and

translational medicine programs. Emerging applications range from targeting and modeling

disease networks to screening chemical or ligand libraries, to identification/validation of

drug target interactions for improved efficacy and safety [9]. The integration of molecular

interaction information into pathway analysis represents a major advance in the development

of mathematical techniques aimed to evaluate systems perturbations in biological entities.

The important milestones in pathway analysis reflected by this survey are: the first

pathway analysis method for metabolic networks [131], the first method for signaling pathway

and the first method able to take into consideration the pathway topology [86, 40], the first

application of topology-based multivariate hypothesis tests [148], and the first analysis able

using multi-type graphs from heterogeneous sources [164]. In this chapter, analysis methods

were compared according to types of input, scoring algorithms, results, and user accessibility.

Each of these aspects presents its own particular challenges.

The validation of pathway analysis results is an important challenge researchers face

when trying to develop such methods. While biologists are needed to verify the pathway

analysis results, they depend on pathway analysis methods to support their hypotheses. Most

efficient progress will occur with a high level of communication and collaboration between
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experiment biologists, annotators, pathway designers, bioinformaticians, and computer sci-

entists. As pathway knowledge becomes more complete, the challenge of leveraging this

information to extract biological insight from high-throughput data will be redefined. Until

then, advances will be incremental. Gold standard experiment data sets, designed to affect

specific pathways in predefined ways, will be necessary to be able to assess the efficiency of

new methods.

Another challenge we mentioned in this chapter is that the same biological path-

ways are represented differently from one pathway database to another. In particular, we

pointed out the complications arising from inconsistent conversions for representing interac-

tions among the different pathway databases, and the current efforts to address the problem

through the creation of unified formats. However, none of the tools is compatible with all

database formats, requiring either modification of pathway input or alteration of the un-

derlying algorithm in order to accommodate the differences. As an example, a study by

Vaske and others [164] attempts to compare SPIA [157] with their tool PARADIGM, by

re-implementing SPIA in C, and forcing its compatibility with NCI-PID pathways. Grave

implementation errors are present in the C version of SPIA, invalidating the comparison. A

solution to overcome this challenge could be the development of a unified globally accepted

pathway format. Another possible solution is to build conversion software tools that can

translate between pathway formats. Some attempts exist to use BIO-PAX as the lingua

franca for this domain.

Biological networks are divided in various categories containing complementary in-

formation. Signaling and signal transduction are captured by signaling pathways, while

biochemical interactions are presented in metabolic pathways. In addition, the protein inter-

action knowledge bases contain different types of interaction information, complementary to

the others. The majority of pathway databases are manually curated and change slowly, but

they are evolving toward greater content and accuracy, with new prototype formats being

proposed. There is no analysis method that takes advantage of the information stored in all
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of these different sources. Few of the methods surveyed here use either signaling or metabolic

pathways in addition to PPI networks. Promising developments include the integration of

multiple component types and interaction types, each with specific properties. Although

the information is less reliable, non-curated high-throughput protein interaction data is also

proving useful, as protein interaction data can be used to support or filter results.

High-throughput technologies, developed for biological experiments, are improving in

accuracy. However, they are still prone to error and the resulting data includes a significant

amount of noise. In addition, these technologies produce various types of data among which

are genome variations, mRNA level, metabolite concentration, or protein abundance. Each of

these data types provides meaningful yet incomplete information regarding specific biological

phenomena. The next challenge is to be able to integrate such diverse types of data.

Another challenge is the oversimplification that characterizes many of the models

provided by pathway databases. In principle, each type of tissue might have different mech-

anisms so generic, organism-level pathways present a somewhat simplistic description of the

phenomena. Furthermore, signaling and metabolic processes can also be different from one

condition to another, or even from one patient to another. Understanding the specific path-

ways that are impacted in a given phenotype or sub-group of patients should be another

goal for the next generation of pathway analysis tools.

Interpreting biological experimental data is also challenging due to inaccurate assump-

tions. For instance, most current pathway models show cascades of signals or biochemical

processes next to one another, in time-agnostic diagrams. In reality, these phenomena hap-

pen over time, and often at different time scales. Furthermore, many data sets offer only

a snapshot in time, at a particular moment. Almost by definition, such a frozen snapshot

cannot properly capture and show the effect of successive events that take place over time.

The graphical scoring methods presented in this chapter are representative of the

techniques available for future methods. We expect to see greater use of different types of
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data, in addition to greater use of data mining and machine learning which will lead to more

sophisticated topology-based pathway analysis methods.

It is important to (re-)state that the goal of this chapter was to survey the main

topology-based techniques and methods available to identify the most significant pathways

in a comparison between phenotypes. In other words, the goal was to identify, categorize and

review these methods without attempting to asses their performance. A critical assessment

and ranking will be the subject of a later publication. A natural tendency would be to try

to use the various criteria used here to compare various methods and thus establish even a

partial ordering. For instance, if method X using only one type of input (e.g. pathways from

KEGG) while method Y uses two types of input (e.g. pathways from KEGG as well as PPI

data), one might be tempted to conclude that method Y is somewhat more powerful than

method X. Similarly, some methods use a subset of DE genes while others use the entire

set of measured values. Again, it may be tempting to informally conclude that the later

methods are more powerful since, they take more data into consideration or because they

eliminate the need for a selection of DE genes. It is our opinion that such inferences and

partial orderings are not advisable and should not be attempted based on the information

presented in this chapter. A proper assessment of these methods should be focused on their

ability to identify the pathways that are truly impacted in the given phenotypes, and not

based on superficial characteristics or number of features of one type or another.
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CHAPTER 3: QUALITATIVE CHANGE DETECTION

3.1 Overview of change detection methods

A biological system is characterized by a tendency to reach and maintain a state

of homeostatic balance, considered to be a stable state. An alteration made by internal or

external stimuli can trigger the system to transition from one stable state to another, referred

to as a qualitative change. Notably, any of the system components taken in isolation may

not vary dramatically; however, the system as a whole may undergo a qualitative change.

Conversely, in a resilient system, important variations of one or a group of components

may happen without necessarily involving a qualitative systemic change. Importantly, most

systems have built-in tolerance mechanisms such that the response to a stimulus is delayed

until the signal is perceived as real in order to filter noise and to conserve the energy necessary

to undergo a systemic change.

In this chapter, we present a qualitative change detection (QCD) approach, an analy-

sis method that uses sequential measurements as described by a time series (or by progressive

disease stages), together with all known interactions described by biological networks, and

that applies an impact analysis approach to identify the time interval in which the system

transitions to a different qualitative state.

In the landscape of analysis methods for high-throughput data (see Fig. 3.1), the

proposed method falls under the category of dynamic network analysis. Other methods in the

same category aim to either identify significantly perturbed systems [95], time intervals with

the highest difference in expression for each gene from a predefined set [152], dynamic network

biomarkers using local network entropy [92], or time periods of differential gene expression

using Gaussian processes [68]. However, all of these approaches perform comparisons between

disease profiles and a reference profile (e.g. healthy). In the paradigm proposed here, none

of these existing methods can be applied because the goal is to identify a transition to a
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qualitatively different state without knowing the gene expression profile of the new state, and

hence, without the ability to make a comparison between the control and disease phenotypes.

Figure 3.1: Overview of existing approaches as categorized by looking at the time compo-
nent (horizontal axis) and the system information (vertical axis). From the time component
perspective one can distinguish between two categories: snapshot data and time course data.
Time course data is richer in information but also has increased complexity as opposed to
snapshot data. From the system information perspective one could consider sets of genes to-
gether with their interactions (pathways) or without such interactions (gene sets). Pathways
are much richer in information but also have increased complexity as opposed to gene sets.
Based on these categories, the existing methods can be divided into the four groups shown,
of which the gene set analysis is the most common, including more than 70 methods [70, 56].
Gene set analysis takes as input a collection of gene sets and a snapshot of expression data
that compares two phenotypes and ranks the gene sets based on their relevance to the phe-
notype computed by the analysis. Pathway analysis has the same workflow as the gene set
analysis but also takes into consideration the interactions between the genes as described by
the topology of the pathways [87, 111]. Network discovery from time course data takes as
input data collected at multiple time points and a set of genes and infers relations between
the genes in the input set [123]. Network dynamic analysis is the most recent, has only 4
existing methods [96, 152, 92, 68], uses time series data and pathways, and aims to extract
phenotype-related information related to changes in genes, pathways, or time intervals.
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3.2 Methods

3.2.1 Qualitative change detection (QCD) method

Here, we propose a paradigm shift: instead of detecting the onset of disease, we

would like to be able to detect the departure from the healthy state. The qualitative change

detection (QCD) analysis presented here is able to detect intervals when a biological system

undergoes qualitative changes such as the transition from healthy to disease.

The workflow of the analysis is summarized in Fig. 3.2. The input to QCD consists

of: i) time-series data and ii) a network model of the biological system under study. The

output is a list of time intervals when the systems transitions between qualitative states.

The workflow of the analysis consists of the following steps:

1. Compare the status of the system between each pair of time points using an existing

statistical method called pathway impact analysis (IA) [38, 156, 166, 165] and

assess the levels of perturbation;

2. Separate large and small inter-state perturbations using a gamma mixture model fitted

to the system perturbation by an expectation maximization algorithm;

3. Calculate the change interval(s) as the narrowest disjunct interval(s) of large changes.

In step 1 the perturbation of the system between all pairs of system states is computed

utilizing IA. First, sequential states are assigned to the chronologically ordered time points or

disease progression stages when the data were sampled. We then compare all pairs of systems

states using IA [38], which was previously developed to evaluate the pathway impact when

comparing two phenotypes; herein, we use it to calculate a system/pathway impact factor

for each comparison of two system states (time points). The result will be a list of time

intervals (comparisons) with their computed pathway perturbation factor.

The pathway impact analysis takes as input signaling networks (pathways) and a

list of genes with their respective changes between two states of a system (e.g. condition
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Figure 3.2: Workflow of the QCD method. The algorithm takes as input time series data
and network(s) that models the biological system. The time series data is used to compare
every pair of time points (time interval). In STEP I, a pathway impact analysis is used to
compute a perturbation score for each comparison. In STEP II, an expectation maximization
algorithm is employed to identify the parameters of a gamma mixture model and select the
interval(s) when the system/pathway/network experienced a large perturbation. In STEP
III, change intervals are selected by identifying the overlap of the set of intervals with large
system perturbation and selecting the narrowest disjunct time intervals.
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vs. control). In a typical signaling pathway, nodes represent genes or gene products and

edges represent signals, such as activation or repression, directed from one node to another.

The goal of IA is to identify the pathways significantly impacted in a given phenotype by

analyzing all measured expression changes for all genes, as well as all of their interactions, as

described by each pathway. This type of analysis incorporates two types of evidence, which

taken together estimate the disruption on a pathway when comparing two phenotypes. The

first type is evidence given by the perturbation analysis. The magnitude of expression change

(log fold-change) and the pathway structure are used to compute a perturbation factor for

each gene (eq. 3.1). The gene perturbation factors are summed up to the pathway level to

account for the observed pathway perturbation.

PF (g) = �E(g) +
X

u2US(g)

�
ug

· PF (u)

#DS(u)
(3.1)

where PF (g) is the perturbation factor for gene g, US(g) is the set of genes directly upstream

of g, �
ug

is the strength of interaction between u and g, DS(g) is the set of genes directly

downstream of g, �E(g) is the log fold change in expression for g, and # denotes set

cardinality.

For the perturbation analysis, we sum the absolute value of the gene perturbation

factors (eq. 3.2) so that the up-regulation and down-regulation do not cancel each other.

PF (P ) =
X

g2P

|PF (g)| (3.2)

where PF (P ) is the perturbation factor for pathway P and | · | denotes the absolute value

operator.

We use the all-gene approach, without gene weights; therefore, since we do not se-

lect differentially expressed genes, the enrichment part cannot be computed. The pathway

perturbation factors are positive values with 0 marking no perturbation — the higher the

value, the larger the pathway perturbation. We work under the assumption that the pathway
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perturbation factors follow a gamma distribution with mode = 0 when the pathway is not

perturbed.

In step 2, the distribution of the pathway perturbation factors is modeled using a

gamma mixture model (see Fig. 3.3). The hypothesis states that if there is a change interval

the system state comparisons will yield a mix of large and small system perturbations.

Small system perturbations are expected when comparing system states before and after the

change interval. Large system perturbations are expected when comparing system states

before the change interval to states after the change interval. Therefore, a mixture of two

gamma distributions is used: one for the comparisons in which the system is unperturbed

(i.e., the null hypothesis) and another for comparisons in which the system is perturbed.

The mixture model will be initialized with two distributions having the mode equal to the

minimum and maximum of the perturbation factors. The mixture model fitting will provide

two distributions that best fit the data together with a percentage that estimates how much of

the observed data comes from each of these two distributions. If any of the distributions has

a percentage of less than 10%, the QCD analysis considers that there is only one distribution

and, therefore, there is no significant change, and no change interval.

If both distributions fitted contribute more than 10%, the goodness of fit is then

evaluated by computing the percentage of overlap between the observed and fitted distri-

butions of system perturbations (see Fig. 3.3, overlap). Other statistical approaches (the

Kolmogorov-Smirnov test and the Kullback-Leibler divergence) are also used to evaluate the

goodness of fit and results are presented in section 3.5.1. If the mixture contains more than

10% of either of the distributions, the intersection of the two distributions is used as the

threshold to select comparisons with large system perturbations. Comparisons that yield

a pathway perturbation factor higher than this threshold will be marked as having a large

system perturbation.

An important requirement is to demonstrate that the approach does not report false

positive changes in random data or in cases in which there are no changes in the organism.
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Gamma mixture model

Figure 3.3: The fit of a mixture of two gamma distributions (blue and red lines) to the
observed perturbation values of the system as computed for all pair-wise comparisons (thick
black line). The fitted mixture distribution is marked by the thinner black line. The differ-
ence between the fitted and observed data is shaded in light gray. A goodness of fit measure
is the overlap calculated as the ratio between the intersection and union of the areas under
the observed data (thick black line) and fitted model (thinner black line). A perfect fit
would yield an overlap of 100%. The null hypothesis is that there are no change intervals
and therefore there are only small system perturbations (blue distribution). If a second dis-
tribution is found to be present (red), the threshold used to distinguish between small and
large system perturbations will be the yellow vertical line. Under these circumstances, the
blue area under the blue line is the Type 1 error and the red area under the red line is the
Type 2 error.

Section 3.5.3 includes the results obtained with controls only, as well as results obtained

with random data. These results show that the proposed approach does not report falsely

significant changes.

In step 3, change intervals are computed as the overlap of comparisons with a large

system perturbation using an algorithm based on the definition in subsection 3.2.2. The

algorithm takes as input a list of comparisons with an assigned system perturbation value

and a predefined system perturbation threshold computed in step 2 described above. The al-

gorithm iterates over the list of comparisons and identifies the start and end points of change

intervals as points that have at least one comparison that shows a large perturbation (higher

than the threshold) starting or ending in the respective points, and no large perturbation

comparisons start or end in between those points. The output is a list of change intervals



53

described by their start and end points. Note that the change interval does not have to be

a comparison that shows a large system perturbation by itself.

3.2.2 Change interval formal definition

Notations:

N = the number of time points

S = the set of states

p = the set of perturbation values

CI = the set of change intervals

pcut = the perturbation threshold

Definitions:

S = {S
i

| i 2 {0, . . . , N � 1}}

p = {p
ij

| i, j 2 {0, . . . , N � 1}, i < j}, where p
ij

is the system perturbation value

when comparing S
i

and S
j

CI = {(x, y), x, y 2 {0, . . . , N � 1}, x < y}, that satisfy the following conditions

8i, j 2 {x, . . . , y}, (i, j) 6= (x, y) and p
ij

 pcut

(i) 9i 2 {0, . . . , y � 1} such that p
iy

> pcut

(ii) 9j 2 {x+ 1, . . . , N � 1} such that p
xj

> pcut

(iii) x is the max value to satisfy the above conditions for a given y

(iv) y is the min value to satisfy the above conditions for a given x

3.2.3 Meta-states statistical validation

To better understand the phenomenon under study, after the detection of a change

interval, the states of the system before and after a change interval should be analyzed to gain

insight regarding the state of the system before and after a qualitative change. To describe

this analysis, the situation in which there is a single change interval will be considered, as

in the E. coli flagellum building dataset. In this case, the system is considered to be stable

before and after the change interval. In this context, we group the states in which the system
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is stable into meta-states. We define a meta-state (see Fig. 3.4A) as a group of consecutive

states that satisfy the following two conditions:

1. All comparisons between states within a meta-state have a small system perturbation;

2. All comparisons between states from a meta-state to states outside the meta-state

(excluding the states in the change interval) have a large system perturbation.

In the above, definition, the “small” and “large” perturbations, are defined based on the

threshold between the two gamma distributions computed in the previous step and shown

as the yellow line in Fig 3.3.

Note that all comparisons between the states within a change interval and the meta-

states immediately before and immediately after it may have a small system perturbation.

This is because, during the change interval, the system is in transition between the two

meta-states; therefore, its state during the transition is a mix of the two meta-states that

may not be qualitatively different from either of them.

Based on the detected change interval, groups of sequential system states can form

potential meta-states (see panel B in Fig. 3.4). Panel A in Fig. 3.4 shows the ideal results of

all comparisons between all states involved in these meta-states. In essence, all comparisons

within each potential meta-state should show a small system perturbation while all compar-

isons between a meta-state time point and a time point outside the meta-state (excluding

the change interval) should show a large system perturbation.

To validate each observed potential meta-state, a statistical approach is applied to

evaluate how closely it meets the conditions of a theoretical meta-state. The validation of

the potential meta-state is described for the E. coli flagellum building dataset. The data

was sampled at 21 time points (system states S0–S20) and the change interval was detected

as (S6–S10). In this case, there are two potential meta-states: MS1, which contains the

states before the change interval (states from S0 to S6), and MS2, which contains the states

after the change interval (states from S10 to S20). To investigate the potential meta-states,
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B. Observed meta-statesA. Theoretical meta-states

C. Meta-state I D. Meta-state II

Large perturbation

Meta-state ||Meta-state |
Change Interval

Figure 3.4: Meta-states in the E. coli flagellum building case study. Arc plots show possi-
ble comparison between time-points (states): comparisons with large system perturbation
are red, and comparisons with small system perturbation are gray or black. Panel A: the
expected arc plots of two theoretical meta-states (groups of states in the black ellipses)
relative to the detected change interval (S6–S10): all comparisons within each potential
meta-state should show a small system perturbation while all comparisons between a meta-
state time point and a time point outside the meta-state (excluding the change interval)
should show a large system perturbation. Panel B: the actual arc plot showing the observed
large perturbation (red) vs small perturbation comparisons (gray and black) for all possible
state comparisons. Black arcs show comparisons between states of potential meta-states
(groups of states in the black ellipses) to states outside the potential meta-state (excluding
the change interval) that show a small perturbation. Panel C: the arc plot shows the ob-
served comparisons for potential meta-state I (S0–S6, states in the black ellipse). Black arcs
show comparisons between states of potential meta-state I to states outside it (excluding the
change interval) that show a small perturbation. Panel D: the arc plot shows the observed
comparisons for potential meta-state II (S10–S20, states in the black ellipse). Black arcs
show comparisons between states of potential meta-state II to states outside it (excluding
the change interval) that show a small perturbation.
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all comparisons (arcs) (see Fig. 3.4B) are considered from the perspective of the meta-state

definition above. For MS1, all comparisons between the states S0 to S6 should yield only

small system perturbations. In addition, all comparisons between any states in MS1 and any

states outside MS1 (not including the change interval) should involve large perturbations.

With these considerations, all comparisons involving MS1 states can be assigned a binary

value: either consistent or inconsistent with the expectations above. For each potential meta-

state, a statistic is computed as the number of time intervals with status consistent with

the status (large/small) assigned in the corresponding theoretical meta-state (meta-state

definition). Under the null hypothesis, in which there are no groups of system states that

form meta-states, the probability that a comparison is consistent or not should be 0.5. Based

on this framework, a binomial model is used to calculate a p-value for the statistic computed

for each of the groups of states that are potential meta-states (see Fig. 3.4C and D):

X ⇠ binom(n, 0.5), (3.3)

where n is the number of trials and 0.5 is the probability that the status of a comparison is

consistent with the meta-state definition.

The p-value computed for the potential meta-state characterizes the amount of evi-

dence indicating the existence of a true meta-state (comparisons consistent with the defini-

tion, vs. inconsistent comparisons). A significant p-value lower than a predefined threshold

would confirm the identification of a true meta-state. In our case studies, most p-values were

significant at a 1% threshold (see details in section 3.5.1).

3.2.4 Synthetic data parameters

For the E. coli flagellum building and B. subtilis sporulation, the gene expression

synthetic data were generated using the interactions described by the biological network and

Hill functions for protein accumulation (eq. 3.4) and decay (eq. 3.5) with a rate of ↵ = 0.005.
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Given that X ! Y denotes that transcription factor X regulates gene Y

Y (t) = Y
st

e�↵·t, protein accumulation (3.4)

Y (t) = Y
st

(1� e�↵·t), protein decay (3.5)

where Y
st

is the steady state expression level for gene Y , ↵ is the decay rate for protein Y ,

t is time and Y(t) is the expression level for gene Y at time t.

For the third case study, C. elegans, data were generated using a step function for

the X1 = FLP neuron and a constant function (0) for the X2 = ASH neuron The following

formula describes the change in voltage over time for the Y = AVD neuron:

dY/dt = f(0.5 ·X1 + 0.5 ·X2 > K
Y

)� Y (3.6)

The following formula describes the change in voltage over time for the Z = AV A neuron:

dZ/dt = f(0.5 · (X1 +X2) + 0.4 · Y > K
Z

)� Z (3.7)

Constants 0.5 and 0.4 are the strengths of the synaptic connections, and K
Y

and K
Z

are the

activation thresholds.

For the real gene expression, microarray data were downloaded from the GEO database.

The CEL files downloaded from GEO for the real gene expression were processed using cus-

tom R scripts (R version 3.1.2). Data pre-processing (background correction and normal-

ization) was performed using the threestep function from the affyPLM (version 1.42.0) R

package. Gene IDs were matched to gene symbols using the respective annotation pack-

ages from R: org.Sc.sgd.db (yeast), org.Dm.eg.db (fruit fly), org.Mm.eg.db and moe430a.db

(mouse), org.Hs.eg.db and hgu133plus2.db (human). Gene expression level at a specific

time-point was computed as the average of the replicates for the specific time point when
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replicates were available. The ROntoTools 1.6.1 R package was used for impact analysis.

The mixtools 1.0.3 R package was used for the mixture model analysis.

3.3 Results

The analysis of eight well-studied phenomena was performed with the proposed

method (QCD) for seven model organisms using both synthetic and real data. To assess

the ability of QCD to detect qualitative changes, results were compared to prior knowledge

of the phenomenon under study. QCD uses system knowledge, as described by a known gene

signaling network or a map of neurons and their synaptic connections, as well as sequential

measurements of the system components (genes or neurons). Data were obtained by mea-

suring either the mRNA level of the genes involved in the system, in the case of real data, or

generated based on equations describing the model of each organism, in the case of synthetic

data.

The results of the analyses show that QCD can reliably identify the time interval

during which a biological system goes from one qualitative state to another in response to

organism development or to a shift in environmental conditions. We evaluate the method

using phenomena that involve major physiological changes. We also evaluate the method

for phenomena involving more subtle, yet important changes. Major physiological changes

analyzed using synthetic data are E. coli flagellum building [5, 85] and B. subtilis sporu-

lation [5, 45]. The subtle change analyzed using synthetic data is C. elegans avoidance

reflex [5, 26]. Major physiological changes analyzed using real gene expression data are yeast

sporulation [28] and fruit fly pupariation [15]. More subtle changes analyzed using real gene

expression data involve fruit fly ethanol exposure [88].

QCD was compared with an existing method developed by Liu and colleagues used

to detect network biomarkers and the pre-disease state (herein abbreviated DNBM) [92]. In

addition to the six datasets mentioned above, we also ran QCD on the two datasets from

the Liu et al study. The first dataset is derived from a mouse study of exposure to a toxic
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gas (carbonyl chloride). Using these data QCD identified one qualitative change, before

the exposure became lethal, preceding the pre-disease state detected by Liu et al. The

second dataset contains data describing the progression of human hepatocellular carcinoma.

Using these data, QCD identified a qualitative change from a benign stage (control) to a

pre-malignant stage (high-grade dysplastic nodules), also preceding the pre-disease state

detected by the Liu et al study.

3.3.1 Bacterium flagellum building

When in an environment lacking nutrients, the E. coli bacterium initiates the process

of building a flagellum that will provide the motility necessary for finding an environment

rich in nutrients.

We analyzed the process of building the E. coli flagellar motor, using synthetic data

and the flagellum building network [85] (see Fig. 3.5A). Previous studies describe this network

as a multi-output coherent type 1 feed-forward loop (C1-FFL) [85, 146]. A C1-FFL is a

network in which one gene activates another and, together, they activate another gene or

(groups of) genes in the multi-output networks [146, 110].

The flagella building network is a generalization of the C1-FFL. In essence, the flagella

building network is a multi-output C1-FFL in which the exact timing of the sequence of

steps is controlled by the different activation thresholds (see the edge labels in Fig. 3.5A).

These thresholds ensure that all the elements of the flagellum are built in a specific order

so that it can properly assemble (e.g. the base of the structure must be in place before

all other elements, etc.). Due to the different activation thresholds, a reverse order of the

activation thresholds for flhDC and fliA yields a first-in first-out (FIFO) order in the gene

transcription. This is typical of sensory transcription networks as a mechanism used to filter

out (not react to) noise containing false positive signals of short duration.

Gene expression data was generated for the flagellum building network for a period

of 10 hours using a continuous function that models the protein accumulation and param-
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Figure 3.5: The input and results of the qualitative change detector (QCD) for the E. coli
flagella building phenomenon. Panel A: The multi-output coherent type 1 feed-forward
loop (C1-FFL) network that describes the flagellum building, together with the activation
thresholds (� on the edge) for each of the six groups of genes (dark green boxes) [5, 85].
The flagellum building is depicted in the cartoons matching the activation of each group of
genes. The black box denotes building the flagellum hook which is the point of no return
in this process and hence the real change interval that we aim to discover. Panel B: The
heatmap of the sampled data (input to QCD), and the real change interval (black arc below
the heatmap and black vertical line positioned in the center of the interval) as described
by literature. The change interval detected by QCD is shown by the green arc below the
heatmap and the green vertical line positioned in the center of the interval (very close to
the black line showing the actual point of no return). The stages of the flagella building are
presented as cartoons in chronological order on the top part of the figure.

eters from previous studies [5, 85]. Samples were taken every 30 minutes leading to a gene

expression time course dataset with 21 time points. Panel B in Fig. 3.5 shows the evolution

of gene expression over time for the genes involved in this phenomenon.

Importantly, the organism commits to building the flagellum when the first hook of

the flagellar motor starts to be built (fliA reaches the threshold to regulate the next group

of genes, fliD and flgK) [85]. This is an important check point in the flagella building

process as the assembly of the following component can still be halted if necessary [171].

However, after this checkpoint, the bacterium commits to building the flagellum (see the top

of panel B in Fig. 3.5). For these reasons, the interval between 240 and 270 minutes can
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be considered the boundary that separates the two qualitatively different states: with and

without flagellum. The goal of our approach is to find this interval without any knowledge

about the phenomenon and with knowledge only from the gene expression data and the

network of the system.

The E. coli flagellum construction is controlled by two transcription factors, flhDC

and fliA (see Fig. 3.5A). The master regulator flhDC activates fliA and there is an OR

relationship through which these two master regulators activate the other genes in the net-

work (12 genes). The genes are part of 6 groups: (i) fliL, (ii) fliE and fliF , (iii) flgA,

flgB, flhB, (iv) fliD, flgK, (v) fliC, (vi) meche, mocha and flgM .

QCD compares all system states (time points) to each other using a pathway impact

analysis. In essence, the state of the system at each time point is compared to the state

at all other time points using a pathway impact analysis [38] that takes into consideration

all gene expression changes, the position of each gene on the pathway (Fig. 3.5A), and the

type and direction of every interaction to determine if the state of the system was altered.

The result of this impact analysis is a set of system perturbation factors that quantify the

system perturbation. To determine the significant system perturbations, we assume there

are two types of intervals: i) those with large perturbations between the states involved,

and ii) those with small perturbations caused only by random fluctuations. We then use

an expectation maximization algorithm to fit a gamma mixture model of two distributions

to the perturbation factors (see Fig. 3.6). The intersection of the two distributions will be

the optimal threshold that can be used to separate the large perturbations from the small

perturbations as presented in Fig. 3.6A. Using this approach, we assign a “large” or “small”

perturbation status to each comparison. Panel B in Fig. 3.6 shows all the state comparisons

considered, in which the gray and black arcs show small perturbations and the red arcs show

large perturbations between the states of the system at those time points.

In essence, most of the comparisons between any time point earlier than 180 mins

and any time point after 300 mins show large perturbations (exceptions are marked by the



62

BA

Figure 3.6: Identifying the qualitative change interval for the E. coli flagella building phe-
nomenon. Panel A: Identifying state comparisons involving large perturbations. The black
line shows the observed density of the perturbation values for all pairwise comparisons of
system states. We assume that some comparisons will be characterized by large pertur-
bations, while others by small perturbations. A mixture of two gamma distributions are
fitted to the observed data to yield the distributions of large (red) and small (blue) per-
turbation whose mixture best fits the observed data (red and blue lines). The intersection
point (yellow vertical line) is the optimal threshold used to distinguish between the large and
small perturbations. Panel B: The arcplot of all comparisons performed by QCD between
all pairs of system states. Red arcs, above the x axis, represent comparisons that show a
large perturbation, while gray arcs, below the x axis, represent comparisons with a small
perturbation. All the comparisons between states in the intervals S0–S6 and S10–S20 are
associated with small perturbations. At the same time, the vast majority of all possible
comparisons between any state in the interval S0–S6 and any state in the interval S10–S20
are associated with large perturbations. The black arcs are comparisons between a state in
the interval S0–S6 and a state in the interval S10–S20 that are associated with small system
perturbations. The smallest interval of overlapping large perturbation intervals, the interval
between S6 and S10, is the detected change interval.

black arcs). This suggests that a qualitative change of the system occurs between 180 and

300 mins, which is indeed the case. The real change takes place between 240 minutes, when

fliD and flgK expression begins, and 270 minutes, when fliA starts to regulate the next

group of genes and the building of the first hook of the flagellar motor begins.

The identification of a change interval should be followed by an analysis of the states

of the system before and after a change interval in order to gain insight into the system

transition. Without loss of generality, we will consider the situation in which there is a

single change interval, as in this dataset. Furthermore, we also assume that the system is in
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a stable state before and after the change interval. Under these circumstances, we can group

the states in which the system is stable into meta-states.

A meta-state is a group of consecutive states where all comparisons between states

within a meta-state have a small perturbation and all comparisons between states from a

meta-state to states outside it (excluding the states in any change intervals) have a large

perturbation.

The results shown in panel B of Fig. 3.6 suggest that states S0–S6 might form a

meta-state, MS1. Similarly, the states S10–S20 might define a second meta-state, MS2. To

investigate these potential meta-states, all comparisons (arcs) were studied from the per-

spective of the above definition of a meta-state. From this perspective, all these comparisons

can be either consistent or inconsistent with the expectations noted above. This is a binary

choice, and under the null hypothesis in which there are no meta-states, the probability that

a comparison is consistent or not should be 0.5. Based on this framework, a binomial model

can be used to calculate a p-value characterizing the amount of evidence that indicates the

existence of a true meta-state (comparisons consistent with the definition vs. inconsistent

comparisons). More details can be found subsection 3.2.3. Groups of states with significant

p-values will be reported as meta-states.

In this case, both groups of states identified by QCD had highly significant p-values:

p = 5.44⇥ 10�19 for meta-state 1 (S0–S6) and p = 3.61⇥ 10�28 for meta-state 2 (S10–S20).

3.3.2 Bacterium sporulation

When deprived of food, the B. subtilis bacterium turns into a spore, a robust structure

able to survive in an environment lacking nutrients. This is a crucial feature that ensures

the bacterium’s survival in an environment scarce in food in which it cannot survive in its

active form.

Compared to the E. coli flagellum-building network, which includes only activation

signals, the network controlling sporulation also includes repression signals (Fig. 3.7A). This
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Figure 3.7: The input and results for QCD for B. subtilis sporulation. Panel A shows
the sporulation network. The genetic network represented by the two coherent type 1 feed-
forward loops (C1-FFLs) and two incoherent type-1 FFLs (I1-FFLs) that describe the sporu-
lation network as reported in previous studies [5, 45]. Panel B shows the heatmap of the
sampled data. The real change interval is shown by the black arc below the heatmap (black
vertical line positioned at the average of the interval limits) as described by literature. The
change interval detected by the proposed method is shown by the green arc (green vertical
lines positioned at the average of the interval limits), match perfectly with the actual timing
of these events.

network has a hierarchical structure that consists of four transcription factors: sigmaE,

sigmaK, GerE, SpoIIID and three groups of genes Z1, Z2, Z3. This network is comprised

of two network motifs, each of them represented by two networks. The two coherent feed-

forward loops (C1-FFLs) aim at sigmaK and Z3, respectively, while the two incoherent

type-1 feed-forward loops (I1-FFLs) are centered around Z1 and Z2, respectively. The C1-

FFLs are denoted as coherent because their central genes, sigmaK and Z3, respectively,

receive activation signals from both genes upstream of each. Specifically, sigmaK receives

activation signals from both SpoIIID and sigmaE, while Z3 receives activation signals from

both GerE and sigmaK. In contrast, the incoherent network is characterized by a gene that

receives one activation and one repression signal from the two genes immediately upstream

of the target gene. For example, Z1 is activated by sigmaE but repressed by SpoIIID.
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The gene expression data was sampled from the spore formation network for a period

of 10 hours using a continuous function that models the protein accumulation and parameters

observed in previous studies [5, 45]. Samples were taken every 30 minutes leading to a gene

expression time course dataset with 21 time points.

Importantly, the organism commits to the spore formation when the second suppres-

sor (GerE) is expressed (4h = 240 min) [45]. In turn, GerE is regulated by sigmaK which

also regulates the communication between the mother cell and the spore through a check-

point that is crucial for the formation of viable spores. Hence, the true interval of change is

the interval between 210 minutes, when sigmaK shows the first change in expression, and

240 minutes, when GerE shows the first change in expression.

Our method was applied on the sporulation network and the synthetic gene expression

dataset obtained by the above sampling. In these data, QCD identified one change interval

(210 – 240 min) (Fig. 3.7B). The detected interval exactly matches the time interval between

the time when the spore formation starts (GerE is being expressed) and up to the moment

when the next group of sporulation genes (Z2) is activated.

We also evaluated the two groups of system states: before the change interval (0 – 210

min) and after the change interval (240 – 600 min), as potential meta-states MS1 and MS2,

respectively. The p-value for each was highly significant: p = 2.31 ⇥ 10�19, for MS1, and

p = 6.23⇥ 10�32, for MS2. These p-values validate the hypothesis that these are true meta-

states. Interestingly, these meta-states can be mapped to the rod-shaped bacterium form

and the endospore form, respectively, while the detected change interval can be associated

with the process of spore formation. These results are consistent with previous studies and

interpretations [45]. Before the change interval, the bacterium preserved most of its initial

characteristics, while after this interval, the bacterium assumed most of the characteristics

of an endospore. During the change interval, the system exhibited characteristics of both

“spore” and “no spore” states.
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3.3.3 Worm avoidance reflex

A phenomenon involving more subtle changes is the nociception reflex. Nociception is

a sensory process that allows the detection of harmful stimuli and activates a reflex response

to move a part of the body or the whole body away from the stimulus. Nociceptors are

present in fish, worms, and fruit flies, among others, and help trigger an avoidance reflex

such as a backward movement. In the roundworm (C. elegans), the avoidance reflex network

is composed of two parallel receptor neurons that communicate with two sequential command

neurons (Fig. 3.8A).

The C. elegans avoidance reflex network is a generalization of the C1-FFL in the form

of a multi-input C1-FFL. As previously described, C1-FFL is a network of three nodes in

which one node activates another and, together, they activate another node [146, 110]. In

multi-input C1-FFL networks, the initial activation is performed by multiple nodes or groups

of nodes rather than by just one node. ASH is the main nociceptor and triggers avoidance

behavior in response to harmful stimuli such as the nose touch and volatile chemicals. FLP

is a sensory neuron triggered by painful, heat-related stimuli or mechanical stimuli, such as

a harsh nose touch, that initiates the nematode’s backward movement. AVD is a command

interneuron that functions as a modulator for backward locomotion induced by a head touch.

Neurons AV A and AVD drive the worm’s backward movement.

Neuronal signal data was generated for the avoidance reflex network over a period of

8 milliseconds, using a continuous function that models the signal processing and parameters

observed in previous studies [5, 26]. Samples were taken every millisecond leading to a time

course dataset with eight time points.

The nematode commits to the backward movement at 3ms, which is the moment the

nose touch (FLP - spiking function) reaches the threshold to trigger the second command

interneuron (AVD). The movement starts at 5ms when the AV A neuron starts firing [26].

The two time-points mark the 3 to 5ms time interval which is the real change interval. Using

these data, QCD identified the narrower 4ms to 5ms interval (Fig. 3.8B).
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Figure 3.8: The input and results for QCD for the C. elegans avoidance reflex. Panel
A, top: The network that describes the avoidance reflex network as presented in previous
studies [5, 26] is a multi-input coherent type 1 feed-forward loop (C1-FFL) with two inputs.
Synaptic weights are marked by the � values on the edges. Panel A, bottom: The signal
dynamics of the avoidance reflex network. Panel B: The heatmap of the sampled data
(which is the input to QCD) and the real change interval shown here by the black arc below
the heatmap (black vertical line positioned in the center of the interval) as described by
literature. The change interval detected by the proposed method and shown by a green arc
below the heatmap (vertical lines positioned in the center of the interval), matches almost
perfectly with the actual timing of these events.

In addition, the two groups of system states, before and after the change interval,

were evaluated as potential meta-states. The p-values for the two groups of states are highly

significant: p = 4.28 ⇥ 10�4 for meta-state 1 and p = 4.28 ⇥ 10�4 for meta-state 2. In

summary, in the case of the avoidance reflex, the detected change interval is a transition

between “no movement” and “moving backward” meta-states.

Results of the first three case studies, for which we used synthetic data, proved that

QCD can be quite accurate. However, in practice, the data from real biological experiments

can be very noisy. In order to investigate the capabilities of this approach to detect the
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correct change interval from real gene expression data, we used datasets collected from

three different experiments: yeast sporulation, fruit fly metamorphosis, and acute ethanol

exposure (see Fig. 3.9, Fig. 3.10 and Fig. 3.11). All data are available in the public domain

in the Gene Expression Omnibus (GEO) [13, 41]. Again, we chose different phenomena and

different model organisms for a thorough method evaluation.

3.3.4 Baker’s yeast sporulation

Starvation for nitrogen and carbon sources (high stress) induces meiosis and spore

formation in diploid yeast (S. cerevisiae) cells. Stress-tolerant haploid spores are formed

through cell division (meiosis) within the mother cell. This is a qualitative and obvious

physiological change in yeast cells adapting to their environment. The sporulation process

has been thoroughly studied and is well understood [28], which makes it a good candidate

on which to validate QCD.

We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database

as a source for the biological networks describing the studied phenomena. The regulation of

autophagy pathway (KEGG ID: sce04140) describes the phenomena involved in sporulation.

This pathway consists of mechanisms involved in processing internal and external stresses

including nutrient availability. As a result, regulation of autophagy is essential for survival

because it is used to maintain important cellular functions when environmental conditions

change.

The QCD method was applied on the regulation of autophagy pathway and gene

expression data from the yeast sporulation study by Chu et al. (GSE27, [28]). Panel A in

Fig. 3.9 shows this pathway, as well as the genes measured in this experiment, marked in

red. The experiment spanned 11.5 hours and data were collected at seven unequally spaced

time points (0, 0.5, 2, 5, 7, 9, and 11.5 hours). The experiment was designed such that the

sampling captures all known stages of the biological process. Sporulation is divided into four

major stages: early, middle, mid-late, and late [28].
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Figure 3.9: The input and results for QCD for yeast sporulation. The input is the regulation
of autophagy pathway from KEGG (sce04140), in Panel A, and gene expression data from the
GEO dataset GSE27, in Panel B. The data captures the sporulation phenomenon, specifically
the transition from diploid cells through meiosis to the spore cells. Panel B shows the
heatmap of the time course (0 to 11.5 hours) for the measured KEGG pathway genes (in
red), with the change interval detected for the phenomenon (green arc and the green vertical
line in the center of the interval (0.5 – 7h)), as well as the real change interval (black arc
and the black vertical line in the center of the interval (2 – 7h)).

The commitment to sporulation starts in the middle stage (2 – 5h) and spans the

mid-late stage (meiosis II phase, 5 – 7h) [28]. Therefore, the true change interval for this phe-

nomenon is 2h to 7h. As observed by Chu et al., the transition phase ends after the mid-late

stage. This study also showed that one of the first discernible steps of spore morphogenesis

occurs after the meiosis II spindles are formed, which makes the late phase a stable one. Also,

the middle-late phase is still part of the change interval as previous studies reported that the

middle-late phase includes the major cytological events of sporulation [103, 114]. Panel B of

Fig. 3.9 displays the measured changes of the genes on the regulation of autophagy pathway

over the time course noted above.

In this case, QCD identifies a qualitative change in the interval from 0.5h to 7h,

which includes the real change interval (2h to 7h) and starts one time point earlier. The

change interval is the transition that separates the two potential meta-states (active state
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and spore state). The active and spore potential meta-states have p-values of p = 0.062 and

p = 0.0195, respectively.

3.3.5 Fruit fly metamorphosis

Three major states — egg, larva and pupa — occur during the development of the

fruit fly. The larvae typically pass through three molting stages (instars) during which they

shed various body elements and form new ones. Importantly, the third molting stage the

larvae pupate and become adults, which marks the completion of the metamorphosis process.

The QCD method was applied on the Hedgehog signaling pathway from KEGG (path-

way ID: dme 04340) and data publicly available for the metamorphosis of D. melanogaster

(GSE3057, [15]). The Hedgehog signaling pathway, named after the signaling molecule

Hedgehog (Hh), has a crucial role in organizing the body plan for the fruit fly during de-

velopment. Panel A in Fig. 3.10 shows this pathway as well as the genes measured in the

metamorphosis experiment (in red in this figure). The experiment started 18 hours before

pupariation, spanned 30 hours, and was sampled at nine time points, two prior to puparia-

tion (-18 hours and -4 hours), and the other seven time points equally spaced over 12 hours

after the actual pupariation (0h, 2h, 4h, 6h, 8h, 10h, 12h).

Panel B of Fig. 3.10 shows the measured changes of the genes on this pathway over the

time course described above. Puparium formation is triggered at the end of the third instar

larvae stage that occurred during this experiment in the interval from -4 hours to 0 hours,

and is marked by a high peak of the steroid hormone 20-hydroxyecdysone [15]. A second

peak of the steroid hormone 20-hydroxyecdysone occurs roughly at the 10-hour time point

and triggers the transformation from prepupa to pupa [15]. Puparium formation represents

the onset of metamorphosis; therefore, the real change interval for this case study is indeed

from -4 hours to 0 hours. The QCD method identifies one change interval from -18 hours

to 0 hours. Notably, the third instar larvae stage, which starts 24 hours before pupariation

and lasts until 0 hours (prepupae phase starts), is not a stable state in which the organism
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Fruit fly metamorphosis (GSE3057)
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Figure 3.10: The input and results for QCD on fruit fly metamorphosis (pupariation). The
input is the Hedgehog pathway from KEGG (dme04340), in Panel A, and gene expression
data from the GEO dataset GSE3057, in Panel B. The data captures the pupariation phe-
nomenon, specifically transition from the end of the larva stage through the prepupa stage
and to the beginning of the pupa stage of the fruit fly. Panel B shows the heatmap of the
time course (-18 to 12 hours) for the measured KEGG pathway genes (in red), with the
change interval detected for the phenomenon (green arc and the green vertical line in the
center of the interval (-18 – 0h)), as well as the real change interval (black arc and the black
vertical line in the center of the interval (-4 – 0h)).

(fruit fly) exists. Therefore, the QCD not only correctly identifies the qualitative transition

from larva to pupa, but it also shows the organism is in a continuous transition during the

third instar larvae stage. The second change in this experiment (prepupa to pupa) arguably

perturbs the system less than the first one since both prepupa and pupa are part of the

pupal stage.

Notably, in this case study the change takes place at the beginning of the time course.

To determine potential-meta-states relative to this change interval, we selected the only state

before the change interval (-18h) as the potential meta-state 1 and all states after the change

interval (0h–12h) as potential meta-state 2. These two meta-states are characterized by

highly significant p-values: p = 7.81⇥ 10�3 and p = 3.73⇥ 10�9, respectively.
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3.3.6 Fruit fly acute ethanol exposure

The fruit fly has been used as a model to study drug addiction. In the fruit fly, drug

addiction produces physiological effects similar to those observed in mammals because the

cellular neuronal mechanism that mediate the signals from the chemical compounds found

in these drugs is conserved across these species.

To apply the QCD method, we used the Hedgehog signaling pathway (KEGG ID:

dme04340) and the acute ethanol exposure data available from GEO (GSE18208) and de-

scribed by Kong et al. [88]. The Hedgehog signaling pathway was chosen for its capability

to model major mechanisms involved in fruit fly development, including its adaptive mech-

anisms. Panel A in Fig. 3.11 displays this pathway, as well as the genes measured in this
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Figure 3.11: The input and results for QCD on fruit fly ethanol exposure. The input is
the Hedgehog pathway from KEGG (dme04340) in Panel A, and gene expression data from
GEO GSE18208, in Panel B. The data captures the acute ethanol exposure phenomenon,
specifically transition from the “sober” stage through the “’drunk” stage and back to the
“sober” stage. Panel B shows the heatmap of the time course (control, 0 to 3.5 hours)
for the measured KEGG pathway genes (in red), with the change interval detected for the
phenomenon (green arc and the green line in the center of the intervals (0.5 – 1h) and (1
– 1.5h), as well as the real change interval (black arc with a black line in the center of the
interval (1 – 2h)).
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experiment, marked in red. Panel B of Fig. 3.11 shows the measured changes of the genes on

this pathway over the time course from the biological experiment. The experiment spanned

3.5 hours (210 minutes) of recovery after a 30-minute ethanol exposure, sedating up to 75%

of the flies. Samples were taken at eight time points. The time points include one control,

before exposure, one at 0 hour, right after exposure and every 30 minutes after that up to

3.5 hours; the missing data point at 2.5 hours (150 min) was not provided in the dataset.

This experiment’s treatment conditions included exposure to humidified air or ethanol vapor

(60%) for 30 minutes, and then recovery for up to 210 minutes [88]. The recovery period

from ethanol sedation has been reported by another study to be approximately between 40

minutes and 2 hours [144], which is the real change interval. Based on this recovery time,

by the end of this experiment (210 minutes), the fruit flies should recover from the effects

of ethanol exposure. In the GSE18208 dataset 40 minutes was not one of the sampled time

points; therefore, to mark the real change interval, we used the very next time point available

in the dataset, the one-hour time point.

The intuitive physiological transitions expected for these data are from no exposure

(sober) to exposure to ethanol (drunk) and back to fully recovered (sober). However, the

drunken state is temporary, since it is followed by recovery. Because of this transition, we

expected two change intervals, from sober to drunk and from drunk to sober. Furthermore,

the initial and end states (sober before exposure and sober after recovery) were expected

to be very similar from a gene expression point of view. In other words, the sober state is

the same in the initial and final state in this case, as opposed to the flagellum building case

where the initial and final states, with and without flagellum, are obviously different.

The ethanol exposure has a delayed effect at the gene level. According to Kong et al.,

the expression of immunity genes increased after ethanol exposure in the time range from

0.5 hours to 1.5 hours [88]. Because of this delayed effect, we did not expect the biggest

changes between the control and 0 hours but rather between the control and some later time

point(s).
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The QCD results on these data have shown that the biological system indeed goes

through two qualitative changes, and the change intervals are: 0.5 hours to 1 hour and 1

hour to 1.5 hours, matching the expected transitions from a sober state to a drunken state

and then back to the sober state. The effects of the ethanol exposure appear to peak at the

1-hour time point. Based on the change intervals and the return of the system to its initial

state, there are two groups of states that may form meta-states. These potential meta-states

consist of the following time points: control, 0 hour, 0.5 hours, and 1.5 hours to 3.5 hours, for

meta-state 1, and the 1-hour time point for meta-state 2. The distribution of the significant

and non-significant transitions yielded a highly significant p-value, p = 1.37⇥10�5, for meta-

state 1, but a non-significant p-value (p = 0.22) for meta-state 2. This result is probably due

to the small number of comparisons involving the single time point included in meta-state 2.

3.3.7 Mouse exposure to phosgene

Carbonyl chloride (phosgene) is a toxic compound used for the production of mate-

rials such as plastics and rubber. Exposure to carbonyl chloride produces irreversible lung

injury and potentially life-threatening pulmonary edema that manifest within a day. Early

intervention, within one hour of exposure, has been reported to be effective for the treatment

of carbonyl chloride exposure [141]. However, the damage inflicted by exposure to carbonyl

chloride is progressive with the most significant physiological effects reported to occur be-

tween four and 12 hours after exposure [142]. Due to the high toxicity of carbonyl chloride,

the organism will not return to its pre-exposure like state, yet it will be in a different state

(injured or most likely lethally injured) state at 72 hours after exposure. In mice, by the 12th

hour after exposure, a mortality rate of 50-60% was reported, which increased to 60-70% by

the 24th hour [143].

In the study by Sciuto et al. [143], mice were exposed to 32 mg of phosgene per cu-

bic meter for 20 minutes and samples were collected from lung tissue at nine time points:

untreated (0 hours), 30 minutes, 1 hour, and 4, 8, 12, 24, 48, and 72 hours after exposure.
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We applied QCD to study this phenomenon, using these data, and the chemokine signal-

ing pathway from KEGG (mmu04062) as the network/map of the biological system. The

chemokine signaling pathway was chosen because it describes the signaling mechanisms of

an inflammatory response and such mechanisms are intimately involved in the response to

the exposure to a toxic gas.

Panel A in Fig. 3.12 shows the chemokine signaling pathway as well as the measured

genes marked in red. Panel B of Fig. 3.12 shows the measured changes of the genes on this

pathway over the time course of the biological experiment. The QCD method identified

one qualitative change in the interval of 0.5 hours to 1 hour which corresponds to the time

interval for the initiation of latent effects of the toxic gas exposure. In other words, QCD

identified an interval during which damage is treatable [141].

The change interval identified by QCD was then used to group the states (time

points) before (0 hour to 0.5 hours) and after (1 hour to 72 hours) into potential meta-
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Figure 3.12: The input and results for QCD on mouse toxic gas exposure. The input is the
chemokine signaling pathway from KEGG (mmu04062), in Panel A, and gene expression data
from GEO GSE2565, in Panel B. The data captures the exposure to phosgene phenomenon,
specifically the transition from not exposed through the progressive damage of the exposure
up to lethality. Panel B shows the heatmap of the time course (0 to 72 hours) for the measured
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(8h) marks the pre-disease state detected by the DNBM method).
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states. These groups of states can be labeled as “before exposure” and “long-lasting damage”

based on the organism’s physiology for the respective states. The groups of states were then

evaluated for statistical significance and the p-value of the “before exposure” group was not

significant (p = 0.696), while the “long-lasting damage” group had a highly significant p-

value ( p = 9.39⇥ 10�4), which makes it a true meta-state. This result may suggest that the

control (no exposure) and the 30-minute after exposure system states are not similar enough

to yield a statistically significant meta-state. This is very likely to be true since there is still

damage inflicted at the 30-minute time point even though it is still treatable.

We compared the results of QCD in this case to the results of an existing method

developed to detect network biomarkers and the pre-disease state (DNBM) [92]. The DNBM

takes as input both the high-throughput data and the large network of protein-protein in-

teractions for the organism under study. The output of DNBM is a pre-disease state in the

form of a sample or list of samples from the data. The hypothesis is that a subset of the large

network, termed the leading network, is the first to change toward the disease state, which

makes its components and structure causally related with the disease. The DMBM models

the change in gene expression over time as a Markov process. Then, a state-transition-based

local network entropy (SNE) is used as a general, early measure of upcoming transitions by

estimating the resilience of the network. The SNE is a Shannon-type entropy [145], intended

to quantify the change in state for the biological network.

Notably, the DNBM identifies one single (pre-disease) state prior to the onset of dis-

ease, while the proposed QCD identifies a change interval of transition to disease, which can

be much more informative regarding the disease evolution, as well as providing an opportu-

nity for therapeutic intervention. In addition, in the case of the QCD, the impact analysis

approach may provide a better evaluation of the system’s impact than the network entropy.

At the same time, a reinforcement of the impact by comparing every two time points may

provide a better approximation of the change onset. Therefore, evaluating the systemic

change between every two time points results in the early-detection property.
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3.3.8 Human hepatitis C virus infection progression to liver cancer

Hepatocellular carcinoma (HCC) is a common liver cancer that can be the result of

an infection with the hepatitis C virus (HCV). The progression from HCV infection spans

multiple disease stages before reaching HCC, as reported by Wurmbach et al. [179]. We

used the data from this study to identify qualitative changes for this phenomenon. The

dataset (GSE6764, [179]) contains gene expression collected from 75 samples (48 patients)

and covers eight progressive stages of HCV induced HCC: four no-cancer stages including

no HCV/control, cirrhosis, low-grade dysplastic, and high-grade dysplastic, and four cancer

stages including very early HCC, early HCC, advanced HCC, and very advanced HCC.

Normal liver control is used as the initial stage and stages are ordered by disease progression.

To apply QCD on these data, we used the viral carcinogenesis pathway from KEGG

(hsa05203) as the network/map of the biological system. The viral carcinogenesis pathway

describes the signaling mechanisms involved in inflammatory responses such as the one trig-

gered by HCV. Panel A in Fig. 3.13 shows this pathway as well as the genes measured in this

experiment marked in red. Panel B of Fig. 3.13 shows the measured changes of the genes on

this pathway over the different disease stages from the biological experiment.

From these data, the QCD identified one qualitative change (change interval) from

stage zero (control), a benign state to stage three (high-grade dysplastic), the last of the

four benign states and a state in which treatments are effective. The group of states before

the change interval was considered as potential meta-state one (MS1) and contains only the

control state. The group of states after the change interval was considered as potential meta-

state two (MS2) and contains five states: high grade dysplastic nodules, very early HCC,

early HCC, advanced HCC, and very advanced HCC. In essence, the analysis identified the

transition from the benign state (first meta-state) to the cancerous state (second meta-state).

The p-values of these meta-states were p = 0.031 for MS1 and p = 3.05⇥ 10�5 for MS2.

For this case study, the DNBM detected the pre-disease state at the fifth stage, very

early HCC, which is the first malignant stage. The existent DNBM detected the start of
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Figure 3.13: The input and results for QCD on human hepatitis C virus (HCV) to hepato-
cellular carcinoma (HCC) progression. The input is the viral carcinogenesis pathway from
KEGG (hsa05203), in Panel A, and gene expression data from GEO GSE6764, in Panel
B. The data captures the progression from human HCV to HCC, specifically the transi-
tion from control (healthy) through the progressive stages of liver damage up very advanced
HCC. Panel B shows the heatmap of the disease progression (control to very advanced HCC)
for the measured KEGG pathway genes (in red), with the change interval detected for the
phenomenon (green arc and the green line in the center of the interval (control – high-grade
dysplastic nodules)). The dark green vertical line (very early HCC) marks the pre-disease
state detected by the DNBM method).

the malignant state while our proposed QCD method detected the transition from benign to

malignant. These results (see Tables 3.2 and 3.3) show the applicability of this method in

developing preventive therapies. Identifying the genes that change within the change interval

could lead to the identification of very early markers for disease and potential targets for

disease prevention. A detailed description of the results of the QCD analysis at each step of

the analysis workflow for all eight datasets is included in section 3.5.1.

In the case of disease progression, once a change interval is identified one should start

the therapeutic intervention as early as possible within the change interval. For example,

in the case of the HCV to HCC progression that could be any time up to the high-grade

dysplastic stage.
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Results summary
Organism Phenomena Data source Time points

(# of samples)
Detected
change interval

Real
change interval

E. coli Flagellum building mathematical
model

0–600min (21)
equally spaced

180–300min 240–270min

B. subtilis Sporulation mathematical
model

0–600min (21)
equally spaced

210–240min 210–240min

Worm Avoidance reflex mathematical
model

1–8 ms (8)
equally spaced

4–5ms 3–5ms

Yeast Sporulation GSE27 0–11.5h (7) 0.5–7h 2–7h
Fruit fly Pupariation GSE3057 -18–12h (9) -18–0h -4–0h

Acute ethanol
exposure

GSE18208 untreated 0h
treated 0–3.5h (8)

0.5–1h & 1–1.5h 1–2h

Mouse Phosgene exposure GSE2565 0–72h (9) 0.5–1h 8h *
Human HCV induced HCC

progression
GSE6764 8 stages (8) control–high-grade

dysplastic
very early HCC *

Table 3.2: Summary of the results for the analysis of synthetic (simulation) and real data for
various phenomena in model organisms. From left to right, the columns of the table show
the organism, the phenomenon studied, the data source (simulation or GEO dataset), the
duration of the simulation or experiment, the number of measurements, the time interval
reported by the algorithm as including a qualitative change, and the actual time interval
in which the phenomenon was simulated (first three rows) or actually took place (next five
rows). * denotes the results of the existing method [92].

Meta-states results summary
p-value
Meta-state I

p-value
Meta-state II

E coli flagellum building 5.44⇥ 10�19 3.61⇥ 10�28

B subtilis sporulation 2.31⇥ 10�19 6.23⇥ 10�32

Worm avoidance reflex 4.28⇥ 10�4 4.28⇥ 10�4

Yeast sporulation 0.062 0.019
Fruit fly pupariation 7.81⇥ 10�3 3.73⇥ 10�9

Fruit fly alcohol exposure 1.37⇥ 10�5 0.227
Mouse carbonyl chloride exposure 0.696 9.39⇥ 10�4

Human HCV induced HCC progression 0.031 3.05⇥ 10�5

Table 3.3: Summary of the results establishing the significance of the meta-states. In each
case-study two potential meta-states were identified, relative to the time-course data or
sequential series of system states provided as input. Meta-state1 consists of the group of
states before the change interval. Meta-state2 consists of the group of states after the change
interval. For each case study and each potential meta-state, we calculate a statistic as the
number of time-intervals with status consistent with the status assigned in the corresponding
theoretical meta-state. Here, we show the p-values (one tail, grater) computed for this
statistic as it follows a binomial distribution with a theoretical likelihood of success of 50%.
From a total of 16 meta-states: 13 are significant at a threshold of 5%.
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To further evaluate the potential of the proposed method to detect changes as they

occur, we ran the method on data from only the first three stages of the disease progression.

DQC detected a change interval from the first (control) to the third stage (low-grade dys-

plastic), showing that a systemic qualitative change is happening and can be detected at a

very early stage, as soon as the disease process has started.

3.4 Discussion

Disease prevention and early detection are two major healthcare objectives that con-

tribute to improving quality of life. Currently, early detection of complex diseases is achieved

only after the physiological traits of the phenotype are present, when existing treatments may

be ineffective. Chronic disease, a particular case of complex disease, is generally detected in

the late stage of a relatively slow, progressive process. Representative examples that affect

a large number of people are heart disease, cancer, and neurodegenerative disorders. It is a

real challenge for people with these diseases to maintain a good quality of life after diagnosis.

Understanding when the transition to disease occurs is a good first step towards interrupting

the process and maintaining the healthy state.

To maintain the healthy state, one needs to monitor the biological system and measure

the gene expression or any parameters the system has in order to assess how much the

system is changing. The moment a qualitative change occurs, either cumulative or sudden,

a change interval emerges. For instance, in the case of the eight stages of HCC, a qualitative

change occurs from control to high-grade dysplasia. A cirrhotic liver is characterized by the

presence of scar tissue due to long-term damage. In an attempt to replace the damaged cells

in the cirrhotic liver, clusters of newly formed cells can occur in the scar tissue. Dysplastic

(abnormally grown) nodules found in the liver are typically identified in cirrhotic livers. Low-

grade dysplastic nodules (LGDN) cells are larger than the normal liver cells [170]. High-grade

dysplastic nodules (HGDN) cells are smaller than the normal liver cells and have a greater

nucleus-to-cytoplasm-size ratio [170]. The difference between HGDNs and very early HCC is
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the stromal invasion present in the latter [140]. A study on the LGDNs and HGDNs in HCC

development concluded that LGDNs together with large regenerative nodules, should be

monitored with ultrasound, while HGDNs should be preventively treated due to their high

malignant risk [24]. Taken together, these data support the qualitative change identified

by QCD from a low malignant risk stage of the liver disease to a high risk stage and close

precursor to the malignant stage of very early HCC.

To further investigate the results of our analysis in the case of HCC progression, we

identified the differentially expressed (DE) genes (absolute log2 fold change greater than

1) when comparing the control to high-grade dysplasia and the control to very advanced

HCC. The total number of measured genes is 20,156. In the control versus high-grade

dysplasia comparison, there are 149 DE genes, while in the control versus very advanced

HCC comparison, there are 1,355 DE genes, which is almost an order of magnitude higher.

This suggests that using the differentially expressed genes across the change interval, as

opposed to the genes that differ between the control and very advanced HCC, offers a more

focused analysis. In essence, the comparison across the narrowest change interval targets

the genes involved in the initial tumor formation, rather than all genes that change as a

consequence of the cancer.

The number of common DE genes among the two comparisons is 80, representing

53% of the initial 149 genes. We downloaded the curated list of cancer genes available

in the cancer gene census [53] (accessible at: http://cancer.sanger.ac.uk/census). This list

is presented together with the catalogue of somatic mutations in cancer (COSMIC) [51]

(accessible at: http://cancer.sanger.ac.uk/cosmic). We used this list of cancer genes to filter

the 80 common genes to obtain a cancer gene set. The result consists of two genes: CHEK2

and FAT1 (see section 3.5.2 for the expression profile). These genes are highly relevant

to the condition under study considering CHEK2 mutations have been linked to various

cancers [160, 37]; it has also been shown to be a mediator of a tumorigenic mechanism in
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HCC [115]. Furthermore, FAT1 has been shown to have an oncogenic role in HCC [126, 161],

and it has been identified as a biomarker in multiple cancers [32, 168].

The viral carcinogenesis pathway from KEGG was used to identify the change interval

for the HCV-induced HCC progression. We also used this pathway to filter the 80 common

genes and to obtain a “viral carcinogenesis” gene set, which contains genes from the pathway

that change at the onset of the disease. The result consists of two early growth response genes:

EGR2 and EGR3 (see section 3.5.2 for the expression profile). EGR2 has been shown to be

an apoptosis promoter gene [159], which is downregulated by miRNAs in cancer [178, 94].

EGR3 has been shown to be involved in a number of cancers and in the regulation of the

immune response [77, 136, 129, 27], and this gene has recently been linked to HCC when it

was used to inhibit the growth of tumor cells [187].

3.5 Overall assessment of the QCD results

3.5.1 QCD analysis results and the corresponding meta-states

The workflow of the QCD analysis consists of the following three steps: (i) compare

the status of the system between each pair of time points using a pathway impact analysis [38,

156, 166, 165] and assess the levels of perturbation by computing a system perturbation

factor; (ii) separate large and small inter-state perturbations using a gamma mixture model

fitted to the system perturbation by an expectation maximization algorithm; (iii) calculate

the change interval(s) as the narrowest disjunct interval(s) of large changes. Figures 3.14,

3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21 show the results at each of these steps when applying

QCD on 8 case studies.

Assessing the goodness of fit

After the second step (fitting the gamma mixture model), we compute several statis-

tics to evaluate the goodness of fit between the observed perturbation factors and the fitted

mixture model. In Panels A in Figures 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, KLD is

the Kullback-Leibler divergence computed between the density of the observed perturbation
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and the density of the fitted mixture model. The KLD is a non symmetrical measure, there-

fore we compute both the KLD_o, o-observed first, and the KLD_f, f-fitted first, values.

Values closer to 0 indicate higher similarity between the distributions. Our results show 7

out of 8 cases with KLDs less than 0.2. We used the KLD method from the R package

LaplacesDemon 16.0.1 to compute this measure.

The KS_p is the p-value of the Kolmogorov-Smirnov test between the observed per-

turbation values and a sample of 10,000 values from the fitted mixture model. The null

hypothesis in this case is that the samples come from the same distribution. A high p-value

(close to 1), tells us that there is no evidence that the two distributions are significantly

different. For instance, in the E. coli case, the p-value of 0.42 indicates that there is no sig-

nificant difference between the observed distribution and the fitted one. Typical thresholds

for rejecting the null hypothesis are 0.01, 0.05 and 0.1, and our results show p-values higher

than 0.39, with 6 out of 8 values higher than 0.8. The ks.test method from the R package

stats 3.1.2 was used to compute these p-values.

Another measure of the goodness of fit is the ratio between the intersection and union

of the areas delimited by the observed and fitted density lines. We refer to this ratio as the

overlap between the observed and fitted distributions. An overlap of 100% would mean a

perfect match. The minimum overlap value on our case studies is 68.97% and the maximum

is 89.5%.

In Panels A in Figures 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, Type 1 and Type

2 errors are computed under the null hypothesis when there are no change intervals and all

system perturbations are small system perturbations. The lower the type 1 and type 2 errors

the more reliable the results. The maximum type 1 error is 0.18, and the minimum 0.012

with most of them (5/8) case studies having a less than 0.1 type 1 error. The maximum type

2 error is 0.067, and the minimum 0.009 with all case studies having a less than 0.1 type 2

error.
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Identifying meta-states

The states of the system before and after a change interval should be analyzed to gain

insight regarding the state of the system before and after a qualitative change. To describe

this analysis, we will consider the situation in which there is a single change interval, as in

the E. coli flagellum building data set. We consider that in this case the system is stable

before and after the change interval. In this context, we group the states in which the

system is stable into meta-states. We define a meta-state (see Fig. 3.14, panel C) as a group

of consecutive states that satisfy the following two conditions, using a system perturbation

threshold previously computed: (i) all comparisons between states within a meta-state have

a small system perturbation; (ii) all comparison between states from a meta-state to states

outside it (excluding the states in the change interval) have a large system perturbation.

For any given change interval, we consider the groups of states before and after the

change interval as potential meta-state. However, not every group of states before and after

a change interval has to form a meta-state. In order to identify those groups of states that do

form a meta-state from those that do not, we analyze each such group individually, from the

perspective of the definition above. Given a potential meta-state, any individual comparison

between two individual states can be either consistent or inconsistent with the definition

above. Under the null hypothesis, in which there is no meta-state, the probability that a

comparison is consistent or not should be 0.5. This a priori probability of consistent/not

consistent comparison was verified by a number of simulations (100,000) with random data

where the mean and median of this probability were 0.501 and 0.5013, respectively. A large

number of comparisons consistent with the definition of a meta-state will constitute evidence

for the existence of such meta-state. A binomial distribution can be used for each meta-state

to compute a p-value from the observed number of consistent comparisons for the given meta-

state. From a total of 16 meta-states (2 for each of the 8 data sets included here), 11 were

significant at a threshold of 1%, two were significant at 5%, and one at the 10% significance

level. This suggests that most of the time, the organism transitions from a stable state to
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another stable state. Groups of states that do not form statistically significant meta-states

may be due to a phenomenon that is still evolving, or simply to a low number of time points,

which reduces the number of comparisons available, and therefore the statistical power of

the test employed. An example of the latter situation is the ethanol exposure experiment in

which the only meta-state eligible for consideration included a single time point (S3).

Figures 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, show the potential meta-states

with their ideal comparisons according to the definition (panel C in each figure), as well as

the observed comparisons (panel D in each figure). Panels E and F in each figure show the

meta-states considered, together with their respective p-values.
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and observed comparisons
Meta-state I   p-value=5.44×10-19

Meta-state II   p-value=3.61×10-28

A. E. coli flagellum building
B. MIX: 71.96% blue – 28.04% red

Type 1 Error=0.095   Type 2 Error=0.009
threshold=4.31

Figure 3.14: The results of QCD on synthetic data of the E. coli flagellum building. Panel A
shows the mixture (magenta line) of two gamma distributions (blue and red lines) that is fitted to
the perturbation factors (histogram, and density - thick black line). The blue and red density lines
are scaled using the mixture proportion. We evaluate the goodness using three statistics: (i) the
Kullback-Leibler divergence between the density of the observed perturbation and the density of the
fitted mixture model (KLD_o-observed first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-
Smirnov test (KS_p) between the observed perturbation and the fitted mixture model; and (iii)
the overlap, which is the ratio between the intersection and union of the areas delimited by the
observed (thick black) and fitted (magenta) density lines. Panel B shows the gamma mixture model
used to separate small (blue line) and large perturbations (red line). The blue and red distributions
which compose the mixture model are unscaled in this panel and the mixture proportion is reported.
The yellow vertical line is the threshold used to separate the small and large perturbation factors.
The null hypothesis is that there are no change intervals and therefore there are only small system
perturbations (blue distribution). The Type 1 and Type 2 errors are marked by the blue and
red areas, respectively. Panel C shows the potential meta-states (black ellipses) together with the
ideal comparisons between the time points within these meta-states (red - large perturbation, gray -
small perturbation). Panel D shows the same meta-states (black ellipses) together with the observed
comparisons (red - large perturbation, gray and black - small perturbation). Black comparisons are
between states from different meta-states (these are red in the ideal case).
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and 
observed comparisons

A. B. subtilis sporulation
B. MIX: 64.46% blue – 35.54% red

Type 1 Error=0.104   Type 2 Error=0.019
threshold=4.01

E. Meta-state I
p-value=2.31×10-19

F. Meta-state II
p-value=6.23×10-32

Figure 3.15: The results of QCD on synthetic data of the B. subtilis sporulation. Panel A shows
the mixture (magenta line) of two gamma distributions (blue and red lines) that is fitted to the
perturbation factors (histogram, and density - thick black line). The blue and red density lines
are scaled using the mixture proportion. We evaluate the goodness using three statistics: (i) the
Kullback-Leibler divergence between the density of the observed perturbation and the density of the
fitted mixture model (KLD_o-observed first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-
Smirnov test (KS_p) between the observed perturbation and the fitted mixture model; and (iii)
the overlap, which is the ratio between the intersection and union of the areas delimited by the
observed (thick black) and fitted (magenta) density lines. Panel B shows the gamma mixture model
used to separate small (blue line) and large perturbations (red line). The blue and red distributions
which compose the mixture model are unscaled in this panel and the mixture proportion is reported.
The yellow vertical line is the threshold used to separate the small and large perturbation factors.
The null hypothesis is that there are no change intervals and therefore there are only small system
perturbations (blue distribution). The Type 1 and Type 2 errors are marked by the blue and red
areas, respectively. Panel C shows the potential meta-states (black ellipses) together with the ideal
comparisons between the time points within these meta-states (red - large perturbation, gray - small
perturbation). Panel D shows the same meta-states (black ellipses) together with the observed
comparisons (red - large perturbation, gray and black - small perturbation). Black comparisons
are between states from different meta-states (these are red in the ideal case). Panel E shows the
comparisons considered for meta-state I. Panel F shows the comparisons considered of meta-state II.
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and 
observed comparisons

A. C. elegans avoidance reflex

E. Meta-state I
p-value=4.28×10-4

F. Meta-state II
p-value=4.28×10-4

B. MIX: 62.76% blue – 37.24% red
Type 1 Error =0.18   Type 2 Error=0.033

threshold=0.69

Figure 3.16: The results of QCD on synthetic data of the C. elegans avoidance reflex. Panel A
shows the mixture (magenta line) of two gamma distributions (blue and red lines) that is fitted to
the perturbation factors (histogram, and density - thick black line). The blue and red density lines
are scaled using the mixture proportion. We evaluate the goodness using three statistics: (i) the
Kullback-Leibler divergence between the density of the observed perturbation and the density of the
fitted mixture model (KLD_o-observed first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-
Smirnov test (KS_p) between the observed perturbation and the fitted mixture model; and (iii)
the overlap, which is the ratio between the intersection and union of the areas delimited by the
observed (thick black) and fitted (magenta) density lines. Panel B shows the gamma mixture model
used to separate small (blue line) and large perturbations (red line). The blue and red distributions
which compose the mixture model are unscaled in this panel and the mixture proportion is reported.
The yellow vertical line is the threshold used to separate the small and large perturbation factors.
The null hypothesis is that there are no change intervals and therefore there are only small system
perturbations (blue distribution). The Type 1 and Type 2 errors are marked by the blue and red
areas, respectively. Panel C shows the potential meta-states (black ellipses) together with the ideal
comparisons between the time points within these meta-states (red - large perturbation, gray - small
perturbation). Panel D shows the same meta-states (black ellipses) together with the observed
comparisons (red - large perturbation, gray and black - small perturbation). Black comparisons
are between states from different meta-states (these are red in the ideal case). Panel E shows the
comparisons considered for meta-state I. Panel F shows the comparisons considered of meta-state II.
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and 
observed comparisons

A. Yeast sporulation

F. Meta-state II
p-value=0.0195

E. Meta-state I
p-value=0.0625

B. MIX: 82.54% blue – 17.46% red
Type 1 Error=0.067   Type 2 Error=0.012

threshold=0.77

Figure 3.17: The results of QCD on real data of the yeast sporulation. Panel A shows the mixture
(magenta line) of two gamma distributions (blue and red lines) that is fitted to the perturbation
factors (histogram, and density - thick black line). The blue and red density lines are scaled using
the mixture proportion. We evaluate the goodness using three statistics: (i) the Kullback-Leibler
divergence between the density of the observed perturbation and the density of the fitted mixture
model (KLD_o-observed first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-Smirnov test
(KS_p) between the observed perturbation and the fitted mixture model; and (iii) the overlap, which
is the ratio between the intersection and union of the areas delimited by the observed (thick black)
and fitted (magenta) density lines. Panel B shows the gamma mixture model used to separate small
(blue line) and large perturbations (red line). The blue and red distributions which compose the
mixture model are unscaled in this panel and the mixture proportion is reported. The yellow vertical
line is the threshold used to separate the small and large perturbation factors. The null hypothesis
is that there are no change intervals and therefore there are only small system perturbations (blue
distribution). The Type 1 and Type 2 errors are marked by the blue and red areas, respectively.
Panel C shows the potential meta-states (black ellipses) together with the ideal comparisons between
the time points within these meta-states (red - large perturbation, gray - small perturbation). Panel
D shows the same meta-states (black ellipses) together with the observed comparisons (red - large
perturbation, gray and black - small perturbation). Black comparisons are between states from
different meta-states (these are red in the ideal case). Panel E shows the comparisons considered
for meta-state I. Panel F shows the comparisons considered of meta-state II.
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and 
observed comparisons

A. Fruit fly pupariation B. MIX:81.11% blue – 18.89% red
Type 1 Error=0.018   Type 2 Error=0.01

threshold=0.78

F. Meta-state II
p-value=3.73×10-9

E. Meta-state I
p-value=7.81×10-3

Figure 3.18: The results of QCD on real data of the fruit fly pupariation. Panel A shows the mixture
(magenta line) of two gamma distributions (blue and red lines) that is fitted to the perturbation
factors (histogram, and density - thick black line). The blue and red density lines are scaled using
the mixture proportion. We evaluate the goodness using three statistics: (i) the Kullback-Leibler
divergence between the density of the observed perturbation and the density of the fitted mixture
model (KLD_o-observed first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-Smirnov test
(KS_p) between the observed perturbation and the fitted mixture model; and (iii) the overlap, which
is the ratio between the intersection and union of the areas delimited by the observed (thick black)
and fitted (magenta) density lines. Panel B shows the gamma mixture model used to separate small
(blue line) and large perturbations (red line). The blue and red distributions which compose the
mixture model are unscaled in this panel and the mixture proportion is reported. The yellow vertical
line is the threshold used to separate the small and large perturbation factors. The null hypothesis
is that there are no change intervals and therefore there are only small system perturbations (blue
distribution). The Type 1 and Type 2 errors are marked by the blue and red areas, respectively.
Panel C shows the potential meta-states (black ellipses) together with the ideal comparisons between
the time points within these meta-states (red - large perturbation, gray - small perturbation). Panel
D shows the same meta-states (black ellipses) together with the observed comparisons (red - large
perturbation, gray and black - small perturbation). Black comparisons are between states from
different meta-states (these are red in the ideal case). Panel E shows the comparisons considered
for meta-state I. Panel F shows the comparisons considered of meta-state II.
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and 
observed comparisons

A. Fruit fly ethanol exposure

F . Meta-state II
p-value=0.227

B. MIX: 83.28% blue – 16.72% red
Type 1 Error=0.054   Type 2 Error0.018

threshold=1.16

E . Meta-state I
p-value=1.37×10-5

Figure 3.19: The results of QCD on real data of the fruit fly ethanol exposure. Panel A shows
the mixture (magenta line) of two gamma distributions (blue and red lines) that is fitted to the
perturbation factors (histogram, and density - thick black line). The blue and red density lines
are scaled using the mixture proportion. We evaluate the goodness using three statistics: (i) the
Kullback-Leibler divergence between the density of the observed perturbation and the density of the
fitted mixture model (KLD_o-observed first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-
Smirnov test (KS_p) between the observed perturbation and the fitted mixture model; and (iii)
the overlap, which is the ratio between the intersection and union of the areas delimited by the
observed (thick black) and fitted (magenta) density lines. Panel B shows the gamma mixture model
used to separate small (blue line) and large perturbations (red line). The blue and red distributions
which compose the mixture model are unscaled in this panel and the mixture proportion is reported.
The yellow vertical line is the threshold used to separate the small and large perturbation factors.
The null hypothesis is that there are no change intervals and therefore there are only small system
perturbations (blue distribution). The Type 1 and Type 2 errors are marked by the blue and red
areas, respectively. Panel C shows the potential meta-states (black ellipses) together with the ideal
comparisons between the time points within these meta-states (red - large perturbation, gray - small
perturbation). Panel D shows the same meta-states (black ellipses) together with the observed
comparisons (red - large perturbation, gray and black - small perturbation). Black comparisons
are between states from different meta-states (these are red in the ideal case). Panel E shows the
comparisons considered for meta-state I. Panel F shows the comparisons considered of meta-state II.
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and
observed comparisons

A.Mouse exposure to phosgene
B. MIX: 89.34% blue – 10.66% red

Type 1 Error=0.083   Type 2 Error=0.034
threshold=0.23

F. Meta-state II
p-value=9.39×10-4

E. Meta-state I
p-value=0.696

Figure 3.20: The results of QCD on real data of the mouse exposure to carbonyl chloride. Panel A
shows the mixture (magenta line) of two gamma distributions (blue and red lines) that is fitted to
the perturbation factors (histogram, and density - thick black line). The blue and red density lines
are scaled using the mixture proportion. We evaluate the goodness using three statistics: (i) the
Kullback-Leibler divergence between the density of the observed perturbation and the density of the
fitted mixture model (KLD_o-observed first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-
Smirnov test (KS_p) between the observed perturbation and the fitted mixture model; and (iii)
the overlap, which is the ratio between the intersection and union of the areas delimited by the
observed (thick black) and fitted (magenta) density lines. Panel B shows the gamma mixture model
used to separate small (blue line) and large perturbations (red line). The blue and red distributions
which compose the mixture model are unscaled in this panel and the mixture proportion is reported.
The yellow vertical line is the threshold used to separate the small and large perturbation factors.
The null hypothesis is that there are no change intervals and therefore there are only small system
perturbations (blue distribution). The Type 1 and Type 2 errors are marked by the blue and red
areas, respectively. Panel C shows the potential meta-states (black ellipses) together with the ideal
comparisons between the time points within these meta-states (red - large perturbation, gray - small
perturbation). Panel D shows the same meta-states (black ellipses) together with the observed
comparisons (red - large perturbation, gray and black - small perturbation). Black comparisons
are between states from different meta-states (these are red in the ideal case). Panel E shows the
comparisons considered for meta-state I. Panel F shows the comparisons considered of meta-state II.
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C. Potential meta-states and 
ideal comparisons

D. Meta-states and 
observed comparisons

A. Human hepatocellular carcinoma 
progression

B. MIX: 88.44% blue – 11.56% red
Type 1 Error=0.131   Type 2 Eroor=0.037

threshold=0.33

F. Meta-state II
p-value=3.05×10-5

E. Meta-state I
p-value=0.0312

Figure 3.21: The results of QCD on real data for the human hepatitis C virus (HCV) to hepato-
cellular carcinoma (HCC) progression. Panel A shows the mixture (magenta line) of two gamma
distributions (blue and red lines) that is fitted to the perturbation factors (histogram, and density
- thick black line). The blue and red density lines are scaled using the mixture proportion. We
evaluate the goodness using three statistics: (i) the Kullback-Leibler divergence between the density
of the observed perturbation and the density of the fitted mixture model (KLD_o-observed first,
KLD_f-fitted first); (ii) the p-value of the Kolmogorov-Smirnov test (KS_p) between the observed
perturbation and the fitted mixture model; and (iii) the overlap, which is the ratio between the
intersection and union of the areas delimited by the observed (thick black) and fitted (magenta)
density lines. Panel B shows the gamma mixture model used to separate small (blue line) and large
perturbations (red line). The blue and red distributions which compose the mixture model are un-
scaled in this panel and the mixture proportion is reported. The yellow vertical line is the threshold
used to separate the small and large perturbation factors. The null hypothesis is that there are no
change intervals and therefore there are only small system perturbations (blue distribution). The
Type 1 and Type 2 errors are marked by the blue and red areas, respectively. Panel C shows the
potential meta-states (black ellipses) together with the ideal comparisons between the time points
within these meta-states (red - large perturbation, gray - small perturbation). Panel D shows the
same meta-states (black ellipses) together with the observed comparisons (red - large perturbation,
gray and black - small perturbation). Black comparisons are between states from different meta-
states (these are red in the ideal case). Panel E shows the comparisons considered for meta-state I.
Panel F shows the comparisons considered of meta-state II.
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3.5.2 Results of followup analysis for HCV progression to HCC

To further investigate the results of our analysis in the case of HCC progression we

identified the genes that change (absolute log2 fold change greater than 1) when comparing

control to high-grade dysplasia and control to very advanced HCC. In the control versus

high-grade dysplasia comparison there are 149 DE genes, while in the control versus very

advanced HCC comparison there are 1,355 DE genes, which is almost an order of magnitude

higher. This suggests that using the genes that are differentially expressed across the change

interval, as opposed to the genes that are different between control and very advanced HCC,

offers a more focused analysis. In essence, the comparison across the narrowest change

interval targets the genes involved in the initial tumor formation, rather than all genes that

change as a consequence of the cancer. The number of common DE genes among the two

comparisons is 80, representing 53% of the initial 149 genes.

Followup analysis using the cancer gene census

We downloaded the curated list of cancer genes available in the cancer gene cen-

sus [53] (accessible at: http://cancer.sanger.ac.uk/census). This list is is presented to-

gether with the catalogue of somatic mutations in cancer (COSMIC) [51] (accessible at:

http://cancer.sanger.ac.uk/cosmic). We used this list of cancer genes to filter the 80 com-

mon genes. The result consists of two genes: CHEK2, a tumor suppressor, and FAT1, which

is known to act both as a tumor suppressor as well as an oncogene. These are genes highly

relevant to the condition under study considering CHEK2 mutations have been linked to

various cancers [160, 37] and it has also been shown to be a mediator of a tumorigenic

mechanism specifically in HCC [115]. In addition, FAT1 has been shown to have an onco-

genic role in HCC [126, 161], as well as it has been identified as a biomarker in multiple

cancers [32, 168]. Fig. 3.22 shows the expression of CHEK2 and FAT1 over the disease

progression stages. The expression of both genes increases with disease progression with a
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Figure 3.22: The log 2 expression of CHEK2 (left) and FAT1 (right) over 8 stages of disease
progression from healthy to advanced hepatocellular carcinoma (HCC). Data from GEO (GSE6764)
for the human hepatitis C virus (HCV) to HCC progression. The green shaded area is the change
interval detected using this gene expression dataset and the viral carcinogenesis pathway from
KEGG (hsa05203). CHEK2 and FAT1 steadily increase throughout the disease stages with a sharp
increase in expression during the change interval. CHEK2 and FAT1 could potentially be targeted
for down regulation. CHEK2 is a tumor suppressor, and FAT1 is known to act both as a tumor
suppressor as well as an oncogene. CHEK2 mutations have been linked to various cancers [160, 37].
FAT1 has been studied in HCC where it has been shown to have an oncogenic role [126, 161] and
has been identified as a biomarker in multiple cancers [32, 168].

sharp increase taking place during the change interval, which may be a potential window for

treatment.

Followup analysis using KEGG pathways

The “Viral carcinogenesis pathway” from KEGG was used to identify the change

interval for the HCV induced HCC progression. To further investigate the results of QCD

we used this pathway in a followup analysis. As mentioned above, we compared the control

with the high-grade dysplasia stage and the control with the very advanced HCC stage and

identified 80 common differentially expressed genes. We also used this pathway to filter the

80 common genes and obtain a “Viral carcinogenesis” gene set, which contains genes from

the pathway that change at the onset of the disease. The result consists of two early growth

response genes: EGR2 and EGR3. EGR2 has been shown to be an apoptosis promoter
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Figure 3.23: The log 2 expression of EGR2 (left) and EGR3 (right) over 8 stages of disease
progression from healthy to advanced hepatocellular carcinoma (HCC). Data from GEO (GSE6764)
for the human hepatitis C virus (HCV) to HCC progression. The green shaded area is the change
interval detected using this gene expression dataset and the viral carcinogenesis pathway from
KEGG (hsa05203). EGR2 and EGR3 steadily decrease throughout the disease stages with a sharp
decrease in expression during the change interval. EGR2 and EGR3 could potentially be targeted for
over expression. EGR2 is known to apoptosis promoter gene [159] that is known to be downregulated
by miRNAs in cancer [178, 94]. EGR3 is known to be involved in a number of cancers and the
regulation of the immune response [77, 136, 129, 27] and has recently been liked to HCC where it
was used to inhibit the growth of tumor cells [187].

gene [159], which is downregulated by miRNAs in cancer [178, 94]. EGR3 has been shown to

be involved in a number of cancers and the regulation of the immune response [77, 136, 129,

27] and has recently been liked to HCC where it was used to inhibit the growth of tumor

cells [187]. Fig. 3.23 shows the expression of EGR2 and EGR3 over the disease progression

stages. The expression of both genes decreases with disease progression with the sharpest

decrease taking place during the change interval.

3.5.3 QCD behavior under the null hypothesis

An important question for the proposed method is to demonstrate that the approach

does not report qualitative changes in the case of experiments that do not involve any system

perturbations (false positive changes).
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The hypothesis is that if there is a change interval the system state comparisons will

yield a mix of large and small system perturbations. Small system perturbation are expected

when comparing system states before the change interval or system states after the change

interval. Large system perturbations are expected when comparing system states before the

change interval with states after the change interval. Therefore we used a mixture of two

gamma distributions, one for the comparisons in which the system is unperturbed (which

is also the null hypothesis) and another for comparisons in which the system is perturbed.

The mixture model will be initialized with two distributions having the mode the minimum

and maximum of the perturbation factors. The mixture model fitting will provide two

distributions that best fit the data together with a percentage which estimates how much of

the observed data comes from each of these two distributions. If any of the distributions has

a percentage of less than 10%, we consider that there is only one distribution and therefore

we will not report any significant change.

To investigate the behavior of this approach under the null distribution, when the

system is only affected by random noise and small random fluctuations, we used the time-

course data from the control samples involved in the perturbation experiments above.

Control data from the fruit fly ethanol exposure experiment

The study by Kong et al. [88] on fruit fly exposure to ethanol contains both condition

and control time course data. The experiment spans 3.5 hours (210 min) of recovery after a

30 min ethanol exposure sedating up to 75% of the flies and is sampled at 8 time points. The

time-points include one control before exposure, one at 0h right after exposure, and every

30 minutes after that up to 3.5h with a missing data point at 2.5h (150 min) which was

not provided in the dataset. Treatment conditions used in this experiment were exposure to

humidified air or ethanol vapor (60%) for 30 min, and then recovery for up to 210 minutes [88].

Samples exposed to humidified air are the control samples. Fig. 3.24 presents the first two

steps of the QCD method on the control data. A mixture of two gamma distributions is

fitted to the perturbation factors computed for all time points comparisons on the control
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Figure 3.24: The results of QCD on real data of the fruit fly exposure to air. Panel A shows the
mixture (magenta line) of two gamma distributions (blue and red lines) that is fitted to the observed
perturbation factors (histogram, and density - thick black line). The blue and red density lines are
scaled using the mixture proportions. We evaluate the goodness using three statistics: (i) the
Kullback-Leibler divergence, which is computed between the density of the observed perturbation
and the density of the fitted mixture model (KLD_o-observed first, KLD_f-fitted first); (ii) the
p-value of the Kolmogorov-Smirnov test (KS_p) between the observed perturbation and a sample of
the fitted mixture model; and (iii) the overlap, which is the ratio between the intersection and union
of the areas delimited by the observed (thick black) and fitted (magenta) density lines. The blue
and red distributions which compose the mixture model are unscaled in this panel and the mixture
proportion is reported. The red distribution (large perturbation) contributes only 2.73% of the
mixture. In other words, the comparisons between system states show mostly small perturbation,
which means there is no significant system change.

data. The large perturbations (red distribution) contribute only 2.73% of the mixture. In

other words, the comparisons between system states show mostly small perturbation, which

means there is no significant system change.

Control data from the mouse phosgene exposure experiment

In the study by Sciuto et al. [143], mice were exposed to 32 mg of phosgene per cubic

meter for 20 min and samples were collected from lung tissue at 9 time points: untreated

(0), 30 min, 1, 4, 8, 12, 24, 48, 72 hours after exposure. As a control, samples were collected

at the same time points from mice exposed to air. Fig. 3.25 presents the first two steps

of the QCD method on the control data. A mixture of two gamma distributions is fitted

to the perturbation factors computed for all time points comparisons on the control data.

Results show that the distribution of large system perturbations contributes less than 10%
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of the mixture. In other words, the comparisons between system states show mostly small

perturbation, which means there is no significant system change.

Figure 3.25: The results of QCD on real data of the mouse exposure to air. Panel A shows
the mixture (magenta line) of two gamma distributions (blue and red lines) that is fitted to the
perturbation factors (histogram, and density - thick black line). The blue and red density lines
are scaled using the mixture proportions. We evaluate the goodness using three statistics: (i) the
Kullback-Leibler divergence, which is computed between the density of the observed perturbation
and the density of the fitted mixture model (KLD_o-observed first, KLD_f-fitted first); (ii) the
p-value of the Kolmogorov-Smirnov test (KS_p) between the observed perturbation and a sample of
the fitted mixture model; and (iii) the overlap, which is the ratio between the intersection and union
of the areas delimited by the observed (thick black) and fitted (magenta) density lines. The blue
and red distributions which compose the mixture model are unscaled in this panel and the mixture
proportion is reported. The red distribution (large perturbation) makes up for only 9.96% of the
mixture. In other words, the comparisons between system states show mostly small perturbation,
which means there is no significant system change.

Behavior on random data

An important requirement is to demonstrate that the approach does not report signif-

icant changes in random data. In order to investigate this, we generated 10,000 perturbation

factors using random samples from the E coli flagellum building data. We select randomly

10 time points out of the 21 available, and we compute a perturbation factor comparing the

average of the selected 10 time points with the average of the other 11 time points. This

process generates 10,000 random perturbation factors. We fit a mixture of two gamma dis-

tributions to these data (see Fig. 3.26). The large perturbations (red distribution) make up

for only 2.64% of the mixture. In other words, the comparisons between system states show
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A. Random data B. MIX: 97.36% blue --2.64% red

Figure 3.26: The results of QCD on random data generated using the E. coli flagellum building
synthetic data. Randomly selected groups of 10 (out of a total of 21) system states are compared to
the group of remaining 11 system states to generate random perturbation values. Data is generated
using 10,000 iterations. Panel A shows the mixture (magenta line) of two gamma distributions
(blue and red lines) that is fitted to the perturbation factors (histogram, and density - thick black
line). The blue and red density lines are scaled using the mixture proportion. We evaluate the
goodness using three statistics: (i) the Kullback-Leibler divergence, which is computed between the
density of the observed perturbation and the density of the fitted mixture model (KLD_o-observed
first, KLD_f-fitted first); (ii) the p-value of the Kolmogorov-Smirnov test (KS_p) between the
observed perturbation and a sample of the fitted mixture model; and (iii) the overlap, which is
the ratio between the intersection and union of the areas delimited by the observed (thick black)
and fitted (magenta) density lines. Panel B shows how the gamma mixture model is used to
separate small (blue line) and large perturbations (red line). The blue and red distributions which
compose the mixture model are unscaled in this panel and the mixture proportion is reported.
The red distribution (large perturbation) makes up for only 2.64% of the mixture. In other words,
the comparisons between system states show mostly small perturbation, which means there is no
significant system change.

mostly small perturbation, which means there is no significant system change. Thus, QCD

does not report any false positives when the data is random.

3.6 A summary of this chapter

We designed and implemented an analytical method capable of detecting qualitative

changes in the state of a biological system by monitoring its gene expression levels. This

has been conducted with no training on previous examples, with no expert supervision, and

with thresholds set using sound statistical criteria. The only hypothesis used here is that

a qualitative change will involve enough pathway components to perturb the pathway in a

significant way.
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To evaluate the proposed method, we used both synthetic and real data. The cases

used for validation cover a wide range of biological phenomena and model organisms as

presented in section 3.3 (see Table 3.2 for a summary). Identifying a change interval implies

recognizing the transition the system goes through from a state of relative equilibrium to

another. The states of relative equilibrium the system transitions from are denoted here

as meta-states and the transition as the change interval. Notably, in each case study, the

system transitions between meta-states that are of great importance if we hypothesize that

such transitions are infrequent and that a qualitative change is required for a system to

undergo such transitions. We also assessed the statistical significance of the potential meta-

states for each of the eight case studies. Results show that out of 16 putative meta-states,

13 are significant at a threshold of 5%.

The proposed method was applied on a wide range of biological phenomena and was

able to detect important transitions between system meta-states with high accuracy in the

first six case studies having a known change interval: building a motility motor in E. coli,

spore formation in B. subtilis and S. cerevisiae, backwards movement triggered by the nose

touch in C. elegans, and both acute ethanol exposure and metamorphosis in D. melanogaster.

We also compared QCD to an existing method developed by Liu et al. [92] for de-

tecting the pre-disease state and network biomarkers on two datasets. These are two case

studies where the phenomena are more complex. When analyzing the data for the exposure

to the toxic gas phosgene in mice, QCD identified the cellular damage at an earlier time

point, when treatment is still effective [141].

When analyzing data for hepatitis C virus infection progression to hepatocellular

carcinoma (HCC) in humans, QCD identified the transition from control to high-grade dys-

plasia. In this case, the existing method identified as the pre-disease state, i.e., the “very

early HCC” stage, which can be interpreted as the start of the malignant state. Importantly,

the change interval detected by QCD immediately precedes this pre-disease state detected
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by the existing method and marks the transition from benign to malignant. Intervention

during this interval may prevent this transition and disease progression may be halted.

To summarize, we have evaluated the proposed method QCD on both synthetic (noise

free) and real (noisy) data, on a total of eight case studies for six model organisms and one

human dataset and the QCD identified the qualitative changes in each case. We have also

used both time course data as well as disease stages as system states in our analyses, and

QCD performed well for both types of data.

An immediate application for QCD could be to identify when the transition between

different disease stages happens for other diseases. However, QCD is a versatile approach

that can be applied to systemic states in different contexts (time course, disease progression,

drug dose, BMI, age).

The QCD method can also be applied in the study of drug synergies and synthetic

lethality where it could identify the time interval when one drug sensitizes the cell and the

second drug has maximum efficacy in a time-dependent way. In turn, this could maximize

the effect of combination therapies for various diseases. Another important application for

the conceptual framework described in this chapter is the prediction of obstetrical disease in

early pregnancy, so interventions can mitigate or prevent the “great obstetrical syndromes”

that are primarily observed during the third trimester of pregnancy [135]. In future work,

we plan to use the QCD method to predict obstetrical disease based on transcriptomics,

metabolomics, proteomics, lipidomics, and other data. A system state in the QCD framework

can be any of, but not limited to, the following: a developmental stage, the response to a

certain therapeutic dose, the stage of a disease, patients who share physiological traits or

disease outcome. The analysis of time series expression data using QCD could potentially

be used to decide the duration of adjuvant chemotherapy, disease recurrence, etc. However,

the most important application of this approach would imply a paradigm shift: one could

use a QCD-like approach with the aim of identifying the departure from the healthy state

instead of diagnosing the onset of disease.
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CHAPTER 4: METABOLIC PATHWAY ANALYSIS

4.1 Challenges in metabolic pathway analysis

A multitude of methods have been developed for gene expression data while the

progress in the development of topology-base pathway analyses for metabolite data is lagging

behind [111, 118]. Until recently, a big limitation was given by technology, but that is not

the case any more [124]. The scarcity of the data is and will be a big limitation until

the high-throughput metabolic datasets reach a comparable number to the ones available

for gene expression. The complex structure of the metabolic pathways further restricts the

development of metabolic pathway analyses (see Fig. 4.1). Due to these limitations, very few

metabolic pathway analysis that consider the pathway structure [111, 118], while a larger

number of metabolite set analyses are available [99]. Metabolite set analyses consider the

metabolites as independent entities, which is not the case. Such analyses are not able to able

to identify disease mechanisms involving multiple metabolites. There is a need for pathway

structure aware analyses to identify mechanisms.

Considering the wealth of information in pathway databases, there is little consensus

among them in terms data structures used to store the data (see Fig. 4.1). In a KEGG sig-

naling pathway nodes are gene products and edges are regulatory signals such as activation

or inhibition (see http://www.genome.jp/kegg/document/help_pathway.html) for details).

In a KEGG metabolic pathway nodes are biochemical compounds and edges are chemical

reactions. Reactions are catalyzed by enzymes which are proteins encoded by genes. There-

fore, in a metabolic pathway genes are associated with edges. This makes the structure of

the KEGG metabolic pathways very challenging for the development of analysis methods

that consider the topology of the pathway. Other pathway databases are available that

have a representation more suitable for the analysis of metabolite data in the context of

bio-chemical reactions. Such databases are The Reactome Database (https://reactome.org)

and The Small Molecule Pathway Database [52, 83] (SMPDB, http://smpdb.ca). Reactome
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Figure 4.1: Signaling versus metabolic pathway representation. Panel (a) contains the rep-
resentation for a signaling pathway from the Kyoto Encyclopedia of Genes and Genomes
(KEGG). The nodes are genes and the edges represent relations between genes such as acti-
vation and repression. Panel (b) contains the representation for a metabolic pathway from
KEGG. Nodes are metabolic compounds and edges are bio-chemical reactions catalyzed by
enzymes. The differences in the pathway structure makes it challenging to use the multitude
of pathway analysis methods developed for signaling pathways for the analysis of metabolic
pathways.

has a hierarchical structure for the pathways which introduces a statistical challenge when

trying to compute independent p-values for overlapping pathways. Even though an absolute

independence between pathways is an ideal that cannot be achieved, they all work within

the cell, a hierarchical structure is recommended to be resolved before a pathway analysis

is ran on such data. SMPDB will be described in the following as our choice of pathway

database for metabolic pathway analysis.

4.2 Pathway analysis using the stoichiometry of the reaction

To help address the challenge of identifying mechanisms in complex metabolic dis-

eases, we propose a novel framework for the analysis of metabolic pathways using the stoi-

chiometry of bio-chemical reactions. We developed the reaction limiting factor analysis for

metabolic pathways (RAMP), an approach designed to detect metabolic pathways signifi-

cantly perturbed when comparing two phenotypes (i.e disease vs. healthy). The method is

designed to leverage the information regarding the stoichiometry of bio-chemical reactions

stored in pathway databases.
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The method takes as input a list of pathways stored as a list of bio-chemical reac-

tions and measurements of reaction components as provided by high-throughput biological

experiments for two phenotypes to be compared.

To describe the RAMP analysis method, let us consider the following working example

for a single reaction.

4A+ 3B ! 2C + 5D (4.1)

The measurements of the reaction components (metabolites A, B, C and D) for the working

example are presented in Table 4.4.

Input data – metabolite measurements
Phenotype/Metabolites mA mB mC mD
Healthy (H) 24 15 18 12
Disease (D) 28 36 20 27
Stoichiometry 4 3 2 5
Realization & limiting factor H (min) 24/4 = 6 15/3 = 5
Realization & limiting factor D (min) 28/4 = 7 36/3 = 12
Differential realization D/H 4.2 7/5 = 1.4

Table 4.4: Example of measurements for the components (metabolite A, metabolite B,
metabolite C, metabolite D) of a bio-chemical reaction for two phenotypes: healthy and
disease. The first two rows of the table contain the measurements for the left-hand compo-
nents (metabolite A, metabolite B, metabolite C, metabolite D) of the three bio-chemical
reactions for two phenotypes: healthy (H) and disease (D). The next 4 rows display: (1) the
stoichiometry of the reaction, (2) the reaction realization and limiting factor for the healthy
phenotype, (3) the reaction realization and limiting factor for the disease phenotype, and
(4) the reaction differential realization for the disease versus the healthy phenotype

In the first step, we compute metabolite realization factors as normalized metabo-

lite measurements using the stoichiometry as normalization factor for each of the two pheno-

types. The reactants (left side of the equation) are the components that will be transformed

and therefore to evaluate the rate of the reaction it is important to evaluate how much of

these components is measured (available) for the reaction. Realization factors estimate

how many times a reaction can take place given the amount of reactants avail-
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able. For the data given in Table 4.4, the realization factors in the healthy healthy state for

the reactants are as follows: for metabolite A (mA) is 6 (24/4); and for metabolite (mB) is 5

(15/3). Similarly, the realization factors in the disease state for the reactants are as follows:

for metabolite (mA) is 7 (28/4); and for metabolite (mB) is 12 (36/3).

In the second step of the analysis, we compute reaction limiting factors as the

minimum of the realization factors for computed for the reactants of a reaction for each

phenotype. The limiting factor is the component that limits the reaction to a

minimum number of times it can take place. For the data given in Table 4.4, the

limiting factor for healthy is reactant mB with a realization factor (RF
healthy

) equal to 5.

The limiting factor for disease is reactant mA with a realization factor (RF
disease

) equal to 7.

In the third step of the analysis, the reaction differential realization statistic is

computed as the ratio between the limiting factors of the reaction in the two phenotypes.

The differential realization for our reaction is 1.4 (7/5, RF
disease

/RF
healthy

). The differen-

tial realization is a reaction statistic that evaluates how disrupted is a reaction

when comparing two conditions (phenotypes). When no disruption occurs the reac-

tion statistic (ratio of limiting factors between the two phenotype) would be 1. A differential

realization above 1 would signal that the reaction can occur more times in the phenotype

under study (usually disease) which means more of the product(s) of the reaction would be

available in that phenotype. A differential realization below 1 would signal that the reaction

can occur fewer times in the phenotype under study (usually disease) which means less of

the product(s) of the reaction would be available in that phenotype. A similar logic can be

used when the pathway differential realization (average of the differential realization of the

reactions in the pathway) is computed.
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4.3 Change propagation for bio-chemical reactions

Reactions in a pathway do not occur independently of one another therefore, to

provide a better model for the reaction perturbation would include the interactions between

the reactions in a pathway.

Let us consider again a working example, this time, using three reactions. We use

multiple reaction to illustrate the different ways a reaction interacts with other reactions.

4A+ 3B ! 2C + 5D (4.2)

4C + 3D ! 2E + 5F (4.3)

5A+ 4C ! 2G+ 5H (4.4)

The measurements of the left-side reaction components for the working example are

presented in Table 4.5. The values for metabolites E,F,G and H are 5,6,7,and 8, respectively,

and do not change between disease and healthy. The table includes the first three steps of

the analysis presented previously in Section 4.2. Specifically, it displays the computation

of realization factors for each component (metabolite), identifies the limiting factors and

computes the reaction differential realization, rDR = rRF
disease

/rRF
healthy

, as the ratio

between the reaction realization in disease versus healthy for the reaction limiting factor.

The fourth analysis step consists of the computation of the reaction perturbation

through the propagation of the reaction realization of the upstream reactions using eq 4.5.

An upstream reaction is a reaction whose reactants overlap with the products of a given

reaction. The reaction perturbation estimates the disruption produced at the

reaction level by the change in phenotype considering the interactions between

reactions.

PF (r) = rDR(r) +
X

u2US(r)

PF (u)

#DS(u)
(4.5)
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where PF (r) is the perturbation factor for reaction r, rDR(r) is the reaction differential

realization for the reaction r as the ratio between the reaction realization in disease versus

healthy for the reaction limiting factor, US(r) is the set of reactions directly upstream of r,

DS(r) is the set of genes directly downstream of r, and # denotes set cardinality.

In the fifth analysis step, we evaluate the perturbation at the pathway (reaction

set) level. We consider that the reactions in a pathway interact with one another. We define

an interaction between two reactions r1 and r2 if any of the products of reaction r1 (right

side components) is a reactant (left side component) of reaction r2. With this definition,

we compute a incidence-type matrix computed for the reactions in a pathway. The reaction

matrix for the three reactions described by equations 4.2, 4.3, 4.4 is computed in Table 4.6.

The reaction matrix, together with equation 4.5 is used to compute the reaction perturbation

Input data – metabolite measurements - 3 reactions impact analysis
Phenotype/Metabolites mA mB mC mD
Healthy (H) 24 15 18 12
Disease (D) 28 36 32 27
Stoichiometry for 4.2 4 3
Identify limiting factor H 4.2 24/4 = 6 15/3 = 5
Identify limiting factor D 4.2 28/4 = 7 36/3 = 12
Differential realization D/H 4.2 7/5 = 1.4
Stoichiometry for 4.3 4 3
Identify limiting factor H 4.3 18/4 =4.5 12/3 = 4
Identify limiting factor D 4.3 32/4=8 27/3 = 9
Differential realization D/H 4.3 8/4 = 2
Stoichiometry for 4.4 5 4
Identify limiting factor H 4.4 24/5 = 4.8 18/4 = 4.5
Identify limiting factor D 4.4 28/5 = 5.6 32/4 = 8
Differential realization D/H 4.4 5.6/4.5 = 1.24

Table 4.5: Example of the perturbation analysis for a set of three reactions. The first
two rows of the table contain the measurements for the left-hand components (metabolite
A, metabolite B, metabolite C, metabolite D) of the three bio-chemical reactions for two
phenotypes: healthy (H) and disease (D). The next 12 rows in groups of 4 display: (1) the
stoichiometry of the reaction, (2) the reaction realization and limiting factor for the healthy
phenotype, (3) the reaction realization and limiting factor for the disease phenotype, and
(4) the reaction differential realization for the disease versus the healthy phenotype.
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Pathway reaction matrix - 3 reactions impact analysis
Reaction 4.2 perturbs 4.3 perturbs 4.4 perturbs Reaction perturbation
4.2 is perturbed by 0 0 0 1.4
4.3 is perturbed by 1 0 0 2 + 1.4/2 = 2.7
4.4 is perturbed by 1 0 0 1.24 + 1.4/2 = 1.94
Number of down
stream reactions

2 0 0

Reaction differ-
ential realization

1.4 2 1.24

Pathway
perturbation

(1.4 + 2.7 + 1.94)/3 = 2.01

Table 4.6: Example of the incidence-type matrix computed for the reactions in a pathway in
order to compute a pathway-level perturbation value. The 3 top rows and columns represent
reactions. The values for the cells are either 0 or 1, where a value of 0 represents no interaction
between reactions and a value of 1 represents an interaction. The columns represent a
“perturbs” relation, where reaction the column header perturbs the reactions on the rows
where there is a value of 1. The rows represent a “is perturbed by” relation where the
row header is perturbed by the reactions on the columns where there is a value of 1. The
first row following the reaction matrix contains the reaction differential realization for the
three reactions. Then, in the “Number of down stream reactions” row, for each reaction we
compute the number of downstream reactions as the sum of the column values. Using these
values, we observe that the first reactions perturbs the other two, while the second reaction
only perturbs the last one, and the last one does not perturb any other reactions. The last
column, titled “Reaction perturbation” contains the calculation of the reaction perturbation
for each reaction (row) using the reaction matrix and the reaction realization. The last row,
titled “Pathway perturbation” contains the computation of the perturbation computed at
the pathway level where the pathway is the set of the three reactions.

factor, that estimates the perturbation produced by the change in phenotype at the reaction

level. Finally, we evaluate the perturbation produced by the change in phenotype at the

pathway level using the mean of the perturbations of the reactions in the pathway (eq. 4.6).

The pathway perturbation for the example pathway comprised of three reactions described

(eq. 4.2, 4.3, 4.4) is computed in the last row of Table 4.6.

PF (P ) =

P
r2P

PF (r)

#P
(4.6)
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where PF (P ) is the perturbation factor for pathway P , PF (r) is the perturbation factor for

reaction r, and # denotes set cardinality, in this case the number of reactions in pathway P.

The statistic at the pathway level estimates the how the change in phenotype disrupts

the pathway. However, this statistic, weather high or low can happen just by chance. In the

last two steps of the analysis a resampling approach is employed to compute an empirical

distribution of this statistic, which is then used to compute a p-value that evaluates how

likely it is that the observed value occurred just by chance. This p-values computed for

the pathway perturbation, together with a predefined threshold, is then used to identify

significant pathways.

All together, the workflow of the analysis consists of the following steps:

1. Compute metabolite realization factors, as normalized measures using metabolite

values measured for each phenotype and the stoichiometry as normalization factor

2. Identify limiting factors as the minimum of the realization factors for each reaction

for each of the two phenotypes;

3. Compute the reaction differential realization statistic as the ratio between the

limiting factors of the reaction in the two phenotypes;

4. Compute the reaction perturbation factor by propagating the reaction differen-

tial realization statistic between reactions that share products and reactants using an

impact analysis at the pathway level;

5. Compute the pathway perturbation factor for each pathway in the input list as

the average of reaction perturbation factors;

6. Compute the significance of the pathway perturbation using a permutation ap-

proach to generate the distribution of the pathway perturbation under the null hy-

pothesis and compute an empirical p-value using this distribution;

7. Select significantly impacted pathways using a predefined significance threshold.
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4.4 Evaluation on simulated data

To evaluate the novel pathway analysis method we will use controlled simulated data

for both the pathways (bio-chemical reactions) and the metabolites. The goal is to assess if

the novel method is able to identify relevant changes at the pathway level. We will consider

two pathways and a set of metabolite data that includes measurements for all metabolites

in these two pathwys. We will also compare the results of RAMP with the classical over-

representation approach, for which we will use the hypergeometric test.

In order to test our method we use the pathway and data created in Section 4.3. We

have pathway 1 with three reactions (eq. 4.2, 4.3, 4.4) and 8 metabolites measured (A, B,

C, D, E, F, G and H, see Table 4.7, left). We also generate another pathway, pathway 2,

with the same structure (equations) but different metabolites (A1, B1, C1, D1, E1, F1, G1,

and H1, see Table 4.7, right). The measurements for these metabolites are as follows: A1,

B1, C1, D1 do not change between disease and healthy and have the values 5,6,7,and 8,

respectively (same values as E,F,G and H in the first dataset), while E1,F1,G1 and H1 have

the same values as A, B, C and D in the first dataset. We created these case-studies where

we have pathway 1 with significant changes, and pathway 2 with non significant changes.

Also, for both pathways, we have the same number (4) of metabolites that change between

phenotypes. These case-studies allow us to evaluate the behavior of the new method and

compare it with the over-representation approach.

For these data, the expected results of the over representation to be the same and

to be non significant, even though there are metabolites changing in the pathway and for

one of the pathways metabolites that perturb all pathway reactions change. This result is

due to the fact that in both pathways the same number of metabolites change (4/8), and

they change in the same proportion if we consider all pathways 8/16. RAMP considers the

stoichiometry of the reaction as well as how the metabolites that change are distributed in

the pathway, based on the structure of the bio-chemical reactions. We expect RAMP to

identify pathway 1 as changing significantly and pathway 2 as changing non-significantly.
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Data for pathway1
Metabolite Healthy

values
Disease
values

A 16 48
B 15 36
C 8 32
D 12 27
E 5 5
F 6 6
G 7 7
H 8 8

Data for pathway 2
Metabolite Healthy

values
Disease
values

A1 5 5
B1 6 6
C1 7 7
D1 8 8
E1 16 48
F1 15 36
G1 8 32
H1 12 27

Table 4.7: Simulated datasets for RAMP evaluation. The left-side table contains the values
measured in healthy and disease phenotypes for the metabolites involved in the reactions from
pathway1. The right-side table contains the values measured in healthy and disease pheno-
types for the metabolites involved in the reactions from pathway2. In pathway1 metabolites
A, B, C and D change between phenotypes, while in pathway2 metabolites E1, F1, G1 and
H1, change between phenotypes. Values that change between phenotypes are highlighted in
pink in the table.

With this set-up, we ran both the hypergeometric test and the RAMP method using

pathways 1 and 2 and the dataset presented in Table 4.7. For the RAMP method, so far we

have shown how to compute the pathway-level statistic called perturbation factor, in order to

assess the significance of this statistic we employ a resampling approach called bootstrapping

in order to build the distribution of the statistic under the null hypothesis where we have

random changes. We randomly permute the labels of the input measured metabolite data

for a number of times (n = 10, 000) and compute the pathway perturbation using these

values. Based on this distribution an empirical p-value is computed as the number of times

the observed statistic is more extreme (higher) than the values in the null distribution. For

the hypergeometric test, we use the total number of metabolites (16) and the total number

of changed metabolites (8), and for each pathway, there is a total of 8 metabolites and 4

changed metabolites.

The results for RAMP show pathway 1 as significant at 5% (p-value FDR 0.0246),

while the hypergeometric test did not identify any significant pathways (see Table 4.8).
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RAMP hypergeometric test
Pathway/p-value p-value FDR p-value FDR
Pathway1 0.0127 0.0254 0.6903 0.6903
Pathway2 1 1 0.6903 0.6903

Table 4.8: Results for RAMP and the hypergeometric test evaluation on simulated data.
The table contains the list of pathways and corresponding p-values computed using the
RAMP method (left 2 columns) and hypergeometric test (right 2 columns). RAMP identifies
pathway 1 as significant at a 5% significance threshold with a FDR corrected p-value of
0.0254, highlighted in pink (corresponding row p-value 0.0127 is displayed in bold). The
hypergeometric test does not identify any pathway as significant reporting p-values of 0.6903.

These evaluation results highlight the importance of taking into consideration the important

information provided by the pathway structure.

The next step would be to evaluate the novel pathway analysis method for practical

purposes. The goal is to assess if the novel method is able to identify relevant changes at

the pathway level in practice, using real data. For that, we will use data from biological

experiments and pathways from public biological pathway databases. To select the data, we

examine a pathway database repository and a metabolite data repository.

4.5 Data source for metabolic data: case study HMDB

The Human Metabolome Database [176, 175, 174] (HMDB, http://www.hmdb.ca) is a

database that contains a wealth of information about metabolites that can be found in the hu-

man body. It has a search functionality implemented that allows easy access to the data spe-

cific to a metabolite through simple queries. The data for all metabolites can be downloaded

in the XML machine readable format. Parsed data can then be queried for different statistics.

It contains data for 3,295 compounds detected for healthy individuals and 1,780 compounds

for individuals that have a specific condition/disease (http://www.hmdb.ca/statistics).

HMDB can be queried for various statistics. For instance, the data stored in this

database is available for different biofluids including blood, tears, urine, and saliva. To

produce a dataset, we were interested to see how many biosamples are available for each
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Figure 4.2: The top 4 biofluids available in HMDB based on the biosample frequency for
each biofluid. CSF is the abbreviation for cerebrospinal fluid.

biofluid. Fig. 4.2 shows the number of samples for the top 4 biofluids out of a total of 16.

The top one is blood with 11,126 biosamples, followed by urine with 6,053 biosamples.

Once we identified the tissue/biofluid, the next step in selecting a dataset is choosing

a condition that we want to study. For analysis purposes, a dataset that has more data is a
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better dataset. Therefore we would like to know how many biosamples are available for each

condition for the tissue previously selected (blood). There are biospecimens available for this

tissue for 472 diseases. Fig. 4.3 shows how many biosamples are available for each disease.

Pregnancy is the top disease with 920 biosamples for blood and therefore our condition of

choice for the evaluation of our analysis.

4.6 Metabolic pathway database: case study SMPDB

The Small Molecule Pathway Database [52, 83] (SMPDB, http://smpdb.ca) is a

database designed to store data in machine readable format for more than 40,000 path-

ways found in humans and other model organisms (E. coli, yeast, mouse). It has a search

functionality implemented that allows easy access to a specific pathway through simple

queries. The data for all pathways can be downloaded in various machine readable formats

(BioPAX, SBGN, SBML, PWML). It also contains a visual representation of the pathways

that can also be exported. Pathway data can be parsed in different data structures and then

queried for different statistics. In the latest version (v2.75) SMPDB contains 55,700 com-

pounds in 57,402 reactions (http://smpdb.ca/stats). There are regular releases that update

the database. Table 4.9 shows the evolution of the number of pathways and the number of

metabolites from one version to another of the SMPDB.

SMPDB v1.0 SMPDB v2.0 SMPDB v2.5 SMPDB v2.75
Pathway no. 351 618 61345 48690
Metabolites no. 772 1493 70469 55700

Table 4.9: The change in the number of pathways and metabolites available in the Small
Molecule Pathway Database (SMPDB, http://smpdb.ca) is presented for four releases
(http://smpdb.ca/stats).

SMPBD can be interrogated for a multitude of purposes. For instance, we were

interested to see what is the distribution of the number of reactions per pathway. This is

a useful information when developing an analysis tool. It can provide the scale of the data
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Figure 4.4: Histogram of the number of reaction per pathway for the SMPDB database.
Most of the pathways have between 5 and 10 reactions.

to be analyzed. In this case the distribution of the number of reaction is between 1 and 63,

with most of the pathways having less than 10 reactions (see Fig 4.4).

4.7 Evaluation on experiment data

To evaluate the proposed method on real data, we will consider pathways from

the Small Molecule Pathway Database (SMPDB, http://smpdb.ca, v2.0, release February

19, 2015) and a set of metabolite data form the Human Metabolome Database (HMDB,

http://www.hmdb.ca, v3.6) that includes measurements for 577 metabolites in blood sam-

ples collected from pregnant and non-pregnant women. We will again compare the results

of RAMP with the classical over-representation approach, for which we will use the hyper-

geometric test.

The experiment data and the pathways are stored in different databases (HMDB,

SMPDB) and the metabolites have specific identifiers in each database. To make the

connection between the two databases we used the metabolite (small molecule) identi-

fiers used in a third database called the Chemical Entities of Biological Interest (ChEBI,

https://www.ebi.ac.uk/chebi/).
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For RAMP analysis we used as input metabolite levels in pregnancy and non-pregnancy

for 577 metabolites and 60,912 pathways. The experiment data was processed into the for-

mat: metabolite ChEBIID, value in non-pregnancy, value in pregnancy. The values were

averaged across all samples (Biospecimen: blood) available in HMDB for the condition.

Only 3,116 had a least one measured metabolite among the pathway components. Pathways

were downloaded in BioPAX Level 3 [33] (machine readable format for data exchange) and

processed using custom R (v3.4.2) scripts into a list-type data structure that contains for

each pathway the list of reaction and for each reaction the left-side reactants and right-

side products with the stoichiometric coefficients. After processing the input data, we run

the RAMP analysis to compute pathway perturbation factors and using a bootstrapping

(random resampling) approach we compute empirical p-values for the pathway perturbation

factors. RAMP reports these values as the results (see Table 4.10). Notably, after an false

discovery rate (FDR) correction for multiple comparisons all p-value are 1, which is due to

the high number of pathways that are analyzed. A solution may be to pre-select a subset of

the pathways in order to do this analysis.

Pathway Name p-value
1 Folate Metabolism 0.004
2 Histidine Metabolism 0.004
3 Betaine Metabolism 0.154
4 Ethanol Degradation 0.27
5 Selenoamino Acid Metabolism 0.926
6 Homocysteine Degradation 0.934
7 Glucose-Alanine Cycle 0.942
8 Catecholamine Biosynthesis 0.945
9 Primary Hyperoxaluria Type I 0.953
10 Aromatic L-Aminoacid Decarboxylase Deficiency 0.954

Table 4.10: Results for RAMP evaluation on pregnancy versus non-pregnancy data. The
table contains the top 10 pathways and corresponding p-values (computed using 1,000 per-
mutations) as resulted from applying the RAMP method on pregnancy data from the Hu-
man Metabolome Database (HMDB, http://www.hmdb.ca) and pathways from the Small
Molecule Pathway Database (SMPDB, http://smpdb.ca). RAMP identifies the “Folate
Metabolism” pathway as the top perturbed pathway with a very low p-value. Folate
metabolism has been shown to be an important metabolic process in pregnancy.
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For the hypergeometric analysis we use the 577 metabolites and the 3,116 pathways.

We compute the number of metabolites that fall on these pathways, and that number is

74. We compute the number of metabolites that change at least 50% between pregnancy

and non-pregnancy, and that number is 28. For each pathway, we compute the number of

measured metabolites on the pathway and the number of metabolites that change at least

50% for that pathway. With these numbers we compute a hypergeometric test and report

the p-value (see Table 4.11). The p-values reported by the hypergeometric test show that

the results could occur by random chance since these p-values are on the higher end with a

minimum reported p-value of 23.41%. If we correct the p-values using the FDR correction

we have again all corrected p-values equal to 1, due to the high number of pathways.

The results show that RAMP was able to identify at the top of the ranked list and

with a low p-value (uncorrected for multiple comparison) pathways relevant to pregnancy.

The top ranked pathway is the “Folate metabolism” pathway. Folate, known as vitamin

B9, is essential in pregnancy for normal development, prevents the risk of birth defects, and

protects the against future complex disease of the child [105, 158]. In addition to the random

nature of the results, given by the high p-values, the results of the hypergeometric test show

Pathway Name p-value
1 Phenylalanine metabolism 0.2341
2 Alanine metabolism 0.3831
3 Cysteine Metabolism 0.3831
4 L-alanine metabolism 0.3831
5 Lactic Acidemia 0.3831
6 Phenylalanine and Tyrosine Metabolism 0.3831
7 Phenylketonuria 0.3831
8 Phosphatidylethanolamine Biosynthesis PE(14:0/16:0) 0.3831
9 Phosphatidylethanolamine Biosynthesis PE(14:0/18:1(11Z)) 0.3831
10 Phosphatidylethanolamine Biosynthesis PE(14:0/18:1(9Z)) 0.3831

Table 4.11: Results for the hypergeometric test on pregnancy versus non-pregnancy data.
The table contains the top 10 pathways and corresponding p-values as resulted from applying
the the hypergeometric test on pregnancy data from the Human Metabolome Database
(HMDB, http://www.hmdb.ca) and pathways from the Small Molecule Pathway Database
(SMPDB, http://smpdb.ca).
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on top of the list pathways that involve the metabolism of compounds that are not specific

to pregnancy, such as phenylalanine, which is found in the artificial sweetener aspartame.

4.8 A summary of this chapter

In this chapter, we present RAMP a new stoichiometry-driven reaction perturbation

inference analysis for metabolic pathways. The method takes as input metabolite data for

two phenotypes and metabolic pathways given as sets of bio-chemical reactions. The out-

put is a list of ranked metabolic pathways together with a p-values which estimate if the

pathways was perturbed just by random chance or the change in phenotype produce a signif-

icant pathway change. The RAMP algorithm uses the stoichiometry for the input measured

metabolite level to compute a reaction rate-type of statistic for each metabolite and identify

the metabolite with the minimum statistic as the reaction limiting factor in each of the phe-

notypes. The ratio of the limiting factor is computed as the reaction differential realization

that is propagated from one reaction to another reaction when some of the products of one

reaction are the reactants of the other reaction. The final reaction statistic that includes

values propagated from other, upstream, reactions is the reaction perturbation factor. The

average of the reactions perturbation factor is computed for each pathway as the pathway

perturbation. A permutation approach is further used to compute a significance level for

the perturbation of the pathways. The list of pathways ranked by the significance values

(p-values, lower on top) is reported as the result of the RAMP method.

RAMP was evaluated using both simulated and experiment data and in both cases

outperformed the classical hypergeometric test. These results are promising and the appli-

cability of the method for identifying mechanisms of complex metabolic diseases warrants

attention. The validation performed in this chapter is limited to one simulation case and

one experiment data case, as well as only one set of pathways. For a thorough evaluation

multiple datasets are needed for both simulation and experiment data, which is part of future

work and will be reiterated in the next chapter.
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CHAPTER 5: CONCLUSION

5.1 A summary of contributions

In Chapter 1, we detailed the concepts related to systems biology and pathway anal-

ysis, specifically topology-based pathway analysis, which takes advantage of the existing

knowledge related to the interactions between genes.

In Chapter 2, we present a survey of 22 pathway analysis methods is presented com-

paring and contrasting the input, mathematical model, and output of the surveyed methods.

We also present information on 12 additional methods surveyed by a follow-up book chap-

ter [118]. The lack of benchmarking datasets is a real challenge for developing and evaluating

novel methods leading to large number of methods being developed without thorough eval-

uation. The scarcity of high-throughput metabolite data is a major challenge in developing

metabolic pathway analysis methods, as shown by the low number of metabolic pathway

analysis methods available (4/34, see [118]).

In Chapter 3, we present a paradigm shift from treating the disease to maintaining

the healthy state. We present a qualitative change detection method, QCD, able to identify

when a system transitions between qualitative states (e.g. fly metamorphosis). QCD was

evaluated on 8 datasets for 7 model organisms, where it accurately identified the respective

change intervals. We also compared QCD with an existing method that identifies the pre-

disease state. On the two datasets that the comparison was performed QCD identified an

earlier change, thus allowing for earlier intervention.

In Chapter 4, we present a novel method for data analysis in the context of metabolic

data comparing two phenotypes and metabolic pathways given as sets of bio-chemical re-

actions that represent various biological processes. The proposed method uses the change

in metabolite concentrations and the stoichiometry of the bio-chemical reactions together

with an impact analysis approach to evaluate the disruption the phenotype change produces

at the pathway level. Our hypothesis is that identifying the sets of bio-chemical reactions
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that are significantly perturbed in a specific disease versus a healthy control would provide

novel insights into the disease mechanisms. On simulated data, our approach identified as

significant the known highly perturbed metabolic pathways and performed better than the

classical over-representation approach, which could not distinguish between pathways that

have the same number of reactions and the same number of metabolites that changed. No-

tably RAMP identifies as significant the pathways in which the metabolites that influence

the most reactions are changed. On data comparing pregnant versus non-pregnant samples,

RAMP identified on top of the list the “Folate metabolism” pathway, which is closely re-

lated to pregnancy. This method can be used to further the research into metabolic disease

mechanisms.

5.2 Future research directions

Novel benchmarks can be developed for the evaluation of pathway analysis methods

and some work has been done in this direction in recent years [155, 76, 6]. Methods to

unify the input and output of pathway analysis methods as well as careful selection of

benchmark datasets would be the first steps in that direction. Work has been done in

creating benchmarks for the pathway analysis methods, software packages that run several

methods for pathway analysis [137] and target pathway benchmarks have been created [155].

Future work we consider for pathway analysis evaluation includes:

• creating new benchmarks for pathway analysis using mouse knock-out datasets, where

a specific gene is targeted and the affected pathways should be the one that contain

the knock-out gene;

• creating a general unified standard format for the input and output of pathway anal-

yses method, maybe independent of the type of data, in order to better evaluate the

contribution of new methods.

Our proposed qualitative change detection method currently works only with gene

expression data and signaling pathways. Future work we propose for the change detection
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analysis will involve adapting QCD to work with RAMP and then change intervals can be

identified using metabolic data for diseases or the change detector can be enhanced even

further to identify change intervals using multiple types of data. Specific items we consider

for for future work related to the change detection method includes:

• expanding the QCD analysis to drug treatment data where we identify the window for

co-treatment in diseases that become resistant to therapies;

• expanding the QCD analysis for multiple types of data and explore another source of

information for the system, other pathway databases, small protein-protein interaction

(PPI) networks.

Future work we consider for the development of the metabolic pathway analyses will

primarily involve more validation cases for the RAMP method and it includes:

• evaluation of the RAMP method on more simulated datasets where specific elements

are changed such as number of metabolites per reaction, number of reaction per path-

way, number of total changed metabolites, the number of changed metabolites per

pathway, the position of the changed metabolites on the pathway;

• identifying more experiment datasets that will provide a better coverage of the large

number of metabolic pathways;

• designing a method to pre-select pathways, maybe based on the measured metabolites

coverage, or select pathways based on a threshold set on the number of reactions;

• refining the RAMP method to better quantify the propagation of the reaction realiza-

tion, at this time it disregards the values for the products (right side of the reaction).

Future work will also involve the design of an analysis method that would take ad-

vantage of multiple types of existing omics data, will incorporate information from multiple
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pathway databases, using not only interactions among pathway components but among path-

ways. In addition, this method will also incorporate information about the dynamics of the

condition under study (see Fig. 5.1).

Figure 5.1: The road ahead. An analysis method that would take advantage of existing data
will incorporate information from multiple pathway databases, using not only interactions
among pathway components but among pathways. Such method will also use multiple
datatypes as well as information about the dynamics of the condition.
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Currently, most diseases are diagnosed only after disease-associated changes have oc-

curred. In this PhD dissertation, we propose a paradigm shift from treating the disease to

maintaining the healthy state. The proposed approach is able to identify when systemic

qualitative changes in biological systems happen, thus opening the possibility of therapeu-

tic interventions before the occurrence of symptoms. The change detection method exploits

knowledge from biological networks and longitudinal data using a system impact analysis ap-

proach. This approach is validated on eight datasets, for seven different model organisms and

eight biological phenomena. On these data, our proposed method performs well, consistently

identifying the qualitative change in each dataset. Most importantly, the method accurately

detected the transition from the control stage (benign) to the early stage of hepatocellular

carcinoma on an eight-stage disease dataset. Knowing when a transition (qualitative change)

from healthy to disease occurs may help preserve the healthy state.

We also propose a novel analysis approach for metabolic pathway analysis that uses an

impact analysis approach and leverages the stoichiometry of bio-chemical reactions to identify

which pathways are significantly disrupted by the change in metabolite levels in disease

samples versus healthy controls. Our approach outperforms the over-representation approach

when evaluated on simulated data. We applied our proposed method to biological experiment

data that compares samples from pregnant women to non-pregnant control samples. Our
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method was able to identify biologically relevant results on real high-throughput data better

than the classical approach.

In summary, we developed two novel methods for the analysis of high-throughput

biological data, gene expression and metabolite concentration, respectively. The proposed

methods can be adapted to work together in order to capture relevant complementary in-

formation stored in time-course datasets for gene expression or metabolite levels that may

available for complex diseases in order to identify when a qualitative change happens, before

the physiological onset of the disease.
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